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Abstract Nowadays risk assessment is assuming more and more importance in
the solution of problems connected with land sustainability and human
health. Indeed, the risk assessment criteria are applied to identify and
classify the various sites on the basis of the actual land characteristics,
and the potential hazard to exposed population.
There are various exposure pathways of toxic substances to general
population: direct pathways are soil ingestion, dust inhalation, dermal
contact; indirect ingestion through the food chain is one of the most
important pathways for the entry of PHEs into the human body.
In order to avoid possible consequences to humans and the environment,
it is necessary to investigate the source, origin, pathways, distribution
in all the environmental compartments, and to ascertain if metal
bioaccumulation is likely to occur, affecting human health.
Risk assessment procedures include two components, the Environmental
Risk Assessment and the Human Health Risk Assessment. The former
has been used mainly for comparative and priority setting purposes
with reference to contaminated sites. The latter refers to the possible
consequences of human exposure to contaminant sources. The ecological
risk is generally considered a second priority in comparison to human
health risk.
Estimate of exposure levels is a central step in Ecological Risk
Assessment to evaluate ecotoxicity risks posed by PHEs. For example,
agricultural soils contaminated with metals result in elevated uptake
and transfer of metals to vegetables; consequently, severe health hazard
can be caused by the consumption of metal-contaminated vegetables.
Bioaccumulation of heavy metals in edible parts of vegetables is thus
responsible for major health concern.
Human health risk assessment has been used to determine if exposure
to a chemical, at any dose, could cause an increase in the incidence, or
adverse effects, on human health.



Biological monitoring is a promising method of assessing environmental
and human health risk by analysing PHEs concentration in environmental
matrixes (e.g. plants, animals), or in human tissues (hairs, nails), or in
a biological matrix (blood, urine). Concerning human health, biological
monitoring is usually described as the measurement of a particular
chemical substance, or a metabolite of that substance, in a suitable
biological matrix (e.g. blood, urine, serum, and tissues such as hairs,
nails, sweats), that act as an effective biomarker, allowing identification
of potential hazards.
Examples of how the risk assessment process may be carried out
are given with reference to exposure levels and exposure-response
relationships for the contaminants of concern.
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29 Human health risk assessment has been used to determine if exposure to a

30 chemical, at any dose, could cause an increase in the incidence, or adverse effects,

31 on human health.

32 Biological monitoring is a promising method of assessing environmental and

33 human health risk by analysing PHEs concentration in environmental matrixes

34 (e.g. plants, animals), or in human tissues (hairs, nails), or in a biological matrix

35 (blood, urine). Concerning human health, biological monitoring is usually

36 described as the measurement of a particular chemical substance, or a metabolite

37 of that substance, in a suitable biological matrix (e.g. blood, urine, serum, and

38 tissues such as hairs, nails, sweats), that act as an effective biomarker, allowing

39 identification of potential hazards.

40 Examples of how the risk assessment process may be carried out are given with

41 reference to exposure levels and exposure-response relationships for the contami-

42 nants of concern.

43 Keywords Rassessment • PHEs • Bioavailability • Bioaccessibility •

44 Bioaccumulation factor

45 1 Introduction

46 Environmental contamination is a concern whose importance has been recently

47 perceived by public opinion, and constitutes one of the great emergencies of

48 twenty-first century (Bini 2009). Modern society is paying increasing attention to

49 its effects on the human health, and is acquiring more and more consciousness of

50 the health risk connected to exposure to chemicals and toxic products (e.g. heavy

51 metals, radionuclides, asbestos, hydrocarbons, dioxins). Yet, a serious concern

52 exists about the presence of chemicals in the environment and their

53 bioaccumulation in foodstuff (Martorel et al. 2010).

54 Many organic substances (pesticides, fertilisers, PCB, PAH, etc.) contribute to

55 contaminate ecosystems and are very poisonous to living organisms and to human

56 health. Correspondingly, inorganic compounds (e.g. heavy metals, volatiles,

57 anions) from different non-point and point sources have a potential to contaminate

58 soil and water. Moreover, potentially harmful elements (PHEs), when present at

59 high concentration in the environment, are critical or toxic to living organisms

60 (Salomons 1995). Environmental contamination rises from double driving forces:

61 natural or anthropogenic. Indeed, supergenic alteration processes may lead to the

62 release of potentially toxic elements, particularly heavy metals, in the environment.

63 Possible “natural” AU1accumulation of elements into the ecosystems may be related to

64 heavy metal-bearing rocks (e.g. Ni and Cr in serpentine: Angelone et al. 1993) or to

65 mineralized areas (e.g. Pb and Zn from mixed sulfide mines), while anthropogenic

66 accumulation is almost related to industrial activities (e.g. Cd in metallurgy, Cr in

67 varnish and leather factories: Bini et al. 2008), agriculture and urban sewage sludge

68 (e.g. Zn and Cu from fertilizers: De Luisa et al. 1996; Cd, Pb, Cr from sludge:
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69Petruzzelli 1989). Metals can be dispersed in the environment and/or accumulated

70in plants and animals, and taken in by human beings through the food chain (Lim

71et al. 2008). The local physico-chemical, climatic, biologic, geologic conditions

72control the ultimate fate of a toxic element, that is, if it will precipitate as an

73insoluble phase or will be adsorbed on the surface of some other phase, or will be

74released, transported and eventually taken up by plants (Brummer 1986; Langmuir

751997).

76Actually, the identification of the sources responsible for soil contamination is

77an important issue, since high loads of heavy metals applied to soils with sludge, or

78discharged and stored in soils, may cause soil quality degradation, surface and

79groundwater pollution, accumulation in plants, phytotoxicity and possible adverse

80effects on human health. Just one – or more – heavy metal(s) could determine

81irreversible damage to the environment and/or to resident population (Chon

82et al. 2011).

83Indeed, all trace elements, including those essential to living organisms (e.g. Cu,

84Mo, Ni, Se, Zn) are toxic if taken up in concentrations markedly larger than the

85nutrient requirements. In particular Ag, As, Be, Cd, Ce, Ge, Hg, Pb, Tl are suitable

86examples of potentially harmful elements (PHEs) that have no proven essential

87functions, and are known to have adverse physiological effects at relatively low

88concentrations (Abrahams 2002).

89Examples of toxicity by heavy metals are known since the Antiquity (Nriagu

901983). For instance, one of the supposed causes for the Roman Empire collapse is

91the increasing lead toxicity from Pb-bearing potteries and wine containers, as it was

92found in Roman findings and bones. Lead (plumbism) and Hg (mercurialism)

93poisoning cases were frequently recorded in workers employed in mining industry

94and even in hat factories in Tuscany (Dall’Aglio et al. 1966). At present, diseases

95and toxicity related to microelement contamination (Cd, Cr, Cu, Ni, Pb, Tl, Zn,) of

96air, water and soil from industrial activities are well established (Thornton 1993;

97Abrahams 2002). For example, the most notable cause of Tl poisoning occurred

98adjacent to a cement plant in Germany (Abrahams 2002).

99Environmental and human health risk assessment, therefore, is assuming more

100and more importance in the solution of problems connected with land restoration.

101Indeed, the risk assessment criteria are applied to identify and classify the various

102sites on the basis of intervention priority, to establish objectives and standard of

103decontamination, to select the more appropriate and site-specific technology (Pizzol

104et al. 2009).

105The risk arising from metals depends on their bioavailability, which in turn

106depends on the form in which they occur (Adriano et al. 1995). This is the reason

107why the risk to human health cannot be assessed on the basis of the total concen-

108tration of the toxic metal. Background values correspond to the total content of

109metals in soils not affected by human activities, i.e. they are the reference values for
110most countries. Soil guide values have been introduced in the late1950s in Japan, in

1111980 in The Netherlands, in 1986 in Switzerland, in 1987 in Great Britain, in 1994

112in Germany. Since that time, many countries, notably the U.S.A., Canada, Great

113Britain and the Netherlands, have progressed further in setting standards for
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114 hazardous constituents in soil, health-risk based soil screening levels and soil

115 remediation. However, legislation on maximum admissible levels of heavy metals

116 in the environment in the EU is rather confusing. Indeed, a general regulatory

117 guideline on the maximum trace element concentration in soils has not yet been

118 established, the current references being related to the total metal content in waste

119 and sewage sludge to be spread on soil (Adriano et al. 1995).

120 2 Bioavailability and Bioaccessibility

121 Although total metal concentrations do not give an actual indication of the poten-

122 tially plant-available or ‘bio-accessible’ fractions of a metal in a soil, they provide a

123 useful indication of whether a soil has anomalously high or low concentrations.

124 This will show whether this soil is contaminated and/or geochemically enriched and

125 thus poses a possible risk of toxicity to some species of plants, soil fauna or

126 microorganisms (Alloway 2013). For example, serpentine soils present Ni concen-

127 tration up to 800 mgkg�1, but only a small part of it is available/accessible to plants

128 growing on this kind of substrate, with the exception of hyperaccumulator plants

129 (e.g. Alyssum bertoloni, a well known endemic species growing on serpentine soils)

130 that are able to absorb high quantities of metals (Brooks 1998).

131 Knowledge of the total metal concentration in soils, in most cases, is not

132 sufficient to assess element mobility and bioavailability (Abollino et al. 2009;
133 Rao et al. 2008; AU2Menzies 2007). Availability is driven by several factors and

134 processes that enhance metal mobilization, namely: pH, redox status, complexing

135 ligants, soil solution activity, plant roots exudates, available water, etc. (Alloway

136 1995).

137 As a matter of facts, the potential toxicity of contaminants is strongly determined

138 by the speciation of the elements involved . Total element concentration includes

139 all forms of that element in soil: readily soluble in the soil solution, bound to

140 organic matter, adsorbed on surfaces of clay minerals, oxides, carbonates, bound in

141 the crystal lattice. In many cases, much of the total content of an element is not

142 available for immediate uptake by plants. Conversely, the available metal fraction

143 refers to the portion of the total content which is potentially available to living

144 organisms (Alloway 2013). Sequential extractions, therefore, are currently

145 performed to determine element fractionation. Several reports on fractionation

146 methods have been published in recent years (see f.i. Abollino et al. 2009; Rao
147 et al. 2008; Menzies et al. 2007; Peijnenburg et al. 2007). The suggested procedures
148 allow evaluating element mobility and bioavailability (Obrador et al. 2007; Kabata-
149 Pendias and Mukherjee 2007; Quevauviller 1998). Water-soluble and EDTA-

150 exchangeable elements are considered bioavailable to plants, while those linked

151 to Fe-Mn oxides, to carbonate and to organic matter are considered potentially
152 bioavailable (He et al. 2005). In recent years, single extractants are widely utilized

153 (Rao et al. 2008) to evaluate the plant uptake and possible transfer to the aerial parts

154 and to the food chain. Single extractants most utilized are chelating agents as EDTA
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155or DTPA, and neutral salts (e.g. CaCl2), which proved the best agents to estimate

156available metal pool, plant uptake and transfer to humans through the food chain

157(Menzies et al. 2007).

158There are various exposure pathways of toxic substances to humans: direct

159pathways are soil ingestion, dust inhalation, dermal contact; but indirect ingestion

160through the food chain is one of the most important pathways for the entry of these

161toxic pollutants into the human body (Khan and Cao 2012). Food chain contami-

162nation is of increasing concern because of the adverse impact on the quality of food

163and health. Bioaccumulation in the edible parts of vegetables depends on numerous

164factors including soil characteristics (e.g. pH, SOC), metal concentration in soil,

165physiological characteristics of vegetables and transfer routes. SOC acts as a huge

166sink of heavy metals and organic pollutants, and modulate metal bioavailability.

167Vegetables grown on wastewater contaminated soils accumulate metals at a

168concentration enough to cause human health risk. Several mechanisms including

169sorption (from soil particles), uptake rate through transpiration, volatilization, and

170re-deposition on plant leaf surfaces are responsible for the metal transfer from soil

171ecosystem to plant tissues and to the food chain. Yet, food is considered the major

172source of PHEs and POPs to humans, accounting for 70 % of the total exposure.

173Therefore, it is necessary to investigate the source, origin, pathways, distribution in

174agricultural soils, and bioaccumulation of metals to assess the possible human

175health risk caused by consumption of metal-contaminated vegetables (see

176Chap. 3, this volume). Agricultural soils contaminated with metals result in ele-

177vated uptake and transfer of metals to vegetables; consequently, severe human

178health risk can be caused by the consumption of metal-contaminated vegetables.

179Bioaccumulation of heavy metals in edible parts of vegetables is responsible for

180major health concern. The benchmark contamination levels for HM vary from

181country to country, but so far many countries have not established the tolerable

182limits for HM in both soil and vegetables (Kabata-Pendias and Mukherjee 2007).

1833 Bioaccessibility and Human Health

184Many chemicals are recalcitrant, mutagenic and carcinogenic pollutants, present in

185the environment as a result of different anthropogenic activities, and are implicated

186in different types of diseases, including breast, lung and colon cancer in humans

187(Khan and Cao 2012).

188In human health risk assessment, oral exposure is typically stated in terms of the

189external dose or intake, instead of in terms of absorbed dose or uptake (Lim

190et al. 2008). Intake is typically defined as the process by which an agent crosses

191the outer exposure surface of a human without passing an absorption barrier, while

192uptake is the process by which an agent crosses an absorption barrier into living

193organisms (plants, animals or humans). For example, it has been demonstrated by

194several studies (Zupan et al. 1995; AU3Basta et al. 2005; Bini et al. 2008, 2013; Maleci

195et al. 2013) that Cr is unable to cross the root barrier opposed by several vascular
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196 plants, including food crops (e.g. plantain, marigold, dandelion, wheat and maize)

197 to metal fluxes.

198 Bioavailability of a compound to humans can be defined as the fraction of an

199 administered dose that reaches the central blood compartment (i.e. the vascular

200 system), whether through the gastrointestinal track, skin or lung. Bioaccessibility is

201 the fraction of a chemical in an environmental medium that is available for

202 absorption based on “in vitro” extraction, but not necessarily absorbed (Lim

203 et al. 2008). The term “bioaccessible” is used to indicate the “in vitro” fraction of

204 the chemical intake that is directly available for absorption. Therefore,

205 bioaccessible metal concentrations are more important for risk assessment than

206 total metal contents in the environment.

207 4 Bioaccumulation Factors

208 Element distribution in soil is determined by various processes occurring in soil

209 (Kabata-Pendias 2011): weathering, decomposition, precipitation-dissolution,

210 absorption-desorption, oxidation-reduction, chelation (He et al. 2005; Adriano

211 2001). Such processes in soil are regulated by soil parameters: pH, redox potential,

212 cation exchange capacity, clay content, organic matter. The aqueous phase (soil

213 solution) is the medium where most chemical equilibria, including metal absorption

214 by roots, occur. The root sorption process, that is the prominent mechanism of

215 element flux from soil to plants, is influenced by soil properties, element speciation,

216 plant physiology, environmental conditions (Adriano 2001).

217 The metal transfer from soil to plants, and from plants to animals (including

218 humans), is achieved through the food chain. The bioaccumulation factor is one of

219 the key pathways of human exposure to PHEs through consumption of vegetable

220 and/or the food chain, and is commonly assessed with specific coefficients. The

221 value of the bioaccumulation factor depends on the nature of PHEs, physiology of

222 plant, and content of elements in growing media. Metal concentrations in soils,

223 roots, shoots and fruits of edible vegetables are currently utilized to calculate the

224 PHEs bioaccumulation factors, since soil-to plant transfer is one of the major

225 pathways for pollutants to enter the food chain (Bini et al. 2013).

226 In order to investigate the health risk associated with PHEs, it is essential to

227 assess the bioaccumulation factors.

228 Several bioaccumulation factors have been proposed so far. The Biological

229 Adsorption Coefficient (BAC) (or Transfer Coefficient – TC – according to Hao

230 et al. 2009), is defined as the ratio between metal concentration in plant roots and

231 metal concentration in soil (Chojnacka et al. 2005):

BAC ¼ Cplant=Csoil

232 The Translocation Factor, i.e. the metal flux from plant roots to the aerial parts, is

C. Bini



233calculated by the ratio of metal concentration in shoots and roots (Singh et al. 2010;

234Mendez and Maier 2008; Yoon et al. 2006):

TF ¼ C shoot=Croot

235Evaluation of human exposure as a consequence of pollutants translocation from

236contaminated soils to edible vegetables has been proposed quite recently by Khan

237and Cao (2012), who suggest to consider separately all the vegetable components.

238Root concentration factor (RCF), shoot concentration factor (SCF) and fruit con-

239centration factor (FCF) are calculated as follows:

RCF ¼ C root=Csoil
SCF ¼ C shoot=Csoil
FCF ¼ Cfruit=Csoil

240where Croot, Cshoot, Cfruit and Csoil represent the contaminant concentration in

241root, shoot, fruit and soil on dry basis, respectively.

242The PHEs daily intake due to consumption of contaminated vegetables results

243from the following equation:

DIPHEs ¼ CPHEs � Cfactor � Vintake=BW,

244where DI is the total PHEs daily intake, C PHEs is the total PHEs concentration in

245vegetables mgkg�1) AU4, Cfactor is a conversion factor from fresh weight of vegetables

246to dry weight (0.085 following Rattan et al. 2005), Vintake is the daily intake of

247vegetables (0.350 kg person�1day�1), and BW is the average body weight (64 kg).

2485 Risk Assessment

249While risk may be defined as the combination of the probability, or frequency, an

250hazardous event to occur, and the magnitude of consequences of its occurrence,

251hazard is commonly defined as “a property or situation that in particular circum-

252stances could lead to harm” (Critto and Suter 2009). Consistently, risk assessment is

253the systematic procedure with which the risks associated with hazardous sub-

254stances, processes, activities or events are identified, described, analyzed and

255estimated either qualitatively and quantitatively (Korre et al. 2002).

256Risk assessment procedures include two components, the Environmental Risk

257Assessment and the Human Health Risk Assessment. The former has been used

258mainly for comparative and priority setting purposes with reference to contami-

259nated sites. The latter refers to the possible consequences of human exposure to

260contaminant sources on human health. In the contest of comparative risk analysis,

261risk is used as an indicator, not as an absolute quantitative measurement of the
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262 adverse effects of contamination on the environment and/or on human health

263 (Korre et al. 2002).

264 5.1 Quantitative Risk Assessment

265 Many countries utilize a multi-level risk-based methodology in regulating and

266 managing contaminated sites (ASTM 2000; Critto and Suter 2009; UK-EA 2009).

267 The risk-based methodology provides quantitative methods for the estimation of

268 human and ecological risks using analytical models of contaminant fate and

269 transport, and assessment of human and ecological exposure (Geng et al. 2013).

270 Common to this approach is the adaptation of a multi-tiered framework, along with

271 the requirement for developing risk-based screening levels in an earlier tier, and

272 site-specific target levels in a later tier, thus allowing risk assessment to be under-

273 taken in a progressive and cost-effective manner.

274 Conversely, development of a robust conceptual model of a contaminated site is

275 an integral part of a successful risk assessment. It provides a qualitative evaluation

276 of potentially contaminant sources, pathways and receptors at the site, based on

277 plausible contaminant – pathway – receptor linkages under current and future land

278 use of the site. For example, Geng et al. (2013) investigated a Mo-contaminated

279 industrial site in China, whose future land use would be residential. After exami-

280 nation of the historic records of the site and field-scale site investigation, they

281 developed a conceptual model on the site risk assessment. The principal linkages in

282 the assessment procedure (source – pathways – receptors) are identified as follows:

283 groundwater – drinking water and dermal contact – residents and workers. These

284 pollution linkages have been subjected to a quantitative risk assessment and have

285 been used as the basis for calculating the site specific target level. The results of

286 model application proved Mo contamination in the local streams due to inflow of

287 polluted groundwater will not pose unacceptable risks to aquatic biota (Geng

288 et al. 2013). Conversely, Mo was highly concentrated in the groundwater, and the

289 risk associated with this should not be neglected. Based on the toxicity data from

290 the database of the International Agency for Research on Cancer (WHO 2013) and

291 the Integrated Risk Information System (USEPA 2013), Mo has no carcinogenic

292 effect on living organisms. Therefore, only non-carcinogenic risk was assessed: Mo

293 will pose unacceptable non-cancer risks for on-site children when they directly

294 drink the groundwater.

295 5.2 Environmental Risk Assessment

296 The environmental risk assessment is the procedure of evaluating risks resulting

297 from hazards in the environment that threaten soil, ecosystems, plants, animals and

298 ultimately human population.
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299Within the environmental risk assessment procedure, in the 1990s the US

300Environmental Protection Agency (US-EPA 1992, 1998) set up a framework and

301the related guidelines for the Ecological Risk Assessment as the process of orga-

302nizing and analyzing data, assumptions and uncertainties to evaluate the adverse

303ecological effects on ecosystems (Critto and Suter 2009). Ecological Risk Assess-

304ment (ERA) is the appropriate process for identifying environmental quality objec-

305tives and the ecological aspects of major concern (Semenzin et al. 2009). The

306principles and procedures that have been established at international level (US-EPA

3071998, UK-EA 2003 and several applications) point to a ERA framework based on a

308hierarchical approach, including: (1) a screening phase allowing the definition of

309land use-based soil screening values, and (2) a site-specific phase in order to

310achieve a more comprehensive risk characterization. Within risk characterization,

311US-EPA (1998) suggests to apply Weight of Evidence methods to determine

312possible ecological impacts determined by chemical contamination, following

313three lines of evidence: chemicals characterization, laboratory-based toxicity

314tests, and characterization of living organisms communities, as indicated by Long

315and Chapman (1985). The first level includes preliminary investigations that can be

316stopped when the estimated risk is considered acceptable by experts. In the case it is
317unacceptable, the second level is run to reduce uncertainty in the risk estimate. Site-

318specific aspects of particular interest (e.g. specific plant communities or typical

319endemics) can be analyzed in the third level, thus reducing costs and duration of

320analysis. A specific software, called ERAMANIA, has been developed with the aim

321at comparing the different tests included in the three levels of analysis (see

322Semenzin et al. 2009 for details). To overcome the uncertainties included in the

323assessment procedure, increased attention has been paid to developing a probabi-

324listic risk assessment methodology, as opposed to the deterministic risk assessment

325approach (US-EPA 1999).

326The ecological risk is generally considered a second priority in comparison to

327human health risk; however, it is very difficult to propose remediation techniques

328for restoration of contaminated sites if the potential risks to biological communities

329are not considered (Moreno-Jimenez et al. 2011). For example, the risk posed by

330mining sites, which comes mainly from tailings with high concentration of poten-

331tially harmful elements (PHEs) (e.g. As, Cd, Cu, Pb, Zn), represents a serious

332environmental concern. Since abandoned mine sites are widely diffused, particu-

333larly in developed countries (Bini 2012; see also Chap. 5, this volume), there is the

334need to develop new (or to implement existing) methods of risk assessment to be

335applied to these sensible areas, in order to better quantify the potential environ-

336mental risk, also in the perspective of secondary poisoning to animals and even

337humans.

338A new screening methodology for quantitative impact assessment based on

339Environmental Risk Assessment (ERA) has been proposed recently (Moreno-

340Jimenez et al. 2011); it applies general principles for chemical risk assessment, as

341described in EU Technical Guidance Document (EC 2003), and develops in two

342steps. The first establishes eight risk levels according to the values of hazard

343quotients (HQs). HQs are calculated as the ratio between environmental
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344 concentrations (i.e. exposure or daily intake) and toxicity values (i.e. reference dose

345 or acute toxic dose). Consistently, a scoring system of 8 risk indexes (RIs) is defined

346 according to the level of disturbance. RIs from 0 to 4 are based on chronic exposure

347 and RIs from 5 to 7 are based on acute exposure (Table 10.1) (see Moreno-Jimenez

348 et al. 2011, for details).

349 The second step evaluates the overall potential impacts of a contaminated site

350 based on the Impact Index (ImI). This is obtained as the sum of the chronic and

351 acute RIs. Finally, the ImI obtained is assigned to five different categories, from

352 negligible to very high impact according to the following criteria:

RI HQchronicð Þ þ RI HQacuteð Þ ¼ ImI � 1 negligible impactð Þ
ImI � 2 low impactð Þ
ImI � 7 moderate impactð Þ
ImI � 9 high impactð Þ
ImI > 9 very high impactð Þ:

353 In order to select the ecological receptors and exposure routes, three protection

354 goals are considered: soil organisms (plants, earthworms and microorganisms),

355 aquatic organisms (algae, invertebrates and fish) and terrestrial vertebrates (birds

356 and mammals).

357 The exposure concentration of soil organisms (Csoil) is represented by the metal

358 concentrations measured in soil. The same Csoil values are also taken into account

359 when assessing the exposure of terrestrial vertebrates.

360 For the aquatic compartment, the exposure for aquatic organisms and terrestrial

361 vertebrates (through drinking water) is represented by the metal concentration in

362 the water samples (Cwater).

363 Three main exposure routes are considered for terrestrial vertebrates: oral food

364 ingestion, soil accidental ingestion and drinking water. Unlike to soil and aquatic

365 organisms, exposure levels for terrestrial vertebrates are estimated using exposure

366 models, admitted by different regulations (EC 2002a, b, 2003). The daily dose of

367 metals through oral food ingestion (DDfood) is calculated by the following

368 equation:

t:1 Table 10.1 Ranking of risk indexes based on hazard quotients and level of disturbance (Adapted

from Moreno-Jimenez et al. 2011)

Hazard quotients Risk index Level of disturbancet:2

<1 (predicted non-effect) 0 Negligible effectst:3

1–10 (predicted non-effect) 1 Sensitive speciest:4

1–10 (non-observed chronic effects) 2 Standard speciest:5

10–100 (non-observed chronic effects) 3 Communityt:6

>100 (non-observed chronic effects) 4 Ecological structuret:7

1–10 (50 % lethal acute effects) 5 Standard speciest:8

10–100 (50 % lethal acute effects) 6 Communityt:9

>100 (50 % lethal acute effects) 7 Ecological structuret:10
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DDfood ¼ FIR=W� Cfood� 100�MCð Þ=100 mg=kg b:w:=day,

369where FIR is the food intake rate of indicator species (kg food fresh material per

370day), W is the body weight (b.w.) of indicator species (kg), Cfood is the concen-

371tration of metal in food related to fresh material (mg/kg food), and MC is the

372moisture content of food source (%).

373The total DDfood for terrestrial vertebrates is the sum of values obtained from

374each exposure pathway (food, soil and drinking water). The risk quantification

375indicates potential risk to sensitive species (HQ >1) in all the investigated com-

376partments. Soil organisms are expected to suffer acute effects both to species and

377community, while chronic effects to standard species are likely to occur, and this

378may lead to possible overestimation of risk. A more realistic risk estimate is

379quantification of the bioavailable metal fraction in soils, although it is not generally

380admitted (Berthelot et al. 2008). In any case, the whole ecosystem seems to be

381highly impacted by (heavy) metals, and the site recovery seriously compromised.

382Taking into consideration time and costs of risk assessment procedures, an

383alternative way to reduce uncertainty, time and costs is applying regression models,

384based on soil properties, for estimating metal concentration in vegetables (Karo

385Bester et al. 2013). Yet, regression models identify statistically significant soil

386properties which have an influence on the accumulation of metals by plants.

387Identifying effective soil properties enables to drive metal transfer to the food

388chain, reducing the risk to human health. As application of the method, Karo Bester

389et al. (2013) developed a regression model to predict Cd concentration in selected

390vegetables grown on garden soils as a function of significant soil parameters (pH,

391SOC, clay content). Based on regression analysis, the most predictive soil proper-

392ties for metal uptake by most of the vegetables examined were soil Cd concentra-

393tion, pH and SOC, as expected. The Cd level exceeded the EU legislative maximum

394level (EC 1881, 2006) in carrots, followed by red beet, onion, chicory and endive.

395The main advantage of regression models is that they are time and cost effective,

396reducing the size of data sets needed to identify the statistically significant soil

397properties. However, the results of regression models are reliable when the sampled

398soils and vegetables are a statistically representative sample. Moreover, there may

399be also interactions between soils and other environmental properties, as geology

400and meteorological conditions. Therefore, the model results must be interpreted

401correctly.

4025.3 Exposure Assessment

403The exposure assessment identifies the pathways by which living organisms are

404potentially exposed to toxicants and estimates the magnitude, frequency and dura-

405tion of these actual and/or potential exposures (Lee et al. 2008).
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406 Estimate of exposure levels is a central step in Ecological Risk Assessment to

407 evaluate ecotoxicity risks posed by chemicals (Bertazzon et al. 2006). Although in

408 general regulatory guidelines emphasize that exposure conditions are a function of

409 spatial factors, exposure estimate methods ignore frequently site-specific conditions

410 that can be accounted for in risk assessment. Therefore, estimates derived from

411 non-spatial models are unreliable and potentially misleading.

412 Amethod for the characterization of contaminant exposure, based on data spatial

413 dependence which produces a spatial interpolation of the sampling points in a GIS

414 framework, has been proposed by Bertazzon et al. (2006). According to the scale of

415 the problem to be assessed, the method provides two different approaches, the site-

416 specific spatial risk assessment, and the regional one (Critto and Suter 2009). The

417 former is performed at local scale using site-specific data to define the spatial

418 distribution of risk, and provides reliable risk maps; its use has increasing interest,

419 combining quantitative information with spatial data. The latter is of more general

420 interest, dealing with problems that affect large geographical areas with multiple

421 habitats; it is used especially by policy makers facing problems caused by multiple

422 sources of hazards (e.g. subsidence, sediment contamination, benthic communities

423 population, fishing, etc.). For example, Micheletti (2006) produced maps showing

424 the spatial distribution of single and cumulative ecological risk for As, Cd, Ni, Zn

425 and PCBs in the lagoon of Venice, while Ungaro et al. (2008) expanded a previous

426 soil survey mapping the As probability of exceeding regularity thresholds in the

427 Venice lagoon watershed.

428 Interest in site-specific spatial risk assessment is more and more increasing. This

429 novel approach combines quantitative risk assessment procedures and spatial

430 distribution of stressors (e.g. contaminated sites or groundwater) and receptors

431 (e.g. plant community, human population) to facilitate understanding and commu-

432 nication (Gay and Korre 2006).

433 Bertazzon et al. (2006) applied the spatial analysis to a complex case study, the

434 lagoon of Venice (Italy), characterized by noteworthy spatial variability both in

435 morphology and in contaminated sediment distribution and properties. The pro-

436 posed model allowed estimating chemicals exposure levels of receptor organism

437 (clam: Tapes philipinarum) at any location in the lagoon, as well as hot spots, thus

438 preventing any concern with respect to human health by consuming contaminated

439 clams. Different site-specific risk assessment applications are available, concerning

440 in particular contaminated sites. Carlon et al. (2008) developed a technical software

441 (DESYRE), aimed at performing a spatial risk assessment, accessed directly in the

442 popular GIS platform ArcGIS 9.2. Pizzol et al. (2009) illustrated in detail the

443 structure of DESYRE. It is a Decision Support System (DSS) structured into six

444 modules (Socio-economy, Characterization, Risk Assessment, Technological
445 Assessment, Residual Risk Assessment, Decision) which represent the main phases

446 of contaminated sites management. The DSS objective is the creation of different

447 scenarios and their comparison in terms of residual risk following site remediation.

448 It integrates large volumes of georeferenced heterogeneous information (e.g. land

449 uses, industrial activities, population density, traffic, geology, hydrology, contam-

450 inant concentration), performing a spatially resolved environmental risk assessment
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451(see Pizzol et al. 2009, for details). The risk assessment module, in particular,

452provides tools for human health risk analysis of soil contaminants, and allows a

453risk-based zoning of the site. Considered exposure pathways in the module are the

454ingestion and dermal contact with soil and groundwater, and inhalation of vapours

455and particulate emissions.

456Currently, risk assessment approaches are becoming widely used in Europe to

457support the EU recent policies and EC Directives on environmental concerns

458(e.g. Commission’s White Paper 2001, European Thematic Strategy for Soil Pro-

459tection 2006, REACH regulatory 2013), also with specific networks for contami-

460nated sites, such as CARACAS, CLARINET and NICOLE (Critto and Suter 2009).

461Although there exist several differences among the Member States in terms of

462approach, there is a general consensus for developing a common data base and a set

463of models devoted to risk assessment of natural hazards, including contaminated

464sites. With this perspective, the EU Council has developed a set of guidelines for

465national risk assessment and mapping (EC 2010), in order to implement the

466methodology and to provide risk management instruments for policy-makers.

467Three basic steps are defined:

4681. Risk identification, which is the process of recognizing and describing risks;

4692. Risk analysis, which is the process of understanding the nature of risk and

470quantifying the risk level in function of probability, exposure and vulnerability;

4713. Risk evaluation, which is the process of comparing risk analysis with risk criteria

472to determine the acceptance level.

473To support the risk assessment process, risk maps should be developed to inform

474about the hazards and the vulnerability of land and residents, and to show the spatial

475distribution of major hazards, in order to develop a risk attenuation strategy. Risk

476assessment and management techniques, therefore, are a useful tool for: (i) the

477development of environmental regulations, (ii) providing a basis for site-specific

478decisions, (iii) ranking environmental risks, and (iv) comparing risks (Critto and

479Suter 2009).

4805.4 Human Health Risk Assessment

481The second aspect of risk assessment procedure refers to the probability of occur-

482rence of an event, and the probable magnitude of adverse health effects on human

483exposure to environmental hazards (NRC 1983; Paustenbach 2002).

484Human health risk assessment has been used to determine if exposure to a

485chemical, at any dose, could cause an increase in the incidence or adverse effects

486on human health (Lim et al. 2008).

487According to the procedure for human health risk assessment proposed by the

488US National Academy of Sciences (1993), as reported by Chon et al. (2011), four

489interactive and iterative steps compose the basic framework for risk assessment:
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490 1. hazard identification;

491 2. exposure assessment;

492 3. toxicity (dose–response) assessment;

493 4. risk characterization.

494 1. Hazard identification. The purpose of hazard identification is to identify

495 chemical substances which can affect a harmful effect in human body. A hazard

496 is a source of risk but not a risk itself. The concern of chemicals (COCs) is selected

497 by a risk assessor in this stage (Lim et al. 2008). The hazard identification process is

498 accomplished through the sampling of different environmental media (soils, waters

499 and plants), and the subsequent determination of the contaminant level of PHEs in

500 these samples.

501 2. Exposure assessment.- Exposure assessment, as in the ecological risk

502 described above, is an important analytical tool for evaluating the extent of actual

503 or potential exposure of receptors to the source of a chemical hazard, and is an

504 important component of any health risk assessment and epidemiological study

505 (Nieuwenhuijsen et al. 2006). The aims of exposure assessment are identification

506 of potential receptor(s), evaluation of exposure routes and pathways, and quantifi-

507 cation of exposure. The exposure assessment identifies the pathways by which

508 humans are potentially exposed to toxic substances and estimates the magnitude,

509 frequency and duration of these actual and/or potential exposures (Chon

510 et al. 2011). As direct associations need to be established between actual human

511 exposure and health effects, exposure assessment is a crucial element of epidemi-

512 ological research (Nieuwenhuijsen et al. 2006). Some environmental epidemiolog-

513 ical studies use simple proxies such as distance from a point source (e.g. a factory),

514 while others are categorised as industrial sources, agriculture land use, mining or

515 urban zones. Many of the former studies have reported positive associations with

516 health outcomes; however, it is difficult to attribute the incidence or prevalence of a

517 disease to a particular industry or chemical.

518 Conducting an exposure assessment involves analyzing contaminant releases,

519 identifying exposed populations, identifying all potential pathways of exposure,

520 estimating exposure point concentrations for specific pathways, and estimating

521 contaminants intakes for specific pathways (Lee et al. 2008; Chon et al. 2011).

522 As already stated, the most common pathways for toxicant intake are via direct

523 (oral) soil ingestion, food and drinking water assumption, dust inhalation, skin

524 absorption. The (receptor) exposure estimate is achieved through calculation of

525 the average daily dose intake of a given contaminant, or of the sum of several

526 contaminants, whose effect could be biomagnified.

527 The average daily dose (ADD) of the contaminant via the identified pathways

528 (i.e. soil ingestion, dust inhalation, food ingestion and drinking water pathways)

529 indicates the quantity of chemicals ingested per kilogram of body weight per day

530 (Kolluru et al. 1996; Paustenbach 2002):
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ADD ¼ C� IR� ED� EF=BW� AT� 365,

531where:

532C ¼ concentration of the contaminant in the environmental media (mgkg�1),

533IR ¼ ingestion rate (mg/day)

534ED ¼ exposure duration (years)

535EF ¼ exposure frequency (days/year)

536BW ¼ body weight of the receptor (kg)

537AT ¼ averaging time (life expectancy)

538365 ¼ conversion factor from year to days.

539Based on US-EPA database IRIS (US-EPA 1997), Chon et al. (2011) applied

540this model to As-contaminated agricultural soils in Korea, and found that exposure

541factors to chemicals of an adult farmer (IRsoil ¼ 50 � 10�6 kg/day; ED ¼ 30

542years; EF ¼ 350 days; AT ¼ 76 years, BW ¼ 60 kg), accounted for an As average

543daily dose of 7.8 � 10�5 mg/kg-day by soil ingestion, 2.56 � 10�4 mg/kg-day for

544drinking water consumption, and 2.3 � 10�3 mg/kg-day for rice consumption

545(i.e. two orders of magnitude with rice in comparison to direct soil ingestion), by

546far highest than rice consumed at non-contaminated sites, as reported by Lee

547et al. (2008) for similar conditions.

5483. Toxicity assessment – The purpose of toxicity assessment (i.e. dose–response

549assessment) is to estimate the potential for selected chemical substances to cause

550harmful effects in exposed people and to provide an estimate of the relationship

551between the extent of exposure and the increased likehood of harmful effects (Lim

552et al. 2008). The two principal toxicity indexes, as proposed by US-EPA (1992) are

553known as slope factor (SF) and reference dose (RfD). The SF is a conservative

554estimate of the increasing probability of an individual developing cancer as a result

555of exposure over a lifetime, and RfD is the estimated amount of the daily exposure

556level for the population that is likely to be without an appreciable risk of deleterious

557effects during a lifetime. The toxicity indexes of selected elements are presented in

558Table 10.2

559Concerning PHEs, accurate prediction and quantification of the toxicological

560risk for population resident in a contaminated region should be performed. Hazard

561indexes for non-cancer risk (HInc) induced by selected elements from mine sites

562have been calculated by Chon et al. (2011). Arsenic and Cd presented HInc > 1 in

563most samples, thereby indicating possible individual threats for human health,

564while Zn HInc was <1, suggesting threats to be unlikely. Conversely, cancer risk

565for As via soil ingestion pathway was acceptable in all the examined sites (range

5662.0 � 10�5–6.8 � 10�7), and was unacceptable with water consumption and espe-

567cially with food (up to 8.5 � 10�4).

568Currently, the risk assessment models incorporate PHEs data for a range of

569important exposure pathways (drinkable water, beverages, food, dust inhalation,

570soil ingestion) from which a total human intake is derived (Kolluru et al. 1996;

571Heikens 2006; Yi et al. 2011; Chon et al. 2011; Alvarenga et al. 2013).
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572 4 AU5. Risk characterization – Toxic risks refer to the non-carcinogenic harm

573 occurring due to the exposure level (Chon et al. 2011), and the extent of the harm

574 is indicated by US-EPA (1992, 1998) in terms of hazard quotient (HQnc):

HQnc ¼ E=RfD:

575 The exposure level (E), is the average daily dose (ADD), and the reference dose

576 (RfD) is the daily dosage that enables the exposed individual to sustain this level of

577 exposure over a prolonged time period without experiencing any harmful effect.

578 The hazard index (HI) is the overall toxic risk resulting from the sum of

579 individual toxic risk due to a single PHE. If HI <1.0, the non-carcinogenic adverse

580 effect is considered negligible.

581 The cancer risks refer to the probability one may develop cancer at a given

582 lifetime exposure level. High carcinogenic risk levels are expressed by the follow-

583 ing equation (US-EPA 1998):

Risk ¼ 1� exp �CDI� SFð Þ,

584 where CDI is the chronic daily intake over 70 years and SF is the slope factor (see

585 above).

586 Chon et al. (2011) proposed a similar calculation of cancer risk, which is

587 determined as the product of the lifetime exposure level (ADDlife) by the slope

588 factor (SF):

Cancer risk ¼ ADDlife� SF:

589 The above model has been widely accepted and used, but has been also

590 improved and adapted to specific purposes, combining human health with ecolog-

591 ical risk assessment (Korre et al. 2002).

592 For example, an integrated procedure has been proposed so far by Covello and

593 Merkhofer (1993), which consists of seven steps, and include:

594 (a) problem formulation;

595 (b) hazard identification;

596 (c) release assessment;

597 (d) exposure assessment;

Table 10.2 Toxicity indexes

of selected elements (Adapted

from Zhou et al. 2010)

Element Slope factor dose Referencet:1

As 1.5 0.003t:2

Cd 6.1 0.001t:3

Cr – 0.005t:4

Cu – 0.038t:5

Hg – 0.0001t:6

Pb – 0.004t:7

Zn – 0.30t:8
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598(e) consequence assessment;

599(f) risk estimation;

600(g) risk evaluation.

601The problem formulation is the planning process for performing the risk assess-

602ment. Its main goals are: (i) the selection of assessment endpoints (i.e. one or more

603ecosystem components or attributes); (ii) identification of the pathways by which

604human activities induce effects on the assessment endpoints, and (iii) identification

605of data needs and methods of data generation to continue the risk assessment (Critto

606and Suter 2009).

607The hazard identification is aimed at identifying the potential threat for the

608environment (e.g. a landslide or flooding, or waste disposal on soil and groundwa-

609ter) or which can determine a harmful effect in human body (e.g. PHEs). As

610previously stated, the hazard identification process is accomplished through the

611collection of environmental data (e.g. sampling of soils, waters and plants, and the

612subsequent determination of the contaminant level of PHEs in these samples).

613The release assessment step involves the identification and monitoring of the

614source, and the use of statistical analysis, spatial analysis (Bertazzon et al. 2006)

615and modelling techniques to quantify the source of risk.

616The exposure assessment process entails the characterization of exposure, iden-

617tification of the exposure routes, and description of the exposed population, and the

618analysis of all the critical variables of the exposure scenario (Korre et al. 2002). The

619analytical phase points to the consequence assessment, and allows quantification of
620the land constraints (e.g. rock detachment, soil liquefaction, release and fate of

621contaminants), and characterization of ecological effects, and defines the exposure-

622response relationships.

623The last two steps, risk estimation and risk evaluation provide risk estimates

624through the integration of results of exposure and effects.

625Concerning human health, in general, the PHEs exposure routes related to soil

626are direct soil ingestion and dermal absorption. It is known from literature

627(Veerkamp 1994; Korre et al. 2002) that dermal absorption is significant in the

628case of organic substances (dioxins, PAHs) and organometallic compounds

629(e.g. Hg-methyl, Pb-tetraethyl, Sn-trialchylchloride), but is negligible in the case

630of heavy metals. Therefore, only the ingestion pathway is generally investigated.

631For example, with lead exposure the Chronic Daily Intake (CDI) of Pb deriving

632from the pathway of direct ingestion of contaminated soil is calculated as follows

633(Korre et al. 2002):

CDI ¼ Cs� IR� CF� FI� EF� EDð Þ= BW� ATð Þ

634where Cs is the Pb concentration in soil (mgkg�1), IR is the ingestion rate of soil

635from all sources (mgday�1), CF is a conversion factor (10�6 mgkg�1), FI is the

636fraction ingested from the site as a fraction of the total from all sources (in range

6370.0–1.0), EF in the exposure frequency (days year�1), ED is the exposure duration
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638 (years), BW is the body weight (kg) and AT is averaging time (days). For

639 non-cancer risk AT ¼ ED � 365.

640 Advanced geostatistics coupled with exposure assessment of residents at a

641 Pb-contaminated site (Korre et al. 2002) allowed to estimate the fraction of Pb

642 absorbed into the vascular system after ingestion; it was considered maximum and

643 was set to one. This represent the worst-case scenario, which enlarges the influence

644 of the ingestion pathway.

645 The US-EPA generic reference dose (RfD) is a commonly used estimate of

646 exposure for the human population (US-EPA 1992, 1998). Several RfD values for

647 Pb exist in the literature; among the most commonly reported, US-EPA proposes

648 0.1 mgkg�1day�1 (Petts et al. 1997), and AERIS (Aid for Evaluating the redevel-

649 opment of Industrial Sites) proposes 0.0035 mgkg�1day�1 (AERIS 1991). The

650 former is a generic reference level (maximum value in the literature), the latter

651 one is the smallest oral exposure RfD.

652 After the completion of the risk assessment steps, Korre et al. (2002) calculated a

653 sensitivity index (SI) based on the model parameters, applying the following

654 equation:

SI ¼ 1� CDImin=CDImax

655 where CDI is the chronic daily intake. The closer to zero is SI, the smaller is the

656 correlation between the input parameter and the resultant chronic daily intake. If SI

657 is close to one, the investigated parameter was labelled as sensitive, and has a

658 significant effect on the resultant CDI.

659 The CDI of Pb at contaminated sites, deriving from the pathway of direct

660 ingestion of contaminated soil was estimated for two population groups (see the

661 CDI equation above): male adults with maximum exposure to soil (gardeners,

662 farmers) and children 1–6 years old. The spatial representation of the results by a

663 GIS model yielded a comprehensive picture of the risk to human health from direct

664 ingestion of soil.

665 The results showed that the highest risk probability is consistent with high heavy

666 metal concentrations. Yet, the effect of the selection of the reference dose was

667 significant: when a low RfD was chosen, the probability of high exposure was

668 significant for the target populations. On the contrary, when a high RfD was chosen,

669 the probability of high exposure was smaller.

670 6 Urban Soils Contamination and Risk Assessment

671 Most frequently, high contamination levels affect urban soils, as a consequence of

672 various anthropic activities (industry, traffic, waste disposal etc.), which determine

673 PHEs concentration levels that can pose significant human health risks due to direct

674 soil ingestion, inhalation of volatiles and dermal contact (Siciliano et al. 2009),

675 especially in public parks and playground areas (see Chap. 6, this volume).
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676Particularly children and senior citizens are most vulnerable, because of their less

677immunological defence and the possible exposure to PHEs (Luo et al. 2012). For

678instance, lead contamination is ubiquitous in urban soils, and can be re-suspended

679in the air posing ongoing threats particularly to children because of its effects as a

680neurotoxin that inhibits development (Schmidt 2010).

681In comparison with agricultural soils which mainly influence human health

682indirectly via food chain (see Chap. 3, this volume), soils in residential areas and

683urban parks have special recreational functions. Due to open space activities such as

684jogging, sporting, playground etc., re-suspended dust and hand-to-mouth oral

685ingestion can be a critical pathway of exposure for both adults and children, and

686it is important to quantify the various PHEs exposure risk levels for citizens.

687Urban soil contamination has been generally evaluated by analysing total metal

688concentrations compared with corresponding soil guidelines values, that may

689overestimate the actual health risks, as is the case of Ni in serpentine soils

690(Angelone et al. 1993).

691The risk posed by PHEs with ingested soil depends on the element fraction that

692is soluble in the gastrointestinal tract available for subsequent absorption (i.e. only a

693fraction of the total soil metal content is bioaccessible). Luo et al. (2012) have

694developed an in vitro digestion model to assess the human bioaccessibility, simu-

695lating the successive solubility of metal under stomach (gastric acid) and intestinal

696tract conditions. The proposed in vitro bioaccessibility extraction test is a static

697gastric model by which bioaccessible metals are extracted under acid conditions

698simulating those in human stomach. The percentage of ingested bioaccessible

699fraction (BAF%) of each metal is calculated as the percentage of the fraction

700soluble in simulated stomach acid (Cbioacc mgkg�1) relative to the pseudo-total

701concentration (Ctotal, mgkg�1) of the sample using the following equation:

BAF% ¼ Cbioacc=Ctotal� 100:

702Exposure of humans to PHEs in urban soils can occur via three main pathways:

703direct oral ingestion of substrate particles (also called Chronic Daily Intake by

704ingestion: CDI ingestion), inhalation of dust re-suspended from soil through mouth

705and nose (Chronic Daily Intake by inhalation: CDI inhalation), and absorption of

706heavy metals-bearing soil particles by exposed skin (Chronic Daily Intake by

707dermal contact: CDI dermal). Both non-carcinogenic and carcinogenic risks of

708these exposure routes are considered in literature, taking particularly care of the

709non-carcinogenic hazard exposure for children (Luo et al. 2012). The dose received

710(chronic daily intake, CDI, i.e. average daily dose ADD) through the main exposure

711routes is calculated by the adapted US-EPA (1989, 1997) and US-DOE (2011)

712models (acronyms are the same as above).

713Non-carcinogenic hazard for children is determined as the summation of:
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CDI ingestion ¼ C� IR� EF� ED=BW� ATð Þ � 10�6

CDI inhalation ¼ C� EF� ET� ED=PEF� 24� AT

CDI dermal ¼ C� SA� AF� ABS� EF� ED=BW� ATð Þ � 10�6

see Luo et al:2012, for detailsð Þ

714 The carcinogenic risk for adults is calculated for the lifetime exposure, estimated

715 as the incremental probability of an individual developing cancer over a lifetime as

716 a result of total exposure to the potential carcinogen. The dose received (chronic

717 daily intake, CDI, i.e. average daily dose ADD) through the main exposure routes is

718 calculated by the adapted US-EPA (1989, 1997) and US-DOE (2011) models

719 (acronyms are the same as above).

720 Carcinogenic risk for adults (see Luo et al. 2012, for details):

CDIingestion ¼ C� IR� EF=ATð Þ � 10�6

CDI inhalation ¼ C� EF� ET� ED=PEF� 24� ATð Þ � 103

CDI dermal ¼ C� ABS� EF� DFS=ATð Þ � 10�6

DFS ¼ soil dermal contact factor-age-adjusted:

721 Though interactions between some metals might result in a synergistic response

722 (Xu et al. 2011), it is assumed that all the metal risks are additive, hence it is

723 possible to calculate the cumulative non-carcinogenic hazard expressed as the

724 Hazard Index as the sum of the three Hazard Quotients (HI ¼ ∑ HQ ing +

725 HQ inhal + HQ der), and carcinogenic risk expressed as the total cancer RISK:

total RISK ¼
X

Risk ingþ Risk inhalþ Risk der
� �

:

726 Considering the site-specific oral bioaccessibility, the human exposure estimate

727 to the main exposure pathway (soil ingestion) is adjusted when calculating the HQ

728 ingestion and Risk ingestion:

CDI ingestion� adjusted ¼ CDI ingestion� BAF%:

729 Concerning hazard quotient, as a general rule, the greater is the (positive) value

730 of HQ, the greater is the likehood to have adverse health effects. Hence, HQ � 1

731 suggests unlikely adverse health effects, whereas HQ > 1 suggests adverse health

732 effects to be likely. Concerning (total) cancer risk, the value 10�6 is considered the

733 carcinogenic target risk by USEPA (2011): the cancer risk lower than 10�6

734 (a probability of an individual in one million to develop cancer) is considered to

735 be negligible, while cancer risks above 10�4 are considered unacceptable by most

736 international regulatory agencies (Luo et al. 2012). Though the human health risk

737 levels of PHEs at urban sites are not negligible, the metal levels are often lower than

738 various current guideline values. Hence, soil quality criteria still based on total

739 metal concentrations might not accurately estimate the real risks (Baize and Van

740 Oort 2013) and are just appropriate for worst-case scenarios. Overall, the actually

741 occurring adverse effects of heavy metals in urban soils are site-specific. Moreover,
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742the importance of exposure pathways, metal bioaccessibility and soil properties in

743assessing the realistic risks of soil metals should be highlighted.

7447 Land Uses and Risk Assessment

745Besides urban soils, different land use types significantly control the soil metal

746exposure and corresponding human health risks. Six types of land use are generally

747considered: residential, agricultural, forest, water, mine and bare land) AU6. Residential

748soils, as urban soils, may be affected by PHEs released by human activities

749(e.g. traffic, road dust); agricultural soils suffer for large use of fertilizers and

750herbicides (Simon 2013); mine soils are naturally enriched in PHEs that might

751pose serious problems to human health (Chap. 5, this volume), and also forest soils

752may be enriched in heavy metals released by the geological composition of parent

753rocks (Chap. 4, this volume), especially with acidic conditions that enhance mineral

754weathering. Therefore, in some developed countries such as Canada (CCME 2007),

755UK (UKEA 2009) and USA (USEPA 2011), the soil guideline values of contam-

756inants have been proposed for different land use (Table 10.3).

757A methodology to calculate the human health risk from heavy metals has been

758proposed recently by Zhao et al. (2012), based on a dose–response model, including

759different land uses. Three factors are considered in a dose–response health risk

760assessment: the sources, pathways and receptors. The first two are different for each

761land use (residential, agricultural, forest, water, mine and bare land). Sources can be

762dust, water, crops/food; exposure pathway is generally ingestion (soil and food) or

763inhalation (dust). Receptors are living organisms and especially local population

764that lives near the source.

765The models used to predict the heavy metal contents of food (rice and vegeta-

766bles) are developed using a multiple regression analysis based on metal concentra-

767tion in food and in soil, in relation to soil pH:

logMetal cropð Þ ¼ aþ b� logMetal soilð Þ þ c� pH soil,

768where a, b, c are coefficients that vary depending on the soil, heavy metal, climate

769and crop type.

770By applying this model to rice and large leaf vegetables, Zhao et al. (2012) found

771a significant positive correlation for metal concentration (Cd, Cu and Zn) in

772vegetables and in soil. This is typical of metal tolerant (i.e. indicator) plants, as

773stated by Baker (1981). The relationship of metal intake to its relative reference

774dose (HQ ¼ CDI/RfD) was used to assess the human health risk. Food daily intake

775was estimated to be 370 g/day for adults (65 BW); the reference dose was in the

776range 0.001–0.3 mg/kg/day (the lowest for Cd and the highest for Zn), consistent

777with US-EPA (2006, 2009). The maximum HQs for Cd and Cu exceeded 1.0,

778indicating a potential human health risk associated especially with Cd concentra-

779tion in soil and its transfer to food chain and local population. Yet, Cd level in blood
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780 of local residents in the investigated area was in the range 24.10 (highest exposure)

781 �1.87 (lowest exposure) μg/L, as reported by Wang et al. (2011).

782 The modelling proposed (Zhao et al. 2012) provides a reasonable assessment of

783 human health risk by integrating a spatial analysis of contaminant concentrations

784 and land use.

785 Other approaches have become common in the last decade in the Environmental

786 Risk Assessment. One of these is based on the Weight of Evidence (WoE), a system

787 which allows determination of environmental risks by weighting multiple Lines of

788 Evidence (LoEs) that report the quality, extent, and congruence of data

789 (e.g. chemical analyses) that pertain to important aspects of the environment

790 (Smith et al. 2002). Another approach is the Sediment Quality Triad (SQT),

791 which is based on a standard combination of three LoEs, namely Sediment chem-

792 istry, Sediment toxicity and Benthic community structure. Each LoE provides

793 distinct and complementary information about the investigated environment. More-

794 over, the latter is the assessment endpoint that changes in response to exposure to a

795 certain stressor: the model is widely used, and is continuously improved (Chapman

796 et al. 2002).

797 8 Biomonitoring

798 As previously stated, it is difficult to attribute the incidence of a disturbance at any

799 environmental compartment, or some adverse effects to humans, to a particular

800 industrial activity or a chemical substance (Nieuwenhuijsen et al. 2006), as is the

801 case of arbitrary waste disposal on the land (e.g. chromium-rich effluents from

802 leather industry, see f.i. Bini et al. 2008), or emissions in the atmosphere (see

803 Chap. 1, this volume). This is further complicated by other factors such as the fate

804 of chemicals (Alloway 1995), their pattern of dispersion, or the influence of local

805 geological, hydrological and meteorological conditions (Dall’Aglio et al. 1966).

806 Biological monitoring, also called biomonitoring, is a promising method of

t:1 Table 10.3 PHEs concentrations at various sites and guidelines values for different land uses

Location Land use Cd Cr Cu Ni Pb Znt:2

China (21 cities) Residential 0.39 69 40 25 55 109t:3

Europe Agricultural 0.79 53 195 27 39 68t:4

Europe (34 cities) Residential 0.95 59 46 22 102 130t:5

Canadian guidelines Agricultural 14 64 63 50 70 200t:6

Canadian guidelines Residential 10 64 63 50 140 200t:7

Canadian guidelines Industrial 22 87 91 50 600 360t:8

UK guidelines Residential 10 100 36 130 85 140t:9

UK guidelines Industrial 230 – – 1,800 – –t:10

US-EPA soil screening level Residential 70 120 3,100 1,500 400 23,000t:11

US-EPA soil screening level Industrial 800 1,500 41,000 20,000 800 31,000t:12

Italy Mine soils 33 95 412 54 306 657t:13
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807assessing environmental and human health risk by analysing PHEs concentration in

808environmental matrixes (e.g. plants, animals), or in human tissues (hairs, nails), or

809in a biological matrix (blood, urine).

810Concerning human health, biological monitoring is usually described as the

811measurement of a particular chemical substance, or a metabolite of that substance,

812in a suitable biological matrix (e.g. blood, urine, serum, and tissues such as hairs,

813nails, sweats), that act as an effective biomarker. For example, Cd levels in toenail

814were analysed in relation to prostate cancer (Vinceti et al. 2007); Chuang

815et al. (2007) found significant relationships between blood PHEs and hearing

816function; Se in human blood was related by Schalin (1980) to the aetiology of

817multiple sclerosis; depleted U was determined in urine of military personnel

818involved in the Bosnia war (Roth et al. 2001), and Cd in urine of exposed workers

819was found as a result of various health problems due to prolonged exposure (Han

820et al. 2009); quite recently, Giaccio et al. (2012) considered heavy metals in serum

821as the main responsible for male infertility.

822The application of biomonitoring as a direct method of measuring possible

823contaminant exposure is frequently limited by the availability of adequate samples

824(Nieuwenhuijsen et al. 2006). For example, in the environmental compartments,

825mosses proved so far useful traps for airborne PHEs supply (Steinnes 1980), and

826unusually low Se concentration in pastures was considered responsible for disorders

827in grazing animals in several parts of the world (Schalin 1980).

828In human population, blood and urine are often the preferred media, since many

829toxic substances are easily measured in these media. For example, urine Cd proved

830consistently associated with various renal and bone diseases (Bernard 2008), and

831effective biomonitoring with urine and nails showed that human As exposure

832decreased with distance from a power station (Wilhem et al. 2005). Biomonitoring

833techniques can also be used to assess early biological or physiological changes that

834are correlated with the uptake of toxic substances. These may induce molecular

835and/or cellular alterations that occur along the temporal pathway connecting ambi-

836ent exposure to a chemical toxicant, as reported by Maleci et al. (2013) in

837Taraxacum officinale. Similarly, Sarkar et al. (2013) found that the outcome of

838Cd exposure could be apoptosis, growth inhibition, proliferation or carcinogenicity

839in animal cells.

840Indirect methods of estimating exposure such as simulation studies, GIS map-

841ping, mathematical models as well as other statistical techniques are also currently

842explored since the last years of last century (Goovaerts and Journel 1995; Bailer

843et al. 1997; Ungaro et al. 2008). One of the most known environmental and human

844concern is exposure to asbestos, a sneaky carcinogenic substance which may have

845adverse effect on human health (lung cancer) with long incubation. A number of

846studies were conducted during the period 1950–1990 to determine exposure of car

847mechanics to asbestos released from brakes, but unfortunately certain characteris-

848tics of exposure were not studied at that time when the risk posed by asbestos was

849not considered (Nieuwenhuijsen et al. 2006).

850Simulation studies have been conducted recently to fill possible data gaps (see

851f.i. Paustenbach et al. 2003), particularly with the finest aerosol particulate (PM1,
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852 PM2.5; see Rampazzo et al. 2013). Also useful to this aim are retrospective

853 simulation studies with historical records on metal distribution in water, soils and

854 sediments carried out since the 1960s (e.g. Dall’Aglio et al. 1966), and in human

855 bones (Martinez-Garcia et al. 2005). More recently, Khan and Cao (2012) paid

856 particular attention to organic environmental contaminants such as dioxin, PCBs

857 and PAHs. This information, coupled with the recently updated mortality data,

858 could be used to estimate accurately the daily intake and the carcinogenic potency

859 of such toxicants.

860 In recent years, mathematical modelling has become an important tool in

861 environmental research (Goovaerts 1997), and has been greatly enforced by the

862 use of geographical information systems (GIS) and geostatistical techniques. A

863 model may help to explain a complex system and to study the effects of different

864 components, and to predict the behavior of components (e.g. PHEs in environmen-

865 tal media). Models are typically applied to study impacts of individual sources

866 (hot-spots), multiple-source industrial facilities, metropolitan areas, or larger

867 regional areas (Rampazzo et al. 2013). For example, regional models allow solving

868 important pollution phenomena and concentration gradients in areas where point

869 sources are present (e.g. mine areas). The spatial scales range from up to few

870 kilometers (for large industrial point sources), to 100 kilometers (for individual

871 urban areas), to few 1,000 kilometers (for larger regional areas). The development

872 of GISs (Geographical Information Systems) has further enhanced the facility of

873 analysis, combining all the territorial data sets (e.g. population statistics, social and

874 environmental data, land use, etc.) in information layers, which allow understand-

875 ing relationships not always evident from single data sets. In the last decades,

876 modelling techniques have greatly improved the assessment of local pollution

877 patterns on the basis of monitored data, and are likely to be important in further

878 studies.
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