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Abstract We study the bilateral exchange of information in the context of linear
quadratic games. An information structure is here represented by a non directed net-
work, whose nodes are agents and whose links represent sharing agreements. We first
study the equilibrium use of information given the network, finding that the extent to
which a piece of information is observed by others affects the equilibrium use of it,
in line with previous results in the literature. We then study the incentives to share
information ex-ante, highlighting the role of the elasticity of payoffs to the equilibrium
volatility of one’s own strategy and of opponents’ strategies. For the case of uncor-
related signals we fully characterise pairwise stable networks for the general linear
quadratic game. For the case of correlated signals, we study pairwise stable networks
for three specific linear quadratic games—Cournot Oligopoly, Keynes’ Beauty Con-
test and a Public Good Game—in which strategies are substitute, complement and
orthogonal, respectively. We show that signals’ correlation favours the transmission
of information, but may also prevent all information from being transmitted.
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1 Introduction

Linear quadratic games have played a key role in the analysis of games of incom-
plete information in economics. The implied linear best reply functions allow for the
existence of a Bayesian equilibrium in affine strategies (see Radner 1962; Angelitos
and Pavan 2007). Specific examples include linear Cournot Oligopoly (CO), Keynes’
Beauty Contest (BC) and Public Good games with linear benefits and quadratic costs
(PG). The analytical tractability of linear quadratic games has motivated an extensive
theoretical effort to understand the use of information in environments with funda-
mental uncertainty, tracing such use to strategic features of the game such as com-
plementarity and substitutability, and drawing welfare and policy implications (see
Morris and Shin 2002; Angelitos and Pavan 2007).

One issue that is strictly related to the equilibrium use of private information is the
possibility that agents share their private information before engaging in non coop-
erative behaviour. In the framework of imperfect market competition, this issue has
spurred an extensive debate that dates back to the seminal contributions of Novshek
and Sonnenschein (1982) and Vives (1985). Understanding the incentives of firms to
share information before engaging in market competition is important since it can
help draw a line between collusive market behaviour (which is suboptimal) and pure
sharing of information prior to competition (which is socially desirable). One main
insight from this body of literature is that incentives to share are associated with either
strategic complementarity or weak substitutability, be it induced by products differen-
tiation, by cost convexity or by price competition (see Vives 1985; Raith 1996). While
certainly of great relevance for policy and for welfare, these conclusions rest on the
specifics of the imperfect competition model, and little is known about the incentives
to share in other instances of linear quadratic games. Moreover, while the traditional
approach has mainly studied the incentives of firms to jointly and universally disclose
all private information,1 in many economic contexts agents may agree to share infor-
mation in smaller groups or in pairs, by means of private agreements with various
degrees of commitment.

These considerations motivate the present analysis of information sharing in general
linear quadratic games. We approach information sharing from a bilateral perspective,
assuming that each pair of agents can commit (ex-ante) to mutually (and truthfully)
disclose their own private information to each other. The ex-ante assumption allows
us to dismiss all strategic considerations that relate to the inference of other agents’
information from their sharing behaviour. In this context, an information structure is
well represented by a non directed network, in which an agent’s private information
consists of the signals observed by herself and by her “neighbours” in the network.

1 With the exception of Kirby (1988) and Malueg and Tsutsui (1996).
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Compared to previous literature where each agent observes a “private” signal (only
revealed to her) and a “public” signal (observed by all) (see Morris and Shin 2002;
Angelitos and Pavan 2007), here each signal is public to a specific subset of agents—
the neighbourhood.

Agents decide whether to engage in sharing agreements prior to observing their
own private signal. Once signals are observed, players play a linear quadratic game of
incomplete information, in which information sets are determined by the network. We
first characterise the equilibrium use of information in the network. We find that the
sensitivity of each player’s strategy to each observed signal in the network depends
on the strategic nature of the underlying game. In line with previous works in the
literature, strategic complementarities induce agents to use more intensively those
signals that are observed and used more intensively by other agents in the network.
Opposite conclusions apply to games with strategic substitutes.

In Sect. 4 we study the incentives to share information. Our focus is on “pairwise
stable” networks, providing no pair of agents with the incentive to form a new link,
and no agent with the incentive to unilaterally sever an existing link (see Jackson
and Wolinsky (1996)). Differently from all previous works on information sharing in
oligopolies, our analysis cannot exploit the symmetry of agents’ equilibrium strate-
gies even when the underlying game and the statistical structure are in all respects
symmetric. In fact, the gains accruing to an agent severing a link or to two agents
forming a new one are assessed by evaluating the (expected) change in payoffs due to
a local change in the existing network. Lacking symmetry, the analysis of incentives
becomes soon too complex for a comprehensive characterisation of stable networks
for all statistical models. Much of the complexity is due to the widespread interrelation
of agents’ equilibrium use of information, due to the inherent correlation of signals
(unconditional and, possibly, conditional).

In Sect. 4.1, as a first tractable benchmark, we study the case of independent signals.
This limit case is obtained by setting a conditional correlation which exactly offsets
the natural signals’ correlation induced by the state of the world. This artificial case,
first suggested in Raith (1996), generates a model which is formally equivalent to the
model of imperfect competition with i.i.d. signals used in Gal-Or (1985), to which
some of our results apply. This approach is quite standard in common value problems
such as auctions (see Bulow and Klemperer 2002; Levin 2004; Tan 2012), and has been
employed by Hagenbach and Koessler (2010) in their analysis of strategic information
transmission in networks (see below for a discussion of the differences between their
approach and ours). Using this case as a benchmark will also prove useful in Sect. 4.2
to understand the role of correlation in shaping the incentives to share information. For
this case we provide a full characterisation of pairwise stable networks in the general
linear quadratic problem. We find that the incentives to share, and the architecture of
stable networks, crucially depend on how sensitive payoffs are to the volatility of one’s
own action, on aggregate volatility, and to the covariance of opponents’ actions and
the state of the world. When payoffs mostly depend on one’s own equilibrium volatil-
ity, stable architectures are made of fully connected components of increasing sizes
(possibly including singletons); when strategies are complements, only the complete
network survives among such structures. When payoffs are also sensitive to aggre-
gate volatility, then incomplete stable structures may emerge, even when strategies are
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complements. In particular, we show that regular incomplete networks can be stable
when aggregate volatility is detrimental to one’s own payoff. This is somewhat con-
trary to the common perception that strategic complementarities should provide agents
with the incentive to share all of their available information. This perception is correct
in the specific case of the BC, where the effect of aggregate volatility is bounded in
magnitude, but not in more general frameworks. Finally, we study the case in which
payoffs are also sensitive to the covariance of opponents strategies and the state of the
world. Here we focus on games in which strategies are orthogonal, and focus on the
interplay of the various parameters on the incentives to share and stability. We fully
characterise pairwise stable networks, show that such networks can have incomplete
architecture, and that stable networks may fail to exist for certain ranges of parameters.

In Sect. 4.2 we finally turn to the case of correlated signals. Here, we focus on
three specific cases of the linear quadratic game, each stressing the role of one of
the components of the general model. For the CO, where only one’s own equilibrium
volatility is payoff relevant, we show that two firms may find it profitable to share
information when no other firms do. In particular, incentives to share build up when
signals are conditionally correlated, and one extra signals provides better inference on
the other, unobserved, signals. This “global” improved inference comes without the
disclosure of one’s own signal to any other firms except for the new sharing partner.
When signals’ correlation is not too weak, these incentives are sufficient to rule out
the pairwise stability of the empty network, for any level of products’ differentiation.
Moreover, the complete network is pairwise stable for all levels of signals’ correlation.
We further study how signals’ correlation affects the incentives to share information in
the context of a four-firm example with no product differentiation, for which we fully
characterise pairwise stable networks as a function of signals’ correlation. We find
that while correlation creates additional incentive to share information, such incen-
tives decrease with the number of observed signals, and may disappear before all
information is shared. We then turn to the BC, and show that the complete network is
always pairwise stable, while the empty network never is. Finally, for the PG we show
that the complete network is the unique pairwise stable information structure.

We finish by commenting on some recent literature on information transmission in
networks. Galeotti et al. (2009) study the “many sender—many receivers” game of
cheap talk, interpreting the flows of truthful information as directed links in a network.
The focus is there on the incentives to truthfully report the observed information, and
while in their model all agents would benefit from the disclosure of all available
information, this may not be feasible in equilibrium. Hagenbach and Koessler (2010)
enrich this basic cheap talk model by adding a coordination motive as in the BC
(our Sect. 4.1). They keep the analysis tractable by assuming that the state of the
world takes the form of the sum of agents’ independent signals, essentially ruling out
correlation as we do in Sect. 4.1. Our Proposition 5 (showing that the complete network
is the unique pairwise stable structure in the BC) can indeed be viewed as a corollary
of their Proposition 2, where it is shown that agents always benefit from disclosing
or receiving additional information. Our Proposition 8 (showing that the complete
network is a pairwise stable structure), instead, extends the analysis of the BC to
correlated signals, while the rest of our analysis, where we study other classes of linear
quadratic games, is less related to theirs and closer in spirit to the quoted literature on
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oligopolies. As a general comment, our focus is on the incentives to share information
at the ex-ante stage, as they result from the gains from acquiring and the possible losses
from disclosing. Since we assume identical preferences, truth-telling is not an issue
in the BC, while there is no truth-telling equilibrium in CO (as shown in Ziv 1993).

The paper is organised as follows: Sect. 2 presents the economic and statistical
models. Section 3 studies how agents use the available information in the network.
Section 4 studies information sharing with and without correlation of signals. Section
5 concludes the paper.

2 The model

We consider a set of n agents, each agent i choosing an action ai ∈ �. Agent i ′s utility
is given as a function of her action ai , the sum of other agents’ actions Ai = ∑

j �=i a j

and a parameter θ denoted as the “state of the world”:

ui (ai , Ai , θ) =
⎛

⎝
λa

λA

λθ

⎞

⎠

′ ⎛

⎝
ai

Ai

θ

⎞

⎠ +
⎛

⎝
ai

Ai

θ

⎞

⎠

′ ⎛

⎝
γa γa A γaθ

γa A γA γAθ

γaθ γAθ γθ

⎞

⎠

⎛

⎝
ai

Ai

θ

⎞

⎠ (1)

where the γ coefficients in the interaction matrix measure the quadratic relations
between agents’ utilities, agents’ actions and the state of the world, while the λ coef-
ficient measure the linear relations between agents’ utilities, agents’ actions and the
state of the world.

The state of the world θ is assumed to be a random variable of the form

θ = μθ + ε

where ε ∼ N (0, t) and μθ is a constant and its value is common knowledge. Agents’
information is structured as follows. Each agent i receives a private noisy signal yi

about ε, with

yi = ε + ηi

where ηi ∼ N (0, u) for all i , and where cov(ηi , η j ) = un for all i, j . We also assume
that cov(ηi , ε) = 0 for all i . For notational convenience, we will denote by ps = (t+u)

the variance of signals and by pn = (t + un) the covariance of signals.
The quasilinear model has many application in different fields of economic analysis.

Here there are three such examples.

Beauty Contest (BC) (Morris and Shin 2002; Hagenbach and Koessler 2010).
There are n agents, each setting an action ai . Each agent i suffers a loss which
increases quadratically with the distance between her action and the average action
chosen by the opponents, and a loss which increases quadratically with the distance
between her action and the realisation of a random state of the world θ :

ui (ai , Ai , θ) = −v(ai − θ)2 − (1 − v)(ai − Ai

n − 1
)2.

123

Author's personal copy



S. Currarini, F. Feri

Using the notation of the present paper, we have: γa = −1; γθ = −v; γaθ = 2v;
γA = − (1−v)

(n−1)2 ; γa A = 2(1−v)
n−1 . All other coefficients are zero.

Cournot Oligopoly (CO) (Vives 1985; Kirby 1988; Raith 1996). There are n firms
competing in a common market with inverse demand function:

p = θ − ai − δAi

where ai denotes firm i’s output, Ai denotes the aggregate output of i’s competitor,
and δ captures product differentiation. Firms produce with no costs. We have:
γa = −1; γaθ = 1; γa A = −δ. All other coefficients are zero.
Public goods (PG) (Ray and Vohra 1999). Each agent i contributes the amount
ai to a global public good, and has utility function:

ui (Ai , ai ) = θ(Ai + ai ) − ba2
i .

The actual value of the public good is a random variable θ about which each
agent receives a noisy signal. We have: γa = −b; γAθ = 1; γaθ = 1. All other
coefficients are zero.

We will consider the possibility that agents share their information by means of
bilateral and truthful sharing agreements; this means that agent i is allowed to observe
agent j’s signal if and only if he reveals his own signal to agent j . Sharing agreements
need not be transitive, in the sense that information sharing between agents i and j
and between agents j and k need not imply information sharing between agents i
and k. In this sense, the information structure induced by such agreements may differ
from a collection of information sharing coalitions, and is well represented by a non
directed network g, in which the set of nodes is the set of agents, and a link i j denotes a
bilateral agreement between agents i and j . We denote by Ni (g) ≡ { j : i j ∈ g} ∪ {i}
the set of neighbours of i in g (including i) and we denote by ng

i = |Ni (g)| the
number of such neighbours. In other words, ng

i is the number of signals observed by
i in g (in the terminology of graph theory, this number is the degree of agent i in g
augmented by one). The information available to agent i in the network g is therefore
Ii (g) ≡ {

y j : j ∈ Ni (g)
}
. We will use the notation g + i j to denote the network

obtained by adding to g the link i j /∈ g, and g − i j to denote the network obtained by
severing the link i j ∈ g from g. A component h of the network g is a network with set
of nodes N (h) ⊂ N and such that: i) i j ∈ h if and only if i j ∈ g and; ii) if i ∈ N (h)

and ik ∈ g then k ∈ N (h). The network g is fully connected if i j ∈ g for all i ∈ N
and j ∈ N .

3 Use of information in the network

With each possible information structure g we associate the Bayesian Nash equilibrium
of the game in which each agent i sets her action ai in order to maximise her expected
payoff, given the available information—determined by i’s links in g—and given the
optimal decisions of the other agents. Formally, a Bayesian Nash equilibrium associ-
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ated with g is a family of functions ag
i mapping, for each i ∈ N , the available informa-

tion Ii (g) into a choice ag
i (Ii (g)) satisfying for each agent i the following condition:

ag
i (Ii (g)) = arg max

ai ∈� E
[
ui

(
ai , Ag

i (I−i (g)
)
, θ |Ii (g)

]
, (2)

where Ag
i (I−i (g)) is the sum of strategies of all agents but i , and

I−i (g) ≡ (I1(g), ..., Ii−1(g), Ii+1(g), ..., In(g)).

Note that the terms γA, γAθ , λA, λθ , γθ do not affect the equilibrium strategies; they
however affect welfare, and will be therefore relevant in determining agents’ incentives
to form links. The necessary first order condition for (2) is:

ag
i (Ii (g)) = −λa + γaθ E [θ |Ii (g)] + γa A E

[
Ag

i (I−i (g))|Ii (g)
]

2γa
(3)

As in Angelitos and Pavan (2007), we will assume γa < 0 and γa +(n−1)γa A < 0.
Standard results (see Radner 1962; Angelitos and Pavan 2007) can be used to establish
the existence of a unique Bayesian Nash Equilibrium for all information structures g,
with the equilibrium strategies affine in the observed signals, i.e.:

ag
i (Ii (g)) = α

g
i +

∑

j∈Ni (g)

β
g
i j y j , i = 1, 2, ...n. (4)

The following proposition derives the system defining the equilibrium α
g
i and β

g
i j

coefficients in the Bayesian game with information structure g.

Proposition 1 The Bayesian Nash equilibrium of the game with payoff functions (1)
and information structure described by the network g is characterised by the following
system:

α
g
i = − 1

2γa

⎛

⎝λa + γaθμθ + γa A

∑

j �=i

α
g
j

⎞

⎠ , i = 1, 2, ...n (5)

β
g
ih = − 1

2γa

⎛

⎝γaθkig
1 + γa A

⎛

⎝
∑

j∈Nh(g)\i

β
g
jh +

∑

z /∈Ni (g)

∑

j∈Nz(g)

kig
2 β

g
jz

⎞

⎠

⎞

⎠ ,

∀h ∈ Ni , i = 1, 2, ...n (6)

where

kig
1 = t

ps + (
ng

i − 1
)

pn
; kig

2 = pn

ps + (
ng

i − 1
)

pn
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are the updating coefficients that agent i applies to each y j ∈ Ii (g) to take the
following expectation on the state θ and of the signals yh, h /∈ Ni (g), respectively:

E [θ |Ii (g)] = μθ + kig
1

∑

j∈Ni (g)

y j ; (7)

E [yh |Ii (g)] = kig
2

∑

j∈Ni (g)

y j . (8)

From Proposition 1 we obtain a first insight in how the information structure g
affects the way in which agents use their available information. First, from (5) it is
directly verifiable that the coefficient α

g
i is the same in all networks and for all agents,

which allows us to denote α
g
i = α.

Expression (6) describes the way in which information is used in equilibrium as
a function of the whole network. To fix ideas, assume that γaθ > 0, so that agents’
choices move together with the state of the world. The coefficient that i applies to signal
yh ∈ Ii (g) is equal to the sum of the term (− γaθ

2γa
kig

1 ) and of the two summations in the

second bracket of (6) multiplied by (− γa A
2γa

). Both summations amplify the effect of
the first term if actions are strategic complements (γa A > 0), and weaken the effect of
the first term if strategies are instead substitutes (γa A < 0). Both summations measure
the reactions of i’s opponents that are correlated to signal yh ∈ Ii (g); the first refers
to the reaction of the opponents that observe yh ∈ Ii (g), the second to those signals
that agent i does not observe, but that are correlated to signal yh ∈ Ii (g). Both terms
tend to amplify the use of signal yh ∈ Ii (g) by agent i when there is an incentive to
correlate with other agents (complements), and to reduce the use of signal yh ∈ Ii (g)

when the incentive is to diversify from the other agents (substitutes). We identify
a congestion effect in the use of information: agents tend to use less (more) those
pieces of information that are more intensively used by other agents when strategies
are substitutes (complements). This is formally stated in the following proposition,
directly implied by (6).

Proposition 2 For all ih ∈ g and i j ∈ g:

β
g
ih − β

g
i j = γa A

2γa

⎛

⎝
∑

k∈N j (g)\i

β
g
k j −

∑

k∈Nh(g)\i

β
g
kh

⎞

⎠ . (9)

The next example illustrates the equilibrium use of information in a network where
agents’ positions present stark differences - the star.

Example 1 Consider the star network gs with 4 agents, where the central agent i
receives a signal yi which is observed by all agents, and each other signal yh is observed
by the receiving agent h and by the central agent i . We obtain the following coefficients
for the cases of strategic complements (γa A = .1) and substitutes (γa A = −1), and
for different levels of signals’ correlation (see Appendix 2 for detailed expressions of
the coefficients).
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pn = .6 ; γa A = −1 pn = .8 ; γa A = −1 pn = .6 ; γa A = .1 pn = .8 ; γa A = .1

β
g
ii 0.014 0.009 0.117 0.099

β
g
ih 0.047 0.037 0.097 0.081

β
g
hh 0.083 0.071 0.171 0.153

β
g
hi 0.050 0.042 0.191 0.171

We see that signal yi , which is observed by all agents and is therefore a public
signal, is used less intensively under strategic substitutes, and more intensively under
complements, than signals yh , observed only by two agents. Moreover, periphery
agents, who are endowed with fewer pieces of information, use their information
more intensively. Signals’ correlation has a negative impact on the use of information
under both substitutes and complements.

4 Information sharing

We study the incentives to share information at the ex-ante stage. For each network
g, we denote by ue

i (g) the ex-ante expected utility for agent i , given that g describes
the information structure of the Bayesian game played at the interim stage. The utility
ue

i (g) is obtained by taking the expectation of the interim utility E [ui |Ii (g)] over all
possible realisations of i’s information Ii (g). The interim utility is given by:

E [ui |Ii (g)] = λaag
i (Ii (g)) + λA E

[
Ag

i |Ii (g)
] + λθ E [θ |Ii (g)] + γaag

i (Ii (g))2 +
+ γA E

[
(Ag

i )2|Ii (g)
]

+ γθ E
[
θ2|Ii (g)

]
+ γa Aag

i E
[
Ag

i |Ii (g)
] +

+γaθag
i (Ii (g))E [θ |Ii (g)] + γAθ E

[
Ag

i θ |Ii (g)
]
.

(10)

Together with the first order condition (3), (10) yields the following expression:

E [ui |Ii (g)] = −γa · ag
i (Ii (g))2 + λA · E

[
Ag

i |Ii (g)
] + λθ E [θ |Ii (g)] +

+γA · E
[
(Ag

i )2|Ii (g)
]

+ γθ · E
[
θ2|Ii (g)

]
+ γAθ · E

[
Ag

i θ |Ii (g)
]
.

(11)

Given the linear specification of equilibrium strategies in (4), we can express the
ex-ante equilibrium utility in any given network g as follows:

ue
i (g) = λA · (n − 1) · α + α2 ·

(
γA · (n − 1)2 − γa

)
+ (λθ + γθμθ ) μθ + γAθ ·

(n − 1) · α · μθ + γθ · var (θ) + γA · var
(

Ag
i

) + γAθ · cov
(

Ag
i , θ

)

−γa · var
(
ag

i

)
. (12)

where the variances and covariance of equilibrium strategies are:

var(ag
i ) =

∑

h∈N g
i

(β
g
ih)2 ps + 2

∑

h∈Ni

∑

k<h

β
g
ihβ

g
ik pn; (13)
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var(Ag
i ) = ps ·

⎡

⎣
∑

j∈N

(Bg
i j )

2

⎤

⎦ + pn ·
⎡

⎣2 ·
∑

j∈N

∑

k< j

Bg
i j · Bg

ik

⎤

⎦ ; (14)

cov
(

Ag
i , θ

) = t ·
∑

j∈N

Bg
i j , (15)

where we have denoted by Bg
i j ≡ ∑

h∈N j \i β
g
h j the aggregate reaction to signal j by i’s

opponents. Looking at the difference [ue
i (g

′) − ue
i (g)], we can express the condition

under which agent i has an incentive to induce network g′ from a network g as follows:

[ue
i (g

′) − ue
i (g)] = γA ·

[
var

(
Ag′

i

)
− var

(
Ag

i

)] + γAθ ·
[
cov

(
Ag′

i , θ
)

−cov
(

Ag
i , θ

)] − γa ·
[
var

(
ag′

i

)
− var

(
ag

i

)]
> 0 (16)

The difference in (16) is the sum of three terms, expressing the change, when passing
from g to g′, in the variance of other agents actions, of i’s action and in the covariance
of the other agents’ actions and the state of the world. Inspection of condition (16)
provides insights into the incentives of a generic agent i to induce a given network
g′ from a network g. The first term measures the effect of the change in the variance
of the aggregate actions of other agents, keeping all other things equal. This effect is
weighted by the coefficient γA, measuring the effect on utility of the square of other
agents’ actions (see (1)). This coefficient is null in CO and in PG, and is negative in the
BC with complements. The second term in (16) measures the effect of a change in the
covariance of the other agents’ actions and the state of the world; this effect is weighted
by the coefficient γAθ , controlling in (1) for the interaction of i’s opponents’ actions
and the state of the world. This is non null in PG. The last term in (16) measures the
incentives coming from a change in agent i’s variance in equilibrium, and is weighted
by the own quadratic coefficient γa < 0, implying that increased variance of one’s
own action is desirable in all linear quadratic games.

We will study the structure of pairwise stable networks (see Jackson and Wolinsky
1996), in which no pair of agents has an incentive to form a new link and no agent has
an incentive to unilaterally sever an existing link:

Definition 1 The network g is pairwise stable at the ex-ante stage if: a) ue
i (g + i j) >

ue
i (g) ⇒ ue

j (g + i j) < ue
j (g) for all i j /∈ g; b) ue

i (g) ≥ ue
i (g − i j) for all i j ∈ g.

A pairwise stable network is here interpreted as an information structure that results
from long-run information sharing arrangements, with the property that no additional
arrangement occurs and no existing arrangement is discontinued.

4.1 Information sharing with uncorrelated signals

We start by studying the case of uncorrelated signals, i.e. of pn = 0. Formally, this
requires that signals’ errors are negatively correlated, and that this correlation exactly
outweighs the correlation induced by the state of the world: un = −t . Although this
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is a special case of signals’ correlation, it is of interest here for two reasons. First, it
allows us to better understand in the next section the role of signals’ correlation, and of
the associated strategic inference, for link formation. Second, uncorrelated signals are
of interest in a model where the state of the world is the sum (or the average) of agents’
signals, as in Gal-Or (1985), in Hagenbach and Koessler (2010) and in most papers
dealing with common value problems in auctions, as, for instance, Levin (2004).

Uncorrelated signals imply that kig
1 = t

ps
and kig

2 = 0. Equilibrium coefficients
simplify as follows:

α = − λa + γaθμθ

2γa + γa A(n − 1)
; (17)

β
g
ih = − γaθ

t
ps

2γa + γa A(ng
h − 1)

, ∀h ∈ N g
i . (18)

Note that the coefficient β
g
ih applied by agent i to the piece of information yh only

depends on how many other agents observe yh , and on no other feature of the network.
This substantially simplifies the analysis of agents’ incentives to form and sever a link
starting from an arbitrary network g. In particular, we will see in the results to follow
that the incentives of an agent i to form the link i j /∈ g, as expressed by condition
(16), only depend on the number of agents observing yi and on the number of agents
observing y j in g.

Our analysis refers to different classes of games, each corresponding to different
assumptions on the three key parameters γA, γa A and γAθ . These classes include the
three games CO, BC and PG outlined in our examples.

We start with the case γA = γAθ = 0, covering CO as a special case. From now
on we will denote by μ ≡ γa A

γa
the relative strategic interdependence in the game.

Note that μ < 0 under strategic complements and μ > 0 under substitutes. The
next preparatory lemma characterises the way in which the incentives to form or
maintain a link depend on the degrees of the two involved nodes. We show that when
μ > 0, this relation involves a threshold degree, below which an agent’s information
is “attractive” and below which it is not. This is due to a congestion effect similar to
the one behind Proposition 2: pieces of information that are observed by many agents
are little attractive under strategic substitutes. Moreover, as point (i) below shows,
this congestion affects more intensively the incentives of less connected nodes (see
Appendix 1 for the proof of this lemma and of all other results).

Lemma 1 Let pn = γA = γAθ = 0 and let μ > 0. There exist functions fμ : N → R

and Fμ : N → R such that: 1) ui (g + i j) > ui (g) ⇐⇒ ng
j < fμ(ng

i ): 2)

ui (g) > ui (g − i j) ⇐⇒ ng
j < Fμ(ng

i ). Moreover, these functions satisfy the
following properties:

(i) fμ and Fμ are both increasing;
(ii) fμ(m) > m for all 2 ≤ m; fμ(1) > 1 iff μ < 2(

√
2 − 1).

(iii) fμ(m − 1) = Fμ(m) − 1.
(iv) fμ(m) > Fμ(m).
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The next proposition provides a full characterisation of pairwise stable networks
for the case γA = γAθ = 0. In a nutshell: under strategic complements the complete
network is the unique stable information structure; under substitutes, information is
shared in disjoint “groups” (fully connected components), within which information
disclosure is complete. These groups are of increasing sizes, and the size differences
are governed by the fμ function defined in Lemma 1. Intuitively, if the sizes of two
disjoint components were too close, then agents would have an incentive to bridge
these components by means of a new link, and stability would fail.

Proposition 3 Let pn = 0 and γA = γAθ = 0.

1. If μ < 0 the unique pairwise stable network is the complete network.
2. If μ > 0 then the network g is pairwise stable if and only if it has the following

architecture: a set S of isolated nodes and the complement set of nodes N\S organ-
ised in fully connected components {h1, h2, ..., hm} such that n(hi ) ≥ fμ(n(hi−1))

for all 1 < k ≤ m. If 0 < μ < 2
1+√

2
all pairwise stable networks contain at most

one isolated node.

The next corollary draws implications of Proposition 3 for the CO with i.i.d. signals
studied in Gal-Or (1985).

Corollary 1 Consider a Cournot Oligopoly with i.i.d. signals about the demand inter-
cept (Gal-Or 1985), and assume that firms share information by means of bilateral
quid-pro-quo agreements. In a pairwise stable information structure, information
sharing is organised in coalitions of firms. Within each coalition all information is
disclosed to all members; moreover, coalitions have strictly increasing sizes.

Note that while Gal-Or (1985)’s conclusion that firms do not exchange private
information refers to the lack of incentives of all firms to coordinate and universally
disclose information, our result refers to the incentives of firms to form and sever bilat-
eral agreements. While firms still prefer the complete absence of information sharing
(empty network) to the universal disclosure of all information (complete network),
pairs of firms would not find it profitable to discontinue an ongoing agreement, or to
form a new one, within the stable configuration outlined in Proposition 3.

In the next proposition we turn to the case in which payoffs depend directly on
the variance of opponents’ actions in equilibrium (γA �= 0). We show that when such
variance is beneficial, then the complete network is the unique pairwise stable network
under strategic complementarity.

Proposition 4 Let γA > 0, γAθ = 0 and 0 < γa A < − γa
n−1 . Then the complete

network is the unique pairwise stable network.

This result is explained by the fact that when complementarities are small, then an
additional link formed by player i always increases the volatility of i’s own equilibrium
strategy and of the sum of all other players’ equilibrium strategies. When this increased
volatility has a positive effect on i’s payoff (γA > 0), then this positive effect sums up
with the positive effect of i’s own increased variability.

Let us now turn to the case in which opponents’ volatility is detrimental to an agent’s
payoff (γA < 0). Here, an additional link i j that results in increased variance in the
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opponents’ strategies needs not increase i’s payoff, even if strategies are complements.
One game in which strategies are complements and γA < 0 is the BC, where if v < 1

we have γa A = 2(1 − v)

n − 1
> 0 and γA = − 1 − v

(n − 1)2 < 0. The next proposition

shows that in this game, the negative effect of opponents’ increased volatility never
outweighs the effect of one’s own volatility, and all links form in equilibrium.

Proposition 5 In Keynes’ Beauty Contest with strategic complements (0 < v < 1)
the complete network is the unique pairwise stable information structure.

The restrictions imposed by the BC on the parameters (2γA = − γa A
n−1 ) ensure that

the incentives to form a new link always remain positive. Once such restrictions are
dropped (and, in particular, once γA can grow in magnitude fixing the other parame-
ters), incomplete networks may arise even in the presence of strategic complementar-
ities. The next example illustrates this possibility in a variation of the BC, in which
agents try to match the state of the world and to exceed the average of their opponents’
strategies by a factor k. For this game we show that incomplete networks arise in
equilibrium.

Example 2 Consider an economy with ten agents, each having the following payoff
function:

ui (ai , Ai , θ) = −v(ai − θ)2 − (1 − v)

(

ai − k
Ai

n − 1

)2

.

Set k = 1, γa A = 2

19
and γa = −1, so that our condition γa + (n − 1)γa A < 0

holds. These assumptions imply v = 0.53 and γA = −0.0058. Computations based on
condition (16) show that any two nodes with degree x < 10 always have an incentive
to form a link. This is simply a consequence of Proposition 5 where the complete
network is shown to be the unique pairwise stable network in the BC. Consider now
values of k > 1, setting all other parameters as above, we obtain v = 19k−9

19k and then
γA = −0.0058 · k. Computations show that for k large enough, incomplete networks
can be pairwise stable. For example, when k = 5 we obtain that (1) a regular network
with average degree of 8 is pairwise stable; (2) networks with one fully connected
component of nine nodes and one isolated node or two fully connected components
of two and eight nodes are pairwise stable.

We finally turn the case in which both parameters γA and γAθ need not be null. Here
we will only focus on games with orthogonal strategies (γa A = 0), and concentrate
on the interplay of the parameters γA, γaθ and γAθ . As a specific case we have PG,
where γAθ is equal to 1 and γA = 0.

Proposition 6 Let γa A = 0 and γaθ > 0.

1. When γA = 0, the unique pairwise stable network is either the complete network
(iff 2γAθ + γaθ > 0) or the empty network (iff 2γAθ + γaθ < 0).

2. When γA > 0:
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(a) if 2γAθ + γaθ > 0 then the complete network is the unique pairwise stable
architecture;

(b) if 2γAθ + γaθ < 0 then there exists m ≤ n such that the set of pairwise
stable networks consists of all networks made of a fully connected component
of q nodes and of n − q isolated nodes, with q ≥ m, together with the empty
network.

3. When γA < 0:
(a) if 2γAθ +γaθ > 0, either 1 <

2γAθ+γaθ

γaθ
, in which case the empty network is the

unique pairwise stable architecture, or otherwise no pairwise stable network
exists;

(b) if 2γAθ + γaθ < 0, only the empty network is pairwise stable.

To get some intuition for Proposition 6, note that in the class of games it covers
the effect of a change in the variability of opponents’ strategies resulting from one
additional link is positive when γA > 0 and negative when γA < 0, and it increases
in magnitude with the degree of the agent forming the link. The term 2γAθ + γaθ

measures the net gains from the new link as a result of the change in the covariance
of opponents’ strategies and the state of the world and in one’s own strategy. If both
γA and 2γAθ + γaθ are positive, then all links form. If they have opposite signs, then
the prevailing effect will depend on the relative strengths of these weights and on the
degree of the agent forming the link. In particular, when covariance is detrimental to
utility, then links form only if the (positive) effect of the increased opponents’ volatility
is large enough, that is for large enough γA > 0 and for large enough degrees.

As an illustration of this second case, the next example studies a game in which
agents wish to guess the state of the world, with a reward that increases the worse is
the opponents’ guess.

Example 3 Each agent i has the following utility from her guess ai and the opponents’
guess Ai :

ui = −(ai − θ)2 + v

(
Ai

n − 1
− θ

)2

.

We have γa = −1, γAθ = −2 v
(n−1)

, γaθ = 2, and γA = v
(n−1)2 . From condition (16)

and the fact that γa A = 0, agent i forms a link i j if and only if the following condition
holds:

− v

(n − 1)2 (2ng
i − 1) < 1 − 2

v

(n − 1)

or

(2ng
i − 1) > 2(n − 1) − (n − 1)2

v

For v = 2 and n = 3 we have that agent i wishes to form the link i j if and only if
ng

i ≥ 2. This implies that there are three pairwise stable architectures in this example:
the empty network, the complete network, and the network made of component of
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two connected nodes and one isolated node. For v = 4 the complete network remains
the unique stable network, together with the empty network. If v increases further, the
empty network remains the unique stable architecture.

The following corollary applies to the PG, where γA = 0 and 2γAθ + γaθ = 3.

Corollary 2 In the public good game with linear benefits and quadratic costs, the
unique pairwise stable network is the complete network.

4.2 Information sharing with correlated signals

We now turn to the case of correlated signals (pn > 0). Here equilibrium computa-
tions become complex, due to the potential asymmetry of network structures and of
the associated Bayesian Nash equilibria. For this reason we will not provide a full
characterisation of pairwise stable networks, but rather investigate the effect of sig-
nals’ correlation, and in particular of conditional correlation, on the incentives to share
information. In particular we show in Proposition 7 that enough correlation guaran-
tees that some positive amount of information is always shared in equilibrium—in
the present terminology, that the empty network fails to be pairwise stable. As we
shall see, this is due to the strategic advantage that the bilateral information sharing
provides in the form of a better inference of other firms’ actions. Incentives to form
link, however, can die out before all information is shared, as we illustrate by means
of a four firm example.

We start with the case of strategic substitutes (μ > 0), assuming that only the
volatility of one’s own strategy is payoff relevant. This includes CO as a special case.

Proposition 7 Let γA = γAθ = 0 and μ > 0. Then:

1. Under the following conditions the empty network is not pairwise stable:
(i) μ < 2

3 ;
(ii) 2

3 < μ < 2
1+√

2
and either pn < p∗∗

n or pn > p∗∗
n and n > n∗∗, where both

p∗∗
n and n∗∗ are finite and positive;

(iii) μ > 2
1+√

2
, pn > p∗

n and n > n∗, where both p∗
n and n∗ are finite and positive;

2. The complete network is always pairwise stable.

Proposition 7 essentially shows that some amount of information sharing is con-
sistent with equilibrium (point 2.), and is a feature of all equilibria when both signals’
correlation and the number of agents are not too small (point 1.). This is in stark
contrast with the traditional finding that no sharing of information occurs in Cournot
oligopolies unless products are strongly differentiated (that is, unless strategies are
either weak substitutes or complements—see the seminal works by Novshek and Son-
nenschein (1982), Vives (1985), Kirby (1988), Li (1995)). To understand point 1., let
us analyse the effects of the formation of one single link i j on firms’ information and
behaviour in a Cournot oligopoly. Firms i and j get to observe each other signals and
increase, as a result, the correlation of their equilibrium strategies. This has detrimental
effects on their expected profits, which would outweigh the positive effect of a refined
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Fig. 1 Pairwise stable networks
with four nodes

Complete Network 3-Node Component

Empty Network

information if products were little differentiated and no other firms were in the market
(this is the traditional conclusion for low levels of product differentiation). When i
and j compete with other firms in the market, their exchange of information through
the new link i j provides both i and j with a refined prediction of the other firms’
equilibrium behaviour. This refinement is due to signals’ conditional correlation, and
comes “at no cost”, since it does not imply the transmission of i’s and j’s signal to the
other firms in the market. The effect of such refinement on i’s and j’s expected profits
is larger the larger the number of competitors, from which the requirement on n in the
proposition. Point 2. tells us that the failure of the empty network to be pairwise stable
is not a symptom of a general instability problem, since a pairwise stable network (the
complete network) exists for all parameters’ ranges.

Understanding the effect of correlation in general is, however, hard. More correla-
tion will in fact improve both the precision on unobserved signals before and after the
additional link is formed. Intuitively, when an agent has little information, the gains (in
terms of refined expectations) from one additional piece is substantial, leading to Point
1. of Proposition 7. However, as the stock of one’s information builds up, the incentives
to access more information may decrease. There may be therefore cases in which some
information, but not all, is shared in equilibrium. The next four-player example fully
characterise the set of pairwise stable networks, and provides some clearer insight
on how correlation affects the incentives to share information in different networks
(Fig. 1).

Example 4 Let n = 4, μ = 1 and ps = 1. The pairwise stable networks in the various
ranges of the correlation parameter pn are:

• pn < 0.62: the complete network, the empty network and the network made of one
complete component of 3 nodes and of one isolated node;

• 0.62 < pn < 0.71: the complete and the empty networks.
• 0.71 < pn < 0.75: the complete network, the empty network and the network

made of one complete component of three nodes and of one isolated node;
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• pn > 0.75: the complete network and the network made of one complete component
of three nodes and of one isolated node;

For low levels of signals’ correlation (pn < 0.62), the architecture of pairwise
stable networks is in accordance with our Proposition 3, dealing with the case of
no correlation: fully connected components and, possibly, isolated nodes. Here the
following incentives are at work: two players do not form a link when isolated, and
form a link when they share the same degree. These incentives result in the empty and
the complete network being stable. Moreover, players in the 3-node component have
an incentive to form a link with the remaining isolated player who, in contrast, does
not have such incentive. This is consistent with our discussion of Proposition 3, where
we argued that the incentive for i to link with j increases with i’s degree and decreases
with j’s degree. As correlation grows (0.62 < pn < 0.71), so do the incentives of the
isolated player to gain information about the opponents’ behaviour by forming one
additional link, and this leads to the instability of the network containing the 3-node
component. However, further increases of correlation (0.71 < pn < 0.75) decrease
the incentive of each members of the 3-node component to link with the isolated node,
whose behaviour is now predicted with high precision thanks to the high conditional
correlation of signals. The isolated player remains thereby excluded from sharing. For
large enough levels of correlation (pn > 0.75), even single isolated players would form
a link, and all pairwise stable networks display some amount of information sharing,
consistently with point 1. in Proposition 7. Summing up, signals’ correlation creates
incentives to share information, but these incentives vanish when well connected (and
informed) agents acquire a precise enough inference on unobserved signals.

We then turn to the BC, where strategies are complements and payoffs also depend
on the volatility of opponents’ equilibrium strategies. We prove a partial counterpart
of Proposition 5, showing that the universal sharing of information is always pairwise
stable, and that all stable networks involve some amount of information sharing.

Proposition 8 In Keynes’ Beauty Contest with strategic complements (0 < v < 1):

1. the complete network is pairwise stable;
2. the empty network is not pairwise stable.

Finally, we study the case in which also the covariance of equilibrium strategies and
the state of the world affects payoffs. We focus on the public good game with linear
benefits, for which we provide a full characterisation of pairwise stable networks. The
intuition is similar to the one behind Corollary 2: both one’s own equilibrium variance
and opponents’ covariance with the state of the world are beneficial, and both increase
as a result of one additional link, resulting in the universal sharing of all information.

Proposition 9 In the public good game with linear benefits and quadratic costs the
complete network is the unique pairwise stable architecture.

5 Conclusions

We have studied the incentives to bilaterally share information in linear quadratic
games. Compared to the previous literature, our main contribution has been to frame
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the sharing problem in the general linear quadratic model, and to allow agents to
share information by means of bilateral agreements rather than pooling all available
information. We have focused on the ex-ante commitment to truthfully reveal infor-
mation, and we have studied under which conditions agents make such commitments.
As we have shown, the general linear quadratic formulation is rich enough to generate
non trivial and incomplete architectures even in games with strategic complements,
where incentives to share are strong. Our analysis has particularly focused on the role
of signals’ correlation in shaping incentives to share, and how and when incomplete
network structure may arise in equilibrium. Our analysis of sharing has demanded a
characterisation of the equilibrium use of information in networks, which extends pre-
vious work on Bayesian equilibrium in linear quadratic games to the case of networked
information structures.

Acknowledgments We thank the associate editor and two anonymous referees for helpful suggestions
and comments.

Appendix 1

Proof of Lemma 1 Assume pn = γA = γAθ = 0. When passing from network g to
g′ = g + i j condition (16) reduces to:

− γa ·
[
var

(
ag′

i

)
− var

(
ag

i

)]
> 0. (19)

Using now the expressions for variances:

var
(

ag′
i

)
− var

(
ag

i

) = ps

⎡

⎢
⎣

∑

h∈N g′
i

(β
g′
ih)2 −

∑

h∈N g
i

(β
g
ih)2

⎤

⎥
⎦

and the fact that from (18) all equilibrium coefficients applied to signal yk in g and in
g′ only depend on the degree of k in g and g′, respectively, we conclude that condition
(16) is satisfied if and only if the following condition holds:

∑

h∈N g′
i

(β
g′
ih)2 −

∑

h∈N g
i

(β
g
ih)2 =

−γa

[
1

(2γa + γa Ang
i )2

+ 1

(2γa + γa Ang
j )

2
− 1

(2γa + γa A(ng
i − 1))2

]

×
[

tγaθ

ps

]2

> 0. (20)

Using now the definition of μ, we then write:

ui (g+i j)>ui (g) ⇐⇒ 1

(2+μ(ng
i − 1))2

− 1

(2 + μng
i )2

<
1

(2 + μng
j )

2
. (21)
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It is clear that, for any given ng
i , if (21) is satisfied for a given ng

j = m then it remains

true for all ng
j < m. The function fμ, acting as a threshold for the formation of a new

link i j /∈ g, is then implicitly defined by the condition:

1

(2 + μ(ng
i − 1))2

− 1

(2 + μng
i )2

= 1

(2 + μ fμ(ng
i ))2

. (22)

Using similar steps we can define the function Fμ, acting as a threshold for the
severance of a link i j ∈ g. It is defined as the implicit solution of the following
condition:

1

(2 + μ(ng
i − 2))2

− 1

(2 + μ(ng
i − 1))2

= 1

(2 + μ(Fμ(ng
i ) − 1))2

. (23)

We now turn to the proof of points (i)–(iv).

(i) The expression 1
(2+μng

i )2 is decreasing and convex in ng
i . It follows that the LHS

of (22) is decreasing in ng
i , which in turns implies that the values of ng

j that satisfy

(22) (that is, the value of fμ(ng
i )) is increasing. Using condition (23), similar

steps show that Fμ(ng
i ) is increasing in ng

i .
(ii) We show that fμ(m) > m for all 2 ≤ m. Let ng

i = fμ(ng
i ) = m. From (22)

fμ(m) > m if and only if the following condition holds:

1

(2 + μ(ng
i − 1))2

− 1

(2 + μng
i )2

<
1

(2 + μ fμ(ng
i ))2

. (24)

or, equivalently,

2(2 + μ(m − 1))2 − (2 + μm)2 > 0 (25)

It is directly verifiable that LHS of (25) is convex, the smaller root is negative
for 0 < μ ≤ 1 and the larger root

2(μ − 1) + μ
√

2

μ

is smaller than 2 for 0 < μ ≤ 1. Therefore condition (24) is satisfied for all
m ≥ 2.
When m = 1, condition (24) is satisfied if and only if μ < 2(

√
2 − 1) < 1.

(iii) We now show that fμ(m − 1) = Fμ(m) − 1. The value fμ(m − 1) solves the
condition:

1

(2 + μ(m − 2))2 − 1

(2 + μ(m − 1))2 = 1

(2 + μ( fμ(m − 1)))2 . (26)
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The value Fμ(m) solves the condition:

1

(2 + μ(m − 2))2 − 1

(2 + μ(m − 1))2 = 1

(2 + μ(Fμ(m) − 1))2 . (27)

Comparison of conditions (26) and (27) directly implies the result.
(iv) Now we prove that fμ(m) > Fμ(m) for m ≥ 1. First we claim that fμ(m) −

fμ(m − 1) > 1. From (22) we obtain:

fμ(m)= 2μ2(μ − 4 − 2nμ)+√
μ3(2 + (n − 1)μ)2(2+nμ)2(4 + (2n−1)μ)

μ3(4 + (2n − 1)μ)

(28)

Form (28) it is directly verifiable that fμ(m) − fμ(m − 1) > 1 for m ≥ 1 and
0 < μ ≤ 1 (the complete proof is available upon request). This result, together
with point (iii), imply point (iv).

Proof of Proposition 3 Point (1): If μ < 0 (the case of strategic complements), then
by direct inspection of condition (21) we conclude that the link i j will form (and will
not be severed) for all levels of ng

i and of ng
j . This implies that the complete network

is the unique pairwise stable network.
Point (2). We first show that only regular networks can be pairwise stable when

μ > 0. Assume g is pairwise stable, and assume that h is a non regular component of
g. Consider now the node i with maximal degree in h, and let j be such that ng

i > ng
j

and i j ∈ h (such link must exist for at least one node with maximal degree). This
means that there exists some node k �= j such that ik ∈ h and jk /∈ h. By Lemma 1,
pairwise stability of g imposes the following requirements on the degrees of nodes i ,
j and k:

ng
k ≤ Fμ(ng

i ) and ng
i ≤ Fμ(ng

k ); (29)

ng
j ≤ Fμ(ng

i ) and ng
i ≤ Fμ(ng

j ). (30)

Note now that since ng
i > ng

j and since nodes’ degrees are integers, then ng
i −1 ≥ ng

j .

This, together with (29), implies ng
j ≤ Fμ(ng

k ) − 1 and, together with point (iii) in

Lemma 1, that ng
j ≤ f (ng

k − 1). Finally, from point (i) in Lemma 1, we conclude that

ng
j < fμ(ng

k ). This means that player k has an incentive to form the link jk; stability

of g requires then that player j has no incentive to form link jk, that is ng
k > fμ(ng

j ).

This, together with ng
k ≤ ng

i , implies that ng
i > fμ(ng

j ); using now(30) we obtain that

fμ(ng
j ) < Fμ(ng

j ), contradicting point (iv) of Lemma 1.
Having shown that only regular components can belong to a stable network,

the requirement that such components are fully connected comes from point (ii) in
Lemma 1, where it shown that two agents with equal degree of at least 2 always have
an incentive to form a link.
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The required ordering in the sizes n(h1), n(h2), ..., n(hm) comes from the observa-
tion that stability requires that no link is formed, and that a link joining two components
does not form if and only if n(hi ) > fμ(n(hi−1)) for all 1 ≤ k < m.

Lastly, when 0 < μ < 2
1+√

2
two isolated nodes would form a link (see point (ii)

in Lemma 1), implying that two isolated nodes are incompatible with stability of the
network. ��
Proof of Proposition 4 When pn = 0 and γAθ = 0, using expressions for variances,
condition (16) simplifies as follows:

[ue
i (g

′) − ue
i (g)] = γA ps

[
∑

k∈N

(Bg′
ik )2 −

∑

k∈N

(Bg
ik)

2

]

−γa ps

⎡

⎢
⎣

∑

h∈N g′
i

(β
g′
ih)2 −

∑

h∈N g
i

(β
g
ih)2

⎤

⎥
⎦ > 0 (31)

Consider now the networks g and g′ = g + i j . Using the characterisation of

equilibrium coefficients in (18), we note that β
g′
ik = β

g
ik for all k �= i, j and then

Bg′
ik = Bg

ik for all k �= i, j , since ng′
k = ng

k for all k �= i, j . This implies that:

∑

k∈N

(Bg′
ik )2 −

∑

k∈N

(Bg
ik)

2 = (Bg′
i i )2 − (Bg

ii )
2 + (Bg′

i j )
2 − (Bg

i j )
2 (32)

Also, using the fact that ng′
i − 1 = ng

i and ng′
j − 1 = ng

j from (18) we obtain:

Bg′
i i = − ng

i γaθ
t
ps

2γa + γa Ang
i

(33)

Bg
ii = − (ng

i − 1)γaθ
t
ps

2γa + γa A(ng
i − 1)

(34)

Bg′
i j = − ng

j γaθ
t
ps

2γa + γa Ang
j

(35)

Bg
i j = − ng

j γaθ
t
ps

2γa + γa A(ng
j − 1)

(36)

Condition (31) can now be written as follows:

[ue
i (g + i j) − ue

i (g)] =

= γ 2
aθ

t2

ps
γA

[
(ng

i )2

(2γa + γa Ang
i )2

− (ng
i − 1)2

(2γa + γa A(ng
i − 1))2

+ (ng
j )

2

(2γa + γa Ang
j )

2
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− (ng
j )

2

(2γa + γa A(ng
j − 1))2

]

− γ 2
aθ

t2

ps
γa

×
[

1

(2γa + γa Ang
i )2

+ 1

(2γa + γa Ang
j )

2
− 1

(2γa + γa A(ng
i − 1))2

]

> 0. (37)

From direct inspection of (37) we see that both terms in squared brackets are
positive, which, together with the assumptions that γa < 0 and γA > 0, implies that
(37) is always satisfied and i always has an incentive to form a link with j . So we can
conclude that all links form. ��

Proof of Proposition 5 Agent i has an incentive to link to j iff expression (37) is
strictly positive. In the BC we have the following restrictions:γa = −1;γA = − (1−v)

(n−1)2 ;

γa A = 2(1−v)
n−1 . Note first that for ng

i = ng
j = 1 (37) is strictly positive iff:

(n2 − 2n + v)(n2 − 2 + 4v − 2nv − v2)

(4(n − 1)2(n + v − 2)2)
> 0. (38)

We then compute the derivative of expression (37) with respect to ng
i for ng

j = 1
and show that is always positive. This implies that agent i has an incentive to link to
the singleton agent j , independently of i’s degree. Then we compute the derivative of
expression (37) with respect to ng

j for any arbitrary value of ng
i and we show that it is

positive for any values of ng
i and ng

j . This implies that (37) remains strictly positive for

all ng
i < n and ng

j < n, which implies the result. Exact computations of the derivatives
involve long expressions and are available upon request. ��

Proof of Proposition 6 When pn = γa A = 0 and g′ = g+i j , using (18) and (33)–(36)
we can rewrite condition (16) as follows:

γ 2
aθ

t2

ps
γA

[
(ng

i )2

2γa
− (ng

i − 1)2

2γa

]

+ γaθ

t2

ps
γAθ

[

− ng
i

2γa
+ ng

i − 1

2γa

]

−γ 2
aθ

t2

ps
γa

[
1

2γa

]

> 0. (39)

This is satisfied if and only if:

γaθ γA

4γ 2
a

(2ng
i − 1) − γAθ

2γa
− γaθ

4γa
> 0 (40)

where we have used the assumption that γaθ > 0. Condition (40) can be written as:

γA

γa
(2ng

i − 1) <
2γAθ + γaθ

γaθ

. (41)
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Case γA = 0. When 2γAθ + γaθ > 0, (41) is always satisfied and the complete
network is the unique pairwise stable network. When 2γAθ + γaθ < 0, (41) is never
satisfied and the empty network is the unique pairwise stable network.

Case γA > 0. When 2γAθ +γaθ > 0, (41) is always satisfied. When 2γAθ +γaθ < 0,

(41) is satisfied for ng
i >

1

2
(

2γAθ+γaθ

γaθ

γa
γA

+1) ≡ m > 0. In this case the empty network

is trivially stable, as is the complete network. The only other stable architecture is such
that all nodes with positive degree have degree larger than m, and all such nodes are
linked to each other.

Case γA < 0. Condition (41) is never satisfied when 2γAθ + γaθ < 0 (from which
the empty network is the unique pairwise stable network), while if 2γAθ + γaθ > 0
the relevant condition for agent i to form a link is the following:

ng
i <

1

2
(
2γAθ + γaθ

γaθ

γa

γA
+ 1) ≡ m > 0

Here, only agents with a low enough degree would form a link. If the threshold
degree m is less than zero, then the empty network is the unique pairwise stable
network; if not, no pairwise stable network exists. To see this, note that two nodes
who are linked in a stable network must have degree less than m. But in this case
they wish to form a link to the agents to which they are not linked. If these agents
have degree less than m they also want to link, then we contradict the stability of the
network. If they do not wish to link, then they must have a degree which is larger than
m, in which case they wish to sever a link. Finally, the empty network is not stable
since two nodes of degree zero wish to form a link. ��

Proof of Proposition 7 Proof of point 1: The proof is organised in several steps, and
goes by studying the difference in expected profits of two firms, 1 and 2, in the complete
networks gc and in the network g−12 ≡ {gc − 12}. We first compute equilibrium
strategies in gc. The updating coefficient in gc is for every i :

kigc

1 = t

ps + (n − 1) pn
. (42)

We obtain the following common equilibrium coefficient:

βgc = − tγaθ

(ps + (n − 1) pn) (2γa + γa A (n − 1))
.

For g−12 ≡ {gc − 12}, the updating coefficients are:

kig−12

1 = t

ps + (n − 2) pn
, ki

2 = pn

ps + (n − 2) pn
, i = 1, 2

kig−12

1 = t

ps + (n − 1) pn
, ∀i ≥ 3 (43)
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We obtain the following equilibrium coefficients for firms 1 and 2:

β
g−12

11 = β
g−12

22 = − tγaθ

2γa (ps + (n − 2) pn) + γa A ((n − 2) ps + (5 + n (n − 4)) pn)

β
g−12

1 j = β
g−12

2 j

=− t (2γa +(n − 2) γa A) γaθ

(2γa +(n−1) γa A) (2 (ps +(n−2) pn) γa +γa A ((n−2) ps +(5+n (n−4)) pn))
, ∀ j ≥3

From (16), we can express the difference ue(gc)− ue(g−12) in the expected profits
of firm 1 (and, by symmetry, of firm 2) in gc and in g−12 as proportional to:

n ·
(
β

gc

i j

)2
(ps + (n − 1) pn) −

((
β

g−12

11

)2 + (n − 2)
(
β

g−12

1 j

)2
)

ps −

− (n − 2) β
g−12

1 j

(
2β

g−12

11 + (n − 3) β
g−12

1 j

)
pn . (44)

Plugging in the values of the β coefficients, we obtain the following expression:

(ps − pn) t2
(
4 (ps +(n−2) pn) (1+(n−3) μ)+((7+(n−6) n) ps +(n (19+(n−8) n)−16) pn) μ2

)
γ 2

aθ

(ps +(n−1) pn) (2+(n−1) μ)2 (2ps +2 (n−2) pn +(n−2) psμ+(5+(n−4) n) pnμ)2 γ 2
a

(45)

The denominator of the above equation is always strictly positive for all admissible
values of the parameters; moreover the sign is the same as the sign of the following
expression:

4 (ps + (n − 2) pn) (1 + (n − 3) μ) +
+ ((7 + (n − 6) n) ps + (n (19 + (n − 8) n) − 16) pn) μ2 (46)

We divide it in two terms. The first, 4 (ps + (n − 2) pn) (1 + (n − 3) μ), is always
positive: indeed by assumption μ > 0 and the proof follows directly; it can be directly
verified that the second term is positive for n ≥ 5. Therefore (46) could be negative only
for n = 3 and n = 4. But for n = 3 (46) becomes 4 (ps + pn) − 2 (ps + 2pn) μ2 and
for n = 4 (46) becomes 4 (ps + 2pn) (1 + μ)−(ps + 4pn) μ2 and, by the assumption
that 0 < μ < 1, both terms are strictly positive.

Proof of Point 2 We study the difference in expected profits of two agents, 1 and 2, in
the empty network g∅ and in the network g12 ≡ {12}. The updating coefficients for
g∅ are:

kig∅

1 = t

ps
, kig∅

2 = pn

ps
, ∀i (47)

from which we obtain the common coefficient of agents’ equilibrium strategies:

β
g∅

i i = − γaθ t

2γa ps + γa A (n − 1) pn
, ∀i
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The updating coefficients for g12 ≡ {12} are:

kig12

1 = t

ps + pn
for i = 1, 2

kig12

1 = t

ps
for all i ≥ 3

kig12

2 = pn

ps + pn
for i = 1, 2

kig12

2 = pn

ps
for i ≥ 3

We obtain the following equilibrium coefficients for agents 1 and 2:

β
g12

11 = β
g12

12 = β
g12

21 = β
g12

22

=− t (2psγa −γa A pn) γaθ

4ps (ps + pn) γ 2
a +2 (ps + pn) (ps +(n−3)pn) γaγa A+ pn((n−3) ps −(3n−5) pn)γ 2

a A

.

From (16), we can express the difference in profits of agent 1 (and, by symmetry,
of agent 2) in g∅ and in g12 as:

(
β

g∅

i i

)2
ps − 2

(
β

g12

11

)2
(ps + pn) . (48)

Plugging in (48) the values of the β coefficients, recalling the definition of μ and
letting p ≡ ps + pn we obtain the following expression:

t2γ 2
aθ

γ 2
a

[
ps

(2ps + (n − 1) pnμ)2 −

2p (pnμ − 2ps)
2

(
4ps p + 2p (ps + (n − 3) pn) μ − pn ((3n − 5) pn − (n − 3) ps) μ2

)2

]

It can be shown that the denominator of the above expression is strictly positive. Its
sign of is therefore the sign of the numerator of the above expression, which can be
written in the following form:

a · n2 + b · n + c (49)

where

a = (ps − pn) p2
nμ2

(
4ps p (μ − 1) +

(
p2

s − 5ps pn + 2p2
n

)
μ2

)

b = 2 (ps − pn) pnμ · ·
(
−8p2

s p + 4ps p (2ps + 3pn) μ

+2ps (ps − 8pn) pμ2 − pn

(
3p2

s − 11ps ps + 2p2
n

)
μ3

)
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c = (ps − pn)
[
2p4

nμ4 + ps p3
nμ2 ((44 − 21μ) μ − 36) + 4p4

s (μ (4 + μ) − 4)

−4p3
s pn (μ − 1) (3μ (4 + μ) − 4) + p2

s p2
nμ (48 + μ (μ (32 + 9μ) − 76))

]

The proof continues now by studying the sign of (49).
We first note that the roots (n−, n+) of (49) are real (since b2 − 4ac ≥ 0), distinct

and finite as long as a �= 0. With this in mind, we now look for conditions under
which expression (49) is concave. Such conditions will tell us whether the sign of (49)
becomes negative for n large enough. ��
Lemma 2 Ifμ < 2

1+√
2

then (49) is concave. If μ > 2
1+√

2
then there exists p∗

n such

that for all pn > p∗
n (49) is concave, otherwise it is convex.

Proof of Lemma 2 Note that concavity of (49) depends on the sign of term a in (49).
This term is negative for μ < 0. Moreover, the sign of a is the sign of the following
term:

(
4ps p (μ − 1) +

(
p2

s − 5ps pn + 2p2
n

)
μ2

)
. (50)

Let us evaluate the roots of (50) as a function of pn . We find:

4ps (1 − μ) + 5psμ
2 ± ps (μ − 2)

√
4 (1 − μ) + 17μ2

4μ2 (51)

Since the largest root yields a value which exceeds ps , we only consider the smaller
root denoted by p∗

n . Note here that the second derivative of (50) with respect to pn is
positive (so that a is a convex function of pn). This directly implies that a is negative
for all pn > p∗

n . We then turn to the analysis of the root p∗
n in relation to the parameter

μ. We show that if μ < 2
1+√

2
then p∗

n < 0, implying that a < 0 for all parameters’

values; moreover, when μ > 2
1+√

2
, we show that p∗

n > 0 and that p∗
n is increasing in

μ. In this latter case, a < 0 for all values p∗
n < pn < ps .

Consider again the smaller root in (51):

p∗
n = 4ps (1 − μ) + 5psμ

2 + ps (μ − 2)
√

4 (1 − μ) + 17μ2

4μ2 . (52)

Expression (52) is null for the following values of μ:

μ− = 2
(
−1 − √

2
)

; μ+ = 2

1 + √
2
. (53)

Moreover, the expression (52) is strictly increasing in μ for all values of μ in the range
(0, 1]. This implies that p∗

n < 0 for all 0 < μ < μ+, and that ps > p∗
n > 0 for all

μ+ < μ ≤ 1. ��
Having established conditions under which (49) is concave in n, we study its sign

by establishing a few facts about the behaviour of (49) at the point n = 2.
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Lemma 3 At n = 2: i) expression (49) is negative for μ < 2
3 , is positive for μ > 2

1+√
2

and in the intermediate range is positive if and only if pn >
ps

(
4 − 4μ − μ2

)

2μ2 ≡ p∗∗
n .

ii) Moreover, there exists p̂n > 0 such that (49) is increasing in n if pn < p̂n and
μ > 2

1+√
2

, otherwise (49) is decreasing in n.

Proof of Lemma 3 Point (i) follows from direct computation, and is consistent with
Proposition 4.4 in Raith (1996) for the specific case of Cournot oligopoly, setting
n = 2. Point (ii) is proved as follows. The first derivative of (49) at n = 2 is given by:

2 (ps − pn) pn pμ (2ps − pnμ)
(

ps (μ (4 + μ) − 4) − 2pnμ2
)

. (54)

The sign of (54) is the same as the sign of the following expression:

μ
(

ps (μ (4 + μ) − 4) − 2pnμ2
)

. (55)

The expression in brackets in (55) is positive for pn <
ps (μ (4 + μ) − 4)

2μ2 ≡ p̂n . It

is directly verifiable that p̂n is negative for μ < 2
1+√

2
and positive for μ > 2

1+√
2

. ��
We are now ready to prove Proposition 7.
Point (i) (μ < 2

3 ). we know from Lemma 3 that at n = 2 (49) is negative and
decreasing in n, and from Lemma 2 we know that (49) is concave in n. This two facts
tell us the all points n ≥ 2 are in the right (and decreasing) branch of the parabola
(49). We conclude that (49) is negative for all n ≥ 2.

Point (ii) ( 2
3 < μ < 2

1+√
2

). From Lemma 2 and Lemma 3 we know that (49) is
concave and decreasing in n at n = 2. These two facts imply that all points n ≥ 2 are
in the right (and decreasing) branch of the parabola (49). In this range of values for μ,
however, (49) can be either positive or negative at n = 2, depending on the value of
pn (see Lemma 3 point (i)). Suppose first that (49) is negative at n = 2; in this case,
the two real roots of (49) are strictly smaller than 2, and (49) remains negative for all
n ≥ 2. Suppose then that (49) is positive at n = 2; in this case, the larger real root n+
must be larger than 2, so that (49) is negative for all n > n+.

Point (iii) (μ > 2
1+√

2
). In this range, (49) is concave in n if and only if if

pn > p∗
n > 0, otherwise it is convex (Lemma 2). Moreover, we know from Lemma 3

that at n = 2 (49) is positive. Consider first the case pn > p∗
n ((49) concave). Here,

the larger real root n+ must be larger than 2, so that for all n > n+ (49) is negative.
Consider then the case pn < p∗

n ((49) convex). Here, at n = 2 (49) is increasing in n
if pn < p̂n . Since p̂n = p∗

n for μ = 2
1+√

2
and for μ > 2

1+√
2

the difference p̂n− p∗
n is

increasing in μ 2, it follows that p∗
n < p̂n for all μ > 2

1+√
2

and that (49) is increasing
in n at n = 2. Since in this case (49) is convex, we conclude that the two real roots
(n−, n+) are smaller than 2, and that (49) is positive for n ≥ 2. ��

2 More precisely, the first derivative of the expression
ps (μ (4 + μ) − 4)

2μ2 − pn is increasing in μ.
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Proof of Proposition 8 We replace the parameters in (1) with those specific for the
BC: γa = −1; γθ = −v; γaθ = 2v; γA = − (1−v)

(n−1)2 ; γa A = 2(1−v)
n−1 .

Point 1. We study again the difference in expected profits of two firms, 1 and 2,
in the complete networks gc and in the network g−12 ≡ {gc − 12}. The updating
coefficient in gc is:

kigc

1 = t

ps + (n − 1) pn
, (56)

from which we obtain the following common equilibrium coefficient:

βgc = − t

(ps + (n − 1) pn)
.

For g−12 ≡ {gc − 12}, the updating coefficients are:

kig−12

1 = t

ps + (n − 2) pn
, ki

2 = pn

ps + (n − 2) pn
, i = 1, 2

kig−12

1 = t

ps + (n − 1) pn
, ∀ i ≥ 3 (57)

We obtain the following equilibrium coefficients for firms 1 and 2 and for firms
j, k > 2:

β
g−12

11 = β
g−12

22 = − t (n − 1)v

ps + (n − 2)psv + pn(n − 3 + (5 + (n − 4)n)v)

β
g−12

1 j = β
g−12

2 j

= − t + (n − 2)tv

ps + (n − 2)psv + pn(n − 3 + (5 + (n − 4)n)v)
,

β
g−12

j1 = β
g−12

j2

= − (n − 1)((n − 2)pn + ps)tv

((n − 1)pn + ps)(ps + (n − 2)psv + pn(n − 3 + (5 + (n − 4)n)v))

β
g−12

j j = β
g−12

jk

= − t (ps + (n − 2)psv + (n − 1)pn(1 + (n − 3)v))

((n − 1)pn + ps)(ps + (n − 2)psv + pn(n − 3 + (5 + (n − 4)n)v))

We will now write down the change in expected payoff of agent 1 moving from gc

to g−12 following condition (17–19) and (21). The terms used to compute the other
players’ aggregate volatility are given by:

Bgc

1k = (n − 1)β
gc

11 ; (58)

Bg−12

11 = (n − 2)β
g−12

31 ; (59)
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Bg−12

12 = β
g−12

11 + (n − 2)β
g−12

31 ; (60)

Bg−12

1k = β
g−12

13 + (n − 2)β
g−12

33 . (61)

From (21) we express the change in payoff moving from g−12 to gc as follows:

−γa[(psn+n(n−1)pn)(β
gc

11 )2− ps(β
g−12

11 )2−(n−2)(β
g−12

1k )2 ps −(2(n − 2)β
g−12

11

β
g−12

1k + (n − 2)(n − 3)(β
g−12

1k )2)pn] + γA[nps(Bgc

21 )2 + n(n − 1)(Bgc

ik )2 pn

−ps((Bg−12

12 )2 + (Bg−12

11 )2 + (n − 2)(Bg−12

13 )2) − 2pn((Bg−12

11 (Bg−12

12

+(n − 2)Bg−12

13 ) + Bg−12

12 (n − 2)Bg−12

13 + (Bg−12

13 )2(n − 2)(n − 3)/2)]
Now we show that this expression is never negative for all values of v, pn and ps

in the ranges 0 < v ≤ 1 and pn < ps . Replacing the coefficients we get the following
expression:

(ps − pn) t2v
(

pn
(
2n+12v−6+n · v (n (n−2)−4)+v2 (n (7−2n)−8)

)+ ps
(
2+v

(
n2 − 4+3v−2nv

)))

((n−1) pn + ps) (ps +(n−2) psv+ pn (n−3+(5+(n−4) n) v))2

(62)

It can be shown that the denominator of (62) is strictly positive. Then the sign of
(62) is therefore the sign of its numerator, which can be written in the following form:

a · v2 + b · v + c (63)

where

a = pn (n (7 − 2n) − 8) + ps (3 − 2n)

b = 12pn + n · pn (n (n − 2) − 4) + ps

(
n2 − 4

)

c = 2ps + pn (2n − 6)

The proof continues now by studying the sign of (63).
We first note that the roots (n−, n+) of (63) are real (since b2 − 4ac ≥ 0), distinct

and finite (since a �= 0). Moreover by a direct inspection of (63) we see that it is
concave and that its smaller root is negative and the larger one is greater than 1. Then
(62) is positive for all parameter values, implying that the complete network is always
stable.

Point 2: We study the difference in expected profits of two agents, 1 and 2, in the
empty network g∅ and in the network g12 ≡ {12}. The updating coefficients for g∅

are:

kig∅

1 = t

ps
, kig∅

2 = pn

ps
, ∀i (64)

from which we obtain the common coefficient of agents’ equilibrium strategies:

βg∅ = − tv

ps + pn(v − 1)
.
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and

Bg∅

i i = 0 (65)

Bg∅

i j = βg∅

for i �= j (66)

The updating coefficients for g12 ≡ {12} are:

kig12

1 = t

ps + pn
for i = 1, 2

kig12

1 = t

ps
for all i ≥ 3

kig12

2 = pn

ps + pn
for i = 1, 2

kig12

2 = pn

ps
for i ≥ 3

We obtain the following equilibrium coefficients:

β
g12

11 = β
g12

12 = β
g12

21 = β
g12

22

=− (n−1)tv(pn(1−v)+(n−1)ps)

(n−1)p2
s (n+v−2)+ p2

n(v−1)(n(n−1−3v)+5v−2)+ pn ps(n−2+v)(2+(n−3)v)
;

β
g12

kk = (n−1)tv(pn(2+n−3v)+ ps(n−2+v))

(n−1)p2
s (n−2+v)+ p2

n(v−1)(n−2(n−1−3v)+5v)+ pn ps(n−2+v)(2+(n−3)v)
,

and:

Bg12

11 = β
g12

21 (67)

Bg12

1k = β
g12

kk . (68)

Using (16) we can express the difference in profits of agent 1 (and, by symmetry,
of agent 2) in g∅ and in g12 as:

−γa[(βg∅

i i )2 ps − 2(β
g12

11 )2(ps + pn)] + γA[(n − 1)Bg∅2
i j ps

+(n − 1)(n − 2)Bg∅ 2
i j pn − (2(Bg12

11 )2 + (n − 2)(Bg12

1k )2)ps

−(2(Bg12

11 )2 + (4n − 8)Bg12

11 Bg12

1k + (n − 2)(n − 3)(Bg12

1k )2)pn] (69)

The proof then goes through the following steps (complete proofs from authors
upon request): we plug in the coefficients’ expressions, so we get an expression in n,
ps , pn and v. Then we find that: i) (69) is strictly positive for pn = 0 for all parameters’
values; ii) (69) is equal zero for pn = ps for all parameters’ values; iii) the derivative
of (69) respect to pn computed in pn = ps is strictly negative for all parameters’
values; iv) (69) never is negative for pn ∈ (0, ps) and for all other parameters’ value.
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All these evidences are enough to say that (69) is positive for all parameters’ values
and, consequently, the empty network is not pairwise stable. ��

Proof of Proposition 9 We replace the parameters in (1) with those specific for the
Public Good Game: γa = −b; γAθ = 1; γaθ = 1. Expression (6) becomes:

β
g
ih = t

2b(ps + (
ng

i − 1
)

pn)
, ∀h ∈ N g

i ; (70)

The incentives to form a new link are given by (16) which, when (g′ = g + i j), is
rewritten as follows:

[
cov

(
Ag′

i , θ
)

− cov
(

Ag
i , θ

)] + b ·
[
var

(
ag′

i

)
− var

(
ag

i

)]
(71)

Note that the term inside the first brackets depends only on the covariance of the
action of agent j and θ . Therefore using (70) and (18), and noting that passing from
g to g′ only agents i’s and j’s coefficients change, we can write (71) as:

t2

2b

[
n j +1

(ps +n j pn)
− n j

(ps +(n j −1)pn)

]

+ t2

4b
·
[

ni +1

ps +ni pn
− ni

ps +(ni − 1)pn

]

.

(72)

Direct inspection of (72) show that (72) is strictly positive as long as ps > pn .
Therefore every incomplete network is not stable, resulting in the complete network
being the unique pairwise stable architecture. ��

Appendix 2

Equilibrium coefficients for the star network solve the following system of equations
(we have used symmetry where possible):

β
gs

ii = − 1

2γa

(
γAθ kigs

1 + γa A3β
gs

ih

)
(73)

β
gs

ih = − 1

2γa

(
γAθ kigs

1 + γa Aβ
gs

hh

)
(74)

β
gs

hh = − 1

2γa

(
γAθ khgs

1 + γa A(β
gs

ih (1 + 2khgs

2 ) + 2khgs

2 β
gs

hh)
)

(75)

β
gs

hi = − 1

2γa

(
γAθ khgs

1 + γa A(β
gs

ii + β
gs

ih 2khgs

2 + 2β
gs

hi + 2khgs

2 β
gs

hh)
)

(76)
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