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Financial variables, such as asset returns in international stock and bond markets or interest rates

in the liquidity market, often exhibit a heterogeneous time evolution, with a unconditional density

characterised by heavy tails, skewness, multimodality and time changing volatility. Through

an empirical study, all these features appear clearly in some financial indexes sampled with

monthly frequency and become more evident when data are collected with a higher frequency (i.e.

weekly, daily or intra-day frequencies). Gaussian distribution and linear dynamic assumptions

reveal unsatisfactory in many financial applications like asset pricing, risk measurement and

management. Nonlinear and non-Gaussian models have been introduced in finance in order to

come to more attractive results.

Many stochastic models are now available as alternatives to the linear and Gaussian ones.

But all of them are generally difficult to handle and represent challenging problems in applied

mathematics. Some recent works (see for example Doucet, Freitas and Gordon [7], Robert and

Casella [9] and Del Moral [6]) highlight the ability of the Monte Carlo simulation methods in

solving optimisation and integration problems, which arise in treating complex probabilistic

models and suggest moreover a Bayesian approach to optimal decision and inference making.

Within the simulation based inference framework the Bayesian approach has been widely applied

in many recent studies, due to the natural way the Monte Carlo approximation can enter into

the inference procedure. The Bayesian framework accounts for prior information about the

parameters and allows to treat complex models, such as mixtures of distributions, stochastic

volatility and stochastic trend models. For an introduction to the basic and more advanced

simulation methods we refer the interested reader to Robert and Casella [9], Doucet, Freitas

and Gordon [7] and Liu [8]. In the following we evidence the relation between some particular

financial models and some general class of problems which can be solved by means of the Monte

Carlo simulation methods.

Consider a financial asset portfolio problem with given constraints on the lowest return allowed
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rlow and risk level α, to fail the minimum target (shortfall probability). The portfolio model

becomes more realistic if we remove the usual Gaussian distribution assumption for the asset

return r. Following the empirical evidence we assume n Student-t distributions, with different

degrees of freedom for each asset class (see Billio, Casarin and Toniolo [2]). The resulting problem

is a stochastic optimisation problem

max
x∈X

EP {f(x, r)} , with X =

{

x ∈ R
n
+ |P

(

n
∑

i=1

xiri < rlow

)

≤ α,

n
∑

i=1

xi = 1

}

. (1)

where x is the vector of portfolio weights and P a probability measure on R
n. A Monte Carlo

simulation approach can be used to approximate and solve the optimisation problem and also to

evaluate the portfolio risk-level in presence of parameter estimation errors or misspecified tails

behaviour.

A second application of the simulation methods relates the inference procedure on parametric

models for financial asset returns. In many studies the hypothesis of α-stable distributed asset

returns have been successfully tested. It is possible to generalize this model by assuming mixture

of α-stable distributions. The α-stable mixture is able to capture not only skewness and excess

of kurtosis, but also the multimodality in the probability distribution of many financial variables.

The mixture model is difficult to estimate and a simulation based approach is needed. In

Casarin [3] a Bayesian inference model is developed following a data augmentation principle.

The estimation method is based on the use of Monte Carlo Markov Chain (MCMC), such as

Gibbs sampling algorithm, to solve the integration problem

θ̂B
∆
= Ep(θ|Y ) (θ) =

∫

Θ
θ p(θ|Y )dθ ≈

1

N

N
∑

i=1

θi, with θi ∼ p(θi|Y ) (2)

where θ̂B is the Bayes estimator of the mixture parameter vector, θ, under the quadratic loss

assumption and conditionally on the observation vector Y . The validity of the inference tool has

been verified on synthetic data and an application to financial indexes has been provided.

The estimation of latent factor dynamic models, such as stochastic volatility models,

represents another important area, where the Bayesian simulation based approach can be

successfully applied. In latent variable models, hidden variable filtering and parameter estimation

may be rather difficult to carry out. Once the latent variable model has been redefined in terms of

a Bayesian dynamic model, the related inference problems of parameters estimation and hidden

states filtering can be solved within a Bayesian simulation based approach. See for example

Casarin [3] for a comparison between different simulation techniques for volatility filtering and

parameter estimation. Within the simulation based filtering techniques, sequential Monte Carlo

(i.e. particle filters) recently reveals one of the most general and powerful filtering method. It
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allows to perform on-line prediction and filtering of the unobservable states, xt, and estimation

of the parameter, θ, for a general probabilistic dynamic model. Assume we are interested in

filtering the hidden variables xt, as a new observation yt becomes available. By means of a

weighted sample (particle set), {xi
t−1, w

i
t−1}

N
i=1, drawn at time t − 1 from the posterior density

p(xt−1|y1:t−1, θ), it is possible to approximate the filtering density

p(xt|y1:t, θ) =

∫

X
p(xt|xt−1, y1:t−1, θ)p(xt−1|y1:t−1, θ)dxt−1 ≈

N
∑

i=1

wi
t−1p(xt|x

i
t−1, y1:t−1, θ) (3)

Applications of sequential Monte Carlo methods for Bayesian inference on Markov switching

stochastic volatility and on business cycle models are provided in Casarin [5] and Billio, Casarin

and Sartore [1]. These works are in a promising wider research area, which relates the applications

of more advanced and efficient Monte Carlo methods in economics and financial modelling.
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