
Information-flow Analysis of
Hibernate Query Language

Agostino Cortesi1 and Raju Halder2

1 Università Ca’ Foscari Venezia, Italy, cortesi@unive.it
2 Indian Institute of Technology Patna, India, halder@iitp.ac.in

Abstract. Hibernate Query Language (HQL) provides a framework for
mapping object-oriented domain models to traditional relational databases.
In this context, existing information leakage analyses cannot be applied
directly, due to the presence and interaction of high-level application vari-
ables and SQL database attributes. The paper extends the Abstract Inter-
pretation framework to properly deal with this challenging applicative
scenario, by using the symbolic domain of positive propositional formu-
lae to capture variable dependences affecting (directly or indirectly) the
propagation of confidential data.

Key words: Hibernate Query Language, Information Leakage, Static Anal-
ysis, Abstract Interpretation

1 Introduction

Hibernate Query Language (HQL) provides a framework for mapping object-
oriented domain models to traditional relational databases [1, 2, 6]. Basically it is
an ORM (Object Relational Mapping) which solves object-relational impedance
mismatch problems, by replacing direct persistence-related database accesses
with high-level object handling functions. Various methods in “Session” are
used to propagate object’s states from memory to the database (or vice versa).
Hibernate will detect any change made to an object in persistent state and
synchronizes the state with the database when the unit of work completes. A
HQL query is translated by Hibernate into a set of conventional SQL queries
during run time which in turn performs actions on the database.

Preserving confidentiality of sensitive information in software systems al-
ways remains a thrust area for researchers. Sensitive data may be leaked mali-
ciously or even accidentally through a bug in the program [14]. For example,
any health information processing system may release patient’s data, or any on-
line transaction system may release customer’s credit card information through
covert channels while processing.

The following code fragments depict two different scenarios (explicit/direct
flow and implicit/indirect flow) of information leakage:

Explicit Flow Implicit flow

if(h==0)
l := h l=5;

else
l=10;

2 A. Cortesi, R. Halder

Assuming variables ‘h’ and ‘l’ are private and public respectively, it is clear from
the code that confidential data in ‘h’ can be deduced by attackers observing ‘l’
on the output channel.

As traditional security measures (e.g. access control, encryption, etc.) do not
fit to solve this when sensitive information is released from the source legiti-
mately and it is propagated through the software during computations, various
language-based information flow security analysis approaches are proposed [9,
10, 14, 15]. This is formalized by the non-interference principle that says “a vari-
ation of confidential data does not cause any variation to public data”. Works in
this direction have been starting with the pioneering work of Dennings in the
1970s [5].

Most of the notable works [8–10, 13] which refer to imperative, object-
oriented, functional, and structured query languages, can not be applied directly
to the case of HQL due to the presence and interaction of high-level HQL vari-
ables and database attributes through Session methods. Moreover, analyzing
object-oriented features of HQL does not meet our objectives neither.

In this paper, we extend the abstract interpretation-based framework in [16]
to the case of HQL, focussing on Session methods which act as persistent
manager. This allows us to perform leakage analysis of sensitive database in-
formation when is accessed through high-level HQL code.

The proposed approach is two-folded:

– Defining the concrete and an abstract transition semantics of HQL, by using
symbolic domain of positive propositional formulae.

– Analyzing possible information leakage based on the abstract semantics,
focussing on variable dependences of database attributes on high-level HQL
variables.

The structure of the paper is as follows: Section 2 provides a motivational
example. In Section 3, we formalize the concrete and an abstract transition
semantics of HQL, by using the symbolic domain of positive propositional
formulae. In Section 4, we perform information leakage analysis of programs
based on the abstract semantics which captures possible leakage of confidential
data. Section 5 concludes the paper.

2 Motivating Example

The language-based information flow security analysis has been applied in
case of object-oriented languages, aiming at identifying possible information
leakage to unauthorized users [9, 10, 12]. However, the conventional approaches
do not fit to the case of HQL, when considering the sensitivity level of database
information and influence on them through high-level HQL variables.

Consider, for instance, an example in Figure 1(a). Here, values of the table
corresponding to the class c1 are used to make a list, and for each element of the
list an update is performed on the table corresponding to the class c2. Observe

Information-flow Analysis of Hibernate Query Language 3

that there is an information-flow from confidential (denoted by h) to public
variables (denoted by l). In fact, the confidential database information h1 which
is extracted at statement 3, affects the public view of the database information
l1 at statement 8. This fact is depicted in Figure 1(b).

The new challenge in this scenario w.r.t. state-of-the-art of information leak-
age detection is that we need to consider both application variables and SQL
variables (corresponding to the database attributes).

3 Concrete and Abstract Semantics of HQL

We refer to the semantics of object-oriented programming language as defined in
[11]. We just recall some basics of it. Then we formalize the concrete and abstract
transition semantics of HQL, considering the Hibernate Session Objects, in
order to identify possible information leakage.

3.1 Concrete Semantics

Object-Oriented Programming (OOP) language consists of a set of classes in-
cluding a main class from where execution starts. Therefore, a program P in OOP
is defined as P = 〈cmain, L〉 where Class denotes the set of classes, cmain ∈ Class

is the main class, L ⊂ Class are the other classes present in P. A class c ∈ Class
is defined as a triplet c = 〈init, F, M〉 where init is the constructor, F is the set
of fields, and M is the set of member methods in c.

Let Var, Val and Loc be the set of variables, the domain of values and the
set of memory locations respectively. The set of environments is defined as
Env : Var −→ Loc. The set of stores is defined as Store : Loc −→ Val.

The semantics of constructor and methods are defined below. Given a store
s, the constructor maps its fields to fresh locations and then assigns values
into those locations. Constructors never return output, but methods may return
output.

Definition 1 (Constructor Semantics). Given a store s. Let {ain, apc} ⊆ Loc be the
free locations, Valin ⊆ Val be the semantic domain for input values. Let vin ∈ Valin
and pcexit be the input value and the exit point of the constructor. The semantic of the
class constructor init, S[[init]] ∈ (Store × Val→ ℘(Env × Store)), is defined by

S[[init]](s, vin) =
{
(e0, s0) | (e0 , Vin → ain, pc→ apc)∧(s0 , s[ain → vin, apc → pcexit])

}
Definition 2 (Method Semantics). Let Valin ⊆ Val and Valout ⊆ Val be the se-
mantic domains for the input values and the output values respectively. Let vin ∈ Valin
be the input values, ain and apc be the fresh memory locations, and pcexit be the exit
point of the method m. The semantic of a method m, S[[m]] ∈ (Env × Store × Valin →

℘(Env × Store × Valout), is defined as

S[[m]](e, s, vin) =
{
(e′, s′, vout) | (e′ , e[Vin → ain, pc→ apc])∧

(s′ , s[ain → vin, apc → pcexit]) ∧ vout ∈ Valout

}

4 A. Cortesi, R. Halder

1. Session session = getSessionFactory().openSession();
2. Transaction tx =session.beginTransaction();
3. Query Q1 = session.createQuery(“SELECT id1, h1 FROM c1”);
4. List R1 = Q1.list();
5. for(Object[] obj:R1){
6. pk=(Int) obj[0];
7. h2=(Int) obj[1];
8. Query Q2 = session.createQuery(“UPDATE c2 SET l2 = l2 +1

WHERE id2 = pk AND h2=1000”);
9. int result = Q2.executeUpdate();}
10. tx.commit();
11. session.close();

(a) A HQL program P

id1 h1 ……

id2 l2 ……

SELECT

Q1

UPDATE

Q2

Table corresponding to c1

List R1

Table corresponding to c2

R1.[0] R1.[1]

R1.[0] R1.[1] R1.[0] R1.[1]

Obj[0]= R1.[0]
Obj[1]= R1.[1]
pk= Obj[0]
h2= Obj[1]

(b) Execution view of P

Fig. 1: An example HQL program and its execution view

Information-flow Analysis of Hibernate Query Language 5

Object semantics in object-oriented languages is defined in terms of interaction
history between the program-context and the object.

Set of Interaction States. The set of interaction states in object-oriented languages
is defined by

Σ = Env × Store × Valout × ℘(Loc)

where Env, Store, Valout, and Loc are the set of application environments, the
set of stores, the set of output values, and the set of addresses (escaped ones
only) respectively.

Set of Initial Interaction States. The set of initial interaction states is defined by

I0 =
{
〈e0, s0, φ, ∅〉 | S[[init]](vin, s) 3 〈e0, s0〉, vin ∈ Valin

}
Observe that φ denotes no output produced by the constructor and ∅ represents
the empty context with no escaped address.

Transition Relation. Let Lab = (M × Valin) ∪ {upd} be a set of labels, where M
is the set of class-methods, Valin is the set of input values and upd denotes an
indirect update operation by the context.

The transition relation T : Lab × Σ → ℘(Σ) specifies which successor
interaction states σ′ = 〈e′, s′, v′, Esc′〉 ∈ Σ can follow (i) when an object’s methods
m ∈ M with input vin ∈ Valin is directly invoked on an interaction state σ =
〈e, s, v, Esc〉 (direct interaction), or (ii) the context indirectly updates an address
escaped from an object’s scope (indirect interaction).

Definition 3 (Direct Interaction Tdir). Transition on Direct Interaction is defined
below:

Tdir[[(m, vin)]](〈e, s, v, Esc〉) =
{
〈e′, s′, v′, Esc′〉 | S[[m]](〈e, s, vin〉) 3 〈e′, s′, v′〉

∧ Esc′ = Esc ∪ reach(v′, s′)
}

where

reach(v, s) =

if v ∈ Loc
{v} ∪ {reach(e′(f), s) | ∃B. B = {init, F, M}, f ∈ F,
s(v) is an instance of B, s(s(v)) = e′

else ∅

Definition 4 (Indirect Interaction Tind). Transition on Indirect Interaction is de-
fined below:

Tind[[upd]](〈e, s, v, Esc〉) =
{
〈e, s′, v, Esc〉 | ∃a ∈ Esc. Update(a, s) 3 s′

}
where Update(a, s) = {s′ | ∃v ∈ Val. s′ = s[a← v]}

Definition 5 (Transition relation T). Let σ ∈ Σ be an interaction state. The transi-
tion relation T : Lab × Σ→ ℘(Σ) is defined as T = Tdir ∪Tind, where Tdir and Tind
represent direct and indirect transitions respectively.

6 A. Cortesi, R. Halder

Concrete Semantics of Session Objects An attractive feature of HQL is the
presence of Hibernate Sessionwhich provides a central interface between the
application and Hibernate and acts as persistence manager. A transient object is
converted into persistent state when associated with Hibernate Session, which
has a representation in the underlying database. Various methods in Hibernate
Session are used to propagate object’s states from memory to the database (or
vice versa).

We denote the abstract syntax of a Session method by a triplet 〈C, φ, OP〉,
where OP is the operation to be performed on the database tuples corresponding
to a set of objects of classes c ∈ C satisfying the condition φ. This is depicted in
Table 1.

Following [7], the abstract syntax of any SQL statement Q is denoted by a tu-
ple 〈A, φ〉, meaning that Q first identifies an active data set from the database us-
ing a pre-conditionφ that follows first-order logic, and then performs the appro-
priate operations A on the selected data set. For instance, the query “SELECT a1,

a2 FROM t WHERE a3 ≤ 30” is denoted by 〈A, φ〉 where A represents the action-
part “SELECT a1, a2 FROM t” and φ represents the conditional-part “a3 ≤ 30”.
The database environment ρd and the table environment ρt are defined as [7]:

Database Environment. We consider a database as a set of indexed tables {ti | i ∈ Ix}

for a given set of indexes Ix. We define database environment by a function ρd
whose domain is Ix, such that for i ∈ Ix, ρd(i) = ti.

Table Environment. Given a database environment ρd and a table t ∈ d. We
define attr(t) = {a1, a2, ..., ak}. So, t ⊆ D1 × D2 × × Dk where, ai is the attribute
corresponding to the typed domain Di . A table environment ρt for a table t is
defined as a function such that for any attribute ai ∈ attr(t),

ρt(ai) = 〈πi(l j) | l j ∈ t〉

Where π is the projection operator, i.e. πi(l j) is the ith element of the l j-th row. In
other words, ρt maps ai to the ordered set of values over the rows of the table t.

Given a HQL environment e ∈ Env, a HQL store s ∈ Store, and a database
environmentρd ∈ Ed. The concrete semantics of Sessionmethods are defined by
specifying how they are executed on (e, s, ρd), resulting into new state (e′, s′, ρd′).
These make the use of the semantics of database statements SELECT, INSERT,
UPDATE, DELETE [7].

Fix-point Semantics of HQL We extend the notion of interaction states of OOP
[11] to the case of HQL, considering the interaction of context with Session
objects. To this aim, we include database environment in the definition of HQL
states. The set of interaction states of HQL is, thus, defined by

Σ = Env × Store × Ed × Valout × ℘(Loc)

where Env, Store, Ed , Valout, and Loc are the set of application environments,
the set of stores, the set of database environments, the set of output values, and
the set of addresses respectively.

Information-flow Analysis of Hibernate Query Language 7

Constants and Variables
n ∈ N Set of Integers
v ∈ V Set of Variables

Arithmetic and Boolean Expressions
exp ∈ E Set of Arithmetic Expressions
exp ::= n | v | exp1 ⊕ exp2

where ⊕ ∈ {+,−, ∗, /}
b ∈ B Set of Boolean Expressions
b ::= true | false | exp1 ⊗ exp2|¬b|b1 � b2

where ⊗ ∈ {≤,≥,==, >,,, . . . } and � ∈ {∨,∧}
Well-formed Formulas

τ ∈ T Set of Terms
τ ::= n | v | fn(τ1, τ2, ..., τn)

where fn is an n-ary function.
a f ∈ A f Set of Atomic Formulas
a f ::= Rn(τ1, τ2, ..., τn) | τ1 == τ2

where Rn(τ1, τ2, ..., τn) ∈ {true, f alse}
φ ∈ W Set of Well-formed Formulas
φ ::= a f | ¬φ | φ1 � φ2

where � ∈ {∨,∧}
HQL Functions

g(~e) ::= GROUP BY(~exp) | id
where ~exp = 〈exp1, ..., expn | expi ∈ E〉

r ::= DISTINCT | ALL
s ::= AVG | SUM | MAX | MIN | COUNT

h(exp) ::= s ◦ r(exp) | DISTINCT(exp) | id
h(∗) ::= COUNT(*)

where * represents a list of database attributes denoted by ~vd
~h(~x) ::= 〈h1(x1), ..., hn(xn)〉

where ~h = 〈h1, ..., hn〉 and ~x = 〈x1, ..., xn | xi = exp ∨ xi = ∗〉
f (~exp) ::= ORDER BY ASC(~exp) | ORDER BY DESC(~exp) | id
SessionMethods

c ∈ Class Set of Classes
c ::= 〈init, F, M〉

where init is the constructor, F ⊆ Var is the
set of fields, and M is the set of methods.

mses ∈ Mses Set of Sessionmethods
mses ::= 〈C, φ, OP〉

where C ⊆ Class
OP ::= SEL(f (~exp′), r(~h(~x)), φ, g(~exp))
| UPD(~v, ~exp)
| SAVE(obj)
| DEL()

where φ represents ‘HAVING’ clause
and obj denotes an instance of a class.

Table 1: Abstract Syntax of SessionMethods

8 A. Cortesi, R. Halder

We now define the transition relation, by considering (i) the direct interac-
tion, when a conventional method is directly invoked, (ii) the session interaction,
when a Sessionmethod is invoked, and (iii) the indirect transition, when con-
text updates any address escaped from the object’s scope.

Definition 6 (Transition relation T). Let σ ∈ Σ be an interaction state. The transi-
tion relation T : Lab×Σ→ ℘(Σ) is defined as T = Tdir∪Tind∪Tses, where Tdir, Tind
and Tses represent direct, indirect, and session transitions respectively. Lab represents
the set of labels which include Session methods Mses, conventional class methods M,
and an indirect update operation Upd by the context.

We denote a transition by σ a
−→ σ′ when application of a label a ∈ Lab on

interaction state σ results into a new state σ′.
Let I0 be the set of initial interaction states. The fix-point trace semantics of

HQL program P is defined as

T [[P]](I0) = lfp⊆
∅
F (I0) =

⋃
i≤ω

F
i(I0)

where F (I) = λT . I ∪
{
σ0

a0
−→ . . .

an−1
−−→ σn

an
−→ σn+1 | σ0

a0
−→ . . .

an−1
−−→ σn ∈ T

∧σn
an
−→ σn+1 ∈ T

}
3.2 Abstract Semantics

Authors in [16, 17] used the Abstract Interpretation framework [3, 4] to define an
abstract semantics of imperative languages using symbolic domain of positive
propositional formulae in the form∧

0≤i≤n, 0≤ j≤m

{yi → z j}

which means that the values of variable z j possibly depend on the values of
variable yi. Later, [8] extends this to the case of structured query languages. The
computation of abstract semantics of a program in the propositional formu-
lae domain provides a sound approximation of variable dependences, which
allows to capture possible information flow in the program. The information
leakage analysis is then performed by checking the satisfiability of formulae
after assigning truth values to variables based on their sensitivity levels.

An abstract stateσ] ∈ Σ] ≡ L×Pos is a pair 〈`, ψ〉whereψ ∈ Pos represents the
variables dependences, in the form of propositional formulae, among program
variables up to the program label ` ∈ L.

Methods in HQL include a set of imperative statements3. We assume, for the
sake of the simplicity, that attackers are able to observe public variables inside of
the main method only. Therefore, our analysis only aims at identifying variable
dependences at input-output labels of methods.

3 For a detailed abstract transition semantics of imperative statements, see [16].

Information-flow Analysis of Hibernate Query Language 9

The abstract transition semantics of constructors and conventional methods
are defined below.

Definition 7 (Abstract Transition Semantics of Constructor). Consider a class
c = 〈init, F, M〉 where init is a default constructor. Let ` be the label of init. The
abstract transition semantics of init is defined as

T][[`init]] = {(`, ψ)→ (Succ(`init), ψ)}

where Succ(`init) denotes the successor label of init. Observe that the default con-
structor is used to initialize the objects-fields only, and it does not add any new depen-
dence.

The abstract transition semantics of parameterized constructors are defined
in the same way as of class methods m ∈ M.

Definition 8 (Abstract Transition Semantics of Methods). Let U ∈ ℘(Var) be
the set of variables which are passed as actual parameters when invoked a method m ∈ M
on an abstract state (`, ψ) at program label `. Let V ∈ ℘(Var) be the formal arguments
in the definition of m. We assume that U∩V = ∅. Let a and b be the variable returned by
m and the variable to which the value returned by m is assigned. The abstract transition
semantics is defined as

T][[`m]] = {(`, ψ)→ (Succ(`m), ψ′)}

where ψ′ = {xi → yi | xi ∈ U, yi ∈ V} ∪ {a → b} ∪ ψ and Succ(`m) is the label of the
successor of m.

We classify the high-level HQL variables into two distinct sets: Vard and Vara.
The variables which have a correspondence with database attributes belong to
the set Vard. Otherwise, the variables are treated as usual variables and belong
to Vara. We denote variables in Vard by the notation v, in order to differentiate
them from the variables in Vara. This leads to four types of dependences which
may arise in HQL programs: x→ y, x→ y, x→ y and x→ y, where x, y ∈ Vara
and x, y ∈ Vard.

The abstract labeled transition semantics of various Session methods are
defined in Table 2, where by Var(exp) and Field(c) we denote the set of vari-
ables in exp and the set of class-fields in the class c respectively. The function
Map(v) is defined as:

Map(v) =

v if v has correspondence with a database attribute,

v otherwise.

Notice that in Table 2 the notation ṽ stands for either v or v.
Let SF(ψ) denotes the set of subformulas in ψ, and the operator 	 is defined

by ψ1 	 ψ2 =
∧(
SF(ψ1)\SF(ψ2)

)
.

10 A. Cortesi, R. Halder

T][[`msave]]
de f
= T][[`(C, φ, SAVE(obj))]]
de f
= T][[`({c}, FALSE, SAVE(obj))]]
de f
= {〈`, ψ〉

SAVE
−−−→ 〈Succ(`msave), ψ〉}

T][[`mupd]]
de f
= T][[`(C, φ, UPD(~v, ~exp))]]
de f
= T][[`({c}, φ, UPD(~v, ~exp))]]
de f
= {〈`, ψ〉

UPD
−−→ 〈Succ(`mupd), ψ′〉}

where ψ′ =
∧{

ỹ→ zi | y ∈ Var[[φ]], ỹ = Map(y), zi ∈ ~v
}⋃∧{

ỹi → zi | yi ∈ Var[[expi]], expi ∈ ~exp, ỹi = Map(yi), zi ∈ ~v
}⋃

ψ′′

and ψ′′ =

ψ 	
(̃
a→ zi | zi ∈ ~v ∧ a ∈ Var ∧ ã = Map(a)

)
if φ is TRUE by default.

ψ otherwise

T][[`mdel]]
de f
= T][[`(C, φ, DEL())]]
de f
= T][[`({c}, φ, DEL())]]
de f
= {〈`, ψ〉

DEL
−−→ 〈Succ(`mdel), ψ′〉}

where ψ′ =
∧{

ỹ→ z | y ∈ Var[[φ]], ỹ = Map(y), z ∈ Field(c)
}⋃

ψ′′

and ψ′′ =

ψ 	
(̃
a→ zi | zi ∈ ~v ∧ a ∈ Var ∧ ã = Map(a)

)
if φ is TRUE by default.

ψ otherwise

T][[`msel]]
de f
= T][[`(C, φ, SEL(f (~exp′), r(~h(~x)), φ, g(~exp))]]
de f
= {〈`, ψ〉

SEL
−−−→ 〈Succ(`msel), ψ′〉}

where ψ′ =
∧{

ỹ→ z̃ | y ∈ (Var[[φ]] ∪ Var[[~e]] ∪ Var[[φ′]] ∪ Var[[~e′]]), z ∈ Var[[~x]],
ỹ = Map(y), z̃ = Map(z)

}⋃
ψ

Table 2: Definition of Abstract Transition Function T] for Sessionmethods

4 Information Leakage Analysis

We are now in position to use the abstract semantics defined in the previ-
ous section to identify possible sensitive database information leakage through
high-level HQL variables. After obtaining over-approximation of variable de-
pendences at each program points, we assign truth values to each variable

Information-flow Analysis of Hibernate Query Language 11

based on their sensitivity level, and we check the satisfiability of propositional
formulae representing variable dependences [16].

Since our main objective is to identify the leakage of sensitive database
information possibly due to the interaction of high-level variables, we assume,
according to the policy, that different security classes are assigned to database
attributes. Accordingly, we assign security levels to the variables in Vard based
on the correspondences. Similarly, we assign the security levels of the variables
in Vara based on their use in the program. For instance, the variables which
are used on output channels, are considered as public variables. Observe that
for the variables with unknown security class, it may be computed based on
the dependence of it on the other application variables or database attributes of
known security classes.

Let Γ : Var → {L,H,N} be a function that assigns to each of the variables a
security class, either public (L) or private (H) or unknown (N).

After computing abstract semantics of HQL program P, the security class of
variables with unknown level (N) in P are upgraded to either H or L, according
to the following function:

Upgrade(v) = Z if ∃ (u→ v) ∈ T][[P]]. Γ(u) = Z ∧ Γ(u) , N ∧ Γ(v) = N (1)

We say that program P respects the confidentiality property of database
information, if and only if there is no information flow from private to public
attributes. To verify this property, a corresponding truth assignment function Γ
is used:

Γ(x) =

{
T if Γ(x) = H
F if Γ(x) = L

If Γ does not satisfy any propositional formula in ψ of an abstract state, the
analysis will report a possible information leakage.

Let us illustrate this on the running example program P in section 2. Ac-
cording to the policy, let the database attribute corresponding to variable h1
is private, whereas the attributes corresponding to id1, id2 and l2 are public.
Therefore,

Γ(h1) = H and Γ(id1) = Γ(id2) = Γ(l2) = L

For other variables in the program, the security levels are unknown. That is,

Γ(R1.[0]) = Γ(R1.[1]) = Γ(obj[0]) = Γ(obj[1]) = Γ(pk) = Γ(h2) = N

Considering the domain of positive propositional formulae, the abstract seman-
tics yields the following formulae at program point 9 in P:

id1 → R1.[0]; h1 → R1.[1]; R1.[0]→ obj[0]; R1.[1]→ obj[1];
obj[0]→ pk; obj[1]→ h2; pk→ l2; id2 → l2; h2 → l2;

12 A. Cortesi, R. Halder

According to equation 1, the security levels of the variables with unknown
security level N are upgraded as below:

Γ(R1.[0]) = L, Γ(R1.[1]) = H, Γ(obj[0]) = L, Γ(obj[1]) = H
Γ(pk) = L, Γ(h2) = H

Finally, we apply the truth assignment function Γwhich does not satisfy the
formula h2 → l2, as Γ(h2) = T and Γ(l2) = F and T→ F is false.

Therefore, the analysis reports that the example program P is vulnerable to
leakage of confidential database data.

5 Conclusions

Our approach can capture information leakage on “permanent” data stored in
a database when a HQL program manipulates them. This may also lead to a
refinement of the non-interference definition that focusses on confidentiality of
the data instead of variables. We are now investigating a possible enhancement
of the analysis integrating with other abstract domains.

Acknowledgement

Work partially supported by PRIN “Security Horizons” project.

References

1. Bauer, C., King, G.: Hibernate in Action. Manning Publications Co. (2004)
2. Bauer, C., King, G.: Java Persistence with Hibernate. Manning Publications Co. (2006)
3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analy-

sis of programs by construction or approximation of fixpoints. In: Proceedings of the
4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages.
pp. 238–252. ACM Press, Los Angeles, CA, USA (1977)

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Pro-
ceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of program-
ming languages. pp. 269–282. ACM Press, San Antonio, Texas (1979)

5. Denning, D.E.: A lattice model of secure information flow. Communications of the
ACM 19, 236–243 (1976)

6. Elliott, J., O’Brien, T., Fowler, R.: Harnessing Hibernate. O’Reilly, first edn. (2008)
7. Halder, R., Cortesi, A.: Abstract interpretation of database query languages. Com-

puter Languages, Systems & Structures 38, 123–157 (2012)
8. Halder, R., Zanioli, M., Cortesi, A.: Information leakage analysis of database query

languages. In: Proceedings of the 29th Annual ACM Symposium on Applied Com-
puting (SAC’14). pp. 813–820. ACM Press, Gyeongju, Korea (24–28 March 2014)

9. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive in-
formation flow control based on program dependence graphs. International Journal
of Information Security 8, 399–422 (2009)

10. Li, B.: Analyzing information-flow in java program based on slicing technique. SIG-
SOFT Software Engineering Notes 27, 98–103 (2002)

Information-flow Analysis of Hibernate Query Language 13

11. Logozzo, F.: Class invariants as abstract interpretation of trace semantics. Computer
Languages, Systems & Structures 35, 100–142 (2009)

12. Myers, A.C.: Jflow: practical mostly-static information flow control. In: Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. pp. 228–241. ACM Press, San Antonio, Texas, USA (1999)

13. Pottier, F., Simonet, V.: Information flow inference for ml. ACM Transactions on
Programming Languages and Systems 25, 117–158 (2003)

14. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Journal
on Selected Areas in Communications 21, 5–19 (2003)

15. Smith, S.F., Thober, M.: Refactoring programs to secure information flows. In: Pro-
ceedings of the workshop on Programming languages and analysis for security. pp.
75–84. ACM Press, Canada (2006)

16. Zanioli, M., Cortesi, A.: Information leakage analysis by abstract interpretation. In:
Proceedings of the 37th int. conf. on Current trends in theory and practice of computer
science. pp. 545–557. Springer LNCS 6543, Nov Smokovec, Slovakia (2011)

17. Zanioli, M., Ferrara, P., Cortesi, A.: Sails: static analysis of information leakage with
sample. In: Proceedings of the 27th Annual ACM Symposium on Applied Comput-
ing (SAC’12). pp. 1308–1313. ACM Press, Trento, Italy (2012)

