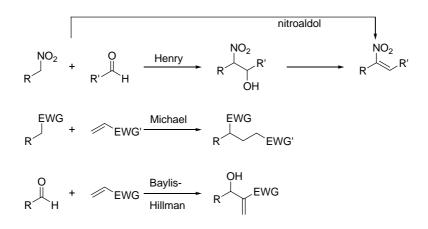
Not merely solvents: task-specific ionic liquids made by green syntheses.

Alvise Perosa, Maurizio Selva, Massimo Fabris, Marco Noè, Vittorio Lucchini


Dipartimento di Scienze Ambientali, Università Ca' Foscari Dorsoduro 2137 – 30123 Venezia, Italy alvise@unive.it

We describe a class of phosphonium and ammonium ionic liquids made by green synthesis (A) and designed to be solvents (B), catalysts (C), and to aid in product separation (D).

Synthesis Amines and phosphines with dimethylcarbonate (DMC), yield pure methylammonium and methyl-phosphonium salts. The substituents on the nitrogen and phosphorous determine whether the products are liquid, *i.e.* ionic liquids (ILs), and their solvent ability. The quaternarization with DMC is a green alternative to methylation using methyl halides and dimethylsulfate, and affords directly an IL that is set up for a simple and halide-free anion metathesis step. The metathesis is carried out using the conjugated acid of the desired anion, CH₃OH and CO₂ are the only by-products. These ILs are characterized in the neat state by one- and two-dimensional NMR. With a view of using them as task-specific solvents, the neat NMR spectra provide a degree of information on the cation-anion interactions. And, in perspective, on reactant-IL interactions as well.

Applications in synthesis This class of ionic liquids has so far found applications in multiphase catalysis, ^{1,2} nanoparticle formation,³ and ionic liquid mediated carbon-carbon bond forming reactions.

We will describe the synthesis, characterisation, and application of these ILs. They are very active basic catalysts for base-promoted C-C bond forming addition reactions such as the Michael, Henry, nitroaldol, and Baylis-Hillman reactions. These do not require added solvents, or catalysis by base or metals.

^{1.} S. Paganelli, A. Perosa, M. Selva, Adv. Synth. Catal., 2007, 349, 1858-1862.

^{2.} P. Tundo, A. Perosa, Chem. Soc. Rev., 2007, 36, 532-550.

^{3.} A. Perosa, P. Tundo, M. Selva, P. Canton, *Chem. Commun.*, 2006, 4480-4482.