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Abstract

In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine
translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the
last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental
package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international
consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and
use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making
off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For
example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many
advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a
collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved
technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech
synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future
of MT.

Introduction

In 2005b John Hutchins wrote the following gloomy assessment of Machine Translation (MT):

Machine translation (MT) is still better known for its failures than for its successes. It continues to labour under
misconceptions and prejudices from the ALPAC report of more than thirty years ago, and now it has to contend with
widespread misunderstanding and ridicule from users of online MT services. The goal of developing fully automatic general-
purpose systems capable of near-human translation quality has been long abandoned. The aim is now to produce aids and
tools for professional and non-professional translation which exploit the potentials of computers to support human skills and
intelligence, or which provide rough translations for users to extract the essential information from texts in foreign languages.
JH (ibid., 1–5)

Since then the field of Machine Translation (MT) has dramatically changed. And in the past 3 years, the field of MT has become so huge
that there is no chance of sufficiently reviewing the whole spectrum of activities, tools and resources related to the field. Therefore, I will
restrict this discussion to the leading and most promising approaches.1 The first section will be devoted to examining in detail what
Statistical Machine Translation (SMT) can offer in terms of improvements to the state of the art. Then, I will dedicate section “Hybrid and
Rule-Based MT Systems” to hybrid methods and systems. In section “Syntax Based Approaches: From Hierarchical to SBSMT”, I will
delve into syntactically based MT systems. Then section “Knowledge-Based MT Systems” will introduce knowledge, semantically-based
systems. Section “Evaluation Methods and Tools” will comprise an overview of evaluation methods and section “MT for the Future” will
briefly give an overview of what in my opinion may constitute the future of MT systems. This section will comprise a subsection dedicated
to Speech-To-Speech MT; in another subsection promising national projects will also be reviewed. This followed by the last section in
which I draw conclusions.

As JH noted, SMT research now dominates MT research. In spite of that, the great majority of commercial systems are Rule Based MT
(RBMT) systems. Also most if not all professional translators are not using any of the research products (pp. 1–5). SMT systems that have
reached public operational status are still only few in number, and perhaps “LanguageWeaver” – an offshoot of the research group at the
University of Southern California – can be regarded as the best system offering translation systems for Arabic, Chinese, and most European
languages to and from English. Always quoting from JH (ibid., 5–7):

… there is great and increasing usage of web-based MT services (many free), such as the well-known ‘Babelfish’ available on
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Yahoo. Others include FreeTranslation, Google Translator, Bing Translator, Tarjim, WorldLingo.

… there are three systems specifically for translating patents: the PaTrans and SpaTrans systems developed for LingTech A/S
to translate English patents into Danish …

Online services are now predominantly SMT-based, e.g. ‘Google Translate’, ‘Bing Translate’ (previously ‘Windows Live
Translator’), ‘Babelfish’ (now on the Yahoo site).

Probably the most significant development in MT research in Europe is the establishment of the Euromatrix project (based at
Edinburgh University). Its aim is the development of open-source MT technologies applicable to all language pairs within
Europe, based on hybrid designs combining statistical and rule-based methods. Perhaps best known is the Apertium
framework, used for systems for Spanish, Catalan, Portuguese and Basque.

As JH noted, and I also believe, hybridization is the most interesting development of MT, and a section below will be devoted to careful
examination of hybrid systems and methods. RBMT systems have been combined with SMT, and multiple subsystems are used in
conjunction, such as morphological analysers, dependency parsers, and semantic engines in combination with Phrase-Based MT (PBMT).
On the other side, hybrid systems that take advantage of examples have come to be used thanks to the availability of big parallel corpora of
examples or translation memories, such as DGT-TM, a translation memory (sentences and their manually produced translations) organized
by Ralf Steinberger from JRC and taken from the corpus Acquis Communautaire, freely downloadable at http://langtech.jrc.ec.europa.eu
/DGT-TM.html. It contains all 231 language pairs from the European 22 languages, for a total of about three million sentences for most
languages, 57 million in total.

Languages covered by MT have now dramatically increased, covering all European language pairs. But also Arabic and East Asian
languages have become commonly translatable by MT tools, including Korean, Chinese, Japanese, Tahi, Urdu, Vietnamese, Bengali,
Punjabi, Hindi, etc. Of particular interest to the US government bodies are languages like Pashto and Farsi which have also been object of
translation engines.

The multi-engine approach involves the translation of a given text by two or more different MT architectures (SMT and RBMT, for
example) and the integration of outputs for the selection of the ‘best’ output – for which statistical techniques can be used. The idea is
attractive and quality improvements have been achieved, but it is difficult to see this approach as a feasible economical method for
large-scale or commercial MT. An example of appending statistical techniques to rule-based MT is the experiment (by a number of
researchers in Spain, Japan, and Canada) of ‘statistical post-editing’. In essence, the method involves the submission (for correction and
improvement) of the output of an RBMT system to a ‘language model’ of the kind found in SMT systems. One advantage of the approach is
that the deficiencies of RBMT for less-resourced languages may be overcome. There will be more discussion on this topic below.

Statistical MT: Strength and Weaknesses

In SMT the task of translating one sentence from a source into a target language is transformed into the task of finding the “best” translation
with minimum error rate: this is technically also called the minimum loss decision. In order to compose a complete sentence, machine
translation systems score small units of translation and select the fragments that, when combined together, yield the best score according to
their model. The basic components of a SMT are three: a translation model, a language model and a decoder. Phrase-based SMT works as
follows: source input is segmented in phrases (any sequence of words); each source phrase is automatically aligned to a target phrase on the
basis of word alignment; and, eventually phrases are reordered. The decoder is responsible for the choice of best translation at sentence
level: it builds translation monotonically from left to right, and the other way around for languages like Arabic and Chinese. It collects all
phrase pairs that are consistent with word alignment and finds the best candidate phrase. Then it adds it to the end of partial translation, at
the same time it marks the source phrase as translated. At the end of the decoding process there may be reordering. Phrase translation is the
core process. There are many possible ways of segmenting and translating phrases: this is done on a probabilistic basis, and the probability
distribution of the collected phrase pairs is usually based on their relative frequency. The task could be then rephrased as finding the best
translation candidate hypothesis that covers all words/phrases in a sentence. Weak hypotheses are discarded and the best path is the one with
best candidates. At each step the algorithm estimates costs to translate remaining part of input, and tries to find the cheapest sequence of
translation option for each adjacent span of text.

Statistical MT research has explored the use of simple phrases (Och and Ney 2004), Hiero grammars (Chiang 2005), and complex S-CFG
rules (Zollmann and Venugopal 2006). These more specialized translation units can more accurately describe the translation process, but
they are also less likely to occur in the corpus. The increased data sparsity makes it difficult to estimate the standard SMT features which
are typically computed as relative frequencies. Current weaknesses and permanent flaws are:

– Wrong word choices

– Presence of unknown words or OOVWs (Out Of Vocabulary Words)

– Mangled grammar

– Difficulties in treatment of function words (locally adding, dropping, changing)

– Lack of syntactic transformations for long-distance dependencies which require some reordering

– Lack of translation consistency (as argued by Xiao et al. 2011)

– Lack of resiliency in presence of morphologically rich languages (Chinese and English are better suited just because they are
morphologically poor)

– Lack of sufficient contextual information both in translation model and in language model (trigrams are insufficient to model language
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In addition to phrase translation models, also word translation models are used, based on lexical level translation in conjunction with
PBSTM. Word-based MT has a number of deficiencies that have been considered when moving to phrase-based MT, which, however, are
worth while commenting.

– IBM models used have the possibility of matching one source word to many output target word – this is called fertility of the model –
but not the opposite;

– Word-based models miss the majority of collocations and multiword expressions

– For many languages the syntactic structure is not symmetric and requires reordering: however word-based models penalize any such
reordering and are not capable of enforcing the positioning of words at totally different places in the sentence – say the verb in Chinese
and Japanese at the end of the sentence or in Arabic at the beginning compared to SVO languages.

In phrase-based models, on the contrary, the more data are available, the longer the phrases are learned, and in some cases whole sentences
can be learned. Thus local context can be taken into consideration fully – the only problems may come from syntactic discontinuities and
long distance dependencies, as indicated above.

Alignment of phrases goes in both directions and in this case allows for optimized results – always with IBM3 model. After aligning in both
directions the results are merged and the best union or intersection is kept. As said above, phrase alignment must be consistent with word
alignment and cover all words in the sentence. In this way, phrases are induced from words level alignments. Probabilities for phrases are
just relative probabilities associated with each word in the phrase – a summation or a multiplication of them:

– Probability(Source/Target-phrase)=count(Source/Target-phrase)/count(Target-phrase)

The Problem of Word Alignment

Alignments are produced on the basis of IBM models 1–5, which I briefly review here (but see also Koehn 2010). Model 1 assumes that
given a certain sentence length, the possible connections of words from Source to Target are all equally possible – in this way their actual
order has no impact. Model 2 introduces probability to the connection between words in S/T, and it is based on position and length of the
string. Models 3, considers the number of possible connections from S to T in a many-to-one fashion – thus allowing missing words or
fertility. This is further conditioned in Model 4 by the identity of the words to connect in S/T. Model 5 is used to fix deficiencies. So
eventually, Model 1 does lexical translation, Model 2 adds some reordering model to the output of Model 1. Then in Model 3 a fertility
model is added and in Model 4 a relative reordering model, or distortion model is created always on a probabilistic basis. Distortion models
are necessary every time one-to-one or monotonic alignment is insufficient, and usually ensues from many-to-many mappings (see
Tiedemann 2011). The many-to-one fertility translation model is exemplified best with reference to an English to German translation
system, where compound German words have to be aligned to many English words. But in some cases, English may have phrasal
expressions instead of a single word in German, so the opposite is needed. So more generally, many-to-many alignments are needed and this
can be done by using GIZA++ (Och and Ney 2004) bidirectionally. The translation model is computed on the basis of word alignment, and
this is regarded a critical component in SMT. However word alignment is automatically induced from parallel data, and this is usually what
may constitute a real bottleneck, at least as happens in not related language pairs, where accuracy is below 80% (Hermjakob 2009). In order
to produce a complete word alignment at sentence level, the system passes through the text for up to 20 iterations, to find frequent
co-occurrences of words, that is words occurring in the same position in both source and target text. This usually happens at the beginning
with most frequent words, that is function words – articles, prepositions, conjunctions, etc. – less frequently for content words which are
more sparse. Thus eventually probabilities for content words may easily go up to 1.0, if suppose a word like “book” cooccurs with article
“the” all the time. The system will look for alignments in adjacency of an already aligned word in case of misalignments: some words may
come before or after another word depending on language grammar. Typically this applies to adjectives in English and Italian for instance,
where English has the majority before the head noun and Italian after the head noun. Phrases will typically cover all local linguistically
related positional differences in word order: decoding or translating is done monotonically once phrase alignment is terminated. Different
types of constraints are applied to alignment processes as regards for instance the maximum size of segments involved in the mapping; or
the maximum distance allowed for aligned segments with respect to their position in a distortion model. Translation modeling as presented
above, comprises three steps: at first, sentence pairs in training corpus are aligned at word level. Then, translation pairs are extracted using
some heuristic method. Lastly, maximum-likelihood estimation (MLE) is used to compute translation probabilities. The most relevant
shortcoming of this method is possible inconsistent format of translation knowledge: word alignment in training versus translation pairs
(phrase pairs) in decoding; then the training process which is not oriented towards translation evaluation metric (BLEU not being
considered in the scoring of translation pairs – but only error minimization procedures). In this way, it is not possible to know whether
translation phrases are extracted from a highly probable phrase alignment or from an unlikely one. In fact the incorrect phrases induced
from inaccurate word-aligned parallel data is one of the major reasons for translation errors in phrase-based SMT systems. In Fig. 6.1 below
I show the pipeline of a generic SMT using Moses (Moran et al. 2007).

Learning Improves Performance

Learning has been applied to the final decoding phase by introducing weights associated with translations and a final phase in which
automatic evaluation is applied to the output of the system. This has improved dramatically the performance of SMT (see Saers et al. 2010;
Saers 2011). Learning in this case is just finding model weights that make the correct translations score the best: to this aim procedures and
techniques are directed to creating an optimizer, as discussed below (but see also Ambati et al. 2011.)
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Fig. 6.1

A generic typical pipeline for an SMT system using MOSES

Discriminative models have been introduced so that translations are ranked and learned automatically by the use of features. A model
consists of a number of features (e.g. the language model score). Each feature has a weight by measuring its value for judging a translation
as correct. Then feature weights are optimized on training data, so that the system output matches correct translations as closely as possible.
Feature weights can be adjusted and the process iterated a number of times – typically 20 iterations. Learning weights is done in a loop
where the decoder generates the n-best list of candidate translation pairs. These are scored by an automatic evaluation tool – typically
BLEU – then a reranking takes place which allows the system to learn best features that qualify best translations. This allows the system to
change feature weights. Searching for the optimal parameters in linear models (Och and Ney 2002) of SMT has been a major challenge to
the MT community. Statistical methods try to improve translation quality by minimizing error rate, and the most widely used approach
to-date is Minimum-Error-Rate Training (MERT:Och 2003), which tries to find the parameters that optimize the translation quality of the
one-best translation candidate, using the N-best list as an approximation of the decoder’s search space. In this way, the system tries to find
the best parameter that optimizes the translation quality of the first best translation candidate, and reranking follows. Reranking is done on
the basis of MERT, however this method is unstable. As Cettolo et al. (2011) observe, in the last years, many efforts have been devoted to
making the decoding procedure or its results more reliable. Recently, a deep investigation of the optimizer instability has been presented by
Clark et al. (2011). Statistical machine translation (SMT) systems are based on a log-linear interpolation of models. Interpolation weights
are typically computed by means of iterative procedures which aim at optimizing the scores of a given function. Unfortunately, as Cettolo et
al. (2011) note, such a function is definitely non-convex; hence, only local optima can be reached. Moreover, it has been observed that the
commonly used optimization procedure, the N-best MERT is quite unstable. Now the focus is on improvement by reducing error rate as
measured by evaluation methods. As Phillips (2011) comments, in spite of its usefulness and high adoption, MERT suffers from
shortcomings of which the MT community is becoming aware. On the one hand, MERT is not designed for models with rich features and
therefore leads to translations of unstable quality in such scenarios. The fluctuation in quality can even be statistically perceivable when the
number of features is larger than 25 or 30 in practice. On the other hand, Smith (2006) finds that, MERT relies heavily on the behavior of
parameters on the error surface, which is likely to be affected by random variances in the N-best list, and also lead to less generalizable
results especially when the development set and the test set are not from exactly the same domain. As Phillips (2011) remarks, a significant
challenge in building data-driven MT systems is identifying the right level of abstraction–to model translation units that both adequately
reflect the data and can be estimated well.

System combination is another technique to rank the best translation, which has been applied extensively to SMT. One research line takes
n-best translations of single systems, and produces the final output by means of either sentence-level combination, i.e. a direct selection
from original outputs of single SMT systems (Sim et al. 2007, Hildebrand and Vogel 2008), or phrase- or word-level combination, i.e. the
synthesis of a (possibly) new output joining portions of the original outputs (Rosti et al. 2007a, b, 2008; Ayan et al. 2008; He et al. 2008).
These works focus on the combination of multiple machine translation systems based on different models and paradigms. More on these
proposals in the section below.

Translation Models and the Problem of Overfitting

It is possible to distinguish between generative translation models (essentially, the IBM models), and the other half to various discriminative
models. The first type of models induce a full probability distribution including both target and observable data and work in an unsupervised
manner. The second type, on the contrary, work on labeled training data, thus supervised or semi supervised and suffer from usual related
problems like data sparsity (see Tiedemann 2011:pp. 17–18). Ravi and Knight (2010) after experimenting with GIZA (sub-optimal
hill-climbing) Viterbi alignment and comparing it to optimal version cast in integer linear programming (ILP), have determined that
GIZA++ makes few search errors (between 5% and 15%), despite the heuristic nature of the algorithm, and that these search errors do not
materially affect overall alignment (F-measure) accuracy, seen that Chinese-English averages 57–65%, and Arabic-English at 43–55% –
with best values for the version that has English as target. Now, as indicated above, words that occur in totally different sentence positions,
or function words that don’t occur in some languages may result in poor word/phrase alignment. This problem is discussed particularly in
Ulf Hermjakob’s (2009), where he suggests the use of linguistic knowledge, in particular syntactic parse trees and the use of gazetteers for
named-entity recognition and amalgamation. More on this topic below.

The problem of phrase-pair creation based on word alignment is nicely approached in the paper by Hyoung-Gyu Lee et al. (2010). The
authors take into consideration the “collocation”-like ability of adjacent words to appear in a phrase. Different phrase segmentation will
generate different translation results. To prevent bad phrases from being assigned high probabilities both collocation properties of words and
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which is necessary to produce high quality translation. The segmentation model they propose will consider lexical cohesion of adjacent
words and the translational diversity of a word sequence as characteristics of good segmentation. To associate probabilities to such notions,
they use collocation statistics from a corpus and translational entropy measures (see also Liu et al. 2010). The second is exemplified as
follows: a phrase that has high translational entropy at word level but whose translational diversity at phrase level is low, should not be
segmented. Though individual words in a phrase may be diversely translated with a high number of different translation pairs, the phrase
may be translated with only few expressions. This would be typical of idiomatic expressions, and their model will score them very high.

Translation models should have a double function. They should well represent the training data – no gap and no bad translation; at the same
time they should be able to generalize to unseen datasets.

Shujie Liu et al. (2011) discuss the problem of overfitting and note that during the training phase, the possibility of overfitting is always
present. Consequently, this will hamper generalizing to unseen data: training should always be accompanied by a test phase with different
datasets from the training ones. But this may not be sufficient. In fact, as the authors comment, the training phase is itself questionable
because it usually optimizes on the feature weights associated to each sub-model (translation, fertility, distortion, etc.) rather than on the
phrase-based translation model. At the same time, PBMT creates the phrase-based translation pairs on the basis of word alignment and the
probabilities assigned by maximum-likelihood estimation (MLE). The paper proposes a new unified framework to add a discriminative
translation sub-model into the conventional linear framework (more on discriminative models below), and the sub-model is optimized with
the same criterion as the translation output is evaluated (BLEU in our case). In this case, each translation pair is a feature in itself, and the
training method can affect the pairs directly so as to handle overfitting (ibid., 181).

As the authors clearly demonstrate, the translation model will overestimate probabilities for long translation pairs and underestimate those
for short phrases. This will cause overfitting and will prevent the system to generalize to unseen data where those short phrases may appear.
Filtering away long phrases is also not the best solution, because they may be useful for good translations and cannot be done away with in
case they contain non compositional semantic material like idiomatic phrases. Wuebker et al. (2010) used the approach called leaving-
one-out (L1O) to deal with overfitting and forced alignment to deal with the errors introduced by incorrect word alignment. The basic idea
is to use the trained SMT decoder to re-decode the training data, and then use the decoded result to re-calculate translation pair probabilities.
Since the correct target sentence (i.e. the target side of training data) is not guaranteed to be generated by SMT decoder, forced alignment is
used to generate the correct target sentence by discarding all phrase translation candidates which do not match any sequence in the correct
target sentence. Since only the correct target sentence can be generated, language model is useless during decoding, so the weight for
language model is set to be zero.

Scalable training methods (Perceptron, MIRA and OWL-QN) are used to train the purely discriminative translation model with a large
number of features. In order to optimize SMT performance, scalable training tunes the weights to push the best translation candidate upward
to be the first one in n-best list. In order to perform scalable training, the n-best candidates should be ranked according to the similarity with
the correct target sentence. BLEU is the most natural choice for a similarity measure as it is also the ultimate evaluation criterion. However,
BLEU is a document-level metric rather than sentence-level.

Modern phrasal SMT systems (such as Koehn et al. 2003) derive much of their power from being able to memorize and use long phrases.
Phrases allow for non-compositional translation, local reordering and contextual lexical choice. However phrases are fully lexicalized,
which means they generalize poorly to even slightly out of-domain text. In an open competition (Koehn and Monz 2006) systems trained on
parliamentary proceedings were tested on text from ‘news commentary’ web sites, a very slightly different domain. The nine phrasal
systems in the English to Spanish track suffered an absolute drop in BLEU score of between 4.4% and 6.34% (14–27% relative). The treelet
system of Menezes et al. (2006) fared somewhat better but still suffered an absolute drop of 3.61%. Clearly there is a need for approaches
with greater powers of generalization. There are multiple facets to this issue, including handling of unknown words, new senses of known
words etc. At the end of the chapter I will return to the topic of language and translation modeling.

Hybrid and Rule-Based MT Systems

Statistical machine translation (SMT) (Koehn 2010) is currently the leading paradigm in machine translation (MT) research. SMT systems
are very attractive because they may be built with little human effort when enough monolingual and bilingual corpora are available.
However, bilingual corpora are not always easy to harvest, and they may not even exist for some language pairs. On the contrary, rule-based
machine translation systems (RBMT) (Hutchins and Somers 1992) may be built without any parallel corpus; however, they need an explicit
representation of linguistic information, whose coding by human experts requires a considerable amount of time.

Rule-Based MT or RBMT for short are by far the mostly used commercial systems still today. This might change in the future. However, it
is a fact that SMT has not yet been able to supersede previous work being done on MT which was mainly done in a rule-based fashion.

From a general perspective, hybrid systems are certainly the winning solution. Here I am referring to systems that mix up in a perspicuous
manner statistical and non statistical approaches. This can be done in many ways, here are some reported in the literature:

– Using translation memories together with domain trained statistical translation models – this can be done better by using example-based
techniques and resources

– Using statistical post-editing before manual supervision with domain trained translation models

– In lack of domain bitexts, providing a dictionary of translation pairs

– Using morphological decomposition for morphologically rich languages (Arabic, German, Italian, French …)

– Using multiword preprocessing in both parallel texts before running language models to reduce semantic uncertainty

When both parallel corpora and linguistic information exist, a hybrid approach may be taken in order to make the most of such resources. In
Thurmair (2009) a new hybrid approach is presented which enriches a phrase-based SMT system with resources taken from shallow-
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transfer RBMT. Shallow-transfer RBMT systems do not perform a complete syntactic analysis of the input sentences, but they rather work
with much simpler intermediate representations. Hybridisation between shallow-transfer RBMT and SMT has not yet been explored.
Existing hybridisation strategies usually involve more complex RBMT systems and treat them as black boxes, whereas the approach
improves SMT by explicitly using the RBMT linguistic resources. They provide an exhaustive evaluation of their hybridisation approach
and of the most similar one (Eisele et al. 2008), on the Spanish–English and English–Spanish language pairs by using different training
corpus sizes and evaluation corpora.

Rule-based machine translation systems heavily depend on explicit linguistic data such as monolingual dictionaries, bilingual dictionaries,
grammars, and structural transfer rules (Hutchins and Somers 1992). Although some automatic acquisition is possible (see Caseli et al.
2006), collecting these data usually requires the intervention of domain experts (mainly, linguists) who master all the encoding and format
details of the particular MT system. It could be interesting, however, to open the door to a broader group of non-expert users who could
collaboratively enrich MT systems through the web.

Esplà-Gomis et al. (2011) focus on these kinds of dictionaries, which basically have two types of data: paradigms (that group regularities in
inflection) and word entries. The paradigm assigned to many common English verbs, for instance, indicates that by adding the ending -ing,
the gerund is obtained. Paradigms make easier the management of dictionaries in two ways: by reducing the quantity of information that
needs to be stored, and by simplifying revision and validation thanks to the explicit encoding of regularities in the dictionary.

Bilingual dictionaries are the most reused resource from RBMT. They have been added to SMT systems since its early days (Brown et al.
1993). One of the simplest strategies, which has already been put into practice with the Apertium bilingual dictionaries (Tyers 2009;
Sanchez-Cartagena and Pérez-Ortiz 2010), consists of adding the dictionary entries directly to the parallel corpus. In addition to the obvious
increase in lexical coverage, Schwenk et al. (2009) state that the quality of the alignments obtained is also improved when the words in the
bilingual dictionary appear in other sentences of the parallel corpus. However, it is not guaranteed that, following this strategy, multi-word
expressions from the bilingual dictionary that appear in the SL sentences are translated as such because they may be split into smaller units
by the phrase-extraction algorithm. Other approaches go beyond simply adding a dictionary to the parallel corpus. For instance, Popovic´
and Ney (2006) propose combining that strategy with the use of hand-crafted rules to reorder the SL sentences to match the structure of the
TL.

Although RBMT transfer rules have also been reused in hybrid systems, they have been mostly used implicitly as part of a complete RBMT
engine.

For instance, Dugast et al. (2008) show how a PBSMT system can be bootstrapped using only monolingual data and an RBMT engine;
RBMT and PBSMT systems can also be combined in a serial fashion (Dugast et al. 2007). Another remarkable study (Eisele et al. 2008)
presents a strategy based on the augmentation of the phrase table to include information provided by an RBMT system. In this approach, the
sentences to be translated by the hybrid system are first translated with an RBMT system. Then a small phrase table is obtained from the
resulting parallel corpus. Phrase pairs are extracted following the usual procedure (Koehn 2010, Sect. 5.2.3) which generates the set of all
possible phrase pairs that are consistent with the word alignments. In order to obtain reliable word alignments, they are computed using an
alignment model previously built from a large parallel corpus. Finally, the RBMT-generated phrase table is directly added to the original
one. Another approach is to generate phrase pairs directly which match either an entry in the bilingual dictionary or a structural transfer
rule, thus preventing them from being split into smaller phrase pairs even if they would be consistent with the word alignments. In this way,
there is no need for a large parallel corpus from which to learn an alignment model.

España-Bonet et al. (2011) present a system which is guided by a RBMT. In their introduction, they explain why the hybridization is
necessary,

It is well known that rule-based and phrase-based statistical machine translation paradigms (RBMT and SMT, respectively)
have complementary strengths and weaknesses. First, RBMT systems tend to produce syntactically better translations and
deal with long distance dependencies, agreement and constituent reordering in a better way, since they perform the analysis,
transfer and generation steps based on syntactic principles. On the bad side, they usually have problems with lexical selection
due to a poor handling of word ambiguity. Also, in cases in which the input sentence has an unexpected syntactic structure,
the parser may fail and the quality of the translation decreases dramatically.

On the other side, phrase-based SMT models usually do a better job with lexical selection and general fluency, since they
model lexical choice with distributional criteria and explicit probabilistic language models. However, SMT systems usually
generate structurally worse translations, since they model translation more locally and have problems with long distance
reordering. They also tend to produce very obvious errors, which are annoying for regular users, e.g., lack of gender and
number agreement, bad punctuation, etc. Moreover, the SMT systems can experience a severe degradation of performance
when applied to corpora different from those used for training (out-of-domain evaluation). (ibid., 554)

The hybrid architecture tries to get the best of both worlds: the RBMT system should perform parsing and rule-based transfer and
reordering to produce a good structure for the output, while SMT helps the lexical selection by providing multiple translation suggestions
for the pieces of the source language corresponding to the tree constituents. The final decoding accounts also for fluency by using language
models, and can be monotonic (and so, fast) because the structure has been already decided by the RBMT component.

System combination, either serial or by a posterior combination of systems’ outputs, is a first step towards hybridization. Although it has
been shown to improve translation quality, the combination does not represent a real hybridization since systems do not interact among
them (see Thurmair 2009) for a classification of HMT architectures. In the case of actual interdependences, one of the systems in action
leads the translation process and the other ones strengthen it. Much work has been done in building systems in which the statistical
component is in charge of the translation and the companion system provides complementary information. For instance, Eisele et al. (2008)
and Chen and Eisele (2010) introduce lexical information coming from a rule-based translator into an SMT system, in the form of new
phrase pairs for the translation table. In both cases results are positive on out-of-domain tests.

The opposite direction is less explored. In this case, the RBMT system leads the translation and the SMT system provides complementary
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Habash 2011). Federmann et al. (2010) use the translations obtained with a RBMT system and substitute selected noun phrases by their
SMT counterparts. Globally, their results improve the individual systems when the hybrid system is applied to translate into languages with
a richer morphology than the source. In Figure 6.2 below there is a pipeline for a generic Hybrid System that combines a Rule Based
approach with Statistical Models.

Specific Issues in Hybrid MT

A number of specific issues are dealt with inside this framework, even though they may certainly be regarded as general problems of SMT.
In particular, the treatment of English particle and of function words, is a topic that has developed into a number of interesting techniques.

Morpheme-based SMT system (SMTm) a second variant of the SMT system was used to address the rich morphology of Basque. In this
system, words are split into several morphemes by using a Basque morphological analyzer/lemmatizer. The aim is to reduce the sparseness
produced by the agglutinative nature of Basque and the small amount of parallel corpora. Adapting the baseline system to work at the
morpheme level mainly consists of training Moses on the segmented text. The SMT system trained on segmented words will generate a
sequence of morphemes. So, in order to obtain the final Basque text from the segmented output, a word-generation post-process is applied.
Details on this system can be found in (Labaka 2010).

Fig. 6.2

Hybrid Systems

Matxin is another interesting hybrid rule-based system, an open-source Spanish-Basque RBMT engine (Alegria et al. 2007), following the
traditional transfer model. The system consists of three main components: (1) analysis of the source sentence into a dependency tree
structure; (2) transfer from the source language dependency tree to a target language dependency structure; and (3) generation of the output
translation from the target dependency structure. The SMatxinT architecture is based on the three following principles: (1) generally, the
final translation should be based on RBMT system’s syntactic rearrangements; (2) the hybrid system must have the chance of using
SMT-based local translations to improve lexical selection; and (3) it should be able to recover from potential problems encountered in the
analysis, using longer SMT translations.

Phillips 2011 discusses other ways of overcoming shortages of SMT, introducing ways to incorporate the context for each translation
instance. To overcome these deficiencies Phillips proposes to model each instance of translation. An instance of translation is the realization
of a source and corresponding target phrase at one specific location in the corpus. He defines his method as follows:

An instance of translation is the realization of a source and corresponding target phrase at one specific location in the corpus.
We score each translation instance with a series of features that examine the alignment, context, genre, and other
surroundings. Our model then combines these translation instances in a weighted summation. This approach conveniently
side-steps the challenges of estimation sparsity because our model is not based on relative frequency estimates. The weighting
of translation instances relates to methods for domain-adaptation of SMT models, but our implementation is fundamentally
different in that we do not alter or re-weight the training data. Instead, our model directly embodies the notion that not all
translations are equal and individually evaluates the relevance of each translation instance… Evidence for a translation unit θ
will generally be present at multiple locations within the training data. The features for θ operate over this set of translation
instances and are generally computed as relative frequencies. A common feature, for example, is the number of times source
and target instances are aligned divided by the total occurrences of source instances.

Our model for translation is fundamentally different in that our translation units are not abstract phrase pairs or grammar rules
… the core component of our model is a feature function which allows the user to easily add new sources of knowledge to the
system. However, our feature function φ evaluates one specific instance of translation instead of scoring the entire set of
translation instances.

In fact, they produced this new statistical model because they wanted explicitly to incorporate ideas coming from EBMT,

For illustration, consider that the translation instances for a given phrase pair occur in a variety of sentences within the
training data. Some instances may include an inconsistent word alignment from within the selected phrase pair to a word in
the remainder of the sentence. Our model allows us to learn from these translation instances, but discount them by including a
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the standard SMT approach where phrase alignment is a binary decision. The same principle also applies if we want to
include additional non-local information such as genre or context within the model. A traditional SMT model requires new
translation units conditioned on the extra information whereas our approach incorporates the extra information as features of
φ and calculates a score over all instances.

One of the motivations for this model was to combine ideas from Statistical MT and Example-Based MT. Many EBMT
systems rely on heuristics and lack a well-defined model, but our per-instance modeling is generally reflective of an ‘EBMT
approach.’

English Particles and Function Words

Ma Jianjun et al. (2011) address the problem of correctly translating English particles (adverbs and prepositions) into Chinese. They
introduce POS tags in the corpus, and thus tags become an important feature for the Maximum Entropy model. For that purpose, they use
the Stanford tagger. However, in order to improve the results, they have to proceed to some post-processing operation with rules that take
into account typical phrasal verb collocations from a manually built collocation bank.

In practice, many function words do not have the exact counterparts in the other language and will not align to any words (i.e. align to
NULL) in the results of word alignment. Furthermore, due to the high frequencies of function words, they could be associated with any
content words to form bilingual phrases which might be quite noisy.

Consequently, many target function words may be either missing or inappropriately generated in the translations. This not only degrades the
readability but also impairs the quality of content word translations.

The incompleteness of target function word generation seems to be mainly caused by the noisy translation knowledge automatically learnt
based on word alignment.

In particular, some words serve to express (language-specific) grammatical relations only, and thus they may have no counterpart in another
language. This problem is nicely treated in Liu et al. (2011). They divide up words into two subcategories: spurious and non spurious words.
The first type should be aligned to a null token. For example the Chinese words “hen” and “bi” have no counterparts on the other side,
neither do the English words “does” and “to”. To deal with the spurious words in sentence pairs, IBM models 3, 4 and 5 (Brown et al. 1993)
introduce a special token null, which can align to a source/target word. Fraser and Marcu (2007a) proposed a new generative model called
LEAF, which is similar to the IBM models, in which words are classified into three types instead of two: spurious words, head words
(which are the key words of a sentence) and non-head words (modifiers of head words).

“Spurious” words usually have no counterpart in other languages, and are therefore a headache in machine translation. The authors propose
a novel framework, called skeleton-enhanced translation, in which a conventional SMT decoder can boost itself by considering the skeleton
of the source input and the translation of such skeleton. The skeleton of a sentence is the sentence with its spurious words removed. Two
models for identifying spurious words, are introduced. The first one is a context-insensitive model, which removes all tokens of certain
words. The second one is a context-sensitive model, which makes separate decision for each word token. The authors also elaborate two
methods to improve a translation decoder using skeleton translation. One is skeleton-enhanced re-ranking, which re-ranks the n-best output
of a conventional SMT decoder with respect to a translated skeleton. Another is skeleton-enhanced decoding, which re-ranks the translation
hypotheses of not only the entire sentence but any span of the sentence. Their experiments show significant improvement (1.6 BLEU) over
the state-of-the-art SMT performance.

These two methods are generative models for word alignment. Nevertheless they cannot be used directly in the conventional log-linear
model of statistic machine translation (SMT). The conventional phrase-based SMT captures spurious words within the phrase pairs in the
translation table. As Liu et al. (2011) note, the existence of spurious words in training data leads to a certain kind of data sparseness. For
example, “na bi qian” and “na xie qian” share the same translation (“that money”). If the spurious words (“bi” and “xie”) are removed, then
the two entries in translation table, and the associated statistics, can be combined into one. However, while spurious words lead to the
harmful effect of data sparseness, they are useful in certain aspects in translation. To cope with this problem, as automatic word alignment is
far from perfect, in keeping a high precision of spurious word deletion. It is stipulated that a word token is not to be removed unless the
model assigns a high probability to the deletion decision.

Correct translation of function words into Chinese is discussed in a paper by Cui et al. (2011). They have been interested in the subject
because “… function words play an important role in sentence structures and express grammatical relationships with other words”(ibid.,
139). Most statistical machine translation (SMT) systems do not pay enough attention to translations of function words which are noisy due
to data sparseness and word alignment errors. Their method is designed to separate the generation of target function words from target
content words in SMT decoding. With this method, the target function words are deleted before the translation modeling while in SMT
decoding they are inserted back into the translations. To guide the target function words insertion, a new statistical model is proposed and
integrated into the log-linear model for SMT. This can lead to better reordering and partial hypotheses ranking. As shown by experimental
results, their approach improves the SMT performance significantly on Chinese-English translation task.

For example, when considering the top eight function words, about 63.9% of Chinese function word occurrences are not aligned to any
English words and about 74.5% of Chinese sentences contain at least one unaligned Chinese function word. On the English side, about
36.5% of English function word occurrences are not aligned to any Chinese words and about 88.8% of English sentences contain at least
one unaligned English function word.

Combining Translation Memories with EBMT

Even though over the past two decades, machine translation has shown very promising results, a large number of languages exist which
suffer from the scarcity of parallel corpora, e.g. Indic languages, sign languages etc. SMT approaches have yielded low translation quality
for these poorly resourced languages (Khalilov et al. 2010). It is often the case that domain-specific translation is required to tackle the issue
of scarce resources, but it can still suffer from very low accuracy within the SMT framework, even for homogeneous domains (Dandapat et
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Typically, an SMT system works well with significant amounts of training data. In contrast, an EBMT approach can be developed with a
limited example-base (Somers 2003); also, as with any other data-driven system, an EBMT system works well when training and test sets
are quite close in nature. This is because EBMT systems reuse the segments of test sentences that can be found in the source side of the
example-base at runtime (see Brown 1996). Keeping these points in mind is important in order to develop an MT system of reasonably
good quality based on limited amounts of data. In this direction, they examine different EBMT approaches which can handle the problem of
data sparseness. It is often the case that EBMT systems produce a good translation where SMT fails and vice versa. In order to harness the
advantages of both approaches, they use a careful combination of both EBMT and SMT to improve translation accuracy.

Two alternative approaches are adopted to tackle the above problems. First there is a compiled approach to EBMT which essentially
produces translation templates during the training stage, based on the description in (Cicekli and Güveniri 2001). The second attempt
presents a novel way of integrating translation memory (TM) into an EBMT system. Starting with the user’s TM as a training set, additional
sub-sentential translation units (TUs) are extracted based on the word alignments produced by an SMT system. These sub-sentential TUs
are used both for alignment and recombination after the closest matching example to the input is found in the matching stage of our EBMT
system.

Simard et al. (2007) note that TM has some notable advantages over most data-driven MT systems. The most obvious is its ability to
translate predictably and (near-) perfectly any input that it has seen previously. Another quality of TM is its ability to find approximate
matches and to let the user adapt system behavior to his/her own tolerance to errors by fixing the similarity threshold on such matches; in
other words, TM’s benefit from a highly effective confidence estimation mechanism. If machine translation is to be integrated successfully
in the CAT environment, it should begin by catching up with TM on these aspects. This requires two things: (1) the MT system should
behave more like a TM in the presence of high-similarity matches. In practice, this can be achieved by combining the two technologies, i.e.
by building a combination MT system that incorporates a TM component. And (2) just like existing TM systems, the combined MT system
should provide the user with means to filter out translations that are less likely to be useful. It has sometimes been proposed (see e.g. Heyn
1996) that MT should be used within a CAT environment only when the TM fails to retrieve something useful. Unfortunately, this has the
effect of relegating the MT system to the task of translating only the sentences that are most unlike previously seen ones. For data-driven
systems, this means translating only the “harder” sentences and missing the chance to do a better job than the TM. The reason why MT is
often treated as a last resort lies in the fact that translators tend to see its performance as unpredictable and, as a result, overly likely to waste
their time.

Example-based MT has the problem of coverage and the fragments used are not decomposable so they have limited flexibility. This may be
improved by Translation Memories made available by users in a specific domain, such as the just released databank of TMs from JRC (see
above).

In 2003, the idea of combining knowledge coming from Translation Memories, which is very domain localised, and EBMT was not yet
clearly formulated. Even the organizers, Carl and Way, of the corresponding workshop admit this. While translation memory systems are
used in restricted domains, SBMT systems require training on huge, good quality bilingual corpora. As a consequence TMs can hardly be
applied as a general purpose solution to MT, and SBMT as yet cannot produce complex translations to the desired quality, even if such
translations are given to the system in the training phase. EBMT seeks to exploit and integrate a number of knowledge resources, such as
linguistics and statistics, and symbolic and numerical techniques, for integration into one framework. In this way, rule-based morphological,
syntactic and/or semantic information is combined with knowledge extracted from bilingual texts which is then re-used in the translation
process.

However, it is unclear how one might combine the different knowledge resources and techniques in an optimal way. In EBMT, therefore,
the question is asked: what can be learned from a bilingual corpus and what needs to be provided manually? Furthermore, it is uncertain
how far the EBMT methodology can be pushed with respect to translation quality and/or translation purpose. Finally, one wonders what the
implications and consequences are for the size and quality of the reference translations, (computational) complexity of the system,
sizeability and transportability, if such an approach is taken.

Sanchez-Cartagena et al. (2011), extensively evaluate a new hybridisation approach. It consists of enriching the phrase table of a
phrase-based statistical machine translation system with bilingual phrase pairs matching transfer rules and dictionary entries from a
shallow-transfer rule-based machine translation system. The experiments conducted show an improvement in translation quality, specially
when the parallel corpus available for training is small (see also Sanchez-Martinez and Forcada 2009), or when translating out-of-domain
texts that are well covered by the shallow-transfer rule-based machine translation system.

In their paper Dandapat et al. (2011) address the issue of applying example-based machine translation (EBMT) methods to overcome some
of the difficulties encountered with statistical machine translation (SMT) techniques. They adopt two different EBMT approaches and
present an approach to augment output quality by strategically combining both EBMT approaches with the SMT system to handle issues
arising from the use of SMT. They use these approaches for English to Turkish translation using the IWSLT09 dataset. Improved evaluation
scores (4% relative BLEU improvement) were achieved when EBMT was used to translate sentences for which SMT failed to produce an
adequate translation.

Ebling et al. (2011) present Marclator and its ability to chunk based on the so-called “Marker Hypothesis” (Green 1979), which is a
psycholinguistic hypothesis stating that every language has a closed set of elements that are used to mark certain syntactic constructions.
Marclator system segments both the training and the test data into chunks, where the set of elements includes function words and bound
morphemes (-ing as an indicator of English progressive-tense verbs). The interesting point is that Marclator chunking module solely
considers function words as indicators of chunk boundaries, and head words are included in their inflected forms. In fact, each function
word (Marker word) triggers the opening of a new chunk, provided that the preceding chunk contains at least one non-Marker word.

Chunk example: He was | on the bus

Typical problems inherent in this approach are the chunks of an input sentence that often cannot be found in the example base. So the goal
is to increase the chunk coverage of a system. Gough and Way (2003) extended a precursor to Marclator by including an additional layer of
abstraction: producing generalized chunks by replacing the Marker word at the beginning of a chunk with the name of its category.
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OPENMATREX is another system based on the marker hypothesis reported lately in Banerjee et al. 2011. As the authors comment in the
conclusion, “OpenMaTrEx comprises a marker-driven chunker, a collection of chunk aligners, tools to merge (hybridise”) marker-based and
statistical translation tables, two engines a simple proof-of-concept monotone “example-based” recombination engine and a statistical
decoder based on Moses, and support for automatic evaluation. It also contains support for “word packing” to improve alignment.”(ibid. 14)
The performance of the system shows improvements over the purely statistical mode.

In CMU-EBMT II, the system generalizes both the training and the test set: it recursively replaces words and phrases that are part of an
equivalence class with the corresponding class tags. Syntactic classes are applied before semantic classes. In training data, a generalization
is performed only if a member of a particular equivalence class is found in both the SL and the corresponding TL sentence. Eventually, in
CMU-EBMT III the test set has all members of an equivalence class that are replaced recursively.

The matching process is equivalent to that of the purely lexical CMU-EBMT system, with the apparent difference that here, two matching
levels: a lexical and a generalized one exist. The alignment proceeds in the same way as in CMU-EBMT. Following this, the rules that were
stored during the generalization of the input sentence are applied in reverse so as to transform the generalized TL fragments into word form
TL fragments. The system carries out translations by matching chunks first. If the system does not find a chunk in the example base, it
proceeds to replace the Marker word at the beginning of a chunk with its corresponding Marker tag and to search for the resulting
generalized chunk in the example base (if this attempt fails, the system reverts to word-by-word translation).

One major source of errors is chunk-internal boundary friction. Boundary friction is normally caused by combining two separate translation
units that do not agree in grammatical case with the introduction of Marker-based templates. It can also take place within a single chunk,
i.e., when a Marker word is inserted that does not agree with the grammatical properties of the rest of the chunk. In the case of translating
from English to German, inserting TL Marker words in a context-insensitive manner (as is done in System 1) is error prone. Due to the
morphological richness of German, an English Marker word can correspond to multiple word forms of the same lemma on the German side
e.g., English Marker word “are” can correspond to German Marker words “bist, sind” and “seid”. Example: for “are you sure … /sind du
sicher …” where the chunk-internal boundary friction causes a combination of “sind” and “du” which is grammatically incorrect.

Eventually I want to include a short note on Graph-Based Learning approaches, which will be explained in a section below – that can be
likened to a probabilistic implementation of translation memories (Maruyana and Watanabe 1992; Veale and Way 1997). Translation
memories are (usually commercial) databases of segment translations extracted from a large database of translation examples. They are
typically used by human translators to retrieve translation candidates for subsequences of a new input text. Matches can be exact or fuzzy;
the latter is similar to the identification of graph neighborhoods in our approach. However, the GBL scheme propagates similarity scores not
just from known to unknown sentences but also indirectly, via connections through other unknown sentences. Marcu 2001 reported the
combination of a translation memory and statistical translation; however, this is a combination of word-based and phrase-based translation
predating the current phrase-based approach to SMT.

Automatic Post-editing for Translator CAT Tools

The translation quality of MT has been improving but has not reached an adequate level compared with human translation. As such, manual
evaluation and post-editing constitute an essential part of the translation processes. To make the best use of MT, human translators are urged
to perform post-editing efficiently and effectively. Therefore there is a huge demand for MT to alleviate the burden of manual post-editing.

Alleviating the burden for human post-editing is the aim of research efforts in the direction of producing automatic procedures that work
possibly on the basis of the output of STM or RBMT and TM or at least strongly domain limited bitexts. In fact “bitext” is not synonymous
with parallel corpora, as Tiedemann 2011 notes. Suzuki (2011), working for Toshiba, has built a quality prediction model with regression
analysis for Japanese English and viceversa APE, where confidence estimation (CE) is considered as also (Specia et al. 2009a; 2009b) do,
by estimating a continuous translational quality score for each sentence, using PLS (Partial Least Squares) regression analysis. Since
Rule-based MT (RBMT) is generally more stable in translation quality than SMT, it can make it easier to integrate the post-editing into the
translation processes. This, however, is also a weak point of RBMT because post-editors are forced to repeatedly correct the same kind of
errors made by MT systems (see Roturier 2009). Statistical post-editing (SPE) techniques have been successfully applied to the output of
Rule Based MT (RBMT) systems. In the computing assisted translation process with machine translation (MT), post-editing costs time and
efforts on the part of human. To solve this problem, some have attempted to automate post editing. Post-editing isn’t always necessary,
however, when MT outputs are of adequate quality for human. This means that we need to be able to estimate the translation quality of each
translated sentence to determine whether post-editing should be performed. While conventional automatic metrics such as BLEU, NIST and
METEOR, require the golden standards (references), for wider applications we need to establish methods that can estimate the quality of
translations without references. The paper presents a sentence-level automatic quality evaluator, composed of an SMT phrase-based
automatic post-editing (APE) module and a confidence estimator characterized by PLS regression analysis. It is known that this model is a
better model for predicting output variable than a normal multiple regression analysis when the multicollinearity exists between the input
variables. Experiments with Japanese to English patent translations show the validity of the proposed methods.

Recognizing that SMT is better suited to correct frequent errors to appropriate expressions, some (Simard et al. 2007; Lagarda et al. 2009)
have proposed to use SMT for an automatic post-editor and built an automatic post-editing module, where MT outputs are regarded as
source sentences and manually post-edited/translated results as target sentences.

Béchara et al. (2011) investigate the impact of SPE on a standard Phrase-Based Statistical Machine Translation (PB-SMT) system, using
PB-SMT both for the first-stage MT and the second stage SPE system. Their results show that, while a naive approach to using SPE in a
PB-SMT pipeline produces no or only modest improvements, a novel combination of source context modeling and thresholding can
produce statistically significant improvements of 2 BLEU points over baseline using technical translation data for French to English.

Simard et al. (2007a) train a “mono-lingual” PB-SMT system (the Portage system) on the output of an RBMT system for the source side of
the training set of the PB-SMT system and the corresponding human translated reference. A complete translation pipeline consists of a
rule-based first-stage system, whose output on some (unseen) test set, in turn, is translated by the second-stage “mono-lingual” SPE system.
Simard et al. (2007a) present experiments using Human Resources and Social Development (HRSDC) Job Bank1 French and English
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each of the individual systems on their own. Simard et al. (2007a) also tested the SPE technique with Portage PB-SMT both as first-stage
MT and as second stage SPE system (i.e. Portage post-editing its own output) and reported that nothing could be gained. In a number of
follow-up experiments, Simard et al. (2007b) used an SPE system to adapt RBMT-systems to a specific domain, once again using Portage in
the SPE phase. Adding the SPE system produced BLEU score increases of about 20 points over the original RBMT baseline.

SPE was also applied in an attempt to improve Japanese to English patent translations. Teramusa (2007) uses RBMT to translate patent
texts, which tend to be difficult to translate without syntactic analysis. Combining RBMT with SPE in the post-editing phase produced an
improved score on the NIST evaluation compared to that of the RBMT system alone. Dugast et al. (2007) report research on combining
SYSTRAN with PB-SMT systems Moses and Portage. Comparison between raw SYSTRAN output and SYSTRAN   +   SPE output shows
significant improvements in terms of lexical choice, but almost no improvement in word order or grammaticality. Dugast et al. (2009)
trained a similar post-editing system with some additional treatment to prevent the loss of entities such as dates and numbers.

Oflazer and El-Kahlout (2007) explore selective segmentation-based models for English to Turkish translation. As part of their experiments
they present a short section at the end of the paper on statistical post-editing of an SMT system, which they call model iteration. They train
a post-editing SMT model on the training set decoded by the first stage SMT model and iterate the approach, post-editing the output of the
post-editing system. BLEU results show positive improvements, with a cumulative 0.46 increase after two model iterations. It is not clear
whether the result is statistically significant. The experiments follow the statistical post-editing design of Simard et al. (2007a), where the
output of a first-stage system is used to train a mono-lingual second stage system, that has the potential to correct or otherwise improve on
(i.e. post-edit) the output of the first-stage system. The experiments use PB-SMT systems throughout both stages. The objective is to
investigate in more detail whether and to what extent state-of-the-art PBSMT technology can be used to post-edit itself, i.e. its own output.

Blain et al. (2011) report on work on post-editing by Systran and Symantec where they define what they call a Post-Editing Action (PEA)
typology on the basis of a detailed analysis of errors, which we report here below (166–167):

Noun-Phrase (NP) – related to lexical changes.
Determiner choice – change in determiner

Noun meaning choice – a noun, replaces another noun, changing its meaning

Noun stylistic change – a synonym replaces a noun (no meaning change)

Noun number change

Case change

Adjective choice – change in adjective choice for better fit with modified noun

Multi-word change – multiword expression change (meaning change)

NP structure change – structure change of NP but the sense is preserved

Verbal-Phrase (VP) – related to grammatical changes

Verb agreement – correction of agreement in verb

Verb phrase structure change

Verb meaning choice – a verb replaces another verb, changing its meaning

Verb stylistic change – a synonym replaces a verb.

Preposition change
Co-reference change – generally through introduction/removal of a pronoun, or change of a definite to possessive determiner

Reordering – repositioning of a constituent at a better location (adjective, adverb)

PE Error – Post-editor made a mistake in his review

Misc style – unnecessary stylistic change

Misc – all PEAs that we cannot classify

The UNL: Universal Networking Language

In a paper online, Alansary et al. present the UNL concisely and report some recent data. One of the challenging missions that the UNL
system has to face is to translate the Encyclopedia of Life Support System (EOLSS) which is the largest on-line Encyclopaedia; it includes
more than 120,000 web pages and it increases constantly. The translation results are reported as reaching a morphological accuracy of 90%,
a syntactic accuracy of 75% and a semantic accuracy of 85%. The adopted approach in the translation in this abstract follows a different
way, it translates from a semantically-based Interlingua to different human languages. The UNL (see Adly and Alansary 2009) has been
introduced by the United Nations University, Tokyo, to facilitate the transfer and exchange of information over the internet. The semantic
representation is an artificial language which describes the meaning of sentences in terms of the schema of semantic nets. It aims to
represent all sentences that have the same meaning in all natural languages using a single semantic graph. Once this graph is built, it is
possible to decode it to any other language. UNL is used not only in machine translation and other natural language processing tasks, but
also in a wide variety of applications ranging from e-learning platforms to management of multilingual document bases. Working at the
semantic level, the UNL is language-independent: in particular, it follows the schema of semantic nets-like structure in which nodes are
word concepts and arcs are semantic relations between these concepts. In this scheme, a source language sentence is converted to the UNL
form using a tool called the EnConverter. EnConverter is a language independent parser that provides synchronously a framework for
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called the DeConverter. The DeConverter is a language independent generator that provides a framework for syntactic and morphological
generation as well as co occurrence-based word selection for linguistic collocations. It can deconvert UNL expressions into a variety of
native languages, using a number of linguistic data such as Word Dictionary, Grammatical Rules and Co-occurrence Dictionary of each
language. UNL’s main task and purpose is translating The Encyclopedia Of Life Support Systems (EOLSS), because it provides a useful
body of knowledge which should reach all peoples in their languages and in a way that fits their cultural backgrounds. UNL can do both:
reproduce EOLSS knowledge in peoples’ native languages, and enable them to explore it according to their cultural backgrounds. The UNL
task is to make the entire EOLSS available in multiple languages starting with the six official languages of UNESCO. This task involves a
two-step process: the first step is enconverting (encoding) the content of EOLSS from English into UNL (UNLization process); and the
second is deconverting (decoding) EOLSS content from UNL into natural languages.

Combining Syntax, EBMT and a Transfer Approach to MT

Vandeghinste and Martens (2010) present another interesting option, in a number of papers in which the authors describe a system
PaCo-MT that uses a transfer approach where syntax and examples are combined in a stochastic model. We quote from the Vandeghinste
and Martens (2010) paper describing, “… the transfer component of a syntax-based Example-based Machine Translation system. The
source sentence parse tree is matched in a bottom-up fashion with the source language side of a parallel example treebank, which results in
a target forest … sent to the target language generation component.” The novelty of the approach described in this paper was the bottom-up
policy as opposed to the top-down one, in the choice of source sentence parse tree. Translations are example-based, in that “… as it uses a
large set of translation examples (a parallel corpus) as training data to base its decisions on and it is syntax-based as the data in the parallel
corpus is annotated with syntactic parse trees, both on the source and the target side. Input sentences are syntactically analysed, and the
system generates target language parse trees where all ordering information is removed.” The system uses a parser for the source language
to parse the source side of the parallel corpus as well as the input sentence to feed the translation engine. The target language parser is only
used to preprocess the target parallel corpus. The parallel treebank has also been commented upon in Tiedemann and Kotzé (2009), it is
word aligned using GIZA++, and node aligned using a discriminative approach to tree alignment (Tiedemann 2011).

As the authors comment, using a syntax-based translation unit is like using a rule-based approach. In fact, the PaCo-MT system combines a
stochastic example-based transfer system with the data-driven tree-to-tree based approach, transducing the source parse tree into a set of
target language parse trees. This is done without node ordering, and reordering is done by a discriminative model for tree alignment. In this
way, rule-based strengths are combined with PBSMT systems: in particular, the target tree-based language model is generated using a
probabilistic context-free grammar based on large monolingual treebanks which rather than reordering words or phrases, it addresses parse
trees. We address more of these problems in the next section.

Syntax Based Approaches: From Hierarchical to SBSMT

Accurate translation may ensue from SMT and EBMT but there is no way to control the performance of such systems to obtain a 100%
accurate translation all the time. So improvements may only come from external knowledge made available to the system either at runtime,
producing some preprocessing and new models, or at the end of the computation, producing some postprocessing. For sometime the
introduction of syntactic information in the training process did not seem to produce any improvement in the performance of STM.
However, a number of papers appearing lately show that this is not always the case. In particular in language pairs which require heavy
reordering, and/or have totally different grammatical structures, syntactic information seems particularly useful. The need for reordering in
some language pairs is paramount and cannot be limited to local phrases. Syntax may provide means for an accurate reordering step. Syntax
may also check for appropriate insertion of function words and their wordforms – in case of amalgamated function words like articulated
prepositions in German and Romance languages.

– Language may have the problem of pro-dropping subject and object (like Japanese) or just subject as most Romance languages do;

– The most typical problem is semantic and word sense ambiguity that requires disambiguation: this may be done only by restricting the
language model to a specific translation domain where the appropriate sense is usually easily capture. Or else a full-fledged words-sense
disambiguation algorithm must be in place;

– Languages may use tenses differently or have more/less tenses – like perfect in English, and “imperfetto” in some Romance languages,
simple past and “passato prossimo” versus “passato remoto” in Italian;

– Idioms may be difficult to trace in complete phrases (see Wehrli 2007, Wehrli et al. 2009) on the subject);

– Many transformations can be best explained in syntactic terms – see examples below;

– Syntactic annotation on the source input adds additional knowledge

– Syntactic annotation on the target output aids grammatical output

Here are some attempts at using syntax-based models:

– String to tree based translation systems (Yamada and Knight 2001; Galley et al. 2006; Marcu et al. 2006; Shen et al. 2008; Chiang et al.
2009)

– Using syntactic chunks (Schafer and Yarowsky 2003)

– Using syntactic features (Koehn and Knight 2003; Och and Ney 2003)

– Tree-to-string based translation systems (Quirk et al. 2005; Liu et al. 2006; Huang et al. 2006; Mi et al. 2008)
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Early SMT syntactic models had worse results than PBSMT because phrase pairs limited to corresponding complete syntactic units were
harmful for translation. Some of the advantages of SBMT are:

– Better overall handling of word order

– Better at translating discontinuous phrases (E.g. as X as Y- aussi X que Y)

– Especially advantageous for handling typologically different languages

– Fast and steady improvement in recent years

Syntax-based approaches for Machine Translation (MT) have gained popularity in recent times because of their ability to handle long
distance reorderings (Wu 1997; Yamada and Knight 2002; Quirk et al. 2005; Chiang 2005), especially for divergent language pairs such as
English-Hindi (or English-Urdu). Languages such as Hindi are also known for their rich morphology and long distance agreement of
features of syntactically related units. Employing techniques that factor the lexical items into morphological factors can handle the
morphological richness. The same applies to Arabic (see El Kholy and Habash 2010).

The first problem that SBMT aimed to solve was the issue of reordering, i.e. learning how to transform the sentence structure of one
language into the sentence structure of another, in a way that is not tied to a specific domain or sub-domains, or indeed, sequences of
individual words. An early attempt at greater generality in a purely phrasal setting was the alignment template approach (Och and Ney
2004). Newer approaches include formally syntactic (Chiang 2005), and linguistically syntactic approaches (Quirk et al. 2005; Huang et al.
2006; Wang et al. 2010).

The other fundamental issue SBMT targets, is extraposition and long distance movement which still pose a serious challenge to
syntax-based machine translation systems. Even if the search algorithms could accommodate such syntactic discontinuities, we need
appropriate models to account for such phenomena. Also if the system extracts extraposition templates, they may prove too sparse and
brittle to accomodate the range of phenomena.

String models are popular in statistical machine translation. Approaches include word substitution systems (Brown et al. 1993), phrase
substitution systems (Koehn et al. 2003; Och and Ney 2004), and synchronous context-free grammar systems (Wu and Wong 1998; Chiang
2005; Wong et al. 2005; Huang et al. 2009), all of which train on string pairs and seek to establish connections between source and target
strings. By contrast, explicit syntax approaches seek to model directly the relations learned from parsed data, including models between
source trees and target trees (Gildea 2003; Eisner 2003; Melamed 2004; Cowan et al. 2006), source trees and target strings (Quirk et al.
2005; Huang et al. 2006), or source strings and target trees (Yamada and Knight 2001; Galley et al. 2004). A strength of phrase models is
that they can acquire all phrase pairs consistent with computed word alignments (Lopez and Resnik 2006), concatenate those phrases
together, and re-order them under several cost models. An advantage of syntax-based models is that outputs tend to be syntactically
well-formed, with re-ordering influenced by syntactic context and function words introduced to serve specific syntactic purposes.

Generally speaking, syntactic models outperform string models for the simple reason that their output is still syntactically acceptable even
for bad translations that may be semantically wrong, whereas the former produces bad translations that are also grammatically totally
incorrect.

Hierarchical MT

In 2005 the first SMT system that uses hierarchical phrase-based decoding (HPBSMT) is presented (Chiang 2005), and is shown to improve
the performance of phrase-based systems at least for all those concerned with Chinese. HPBSMT extends the PBSMT by allowing the use
of non-contiguous phrase pairs. It incorporates reordering rules and in some way also the recursive structure of the sentence, implicitly
adopting in this way a linguistic approach without including any linguistic representation of the data. To make the model sensitive to the
syntax structure, a constituent feature was integrated into the translation model with the soft constraint method. It was defined as follows: it
gains 1 for rules whose source side respect syntactic phrase boundary in the parse tree, and 0 otherwise. However, it did not achieve
statistically significant improvement in the experiment. Marton and Resnik (2008) (hence M&R 2008) thought that different syntactic types
may play different roles in the translation model. However, (Chiang 2005)’s method did not treat them discriminatively. They then defined
soft constraint features for each constituent type based on the observation of this phenomenon. Their experiments showed that some
constituent features significantly improved the performance, but others didn’t. It is an interesting question whether all these constituent type
models can work together efficiently. Although M&R 2008 did not give the experiments to support the positive answer. Chiang (2005) had
already provided the evidence that their constituent models could not work together. (Chiang et al. 2008) thought one of its reasons were the
limitations of MERT (Och 2003) with many features. We explore the topic of soft constraints more below.

HPBSMT is usually described as being formally similar to a syntactic model without linguistic commitments, in contrast with syntactic
decoding which uses rules with linguistically motivated labels. However, as remarked in Hoang and Koehn (2010) – hence HK2010, the
decoding mechanism for both hierarchical and syntactic systems are identical and the rule extraction are similar. Hierarchical and syntax
statistical machine translation have made great progress in the last few years and now represent the state of the art in the field. Both use
synchronous context free grammar (SCFG) formalism, consisting of rewrite rules which simultaneously parse the input sentence and
generate the output sentence. The most common algorithm for decoding with SCFG is currently CKY+ with cube pruning, which works for
both hierarchical and syntactic systems, as implemented in Hiero (Chiang 2005), Joshua (Li et al. 2009), and Moses (Hoang et al. 2009).
Again as commented by HK2010, simple HPBSMT have the advantage of ensuring broad coverage to their representations, but run the risk
of using a rule for an inappropriate situation.

Most existing alignment methods simply consider a sentence as a sequence of words (Brown et al. 1993), and generate phrase
correspondences using heuristic rules (Koehn et al. 2003). Some studies incorporate structural information into the alignment process after
this simple word alignment (Quirk et al. 2005; Cowan et al. 2006). However, this is not sufficient because the basic word alignment itself is
not good.

On the other hand, syntactic models have been proposed which use structural information from the beginning of the alignment process.
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when resolving correspondence ambiguities. Yamada and Knight (2001) and Gildea (2003) proposed a tree-based probabilistic alignment
methods. These methods reorder, insert or delete sub-trees on one side to reproduce the other side, but the constraints of using syntactic
information is often too rigid. Yamada and Knight flattened the trees by collapsing nodes. Gildea cloned sub-trees to deal with the problem.

Rewrite rules in hierarchical systems have general applicability as their non-terminals are undecorated, giving hierarchical system broad
coverage. However, rules may be used in inappropriate situations without the labeled constraints. The general applicability of undecorated
rules create spurious ambiguity which decreases translation performance by causing the decoder to spend more time sifting through
duplicate hypotheses. Syntactic systems make use of linguistically motivated information to bias the search space at the expense of limiting
model coverage. The main problem to solve when using syntactic representation is the poor coverage of syntactically encoded translation
rules and as a result the decoding phase has a low number of translation pairs.

Eventually, the ability to incorporate both source and target syntactic information in tree-to-tree models are believed to have a lot of
potential to achieve promising translation quality. However, they are affected by rigid syntactic constraints and this may be the reason that
conventional tree-to-tree based translation systems haven’t shown superiority in empirical evaluations. We address more on this topic
below.

Syntactic labels from parse trees can be used to annotate non-terminals in the translation model. This reduces incorrect rule application by
restricting rule extraction and application. However, as noted in (Ambati and Lavie 2008) and elsewhere, the naive approach of constraining
every non-terminal to a syntactic constituent severely limits the coverage of the resulting grammar. Therefore, several approaches have been
used to improve coverage when using syntactic information. Zollmann and Venugopal 2006 allow rules to be extracted where non-terminals
do not exactly span a target constituent. The non-terminals are then labeled with complex labels which amalgamates multiple labels in the
span. This increases coverage at the expense of increasing data sparsity as the non-terminal symbol set increases dramatically.

Syntax-Based and Hierarchical Statistical MT

There are a great number of ways in which these two basic methods can be combined together and they will be reviewed below. Basically,
what syntactic models do is explicitly to take into account the syntax of the sentences being translated. One simple approach is to limit the
phrases learned by a standard PBSMT translation model to only those contiguous sequences of words that additionally correspond to
constituents in a syntactic parse tree. However, a total reliance on such syntax-based phrases has been shown to be detrimental to translation
quality, as the source-side and target-side tree structures heavily constrain the space of phrase segmentation of a parallel sentence. Noting
that the number of phrase pairs extracted from a corpus is reduced by around 80% when they are required to correspond to syntactic
constituents, Koehn et al. (2003) observed that many non-constituent phrase pairs that would not be included in a syntax-only model are in
fact extremely important to system performance. Since then, researchers have explored effective ways for combining phrase pairs derived
from syntax-aware methods with those extracted from more traditional PBSMT (see Xiong et al. 2010a). Briefly stated, the goal is to retain
the high level of coverage provided by non-syntactic PBSMT phrases while simultaneously incorporating and exploiting specific syntactic
knowledge.

At the same time, it is desirable to include as much syntactic information in the system as possible in order to carry out linguistically
motivated reordering, for example: an extended and modified version of the approach of Tinsley et al. (2007), i.e. extracting syntax-based
phrase pairs from a large parallel parsed corpus, combining them with PBSMT phrases, and performing joint decoding in a syntax-based
MT framework without loss of translation quality. This effectively addresses the low coverage of purely syntactic MT without discarding
syntactic information.

A lot of work has focused on combining hierarchical and syntax translation, utilizing the high coverage of hierarchical decoding and the
insights that syntactic information can bring. This is done with the aim to balance the generality of using undecorated non-terminals with
the specificity of labeled non-terminals. In particular, systems can use syntactic labels from a source language parser to label non-terminal
in production rules. However, other source span information, such as chunk tags, can also be used, as will be discussed below.

Researchers have experimented with different methods for combining the hierarchical and syntactic approaches. Syntactic translation rules
are used concurrently with a hierarchical phrase rules by training them independently and then using them concurrently to decode sentences.

Another possible method is to use one translation model containing both hierarchical and syntactic rules. Moreover, rules can contain both
decorated syntactic non-terminals, and undecorated hierarchical-style non-terminals (in addition, the left-hand-side non-terminal may, or
may not be decorated). Improvements may come by using simpler tools: for instance linguistic information coming from shallow parsing
techniques – like the chunk tagger (Abney 1991) instead of a full-fledged parser-rule extraction to reduce spurious ambiguity.

Zollmann and Venugopal 2006 etc. overcome the restrictiveness of the syntax-only model by starting with a complete set of phrases as
produced by traditional PBSMT heuristics, then annotating the target side of each phrasal entry with the label of the constituent node in the
target-side parse tree that subsumes the span. They then introduce new constituent labels to handle the cases where the phrasal entries do
not exactly correspond to the syntactic constituents. Liu et al. (2006) also add non-syntactic PBSMT phrases into their tree-to-string
translation system.

There has been much effort to improve performance for hierarchical phrase-based machine translation by employing linguistic knowledge.
For instance M&R 2008 etc., explore “soft syntactic constraints” on hierarchical phrase model; (Stein et al. 2010) focus on syntactic
constraints not only via the constituent parse but also via the dependency parse tree of source or target sentence. (Chiang et al. 2009; Chiang
2010) similarly define many syntactic features including both source and target sides but integrate them into the translation model by MIRA
algorithm to optimize their weights.

In particular, M&R 2008 extend a hierarchical PBSMT system with a number of features to prefer or disprefer certain types of syntactic
phrases in different contexts. Restructuring the parse trees to ease their restrictiveness is another recent approach: in particular, Chao Wang
et al. (2007) binarize source-side parse trees in order to provide phrase pair coverage for phrases that are partially syntactic. Tinsley et al.
(2007) showed an improvement over a PBSMT baseline on four tasks in bidirectional German–English and Spanish–English translation by
incorporating syntactic phrases derived from parallel trees into the PBSMT translation model. They first word align and extract phrases
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sides of the parallel corpus are parsed with independent automatic parsers, subtrees from the resulting parallel treebank are aligned, and an
additional set of phrases (with each phrase corresponding to a syntactic constituent in the parse tree) is extracted. The authors report
statistically significant improvements in translation quality, as measured by a variety of automatic metrics, when the two types of phrases
are combined in the Moses decoder.

ISI’s system obtained best performance on Ch_En at NIST 2009. However there are also drawbacks in using this approach and they are all
related to the difficulty inherent in producing the needed representation which require language-specific resources (parsers, morphological
analysers, etc.). Since parsing is by itself also far from reaching 100% accuracy, the performance of the SBMT system is heavily dependent
on parsing quality. Also due to the need to encode additional information to the one represented by simple words, the system will need
larger search space and will result in overall costlier processing. Other limitations with the syntax based approaches (such as Quirk et al.
2005; Chiang 2005) are, that they do not offer flexibility for adding linguistically motivated features, and that it is not possible to use
morphological factors in the syntax based approaches. In general, the translation quality has shown improvements: in particular, these
improvements are due to the more accurate phrase boundary detection. So we may safely say that syntactic phrases are a much more precise
representation of translational equivalence, and this is the main reason for adopting such an approach.

Introducing Soft Syntactic Features with Discriminative Classifiers

In the last decade, there has been countless research in soft syntactic features, much of which has led to the improved performance for
Hiero. However, it seems that all the syntactic constituent features cannot efficiently work together in the Hiero optimized by MERT. So a
more general soft syntactic constraint model has been proposed, based on discriminative classifiers for each constituent type and integrate
all of them into the translation model with a unified form. The experimental results show that this method significantly improves the
performance on the NIST05 Chinese-to-English translation task.

Soft Syntactic Constraint models (SSC) have been proposed at first by M&R 2008 as heuristic models, while SSC models proposed by Liu
et al. (2011) are much more general and based on discriminative classifiers. In this latter paper, they further decompose crossing constituents
into three types to contain more syntactic information. For example, similarly to Zollmann and Venugopal 2006, the crossing constituent
“NP+” is divided into L\NP, NP/R, and L\NP/R, which means a partial syntactic category NP missing some category to the left, the right
and the left and right together, respectively. They are called general constituent labels (GCL). Chiang et al. 2008 introduce heuristic models,
that are not sensitive to other features such as boundary word information. However, (Xiong et al. 2006), showed in previous work that
these features are helpful for the translation model. On the other hand, uniform combination of all the constituent models may cause a
model bias, since some constituent types occur more often than others.

Liu et al. (2011) propose a discriminative soft constraint model for each syntactic constituent type. The underlying idea is to improve the
model by integrating it with context information. They consider several classifiers with different accuracy to construct soft constraint
models, and they aim to study the effect of the accuracy of the classifiers on the translation performance. Then, they investigate an efficient
method to combine all the models to give a unified soft constraint model. Instead of uniformly combining all the models, they introduce a
prior distribution for them and combine them with the priority.

The authors propose a unified SSC model based on discriminative classifiers for hierarchical phrase-based translation. Experimental results
prove the effectiveness of the method on the NIST05 Chinese-to-English translation task. The experiment shows that the discriminative soft
syntactic constraint model achieves better result over the heuristic model of M&R 2008; then, it empirically proves that the more accurate
classifier can gain better results when building a sub-model for the translation model. Finally we have an efficient method which integrates
all models with respect to general constituent labels into hierarchical phrase translation model and improves its performance.

For different syntactic categories (e.g. NP), M&R 2008 defined some kinds of soft-constraint constituency features (e.g. NP=, NP+, NP_,
etc.) for Hiero rules. For instance, if a synchronous rule is used in a derivation, and the span of is a cross constituent “NP+” in the source
language parse tree, this rule will get an additional value to the model score for the case of “NP+”. In fact, each of these features can also be
viewed as a discrete model with value {0, 1}, i.e. for the case of “NP=” if the span of is exactly “NP”, the rule gets a score 1 and 0
otherwise. These constituency features don’t distinguish the rules with the same span in the source language. For a training instance
corresponding to a rule, inspired by previous work (Zollmann and Venugopal 2006; He et al. 2008; Cui et al. 2010), they design the
following features to train SSC models;

Syntactic features, which are the general constituent labels defined in section “Specific Issues in Hybrid MT” for the spans of r
and the nonterminal symbols in the source side.

Parts-of-speech (POS) features, which are the POS of the words immediately to the left and right of and those of the boundary
words covered by the nonterminal symbols in the source side.

Length features, which are the length of sub-phrases covered by the nonterminal symbols in the source side.

In fact, the models can be extended to include other features, especially those in the target side. In order to compare these models with the
work of M&R 2008, they merely introduce several features. They implement a hierarchical phrase-based system as the baseline, similar to
Hiero (Chiang 2005), and use XP (M&R 2008) as the comparison system. They use the default setting as Hiero. Word alignment for each
sentence pair is obtained as usual. Then, Stanford parser (Klein and Manning 2003) is employed to generate the parse tree for the source
side of the data. They acquire about 15.85M training examples among which are 6.81M positive and 9.04M negative examples respectively.
There are 88 general constituent labels in all. They employ the open toolkits of MaxEnt and LogReg to train SSC models for each GCL, and
construct a linear combination model with them, where the interpolation weight is set to 0.86. They train a 4-gram language model on the
Xinhua portion of the English Gigaword corpus using the SRILM Toolkits (Stolcke 2002) with modified Kneser-Ney smoothing (Chen and
Goodman 1998). In the experiments, case-sensitive BLEU4 metric (Papineni et al. 2002) measures the translation performances and the
statistical significance in BLEU score differences is tested by paired bootstrap re-sampling (Koehn 2004).

Translation Consistency Enforced by Graph-Based Learning

Trust Rating

90%
link.springer.com

Related Searches: Science Journal | Library And Information Science | Journal Publication |

Getting Past the Language Gap: Innovations in Machine Translation - ... http://link.springer.com/chapter/10.1007/978-1-4614-6018-3_6/fulltext...

15 of 42 3/14/13 6:49 PM



Alexandrescu and Kirchhoff (2009) propose a new graph-based learning algorithm is proposed with structured inputs and outputs to
improve consistency in phrase-based statistical machine translation. They define a joint similarity graph over training and test data and use
an iterative label propagation procedure to regress a scoring function over the graph. For the purpose of reranking, the resulting scores for
unlabeled samples (translation hypotheses) are then combined with standard model scores in a log-linear translation model. From a machine
learning perspective, graph-based learning (GBL) is applied to a task with structured inputs and outputs. This is a novel contribution in
itself since previous applications of GBL have focused on predicting categorical labels. The evaluation demonstrates significant
improvements over the baseline.

As discussed above, current phrase-based statistical machine translation (SMT) systems commonly operate at the sentence level; each
sentence is translated in isolation, even when the test data consists of internally coherent paragraphs or stories, such as news articles. For
each sentence, SMT systems choose the translation hypothesis that maximizes a combined log-linear model score, which is computed
independently of all other sentences, using globally optimized combination weights. Thus, similar input strings may be translated in very
different ways, depending on which component model happens to dominate the combined score for that sentence. A phrase can be
translated differently – and wrongly – due to different segmentations and phrase translations chosen by the decoder. Though different
choices may be sometimes appropriate, the lack of constraints enforcing translation consistency often leads to suboptimal translation
performance. It would be desirable to counter this effect by encouraging similar outputs for similar inputs (under a suitably defined notion
of similarity, which may include, for example, a context specification for the phrase/sentence). In machine learning, the idea of forcing the
outputs of a statistical learner to vary smoothly with the underlying structure of the inputs has been formalized in the graph-based learning
(GBL) framework. In GBL, both labeled (train) and unlabeled (test) data samples are jointly represented as vertices in a graph whose edges
encode pairwise similarities between samples. Various learning algorithms can be applied to assign labels to the test samples while ensuring
that the classification output varies smoothly along the manifold structure defined by the graph. GBL has been successfully applied to a
range of problems in computer vision, computational biology, and natural language processing. However, in most cases, the learning tasks
consisted of unstructured classification, where the input was represented by fixed length feature vectors and the output was one of a finite
set of discrete labels. In machine translation, by contrast, both inputs and outputs consist of word strings of variable length, and the number
of possible outputs is not fixed and practically unlimited.

GBL is an instance of semi-supervised learning, specifically transductive learning. A different form of semi-supervised learning (self-
training) has been applied to MT by (Ueffing et al. 2007; Fraser and Marcu 2006). This is the first study to explore a graph-based learning
approach. In the machine learning community, work on applying GBL to structured outputs is beginning to emerge. The graph-based
learning scheme is used to implement a consistency model for SMT that encourages similar inputs to receive similar outputs. Evaluation on
two small-scale translation tasks showed significant improvements of up to 2.6 points in BLEU and 2.8% PER. As the authors report, the
approach needs improvements in future work that will include testing different graph construction schemes, in particular better parameter
optimization approaches and better string similarity measures; always according to the authors, more gains can be expected when using
better domain knowledge in constructing the string kernels. This may include e.g. similarity measures that accommodate POS tags or
morphological features, or comparisons of the syntax trees of parsed sentence. The latter could be quite easily incorporated into a string
kernel or the related tree kernel similarity measure.

Problems in Combining PBSTM and SBSTM: Rules and Constraints

Galley et al. (2004) create minimal translation rules which can explain a parallel sentence pair but the rules generated are not optimized to
produce good translations or coverage in any SMT system. This work was extended and described in (Galley et al. 2006) who create rules
composed of smaller, minimal rules, as well as deal with unaligned words. These measures are essential for creating good SMT systems, but
again, a parser strictly constrains the rules of syntax.

DeNeefe (2007: 756, 757) proposed the GHKM Galley’s – where GHKM is an acronym for the authors names Galley, Hopkins, Knight and
Marcu – syntax-based extraction method for learning statistical syntax-based translation rules, presented first in (Galley et al. 2004) and
expanded on in (Galley et al. 2006). It is similar to phrase-based extraction in that it extracts rules consistent with given word alignments. A
primary difference is the use of syntax trees on the target side, rather than sequences of words. The basic unit of translation is the translation
rule, consisting of a sequence of words and variables in the source language, a syntax tree in the target language having words or variables
at the leaves, and again a vector of feature values which describe this pair’s likelihood. Translation rules can:

– Look like phrase pairs with syntax decoration

– Carry extra contextual constraints

– Be non-constituent phrases

– Contain non-contiguous phrases, effectively “phrases with holes”

– Be purely structural (no words)

– Re-order their children

Decoding with this model produces a tree in the target language, bottom-up, by parsing the foreign string using a CYK parser (Chappelier
and Rajman 1998) and a binarized rule set (Zhang et al. 2008). During decoding, features from each translation rule are combined with a
language model using a log-linear model to compute the score of the entire translation. The GHKM extractor learns translation rules from
an aligned parallel corpus where the target side has been parsed. This corpus is conceptually a list of tuples of ‘source sentence, target tree,
bi-directional word alignments’ which serve as training examples. For each training example, the GHKM extractor computes the set of
minimally-sized translation rules that can explain the training example while remaining consistent with the alignments. This is, in effect, a
non-overlapping tiling of translation rules over the tree-string pair. If there are no unaligned words in the source sentence, this is a unique
set. This set, ordered into a tree of rule applications, is called the derivation tree of the training example. As with ATS (Alignment Template
System), translation rules are extracted and counted over the entire training corpus, a count of one for each time they appear in a training
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To extract all valid tree-to-tree rules, (Liu et al. 2009) extends the famous tree-to-string rule extraction algorithm GHKM (Galley et al.
2004) to their forest-based tree-to-tree model. However, only with GHKM rules, the rule coverage is very low. As SPMT rules (Marcu et al.
2006) have proven to be a good complement to GHKM (DeNeefe et al. 2007), Zhai et al. also extract full lexicalized SPMT (Marcu et al.
2006: the acronym stands for“Statistical machine translation with syntactified target language phrases”) rules to improve the rule coverage.

The tree-to-tree style SPMT algorithm used in their experiments is described as follows:

… for each phrase pair, traverse the source and target parsing tree bottom up until it finds a node that subsumes the
corresponding phrase respectively, then extract a rule whose roots are the nodes just found and the leaf nodes are the phrases.

However, even with GHKM and SPMT rules, the rule coverage is still very low since tree-to-tree models require that both source side and
target side of its rule must be a subtree of the parsing tree. With this hard constraint (Liu et al. 2009; Chiang 2010), the model would lose a
large amount of bilingual phrases which are very useful to the translation process (DeNeefe et al. 2007). In particular it can be shown that
phrase-based models can extract all useful phrase pairs, while string-to-tree and tree-to-string model can only extract part of them because
of the one-side subtree constraint. Further, with the rigid both-side subtree constraint,the rule space of tree-to-tree model is the narrowest,
accounting only for at most 8.45% of all phrase pairs. Hence, learning to enlarge the rule coverage is the challenge for tree-to-tree models.

In the decoding process, the procedure traverses the source parsing tree in a bottom up fashion and tries to translate the subtree rooted at the
current node. If the employed rule is full lexicalized, candidate translations are generated directly. Otherwise new candidate translations are
created by combining target terminals of the rule and candidate translations of the corresponding descendant nodes of the current node.
Root node of the parsing tree will be the last visited node and the best translation is chosen as usual from its best candidate translations.
Broadly, tree-to-tree based decoding is node-based, i.e., only the source spans governed by tree nodes can be translated as a unit. These
spans are called translation spans . During decoding, translation spans are used for translation, while other spans are ignored completely
even if they include better translations. Thus this rigid constraint (they call it node constraint) will exclude many good translations. Zhai et
al. (2011) use the Chinese part of the FBIS corpus as a test set: in their statistics, there are in total of 14.68M effective translation spans in
the corpus. However, only 44.6% (6.54M spans) of them are governed by tree nodes. This low proportion would definitely lead to an
exceptionally narrow search space for tree-to-tree model and a poor translation quality.

In addition, the model is also heavily affected by the exact matching constraint which means only the rules completely matching part of the
source tree structure can be used for decoding. Since parsing errors are very common with automatic parsers, the mismatch is not rare.
Moreover, the large and flat structures which have a close relation with reordering are also hard to match exactly. Thus with such constraint,
many rules cannot be employed during decoding even if by the model extracts them and the search space is necessarily decreased.

In order to resolve the constraints, two simple but very effective approaches are proposed: (1) integrating bilingual phrases to improve the
rule coverage problem; (2) binarizing the bilingual parsing trees to relieve the rigid syntactic constraints. Other systems using transducers
with MLE probabilities may also benefit from additional reordering models (more on this topic below).

Huang et al. (2010) decorate the syntax structure into the non-terminal in hierarchical rules as a feature vector. During decoding time, they
calculate the similarity between the syntax of the source side and the rules used to derive translations, and then they add the similarity
measure to translation model as an additional feature. They don’t directly use the syntax knowledge to calculate the additional feature score,
but use it to derive a latent syntactic distribution. He et al. (2008) and Cui et al. (2010) employ the syntax knowledge as some of the features
to construct rule selection models. When training discriminative models training examples are derived from the rule extraction or from the
formal bilingual parsing derivation forest of the training data. Their strong results reinforce the claim that discriminative models are useful
in building the sub-model in translation.

Huang and Chiang (2007) use parse information of the source language, and their production rules consist of source tree fragments and
target languages strings. During decoding, a packed forest of the source sentence is used as input, and the production rule tree fragments are
applied to the packed forest. Liu et al. (2009) use joint decoding with a hierarchical and tree-to-string model and find that translation
performance increases for a Chinese-English task.

Others have sought to add soft linguistic constraints to hierarchical models using addition feature functions, such as M&R 2008 who add
feature functions to penalize or reward non-terminals which cross constituent boundaries of the source sentence. Shen et al. (2009) discuss
soft syntax constraints and context features in a dependency tree translation model. The POS tag of the target head word is used as a soft
constraint when applying rules. Also, a source context language model and a dependency language model are used as features. Most SMT
systems use the Viterbi approximation whereby the derivations in the log-linear model are not marginalized, but the maximum derivation is
returned. String-to-tree models build on this so that the most probable derivation, including syntactic labels, is assumed to be the most
probable translation. This fragments the derivation probability and further partitions the search space, leading to pruning errors. Venugopal
et al. (2009) attempts to address this by efficiently estimating the score over an equivalent unlabeled derivation from a target syntax model.
Ambati and Lavie (2008) and Ambati et al. (2009) note that tree-to-tree often underperforms models with parse tree only on one side due to
the non-isomorphic structure of languages. This motivates the creation of an isomorphic backbone into the target parse tree, while leaving
the source parse unchanged.

Hoang and Koehn (2010), present a new translation model that includes undecorated hierarchical-style phrase rules, decorated source-
syntax rules, and partially decorated rules. Results show an increase in translation performance of up to 0.8% BLEU for German–English
translation when trained on the news-commentary corpus, using syntactic annotation from a source language parser. Also experimenting
with annotation from shallow taggers may increase BLEU scores.

This continues earlier work in (Chiang 2005) but they see gains when finer grain feature functions are used. The weights for feature
function is tuned in batches due to the deficiency of MERT when presented with many features. Chiang et al. (2008) rectified this deficiency
by using the MIRA to tune all feature function weights in combination. However, the translation model continues to be hierarchical. Chiang
et al. (2009) added thousands of linguistically-motivated features to hierarchical and syntax systems, However, the source syntax features
are derived from the research above. The translation model remains constant but the parameterization changes.

Syntax Based SMT and Fuzzy Methods
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Tree-to-tree translation models suffer from unsatisfactory performance due to the limitations both in rule extraction and decoding procedure,
and in several rigid syntactic constraints that severely hamper these models. These constraints include: the both-side subtree constraint in
rule extraction, the node constraint and the exact matching constraint in decoding. Zhai et al. (2011) propose two simple but effective
approaches to overcome the constraints: utilizing fuzzy matching and category translating to integrate bilingual phrases and using head-out
binarization to binarize the bilingual parsing trees. Their experiments show that the proposed approaches can significantly improve the
performance of tree-to-tree system and outperform the state-of-the-art phrase-based system Moses.

Two main directions have emerged to overcome the limitations discussed above. One is to loose the syntactic constraints. (Zhang et al.
2008) proposes a tree-sequence based tree-to-tree model that represents rules with tree sequences and takes all spans as translation spans.
This method resolves the both-side subtree constraint and the node constraint thoroughly, but it neglects the bad influence of the exact
matching constraint. Furthermore, it is obvious that each bilingual phrase would multiply into many tree sequence rules with different
structures, which definitely leads to serious rule expansion to increase the decoding burden. In the other direction, more information is
introduced into the model. (Liu et al. 2009) substitutes one-best tree with packed forest for tree-to-tree model which can compactly encode
many parses and successfully relieve the constraints. But even with packed forest, the rule coverage is still very low. The two directions
have proven to outperform their conventional counterparts significantly. However, whether tree sequence or packed forest, they are all
complicated to deal with in decoding stage, and furthermore, they both need to modify the conventional tree-to-tree model. Thus they must
heavily adjust the original decoding algorithm to cater for the corresponding changes.

To improve the conventional tree-to-tree model the authors propose integrating bilingual phrases and binarizing the bilingual parsing trees.
(Liu et al. 2006) and (Mi et al. 2008) utilize bilingual phrases to improve tree-to-string and forest-to-string model. Other authors integrate
bilingual phrases into tree-to-tree model to resolve the problem of poor coverage of rules. Of the two, this model is the more difficult since
it must provide syntactic structures for both the source and target phrases to serve the decoding process of the model.

In traditional tree-to-tree based decoding, source side of the rule is employed to match the source parsing tree exactly. Thus if we want to
use a source phrase, theoretically we must decorate it with the corresponding syntax structure like the tree-sequence based model. However,
it has been shown that exact match would do harm to the translation quality. Thus instead of syntax structures, source phrases are decorated
with syntactic categories which are necessary and effective for translation (Zhang et al. 2011). When decoding with these source phrases,
the system ignores the internal structure of the subtree for translation and only matches the rule’s category with root node of the subtree
along with the matching between leaf nodes. Normally, if the system tries an exact match, a given rule may not be employed in case of
mismatch between categories of rule and tree structure. Hence, to maximize the capacities of the source phrases, the fuzzy matching method
can be employed which has been successfully employed in hierarchical phrase-based model (Huang et al. 2010) and string-to-tree model
(Zhang et al. 2011) to match categories. With fuzzy matching method, Zhai et al. (2011) represent each SAMT-style syntactic category with
a real-valued vector F (c) using latent syntactic distribution. That is to say, they transform an original source phrase by decorating it with a
SAMT-style syntactic category and a corresponding real-valued vector. During decoding, they consider all possible source phrases and
compute the similarity scores between categories of phrases and head nodes of the current translated structure. Then the similarity score will
serve as a good feature (similarity score feature) incorporated into the model and will let it learn how to respect the source phrases.

Combining PBSTM and SBSTM but Then Syntax-Prioritizing

A key concern in building syntax-based machine translation systems is how to improve coverage by incorporating more traditional
phrase-based SMT phrase pairs that do not correspond to syntactic constituents. Improved precision due to the inclusion of syntactic phrases
can be seen by examining a translation example and the phrasal chunks chosen which exist in the baseline PBSMT phrase table, but do not
make it into the top-best translation in the PBSMT-only scenario because of its high ambiguity factor. Hanneman and Lavie (2009) propose
an approach which is structurally similar to that of Tinsley et al. (2007), extended or modified in a number of key ways. At first, they extract
both non-syntactic PBSMT and syntax-driven phrases from a parallel corpus that is two orders of magnitude larger. Then, they apply a
different algorithm for subtree alignment, proposed by Lavie et al. (2008), which proceeds bottom-up from existing statistical word
alignments, rather than inducing them top-down from lexical alignment probabilities. In addition to combining straightforwardly syntax-
derived phrases with traditional PBSMT phrases, they propose a new combination technique that removes PBSMT phrases whose source-
language strings are already covered by a syntax-derived phrase. This new syntax-prioritized technique results in a 61% reduction in the
size of the combined phrase table with only a minimal decrease in automatic translation metric scores. Finally, and crucially, they carry out
the joint decoding over both syntactic and non-syntactic phrase pairs in a syntax-aware MT system, which allows a syntactic grammar to be
put in place on top of the phrase pairs to carry out linguistically motivated reordering, hierarchical decoding, and other operations.

A small number of grammar rules are then used to correct the structure of constituents which require some reordering in the sentence. After
inspecting the output of the test set they find that the grammar is 97% accurate in its applications, making helpful reordering changes 88%
of the time.

The statistical transfer (“Stat-XFER”) framework (Lavie 2008; and recent extension by Ambati and Lavie 2008) is the base MT system used
for an experiment that we report here. It is similar to what we already discussed under section “Combining Syntax, EBMT and a Transfer
Approach to MT” making exception for the stochastic Example-Based approach. The core of the framework is a transfer engine using two
language-pair-dependent resources: a grammar of weighted synchronous context-free rules, and a probabilistic bilingual lexicon. Once the
resources have been provided, the Stat-XFER framework carries out translation in a two-stage process, first applying the lexicon and
grammar to parse synchronously an input sentence, then running a monotonic decoder over the resulting lattice of scored translation pieces
assembled during parsing to produce a final string output (see Dyer et al. 2008). Reordering is applied only in the first stage, driven by the
syntactic grammar; the second-stage monotonic decoder only assembles translation fragments into complete hypotheses. Each Stat-XFER
bilingual lexicon entry has a synchronous context-free grammar (SCFG) expression of the source- and target-language production rules.
The SCFG backbone may include lexicalized items, as well as non-terminals and pre-terminals from the grammar. Constituent alignment
information specifies one-to-one correspondences between source-language and target-language constituents on the right-hand side of the
SCFG rule. Rule scores for grammar rules, if they are learned from data, are calculated in the same way as the scores for lexical entries. The
grammar and lexicon are extracted from a large parallel corpus that has been statistically word-aligned and independently parsed on both

Trust Rating

90%
link.springer.com

Related Searches: Science Journal | Library And Information Science | Journal Publication |

Getting Past the Language Gap: Innovations in Machine Translation - ... http://link.springer.com/chapter/10.1007/978-1-4614-6018-3_6/fulltext...

18 of 42 3/14/13 6:49 PM



categories for the left-hand side of the SCFG rules are obtained from the preterminal nodes of the parse trees. Phrase-level entries for the
lexicon are based on node-to-node alignments in the parallel parse trees. In the straightforward “tree-to-tree” scenario, a given node ns in
one parse tree S will be aligned to a node nt in the other parse tree T if the words in the yield of ns are all either aligned to words within the
yield of nt or have no alignment at all. If there are multiple nodes nt satisfying this constraint, the node in the tree closest to the leaves is
selected. Each aligned node pair (ns,nt) produces a phrase-level entry in the lexicon, where the left-hand sides of the SCFG rule are the
labels of ns and nt, and the right-hand sides are the yields of those two nodes in their respective trees. In the expanded “tree-to-tree-string”
configuration, if no suitable node nt exists, a new node n′s is introduced into T as a projection of ns, spanning the yield of the words in T
aligned to the yield of ns.

Conceptually, they take the opposite approach to that of Tinsley et al. (2007) by adding traditional PBSMT phrases into a syntax-based MT
system rather than the other way around. They begin by running steps 3 through 5 of the Moses training script (Koehn et al. 2007), which
results in a list of phrase pair instances for the same word-aligned corpus to which they applied the syntax-based extraction methods. Given
the two sets of phrases, they explore two methods of combining them: direct combination and syntax-prioritized combination.

Direct Combination. Following the method of Tinsley et al. (2007), they directly combine the counts of observed syntax-based
phrase pairs with the counts of observed PBSMT phrase pairs. This results in a modified probability model in which a higher
likelihood is moved onto syntactic phrase pairs that were also extractable using traditional PBSMT heuristics. It also allows
either extraction mechanism to introduce new entries into the combined phrase table that were not extracted by the other, thus
permitting the system to take full advantage of complementary information provided by PBSMT phrases that do not correspond
to syntactic constituents.

Syntax-Prioritized Combination. Under this method, they take advantage of the fact that syntax-based phrase pairs are likely to
be more precise translational equivalences than traditional PBSMT phrase pairs, since constituent boundaries are taken into
account during phrase extraction. PBSMT phrases whose source-side strings are already covered by an entry from the syntactic
phrase table are removed; the remaining PBSMT phrases are combined as in the direct combination method above. The effect on
the overall system is to trust the syntactic phrase pairs in the cases where they exist, supplementing with PBSMT phrase pairs for
non-constituents.

Syntax MT and Dependency Structures

Hoang and Koehn (2010) present an experiment which shows how both hierarchical and syntax-based SMT can be used fruitfully to
improve the performance of a system. Japanese and Chinese are the two languages mostly involved in experimenting with syntax-based
MT, in particular due to structural differences between the two languages and English. Nakazawa and Kurohashi (2011) introduce a
tree-based reordering model which models word or phrase dependency relations in dependency tree structures of source and target
languages. They propose a phrase alignment method which models word or phrase dependency relations in dependency tree structures of
source and target languages. For a pair of correspondences which has a parent–child relation on one side, the dependency relation on the
other side is defined as the relation between the two correspondences. It is a kind of tree-based reordering model, and can capture non-local
reorderings which sequential word-based models often cannot handle properly. The model is also capable of estimating phrase
correspondences automatically without heuristic rules. The model is trained in two steps: Step 1 estimates word translation probabilities,
and Step 2 estimates phrase translation probabilities and dependency relation probabilities. Both Step 1 and Step 2 are performed iteratively
by the EM algorithm. During the Step 2 iterations, word correspondences are grown into phrase correspondences.

Experimental results of alignment show that the model could achieve F-measure 1.7 points higher than the conventional word alignment
model with symmetrization algorithms.

The authors consider that there are two important needs in aligning parallel sentences written in very different languages such as Japanese
and English. One is to adopt structural or dependency analysis into the alignment process to overcome the difference in word order. The
other is that the method needs to have the capability of generating phrase correspondences, that is, one-to-many or many-to-many word
correspondences.

Nakazawa and Kurohashi (2008) also proposed a model focusing on the dependency relations. Their model has the constraint that content
words can only correspond to content words on the other side, and the same applies for function words. This sometimes leads to an
incorrect alignment. Thus they have removed this constraint to make more flexible alignments possible. Moreover, in their model, some
function words are brought together, and thus they cannot handle the situation where each function word corresponds to a different part. The
smallest unit of our model is a single word, which should solve this problem.

Chang et al. (2011) note that structural differences between Chinese and English are a major factor in the difficulty of machine translation
from Chinese to English. The wide variety of such Chinese-English differences include the ordering of head nouns and relative clauses, and
the ordering of prepositional phrases and the heads they modify. Previous studies have shown that using syntactic structures from the source
side can help MT performance on these constructions. Most of the previous syntactic MT work has used phrase structure parses in various
ways, either by doing syntax-directed translation to translate directly parse trees into strings in the target language (Huang et al. 2006), or by
using source-side parses to preprocess the source sentences (Wang et al. 2007). One intuitive solution for using syntax is to capture different
Chinese structures that might have the same meaning and hence the same translation in English. But it turns out that phrase structure (and
linear order) are not sufficient to capture this meaning relation. Two sentences with the same meaning can have different phrase structures
and linear orders. They propose to use typed dependency parses instead of phrase structure parses. Typed dependency parses give
information about grammatical relations between words, instead of constituency information. They capture syntactic relations, such as nsubj
(nominal subject) and dobj (direct object),, but also encode semantic information such as in the loc (localizer) relation. This suggests that
this kind of semantic and syntactic representation could have more benefit than phrase structure parses. Chinese typed dependencies are
automatically extracted from phrase structure parses. In English, this kind of typed dependencies has been introduced by de Marneffe and
Manning (2008) and de Marneffe et al. (2006). Using typed dependencies, it is easier to read out relations between words, and thus the
typed dependencies have been used in meaning extraction tasks. Features over the Chinese typed dependencies are used in a phrase-based
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achieve this, a discriminative phrase orientation classifier is trained following the work by Zens and Ney (2006), and the system uses
grammatical relations between words as extra features to build the classifier. Then the phrase orientation classifier is applied as a feature in a
phrase-based MT system to help reordering. Basic reordering models in phrase-based systems use linear distance as the cost for phrase
movements (Koehn et al. 2003). The disadvantage of these models is their insensitivity to the content of the words or phrases. More recent
work (Tillman 2004; Och & Ney 2004; Koehn et al. 2007) has introduced lexicalized reordering models which estimate reordering
probabilities conditioned on the actual phrases. Lexicalized reordering models have brought significant gains over the baseline reordering
models, but one concern is that data sparseness can make estimation less reliable. Zens and Ney (2006) proposed a discriminatively trained
phrase orientation model and evaluated its performance as a classifier and when plugged into a phrase-based MT system. Their framework
allows us easily to add in extra features. Therefore it is used as a testbed to see if features from Chinese typed dependency structures can
effectively be used to help reordering in MT.

The target language (English) translation is built from left to right. The phrase orientation classifier predicts the start position of the next
phrase in the source sentence. They use the simplest class definition and group the start positions into two classes: one class for a position to
the left of the previous phrase (reversed) and one for a position to the right (ordered). The basic feature functions are similar to what Zens
and Ney (2006) used in their MT experiments. The basic binary features are source words within a window of size 3 around the current
source position j, and target words within a window of size 3 around the current target position i. Yhe classifier experiments in Zens and
Ney (2006) also uses word classes to introduce generalization capabilities. In the MT setting it’s harder to incorporate the part-of-speech
information on the target language. Zens and Ney (2006) also exclude word class information in the MT experiments. In the work they also
use word features as basic features for the classification experiments. Assuming the Chinese sentence to translate has been parsed and
grammatical relations in the sentence have been extracted, the path between the two words annotated by the grammatical relations is used.
This feature helps the model learn the relation between the two chunks of Chinese words. The feature is defined as follows: for two words at
positions p and q in the Chinese sentence (p   <   q), find the shortest path in the typed dependency parse from p to q, concatenate all the
relations on the path and use that as a feature.

Cherry and Lin (2003) proposed a model which uses a source side dependency tree structure and constructs a discriminative model.
However, there is the defect that its alignment unit is a word, so it can only find one-to-one alignments. On the contrary, when aligning very
different language pairs, the most important need is the capability of generating both one-to-many and many-to-many correspondences.

Venkatapathy et al. (2010) propose an English-Hindi dependency-based statistical system that uses discriminative techniques to train its
parameters. The use of syntax (dependency tree) allowed them to address the large word-reorderings between English and Hindi. And,
discriminative training allows us to use rich feature sets, including linguistic features that are useful in the machine translation task.

Morphological decomposition is useful where there is very limited parallel corpora available, and breaking words into smaller units helps in
reducing sparsity. In order to handle phenomena, such as long-distance word agreement to achieve accurate generation of target language
words, the inter-dependence between the factors of syntactically related words needs to be modeled effectively.

Knowledge-Based MT Systems

Our focus in this section will be knowledge-based systems, i.e. systems which are a combination of both syntax and semantic knowledge to
inform statistical models and learning. In particular, I assume that both syntax and semantics should also inform automatic evaluation in
order to improve precision. Semantics in this case refers to ontologies like SUMO or WORDNET, but then, in order to be effective, should
also include some Word-Sense Disambiguation or at least semantic similarity processing step. Other recent procedures for assessing – and
evaluating – semantic similarity are based on Text Entailment techniques, but are less frequently used. Taxonomies and ontologies are data
structures that organise conceptual information by establishing relations among concepts, hierarchical and partitive relations being the most
important ones. One of the first idea was that of using a multilingual ontology as an interlingua (Hovy and Nirenburg 1992; Hovy 1998;
Hovy et al. 2006; Philpot et al. 2010). Nowadays, ontologies have a wide range of uses in many domains, for example, finance
(International Accounting Standards Board 2007), bio-medicine (Collier et al. 2008; Ashburner et al. 2000) and libraries (Mischo 1982).
These resources normally attach labels in natural language to the concepts and relations that define their structure, and these labels can be
used for a number of purposes, such as providing user interface localization (McCrae et al. 2011), multilingual data access (Declerck et al.
2010), information extraction (Müller et al. 2004) and natural language generation (Bontcheva 2005). Applications that use such ontologies
and taxonomies will require translation of the natural language descriptions associated with them in order to adapt these methods to new
languages. Currently, there has been some work on the idea of multilinguality in ontologies such as EuroWordNet (Vossen 1998), bilingual
WordNet, or BOW (Huang et al. 2010), and in the context of ontology localisation, such as Espinoza et al. (2008) and (2009), Cimiano et al.
(2010), Fu et al. (2010) and Navigli and Penzetto (2010). Current work in machine translation has shown that word sense disambiguation
can play an important role by using the surrounding words as context to disambiguate terms (Carpuat and Wu 2007; Apidianaki 2009).

One of the most interesting hypothesis is the one underlying interlingua RBMT systems. It uses an abstract intermediate semantic/logical
representation to be used for translating into any target language. This hypothesis is converted into a SMT-viable alternative in which
predicate-argument structures of both source and target language bitexts are used to bootstrap the SMT alignment module. This is what Wu
and Palmer (2011) propose with the aim to abstract away from language specific syntactic variation and provide a more robust, semantically
coherent alignment across sentences. As the authors comment, a number of previous attempts had been made to either align deep
syntactic/semantic lemmatized representations (as Marecek 2009a, b) did for English/Czech parallel corpus alignment); or to introduce
semantic roles and syntax based argument similarity to project English Framenet to German, where however only the source was annotated.
Choi et al. (2009) and Wu et al. (2010) enhanced Chinese-English verb alignments using parallel PropBanks. However there was no explicit
argument mapping between the aligned predicate-argument structures.

HPBMT with Semantic Role Labeling
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model for the inclusion of semantic role annotations in the framework of confidence estimation for machine translation. The model has
several interesting properties, most notably: (1) it only requires a linguistic processor on the (generally well-formed) source side of the
translation; (2) it does not directly rely on properties of the translation model (hence, it can be applied beyond phrase-based systems). These
features make it potentially appealing for system ranking, translation re-ranking and user feedback evaluation. Preliminary experiments in
pairwise hypothesis ranking on five confidence estimation benchmarks show that the model has the potential to capture salient aspects of
translation quality.

Liu and Gildea (2008, 2010) proposed using Semantic Role Labels (SRL) in their tree-to-string machine translation system and
demonstrated improvement over conventional tree-to-string methods. Wu and Fung (2009) developed a framework to reorder the output
using information from both the source and the target SRL labels, and their approach uses the target side SRL information in addition to a
Hierarchical Phrase-based Machine Translation framework. The proposed method extracts initial phrases with two different heuristics. The
first heuristic is used to extract rules that have a general left-hand-side (LHS) non-terminal tag X, i.e., Hiero rules. The second will extract
phrases that contain information of SRL structures. The predicate and arguments that the phrase covers will be represented in the LHS
non-terminal tags. After that, they obtain rules from the initial phrases in the same way as the Hiero extraction algorithm, which replaces
nesting phrases with their corresponding non-terminals. By applying this scheme, rules will contain SRL information, without sacrificing
the coverage of rules. Such rules are called SRL-aware SCFG rules. During decoding, both the conventional Hiero-style SCFG rules with
general tag X and SRL-aware SCFG rules are used in a synchronous Chart Parsing algorithm. Special conversion rules are introduced to
ensure that whenever SRL-aware SCFG rules are used in the derivation, a complete predicate-argument structure is built. Gao and Vogel
(2011) propose of using Semantic Role Labels to assist hierarchical phrase-based MT. They present a novel approach of utilizing Semantic
Role Labeling (SRL) information to improve Hierarchical Phrase-based Machine Translation, by proposing an algorithm to extract
SRL-aware Synchronous Context-Free Grammar (SCFG) rules. Conventional Hiero-style SCFG rules are extracted in the same framework.
Special conversion rules are applied to ensure that when SRL-aware SCFG rules are used in derivation, the decoder only generates
hypotheses with complete semantic structures. They then perform machine translation experiments using nine different Chinese-English
test-sets. The approach achieved an average BLEU score improvement of 0.49 as well as 1.21 point reduction in TER.

When dealing with formalisms such as semantic role labeling, the coverage problem is also critical., so it is important to follow Chiang’s
(2007) observation to use SRL labels to augment the extraction of SCFG rules. The formalism provides additional information and more
rules instead of restrictions that remove existing rules. This preserves the coverage of rules.

Multiword Units in Dependency Structure

In Hwidong Na and Jong-Hyeok Lee (2011), another important contribution comes from the use of multiword units which had already been
proposed in the computer assisted MT scenario by Wehrli et al. (2009). Here on the contrary, the translation requires non-isomorphic
transformation from the source to the target. However, learning multi-word units (MWUs) can reduce non-isomorphism. They present a
novel way of representing sentence structure based on MWUs, which are not necessarily continuous word sequences. The proposed method
builds a simpler structure of MWUs than words using words as vertices of a dependency structure. Unlike previous studies, they collect
many alternative structures in a packed forest. As an application of the proposed method, they extract translation rules in the form of a
source MWU-forest to the target string, and verify the rule coverage empirically. On the same subject see also Carpuat and Diab 2010;
Lambert and Banchs 2005; Ren et al. 2009.

Ontologies and Taxonomies

McCrae et al. (2011) widely use ontologies and taxonomies to organize concepts providing the basis for activities such as indexing and as
background knowledge for NLP tasks. As such, translation of these resources would prove useful to adapt these systems to new languages.
However, they show that the nature of these resources is significantly different from the “free-text” paradigm used to train most statistical
machine translation systems. In particular, significant differences in the linguistic nature of these resources can be seen and such resources
have rich additional semantics. As a result of these linguistic differences, standard SMT methods, in particular evaluation metrics, can
produce poor performance. Leveraging these semantics for translation can be approach in three ways: by adapting the translation system to
the domain of the resource; by examining if semantics can help to predict the syntactic structure used in translation; and by evaluating if
existing translated taxonomies can be used to disambiguate translations. Results from these experiments shed light on the degree of success
that may be achieved with each approach. Rather than looking for exact or partial translations in other similar resources such as bilingual
lexica, in the paper an adequate translation is presented using statistical machine translation approaches that also utilise the semantic
information beyond the label or term describing the concept, that is relations among the concepts in the ontology, as well as the attributes or
properties that describe concepts.

Latent Semantic Indexing

It is evident that the main-stream statistical machine translation is unable to tackle source-context information in a reliable way has been
already recognized as a major drawback of the statistical approach, whereas (Carl and Way 2003) have proven the use of source-context
information has been proven to be effective in the case of example-based machine translation. In this regard, (Carpuat and Wu 2007, 2008;
Haque et al. 2009; España-Bonet et al. 2009; Banchs and Costa-jussà 2010) have already reported attempts to incorporate source-context
information into the phrase-based machine translation framework. However, no transcendental improvements in performance have been
achieved or, at least, reported yet.

Rafael E. Banchs & M.R. Costa-jussà (2011) proposed and evaluated an approach that uses a semantic feature for statistical machine
translation, based on Latent Semantic Indexing. The objective of the proposed feature is to account for the degree of similarity between a
given input sentence and each individual sentence in the training dataset. This similarity is computed in a reduced vector-space constructed
by means of the Latent Semantic Indexing decomposition. The computed similarity values are used as an additional feature in the log-linear
model combination approach to statistical machine translation. In the implementation, the proposed feature is dynamically adjusted for each

Trust Rating

90%
link.springer.com

Related Searches: Science Journal | Library And Information Science | Journal Publication |

Getting Past the Language Gap: Innovations in Machine Translation - ... http://link.springer.com/chapter/10.1007/978-1-4614-6018-3_6/fulltext...

21 of 42 3/14/13 6:49 PM



translation unit in the translation table according to the current input sentence to be translated. This model aims to favor those translation
units that were extracted from training sentences that are semantically related to the current input sentence being translated. Experimental
results on a Spanish-to-English translation task on the Bible corpus demonstrate a significant improvement on translation quality with
respect to a baseline system.

Crucial semantic problems are dealt with in a recent paper by Baker et al. 2012, on semantic issues like modality and negation which are
relevant for SMT or what they call Semantically Informed Syntactic MT.

Evaluation Methods and Tools

To comment on this topic I will refer to a paper by Forcada et al. (2011b) – but see also Daelemans and Hoste 2009 – who extensively
presents and experiments with evaluation metrics. One of the most widely used automatic MT evaluation metrics is BLEU; then we have
the NIST evaluation metric, the GTM metric based on precision and recall. Some of the metrics presented are language specific, and they
are: METEOR, METEOR-NEXT, TER-plus and DCU-LFG. These metrics need specific resources and tools which are at present only
available for English – see Kirchhoff et al. 2007 for semi-automatic evaluation.

BLEU (Papineni et al. 2002) – the most widely used automatic MT evaluation metrics – is a string-based metric which has come to
represent something of a de facto standard in the last few years. This is not surprising given that today most MT research and development
efforts are concentrated on statistical approaches; BLEU’s critics argue that it tends to favour statistical systems over rule-based ones
(Callison-Burch et al. 2006). Using BLEU is fast and intuitive, but while this metric has been shown to produce good correlations with
human judgment at the document level (Papineni et al. 2002), especially when a large number of reference translations are available,
correlation at sentence level is generally low. BLEU measures n-gram precision and the score is between 0 and 1. N-grams considered are
any linear sequence of words up to length 4 (BLEU4), to be found in actual output and in reference translation. There is a brevity penalty in
that single word match is just not counted if it never appears alone, like for instance the word “the”; and the same portion of text can’t be
used. BLEU is not sensitive to global syntactic structure; it doesn’t care if the wrong translation is a function word rather than a content
words or a proper name (input source sentences are all lower-cased and upper-case words are no longer visible). Human translation scored
by BLEU typically falls around 60% – rather than 100% due to translator variations – and the best Chinese or Arabic translations into
English may reach the same value (as reported in Ravi and Knight 2010).

The NIST evaluation metric (Doddington 2002) is also string-based, and gives more weight in the evaluation to less frequent n-grams.
While this metric has a strong bias in favour of statistical systems, it provides better adequacy correlation than BLEU (Callison-Burch et al.
2006).

The GTM metric (Turian et al. 2003) is based on standard measures adopted in other NLP applications (precision, recall and F-measure),
which makes its use rather straightforward for NLP practitioners. It focuses on unigrams and rewards sequences of correct unigrams,
applying moderate penalties for incorrect word order.

METEOR (Banerjee and Lavie 2005; Lavie and Agarwal 2007) uses stemming and synonymy relations to provide a more fine-grained
evaluation at the lexical level, which reduces its bias towards statistical systems. One drawback of this metric is that it is language-
dependent since it requires a stemmer and WordNet.3. It can currently be applied in full only to English, and partly to French, Spanish and
Czech, due to the limited availability of synonymy and paraphrase modules. METEOR-NEXT (Denkowski and Lavie 2010) is an updated
version of the same metric.

The TER metric (Snover et al. 2006) adopts a different approach, in that it computes the number of substitutions, insertions, deletions and
shifts that are required to modify the output translation so that it completely matches the reference translation(s). Its results are affected less
by the number of reference translations than is the case for BLEU. Also, the rationale behind this evaluation metric is quite simple to
understand for people who are not MT experts, as it provides an estimation of the amount of post-editing effort needed by an end-user.
Another metric based on error rates which preceded TER is WER (Nießen et al. 2000). WER and its extension mWER (Nießen et al. 2000)
have been omitted from the experiments reported here as they seem to have been superseded by more recent metrics.

TER-plus (Snover et al. 2009) is an extension of TER using phrasal substitutions relying on automatically generated paraphrases, stemming,
synonyms and relaxed shifting constraints. This metric is language-dependent and requires WordNet. It has been shown to have the highest
average rank in terms of Pearson and Spearman correlation (Przybocki et al. 2008).

The DCU-LFG metric (Owczarzak et al. 2007) exploits LFG dependencies and has only a moderate bias towards statistical systems. It
requires a dependency parser. Xiong et al. 2010b use linguistic feature to detect errors.

It should be noted that among the above measures, METEOR, METEOR-NEXT, TER-plus and DCU-LFG can only be used for English as
a target language at the present time, given the language-specific resources that they require.

A Translation Example: Comparisons and Comments

Just to show how syntax, morphology and semantics may play an important role, we will use an example (Wilks/Zampolli 1994:592) from
one of the many papers that Yorick Wilks has published on the subject (see Wilks 2009). The example is interesting in that it introduces the
need to take care of agreement in discontinuous constituents. We will use common online translation systems (a RBMT Systrans and a SMT
Google), will compare translations into three common European languages, and will comment on the errors produced:

(1) The soldiers fired at the women and I saw several fall

Google: (Ita) I soldati hanno sparato alle donne e ho visto cadere molti

(Fre) Les soldats ont tiré sur les femmes et j’ai vu la chute de plusieurs
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A.

B.

---> I soldati hanno sparato contro le donne, e ho visto cadere molti

Systran: (Ita) I soldati fatti fuoco contro le donne e me hanno veduto parecchio caduta

(Fre) Les soldats mis le feu aux femmes et à moi ont vu plusieurs chute

(Germ) Die Soldaten, die an den Frauen und an mir gefeuert wurden, sahen einiges Fall

On the whole, Google produces acceptable translations even though agreement is wrong both in Italian and French. In addition, German
translation introduces a noun instead of the infinitival – Sturz translates the base verb form “fall” treating it as a noun. The treatment of the
complement of “fired” (at the women) are all fine in the three languages, which we certainly regard as an achievement possible thanks to
statistics: both the preposition and case are fine. If we look at Systran’s translation on the contrary, we see an attempt to control gender in
Italian: “caduta” is a feminine singular, but “parecchio” is masculine singular. So it would seem that there is no provision for the treatment
of Number (both should have been plural). Another mistake is the presence of “me” in front of “hanno veduto”, which is not only wrong –
“vedere”/see is not like “piacere”, a psych verb that turns the deep experiencer subject into a dative. In fact “me” is accusative and as such it
cannot be used in the subject position of any verb unless it is followed by another clitic that is in the accusative form as in “me lo”/to me it.
The mistake is clearly due to the wrong phrase produced by joining “at the women and I” as if they were bound to the same preposition
“at”.

The auxiliary form is right but the past participle “veduto” is an archaic or stylistically marked version of “visto” that translates the simple
past of “see”. The question is that the main clause does not have a tensed main verb anymore: “fatti” is an absolute participial clause and
translates “fired” as a past participle and not as a simple past. This ambiguity is quite common in English: in fact almost all verbs – with the
exception of those irregular forms that are different in the two tenses, like “went/gone” – are ambiguous and require a disambiguation
procedure in the parser to tell one tense from the other. The mistake is clearly related to the lack of statistical measures associated to the
choice. Also French is semantically wrong: “mis le feu” does not really fit into the translation required here, it translates the other meaning
of “fire”, BURN. It is difficult to understand the semantic choice here, because you don’t currently BURN WOMEN very easily, even
though that might have happened in the past. Actually in the Middle-Ages when witches were around, many women were set on fire on a
pyre. As to the conjoined sentence, we see again the same mistake of using a dative “à moi” in French and “an mir” in German, rather than
simply introducing a nominative pronoun, like “moi” and “ich”. Then the quantifier “several” is again translated without agreement in both
French and German: however French “plusieurs” captures Number and the German “einiges” is wrong both in agreement and in meaning –
it translates “some”. In fact, the German translation is primarily wrong because it turns the two conjoined sentences as if they were headless
relative clauses – which is possible in English but not in German – parsing the constituents “fired at the women and I” as if they were a
well-formed structure. This is apparent from the introduction of two commas, at the beginning and at the end of the conjunct “…, die an den
Frauen und an mir gefeuert wurden,” and by the use of passive which is clearly nonsensical given the presence of a nominative Agent “die
Soldaten”.

So eventually, Systran has produced a far worse result than Google, which by making use of its enormous terabyte of parallel texts, has
shown the power of SMT. More examples follow below.

MT for the Future

New Statistical Methods and a Comprehensive Translation Model

We assume that the right direction for MT of the future is to incorporate both syntax and semantics in its statistics. We can do this in these
two ways:

A first way would be the one proposed by the LOGON project (Oepen et al. 2004, 2005; Oepen and Lønning 2006). It increases the
role of NLP tools and leaves mainly to statistics the final re-ranking of best translation candidates, as will be better explained below. This
is how the authors summarize their approach: “a hybrid MT architecture, combining state-of-the-art linguistic processing with advanced
stochastic techniques. Grounded in a theoretical reflection on the division of labor between rule-based and probabilistic elements in the
MT task … combining component-internal scores and a number of additional sources of (probabilistic) information, … explore
discriminative re-ranking of n-best lists of candidate translations through an eclectic combination of knowledge sources”;

A second way is the one Tan et al. 2012 propose, in their seminal work. They present a new language model which is an “a large
scale distributed composite language model that is formed by seamlessly integrating n-gram, structured language model and probabilistic
latent semantic analysis under a directed Markov random field paradigm to simultaneously account for local word lexical information,
mid-range sentence syntactic structure, and long-span document semantic content”. That is, they try to combine semantics/pragmatics,
syntax and string-based statistical processing

As for method B., in the abstract to their article they present their approach as follows:

The composite language model has been trained by performing a convergent N-best list approximate EM algorithm and a
follow-up EM algorithm to improve word prediction power on corpora with up to a billion tokens and stored on a
supercomputer. The large scale distributed composite language model gives drastic perplexity reduction over n-grams and
achieves significantly better translation quality measured by the BLEU score and “readability” of translations when applied to
the task of re-ranking the N-best list from a state-of-the-art parsing-based machine translation system. (ibid., 1)

The reason to resort to such an approach reflects the obvious fact that – as the authors note-, the technology based on n-grams has reached a
plateau and there is a desperate need to find a new approach to language modeling (Lavie et al. 2006). Work on Chinese has pushed the over
of n-gram up to 6-gram obtaining better translations, but the improvement beyond that is minimal (Zhang 2008).

Wang et al. (2006) studied the stochastic properties for a composite language model that integrates n-gram, probabilistic dependency
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structure in structured language model (SLM), and probabilistic latent semantic analysis (PLSA) under the directed Markov random fields
(MRF) framework (Wang et al. 2005). They derived another generalized inside-outside algorithm to train composite n-gram, SLM and
PLSA language model from a general EM algorithm by following Jelinek’s ingenious definition of the inside and outside probabilities for
SLM (Jelinek 2004).

Eventually, the authors are aiming to influence word prediction to find best word pair triggers, with both (dependency) syntactic and
(discourse topic) semantic/pragmatic information (Wallach 2006). The output can be combined and used with trigrams in a composite
model to drive the final decoder. The resulting language model is defined as the “composite 5-gram/2-SLM+2-gram/4-SLM+5-gram/PLSA1
language model”. The interesting part of the evaluation, which as expected is reported to increase BLEU scores by a 1.19%, is the one
dedicated to the “readability” of Chinese-English translations, where they ask human judges to evaluate semantic versus grammatical
correctness. In a table the authors report the results of “readability” evaluation on 919 translated sentences of 100 documents, and divide the
sentences into four groups: perfect, only semantically correct, only grammatically correct, wrong. The evaluation shows improvements
when going from baseline and simple string-based 5-gram processing to the composite language model created by the authors. The greatest
relative variation is shown by G(rammatical) sentences, over 60% increase; then P(erfect) sentences, over 50% increase; the lowest relative
variation is in S(emantic) sentences that only increase by a 7%. Overall totally wrong sentences decrease by 25%, again a remarkable
achievement. This notwithstanding, we can easily see that the amount of “readable” sentences reaches the 66% of the total 919 from a
starting point of 56%. However, it is important to stress that they obtain these results by training on a 1.3 billion word corpus using a
supercomputer and will not be duplicated on smaller hardware in the near future.

Interesting enough, the results above are almost comparable to those obtained by the LOGON project, in which with a totally different
technology and a much smaller corpus, they carried out an evaluation on domain-bounded sentences of unseen running text, they found that
on the two thirds (62%) that have been translated, they reached an accuracy of 72.28%. The evaluation carried out by Johannessen et al.
2008 with the help of human judges, based on quality parameters such as “fidelity” and “fluency” showed a result of around 2 points on a
graded scale that goes from 0 to 3, where 2 is translated as fair fidelity and still some mistakes in fluency. As the authors themselves
comment, the scarsity of resources existing for Norwegian has been the main motivation for building a semantic-transfer-oriented
translation system that uses stochastic processing for the target language model, English (see also Llitjós and Vogel 2007). Minimal
Recursion Semantics is the “glue” which performs transfer from source to target language and serves as the information vehicle between
LFG and HPSG. For a similar approach purely cast in LFG see Riezel and Maxwell 2006. Purely statistical approaches are doomed to
failure. In addition the probabilistic NLP experience by itself suggests that a “ceiling” effect has already been reached. As the authors say,

The Norwegian LOGON initiative capitalizes on linguistic precision for high-quality translation and, accordingly, puts
scalable, general-purpose linguistic resources—complemented with advanced stochastic components—at its core. Despite
frequent cycles of overly high hopes and subsequent disillusionment, MT in our view is the type of application that may
demand knowledge-heavy, ‘deep’ approaches to NLP for its ultimate, long-term success. (ibid., 144)

Eventually (Bellegarda 2001, 2003) anticipated what is needed, that is a “more polyvalent, multi-faceted, effective and tractable solutions
for language modeling – this is only beginning to scratch the surface in developing systems capable of deep understanding of natural
language”. In order to achieve this, it is not sufficient to increase the size of data to obtain a breakthrough in the performance. It has been
shown that it is not the complicacy of the algorithm that makes the difference: simple algorithms may outperform more complicate ones.
However, as Tan et al. have demonstrated, increasing the size of the data has brought improvements, but then it has been the increase in the
complexity of the model that has made the difference. “For language modeling in particular, since the expressive power of simple n-grams
is rather limited, it is worthwhile to exploit latent semantic information and syntactic structure that constrain the generation of natural
language, this usually involves designing sophisticated algorithms. Of course, this implies that it takes a huge amount of resources to
perform the computation.” (ibid., 49) Of course, for this to become a feasible alternative, a large scale distributed language model would be
required, possibly via cloud computing. Their conclusions are as follows, they intend to

… construct a family of large scale distributed composite lexical, syntactic, and semantic language models. Finally we’ll put
this family of composite language models into a phrased-based machine translation decoder that produces a lattice of
alternative translations/transcriptions or a syntax-based decoder that produces a forest of alternatives (such integration would,
in the exact case, reside in an extremely difficult complexity class, probably PSPACE-complete) to significantly improve the
performance of the state-of-the-art machine translation systems.

What really matters at this point is confirming the increasing improvements of SMT while at the same time keeping strictly in mind its
inherent limitations. Martin Kay, in one of his latest papers (2011), nicely expresses his pessimism and at the same time optimism towards
possible future prospects of MT. He connects MT to what a human translator is doing when translating between English and French,
coming to the obvious conclusion that the output is inextricably bound to cultural issues and not just a matter of lexical, semantic or
structural knowledge. In fact, by just increasing the size of the training data, one might come up with more cultural problems to solve.
Further, the language model would be less adequate the more data are introduced, unless they belong strictly to the same domain, or as he
puts it “… new data generally opens at least as many questions as it settles” (ibid., 18). The problem is that “… there is much in any but the
most trivial texts that a reader must infer from what is made explicit, but what is explicit in a translation in another language is not generally
the same, so that substantive information is both added and subtracted by the translator”(ibid., 15). I will not report his examples, but we
can all can try examples on any online available translator to realize the truth of his statement. In fact, what is implicit, is not just
“pragmatically” based and culturally motivated, but also in some cases, specifically language related.

We already saw one example above – from English to agreement aware languages like German, French and Italian-, in which researchers
discussed questions related to agreement. Now I will turn the other way around. Implicit elements in most cases correspond to “Empty” or
“Null” elements as they are usually defined. For instance, in Penn Treebank, they have been manually classified and counted, and the total
number for an English treebank is over 36,862 cases of null elements (including traces, expletives, gapping and ambiguity) as listed in
Johansson and Nugues (2007), in other words, one every complex sentence, and one every three simple sentences. Then there is the
problem of coindexation, or assignment of an antecedent to the empty element: 8,416 are not coindexed, that is 22.83% (see Dienes and
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includes all unexpressed SBJ of infinitivals and gerundives, we come up with 12,172 cases of Null non-coindexed elements, 33% of all
cases. However, these numbers are this is still a small percentage when compared to languages like Chinese (Cai et al. 2011; Yang and Xue
2010) or some Romance languages like Italian which allow for free null subjects (also objects in Chinese) insertion in tensed clauses. In our
treebank of Italian called VIT (Tonelli et al. 2008; Delmonte et al. 2007), we counted an addition of 51.3% of simple sentences with
non-canonical, or lexically unexpressed subjects. Obviously this covers the total number utterances in the small corpus (60K tokens) of
transcribed spoken dialogues, where the implicit is much higher than in the written text.

Here below are some example translations from Italian to English – but I assume they could easily be from Portuguese, but also from
Japanese, and Chinese to English – in which we quite simply demonstrated that the “implicit” (Delmonte 2009a, b), might in many cases
determine what is missing in the translation and is, in fact, desperately relevant. Computing complete Predicate-Argument structures is
essential for Machine Translation tasks – as Chung and Gildea (2010) have shown where one of the two languages belongs to typology
above. As an example, we tried the translation of one sentence from Italian into English, introducing null elements and lexical pronouns,
both on Systran and Google online translation websites:

Italian Original

Maria successivamente, dopo aver rifiutato la sua offerta, gli ha detto che vuole vendere la propria casa a sua sorella perché vuole aiutarla.

Gold Translation

Then, after having rejected his offer, Maria told him that she intends to sell her (own) house to her sister because she wants to help her.

Google Translation

Maria later, after she refused his offer, told him he wants to sell his house to his sister because she wants to help.

Systran Translation

Maria successively, after to have refused its offer, she has said it that she wants to sell own house to its sister because she wants to help.

The sentence is fairly simple both in lexical choice and syntactic structure. As one can be gather, Google makes grammatical mistakes due
to lack of long distance control – “he, his, his” are all in masculine gender rather than feminine. Systran gets the subject empty pronouns
right, but then mistakes the possessives – “its” is neutral – and uses infrequent adverbials like “successively” to translate “dopo”. As usual,
Google gets an overall best translation both for the grammatical and lexical aspects. Neither of the translation includes the object enclitic
“-la”/her in the output. In fact, the verb “help” can be used intransitively, i.e. omitting the object and no mistake ensues. However in this
way the leftover pronoun is implicit and needs to be evoked. If we substitute “aiutarla” with “lasciarla” we obtain two different behaviours.
Google produces the same output: no pronoun. In this case, however the meaning is no longer preserved and “she wants to leave” has a
totally different meaning from “she wants to leave her”. Systran on the contrary produces “it” for singular no matter what gender it is (“lo”,
“la”), and “them” for plural.

We will take again Kay’s preliminary conclusion on the topic to close the section,

Since examples of the kind just considered are clearly beyond the reach of current, or any readily foreseeable technology —
especially if based on machine learning — we must take it that they do nothing but degrade the best performance of the
systems that are learned from the texts that contain them. Supervised learning from a corpus of translations that were stricter,
if less idiomatic, should surely be expected to result in superior systems. But large corpora of such translations do not occur
naturally, would be expensive to produce artificially, and would be required to meet different criteria as the field progressed.

Speech-to-Speech MT

This section fully addresses what, in my opinion, will be the driving application for the future of MT, the one that most users will come to
terms with, using mobile devices and other similar technologies. At the heart of Speech-To-Speech MT or S2S for short, there is the need to
communicate worldwide orally, for many different kinds of purposes. In other words, we are talking about the need to implement systems
for multimodal multilingual communication. This is the future of man–machine interface programs and at the heart of any future
development in the associated fields not only of Artificial Intelligence, Speech Synthesis and Automatic Speech Recognition, but also
Image Processing, Computer Vision and Face Recognition to be used also in robotics. Thus, MT is only one facet of this important
application domain that is based on advancements in basic fields of research like computational linguistics, pattern recognition, and machine
learning. Multilingual tools of the future will have to incorporate some if not all of these facilities in order to make real breakthrough in the
application market. It is quite obvious to me that a multilingual translation system that is able to take advantage of both spoken and visual
input is by far more promising that its companion system that only makes use of written input in a dialogue situation (Zong et al. 2002).

S2S end-to-end systems are organized in a number of complementary modules that receive spoken input in one language and elaborate the
corresponding spoken form in another (Karakos and Khudanpur 2008). This is one possible pipeline:

– Speaker produces an utterance in language A, to a device that is linked to an ASR system

– The ASR turns the spoken utterance in its transcribed version still in language A

– A system of utterance and dialogue understanding computes its meaning via an NLP system – this would be the interlingua based
approach

– The interlingua is then passed to a Language Generator for language B.

OR

– The sentence is passed to the MT system that produces the most probable translation into a language B by choosing the best candidate in
a list

– The translated sentence is passed to a Speech Synthesizer for language B which speaks it into a device for the user speaker of language

Trust Rating

90%
link.springer.com

Related Searches: Science Journal | Library And Information Science | Journal Publication |

Getting Past the Language Gap: Innovations in Machine Translation - ... http://link.springer.com/chapter/10.1007/978-1-4614-6018-3_6/fulltext...

25 of 42 3/14/13 6:49 PM



Zhang Ying (Joy) (2004) reports in his Survey of Current Speech Translation Research that the translation engines utilized were basically a
Multi-Engine MT (MEMT) system,

… whose primary engines were an Example-Based MT (EBMT) engine and a bilingual dictionary/glossary. Carnegie
Mellon’s EBMT system uses a “shallower” approach than many other EBMT systems; examples to be used are selected based
on string matching and inflectional and other heuristics, with no deep structural analysis. The MEMT architecture uses a
trigram language model of the output language to select among competing partial translations produced by several engines. It
is used in this system primarily to select among competing (and possibly overlapping) EBMT translation hypotheses. The
translated chaplain dialogs provided some of the training. Pre-existing parallel English-Croatian corpora is also used. An
addition finite-state word reordering mechanism was added to improve placement of clitics in Croatian. (ibid., 2–3)

Systems like SPEECHLATOR (Waibel et al. 2003), or MASTOR (Gao et al. 2008) work in interlingua modality. All applications have been
cast in limited domains and in particular in the hotel room reservation task and have to cope with spontaneous speech. Most importantly, the
C-Star consortium, Consortium for Speech Translation Advanced Research, used interlingua, defined as “a computer readable intermediate
language that describes the intention of a spoken utterance of a particular language” (ibid., 5), and the domain was related to travel
planning. Translating the “intention” allowed system designers to substitute sloppy ramblings in the input or different ways of expressing
the same meaning with the one translation available. Nespole! (Lavie et al. 2002) was one such system which followed another similar
system called JANUS III (Levin et al. 2000). Other interesting systems were Digital Olympics (Zong 2008) produced for the Olympics in
Peking, and cofunded by the European authorities and the Chinese government, and the NEC Speech Translation System (Yamabana et al.
2003).

The second case of translation is referred to systems like ATROS (Automatic Trainable Recognizer of Speech) developed in the EuTrans
project, which aim to synchronize speech recognition models with linguistic levels like lexical, syntactic and eventually translation model,
by the use of FST. The MT technique followed is example-based. The AT&T approach uses multimodal parsing and understanding always
with a finite-state model. The system subdivides the translation task into a phase for lexical choice and another phase for lexical reordering
(ibid., 5). The lexical choice phase is divided up into phrase-level and sentence-level using different translation models. Eventually, the
reordering phase approximates a tree-transducer using a string transducer.

To describe current state-of-the-art STSMT we will be referring to the international challenge and associated evaluation campaign called
QUAERO, reported in Lamel et al. 2011, for a bidirectional French-German task, which has seen the participation of the most important
actors on the scene: RWTH, KIT, LIMSI and SYSTRAN. In the Reference section websites of the partners involved in the common task are
reported.

Problems related to STSMT are common and different from standard written-based SMT. First of all, there is the need to make available a
recognition vocabulary big enough to include all word-forms possibly present in the task at hand in order to reduce the number of Out Of
Vocabulary (OOV) rates (see Gales et al. 2007). This constitutes the worst problem to solve, and it is not just a matter of increasing a list,
with frequency of occurrence. Words included in the recognition vocabulary needs to be represented phonetically. Vocabulary sizes range
from 65K to 300K words as reported in Lamel et al. and OOV rates range from around 0.5% to 2%. It is interesting to note that systems
represent the pronunciation dictionary with sets of phone symbols that go from 35 up to a maximum of 50 symbols. Systems generate the
phonetic representation with different methods: some use rule based grapheme to phoneme conversion, others statistical methods, or a
combination of the two, often introducing a list of manually verified exceptions. Most phone sets include pseudo phones for silence and
non-speech sounds and there are typically 1.1–1.3 pronunciations per word. However, as will be explained below, there are special
provisions for prosodically related pronunciation variants, which in a language like French, constitute a frequent phenomenon with which to
cope.

In STSMT in addition to language models and translation models, there are acoustic models to build. In particular, current acoustic models
are trained on several hundreds of hours of audio data coming from a variety of sources. Language models are trained on over a billion
words of texts, comprised of assorted newspaper and newswire texts: they end up typically containing around 400M 4-grams for both
languages.

It is important to note that all speech recognition experiments described in Lamel et al. were performed with the help of the Janus
Recognition Toolkit (JRTk) from CMU and the Ibis single pass decoder described in Soltau et al. 2001. The Janus system is described in
(Lavie and Waibel 1996; Levin et al. 2000). Training for German was performed using some 350 h of training material from different
sources. As reported in Lamel et al.

Two different front-ends were applied: The warped minimum variance distortionless response (WMVDR) approach and the
conventional (Mel-frequency Cepstral Coefficients) MFCC approach. The front-end uses a 42-dimensional feature space with
linear discriminant analysis and a global semi-tied covariance (STC) transform with utterance-based cepstral mean and
variance normalization. The 42-dimensional feature space is based on 20 cepstral coefficients for the MVDR system and on
13 cepstral coefficients for the MFCC system … All the acoustic data is in 16 kHz, 16 bit quality. Acoustic model training
was performed with fixed state alignments and Vocal Tract Length Normalization (VTLN) factors … The system uses
left-to-right hidden Markov Models (HMM)s without state skipping with three HMM states per phoneme.

This produced an adapted gender- and speaker-independent acoustic model. The Language Model for German was built from a variety of
text sources and resulted in a 10GB LM, containing 31.7M 2-grams, 91.9M 3-grams, 160.4M 4-grams, as reported in the same paper.
Speaker adaptation was performed in a second pass and produced FSA-SAT models with language models which were even bigger.

For French, approximately 330 h of audio data were used to train the acoustic models. The segmentation was implemented in two steps
applying an HMM-based segmenter which took into consideration different speech events, noises, silences and music. For each speech
segment a Gaussian Mixture Model is generated. Two different kinds of phoneme sets are used for training: a first one consisting of 35
phonemes and another version provided by Vocapia that consists of 32 phonemes. As with German. two types of acoustic front-end were
used: one based on Mel-frequency Cepstral Coefficients and the other one on the warped minimum variance distortionless response. Both
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boosted Maximum Mutual Information Estimation training. LMs were trained with all tests available using the SRI Language Modeling
Toolkit. Interesting enough, for the training procedure a dictionary was used which contained hesitations, fragments, human and non-human
noise in addition to pronunciation variants of each word, taken from GlobalPhone and Lexique 3. Missing pronunciations were generated
with Sequitur G2P (Bisani and Ney 2008). The final system reached 27% WER on the Quaero Development Set. As reported in the
Conclusions, there has been a steady progress in reducing the WER in the last 3 years. For some languages reduction reaches 25%, and it is
around 15% for the three primary languages – French, German English (Fig. 6.3).

Fig. 6.3

Generic pipeline for a STSMT system

TED Conferences Talks and the WIT3 Corpus

TED Conference at TED (Technology, Entertainment and Design) website, www.ted.com, have been posting video recording of talks,
having as their subject cultural issues in general. Talks come with English subtitles and their translations in more than 80 languages. This
has been done since 2007 for the sake of sharing ideas around the world, as the organizer comment on the website.

FBK (Bruno Kessler Foundation) in Trento (Italy) have organized a website https://wit3.fbk.eu/, with the aim of redistributing the whole
corpus with original textual contents in their multilingual transcriptions, but also to make a ready-to-use version with MT benchmarks and
processing tools for research purposes. The acronym of the website stands for Web Inventory of Transcribed and Translated Talks. A
detailed description of the corpus can be found in a recent paper by Cettolo et al. 2012.

The same organizers, including Marcello Federico, Mauro Cettolo together with Michael Paul from NICT (Japan) and Sebastian Stueker
(KIT) Germany, are responsible for the TED Task Evaluation Campaign which is an important event related to IWSLT conferences, and can
be found at http://iwslt2012.org/, subdirectory “evaluation-campaign/ted-task”. TED Task includes the following subtasks:

IWSLT proposes challenging research tasks and an open experimental infrastructure for the scientific community working on
spoken and written language translation. The IWSLT 2012 Evaluation Campaign includes the TED Task, that is the
translation of TED Talks, a collection of public speeches on a variety of topics. Three tracks are proposed addressing different
research tasks:

ASR track : automatic transcription of talks from audio to text (in English)

SLT track: speech translation of talks from audio (or ASR output) to text (from English to French)

MT track : text translation of talks for two language pairs plus eight optional language pairs:

official: from English to French and from Arabic to English

optional: from German, Dutch, Polish, Portuguese-Brazil, Romanian, Russian, Turkish and Chinese to English

Main challenges of the proposed tracks are:

Open domain ASR, clean transcription of spontaneous speech, detection and removal of non-words, and talk style and topic
adaptation.

Open domain SLT, translation of speech or ASR output into true-case punctuated text, and talk style and topic adaptation.

Open domain MT between distant languages, and talk style and topic adaptation.

Full guidelines can be found on the same website. This is certainly not the only initiative – KIT, Germany would be another one – but
certainly one of the most important ones.

The GALE DARPA MT Project

As discussed at the beginning of this chapter, a number of different institutions are currently contributing to finance research efforts of the
vast community of scientists working in the field of MT. The most important of these international initiatives in favour of the improvement
of MT research is the one financed by DARPA. The project was originally called GALE and has recently partially concentrated on BOLT
(Broad Operational Language Translation), which has clear military goals. As to this project, the interesting thing that happened last year,
was the hiring of Professor Bonnie Dorr as manager of BOLT: this event has an extremely important meaning. It testifies to the switch of
perspective the DARPA management wants to give to the project: from statistics only, to the massive introduction of linguistics, that is
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the MT of the future.

To comment on the GALE (Global Autonomous Language Exploitation) program we will be referring basically to the original webpage
dedicated to the project directly on the DARPA website and from a presentation downloadable from their general internal search engine.
DARPA has been a key sponsor of machine translation, as well as computer processing of language (speech and text) work for over three
decades. GALE began in September 2005 and is still continuing even though it was scheduled to run only until September 2010. GALE
speech-to-text and machine-translation researchers came from the following corporations and organizations, as reported by The Associated
Press, in a 2006 online article on the topic: IBM Corp., backed by a 300
million, nonprofit research organization based in Silicon Valley; and BBN Technologies Inc., a $200 million research contractor
headquartered in Cambridge BBN nabbed people at Cambridge University, the universities of Maryland and Southern California and a
French lab, among others. IBM got researchers from Carnegie Mellon, Johns Hopkins, Brown University and Stanford, plus other
researchers at the University of Maryland. SRI’s links included European and Asian schools, Columbia University and the universities of
California and Washington. The goal is to create technology that will automatically translate spoken or written words from foreign
languages into grammatically correct English. GALE has an ambitious goal of reaching 95% accuracy without human mediation. The
technology is moving toward allowing the translations to happen in real time. These goals are set forth in ambitious research efforts and
according to DARPA “these efforts are poised to come close to achieving their goals in certain specific contexts with Modern Standard
Arabic and Mandarin Chinese”. The largest of these efforts was the 5-year, multimillion-dollar-per-year GALE program, which seeks
real-time translation of Modern Standard Arabic and Chinese print, Web, news, and television feeds. The second program is the Spoken
Language Communication and Translation System for Tactical Use (TRANSTAC) program. TRANSTAC’s goal is highly specific: a
portable two-way speech translation system that enables an average soldier to communicate with a person who cannot speak English. NIST
Machine Translation Evaluation for GALE: The Speech Group in the Information Technology Laboratory’s Information Access Division at
NIST is undertaking the development of an evaluation for machine translation (MT) using “edit-distance” as the evaluation metric as
defined by the GALE program. The GALE program will evaluate MT in terms of the quality of the system translations. This will be
accomplished by measuring the edit distance between a system output and a gold standard reference. The term “edit-distance” refers to the
number of edits (modifications) that someone (human) needs to make to the output of a machine translation system such that the resulting
text is fluent English and completely captures the meaning of the gold standard reference. In order to achieve its goal, the GALE program
will have to develop and apply computer software technologies to analyze and interpret huge volumes of speech and text. Output
information will have to be in easy-to-understand forms for military personnel and monolingual English-speaking analysts to use, in
response to direct or implicit requests. GALE will consist of three major engines: Transcription, Translation and Distillation. The output of
each engine will be limited to English text. The distillation engine integrates information of interest to its user from multiple sources and
documents. Military personnel will interact with the distillation engine via interfaces that could include various forms of human-machine
dialogue (not necessarily in natural language).

According to the project description on the LDC website, the Linguistic Data Consortium supports the GALE Program by providing
linguistic resources – data, annotations, tools, standards and best practices limited to Arabic – for system training, development and
evaluation. The Translation process will take Arabic source text drawn from many different genres, both spoken and written, and translate it
(hopefully) into fluent English while preserving all of the meaning present in the original Arabic text. Translation agencies will use their
own best practices to produce high quality translations, according to specific guidelines so that all translations are guided by some common
principles. Linguistic Data Consortium will also be providing post-editing of MT output in order to compute “edit distance” between
machine translations and human gold standard translations. The post editor’s role is to compare computer-translated texts against the same
texts translated by humans. Working with one sentence at a time, the editor modifies the computer translation until its meaning is identical
to the human translated sentence.

As indicated above, GALE’s goal was to deliver, by 2010, software that can almost instantly translate Arabic and Mandarin Chinese with
90–95% accuracy. Fortunately for the GALE teams, they didn’t have to be near 95% right away. In the first year, they were expected to
translate Arabic and Mandarin speech with 65% accuracy; with text the goal was 75%. In an interview reported on SLATE, Mari Maeda, a
DARPA manager who ran the program, says that, by the end, “TransTac achieved about 80% accuracy: enough to be interesting, but not
enough to be useful.” Considering state of the art MT field that was already to be regarded as a particularly difficult goal to achieve.
DARPA estimated that the best systems could translate foreign news stories at 55% accuracy. But DARPA wanted translations not only
from such controlled, well-articulated sources: in fact, it was to be considered as an open domain, unlimited vocabulary task. As reported in
The Associated Press article “GALE incorporates man-on-the-street interviews and raucous colloquial chats on the Web. Background noise,
dialects, accents, slang, short words … that most speakers don’t bother to clearly enunciate – these are the stuff of nightmares for speech-
recognition and machine-translation engineers”. We have presented and discussed at length all of these “nightmares” in the chapter. The test
– hours of audio and dozens of documents in Arabic and Mandarin – and the evaluation was done by counting the number of human edits
that the sentences needed in order for them to have the correct meaning. Again, quoting from the TAP article, “the results largely met
DARPA’s demands of 75% accuracy for text translation and 65% for speech… The BBN-led team produced 75.3% accuracy with Arabic
text, 75.2% in Chinese. It scored 69.4% in Arabic speech; 67.1% in Mandarin. IBM scored higher with Arabic text and SRI scored higher in
Mandarin. The current successor of TransTac is called BOLT and Bonnie Dorr, program manager forBOLT, says that DARPA is now “very
focused on moving beyond statistical models.” The reason is that, as you throw more and more parallel data at your algorithms, you “get
diminishing returns. The payoff gets smaller, and you start to plateau with your results even if you increase the volume of training data.”
(again reported on SLATE online).

If DARPA is financing LDC to produce additional translation of Arabic, this is a clear sign of two symptoms:

– More training data are required

– The current results of translation systems are still unsatisfactory

– Of course, we assume that a final strategic improvement will not come until another additional piece of research is added to the list:

– Inventing new translation and language models that will incorporate semantics and pragmatics (besides syntax) in a most fruitful way,

6billionannualresearchbudget; SRIInternational, a
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– Combining more systems in a pipeline to produce a hybrid hypersystem that can learn

This is clearly what the MT community as a whole is striving for and what I assume will happen in future.

Conclusion

In this chapter I have presented and commented what I regard the most interesting technologies and methodologies for Machine Translation,
including both Rule-Based and Statistically-Based systems. I devoted a first section to purely statistically based systems, highlighting their
shortcomings and their advantages which make them more and more important for the future of MT. In fact, a statistical model is shown to
be an essential component of most Rule-Based systems reviewed in another section: these systems take advantage of the ability of
generalization that statistics makes easily available to create what are usually called hybrid systems. A third section has been devoted to
syntactically based systems which make use of syntactic tree structures of dependency structures to produce better modelling of the data and
hopefully better translations. These systems are strongly dependent on computational linguistic tools like parsers, morphological analysers
and suffer from their shortcomings which impinge on the final translation accuracy level.

I take graph-based models to be superior in general to phrase-based or word-based models, the reason being simply the fact that structural
properties of both input and output can be duly taken into consideration in the modelling statistical phase. Why this is important should now
be clear: in order to produce a real step forward, Machine Translation should incorporate properties belonging to both syntax and semantics
of the sentence and text to be translated. This can only be achieved with a structurally aware statistical model. I take models relying on
dependency structure to be the reference point with additional constraints however: the need to satisfy predicate-argument restrictions as
realized in the statistical graph-based model and reinforced in the observed data.

Rule-Based systems could still be useful to encode Multiwords correspondences and other idiomatic expressions which require some
preprocessing. However, as the case of feature agreement has clearly shown, Rules-Based systems are unable to enforce local matching
requirements when fine-grained coupling is needed. They could perhaps work in postprocessing to check such local agreements with highly
targeted rule systems, which must be language dependent.

Eventually, speech-to-speech multilingual processing has started to be used in real life applications. This is great news, but also bad news as
far as current achievements are concerned. The effort however is enormous and the quantity of resources in play is outside the scope of any
single researcher computing ability. Only specialized centers may legitimately aim at competing in such international challenges. What
about the use of visual computing and the interpretation of facial movements or other additional gestures? Multimodal computation is still
in its infancy and its interaction with natural language processing tools is expected to grow in the future. As to current situation, I don’t
know of any system capable of taking advantage of gestures of facial expressions to improve its multilingual tools.

New mathematical models are needed that incorporate all types of knowledge needed to come as close as possible to what human
translators do: best translators are always domain constrained, and this applies to both humans and computers. Syntax poses different
challenges from pragmatics and semantics: new mathematical models need to take these differences into adequate account.

Last but not least, the need to foster improvements in the companion field of computational linguistics, which alone can come up with
complete linguistic representations needed in the Rule-Based scenario. I am referring to the need to enrich dependency structures with null
elements and annotate them with coreference information to allow for proper agreement features to be instantiated. Such new tools could
then be used to produce Logical Form representations to better handle meaning differences and ambiguities.
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Footnotes

Consequently, I will not be concerned with commercial versions of MT systems, nor to the field of computer-assisted Translation
systems or translation aids: they are all listed at http://www.hutchinsweb.me.uk/Compendium.htm, a document produced almost on a
yearly basis and compiled by John Hutchins, who is also responsible for the main source of information on MT which is regularly posted
on the Machine Translation Archive (http://www.mt-archive.info).
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