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Abstract This paper studies efficient and egalitarian allocations over a single
heterogeneous and infinitely divisible good. We prove the existence of such allocations
using only measure-theoretic arguments. Under the additional assumption of complete
information, we identify a sufficient condition on agents’ preferences that makes it
possible to apply the Pazner–Schmeidler rule for uniquely selecting an efficient egal-
itarian equivalent allocation. Finally, we exhibit a simple procedure that implements
the Pazner–Schmeidler selection in a subgame-perfect equilibrium.
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1 Introduction

A fair division problem arises when two or more agents are called to divide a good
over which they claim equal rights. The oldest known examples include Abraham and
Lot arguing over land division (Genesis 13), and Prometheus and Zeus disputing a
pile of meat (Hesiod’s Theogony). A recent dramatic example is the carving of Bosnia
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and Herzegovina as an independent entity within the Dayton Accords that put an end
to a 3-year civil war over the spoils of the former Republic of Yugoslavia.

There are several situations where the solution of a fair division problem cannot
call on instruments like prices, monetary compensations, or auctions. This may be
due to liquidity constraints; or to the psychological difficulty of bringing a dispute
down to monetary evaluations; or to political constraints, as in the case of Bosnia
and Herzegovina; or to the presence of judicially enforceable rights—such as under
U.S. law—“to seek partition in kind, or physical division, of jointly owned land”; see
Miceli and Sirmans (2000).

This paper studies the problem of fair division when the dispute must be resolved
using division in kind. We are interested in devising a procedure that can help the parties
to reach an outcome that is both fair and efficient. We assume that the disputed object
is a single infinitely divisible good over which agents have heterogeneous preferences
and that there are no consumption externalities. The canonical example is the division
of a cake, when agents have different (additive) preferences over different slices; see
Steinhaus (1948). A less obvious example is the case of a finite (or countable) number
of homogeneous infinitely divisible goods, where the aggregate endowment is viewed
as the single heterogeneous good at stake; see Chambers (2005, Sect. 5).

There are two main ordinal concepts in the fair division literature. The first is the
envy-free principle which states that each party should (weakly) prefers its share to
anyone else’s. This was proposed by Gamow and Stern (1958, pp. 117–119), but
became widely known after Foley (1967). Any efficient envy-free allocation is ex
post stable because no one desires to exchange what he received with anyone else’s
share. However, this solution concept suffers from a multiplicity problem that makes
it less satisfactory from an ex-ante, or procedural, point of view. There are in general
many efficient envy-free allocations, and each of them provides different payoffs to the
agents. Therefore, they are likely to disagree on how to select one among these allo-
cations. The divide-and-choose mechanism under complete information, for instance,
selects among all the efficient envy-free allocations the division that maximizes the
payoff to the divider—so conflict is likely to shift over how the divider is chosen.

An alternative normative concept is the egalitarian equivalent criterion which states
that each party should be indifferent between getting his share and some reference bun-
dle, identical for all agents. This was introduced by Pazner and Schmeidler (1978) to
overcome the problem that efficient no-envy allocation may not exist at all for econo-
mies with nonconvex preferences or with production. As different reference bundles
lead to different shares, the multiplicity problem over efficient and egalitarian equiva-
lent allocations resurfaces in the choice of the reference bundle. Pazner and Schmeidler
(1978) suggests circumventing the difficulty by focusing only on those reference bun-
dles that are proportional to the total endowment. (Assuming efficiency, this leads to a
unique selection.) Sprumont and Zhou (1999) axiomatizes this “Pazner-Schmeidler”
rule for large exchange economies with convex preferences where the endowment is
a finite number of homogeneous infinitely divisible goods.

It is not immediately obvious how to extend the “Pazner–Schmeidler” rule when
the endowment is a single heterogeneous good. Consider the division of a contested
cake among a group of people who have equal claims on it. The agents may evaluate
the value of a piece of the cake along different attributes: its crust, its filling, its weight,
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Efficient egalitarian equivalent allocations over a single good 29

the number of strawberries on it, and so on. The challenge is how to make sure that all
relevant attributes are proportionally represented in the reference bundle. Moreover,
even if the parties themselves agree that a criterion should be represented whenever an
agent cares about it, is there a way to elicit this strategic information from each party?

We answer these questions under the assumption that each agent can partition the
disputed cake into a finite (or countable) number of parcels that he (but not necessarily
the other parties) views as homogeneous. The intuition is the following. Each agent
divides the cake in as many parcels as he likes. Equally sized morsels from the same
parcel carry the same utility to the agent, so that each parcel is a homogeneous good for
the agent. Note that equally sized morsels from two different parcels may carry differ-
ent utility to him; and, similarly, equally sized morsels from an agent’s parcel may give
different utilities to another agent. Consider now the common refinement of all the
agents’ partitions. Each parcel in this new and finer partition is a homogeneous good
for each party. This brings us back to the standard setting for the Pazner–Schmeidler
rule. Hence, we choose the reference bundle among those that are proportional to this
common refinement. Under efficiency, the selection of the reference bundle to define
the egalitarian equivalent allocation is again unique.

Clearly, in the search for a procedure to implement the efficient egalitarian equiva-
lent allocation with respect to this special reference bundle, we also need to overcome
the difficulty of devising a game in which each agent reveals his own partition of the
cake. Lying over one’s partition may lead to a different reference bundle and hence
to a better share for the liar. We provide a simple procedure which implements the
desired outcome as a subgame-perfect equilibrium, under the assumption that agents
have complete information about their preferences. The procedure is simple in the
sense of Thomson (2005). It generalizes a mechanism suggested in Crawford (1979)
and ameliorated in Demange (1984). Their mechanism derives an efficient egalitarian
equivalent allocation for a finite collection of homogenous goods. Our procedure must
also simultaneously discover the right way to partition the heterogeneous good.

The paper is organized as follows. Section 2 describes our model, which is a standard
version of the classical setup for cake division problems. Section 3 proves the existence
of efficient egalitarian equivalent allocations for a single heterogeneous good using
only measure-theoretic assumptions; the only other existence result we are aware of
is more general in scope but requires additional topological assumptions; see Berliant
et al. (1992). Section 4 describes the assumptions that define the economic environment
over which our procedure can be applied. Section 5 states the implementation result.
Section 6 contains a brief closing remark. Long proofs are relegated to the Appendix.

2 The model

Our model is an abstraction of the classical problem where a cake (or a piece of land)
must be allocated among several agents. There is a measurable space (�,F), where
� is the object to be divided among the n agents and F is a σ -algebra over �. We
say that an element of F is a parcel and that an F-measurable subset of a parcel is
a morsel, which is a nicer term than “subparcel”. Any subset of � mentioned in the
following is an element of F , and hence a parcel.
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For n ≥ 2, let N = {1, 2, . . . , n} be the (finite) set of agents. Agents have
preferences over parcels of �. Each agent i is endowed with a utility function ui :
F → R

+ that is a nonatomic probability measure on F . (Since preferences are invari-
ant up to a positive rescaling of the utility function, ui (�) = 1 is only a normalization.)
A measure ui is nonatomic if, for each parcel A and each x in (0, u(A)), there exists
another parcel B ⊆ A such that ui (B) = x . Hence, the range of each ui is the (convex)
interval [0, 1].

A utility function u over parcels is absolutely continuous with respect to another
measure µ over F if µ(A) = 0 implies u(A) = 0 for any parcel A. Clearly, any
utility function ui is absolutely continuous with respect to the measure µ = ∑n

i=1 ui .
We make the assumption that the utility functions are mutually absolutely continuous;
that is, if ui (A) = 0 for some parcel A, then u j (A) = 0 for any agent j . Since agents
agree on the null parcels, we say that a parcel has zero (or positive) measure without
specifying a measure.

An allocation X = (x1, . . . , xn) is a partition of � in n parcels, where xi is the
parcel assigned to agent i in N . An allocation X is efficient (or weakly efficient, respec-
tively) if there exists no other allocation Y = (y1, . . . , yn) such that ui (yi ) ≥ ui (xi )

for all i , with the strict inequality holding for some i (or ui (yi ) > ui (xi ) for all i). Any
efficient allocation is also weakly efficient. The converse is true under our assumption
that agents have preferences that are mutually absolutely continuous; see Akin (1995,
Lemma 9).

There are several criteria to evaluate the fairness of an allocation. For instance, an
allocation X is proportionally fair if ui (xi ) ≥ (1/n) for all i ; and it is equitable if
ui (xi ) = u j (x j ) for all i and j . These two notions of fairness hinge on the demanding
assumption that interpersonal preferences are comparable. The main fairness criteria
based on ordinal preferences are two. An allocation X is envy-free if ui (xi ) ≥ ui (x j )

for all i and j , and it is egalitarian equivalent (for short, EE) if there exists a reference
parcel A such that ui (xi ) = ui (A) for all i . Any envy-free allocation is proportionally
fair, but the converse is true only if n = 2.

Under our setup, the following existence results are known. Dubins and Spanier
(1961) proves the existence of efficient and proportionally fair allocations for pref-
erences which may not be mutually absolutely continuous. It notes that adding this
latter assumption ensures that all efficient allocations are equitable. Maccheroni and
Marinacci (2003) gives sufficient conditions to extend the existence result for pro-
portionally fair allocations when the utility functions are concave capacities. Weller
(1985) proves the existence of weakly efficient and envy-free allocations; efficiency
follows immediately under mutual absolute continuity.

More existence results are known under related setups, which additionally assume
that � is a subset of R

k . For instance, Stromquist (1980) proves the existence of envy-
free allocations for a planar cake using a larger class of preferences, but restricting
the set of admissible partitions. Berliant et al. (1992) has several results. It gives a
stronger version of Weller (1985) result assuming that the utility functions are abso-
lutely continuous with respect to the Lebesgue measure. And it proves the existence
of efficient and egalitarian equivalent allocations for a general class of preferences
that must however be continuous in a complicated topology described in Berliant and
Dunz (2004).
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3 Existence of efficient EE partitions

This section proves the existence of efficient and egalitarian equivalent allocations in
our setup. Existence follows already from Theorem 5 in Berliant et al. (1992) but our
proof requires no topological assumptions and extends to more general domains.

We need a few definitions. Let u = (u1, . . . , un) be the vector of the n agents’
utility functions on the measurable space (�,F). The set R(u) = {u(A) : A∈F} in
R

n is the range of u. The range of u spans the vector of utilities that the agents can
achieve if they are all given the same parcel. By assumption, each ui is a nonatomic
probability measure. Then, by Lyapunov’s convexity theorem, R(u) is a compact and
convex subset of R

n .
Let � be the set of all n-partitions of �. The set RP(u) = {(u1(x1), . . . , un(xn)) :

X ∈�} in R
n is the partition range of u. The partition range is sometimes called the

Individual Pieces Set; see Barbanel (2005). The partition range of u spans the vector
of utilities that the agents can achieve by dividing up the cake according to some allo-
cation. Dvoretzky et al. (1951) derives from Lyapunov’s convexity theorem a more
general result, which implies that the partition range is also a compact and convex
subset of R

n .
We also call on the following three lemmata, which assume that u is a (finite) vec-

tor of nonatomic probability measures. The first two results correspond to Corollary
1.1 and Lemma 5.3 in Dubins and Spanier (1961), respectively. They do not require
preferences that are mutually absolutely continuous.

Lemma 1 Given an integer k and positive weights α1, . . . , αk with
∑

j α j = 1, there
exists a k-partition X = (x1, . . . , xk) such that ui (x j ) = α j for all i = 1, . . . , n and
j = 1, . . . , k.

For k = n and α j = 1/n for all j , this implies that the partition range of u always
contains the point (1/n, . . . , 1/n). The next lemma, instead, concerns the range of u
and implies that it always contains the whole diagonal.

Lemma 2 For any t in [0, 1] there exists a parcel At such that ui (At ) = t for each i .

Our last lemma characterize efficient allocations when preference are mutually
absolutely continuous; see Barbanel and Zwicker (1997, Theorem 1). Section 7C in
Barbanel (2005) discusses the case where mutual absolute continuity does not hold.

Lemma 3 If preferences are mutually absolutely continuous, an allocation is efficient
if and only if it maximizes a convex combination of the utility functions.

The following is the main result in this section.

Theorem 1 There exists at least one allocation which is efficient and egalitarian
equivalent.

Proof Consider the set RP(u). If the vector 1 = (1, . . . , 1) belongs to RP(u), there
exists an allocation such that every agent has utility 1 = ui (�). Clearly, this allocation
is efficient and egalitarian equivalent with respect to the reference parcel �.
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So, assume that the vector 1 is not in RP(u). For any t in [0, 1], let t = (t, . . . , t).
By Lemma 1, RP(u) contains 1/n and so its intersection with the diagonal is not
empty. Therefore, the continuous function f (t) = t attains a maximum t∗ < 1 on this
intersection. The vector t∗ is in RP(u), so there exists some allocation X∗ such that
ui (x∗

i ) = t∗ for each i . By Lemma 2, there exists some parcel A such that ui (A) = t∗
and thus X∗ is an egalitarian equivalent allocation with respect to the reference
parcel A.

Moreover, since t∗ is also a boundary point of the convex set RP(u), there is a sup-
porting hyperplane for RP(u) going through t∗. Thus, for some convex combination
of weights (α1, . . . , αn),

∑
i ui (x∗

i ) = ∑
i αi t∗ ≥ ∑

i αi ui for any u in RP(u) and
hence by Lemma 3 X∗ is also efficient. ��

4 An economic environment for EE allocations

The existence result in Theorem 1 is not constructive. In other words, it does not tell
us how to find X∗. It does not even try and ask agents if they know what X∗ should be.
This leads naturally to the question of designing a procedure that generates an efficient
and egalitarian equivalent allocation.

Crawford (1979) provides a solution to this problem when there is a finite number
of perfectly divisible homogeneous goods, under the assumption that there is complete
information about agents’ (continuous and strongly monotonic) preferences. Given a
numeraire bundle x that is desirable for all agents, each agent bids a price for the right
to propose the allocation. If everybody accepts the winner’s proposal, this is carried
out. If an agent refuses the proposal, the final allocation is derived from the equal share
rule in which everybody gets (1/n) of the original endowment as follows: the divider
gives up a fraction p (equal to his bid) of x that is equally shared among the other
agents.

As it turns out, there is a unique price p∗ which makes every agent indifferent
between the roles of divider and chooser. The procedure generates a final allocation
that is efficient and egalitarian equivalent with respect to the reference bundle formed
by the union of a fraction (1/n) of the original endowment and a fraction p∗ of the
numeraire bundle. Demange (1984) improves on this scheme by proposing a ver-
sion that avoids the infeasible off-equilibrium allocations present in Crawford (1979)
procedure.

When viewed as an implementation result for their economic environment, these
results exhibit a limitation. Although the choice of the numeraire bundle affects the
final allocation, the procedure assumes that the numeraire bundle is given exogenously,
circumventing the problem of how agents come to agree on it. Crawford (1979) points
out that either plain money or a bundle proportional to the total endowment are likely
to be focal choices for the numeraire bundle. This latter choice defines the Pazner–
Schmeidler rule for the selection of the numeraire bundle, as axiomatized in Sprumont
and Zhou (1999).

In our setup with just one heterogenous good, there is no money and it is not clear
how to define a proportional bundle. Our contribution in this section is to identify
an economic environment where the definition of a proportional bundle should be
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uncontroversial, making the use of the Pazner–Schmeidler rule intuitively natural.
We then extend the Crawford–Demange procedure accordingly and provide a gen-
eral method to achieve efficient and egalitarian equivalent allocations for a single
heterogeneous good.1

We enrich the setup in Sect. 2 with three assumptions, that define the economic
environment investigated in this section.

(A1) There is a measure µ on the measurable space (�,F).
(A2) For each i , the utility ui is absolutely continuous with respect to µ.
(A3) For each i , there exists a finite partition Pi = (pi

1, . . . , pi
mi

) such that, if two
parcels A, B satisfy A ∪ B ⊆ pi

j then

µ(A) = µ(B) ⇒ ui (A) = ui (B).

Assumption (A1) requires that there is a common “objective” measure. If � is a
subset of R

k , this might be the Lebesgue measure. Assumption (A2) requires that an
agent attaches no utility to sets that have size zero, where the size of a parcel is sim-
ply its µ-measure. Finally, Assumption (A3) states that there is a partition Pi which
divides � into mi parcels, each of which can be considered a homogeneous good for
agent i . Assumption (A3) can be considerably relaxed by allowing Pi to be constituted
by a countably infinite number of parcels. After few obvious modifications, all of our
results would still hold. So it is only in the interest of simplicity that we assume that
Pi is finite.

An example may help to assess the import of these three assumptions. Suppose
that the object to be allocated is a chocolate chip cookie, which we may think of as a
subset of R

3. Presumably, agents care only about the cookie dough or the chocolate
chips, although possibly in different guises. Then (A1) is satisfied by taking µ to be
the Lebesgue measure on R

3 and (A2) holds for instance if agents attach no utility to
morsels with empty interior. Finally, (A3) is satisfied by assuming that each agent par-
titions the cookie into two sets: the dough and the chips. From a technical viewpoint,
we note that, by the Radon–Nikodym Theorem, (A1)–(A3) jointly state that we can
write the utility function of each agent i as ui (A) = ∫

A fi dµ, where fi is a finitely
(or countably)-valued density.

While (A1) and (A3) may look restrictive when presented in an abstract setting,
we have not been able to find applications in which it is not natural to assume that
there is an objective way to measure � and that an agent cares differently about the
parcels he gets in more than a finite (or countable) number of ways. Even the standard
example of an exchange economy with a finite (or countable) number of homogeneous
goods implicitly assumes both (A1) and (A3); see Chambers (2005, Sect. 5). Sprumont
(2004) axiomatizes a closely related notion of cardinal commodities, and Section 6
comments more on the import of (A3). Assumption (A2) is a more technical condition
which we need only to ensure the efficiency of a specific family of allocations defined
below; see Footnote 2.

1 In this respect, Demange (1984) suggests a lottery-based extension of the procedure, but its demand-
ing assumptions impose that agents be expected utility maximizers and that the whole good be randomly
assigned to a single agent off the equilibrium path.
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Any finite refinement of Pi defines another partition that satisfies (A3). Ordering
such finite partitions by inclusion defines a lattice on the set of partitions of �. We
denote by P1 ∨ P2 and P1 ∧ P2 the common coarsening and the common refinement
of two partitions P1 and P2, respectively.

For definiteness, we associate each agent i with an individual partition Pc
i that is

the common coarsening of all finite partitions that satisfy (A3). Clearly, the individual
partition Pc

i is the only partition among those satisfying (A3) for which any two par-
cels A ⊆ pi

j and B ⊆ pi
l ( j �= l) such that µ(A) = µ(B) are associated with distinct

utilities ui (A) �= ui (B).
Consider now the common refinement Pc = ∧

i∈N Pc
i of the individual partitions

for each agent, which we call the natural partition for �. This finer partition extends
(A3) to all agents, in the sense that if two parcels A, B satisfy A ∪ B ⊆ p j in Pc then

µ(A) = µ(B) ⇒ ui (A) = ui (B) for all i in N . (1)

Therefore, the natural partition Pc of � divides the original heterogeneous good in a
finite set of parcels which each player views as homogeneous. Clearly, any common
refinement of arbitrary partitions that satisfy (A3) for all i leads to a common partition
finer than Pc for which (1) still holds. The natural partition Pc is simply the smallest
one among those that satisfy (1): focusing on it entails no loss of generality.

Let P = (p1, . . . , pm) be the natural partition (or a refinement of it). Then each
agent is indifferent among morsels of equal size from a single parcel p j and we can
construct a bundle by adjoining proportional morsels from each parcel of the natural
partition. Formally speaking, a proportional bundle of size λ obtains if we choose λ

in [0, 1] and then pick a morsel e j from each parcel p j such that µ(e j ) = λµ(p j ) for
all j = 1, . . . , m. The proportional bundle is A = ⋃m

j=1 e j and provides each agent
with utility λµ(�) = λ. Note that we do not specify how a morsel e j is chosen from
the parcel p j because, as far as its size µ(e j ) = λµ(p j ), each agent is indifferent over
the actual morsel chosen. This makes it irrelevant to know the identity of the divider
who actually gets to choose the morsels from a parcel.

If
∑

i λi = 1, we can collect n proportional bundles to derive a proportional
allocation that gives each agent i a bundle of size λi ≥ 0, from which he derives utility
λi . Suppose again that P = (p1, . . . , pm) is the natural partition (or a refinement).
Construct n proportional bundles of size λi for each agent i = 1, . . . , n by choosing
(or instructing a divider to choose) morsels of size λiµ(p j ) from each parcel p j in P .
Since

∑
i λi = 1, the divider can pick mutually exclusive morsels from each parcel

that jointly exhaust � (up to a µ-null set2). This results into a proportional allocation
that splits � into n proportional bundles such that the bundle of size λi gives utility
λi to agent i . In particular, when λi = 1/n for all i , this allocation is proportional and
envy-free but in general inefficient.

The next section shows how to implement egalitarian equivalent allocations with
respect to a reference parcel that is a proportional bundle of size λ∗ ≥ 1/n. This is the

2 By (A2), a residual set of size zero carries no utility for any agent. From now on, we assume without
loss of generality that no residual set of size zero is left over.
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case of interest when all agents have equal claims on the good to be divided. The title
of the next section is a pun on similar titles in the literature.

5 How to cut a cookie fairly

We exhibit a procedure that implements an efficient and egalitarian equivalent alloca-
tion when the object to be divided is a heterogeneous good that is infinitely divisible,
in the setup of Sect. 2. We assume complete information about preferences, as well
as (A1)–(A3). The solution concept is subgame perfection, as defined in Sect. 1c of
Demange (1984). Under a bland tie-breaking assumption, we show that there are
unique equilibrium payoffs, with a final allocation that is efficient, proportionally fair
and egalitarian equivalent.

The procedure is inspired by the mechanism described in Demange (1984) to im-
prove the version proposed in Crawford (1979). We have found a few different game
forms that do the job. The one presented here is especially expedient because on the
equilibrium path the only messages announced are n bids (one for each agent), the final
allocation as chosen by an agent (called divider), and n − 1 “yes” from the remaining
agents (called choosers) who accept the divider’s proposal; off the equilibrium path,
the worst case has a chooser saying “no”, after which each agent announces a partition
and the final allocation is a suitable proportional allocation where each player picks
his own parcel. The procedure develops in two stages.

Stage 1. Each agent i in N simultaneously announces a bid bi between 1/n and 1.
Agents are ordered by decreasing bids using if necessary an exogenous (nonrandom)
tie-breaking rule, so that b1 ≥ b2 ≥ · · · ≥ bn . Agent 1 is called the divider, while any
other agent is a chooser.

Stage 2. The last stage consists of n consecutive moves, one for each agent.

Move 0. The divider proposes an allocation X .

Move 1. Chooser n accepts or refuses. If he accepts, move 2 is played. If he refuses,
each agent i announces3 a partition Pi and the players select4 a proportional alloca-
tion Xn based on the common partition

∧n
i=1 Pi and the vector of weights λn defined

below;5 then the game stops and Xn is the final allocation.
...

Move i + 1. Chooser n − i accepts or refuses. If he refuses, each agent i announces
a partition Pi and the players select a λn−i -proportional allocation Xn−i over the

3 The timing of these announcements is irrelevant for the equilibrium outcome.
4 We assume that, using the pecking order defined below, each chooser sequentially removes his own
proportional bundle from �; the divider gets what remains.
5 For short, we call this a λn -proportional allocation in the following.
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partition
∧n

i=1 Pi ; then the game stops and Xn−i is the final allocation. If he accepts,
move i + 2 is played.

...

Move n − 1. Chooser 2 accepts or refuses. If he refuses, each agent i announces a
partition Pi and the players select a λ2-proportional allocation X2 over the partition∧n

i=1 Pi ; then the game stops and X2 is the final allocation. If he accepts, the game
stops and the final allocation X is the divider’s proposal.

If agent i is the first to refuse the divider’s proposal, this affects the choice of the
vector λi of convex weights used by the same agent i to pick a proportional allocation.
These vectors of convex weights are defined hereafter.

Proportionality weights. To construct the vectors λi (for i = 2, . . . , n) of propor-
tionality coefficients, we define a pecking order for agents. Suppose that players sit
around a circle arranged in standard (clockwise) increasing order. When i refuses, the
circle is walked counterclockwise starting from i and the pecking order is i < i −1 <

· · · < 2 < n < n − 1 < · · · < i + 1. Let σ i (k) denote the kth agent in this pecking
order. We are ready to define the vector λi = (λi

1, . . . , λ
i
n) used if i refuses the proposed

allocation. The refusing agent i = σ i (1) is assigned the proportionality coefficient
λi

i = bi . Following the pecking order, a later chooser σ i (k) is assigned the coefficient

λi
σ i (k)

=
{

bσ i (k), if
∑k

s=1 bσ i (s) ≤ 1,

max
(

0, 1 − ∑k−1
s=1 bσ i (s)

)
, otherwise.

(2)

In other words, later choosers are assigned a proportionality coefficient equal to their
bid when this is still a feasible convex weight, or otherwise its truncation to 1.
Whenever there is a refusal, the divider is assigned the (same) coefficient λi

1 =
max

(
0, 1 − ∑n

s=2 bs
)
, regardless of the refuser i’s identity; for short, we denote this by

β1. For each i , the positive weights in λi add up to 1, so that (up to a set of size zero, irrel-
evant by (A2)) the λi -proportional allocation can be made to exhaust the whole good.

This concludes the description of the procedure. We prove two results in this sec-
tion. The first one is that equilibrium allocations must be proportionally fair, in the
sense that each agent receives a parcel which carries utility of at least 1/n to him.
The second and main result is that this procedure has unique equilibrium payoffs and
yields an allocation X that is efficient and egalitarian equivalent.

We need a few definitions. Let A be the set of all possible allocations. Given a par-
tition P and a vector λ of convex weights, let �(λ|P) denote the set of λ-proportional
allocations over P . Clearly, this set contains (uncountably) many possible allocations.
When P is the individual partition Pc

i or any of its refinements (such as the natural
partition Pc), the agent is indifferent over any allocation in �(λ|P) and thus his utility
from a λ-proportional allocation over P is well-defined.

Theorem 2 Any equilibrium allocation for the procedure described above is propor-
tionally fair.
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Proof We prove the stronger statement that each agent has a strategy that guarantees
him the utility level ū = (1/n) associated with the proportional allocation �( 1

n 1|Pc).
This implies that in equilibrium an agent must achieve at least utility ū = (1/n).

The strategy is the following. The agent bids (1/n) in the first stage. In the second
stage, if he is the divider, he chooses the 1

n 1-proportional allocation over Pc
i ; if he is

a chooser, he refuses any proposed allocation; whenever asked for, he announces the
partition Pc

i .
If the agent ends up being the divider and his proposal is accepted, the final allo-

cation is in �( 1
n 1|Pc

i ) and his utility is ū = (1/n). If his proposal is refused by an
agent j , announcing P1 = Pc

i implies that
∧n

i=1 Pi is not coarser than Pc
i and thus

the final allocation is in �(λ j |Pc
i ). But λ j = 1

n 1, because if the divider’s bid is (1/n)

all other bids are equal to (1/n). Hence, the final allocation is again in �( 1
n 1|Pc

i ) and
the divider gets utility ū = (1/n).

On the other hand, if the agent is chooser i , then every agent n, n − 1, . . . , i + 1
before him in the pecking order has bid b j = (1/n). So, if a chooser j = i, . . . , n

refuses, the vector λ j has λ
j
k = (1/n) for k = i, . . . , n. Hence, if a refusal occurs up

to (and including) i’s move, the final allocation is in �(λ j |Pc
i ) which by a reasoning

similar to the above yields utility ū = (1/n) to agent i . ��
It is worth noting that the strategy discussed in the above proof requires the agent

to use and announce only information about his own preferences; therefore, this strat-
egy remains viable even when he has no information about other agents’ preferences.
Hence, the ability of each agent to secure a proportionally fair allocation is a robust
feature that does not depend on our assumption of complete information.

The following is the main result in this section. Its proof, including a few lemmata,
can be found in the Appendix. We assume that a chooser who is indifferent always
prefers the move that keeps his play simpler and, subordinately, the move that ends
the game sooner; for instance, a tie between accepting or refusing a proposal is broken
by accepting because this spares him the need to announce a partition.

The statement uses the following piece of notation. Let �(λ|Pc) be the set of
λ-proportional allocations over the natural partition Pc (or a refinement) and let
πi (λ|Pc) denote the set of parcels that these allocations may assign to agent i . Recall
that the equilibrium concept used is subgame perfection; for short, we simply speak
of “equilibrium”.

Theorem 3 The procedure described above has unique equilibrium payoffs, with final
allocations that are efficient and egalitarian equivalent. In every equilibrium alloca-
tion, each agent i is indifferent between the parcel he receives and getting πi (λ

∗1|Pc),
where λ∗ = max {λ : there exists Y ∈A with ui (yi ) ≥ ui [πi (λ1|Pc)] for each i}.

The intuition for this result is the following. Our procedure asks each player to
sequentially approve the allocation decided by the divider. When an allocation is not
approved, each player i receives a proportional share of (a common refinement for)
the partition he declares. The utility of this proportional share depends on the partition
used. However, by announcing his own individual partition, the player can make sure
that he receives the same utility from his proportional share regardless of the common
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refinement that emerges from players’ announcements. This sets a lower bound on the
utility that a player must receive from the procedure. In the first stage, when players bid
for the right to be the divider, they know that they will have to honor others’ (credible)
claims to these lower bounds out of their own share. This forces a unique equilibrium
bid corresponding to an efficient and egalitarian equivalent allocation.

A simple example may help to illustrate this. Suppose that there are three agents
(n = 3) and that the single good � to be allocated is the segment [0, 1], endowed
with the usual Borel σ -algebra and Lebesgue measure µ. Each agent i = 1, 2, 3 likes
the i-th third of the segment [0, 1] uniformly better than the rest. Formally, the utility
of agent i over a parcel A is ui (A) = ∫

A fi (x) dx where fi (x) = 3/2 for x in the
interval [(1/3)(i − 1), (1/3)i] and 3/4 otherwise. Clearly, (A1)–(A3) from Sect. 4 are
satisfied.

There is a continuum of efficient allocations, but among these the equilibrium
allocation using our procedure (up to a set of measure zero) assigns to each agent i
the parcel [(1/3)(i − 1), (1/3)i] he likes best. This allocation is proportionally fair
because each agent derives a utility 1/2 that is greater than 1/3. And it is egalitarian
equivalent with respect to the reference parcel [0, 1/6] ∪ [2/6, 3/6] ∪ [4/6, 5/6] that
gives each agent a utility of 1/2.

The game induced by our procedure has many payoff-equivalent equilibria. For the
sake of the example, we describe here the gist of just one particularly simple equilib-
rium play. In stage 1, each agent i simultaneously announces bi = 1

2 so Agent 1 turns
out to be the divider and he proposes an allocation X where (up to a set of measure
zero) each agent i gets the i-th third of [0, 1]. In stage 2, Agent 3 and successively
Agent 2 accept the allocation X , and this gets implemented. If someone refuses X ,
then 1 announces Pc. The equilibrium payoff is u∗

i = 1/2 for each agent i .
The full argument requires a proof, but we can gather some intuition about the

structure of the equilibrium from a few special cases. Consider stage 2: Agent 2 has
no incentive to refuse X because doing so would get her a proportional bundle of size
b2 = 1/2 from Pc and hence a utility 1/2 ≤ u∗

2. Consider stage 1: Agent 2 has no
incentive to bid b2 < 1/2, because 1 would steal a morsel of measure 1/2 − b2 from
her parcel [1/3, 2/3] and reduce her utility. Moreover, Agent 2 has no incentive to bid
higher to become divider herself: 1 and 3 accept her proposal only if they get a utility
of at least 1/2, which implies that she cannot get a utility higher than 1/2 ≤ u∗

2; and if
her proposal is rejected, she gets a proportional bundle of size never greater than 1/2
from Pc, which again cannot give her a utility higher than u∗

2.

6 Closing remarks

It may be argued that our assumption (A3) is too restrictive, because it transforms the
original problem of dividing a heterogeneous good in a standard problem of dividing
a finite (or countable) number of homogeneous goods. We have two comments in this
respect.

First, our aim is to show that the problem of dividing a single heterogeneous good
can be assimilated to the problem of dividing a bundle of homogeneous goods under
assumptions that are not much demanding in practical applications. When players can
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use the partitions of � as a strategic variable, the complexity of their strategy space is
humongous. However, if preferences satisfies (A3), the equilibrium is relatively easy
to characterize.

Second, the main contribution is to suggest a way to endogenize the choice of the
reference bundle that can be applied for the division of a bundle of goods when agents
disagree about which are the characteristics that define a homogeneous good. Suppose
that a donor bequest his painting collection to two museums, leaving to them the task
of dividing the collection. In order to do so, the museums would like to construct a
reference bundle that is a partition of the collection in homogeneous sets of works. A
priori, there seems to be no “natural” way to construct this reference bundle. Should
paintings be deemed homogeneous with respect to the century when they were painted,
the nationality of the painters, or their artistic themes?

It seems only natural to let the museums decide the reference bundle according
to their preferences. Assuming equal rights, this paper describes a mechanism that
chooses this bundle endogenously. Each agent proposes a partition of the total endow-
ment and the reference bundle is obtained as the common refinement of individual
proposals. In equilibrium, this selects the natural partition (or a refinement) as the
reference bundle.

Appendix

We recall and extend a piece of our notation to make the proofs in this Appendix
easier to read. Let �(λ|P) denote the set of λ-proportional allocations over P and
let πi (λ|P) be the set of parcels that these allocations may assign to agent i . Since
πi (λ|P) depends only on the i th component of λ, we abuse notation and write simply
πi (λi |P) when we need to highlight i’s proportionality coefficient. If P = Pc

i (or a
refinement,6 and in particular the natural partition Pc), the agent is indifferent over
any element in this set and we denote his utility by vi (λi |Pc

i ) = ui [πi (λi |Pc
i )]. By

(A2) and the nonatomicity of ui , vi (λi |Pc
i ) is a strictly increasing continuous function

of λi .
We assume that a chooser who is indifferent always prefers the move that keeps

his play simpler and, subordinately, the move that ends the game sooner. Hence, when
indifferent, he chooses acceptance over refusing the divider’s proposal. When he is
indifferent between refusing now and having some later chooser refuse, he prefers to
refuse now.

The strategy of proof is the following. First, Lemmata 4–9 characterize the subgame
perfect equilibrium where each agent announces Pc in any continuation game after a
refusal. Second, Lemma 10 shows that the payoffs generated by this equilibrium are
efficient. Finally, Lemma 11 proves that there may not be other equilibrium payoffs.

In general, there are many equilibrium strategies that may be used in a continuation
game after a refusal. The requirement that everybody announces Pc in any continua-
tion game is very strong, but we show later that any other equilibrium must achieve the
same payoffs. The technical advantage of this assumption is apparent: when another

6 For simplicity, we leave it understood in the following that Pc
i may be replaced by any of its refinements.
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player declares the partition Pc, the common partition to be used in the second stage
is a refinement of Pc

i ; hence, any partition announced by agent i himself is payoff
equivalent and thus is part of an equilibrium.

Lemma 4 Assume that the common partition in any continuation game after a refusal
is Pc. Then a proposed allocation X is accepted if and only if ui (xi ) ≥ vi (bi |Pc) for
each i ≥ 2.

Proof The proof is by backwards induction. Suppose that the game has reached
agent 2. Then he can accept x2 or choose a λ2-proportional allocation X2 over the par-
tition Pc. By our tie-breaking rule, he accepts if and only if u2(x2) ≥ v2(b2|Pc).
Anticipating this, if 2 is going to accept, then agent 3 accepts x3 if and only if
u3(x3) ≥ v3(b3|Pc). The result follows by induction. ��
Lemma 5 Assume that the common partition in any continuation game after a refusal
is Pc. If the proposed allocation X is refused, the final allocation is a λn-proportional
Xn chosen by player n (who moves second).

Proof Suppose that X is not accepted and let i be the smallest index in {2, . . . , n}
such that ui (xi ) < vi (bi |Pc). By Lemma 4, i refuses X if the game reaches him.
Anticipating this, agent i + 1 (if any) has a choice between getting a proportional
bundle of size λi

i+1 over the partition Pc (if he accepts and lets the game reach i)
or a proportional bundle of size bi+1 over the same partition Pc (if he refuses). But
λi

i+1 ≤ bi+1, so the first option can never lead to a higher utility for i + 1. Therefore,
by our tie-breaking rule, he prefers to stop the game. The result follows by induction.

��
The next two lemmata describe the optimal strategy for the divider, given a vec-

tor b = (b1, . . . , bn) = (b1, b−1) of bids from the first stage. Whenever there is a
refusal, the proportionality coefficient for the divider is β1 = max

(
0, 1 − ∑n

s=2 bs
)
,

regardless of the refuser i’s identity. Since the common partition after a refusal is Pc,
the divider’s utility is v1(β1|Pc). On the other hand, by Lemma 4, the allocation X is
accepted if and only if ui (xi ) ≥ vi (bi |Pc) for every i ≥ 2. Let

A(b−1) = {
X ∈A : ui (xi ) ≥ vi (bi |Pc) for each i ≥ 2

}

be the set of allocations which are accepted.

Lemma 6 Assume that the common partition in any continuation game after a refusal
is Pc. For any b−1 such that A(b−1) �= ∅ there exists an allocation which maximizes
u1(x1). A maximizing allocation X∗(b−1) satisfies ui (x∗

i ) = vi (bi |Pc) for each i ≥ 2.

Proof Let S(b−1) = [0, 1] × [v2(b2|Pc), 1] × · · · × [vn(bn|Pc), 1] denote the carte-
sian product of n intervals. This is a compact and convex subset of R

n . Similarly, the
partition range RP(u), which spans the vector of utilities that the agents can achieve
under a feasible allocation, is a nonempty, compact and convex subset of R

n .
When A(b−1) �= ∅, there exists at least one allocation which maps to a vector of

utilities in S(b−1). Hence, the intersection of RP(u) and S(b−1) is not empty. As this
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intersection is also compact (and convex), there exists (at least) an allocation X∗(b−1)

which maximizes u1(x1).
Now, suppose that at X∗ there is some i ≥ 2 such that ui (x∗

i ) > vi (bi |Pc). By
the nonatomicity of ui , we can always cut away a morsel from x∗

i and reduce the
utility of i down to vi (bi |Pc), transferring the morsel to agent 1’s parcel. By mutual
absolute continuity of preferences, this strictly increases the utility of agent 1 and
therefore X∗ cannot be optimal. Therefore, at an optimal allocation X∗, the equality
ui (x∗

i ) = vi (bi |Pc) must hold for each i ≥ 2. ��
Given b−1, the divider faces the choice of selecting an allocation which is accepted

by everybody or another allocation which is eventually refused. In this second case,
the common partition after a refusal is Pc and then his utility is v1(β1|Pc). Clearly,
if A(b−1) = ∅, there exists no acceptable allocation X∗ so the divider ends up with
v1(β1|Pc). Instead, if A(b−1) �= ∅, he proposes X∗(b−1) if and only if u1(x∗

1 ) ≥
v1(β1|Pc). The next lemma summarizes this. Let f (b−1) = max {u1(x1) : X ∈
A(b−1)}, with the usual clause that f (b−1) = −∞ if A(b−1) = ∅. By Lemma 6,
this is well-defined and moreover, on A(b−1) �= ∅,

f (b−1) = max
{
u1(x1) : X ∈A and ui (xi ) = vi (bi |Pc) for each i ≥ 2

}
. (3)

Lemma 7 Assume that the common partition in any continuation game after a refusal
is Pc. For any b−1, agent 1 proposes an acceptable allocation X∗(b−1) and the vector
of final equilibrium payoffs is

( f (b−1), v2(b2|Pc), . . . , vn(bn|Pc))

if and only if f (b−1) ≥ v1(β1|Pc). Otherwise, agent 1’s proposal is refused by agent n
and the vector of final equilibrium payoffs is

(v1(β1|Pc), v2(λ
n
2|Pc), . . . , vn(λn

n|Pc)),

with λn
i ≤ bi for each i ≥ 2.

The next lemma notes two useful properties for f (b−1).

Lemma 8 Let D be the interior set of {b−1 : A(b−1) �= ∅}. The function f (b−1) is
(component-wise) strictly decreasing and continuous on D.

Proof By definition, f (b−1) ≥ 0 on D. Recall that vi (bi |Pc) is a strictly increasing
and continuous function of bi for each i . By strict monotonicity, bi < b′

i for some
i ≥ 2 implies vi (bi |Pc) < vi (b′

i |Pc). If (b2, . . . , bi . . . , bn) and (b2, . . . , b′
i . . . , bn)

are in D, by (3) and mutual absolute continuity of preferences, f (b2, . . . , bi . . . , bn) >

f (b2, . . . , b′
i . . . , bn).

To prove continuity, let u = (u1, . . . , un) denote a vector of utilities for each player
and observe that

f (b−1) = max
{
u1 : u∈RP(u) and ui = vi (bi |Pc) for each i ≥ 2

}
.
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For b−1 in D, let �(b−1) = {u∈RP(u) : ui = vi (bi |Pc) for each i ≥ 2} be the
correspondence mapping b−1 into RP(u). Since RP(u) is nonempty, compact and
convex, the continuity of each vi implies that �(b−1) is compact-valued and continu-
ous. Hence, by the Maximum theorem, the function f (b−1) = max {u1 : u∈�(b−1)}
is continuous. ��

The next lemma pins down equilibrium behavior in the first stage.

Lemma 9 Assume that the common partition in any continuation game after a refusal
is Pc. The only possible equilibrium move in the first stage is that everyone makes the
same bid

b∗ = max
{
λ : X ∈A and ui (xi ) ≥ vi (λ|Pc) for each i

}
.

Proof First, we show that b∗ is well-defined. Let ×n
i=1[vi (λ|Pc), 1] be the cartesian

product of the n intervals [vi (λ|Pc), 1], for i = 1, . . . , n. For any λ in [1/n, 1], let
C(λ) = ×n

i=1 [vi (λ|Pc), 1] ⋂
RP(u). By the proof of Theorem 2, C(1/n) �= ∅.

Moreover, λ1 > λ2 implies C(λ1) ⊂ C(λ2). Since C(λ) is a decreasing collection
of nested compact subsets, the finite intersection property implies that, for λ∗ =
sup {λ : C(λ) �= ∅}, C(λ∗) �= ∅. Clearly, λ∗ is equal to b∗.

Second, we show that if everybody bids b∗ then the divider proposes an acceptable
allocation. By Lemma 7, the divider does so if and only if f (b−1) ≥ v1(β1|Pc).
By Theorem 2, f (b−1) ≥ v1(1/n|Pc). Moreover, β1 ≤ 1/n and v1( · |Pc) is an
increasing function, so f (b−1) ≥ v1(1/n|Pc) ≥ v1(β1|Pc).

Third, we show that an equilibrium move in the first stage cannot have bi < b1
for some i . Since b1 ≥ bi for each i by construction, this implies that the equilib-
rium bids must all be equal. Indeed, suppose bi < b1 for some i . There are two
cases. If β1 > 0, then 1 − β1 = ∑n

i=2 bi < 1. By choosing a bid b′
i such that

bi < b′
i < b1 and b′

i + ∑
j �=1,i b j < 1, i remains chooser and strictly increases

his payoff to vi (b′
i |Pc). If β1 = 0, the inequality in the paragraph above strength-

ens to f (b−1) ≥ v1(1/n|Pc) > v1(β1|Pc) by the strict monotonicity of v1. Then
b−1 is in D and by Lemma 8 agent i can find a bid b′

i with bi < b′
i < b1 and

f (b2, . . . , b′
i . . . , bn) > v1(β1|Pc). The divider is still agent 1 who chooses an accept-

able allocation, which strictly increases i’s payoff to vi (b′
i |Pc). In either case, bi is

not a best reply.
The last paragraph implies that in equilibrium all bids are equal to a common

value b. We now prove that b = b∗. Let wi (b) = max {ui (xi ) : X ∈A and
u j (x j ) ≥ v j (b|Pc) for j �= i

}
. In other words, let wi (b) be the payoff to i if he is

the divider and everybody has made the same bid b. Clearly, wi (b) < vi (b|Pc) if and
only if b > b∗. Suppose that the common equilibrium bid is b < b∗. By the continuity
of wi , chooser i can slightly raise his bid to b′ and become the divider, which gets him
a payoff wi (b′) > vi (b|Pc) so that b is not a best reply. Now, suppose that the common
equilibrium bid is b > b∗. Then the divider’s payoff is w1(b) < v1(b|Pc). Again,
by continuity of w1, he can slightly lower his bid to b′ and become a chooser, which
gets him a payoff v1(b′) > w1(b|Pc) so that b is not a best reply. Hence, the only
possible equilibrium must have everybody bidding b∗. Using Lemma 6 and the fact
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that wi (b) < vi (b|Pc) if and only if b > b∗, it follows that when everybody bids b∗
each agent i (regardless of his role as divider or chooser) receives a payoff vi (b∗|Pc)

and thus he is indifferent between the two roles. Therefore, everybody bidding b∗ is
the (only) equilibrium. ��

This completes our characterization of the equilibrium. In fact, we have shown a
bit more. Since Lemmata 4–9 hold for any equilibrium where the common partition
in any continuation game after a refusal is Pc, we know that the equilibrium payoff
of player i is vi (b∗|Pc) for this whole class of equilibria. Moreover, the proof shows
also in equilibrium that the divider proposes an acceptable allocation that satisfies (3)
and hence the payoffs are efficient. We record this in the following lemma.

Lemma 10 Assume that the common partition in any continuation game after a
refusal is Pc. Then the only possible equilibrium outcome is efficient.

The next lemma exploits the efficiency of this equilibrium outcome to prove that
there are no other equilibrium outcomes. The key observation is that each player alone
can enforce the common partition Pc. Hence, each player k holds a form of veto power
on the common partition used after a refusal from another agent. A second observation
is that Theorem 2 implies that each player can secure a utility level ū = (1/n) > 0;
hence, in any equilibrium the divider cannot have zero utility.

Lemma 11 The equilibrium payoffs are unique, regardless of how the continuation
game after a refusal is played.

Proof Suppose that there exists another putative equilibrium E that is not payoff
equivalent. Let u∗

i = vi (b∗|Pc) be the payoff obtained by player i in any equilibrium
where the common partition in any continuation game after a refusal is Pc. Since E
is not payoff equivalent to an efficient equilibrium, there exists some player k who
obtains a utility uk < u∗

k . We show that this must lead to a contradiction. There are
three distinct cases to examine.

Case 1 Suppose bi ≥ b∗ for all i . If player k is getting utility uk < u∗
k , there exists

ε > 0 such that uk < vk(b∗ − ε|Pc) < u∗
k . Then player k has a profitable deviation:

bid b∗ − ε in stage 1, reject any proposal in stage 2 and, in case of refusal, announce
the natural partition Pc. This makes player k the first chooser and gives him a utility
vk(b∗ − ε|Pc) > uk .

Case 2 Suppose bi ≤ b∗ for all i . Again, player k has a profitable deviation: bid
bk > b∗ in stage 1, propose an appropriate allocation that give each agent i �= k a
utility u∗

i and announce Pc in case of refusal. Since this higher bid gives k the right
to be divider and indifferent choosers prefer to accept, any allocation that satisfies (3)
gives him a utility u∗

k > uk .

Case 3 Suppose b1 > b∗ > bn . Similarly to the third part of the proof of Lemma 9,
we show that this cannot be an equilibrium. Given the tie-breaking order b1 ≥ b−2 ≥
· · · ≥ bn , let m be the first agent who has bid bn . (If only one agent has bid bn , then
clearly m = n.)
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First, assume that in equilibrium the allocation proposed by the divider is accepted.
Clearly, chooser m must get at least vm(bm |Pc); otherwise, he could profitably devi-
ate to refusing and announcing Pc. On the other hand, by mutual absolute continuity
of preferences, player m gets no more than vm(bm |Pc); otherwise, the divider could
increase his own payoff by appropriating a morsel from m’s parcel, reducing his util-
ity exactly to vm(bm |Pc) and announcing Pc in case of refusal. By Theorem 2, the
divider has a strictly positive utility in equilibrium and therefore is left with a parcel
from which m can claim an additional morsel. In fact, there is a sufficiently small
ε > 0 such that player m can profitably deviate to a higher bid bm + ε < bm−1,
announcing Pc in case of refusal. If m = n, the player remains the first chooser and
is guaranteed a utility vm(bm + ε|Pc) > vm(bm |Pc). If m < n and ε is sufficiently
small, there still exists an efficient allocation that is accepted by all choosers so the
divider’s best reply is to make a proposal that is not rejected.

Second, assume that in equilibrium the allocation proposed by the divider 1 is
refused. Again, by Theorem 2, the divider has a strictly positive utility in equilibrium
and therefore is left with a parcel from which m can claim an additional morsel by
deviating to a higher bid bm + ε < bm−1 and announcing Pc in case of refusal. ��

The proof of the main result follows.

Proof of Theorem 3. Lemma 11 shows that equilibrium payoffs are unique.
Lemmas 10 and 9 prove that the equilibrium outcome is efficient and egalitarian equiv-
alent, respectively. The proof of Lemma 9 also shows that each agent i is indifferent
between the parcel received and the λ∗1-proportional allocation. ��
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