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Abstract: Improved prediction distributions based on asymptotic methods are
a well known tool for prediction in the context of regular parametric models. On
the contrary, for non-regular cases, prediction is mainly based on the estimative
or plug-in distribution. The aim of this work is to define calibrated predictive dis-
tributions which quantiles have coverage probability equal or close to the target
nominal value. Whenever the computation is not feasible, a suitable bootstrap
procedure easily provides a good estimate for the proposed distribution. A sim-
ulation example is provided for a particular non regular model, the generalized
extreme value distribution, which support depends on unknown parameters.
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1 Introduction

In this work, we consider the problem of prediction of a future, or un-
observable, unidimensional absolutely continuous random variable Z, on
the basis of an observed sample y = (y1, . . . , yn) from a random vector
Y = (Y1, . . . , Yn). We assume that the joint distribution of (Y, Z) is known,
up to a k-dimensional parameter θ ∈ Θ ⊂ IRk. In this case, a possible
solution can be given in terms of prediction limits, i.e. functions z̃α(θ̂) such
that, for all α ∈ (0, 1), the coverage probability

PY,Z

[
Z ≤ z̃α(θ̂(Y ))

]
= α, (1)

at least to a high order of approximation. Here θ̂ = θ̂(Y ) is an asymptot-
ically efficient estimator for θ, usually the maximum likelihood estimator.
When exact results are not available, an easy solution is given by con-
sidering the estimative prediction limits, obtained by substituting the un-
known parameter θ by θ̂ in the α-quantiles of the conditional distribution
of Z given Y = y. Unfortunately the associated coverage error has order
O(n−1), which is often considerable. Improved prediction limits with cov-
erage error of order o(n−1) have been proposed by Barndorff-Nielsen and
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Cox(1996) and Vidoni (1998), as modifications of the estimative prediction
limits. Their results rely on asymptotic expansions and only hold under
regularity assumptions on the model. Calibrated prediction limits can be
obtained by means of a bootstrap based procedure, as proposed by Hall
et al. (1999). Though very interesting, this approach provides solutions for
specific fixed values of the target coverage α.
In this work, following Fonseca et al. (2010), we define a predictive distribu-
tion which α-quantiles provide exact prediction limits for every α ∈ (0, 1).
When this predictive distribution is not explicitly available, it can be ap-
proximated using a suitable bootstrap technique. The coverage error asso-
ciated to the resulting approximated quantiles is of order o(n−1), improving
on the estimative solution. The proposed method for prediction is general,
easy to compute and does not require regularity assumptions on the under-
lying model. Thus, it also applies to non-regular cases when the support of
the model depends on an unknown parameter. This extension is very use-
ful, for instance, in the applications to survival analysis and in the studies
of extreme events.

2 Calibrated predictive distributions

Let us assume, for simplicity, that Y1, . . . , Yn, Z are independent contin-
uous random variables with the same distribution. Denote by G(z; θ) the
distribution function of Z.
Consider the estimative prediction limit zα(θ̂) = G−1(α; θ̂), where G−1(·; θ̂)
is the inverse of function G(·; θ̂). The associated coverage probability is

PY,Z{Z ≤ zα(θ̂); θ} = EY [G{zα(θ̂); θ}; θ] = C(α, θ).

Function C(α, θ) depends on the true parameter value θ and on the nominal
coverage probability α. However, its explicit expression is rarely available.
It is well known that it does not match the target value α, although asymp-
totically C(α, θ) = α+O(n−1), as n→ +∞.
As suggested by Fonseca et al. (2010), a predictive distribution function

can be defined by substituting α with G(z; θ̂) in C(α, θ):

Gc(z; θ̂, θ) = C{G(z; θ̂), θ}. (2)

Gc(·; θ̂, θ) is a proper predictive distribution function in regular parametric

models. When the support of Z depends on θ,Gc(z; θ̂, θ) may not satisfy one
or both the limit conditions as z →∞. Nevertheless, it can still be fruitfully
employed for obtaining good prediction limits, far from the boundary of the
support of Z.
The predictive distribution (2) gives, as quantiles, prediction limits zcα(θ̂, θ)
which coverage probability equals the target nominal value α, for all α ∈
(0, 1).
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Though interesting from a theoretical perspective, the calibrated predictive
distribution Gc(z; θ̂, θ) is in fact inapplicable since it usually depends on
the unknown parameter θ. A useful surrogate is the corresponding plug-in
estimator

Ĝc(z; θ̂) = Gc(z; θ̂, θ̂) = C{G(z; θ̂), θ̂}.

The associated α-prediction limit is defined as ẑcα(θ̂) = zcα(θ̂, θ̂) = zα̂c(θ̂),

with α̂c = C−1(α, θ̂), and it satisfies (1) to a closer approximation than

the estimative prediction limit zα(θ̂), that is with an error term of order
o(n−1).
A closed form expression for the coverage probability C(α, θ) is rarely avail-

able so that even the predictive distribution function Ĝc(z; θ̂) is not very
useful in practice. Anyway, there is a suitable parametric bootstrap estima-
tor for Gc(z; θ̂, θ), to be considered when C(α, θ) is not available. Let y∗(j),
j = 1, . . . , B, be parametric bootstrap samples generated from the estima-
tive distribution of the data and let θ̂∗(j), j = 1, . . . , B, be the correspond-

ing maximum likelihood estimates. Since C(α, θ) = EY [G{zα(θ̂); θ}; θ], we
define the bootstrap-calibrated predictive distribution as

Gbc(z; θ̂) =
1

B

B∑
j=1

G{zα(θ̂∗j ); θ̂}|α=G(z;θ̂). (3)

The corresponding α-quantile defines, for each α ∈ (0, 1), a prediction
limit having coverage probability equal to the target α, with an error term
which depends on the efficiency of the bootstrap simulation procedure. It
is important noticing that the computation of (3) does not require any
assumption on the regularity of the parametric models involved, as long as
the bootstrap applies.

3 Generalized extreme value distribution

Let Y1, . . . , Yn be independent random variables with common generalized
extreme value distribution, that is

G(y;µ, σ, ξ) = exp

{
−
(

1 + ξ
y − µ
σ

)−1/ξ
}
,

where 1 + ξ(y − µ)/σ > 0 and θ = (µ, σ, ξ) is an unknown parameter with
σ > 0 a scale parameter, µ ∈ IR a location parameter and ξ ∈ IR a shape
parameter. The generalized extreme value distribution includes the Frechet,
the Gumbel and the Weibull distributions as particular cases and is usually
used for the study of extreme events, such as extreme flood of a river or
maximum sea level. In this context it can be useful to consider the problem
of prediction of a future value Z = Yn+1, independent of Y1, . . . , Yn and
with the same distribution.
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TABLE 1. Generalized extreme value distribution. Coverage probabilities for es-
timative and bootstrap calibrated prediction limits of level α=0.9, 0.95, 0.99.

α n Estimative Bootstrap

0.9 10 0.880 0.899
20 0.893 0.905

0.95 10 0.933 0.954
20 0.942 0.951

0.99 10 0.976 0.987
20 0.982 0.986

In this case, an explicit expression for the coverage probability C(α, µ, σ, ξ),
associated to the estimative α-prediction limit, is not available. As ex-
plained in Section 2, we can estimate (2) using the bootstrap estimator (3)
and calculate calibrated prediction limits as quantiles of this approximated
predictive distribution.
Table 1 shows the results of a simulation study for comparing the per-
formance of estimative (Estimative) and bootstrap calibrated (Bootstrap)
prediction limits, with respect to the corresponding coverage probabilities.
Estimation is based on 5,000 Monte Carlo replications. Bootstrap proce-
dure is based on 1,000 bootstrap samples. Estimated standard errors are
always smaller than 0.005. Different values of the target level, α=0.9, 0.95,
0.99, and of the sample size, n = 10, 20, are considered. The parameters
of the generalized extreme value model are fixed to µ = 5, σ = 2 and
ξ = 0.4. It can be seen that the bootstrap solution remarkably improves on
the estimative one.
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