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Model Checking Adaptive Multilevel Service CompositionsI

M. Bugliesia, A. Marina, S. Rossia,1,∗

aUniversità Ca’ Foscari Venezia, via Torino 155, 30172
Venezia (Italy)

Abstract

In this paper we present a logic-based technique for verifying both security and cor-
rectness properties of multilevel service compositions. We define modal µ-calculus
formulae interpreted over service configurations. Our formulae characterize those
compositions which satisfy a non-interference property and are compliant, i.e., are
both deadlock and livelock free. Moreover, we use filters as prescriptions of be-
havior (coercions to prevent service misbehavior) and we devise a model checking
algorithm for adaptive service compositions which automatically synthesizes an
adapting filter.

Keywords: process algebra, non-interference, model-checking, web services

1. Introduction

Service Oriented Architectures (SOA) provide a software architectural style
to connect loosely specified and coupled services that communicate with each
other. Simple Object Access Protocol (SOAP)-based Web services are becom-
ing the most common implementation of SOA. They are designed to support in-
teroperable service-to-service interactions over a network. This interoperability is
gained through a set of XML-based open standards, such as the Web Service Defini-
tion Language (WSDL). These standards provide a common approach for defining,
publishing, and using web services.
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As is the case of many other applications, the information processed in web ser-
vices might be commercially sensitive and it is important to protect this information
against security threats such as disclosure to unauthorized parties. Indeed, many
of the features that make web services attractive, including greater accessibility
of data, dynamic connections, and relative autonomy (lack of human intervention)
are at odds with traditional security models and controls. Difficult issues and un-
solved problems exist, such as protecting confidentiality and integrity of data that
is transmitted through web services protocols in service-to-service transactions.

Traditionally, security policies are used to specify the security requirements of
a system and to control the access to confidential data and resources (see, e.g., [1,
2]). However, if this approach can be successfully applied to enforce the security
requirements of a centralized system, it is less suited to formulate the security needs
of a service composition. Indeed, there is no central authority in the web that is able
to fix the security labels of all services and data. Rather than manipulating stored
data, web services compute requested information from dynamic data available on
the net that need to be dynamically classified according to their stored information.

In this paper we specify service compositions in terms of behavioral contracts
which provide abstract descriptions of system behaviors by means of terms of some
process algebra. Formal theories of contracts have first been introduced in [3], and
then further developed along independent lines of research in [4, 5, 6], and in [7, 8].

Based upon such formal descriptions, we propose a notion of non-interference
[9] for multilevel service compositions. This is motivated by the fact that SOAs are
increasingly relying on complex distributed systems that share information with
multiple levels of security. In these systems information with mixed security levels
is processed and targeted to particular clients. For example, in an e-business sys-
tem, some data will be privileged (e.g., credit card numbers and medical records)
and some data will be public (e.g., stock market quotes). Such systems need to be
equipped with appropriate security facilities to guarantee the security requirements
(e.g., confidentiality or integrity) of the participants.

In this paper, we present an information flow security model [10, 11, 12, 13] for
service compositions to control the flow of confidential data in web services. Secu-
rity policies are used to specify the security requirements of service components.
In order to capture the dynamic nature, heterogeneity and lack of knowledge which
are intrinsic features of modern web services, we allow policies to be dynamically
specified by the service participants. In our model, for example, customers may
formulate their security requirements by dynamically assign types (that are secu-
rity annotations) to individual service components.

We also consider the property of compliance which is widely used in the con-
text of SOA as a formal device to identify well-formed service compositions, those
whose interactions are free of synchronization errors. Our notion of compliance
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(see [7, 8]) is a strong condition that ensures the absence of deadlocks and live-
locks, and the application setting is that of choreographies: compliant choreogra-
phies are those whose computations never get stuck or trapped into infinite loops
without chances to exit.

We develop a method for verifying both security and correctness properties of
multilevel service compositions based on the use of model-checking techniques [14].

Model checking is a promising formal method for automatically verifying prop-
erties of finite-state concurrent systems [14]. A model checker normally performs
an exhaustive search of the state space of a system to determine if a particular prop-
erty, expressed in terms of a logical formula, holds. Given sufficient resources, the
procedure will always terminate with a yes/no answer.

We define modal µ-calculus [15] formulae, interpreted over service configura-
tions, characterizing those compositions which satisfy a non-interference property
and are compliant, i.e., are both deadlock and livelock free. Indeed, due to its
expressiveness and its conciseness the µ-calculus is well-suited to model both the
security and the correctness properties we are interested in. A model checker (like,
e.g., NCSU Concurrency Workbench) can then be used to simultaneously check
non-interference and compliance.

We also develop an algorithm for verifying adaptive service compositions. This
is based on the use of filters, introduced in [4], as prescriptions of behaviour (co-
ercions to prevent service misbehaviour). Security and correctness properties for
adaptive multilevel service compositions are ensured by the automatic synthesis of
an adapting filter.

Finally, we apply these results to a case-study in which a customer receives a
security level according to its identity that may be certified by a federated login
system. This consists of a set of providers that share an open standard to handle
user accounts, such as OpenId. Google, facebook, Yahoo!, Wordpress are examples
of providers that adhere to OpenId standard. When a web application allows for
a federated login, a customer can use the account owned at any of the federated
providers to obtain the required service. We show how the calculus presented here
allows one to formally describe such a system, and we apply the compliance and
non-interference analysis to the model. Particular attention is devoted to interpret
the results of such analysis in terms of good developing practices.

1.1. Plan of the paper
The paper is organized as follows: Section 2 introduces the calculus for mul-

tilevel service compositions. Section 3 formalizes the notion of non-interference.
Section 4 presents characteristic modal µ-calculus formulae for non-interference.
Section 5 introduces the notion of compliance and defines a modal µ-calculus for-
mula characterizing it. Section 6 presents an algorithm for adaptive service com-
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Type environments ∆ ::= ∅ | ∆, u : ς u ∈ P ∪ V, ς ∈ Σ

Actions ϕ ::= ā@u | a@u a ∈ A, u ∈ P ∪ V
Contracts σ ::= 1 | x | ϕ.σ | σ + σ

| σb∆⊕ ∆cσ | rec(x)σ

Compositions C ::= p[σ] | C ‖ C

Table 1: Syntax

positions. A case study is presented in Section 7. Finally, Section 8 concludes the
paper.

2. The Calculus

We represent service contracts as terms of a value-passing CCS-like [16] pro-
cess calculus that includes recursion and operators for external and internal choice.
In the algebra, parallel composition arises in contract compositions that we define
after [8, 17, 18] as the parallel (and concurrent) composition of a set of principals
executing contracts. We presuppose a denumerable set of action names A, ranged
over by a, b, c, a denumerable set of principal identities P , ranged over by p, q, r,
and a denumerable set of variables V , ranged over by x, y. The actions represent
the basic units of observable behavior of the underlying services, while the princi-
pal names specify the peers providing the services.

In order to specify multilevel service compositions, we assign security levels
to principal identities and express both contracts and compositions as typed terms
of our calculus. Formally, we assume a complete lattice 〈Σ,�〉 of security an-
notations, ranged over by ς, %, where > and ⊥ represent the top and the bottom
elements of the lattice. We denote by t and u the join and meet operators over Σ,
respectively. Type environments are used to assign security levels to principals. A
type environment ∆ is a finite mapping from principals and variables to security
annotations. Closed type environments, ranged over by Γ, assign security levels
to principals only, i.e., they do not contain variables in their domain. We define
Γ1 t Γ2 (resp., Γ1 u Γ2) the type environment Γ such that Γ(p) = Γi(p) if p 6∈
dom(Γ1)∩dom(Γ2) and p ∈ dom(Γi), and Γ(p) = Γ1(p)tΓ2(p) (resp., Γ1(p)u
Γ2(p)) otherwise.

2.1. Syntax

The syntax of our calculus is presented in Table 1. Contracts have the following
form. Term 1 denotes a contract that has reached a successful state. The contract

4
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ā@p.σ describes a service that sends a message on a to principal p and then be-
haves as σ; syntactically, the principal identity p may be a variable, but it must be
a name when the prefix is ready to fire. Dually, the input prefix a@u.σ waits for an
input on a from a particular/any principal and then continues as σ. If u is a variable
x, then the input form is a binder for x with scope σ: upon synchronization with
a principal p, x gets uniformly substituted by p in σ. The contract σ + σ′ denotes
an external choice, guided by the environment. The contract σb∆⊕ ∆′cσ′ repre-
sents the internal choice between σ in the type environment ∆ and σ′ in the type
environment ∆′ made irrespective of the structure of the interacting components.
Syntactically, ∆ and ∆′ may contain variables in their domain, but they must be
closed when the internal choice is ready to fire. The internal choice operator we
adopt in this paper allows us to model the fact that a principal may dynamically
change (upgrade) the security level of his interactions with other service compo-
nents through the specific type environment associated with each choice. This will
be explained in the definition of the semantics of our calculus and Example 2.1.
Finally, rec(x)σ makes it possible to express iteration in the contract language.
As usual, we assume a standard contractivity condition for recursion, requiring that
recursive variables be guarded by a prefix.

Given a principal p ∈ P , we say that a contract σ is p-compatible if for all ā@q
and a@q occurring in σ, q is different from p.

A composition p1[σ1] ‖ · · · ‖ pn[σn] of principals must be well-formed [17]
to constitute a legal composition, namely: (i) the principal identities pi’s must
all be pairwise different, and (ii) each contract σi, executed by principal pi, is
pi-compatible. If C = p1[σ1] ‖ · · · ‖ pn[σn] is a legal composition, we say
that C is a {p1, . . . , pn}-composition (dually, that {p1, . . . , pn} are the underlying
principals for C). Throughout, we assume that contracts are closed (they have no
free variables) and that compositions are well-formed. Also, we often omit trailing
1’s. We say that Γ B C is a configuration if Γ is a type environment and C is a
well-formed {p1, . . . , pn}-service composition such that {p1, . . . , pn} ⊆ dom(Γ).

2.2. Semantics
We define the dynamics of typed service compositions in terms of labelled

transition systems (and a success predicate), with rules reported in Table 2. In the
table, and in the whole paper, λ ranges over visible contract typed actions ā@p,
a@p and silent actions τ ; δ ranges over service composition actions ap→q, āp→q
and τ .

The first block of rules defines the successful states of a contract and a composi-
tion, which are those that expose the successful term 1 at top level, or immediately
under an external choice (up-to recursive unfoldings). Notice that a composition is
successful only when all its components are successful.

5
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Contract and composition satisfaction: σX

1X
σiX

σ1 + σ2 X

σ{x := rec(x)σ}X

rec(x)σX

σX

p[σ]X

C1 X C2 X

C1 ‖ C2 X

Typed contract transitions: Γ B σ
λ−→ Γ′ B σ′

Γ B a@p.σ
a@p
−−→ Γ B σ Γ B a@x.σ

a@p
−−→ Γ B σ{x := p}

Γ B ā@p.σ
ā@p
−−→ Γ B σ Γ B σ1bΓ1⊕ Γ2cσ2

τ−→ Γ t Γi B σi (i = 1, 2)

Γ B σi
λ−→ Γ′ B σ

(i = 1, 2)
Γ B σ1 + σ2

λ−→ Γ′ B σ

Γ B σ{x := rec(x)σ} λ−→ Γ′ B σ′

Γ B rec(x)σ
λ−→ Γ′ B σ′

Typed composition transitions: Γ B C
δ−→ Γ′ B C ′

Γ B σ
a@p−→ Γ B σ′

p ∈ dom(Γ), p 6= q
Γ B q[σ]

ap→q−→ Γ B q[σ′]

Γ B σ
ā@p−→ Γ B σ′

p 6= q

Γ B q[σ]
āq→p−→ Γ B q[σ′]

Γ B C1
ap→q−→ Γ B C ′1 Γ B C2

āp→q−→ Γ B C ′2

Γ B C1 ‖ C2
τ−→ Γ B C ′1 ‖ C ′2

Γ B σ
τ−→ Γ′ B σ′

Γ(q) ≺ Γ′(q) � Γ(p), ∀q ∈ dom(Γ′) : Γ(q) 6= Γ′(q)
Γ B p[σ]

τ−→ Γ′ B p[σ′]

Γ B C1
δ−→ Γ′ B C ′1

Γ B C1 ‖ C2
δ−→ Γ′ B C ′1 ‖ C2

Table 2: Typed contract and composition transitions

6
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The second block of rules defines the typed transitions for contracts, and are
mostly self-explanatory. The rule for the internal choice ensures that a service com-
ponent cannot downgrade the security level of other principals. Intuitively, this cor-
responds to the fact that downgrading the security level of a principal would mean
downgrading the level of confidentiality of the information it manages. Notice that
the type environments (Γ1 and Γ2) that are arguments of the internal choice are
required to be closed when the choice is ready to fire.

Each typed contract transition yields a corresponding transition for the princi-
pal hosting the contract. The typed transitions for configurations are relative to the
underlying set dom(Γ) of principals. τ transitions for configurations arise from
the execution of a contract internal choice. In this case, the principal performing
the choice may modify the security level of its interactions with other components
by assigning different security levels to the principals with which it is going to
interact. In the rule we assume that a principal p cannot upgrade the level of its
interactions with other components above its own level. This is the meaning of
the condition associated with the rule for τ -typed composition transitions. This is
the only constraint on the principal security levels we assume. Such a constraint
ensures that information does not explicitly flow from high to low, but it does not
deal with implicit flows. Instead, we will characterize non-interference in terms of
the actions that typed service compositions may perform.

We will use the following shorthands. We write =⇒ to denote the reflexive
and transitive closure of τ−→, and δ

=⇒ for =⇒ δ−→=⇒. We extend sequence of
actions w = δ1 . . . δn, we write w

=⇒ to note δ1=⇒ · · · δn=⇒. A computation for a
configuration Γ B C, is a sequence Γ B C = Γ0 B C0

τ−→ Γ1 B C1
τ−→ . . . of

internal actions.

Lemma 2.1 (Preserving well-formedness). Let Γ be a type environment and C be
a service composition such that Γ B C is a configuration. If Γ B C is well-formed
and Γ B C

τ−→ Γ′ B C ′, then Γ′ B C ′ is well-formed.

Proof. The only subtlety is that an output action within principal p, may have a
variable, say x as a target. In any closed contract, x must be bound at an enclos-
ing input prefix. Now, given that Γ B C is well-formed, that input may never
synchronize with an output from p itself: hence x will never get bound to p.

Example 2.1. Table 3 shows an example of a service contract composition. Let
Σ contain two security annotations, L (public) and H (confidential), with L �
H. Let Γ be the type environment C : H, T : L, A1 : L, A2 : L. The typed
composition Γ B S is well-formed and consists of four services: C[σC ], T [σT ]
and Ai[σA] representing a customer, a travel agency, and two airline companies,

7
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S = C[σC ] ‖ T [σT ] ‖ A1[σA] ‖ A2[σA]

σC = Req@T.Lst@T.( Close@T.1b∅⊕ T :Hc( Buy1@T.Pay@T.

Get@A1.1bA1:H⊕ A2:HcBuy2@T.Pay@T.Get@A2.1 ) )

σT = Req@x.Inq@A1.Inq@A2.Price@A1.Price@A2.Lst@x.( Close@x.1

+ Buy1@x.Ord@A1.Pay@x.Conf@A1.1

+ Buy2@x.Ord@A2.Pay@x.Conf@A2.1)

σA = Inq@x.Price@x.( Ord@x.Conf@x.Get@y.1 + 1 )

Table 3: Example of a travel agency

respectively. The elementary actions represent business activities that result in
messages being sent or received. For example, the action Req@T undertaken by the
customer results in a message being sent to the travel agency. In the example, the
customer sends a request to the travel agency which then inquires the airlines to get
the prices for the selected route. Each airline responds and the travel agency sends
to the customer the list of the best prices. The customer decides whether to close
the communication with the travel agency or to buy from one of the airlines. In the
latter case the customer decides to assign a high security level (H) to both the travel
agency and the chosen airline company in order to safeguard the confidentiality of
the purchasing data. The travel agency orders the ticket from the selected airline
and takes a deposit (or a full payment) from the customer. As soon as the airline
receives the confirmation of the payment, the ticket is issued to the customer. 2

3. Non-Interference

The concept of non-interference [9] has been introduced to formalize the ab-
sence of information flow in multilevel systems. In the context of service com-
positions it demands that public interactions between service components are un-
changed as secret communications are varied or, more generally, that the low level
behaviour of the service composition is independent of the behaviour of its high
components. In this way clients are assured that the data transmitted over the air
to a web server remains confidential; in other words, sensitive data cannot be inter-
cepted and understood by eavesdroppers.

The notion of non-interference we are going to introduce is relative to the in-
ternal behaviour of service compositions, i.e., we are interested in observing the

8
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Typed internal composition transitions: Γ B C
α
↪−→ Γ′ B C ′

Γ B σ
τ−→ Γ′ B σ′

Γ B p[σ]
τ
↪−→ Γ′ B p[σ′]

Γ B C1
α
↪−→ Γ′ B C ′1

Γ B C1 ‖ C2
α
↪−→ Γ′ B C ′1 ‖ C2

Γ B C1
ap→q−→ Γ B C ′1 Γ B C2

āp→q−→ Γ B C ′2

Γ B C1 ‖ C2

{a}p→q
↪−→ Γ B C ′1 ‖ C ′2

Table 4: Typed internal composition transitions

synchronizations between service components. We thus refine the semantics of
compositions in order to help (i) to distinguish a local contract move from a syn-
chronization, and (ii) to identify the principals involved in every synchronization.
This is captured by the rules collected in Table 4, where we use the relation ↪−→ to
represent typed synchronizations between service components. The τ label now in-
dicates an internal action to a service component, while synchronizations between
different peers in a composition are represented through a label of the form {a}p→q
meaning that principals p and q synchronize on action a. We let α range over the
labels {a}p→q and τ . We denote by

τ
↪−→→ a possible empty sequence of

τ
↪−→ and

define
{a}p→q
↪−→→ def

=
τ

↪−→→
{a}p→q
↪−→ τ

↪−→→.
The following lemma relates the two semantics for service compositions, one

expressed in terms of −→ and the other one expressed in terms of ↪−→.

Lemma 3.1. Let Γ be a typed environment and C be a service composition such
that Γ B C is a configuration.

• Γ B C
τ
↪−→ Γ′ B C ′ if and only ifC = C1 ‖p[σ]‖C2, C ′ = C1 ‖ p[σ′] ‖ C2

and σ τ−→ σ′;

• Γ B C
{a}p→q
↪−→ Γ B C ′ if and only if C = C1 ‖ p[σ] ‖ C2 ‖ q[ρ] ‖ C3,

C ′ = C1 ‖ p[σ′] ‖ C2 ‖ q[ρ′] ‖ C3, σ
ā@q−→ σ′ and ρ

a@p−→ ρ′.

Proof. The proof follows by induction on the derivations.

In order to define our notion of non-interference, we need to be able to distin-
guish the component interactions at a given security clearance. As transitions are
typed, we can assign a security level to them as follows: the level of a synchroniza-
tion depends on the level of the principals performing it. More precisely, by abuse

9
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of notation, we denote by Γ({a}p→q) the level of the synchronization {a}p→q in
the type environment Γ and define it as:

Γ({a}p→q) = Γ(p) u Γ(q).

Thus a ς-level synchronization between two components is performed by principals
whose security clearance is higher or equal to ς .

3.1. Behavioural Observations

We define behavioural observations in terms of equivalences that are paramet-
ric with respect to the security level ς ∈ Σ of the behaviour we want to observe.
Such equivalences are relations over configurations that equate service composi-
tions exhibiting the same ς-level component interactions.

Our behavioural equivalences are defined as a variant of the notion of weak
bisimulation [16], an observation equivalence which allows one to observe the non-
deterministic structure of the LTSs and focuses only on the observable actions.

In the following, we write Γ1 =ς Γ2 whenever {p ∈ dom(Γ1)| Γ1(p) � ς} =
{p ∈ dom(Γ2)| Γ2(p) � ς}.

Definition 3.1 (Weak bisimulation on ς-low actions). Let ς ∈ Σ. A weak bisim-
ulation on ς-low actions is the largest symmetric relation ≈ς over configurations
such that whenever Γ1 B C1 ≈ς Γ2 B C2 with Γ1 =ς Γ2

• if Γ1 B C1
α
↪−→ Γ′1 B C ′1 with α = τ or Γ1(α) � ς , then there exist Γ′2

and C ′2 such that Γ2 B C2
α

↪−→→ Γ′2 B C ′2 with Γ′1 B C ′1 ≈ς Γ′2 B C ′2 and
Γ′1 =ς Γ′2;

• if Γ1 B C1
α
↪−→ Γ′1 B C ′1 with α 6= τ and Γ(α) 6� ς , then there exist Γ′2 and

C ′2 such that

– either Γ2 B C2
α

↪−→→ Γ′2 B C ′2

– or Γ2 B C2
τ

↪−→→ Γ′2 B C ′2

with Γ′1 B C ′1 ≈ς Γ′2 B C ′2 and Γ′1 =ς Γ′2.

We write Γ |= C1 ≈ς C2 when Γ B C1 ≈ς Γ B C2. 2

10
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M = C[σC ] ‖ F1[σF ] ‖ F2[σF ] ‖ S[σS ]

σC = Inq@F1.Inq@F2.Plan@F1.Plan@F2.

( Agree@F1.Close@F2.1bF1:H⊕ F2:HcAgree@F2.Close@F1.1 ) )

σF = Inq@x.LookUp@S.Quote@x.Plan@C.( Agree@x.1 + Close@x.1 )

σS = LookUp@x.Quote@x.1

M ′ = C[σ′C ] ‖ F1[σF ] ‖ F2[σF ] ‖ S[σS ]

σ′C = Inq@F1.Inq@F2.Plan@F1.Plan@F2.

( Close@F2.Agree@F1.1bF1:H⊕ F2:HcClose@F1.Agree@F2.1 ) )

Table 5: Example of a financial consulting platform

3.2. Non-interference

The notion of non-interference is inspired by [12] and is expressed in terms
of a restriction operator ·|ς which allows one to represent a service composition
prevented from performing internal synchronizations of a level higher than ς . The
semantics of C|ς is described by the following rule:

Γ B C
α
↪−→ Γ′ B C ′

Γ(α) � ς
Γ B C|ς

α
↪−→ Γ′ B C ′|ς

Definition 3.2 (Non-interference). Let ς ∈ Σ, Γ be a type environment and C be
a service composition such that Γ B C be a configuration. We say that the service
composition C satisfies the non-interference property with respect to the level ς in
the type environment Γ, denoted C ∈ NIΓ,ς , if

Γ |= C ≈ς C|ς .
2

Example 3.1. Consider again the service composition S in the type environment
Γ of Example 2.1. The property S ∈ NIΓ,L holds. 2

11
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Example 3.2. Consider the service composition depicted in Table 5: it consists of
a client C, two financial consulting services F1 and F2 and a stock quote service
provider S. The client inquires the financial services to get investment advices.
The financial services consult the stock quote service provider in order to look up
information on the financial quotes. Then, the financial services send their invest-
ment recommendations to the client which may decide whether or not adhere to the
investment plan proposed by one of the financial services and close the connection
with the other one.

Let Σ = {L,H} with L � H and Γ be the type environment C : H, F1 :
L, F2 : L, S : L. In this case we have that M 6∈ NIΓ,L. Indeed, there is a direct
causality between the high level actions {Agree}C→Fi and the low level action
{Close}C→Fj with i 6= j, performed after the clients makes the choice. As a
consequence, if the client decides to accept the proposal of F1 then F2 knows that
the customer has agreed to proceed with investment recommendation of F1 by just
observing that the action {Close}C→F2 has been performed. The service compo-
sition can be made secure by letting {Close}C→Fj be executed independently of
{Agree}C→Fi as in the composition M ′ which is obtained from M by replacing
the contract σC with σ′C . 2

4. Modal Formulae for Non-Interference

In this section we present a method for verifying whether Γ |= C ≈ς C|ς which
consists in defining a modal µ-calculus formula φ≈ς (Γ B C) such that Γ′ B C ′

satisfies φ≈ς (Γ B C) iff Γ B C ≈ς Γ′ B C ′.
The modal µ-calculus [15] is a small, yet expressive process logic. We consider

modal µ-calculus formulae constructed according to the following grammar:

φ ::= true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈α〉φ | [α]φ | X | µX.φ | νX.φ

where X ranges over an infinite set of variables and α over the labels {a}p→q
and τ . The fixpoint operators µX and νX bind the variable X and we adopt the
usual notion of closed formula. For a finite set M of formulae, we write

∧
M and∨

M for the conjunction and disjunction of the formulae inM , where
∧
∅ = true

and
∨
∅ = false.

Modal µ-calculus formulae are interpreted over configurations modelled by
LTS’s. Let Γ B C be a configuration and LTS (Γ B C) = (SΓBC , Act, ↪−→)

where SΓBC is the set of states reachable from Γ B C through
α
↪−→ and α ∈ Act

denotes the action {a}p→q or τ . The subset of configurations in SΓBC that satisfy
a formula φ, noted by MΓBC(φ)(ρ), is inductively defined in Table 6. ρ is an
environment, i.e., it is a partial mapping ρ : Var 6→ 2SΓBC that interprets at least
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MΓBC(true)(ρ) = SΓBC

MΓBC(false)(ρ) = ∅
MΓBC(φ1 ∧ φ2)(ρ) = MΓBC(φ1)(ρ) ∩MΓBC(φ2)(ρ)
MΓBC(φ1 ∨ φ2)(ρ) = MΓBC(φ1)(ρ) ∪MΓBC(φ2)(ρ)

MΓBC(〈α〉φ)(ρ) = {Γ′ B C ′ | ∃ Γ′′ B C ′′ : Γ′ B C ′
α
↪−→ Γ′′ B C ′′

∧ Γ′′ B C ′′ ∈MΓBC(φ)(ρ)}
MΓBC([α]φ)(ρ) = {Γ′ B C ′ | ∀ Γ′′ B C ′′ : Γ′ B C ′

α
↪−→ Γ′′ B C ′′

⇒ Γ′′ B C ′′ ∈MΓBC(φ)(ρ)}
MΓBC(X)(ρ) = ρ(X)
MΓBC(µX.φ)(ρ) =

⋂
{x ⊆ SΓBC |MΓBC(φ)(ρ[X 7→ x]) ⊆ x}

MΓBC(νX.φ)(ρ) =
⋃
{x ⊆ SΓBC |MΓBC(φ)(ρ[X 7→ x]) ⊇ x}

Table 6: Semantics of modal mu-calculus

the free variables of φ by subsets of SΓBC . For a set x ⊆ SΓBC and a variable X ,
we write ρ[X 7→ x] for the environment that maps X to x and Y 6= X to ρ(Y ) if
ρ is defined on Y .

Intuitively, true and false hold for all, resp. no, states and ∧ and ∨ are inter-
preted by conjunction and disjunction, 〈α〉φ holds for a configuration Γ′ B C ′ ∈
SΓBC if there exists Γ′′ B C ′′ reachable from Γ′ B C ′ with action α and satisfy-
ing φ, and [α]φ holds for Γ′ B C ′ if all configurations Γ′′ B C ′′ reachable from
Γ′ B C ′ with action α satisfy φ. The interpretation of a variable X is as prescribed
by the environment. The formula µX.φ, called least fixpoint formula, is interpreted
by the smallest subset x of SΓBC that recurs when φ is interpreted with the substitu-
tion of x for X . Similarly, νX.φ, called greatest fixpoint formula, is interpreted by
the largest such set. Existence of such sets follows from the well-known Knaster-
Tarski fixpoint theorem. As the meaning of a closed formula φ does not depend
on the environment, we sometimes write MΓBC(φ) for MΓBC(φ)(ρ) where ρ is an
arbitrary environment.

The set of configurations satisfying a closed formula φ is defined as Conf (φ) =
{Γ B C | Γ B C ∈MΓBC(φ)}. We also refer to (closed) equation systems:

Eqn : X1 = φ1 . . . Xn = φn

where X1, . . . , Xn are distinct variables and φ1, . . . , φn are formulae having at
most X1, . . . , Xn as free variables.

An environment ρ : {X1, . . . , Xn} → 2SΓBC is a solution of an equation sys-
tem Eqn , if ρ(Xi) = MΓBC(φi)(ρ). The fact that solutions always exist, is again a

13



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

consequence of the Knaster-Tarski fixpoint theorem. In fact the set of environments
that are candidates for solutions, EnvΓBC = {ρ | ρ : {X1, . . . , Xn} → 2SΓBC},
together with the lifting v of the inclusion order on 2SΓBC , defined by

ρ v ρ′ iff ρ(Xi) ⊆ ρ′(Xi) for i ∈ [1..n]

forms a complete lattice. Now, we can define the equation functional FuncEqnΓBC :

EnvΓBC → EnvΓBC by FuncEqnΓBC(ρ)(Xi) = MΓBC(φi)(ρ) for i ∈ [1..n], the
fixpoints of which are just the solutions of Eqn . FuncEqnΓBC is monotonic and there
is the largest solution νFuncEqnΓBC of Eqn (with respect to v), which we denote
by MΓBC(Eqn). This definition interprets equation systems on the configurations
reachable by a given initial configuration Γ B C. We lift this to configurations
by agreeing that a configuration satisfies an equation system Eqn , if its initial
state is in the largest solution of the first equation. Thus the set of configura-
tions satisfying the equation system Eqn is Conf (Eqn) = {Γ B C | Γ B C ∈
MΓBC(Eqn)(X1)}.

The relation ≈ς can be characterized as the greatest fixpoint νFunc≈ς of the
monotonic functional Func≈ς on the complete lattice of relations R over config-
urations ordered by set inclusion, where (Γ1 B C1,Γ2 B C2) ∈ Func≈ς (R) if
and only if points (1) and (2) of Definition 3.1 hold. Thus a relation R is a weak
bisimulation on ς-low actions if and only if R ⊆ Func≈ς (R), i.e., R is a post-
fixpoint of Func≈ς . By the Knaster-Tarski fixpoint theorem, νFunc≈ς is the union
of all the post-fixpoints of Func≈ς , i.e., it is the largest weak bisimulation on ς-low
actions. If we restrict to the complete lattice of relations R ⊆ SΓ1BC1 × SΓ2BC2

we obtain a monotonic functional Func
(Γ1BC1,Γ2BC2)
≈ς

whose greatest fixpoint is
exactly νFunc≈ς ∩ (SΓ1BC1 × SΓ2BC2), and this is enough to determine if Γ1 B
C1 ≈ς Γ2 B C2.

Let Γ B C be finite-state, Γ1 B C1, . . . ,Γn B Cn its |SΓBC | = n states, and
Γ1 B C1 = Γ B C its initial state. To derive a formula characterizing Γ B C up
to ≈ς we construct a characteristic equation system [19]:

Eqn≈ς
: XΓ1BC1 = φ≈ς

Γ1BC1
, . . . , XΓnBCn = φ≈ς

ΓnBCn

consisting of one equation for each service configuration Γ1 B C1, . . . ,Γn B Cn ∈
SΓBC . We define the formulae φ≈ς

ΓiBCi
such that the largest solutionMΓBC(Eqn≈ς

)
of Eqn≈ς

associates the variables XΓiBCi just with the states Γ′i B C ′i of SΓBC

which are weakly bisimilar on ς-low actions to Γi B Ci, i.e., such that it holds
MΓBC(Eqn≈ς

)(XΓiBCi) = {Γ′i B C ′i ∈ SΓBC | Γi B Ci≈ςΓ′i B C ′i}. Theo-
rem 4.1 shows the exact form of such formulae. First we define:

〈〈α〉〉Γ,ςφ
def
=

{
〈〈α〉〉φ if Γ(α) � ς or α = τ
〈〈α〉〉φ ∨ 〈〈τ〉〉φ if Γ(α) 6� ς and α 6= τ
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where 〈〈τ〉〉φ def
= µX.φ ∨ 〈τ〉X and 〈〈α〉〉φ def

= 〈〈τ〉〉〈α〉〈〈τ〉〉φ. Let
α

↪−→→ Γ,ς note
either

α
↪−→→ or

τ
↪−→→ . Then 〈〈α〉〉Γ,ς , 〈〈τ〉〉 and 〈〈α〉〉 correspond to

α
↪−→→ Γ,ς ,

τ
↪−→→

and
α

↪−→→ , since

• MΓBC(〈〈α〉〉Γ,ςφ)(ρ) = {Γ′ B C ′ | ∃ Γ′′ B C ′′ : Γ′ B C ′
α

↪−→→ Γ,ςΓ
′′ B

C ′′ ∧ Γ′′ B C ′′ ∈MΓBC(φ)(ρ)}

• MΓBC(〈〈τ〉〉φ)(ρ) = {Γ′ B C ′ | ∃ Γ′′ B C ′′ : Γ′ B C ′
τ

↪−→→ Γ′′ B
C ′′ ∧ Γ′′ B C ′′ ∈MΓBC(φ)(ρ)}

• MΓBC(〈〈α〉〉φ)(ρ) = {Γ′ B C ′ | ∃Γ′′ B C ′′ : Γ′ B C ′
α

↪−→→ Γ′′ B
C ′′ ∧ Γ′′ B C ′′ ∈MΓBC(φ)(ρ)}.

Theorem 4.1. Let φ≈ς

ΓiBCi
be the formula∧

{
∧
{〈〈α〉〉Γ,ςXΓ′iBC

′
i
| Γi B Ci

α
↪−→ Γ′i B C ′i}}

∧
∧
{[α]

∨
{XΓ′iBC

′
i
| Γi B Ci

α
↪−→→ Γ,ς Γ′i B C ′i}}.

Then MΓBC(Eqn≈ς
)(XΓiBCi) = {Γ′i B C ′i ∈ SΓBC | Γi B Ci ≈ς Γ′i B C ′i}.

Proof. The proof is standard [19] and is based on the observation that EnvΓBC ,
the set of candidates for solutions of Eqn≈ς

is order-isomorphic to 2SΓBC×SΓBC ,
the set of relations that are candidates to be weak bisimulation on ς-low actions
between SΓBC × SΓBC . Actually, the mapping α : EnvΓBC → 2SΓBC×SΓBC

defined by:

α(ρ) = {(Γi B Ci,Γ
′
i B C ′i) ∈ SΓBC × SΓBC | Γ′i B C ′i ∈ ρ(XΓiBCi)}

is an order isomorphism between EnvΓBC and 2SΓBC×SΓBC , the inverse of which
is the mapping β : 2SΓBC×SΓBC → EnvΓBC defined by β(R)(XΓiBCi) = {Γ′i B
C ′i ∈ SΓBC | (Γi B Ci,Γ

′
i B C ′i) ∈ R}.

The proof follows by showing that Func≈ς and Func
Eqn≈ς

ΓBC are equal up to the
isomorphism induced by (α, β), i.e., such that

Func
Eqn≈ς

ΓBC = β ◦ Func≈ς ◦ α.

Then their largest fixpoints are also related by the isomorphism, which yields
MΓBC(Eqn≈ς

)(XΓiBCi) = {Γ′i B C ′i ∈ SΓBC | Γi B Ci ≈ς Γ′i B C ′i}.

Characteristic formulae, i.e., single formulae characterizing configurations can
be constructed by applying simple semantics-preserving transformation rules on
equation systems. These rules are similar to the ones used by A. Mader in [20]
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as a mean of solving Boolean equation systems (with alternation) by Gauss elim-
ination. Hence, since for any equation system Eqn there is a formula φ such that
Conf (Eqn) = Conf (φ), we obtain that:

Theorem 4.2. For any finite-state configuration Γ B C there is a modal µ-calculus
formula φ≈ς (Γ B C) such that Conf (φ≈ς (Γ B C)) = {Γ′ B C ′ ∈ SΓBC | Γ′ B
C ′ ≈ς (Γ′ B C ′)|ς}, that is the set of all the states reachable from Γ B C and
satisfying NIΓ,ς 2

5. A Modal Formula for Compliance

Compliance is a basic property that characterizes the correct behavior of con-
current distributed systems. It is used widely in the context of SOA as a formal
device to identify well behaving service compositions, those whose interactions
are free of synchronization errors.

In this paper we refer to the notion of compliance for contract service compo-
sitions studied in [21]. Intuitively, a composition of services is compliant if it is
deadlock and livelock free, i.e., it does not get stuck nor does it get trapped into
infinite loops with no exit states. This notion is independent of the security levels
of the principals involved in the component synchronizations. Therefore, we omit
trailing type environments in the definitions below, and write, e.g., C =⇒ C ′ to
denote a transition of the form Γ B C =⇒ Γ′ B C ′ for some type environments Γ
and Γ′.

Definition 5.1 (Compliance). Let C be a contract service composition. We say
that C is compliant, noted C ↓, if for every C ′ such that C =⇒ C ′ there exists C ′′

such that C ′ =⇒ C ′′ and C ′′X. 2

In other words, the notion of compliance ensures that at each intermediate step
of the computation in a service composition, each component has a way to reach a
successful state (either autonomously, or via synchronizations). This is enough to
avoid both deadlocks and livelocks.

Example 5.1. Consider the service composition S of Example 2.1. It holds that
Γ B S is both compliant, i.e., S ↓, and non interfering, i.e., S ∈ NIΓ,L. 2

The notion of compliance can be equivalently expressed in terms of
α
↪−→ where

α denotes a synchronization {a}p→q or τ . More precisely, let γ = α1, . . . , αn. We

denote by
γ

↪−→→ the sequence of transitions
α1
↪−→→ α2

↪−→→ . . .
αn
↪−→→. Again we write

C
γ

↪−→→ C ′ to denote a derivation Γ B C
γ

↪−→→ Γ′ B C ′ for some type environments
Γ and Γ′.

16
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Proposition 5.1. Let C be a contract service composition. It holds that C is com-

pliant, C ↓, if and only if every C ′ such that C
γ′

↪−→→ C ′ for some γ′ ∈ Act∗ there

exist C ′′ and γ′′ ∈ Act∗ such that C ′
γ′′

↪−→→ C ′′ and C ′′X.

Proof. The proof follows by induction on the derivations and Lemma 3.1.

The modal µ-calculus formula that characterizes compliance is defined as fol-
lows:

φc
def
= µX.

( ∧
α∈Act

([α]X) ∧ φ

)
where

φ
def
= µX.

(
(X) ∨

∨
α∈Act

(〈α〉X)

)
∧ ¬µX.

( ∨
α∈Act

(〈α〉X)

)

The sub-formula ¬µX.
(∨

α∈Act(〈α〉X)
)

will ensure that any configuration
satisfying φc doesn’t get trapped into infinite loops without chances to reach a
successful state. The next theorem characterizes the set of service configurations
satisfying φc. A complete proof is given in [22].

Theorem 5.1. Consider the modal µ-calculus formula φc defined above. It holds
that Conf (φc) = {Γ B C | C ↓ and Γ is a type environment}.

Proof. The fact that Conf (φc) ⊇ {Γ B C | C ↓ and Γ is a type environment}
easily follows by contradiction. The other direction follows from the fact that, by
definition of φc, for each configuration Γ B C ∈ Conf (φc) it holds that Γ B C ∈
Conf (φ′) where φ′ is the sub-formula µX.

(
(X) ∨

∨
α∈Act(〈α〉X)

)
.

Corollary 5.1. A composition C is compliant if and only if Γ B C ∈ Conf (φc)
for some type environment Γ. 2

As a consequence of Theorems 4.2 and 5.1 we have:

Corollary 5.2. Let ς ∈ Σ, Γ B C be a configuration and

Φς
ΓBC

def
= φ≈ς (Γ B C) ∧ φc.

It holds that Γ B C ∈ Conf (Φς
ΓBC) if and only if both C ∈ NIΓ,ς and C ↓. 2

Using this method we can for instance exploit the model checker NCSU Con-
currency Workbench (see [23]) to check whether both C ∈ NIΓ,ς and C ↓.

17



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Transitions for filters

δ.f
δ7−→ f

f{X := rec(X) f} δ7−→ f ′

rec(X) f
δ7−→ f ′

f
δ7−→ fδ g

δ7−→ gδ

f ⊗ g δ7−→ fδ ⊗ gδ

f
δ7−→ fδ g

δ7−→ gδ

f × g δ7−→ fδ × gδ

f
δ7−→ fδ g 6 δ7−→

f × g δ7−→ fδ

f 6 δ7−→ g
δ7−→ gδ

f × g δ7−→ gδ

Transitions for filtered peers

Γ B p[σ]
δ−→ Γ B p[σ′] f

δ7−→ f ′

Γ B f(p[σ])
δ−→ Γ B f ′(p[σ′])

Γ B p[σ]
τ−→ Γ′ B p[σ′]

Γ B f(p[σ]))
τ−→ Γ′ B f(p[σ′])

Γ B p[σ]X

Γ B f(p[σ])X

Table 7: Dynamics of Filtered contract service compositions

6. An Adaptive Algorithm

The model checking technique is based on the idea that the state transition
graph of a finite-state system defines a Kripke structure, and efficient algorithms
can be given for checking if the state graph defines a model of a given specifica-
tion expressed in an appropriate temporal logic. In the explicit state approach the
Kripke structure is represented extensionally, using conventional data structures
such as adjacency matrices and linked lists so that each state and transition is enu-
merated explicitly. Moreover, in the global calculation approach, given a structure
M and formula φ, the model checking algorithms calculate φM = {s : M, s |= φ}
that is the set of all states in M satisfying φ. We show how such algorithms can
be exploited to develop an adaptive model checking technique for service com-
positions which adapts, when it is possible, the composition under investigation
in such a way that it satisfies both non-interference and compliance. We use the
filters, introduced in [4] and revised in [21], as prescriptions of behaviour.

Filters. A filter is the specification of the legal flow of actions for an individual
contract. The syntax is as follows, while the semantics is defined in Table 7.

f ∈ F := 0 | δ.f | f × f | f ⊗ f | X | rec(X) f

18
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Definition 6.1 (Filter pre-order). The filter pre-order f ≤ g is the largest relation
such that if f δ7−→ fδ then g δ7−→ gδ and fδ ≤ gδ. 2

We note (F ,v) the partial order induced by ≤: by abuse of notation, we iden-
tify a filter f with its equivalence class [f ]∼, where ∼ is the symmetric closure
of ≤. The union and intersection of filters represent the glb and lub operators for
(F ,v). Furthermore, if we assume a finite alphabet A of actions, the set of filters
FA insisting on A forms a complete lattice with 0 as bottom and the identity filter
IA

def
= rec(X)

∏
δ∈A δ.X as top element.

The application Γ B f(p[σ]) blocks any action from Γ B p[σ] that is not
explicitly enabled by f . Filters may be composed to help shape a service composi-
tion. Given a set π of principals, a composite π-filter F is a finite map from the
principals in π to filters: {p → f [p] | p ∈ π}. A π-filter may be applied to a
π-composition:

Γ B F (p1[σ1] ‖ · · · ‖ pn[σn]) ::= Γ B F [p1](p1[σ1]) ‖ · · · ‖ Γ B F [pn](pn[σn])

When we write Γ B F (C) we tacitly assume that the underlying set of princi-
pals for both F and C is π. The operators of union and intersection, as well as the
ordering on filters extends directly to composite filters, as expected. Namely, for
F and G π-filters and for • ∈ {×,⊗}:

F ≤π G iff F [p] ≤ G[p] for all p ∈ π
(F •π G)[p] def

= F [p] •G[p] for all p ∈ π

We generalize the syntax of service compositions by allowing the term Γ B
F (C) to account for the application of filters on the components of C. The dynam-
ics of filtered service compositions derives directly by combining the transitions in
Tables 2 and 7.

Relevance. Below we present an algorithm that given a configuration Γ B C infers
a composite filter F that fixes Γ B C, whenever such F exists. The algorithm is
so structured as to guarantee two important properties on the inferred filter. On the
one hand, the filter is as permissive as possible, in that it is the greatest (with respect
to the pre-order≤) among the filters that fix Γ B C. On the other side, the inferred
filter is relevant, i.e., minimal in size: for any computation state reached by the
service configuration via a series of τ transitions (local moves or synchronizations),
the filter only enables actions that may be attempted at that state (either directly, or
via a local choice), by one of the components of the service configuration.

Definition 6.2 (Relevance). Let π be a set of principals and C be a non-empty set
of π-configurations. A filter f is p-relevant in C, written f ∝p C, if whenever
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f
δ7−→ f̂ one has δ ∈ {a →p, āp→ } and there exists Γ B C ∈ C such that Γ B

C
α

↪−→→ with α ∈ {{a} →p, {a}p→ } and f̂ ∝p {Γ′ B C ′ | Γ B C
α

↪−→→ Γ′ B C ′}.
A composite π-filter F is relevant for C, written F ∝ C, if F (p) ∝p C for all p ∈ π.
A composite π-filter is relevant for a π-configuration Γ B C if F ∝ {Γ B C}. 2

The Algorithm. We describe an algorithm that synthesizes the v-greatest relevant
filter that fixes Γ B C, if it exists, when Γ B C does not satisfy Φς

ΓBC .
As discussed above, a global model checking algorithm applied to a config-

uration Γ B C and the modal formula Φς
ΓBC calculates the set of states in the

reduction graph (tracing the states reached by means of synchronizations or inter-
nal moves) of Γ B C satisfying Φς

ΓBC . This is the input of our algorithm. The
reduction graph can be represented as a directed graph G = (V,E) with labelled
edges and vertices. The vertices in V represent the reachable states of Γ B C. With
each v ∈ V we associate two fields: state[v] gives the computation state (i.e., the
derivative Γ′ B C ′ of the initial state Γ B C) associated with v; result [v] is a
tag SUCC or FAIL depending on whether the corresponding configuration satisfies
Φς

ΓBC or not as calculated by the model checker. An edge in E is a triple (u,v)α

representing the transition state[u]
α
↪−→ state[v]. Reduction graphs may be stored

in a adjacency list representation, so that the set of outgoing edges for each u ∈ V
can be retrieved as Adj[u]: thus (u,v)α ∈ E iff (α,v) ∈ Adj[u]. We also write
Adj[u, α] for the set {v ∈ V | (u,v)α ∈ E}. Vertices with no outgoing edges are
called leaves. We denote by root[G] the vertex representing the initial state Γ B C.

The first step consists in re-labelling the graph G calculated by the model-
checker in such a way that the result label at each vertex u is set to FAIL if there
exists at least one silent transition from u to a FAIL vertex; it is set to SUCC if
either there are no silent transitions from u to a FAIL vertex and there exists a
silent transition from u to a SUCC vertex or there exists one non-silent and non-
conflicting transition from u to a SUCC vertex. The procedure iteratively examines
all the vertices in the graph until it reaches a fixed point. This computation is
accomplished by the PushLabels procedure and uses the following auxiliary
definitions. Let locs(α) be {p, q} in case α = {ap→q}, and ∅ in case α = τ . Then,
let G = (V,E) be a reduction graph, and α = {ap→q}.

• A path $ = (u,u1)α1 , . . . , (un−1,v)αn from u to v in G is α-free if
locs(α) ∩ locs(αi) = ∅ for all i’s.

• A vertex v is a α-free descendant of u in G (dually, u is a α-free ancestor
of v) if there is a α-free path fromu tov.

• A vertex u yields a conflict on α if u has two distinct α-free descendants v1

and v2 such that (v1,w1)α and (v2,w2)α ∈ E and result [w1] 6= result [w2].
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Procedure PushLabels(G)

Input: A reduction graph G = (V,E)
Output: The graph G updated

done := false;
while ¬ done do

done := true;
foreach u ∈ V do

succ := false; fail := false;
if Adj[u, τ ] 6= ∅ then

if ∃v ∈ Adj[u, τ ] : result [v] = FAIL then
fail := true;

else if ∃v∈Adj[u, τ ] : result [v] = SUCC then
succ := true;

else if ∃(α,v) ∈ Adj[u] ∧ result [v] = SUCC ∧ ¬Conflict(α,u)
then

succ := true;
if succ ∧ result [u] 6= SUCC then

result [u] := SUCC; done := false;
else if fail ∧ result [u] 6= FAIL then

result [u] := FAIL; done := false

• A vertex v has a conflict on α in G, noted ConflictG(α,v) if v has a α-free
ancestor yielding a conflict on α.

Intuitively, our algorithm will prune G by banning all the ‘bad’ synchronizations,
and by preserving all the ‘good’ synchronizations that lead to nodes satisfying both
non-interference and compliance. Due to the presence of internal choices, the same
synchronization can look good at one point, but actually be bad. The definition of
conflict formally captures this notion of ambiguous synchronizations.

Proposition 6.1. After the call to PushLabels(G), the following conditions
hold for every node u in G:

1. result [u] = FAIL iff either there exists no (u,v)α ∈ E such that result [v] =
SUCC and ¬ConflictG(α,u) or there exists (u,v)τ ∈ E such that result [v]
= FAIL;

2. result [u] = SUCC iff there exists no (u,v)τ ∈ E such that result [v] = FAIL

and there exists either (u,v)τ ∈ E such that result [v] = SUCC or (u,v)α ∈
E with α 6= τ , ¬ConflictG(α,u) and result [v] = SUCC.

21



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Function SuccessGraph(G)

Input: A reduction graph G = (V,E)
Output: G′ = (V ′, E′) the success sub-graph of G

V ′ := (result [root[G]] = SUCC) ? {root[G]} : ∅; E′ := ∅;
done := false;
while ¬ done do

done := true;
foreach (u,v)α ∈ E \ E′ do

if u ∈ V ′ ∧ result [v] = SUCC ∧ ¬Conflict(α,u) then
V ′ := V ′ ∪ {v}; E′ := E′ ∪ {(u,v)α};
done := false

return G′ = (V ′, E′);

Proof. The proof easily follows by construction.

We say that a path$ inG is successful if result [u] = SUCC for every node u in
$, otherwise $ is unsuccessful. A node u is root-successful if it is reachable from
root[G] via a successful path, otherwise it is root-unsuccessful. The next step of
the algorithm computes the sub-graph of G that only includes the root-successful
vertices. This computation is accomplished by the SuccessGraph function.

Proposition 6.2. Let G′ = (E′, V ′) be generated by SuccessGraph(G). Then
u ∈ V ′ if and only if u is root-successful in G. 2

The final step of the algorithm synthesizes the filter out of the success graph, in
case this is not empty. Let G′ = SuccessGraph(G), π be the underlying set of
principals, and FAlg [Φς

ΓBC ] = ExtractFilterπ(root [G], ∅, G′). A complete
proof of the next theorem is given in [24].

Theorem 6.1 (Soundness and maximality). Let Γ B C be a π-composition. Then
Γ B FAlg [Φς

ΓBC ](C) is such that

• FAlg [Φς
ΓBC ](C) ∈ NIΓ,ς

• FAlg [Φς
ΓBC ](C)↓.

Also, if a filter F fixes Γ B C and is relevant for Γ B C, then F ≤ FAlg [Φς
ΓBC ].

Proof. The proof follows by construction and by Propositions 6.1 and 6.2.
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Function ExtractFilterπ(u, U,G)

Input: G = (V,E) a success graph. u ∈ V,U ⊆ V
Output: F , an π-composite filter

F [p] := 0 for all p ∈ π;
if state[u]X then

return F ;
if u ∈ U then

rec[u] := true; return (Xu, . . . , Xu);
foreach (α,v) ∈ Adj[u] do

Fv := ExtractFilterπ(v, U ∪ {u}, G);
foreach p ∈ π do

if α = {ap→ } then
F [p] := F [p]× āp→ .Fv[p];

else if α = {a →p} then
F [p] := F [p]× a →p.Fv[p];

else
F [p] := F [p]× Fv[p];

if rec[u] = true then
foreach p ∈ π : Xu ∈ fv(F [p]) do

F [p] := rec(Xu)F [p];

return F ;

7. A case study

In this section we address the problem of formalizing the interactions among
an authentication service (AS), a web service (WS) and a user. First, we introduce
the system description and discuss how our formalism copes with it. Then, we
show that the non-interference framework presented in Section 3 can be used to
prevent the developer to introduce architecture flaws while projecting the WS. The
advantage of such a formal approach is shown to be twofold: first, it gives an un-
ambiguous method to describe a possibly complex software architecture consisting
of several cooperating services. Second, it allows one to decide if a model satisfies
certain security properties in a completely algorithmic way.

7.1. System definition
Authentication services are web services that allow web applications to par-

tially or totally avoid managing users’ accounts. The advantages of using authen-
tication services are: the possibility for the user to own just one account to access
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several independent web services and the simplifications of the design of the web
service since the storage and managing of user accounts is left to a specialised ap-
plication. Most of the implementations of such a mechanism relies on a project
called OpenID. A user that wishes to obtain an OpenID, just needs to register with
one of the providers that support the project: Google, Yahoo! and Wordpress are
probably the most common. Many web applications and services that require au-
thentication, at the login phase, redirect the user to one of the providers handling
OpenID. Then, the authentication server recognises the user and sends back both
to the user and to the web application that the authentication has been carried out
successfully. This process is illustrated in Figure 1 and consists of nine steps:

1. The WA offers the end user a set of login options
2. The user selects to log-in with a third party account, choosing among OpenID-

compatible providers (e.g., Google, facebook and Yahoo!)
3. The WA sends a discovery request to the selected provider in order to obtain

a login web service endpoint
4. The provider answers with a eXtensible Resource Descriptor Sequence (XRDS)

document that contains the address(es) of the login web service endpoint
5. The WA contacts the login endpoint to send a request for authentication ser-

vice
6. The user is redirected to the chosen provider where the authentication step

can be done
7. The user provides login information and, upon success, receives a confirma-

tion and is again redirected to the web application
8. The AS sends to the WA a token which confirms user’s identity
9. Finally, the WA is able to exchange confidential information to the user

Note that, with respect to the previous examples, in this case the confidentiality is
a requirement of the web application instead of the user.

7.2. An ideal model

We consider an ideal model of the federated authentication system based on
OpenID, i.e., in the first step we do not consider the possibility of errors in the WA
development. The security level lattice is Σ = {L, h1, h2, H} and Figure 2 shows
relation �. Let us assume that a WA is able to provide certain types of information
that can be classified according to three security levels: L, h1, h2. Unknown users’
principals are associated with the lowest security level L, while authenticated users
are associated with one of the higher security levels h1 and h2. The web application
security level is the highest: H . Observe that, the security levels are assigned
according to the WA confidentiality requirements. We first give the definition of the
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Discovery

  Auth.
Service

     Web
Application User

1.Request user sign-in

2.Opt to use OpenID

3.Discovery

4.XRDS document

5.Request login auth 6.Redirect

7.Log in and approves8.Return user identity

9.Allow protected interactions

Figure 1: OpenID login authentication for web applications.

h1 h2

H

L

Figure 2: Lattice 〈Σ,�〉 used in the Example of Section 7.
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σD = DiscReq@x.DiscAS@x.1

σAS = ReqC@y.Redirect@C.GetAccount@C.

(Ok@C.Token@y.1b∅⊕ ∅cFail@C.NoToken@y.1)

Table 8: Contracts executed by the Authentication Service and the Discovery Service
in the model for federated login system.

contracts executed by the discovery (σD) and authentication (σAS) web services.
Their definitions in terms of the calculus are given in Table 8. Process σD is rather
simple, since it simply returns a WA endpoint (DiscAS) upon a request DiscReq.
Observe that, endpoint AS is going to be used as a principal name by the WA’s
contract. Since in our calculus we do not explicitly model the variable passing
between synchronisations, the action synchronising with DiscAS@x is part of an
external choice with all the possible values of the output (see [16]). To clarify,
consider the definition of σAS in Table 8: note that the first input ReqC contains the
label of principal C that is contacted by the following output action. Therefore, a
complete definition of the AS process would be:

σ′AS = σASC1 + σASC2 + . . . + σASCn ,

where σASCi is the definition of σAS of Table 8 rewritten forC = Ci, andC1, . . . , Cn
are all the possible (finite) instances of user principal.

However, as illustrated by the definition of σAS in Table 8, for the sake of a
compact notation, we omit to specify all the possible external choices. The AS
process, after receiving a request to authenticate user C (ReqC) redirects C to the
login service and waits for the account information (Account). If the authentica-
tion is successful, then C is informed by receiving an Ok message and the authenti-
cation token is sent to the WA. Otherwise, both are informed that the authentication
process failed.

Table 9 formalises the definition of contract σWA performed by principal WA.
Its behaviour strictly resembles the process depicted by Figure 1. The first line of
the definition σWA corresponds to steps 1 and 2 of the authentication procedure.
User’s principal C can decide between an internal authentication procedure or one
based on OpenID. In the first case, the WS directly accepts the account information
(Account) and based on them, it decides if the user is not recognised (sending of
message NoAuth, if it can access information with security level h1 (and hence
the process continues as σProf1) or with security level h2 (and hence the process
continues as σProf2). The offered services depends on the user authentication and
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σWA = ConfReq@x.Choices@x.(Internal@x.σAUT + OpenID@x.σOID)

σAUT = Account@x.(Passed@x.(σProf1bx:h1⊕ x:h2cσProf2)

b∅⊕ ∅cNoAuth@x.σSer3)

σOID = DiscReq@D.DiscAS@D.Reqx@AS.(Token@AS.

(σProf1bx:h1⊕ x:h2cσProf2) + NoToken@AS.σSer3)

σProf1 = σSer1 + σNoSer2 + σSer3

σProf2 = σNoSer1 + σSer2 + σSer3

σSeri = Opi@x.Replyi@x.1 i = 1, 2, 3

σNoSeri = Opi@x.Denyi@x.1 i = 1, 2

Table 9: Contract executed by the Web Application.

σC = ConfReq@WA.Choices@WA.

(Internal@WA.σIAb∅⊕ ∅cOpenID@x.σOID)

σIA = Account@WA.(Passed@WA.σAct

+ NoAuth@x.Op3@x.Reply3@x.1)

σOID = Redirect@z.GetAccount@z.(Ok@z.σAct

+Fail@z.Op3@x.Reply3@x.1)

σAct = Op3@WA.Reply@WA3.1b∅⊕ ∅c(Op2@WA.(Reply2@WA.1 +

Deny2@WA.1)b∅⊕ ∅cOp1@WA.(Reply1@WA.1 + Deny1@WA.1))

Table 10: Contract executed by the User.

are σSer1 for users with level h1, σSer2 for users with level h2, whereas σSer3 is
available for both (and also non-registered users). Observe that upon a successful
authentication, user’s security level is upgraded by the internal choice operator.
Finally, Table 10 gives the definition of the user process σC .

Initially, user’s contract σC synchronises with WA and chooses one of the two
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available authentication methods. In both cases, it sends the account information
(Account and Getaccount) and then proceeds with a service request (σAct). Note
that, if the authentication method is OpenID then a Redirect input allows the
principal to identify the authentication service endpoint. Finally, the user performs
an internal choice among the three possible requests Opi, i = 1, 2, 3. Observe
that, in order to satisfy the compliance property, we consider the possibilities that
in case operations 1 or 2 are requested, then WA may answer with a denial of
access according to the user profile. It can be proved that the service composition
M = WA[σWA] ‖ C[σC ] ‖ D[σD] ‖ AS[σAS ] with the type system Γ = {WA :
H,C : L,D : L,AS : L} is compliant. However, if we consider the definitions of
Table 9 omitting σNoSeri , (intuitively, the WA simply does not accept requests from
unauthorised users), then configuration M would be non-compliant. In fact, a user
that cannot ask for service i (i = 1, 2) could anyway perform an internal choice
for it (see the definition of σAct) and hence cause a deadlock in its execution. It
is worthwhile pointing out that this corresponds to what is known to be a good
software engineering practice, i.e., handling with correct procedures (maybe of
denial) all the possible requests from the users. Finally, M ∈ NIΓ,L since once
the security level of the customer is upgraded to h1 or h2, all the synchronisations
between WA and C have the same level of security.

7.3. Compliance and non-interference analysis in an insecure WA
Web services are vulnerable to many attacks that can overcome the security

measures designed by the developer. This is mainly due to the fact that most of the
web service endpoints are completely exposed in a untrusted environment, i.e., the
Internet. In this part we consider the possibility that a user, for malicious purposes,
is able to send to the WA an ill-formed request that causes a failure in the proce-
dure that is being carried out. In practice, this corresponds to a badly formed XML
document or to a SQL injection attack. It is well-known that correct security im-
plementations require that the WA reveals, as a consequence of a failure, the lowest
amount of information about its activity so that the attacker cannot infer any infor-
mation about the confidential activities that are being processed (see, e.g., [25]).
We show how our non-interference framework is able to formally detect if a WA is
designed according to this security principle.

The revised version of the model is depicted in Table 11 where the definition
of the AS and D contracts are omitted since they are identical to those of Table 8.

In this model, we assume that the WA may receive the malicious request at two
epochs: just before the user chooses the required service (before synchronisations
on Opi) and just before it receives the answer for that request. In both cases, the
WA procedure aborts. Although, a WA that suffers this problem clearly contains
flaws in its design (probably missing checks on input), these are very common
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M = AS[σAS ] ‖ C[σC ] ‖ X[σX ] ‖ D[σD] ‖WA[σWA]

σWA = ConfReq@x.Choices@x.(Internal@x.σAUT + OpenID@x.σOID)

σAUT = Account@x.(Passed@x.(σProf1bx:h1⊕ x:h2cσProf2)

b∅⊕ ∅cNoAuth@x.σProf3)

σOID = DiscReq@D.DiscAS@D.Reqx@AS.(Token@AS.

(σProf1bx:h1⊕ x:h2cσProf2) + NoToken@AS.σProf3)

σProf1 = σSer1 + σNoSer2 + σSer3 + IllMsg@y.Msg0@y.Close@x.1

σProf2 = σNoSer1 + σSer2 + σSer3 + IllMsg@y.Msg0@y.Close@x.1

σProf3 = σSer3 + IllMsg@y.Msg0@y.Close@x.1

σSeri = Opi@x.(Replyi@x.1 + IllMsg@y.Msgi@y.Close@x.1) i = 1, 2, 3

σNoSeri = Opi@x.Denyi@x.1 i = 1, 2

σC = ConfReq@WA.Choices@WA.

(Internal@WA.σIAb∅⊕ ∅cOpenID@x.σOID)

σIA = Account@WA.(Passed@WA.σAct

+ NoAuth@x.Op3@x.Reply3@x.1)

σOID = Redirect@z.GetAccount@z.(Ok@z.σAct

+Fail@z.Op3@x.Reply3@x.1)

σAct = (Op3@WA.(Reply3@WA.1 + Close@WA.1)b∅⊕ ∅c
(Op2@WA.(Reply2@WA.1 + Deny2@WA.1 + Close@WA.1)

b∅⊕ ∅cOp1@WA.(Reply1.@WA.1 + Deny1@WA.1 +
Close@WA.1))) + Close@WA.1

σX = IllMsg@WA.(Msg0@WA.1 + Msg1@WA.1

+Msg2@WA.1 + Msg3@WA.1) + 1

Table 11: Insecure contracts for WA and C.
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and it is dangerous to assume that a service is immune from them. Therefore, the
developer should take care that, when this type of attack happens, the system does
not violate its confidentiality requirements and remains complaint. Contract σX
executed by attacker’s principalX tries to send to the WA a malicious request (e.g.,
SQL injection) by synchronising on IllMsg and if this happens, then it catches one
of the possible error messages returned. Observe that, before an operation request
Opi, i = 1, 2, 3, the WA returns an error message Msg0, whereas after that it returns
an error message Msgi that depends on the service being processed.

We now show that the contract depicted by Table 11 are compliant but does
not yield the non-interference property for security level L. The compliance can
be straightforwardly derived from the observation that upon an IllMsg input the
contract stops its activity just after sending an error message to the principal that
caused it, and closing the connection with the customer. Symmetrically, user’s con-
tract always considers the possibility of an abortion of the service by synchronising
on Close. To prove that M /∈ NIΓ,L it suffices to show that in M when X syn-
chronises on Msg1 this is surely preceded by a synchronisation on Op1 of level h1,
therefore the attacker can infer the profile of the user being logged and that it re-
quired an operation Op1 (the same holds for Op2). This vulnerability is well-known
by practitioners, and is usually caused by un-handled exceptions. Conversely, ex-
ceptions should be always handled and the principal that causes them should re-
ceived a short error message that must not depend on the server status [25]. In
fact, in the model of Table 11, if we assume Msgi = Msg it is possible to automat-
ically prove that M ∈ NIΓ,L. Although in this case the non-interference analysis
leads to an intuitive result, this is not always true. As an instance, consider the
model depicted in Table 11 with Msgi = Msg for i = 0, 1, 2, 3 but without the
possibility to send a malicious message just before Opi synchronisations. At a first
glance, this modification corresponds to an improvement of the system security,
however M /∈ NIΓ,L holds. The point is that an observer can infer that a high
security level synchronisation occurred by observing how the error is handled. In
fact, if Close synchronisation is done at level L (and hence is observable), then
for sure neither Op1 nor Op2 synchronisations occurred, otherwise a synchronisa-
tion of security level {h1, h2} has been done. Therefore, the system reveals more
information about its confidential activities with respect to the system that can be
attacked also just before user’s choice of Opi.

8. Conclusion

Some research efforts on model checking web services have already been pro-
posed [26, 27, 28, 29]. The most related paper that we are aware of is by Naka-
jima [30] who introduces a lattice-based security labelling into BPEL in order to
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detect potential insecure information leakage. The paper discusses how both the
safety and security aspects can be analyzed in a single framework using the model-
checking verification techniques. The main difference with our approach is that
the notion of security considered in [30] is built upon a simple lattice-based model
for security labels. Instead, our approach deals with more flexible security policies
which can be dynamically specified by the service participants. As far as correct-
ness is concerned, [30] considers safety properties such as deadlock freedom and
specific progress properties. Our model instead deals also with the property of
livelock freedom.

In conclusion, we have developed a formal method for the analysis of both
information flow security and compliance of contract service compositions. This
is based on the characterization of such properties in terms of modal µ-calculus
formulae. This allows us to use a model checker, like the NCSU Concurrency
Workbench, in order to simultaneously check non-interference and compliance.
An algorithm for adaptable service compositions is also proposed. It computes the
greatest relevant filter fixing them.
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