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Abstract

This paper presents a geometric measure that can be used to gauge the similarity of 2D
shapes by comparing their skeletons. The measure is defined to be the rate of change of bound-
ary length with distance along the skeleton. We demonstrate that this measure varies continu-
ously when the shape undergoes deformations. Moreover, we show that ligatures are associated
with low values of the shape-measure. The measure provides a natural way of overcoming a
number of problems associated with the structural representation of skeletons. The first of these
is that it allows us to distinguish between perceptually distinct shapes whose skeletons are am-
biguous. Second, it allows us to distinguish between the main skeletal structure and its ligatures,
which may be the result of local shape irregularities or noise. We illustrate how the new shape-
measure can be used for the purposes of clustering shock-trees of the same shape class.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

The skeletal abstraction of 2D and 3D objects has proved to be an alluring yet
highly elusive goal for over 30 years in shape analysis. The topic is not only impor-
tant in image analysis, where it has stimulated a number of important develop-
ments including the medial axis transform and iterative morphological thinning
operators, but is also an important field of investigation in differential geometry
and biometrics where it has led to the study of the so-called Blum skeleton [8]. Be-
cause of this, the quest for reliable and efficient ways of computing skeletal shape
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descriptors has been a topic of sustained activity. Recently, there has been a re-
newed research interest in the topic which has been aimed at deriving a richer de-
scription of the differential structure of the object boundary. This literature has
focused on the so-called shock-structure of the reaction-diffusion equation for ob-
ject boundaries [19,20].

Skeleton-based representations are just one of the possible abstractions of shape.
Examples in the literature include boundary curves [6], regions [12], boundary statis-
tics [7,18], and the medial axis [23,41]. Focusing on these methods in more detail,
Basri et al. [6] opt for curve-based representations where object boundaries are
matched by minimizing a curve functional that penalizes stretching and bending.
Carson et al. [12], on the other hand, opt to represent a shape by clustering the
set of interior pixels into a color—texture—position feature space. The clusters of pix-
els are then compared using a quadratic distance function. According to the shape-
contexts of Belongie et al. [7] matching is effected using unordered boundary points
labeled with a coarse histogram of the relative position of the remaining boundary
points. Working at a more abstract structural level, Ioffe and Forsyth [18] learn
an hierarchical distribution of image features represented as a mixture of trees. There
are also examples in the literature of skeletal representations that are not based on
the morphological skeleton. Among these are the shape axis representation of Liu
and Geiger [23]. Here the skeleton is not defined using the symmetry axis, but as
the midpoint between two corresponding boundary points on opposite sides of the
shape. Another important skeleton-based representation is that used in the FORMS
system [41]. In this work the medial axis is matched to a model skeleton using a
branch and bound strategy.

1.1. Motivation

Broadly speaking the representation and recognition of 2D shapes based on the
shock representation is a three-stage process. First, the skeleton must be computed
from the available shape-boundary information [1,2,10,11,24,25,34]. The second is-
sue is how to use the extracted skeleton to represent the differential structure of
the original boundary [9,20,35]. The final step is the matching of the resulting shape
representation [21,27,32,33,36,37]. Based on this three-step view, we provide a brief
analysis of the related literature.

The idea of characterizing boundary shape using the differential singularities of
the reaction equation was first introduced into the computer vision literature by Ki-
mia et al. [20]. The idea is to evolve the boundary of an object to a canonical skeletal
form using the reaction-diffusion equation. The skeleton represents the singularities
in the curve evolution, where inward moving boundaries collide. The reaction com-
ponent of the boundary motion corresponds to morphological erosion of the bound-
ary, while the diffusion component introduces curvature dependent boundary
smoothing. In practice, the skeleton can be computed in a number of ways
[1,2,24]. Recently, Siddiqi, Tannenbaum and Zucker have shown how the eikonal
equation which underpins the reaction-diffusion analysis can be solved using the
Hamilton—Jacobi formalism of classical mechanics [11,34].
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One of the criticisms that can be leveled at existing skeletonization methods is
their sensitivity to small boundary deformations or ligatures. Although these can
be reduced via curvature dependent smoothing, they may have a significant effect
on the topology of the extracted skeleton.

Once the skeleton is on hand, the next step is to devise ways of using it to char-
acterize the shape of the original boundary shape. Most of the approaches reported
in the literature opt to use a structural characterization. For instance, Zucker, Sid-
diqi and others [36] have labeled points on the skeleton using so-called shock-labels.
According to this taxonomy of local differential structure, there are different classes
associated with behavior of the radius of the bitangent circle inscribed in the shape.
The so-called shocks distinguish between the cases where the local bitangent circle
has maximum radius, minimum radius, constant radius or a radius which is strictly
increasing or decreasing. Kimia and Giblin opt for a simpler representation which is
based just on the junctions and terminations of the skeleton [37].

Once the skeletal representation is on hand then shapes may be matched by com-
paring their skeletons. One approach in the literature adopts a structural approach
to the matching problem. For instance, Pelillo et al. [27] use a sub-tree matching
method. The shock-tree is attributed with the length, radii, velocities, and curvatures
of the shocks. This method is potentially vulnerable to structural variations or errors
due to local deformations, ligature instabilities or other boundary noise.

One of the criticisms of these structural-matching methods is that small boundary
deformations may significantly distort the topology of the skeleton. To overcome the
susceptibility of skeletal topology to noise and small deformation, Siddiqi and Zuc-
ker [33,35,36] label the shocks generated by the eikonal equation with their time of
formation. The later the time of formation, and hence their proximity to the center of
the shape, the higher the shock in the hierarchy. This temporal notion of relevance is
based on the observation that the skeletal branches generated by noise and high-fre-
quency features are always close to the border. Unfortunately, the converse does not
hold. To give an example, a protrusion that ends on a vertex will always have the
earliest time of creation, regardless of its relative relevance to the shape. For this rea-
son the time of formation is not an effective measure of branch relevance in the pres-
ence of sharp boundary structure or high-curvature features.

Kimia and Klein, and their co-workers [21,29,37], have a potentially more robust
method which matches by minimizing graph-edit distance. In particular, Sebastian
etal.[29,30] have developed a variational method which can be used to measure the cost
of boundary deformation, which they refer to as ““edit distance’ [29]. The cost of re-
moving a branch of the skeleton is related to the associated boundary deformation.
The distance measure based on this skeleton editing procedure has been successfully
used to index and retrieve shapes from a large database [30]. However, the method is
cumbersome since it requires alignment and explicit comparison of the boundary,
and hence cannot be encoded on the skeleton alone.

Golland and Grimson [16] provide an interesting alternative: they minimize a
boundary functional to find the optimal fit to a fixed model skeleton. This approach
is very robust to boundary deformations, but is computationally very expensive.
Therefore, it is not well suited to indexing large databases of shapes.
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1.2. Contribution

We draw three observations from this review of the related literature. The first is
that if a largely structural representation of the skeleton is used, then shapes which
are perceptually different but which give rise to the same skeleton topology can be
ambiguous with one-another. For this reason we would like to develop a represen-
tation which can be used to assess the differences in shape for objects which have to-
pologically identical skeletons. Second, we would also like to be able to make
comparisons between shapes that are perceptually close, but whose skeletons exhibit
topological differences due to small but critical local shape deformations. Third, we
aim to do this without making detailed boundary comparisons. In particular, we
wish to construct a representation which dispenses with the boundary, but encodes
information concerning its shape on the skeleton.

To meet these goals, our shape-measure must have three properties. First, it must
be continuous over local regions in shape-space in which there are no topological
transitions. If this were the case then it can be used to differentiate shapes with to-
pologically identical skeletons. Second, it must vary smoothly across topological
transitions. This is perhaps the most important property since it allows us to define
distances across transitions in skeleton topology. In other words, we can traverse the
skeleton without encountering singularities. Third, it must distinguish between the
principal component of the skeleton and its ligatures [4,5]. This will allow us to sup-
press instabilities due to local shape deformations.

Our approach to shape recognition and classification using a skeletal representa-
tion requires several components. In particular, we need to (a) extract the skeleton,
(b) label the branches with some measure of shape-similarity, (c) calculate the global
similarity of two shapes using an edit-distance where the shape-measure is used to
determine edit cost, and, finally (d) use the overall similarity between shapes to learn
shape categories. This paper focuses only on the computation of the shape-similarity
measure. The remaining topics will be covered in separate publications. The exper-
imental assessment of the shape-similarity measure requires as a prerequisite that
we know the correct correspondences between skeletal branches are a prerequisite
for the calculation of the similarity measure. In the complete shape-matching system,
we would anticipate that the correspondences would be located using a tree-match-
ing algorithm to minimize the edit-distance between structures. However, the de-
scription and analysis of such an algorithm is beyond the scope of this paper. For
the purposes of making this paper self-contained, we perform most of our experi-
ments with hand-picked correspondences.

We opt to use a shape-measure based on the rate of change of boundary length with
distance along the skeleton. To compute the measure, we construct at each location on
the skeleton the bitangent circle inscribed in the shape. This circle is centered on a skel-
etal point and is bitangent to the boundary at the two boundary points. Hence, each
skeletal point is in correspondence with (at least) two points on the border. The rate
of change of boundary length with distance along the skeleton is computed by taking
neighboring points on the skeleton. The corresponding change in boundary length is
computed by determining distance along the boundary between the corresponding
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points of contact for the two bitangent circles. The boundary distances are averaged for
the boundary segments either side of the skeleton.

This measurement has previously been used in the literature to express relevance
of a branch when extracting or pruning the skeleton [24,25,31]. In [9], Blum and Na-
gel suggested that the border length to shock-length ratio could be used, together
with other measures, to characterize the shape, but the reasons for its proposal were
solely attributed to its ability to detect whether a skeletal section is a ligature. In
practice they too used the measure only as a purely static measure of relevance, ig-
noring the properties of the measure when the shape undergoes deformation.

We show that the rate of change of boundary length with distance along the skel-
eton has a number of interesting properties. The consequence of these properties is
that the descriptive content of the measure extends beyond simple feature saliency,
and can be used to attribute the relational structure of the skeleton to achieve a ri-
cher description of shape. Furthermore, we demonstrate that there is an intimate re-
lationship between the shape-measure and the divergence of the distance map. This is
an important observation since the divergence plays a central role when the skeleton
is computed using the Hamilton—Jacobi formalism to solve the eikonal equation.

Among the properties exhibited by this measure, we have that topological changes
on the skeleton correspond to zero crossings. This means that ligatures are associ-
ated with a value of the measurement which is zero, and hence have neutral weight.
Second, the measure does not change when the shape undergoes “bending.”

Hence, the contribution of the paper is as follows. Although the measure that we use
has been known for some time, it has not been used for shape comparison. The novelty
of our work resides in the use of the method to measure shape similarity. In particular,
the method is simple. For instance, it does not require explicit boundary comparison.
Moreover, it can be computed directly from the divergence analysis of the distance
map. From a theoretical perspective, the contribution of this paper is to demonstrate
the relationship of the measure to the divergence, and to illustrate a number of impor-
tant properties that it possesses. Although this paper concerns shape-similarity, there is
of course an underlying correspondence problem for the skeleton branches that must
be solved if the measure is to be used for matching or recognition. When required we use
the weighted tree-matching method outlined in [3] to compute correspondences.

The outline of the paper is as follows: Section 2 deals with skeleton extraction and in-
troduces to the Hamilton—Jacobi framework. The shape-measure and its geometric prop-
erties are presented in Section 3. Section 4 builds on Sections 2 and 3 by showing how
the measure extraction process can be integrated with the Hamilton—Jacobi approach
to skeleton detection. Finally, experimental results are presented in Section 5 and Sec-
tion 6 provides some conclusions and identifies directions for further investigation.

2. Skeleton detection

A great number of papers have been written on the subject of skeleton detection.
The problem is a tricky one because it is based on the detection of singularities on the
evolution of the eikonal equation on the boundary of the shape.
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The eikonal equation is a partial differential equation that governs the motion of a
wave front through a medium. In the case of a uniform medium the equation is
2 e =), 1)
where C(7) : [0,s] — R? is the equation of the front at time 7, N(¢) : [0,s] — R? is the
equation of the normal to the wave front in the direction of motion, and « is the
propagation speed. As the wave front evolves, opposing segments of the wave front
collide, generating a singularity. This singularity is called a shock and the set of all
such shocks is the skeleton of the boundary defined by the original curve. This re-
alization of the eikonal equation is also referred to as the reaction equation.

The geometric intuition underpinning the eikonal or reaction equation is fairly
simple: each point on the shape-boundary moves at constant speed in a direction
that is at each instant in time normal to the object boundary. When two such points
collide a singularity arises. The skeleton is the set of such singularities. Alternatively,
the skeleton can be thought of as the set of the centers of bitangent circles contained
within the shape-boundary. It is easy to see the relationship between these two views.
Since the boundary points move at a constant speed, they meet after having traveled
the same distance. The distance traveled by the set of points that meet first is the ra-
dius of the bitangent circle and the original positions of these points are the points
where the bitangent circle touches the shape-boundary.

2.1. The Hamilton—-Jacobi framework

To detect the singularities in the eikonal equation we use the Hamilton—Jacobi ap-
proach presented by Siddiqi, Tannenbaum, and Zucker [11,34]. Here we review this
approach.

We commence by defining a distance-map that assigns to each point on the inte-
rior of an object the closest distance D from the point to the boundary (i.e., the dis-
tance to the closest point on the object boundary). The gradient of this distance-map
defines a field F' whose domain is the interior of the shape. The field is defined to be

F=VD, (2)

where V = (%,a%)T is the gradient operator. The trajectory followed by each
boundary point under the eikonal equation can be described by the ordinary dif-
ferential equation X = F(¥), where ¥ is the coordinate vector of the point.

Siddiqi claims that this system is Hamiltonian at non-skeletal points. Hence at
these non-skeletal points the field F is conservative, or V- F = 0 [26]. However,
the total inward flux through the entire shape is non-zero. In fact, the flux is propor-
tional to the length of the boundary.

The divergence theorem states that the integral of the divergence of a vector-field
over an area is equal to the flux of the vector field over the enclosing boundary of

that area. In our case,

/vﬁw:/ﬁﬁmz@@% (3)
A L
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where 4 is any area, F is a field defined in 4, do is the area differential in 4, d/ is the
length differential on the border L of 4, and ®,(F) is the outward flux of F through
the border L.

By virtue of the divergence theorem we have that, within the interior, there are
points where the system is not conservative. The non-conservative points are those
where the boundary trajectory is not well defined, i.e., where there are singularities
in the evolution of the boundary. These points are the so-called shocks or skeleton
of the shape- boundary. Shocks are thus characterized by locations where
V.-F<0.

Unfortunately, the assumption that the field F is conservative does not take into
account density effects due to a curved front in the boundary evolution. In such cases
there still exists a conservative field { = pF whose direction is always parallel to F.
As a result, V - F can be negative at non-skeletal points corresponding to high-cur-
vature fronts. In such cases, however, the skeletal points represent minima of the
quantity V - F along the direction orthogonal to the skeleton. In this paper we will
ignore the non-conservative effects at high-curvature fronts. However, in a recent pa-
per we have performed a more detailed analysis which incorporates the effects of
non-uniform density due to boundary curvature, and demonstrate that the resulting
boundary evolution process leads to improvements in the properties of the located
skeleton [40].

The extraction of skeletal points is reduced to the search for highly non-conserva-
tive points. Unfortunately, skeletal points are, also, ridges of the distance map D,
that is F = VD is not uniquely defined in those points, but have different values
on opposite sides of the watershed. This means that the calculation of the derivatives
of F gives rise to numerical instabilities. To avoid this problem we can use the diver-
gence theorem again. We approximate the divergence with the outward flux through
a small area surrounding the point. That is V - F () = &, (F) (%), where U is a small
area containing x. Thus, calculating the flux through the immediate neighbors of
each pixel we obtain a suitable approximation of V - F ().

2.2. Locating the skeleton

The thinning of the points enclosed within the boundary to extract the skeleton is
an iterative process which involves eliminating points with low inward flux. The steps
in the thinning and localization of the skeleton are as follows:

e At each iteration of the thinning process we have a set of points that are candi-
dates for elimination. We remove from this set the point with the lowest inward
flux.

e Next we check whether the point is topologically simple, i.e., whether it can be
eliminated without splitting the remaining point-set.

e [f the point is not simple, then it must be part of the skeleton. Thus, we retain it.

o If the point is simple, then we check whether it is an endpoint. If the point is simple
and not an endpoint, then we eliminate it from the image. If this were the case then
we add to the candidate set the points in its 8-neighborhood that are still part of
the thinned shape (i.e., points that were not previously eliminated).
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o If a simple point is also an endpoint, then the decision of whether or not it will be
eliminated is based on the inward flux value. If the flux value is below a certain
threshold we eliminate the point in the manner described above. Otherwise we re-
tain the point as part of the skeleton.

We initialize this iterative process by placing every boundary point in the candidate

set. We iterate the process until we have no more candidates for removal. The re-

sidual points will all belong to the skeleton.

3. The shape-measure and its properties

When the skeleton is computed in this way, then the eikonal equation induces a
map from a point in the skeleton to a set of points on the boundary of the shape.
That is, there is a correspondence between a point on the skeleton and the set of
points on the boundary whose trajectories intercept it under the motion induced
by the eikonal equation. The cardinality of this set of corresponding points on the
boundary can be used to classify the local topology of the skeleton in the following
manner:

e the cardinality is greater than or equal to 3 for junctions.
e For endpoints the cardinality is a number from 1 to a continuum.
o For the general case of points on branches of the skeleton, the cardinality is ex-

actly 2.

As a result of this final property, any segment of a skeleton branch s is in correspon-
dence with two boundary segments /; and /,. This allows us to assign to a portion of the
skeleton the portion of the boundary from which it arose (see Fig. 1). For each internal
point in a skeleton branch, we can thus define the local ratio between the length of the
generating boundary segment and the length of the generated skeleton segment. The
rate of change of boundary length with skeleton length is defined to be

d d d
Sl =+ 5 @)

where ||/,]| is the length of the segment /. This ratio is our measure of the relevance of
a skeleton segment in the representation of the 2D shape-boundary.

Our proposal in this paper is to use this ratio as a measure of the local relevance of
the skeleton to the boundary-shape description. In particular, we are interested in
using the measure to identify ligatures [4]. Ligatures are skeleton segments that link
the logically separate components of a shape (see Fig. 2). They are characterized by a
high negative curvature on the generating boundary segment. The observation which
motivates this proposal is that we can identify ligature by attaching to each infinites-
imal segment of skeleton the length of the boundary that generated it. Under the eik-
onal equation, a boundary segment with high negative curvature produces a
rarefaction front. This front will cause small segments to grow in length throughout
their evolution, until they collide with another front and give rise to a so-called
shock. This means that very short boundary segments generate very long skeleton
branches. Consequently, when a skeleton branch is a ligature, then there is an asso-
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ciated decrease in the boundary-length to shock-length ratio. As a result our pro-
posed skeletal shape-measure “weights” ligature less than other points in the same
skeleton branch.

To better understand the rate of decrease of the boundary length with skeletal
length, we investigate its relationship to the local geometry of the bitangent circle
inscribed within the object boundary. We have

d cos 0

Gl =7=¢ ®)
and, similarly,

d cos 0

| = == 6

Sl == (©)

where r is the radius of the bitangent circle and £; is the curvature of the mapped
segment on the boundary. The curvature is oriented inwards, that is, when the
boundary bends towards the skeleton we have a positive curvature, while when
the boundary bends away from the skeleton the curvature is negative. Finally, 0 is
the angle between the tangent to the skeleton and the tangent to the corresponding
point on the boundary. These formulae show that the measure is inversely propor-
tional to negative curvature and radius. That is, if we fix a negative curvature &, the
measure decreases as the skeleton gets further away from the border. Furthermore,
the measure decreases faster when the curvature becomes more negative.

A second important property of the shape-measure is that its value varies
smoothly across shape deformations, even when these deformations impose topolog-
ical transitions to the skeleton. To demonstrate this property we make use of the tax-
onomy of topological transition of the skeleton compiled by Giblin and Kimia [15].
According to this taxonomy, a smooth deformation of the shape induces only two
types of transition on the skeleton (plus their time reversals). The transitions are
branch contraction and branch splicing. A deformation contracts a branch joining
two junctions when it moves the junctions together. Conversely, it splices a branch
when it reduces in size, smoothes out, or otherwise eliminates the protrusion or
sub-part of a shape that generates the branch.

A deformation that contracts or splices a skeleton branch causes the global value
of the shape-measure along the branch to go to zero as the deformation approaches
the topological transition. This means that a decreasing length of boundary gener-
ates the branch, until the branch disappears altogether.

When a deformation causes a contraction transition, both the length of the skel-
eton branch and the length of the boundary segments that generate the branch go to
zero. A more elusive case is that of splicing. Through a splicing deformation, a de-
creasing length of boundary maps to the skeleton branch. This is because either the
skeleton length and its associated boundary length are both reduced, or because the
deformation allows boundary points to be mapped to adjacent skeleton branches.
For this reduction in the length of the generating boundary, we do not have a cor-
responding reduction of the length of the skeleton branch. In fact, in a splice oper-
ation the length of the skeleton branch is a lower bound imposed by the presence of
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the ligature. This is the major cause of the perceived instability of the skeletal repre-
sentation. Weighting each point on the boundary which gave rise to a particular skel-
eton branch allows us to eliminate the contributions from ligatures, thus smoothing
the instability. Since a smooth shape deformation induces a smooth change in the
boundary, the total shape-measure along the branch has to vary smoothly through
any deformation.

Just like the radius of the bitangent circle, key shape elements such as necks and
seeds are associated with local variations of the length ratio. For instance, a neck is a
point of high rarefaction and, thus, a minimum of the shape-measure along the
branch. A seed is a point where the front of the evolution of the eikonal equation
concentrates, and so is characterized by a maximum of the ratio (see Figs. 1 and 2).

A third important property of the shape-measure is its invariance to bending of
the shape. This invariance derives from the fact that, if we bend the shape, we loose
from one side the same amount of boundary-length that we gain on the opposite
side. This property was already identified in [§].

‘__/—/"—\»
ly

Fig. 1. Geometric quantities used in our analysis.

Fig. 2. Ligature points are generated by short boundary segments.
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To prove the bending invariance, let £ be the curvature on the skeleton, at point
0. We can assume, without loss of generality, that at this point the skeleton is di-
rected towards the border-segment d/,. Furthermore, let k; and &, be the inward cur-
vatures on the corresponding boundary points, and let 0 be the angle between the
border tangents and the skeleton tangent. At the point O the tangent angle and
the radius are linked by the relation dr/ds = — sin(0). We define the radius curvature
k. as

=90 _ &’r/d’s

This quantity represents the degree to which the boundary bends towards the skel-
eton. Positive values indicate that the boundary is convex with respect to the skeleton
(i.e., bends towards the skeleton) and negative values that the boundary is concave
with respect to the skeleton (i.e., bends away from the skeleton). Given the boundary
segments d/;, we can perform a parallel transport of the segment along the radius,
hence obtaining the segment d/} that is parallel to d/; and that crosses the skeleton at
point O. Similarly we can obtain the segment d/5 parallel to d/,. The length of these
segments is ||d/}|| = ||d23|| = cos(0)ds + O(ds?), and their curvatures are £} and &3,
respectively. Moving along the skeleton by a distance ds, the tangent to the skeleton
rotates by an angle do = k,ds + O(ds?), while the tangent at the corresponding
border points d/f rotates by an angle df = £ d/, + O(ds?). As can be clearly seen in
Fig. 3, we have d0 = dff — do. Hence:

k. ds = k} cos(0)ds — kyds + O(ds?),

ke + k,
cos(0)

kY

\ dly /

Fig. 3. Differential geometry of a skeletal branch.
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On the opposite side of the skeleton, since k; points towards d/,, we have
d0 = dp — do. Hence
ke ds = k5 cos(0) ds + k,ds + k,ds + O(ds?),

kr B ks
27 cos(0)

Recalling that =g +r and |di[lk = |dF[& +O(ds?), we have |[|d/i| =
AT |I(1 + 7&Y) + O(ds?) = [cos(0) + r(k + k)] + O(ds?). Similarly, we have ||d/,|| =
[cos(0) + r(k: — k)] + O(ds?). Hence &||/i|| + &1 = 2(cos(0) + rk,) = 2cos(0) +
2r4%is independent of k, since the factors in Hdh || and ||dZ,|| that depend on k; cancel
out In other words, if we bend the object sufficiently to cause a curvature £ in the

skeleton, the increase in boundary length on the one side is compensated by the de-
crease in boundary length on the opposite side.

4. Measure extraction

The extraction of the skeletal shape-measure is a natural by-product which comes
for free when we use the Hamilton—Jacobi approach for skeleton extraction. This is a
very important property of this shape-measure. Through the divergence theorem we
can transport a quantity linked to a potentially distant border to a quantity local to
the skeleton. Using this property, we can prove that the border length to shock-
length ratio is proportional to the divergence of the gradient of the distance map.

The Hamilton—Jacobi approach ensures that the eikonal equation induces a sys-
tem that is conservative everywhere except on the skeleton. As we have already men-
tioned, the conservative field is not F = VD as indicated by Siddigi, but the field
[= pF which is parallel to it (where p is a scalar function that corrects the density
effects due to a curved front). In this paper, we will ignore these curvature depen-
dency effects by assuming that F is conservative, or, equivalently, that V - F = 0 ev-
erywhere except on the skeleton. When dealing with these curvature effects,
arguments based on the assumption V - F = 0 will also hold when we substitute {
for F. More details of the curvature dependent analysis can be found in our recent
paper [40].

To show how the shape-measure can be computed in the Hamilton—Jacobi set-
ting, we consider a skeleton segment s and its e-envelope. The e-envelope of a func-
tion f is the set of points {(x,»)|||y — f(x)|| < €}, that is the set of points inside a
“tube” of radius e around the value of the function. The e-envelope around a skeletal
segment s is, thus, an infinitesimally thin open area that includes every point in s.

The segment s maps to two segment borders /; and /,. The evolution of the points
in these border segments defines two areas 4{ and 45 enclosed within the e-envelope
of s, the segments of boundary /; and /,, and the trajectories b} and b}, and b} and b3
of the endpoints of /; and /. The geometry of these areas is illustrated in Fig. 4.
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Fig. 4. The flux through the border is equal to the flux through e.

Since V - F = 0 everywhere in A{ and 45, by virtue of the divergence theorem ‘wecan
state that the flux from the two areas are both zero, i.e., @ (F F) =0 and Dy (F F)=0.
The trajectories of the endpoints of the border are, by constructlon parallel to the field,
so the normal is everywhere normal to the field and thus there is no flux through the
segments b}, b7, b}, and b3. On the other hand, the field on the shape-boundary is always
normal to the boundary. Hence, the flux through the border segments /; and /, is equal
to the length ||/1|| and [|/5|| of the segments /; and /5, respectively.

Since & (F F) = 0 and Dy (F F) = 0 the flux that enters through the border segments
/; and [, has to exit through the e-envelope of s. That 1 s, if ¢, and 6 are the sides of 4
and 45 on the e-envelope of s, we have @, (F) = &, (F) and &, (F) = @,,(F). This, in
turn, 1mplles that the flux through the whole e-envelope of s is @.(F) = ||11|| + ||/1-

Since

hm V Fde—/V Fds

e—0

and the value of the flux through the e-envelope of s is independent of ¢, we have
/ V- Fds= L] + |15l

Taking the first derivative with respect to ds we have, for each non-singular point
in the skeleton,

& ||l I+ 5 ||lz|| ()
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Fig. 5 plots at each skeletal point the extracted value of the shape-measure of each
of two sample shapes.

4.1. Computing the distance between skeletons

This result allows us to calculate a global shape-measure for each skeleton branch
during the branch extraction process. For our matching experiments we have used
mainly a simple graph representation where the nodes are junctions or endpoints,
and the edges are branches of the skeleton. In experiments, where we needed to com-
pare potentially very different shapes, we used the shock-graph representation: the
nodes still represent skeletal segments, but branches are split at points which are ex-
tremal in the radius of the bitangent circle. When we have completed the thinning of
the shape-boundary and we are left only with the skeleton, we select an endpoint and
start summing the values of the length ratio for each skeleton point until we reach
either a junction or an extremal point. This sum ), V- F (X;) over every pixel x;
of our extracted skeleton branch is an approximation of

- d d
[ Fas= [ (G4m0 ) ds = il + el

the length of the border that generates the skeleton branch.

At this point we have identified a branch and we have calculated the total value of
the length-ratio along that branch, or, in other words, we have computed the total
length of the border that generated the branch. We continue this process until we
have spanned each branch in the entire skeleton. Thus, we obtain a weighted graph
representation of the skeleton. In the case of a simple shape, i.e., a shape with no
holes, the graph has no cycles and thus is an (unrooted) tree.

Given this representation we can cast the problem of computing distances
between different shapes as that of the total difference in shape-measure between
corresponding branches.

Fig. 5. Two sample shapes. The height and intensity of the skeleton at each point is proportional to the
shape-measure.
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5. Experimental results

In this section we experiment with the new skeletal similarity measure. The exper-
imentation is divided into three parts. First, we assess the ability of the proposed
measure to discriminate between deformed shapes that give rise to skeletons with
the same topology. Second, we assess how smoothly the overall similarity measure
varies through transitions in skeletal topology. Finally, we show how the similarity
measure may be used to cluster similar shapes.

There is clearly an underlying correspondence problem that must be solved before
the similarity between two skeletons can be computed. This arises because we need to
know how to associate branches in the two skeletons being compared. To fully per-
form a shape recognition task we should recover these correspondences automati-
cally. However, the aim of the work reported here was to analyze the properties
of our length ratio measure independently of the correspondence process, and not
to solve the full shape recognition problem. Thus for our first two set of experiments
we have located the branch correspondences by hand. To assess the overall effective-
ness of the augmented skeletal representation, in the third set of experiments the cor-
respondences are not hand-picked, but are in fact automatically extracted using a
minimum edit-distance approach.

Tree edit distance is a generalization to trees of String edit distance. The edit dis-
tance is based on the existence of a set S of basic edit operations on a tree and a set C
of costs, where ¢, € C is the cost of performing the edit operation s € S. The choice
of the basic edit operations, as well as their cost, can be tailored to the problem, but
common operations include leaf pruning, path merging, and, in the case of an attrib-
uted tree, change of attribute. Given two trees 71 and 75, the set S of basic edit op-
erations, and the cost of such operations C = ¢,, s € S, we call an edit path from T; to
T, a sequence sy, . . . ,s, of basic edit operations that transform 7 into 7». The length
of such path is / = ¢, + - - - + ¢,,; the minimum length edit path from T to T is the
path from 7; to 7, with minimum length. The length of the minimum length path
is the tree edit distance.

With our measure assigned to each edge of the tree, i.e., branch of the skeleton, we
define the cost of matching two edges as the difference of the total length ratio mea-
sure along the branches. The cost of eliminating an edge is equivalent to the cost of
matching it to an edge with zero weight, i.e., one along which the total length ratio is
zero.

5.1. Stability under deformation

As demonstrated earlier in the paper, we know that the length ratio measure
should be stable to any local shape deformation, including those that exhibit an in-
stability in shock length. This kind of behavior at local deformations is what has led
to the idea that the skeleton is an unstable representation of shape.

To demonstrate the stability of the skeletal representation when augmented with
the length ratio measurement, we have generated a sequence of images of a rectangle
with a protrusion on one side (Fig. 6). The size of the protrusion is gradually reduced
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Fig. 6. A “disappearing” protrusion which causes instability in shock-length, but not in our measure.

throughout the sequence, until it is completely eliminated in the final image. In Fig. 7
we plot the global value of the length ratio measure for the shock branch generated
by the protrusion. It is clear that the value of the length ratio measure decreases
monotonically and quite smoothly until it becomes zero when the protrusion
disappears.

5.2. Changes in skeleton topology

In a second set of experiments we have aimed to assess the ability of the length
ratio measure to distinguish between structurally similar shapes. To do this we se-
lected two shapes that were perceptually different, but which possessed skeletons
with a very similar topology. We, then, generated an image sequence in which the
two shapes were morphed into one-another. Here the original shapes are the start
and end frames of the sequence. At each frame in the sequence we calculated the dis-
tance between the start and end shapes.

We have repeated this experiment with two morphing sequences. The first se-
quence involved morphing a sand shark into a swordfish, while the second morphed
a donkey into a hare (see Fig. 8).

To determine the difference between two shapes, we make use of hand-picked
correspondences between skeletal branches. The distance between the complete
skeletons is defined as the FEuclidean distance between the normalized
weights of matched edges (skeletal branches). In other words, the distance is

D(4,B) = /(¢! — eB)’ where ¢! and e? are the normalized weights on the

600

500 |

400

300 |

200 |

100

0

L L L L L L L \
1 2 3 4 5 6 7 8 9

Fig. 7. The measure of the skeleton segment generated by a protrusion.
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Fig. 8. Morphing sequences and their corresponding skeletons. (A) Sand shark to swordfish sequence and
(B) donkey to hare sequence.

corresponding edges indexed by i on the shapes denoted by 4 and B. The normalized
weights are computed by dividing the raw weights by the sum of the weights of each
tree.

We apply this normalized length ratio measure to ensure scale invariance. We
note that two identical shapes scaled to different proportions would have different
ratios due to the scale difference. However, the measure along equivalent branches
of the two shapes would vary by a constant scale factor, namely the ratio of the
lengths of the borders. Since the sum of the weights of the edges of a tree is equal
to the total length of the border, dividing the weights in each branch by this quantity
we have reduced the two measurements to the same scale. In this way the relevant
quantity is not the absolute magnitude for a branch, but the magnitude ratio with
other branches.

For each morphing sequence, in Fig. 9 we plot the distance between each frame in
the sequence and the start and end frames. The monotonicity of the distance is ev-
ident throughout the sequences. This is a proof of capacity of our length ratio mea-
sure to disambiguate between shapes with topologically similar skeletons.

A022 - B 025

1 2 3 4 5 6 7 8 9 0 2 4 6 8 10

Fig. 9. Distances from first and last frame of the morphing sequences. (A) Distances in fish morphing se-
quence and (B) distances in donkey to hare morphing sequence.
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To further assess the ability to discriminate between similar shapes, we selected a
set of topologically similar shapes from a database of images of tools. As in the case
of the previous experiments, the correspondences are hand-picked and the normal-
ized Euclidean distance of the corresponding branch weights is used to measure
the similarity of the skeletons. In the first column of Fig. 10 we show the selected
shapes. To their right are the remaining shapes sorted by increasing normalized dis-
tance. Each shape is annotated by the value of the normalized distance.

It is clear that similar shapes are usually closest to one-another. However, there
are problems due to a high sensitivity to occlusion. This can be seen in the high rel-
ative importance given to the articulation angle. This is due to the fact that, in the
pliers images, articulation occludes part of the nose of pliers. While sensitivity to oc-
clusion is, without a doubt, a drawback of the measure, we have to take into account
that skeletal representation in general are highly sensitive to occlusion.

The reason that the monkey wrench is recorded as being more similar to the pli-
ers than the second monkey wrench is due to sensitivity to articulation and the

> > £ N\ 7
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0.088 | 0.092 | 0.095 | 0.110 | 0.128 | 0.186
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v
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Fig. 10. Some tools and the normalized distance between them.
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“closeness’ of the head to the handles. Since the second monkey wrench is almost
closed, the skeleton branches of the handles have a reduced overall weight. Thus,
the process of normalizing the edge weights reduces the significance of the small
yet salient head when it is compared to the remainder of the shape.

5.3. Clustering shock-graphs

The third set of experiments aims to establish the usefulness of the shape sim-
ilarity measures as tool for clustering the shock-graphs associated with 2D shapes
falling into distinct shape categories. We have compared the results obtained when
the skeleton is both weighted with our measure, and when it is unweighted. In
these experiments, we have used a database of shapes with very different topolo-
gies. Hence, there is no simple way to locate the correspondences between the
skeletal branches. For this reason the correspondences were automatically ex-
tracted using a minimum edit distance graph-matching method [3]. Graph-edit dis-
tance allows the similarity between different graph structures to be measured. The
idea underpinning the method is that it is possible to identify a set of basic edit
operations on nodes and edges of a structure, and to associate with these opera-
tions a cost. The edit distance between two structures is found by searching for
the sequence of edit operations that will make the two graphs isomorphic with
one-another and which have minimum cost. In our application the available op-
erations are node addition and removal. The cost of adding or removing a node
with weight w is w, while the cost of matching two nodes with weights w and w/,
respectively, is |w —w/|. To calculate the distance, we use the algorithm presented
in [39].

Given the topological diversity of the shape skeletons, we have used a more pow-
erful representation than the simple one used for the previous experiments. For this
purpose we have a shock-graph representation in which we split skeletal branches at
extrema of the radius of the bitangent circle.

The silhouettes used to generate the shock-graphs used in our experiments are
shown in Fig. 11. There are 25 different shapes. These include brushes, tools, spec-
tacles, various animals, and human hands. The figure is annotated with the pairwise
similarity of the shapes. For the shapes indexed i and j, the similarity measure is de-
fined to be

S =1 —%d,-,j,
where d;; is the edit distance between shapes i and ;.

For comparison purposes, Fig. 12 reports the similarity of the unweighted shock-

trees. In this case the similarity between ¢; and ¢ is

_1 ‘t,‘|+|fj| —d,',j 1 1
Si=3 2\t

where |¢| is the number of nodes in tree ¢ and d;; is the unattributed edit-distance
between tree ¢; and tree ¢;.
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Fig. 11. Pairwise similarities between shapes for the weighted shock-trees.
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In Figs. 13 and 14 we show the six best-matched shapes for each object from the
database. The top rows of the figures show the shapes considered. The remaining
rows, from top to bottom, show the six best-matched shapes ordered according to
similarity. Hence, the further down each column, the poorer the match to the shape
in the top position. Fig. 13 shows the matches obtained when we associate the shape-
measure to the shock-trees. In each case the first matched shape is the object under



A. Torsello, E.R. Hancock | Computer Vision and Image Understanding 95 (2004) 1-29 21
N2 VSIZN IYNAN oajpame €~ o 0w of b ¥ ¥
\1.00 1.000[1000.{0.774{1.000]0.786/0.889(0.889(0.706(0.643/0.850/0.536/0.53 56! 18/0.792| 50(0.804[0.71 63 640/0.706/0.694(0.684
, 1.000{1.000{1.000/0.774{1.000/0.7: 9| 0.706/0.6430.729(0.536/0.53 56! 18)0.7920.8: 50(0.804[0.71 635(0.6400.706|0.694/0.684)
‘ 1.000/1.000{1.000/0.774{1.000/0.78 9(0.889(0.706(0.643/0.729|0.536/0.536/0.565(0.701(0.7920 5000.804J0.71 635/0.640[0.706[0.694/0.684]
\
0.77410.774/0.774{1.0000.774{0.83. .8330.676/0.714/0.800/0.714{0.714/0.500/0.773/0.625(0.694(0.667|0.875/0.6880.615(0.620[0.676/0.667/0.658
\ 1.000[1.000{1.000]0.77411.000/0.7: 9| 0.706/0.643/0.850(0.536/0.536(0.565|0.8180.792/0.889)0.850(0.804{0.71 63 640/0.706/0.694(0.684
, 0.786/0.786/0.786(0.833/0.786(1.000/0.722/0.722/0.6180.643/0.700/0.643/0.643/0.667|0.682(0.6670.722/0.700/0.750/0.6250.577]0.580[0.6 180.611/0.605)
‘0.8890 890 0.833/0.889(0.722(1.000[1.000{0.765/0.730/0.950(0.548/0.548|0.486/0.8080.681/0.778(0.7390.826[0.781/0.673/0.6800.7650.750(0.737
\ 0.88910 0. 10.889(0.722(1.000/1.000/0.765/0.730/0.950(0.548/0.548/0.486/0.808/0.681/0.778(0.739/0.826|0.781/0.673/0.6800.765( 0.75 [0.737]
LOJO 0.706/0.706/0.676/0.706(0.618(0.765|0.765(1.0000.782/0.715(0.456/0.456{0.498|0.67410.640/0.680[0.715/0.643|0.6670.730/0.791/0.765(0.743(0.724
\0.643D.64301')430,7140.6430.6430,7300.730[].7821A0000A8570.5000.5000A610 568(0.542(0.63! 600/0.688(0.938(0.714]0.72410.586/0.635(0.744]
/0.85 0.7290.729/0.800/0.850(0.700[0.950|0.950{0.715/0.857|1.000{0.600{0.600/0.4580.764/0.642/0.739(0.700/0.788|0.8120.69 700/0.794{0.778(0.763
W ®|).5360.53600.536{0.714)0.536/0.643(0.548)0.5480.456{0.50000.600[1.000[1.000{0.619(0.487)0.387(0.456{0.429(0.589(0.469(0.54: 669(0.651(0.635(0.62
”0.5360 53 536/0.714/0.536/0.643(0.548/0.548/0.456/0.500/0.600(1.000{1.000/0.619|0.487|0.387|0.456(0.429/0.589(0.469/0.495/0.6690.651/0.63. 621
”O.Efiﬁ[).sﬁ ).565(0.5000.565(0.6670.486/0.486(0.498(0.619/0.4580.619/0.619(1.00 523/0.500(0. 5! 550[0.521{0.43 60! 6780.64000.625(0.612
* 0.818)0.8180.701/0.773/0.818(0.682 080.808/0.674|0.568/0.764/0.487]0.487]0.5231.000/0.784/0.909(0.7640.864]0.767|0.647(0.655/0.824|0.806/0.789|
*0_7920_792070’)0 625/0.792(0.667]0.681/0.681/0.640/0.542(0.642(0.387|0.387/0.50 784{1.000/0.875(0.917|0.729|0.656/0.5480.617]0.711|0.694/0.68
-
0.88910 0.69410.88910.722(0.778|0.7780.680]0.639)0.739(0.456/0.456(0.583/0.909|0.875(1.000(0.844{0.826/0.69: 59 604/0.765/0.750(0.737]
h 0.850]0.85C 50[0.667]0.850[0.700/0.739|0.739(0.715(0.600(0.7000.4290.429)0.550(0.764{0.917]0.844{1.000/0.788/0.731(0.62: 700/0.715/0.622(0.687]
. 0.804)0.804/0.804/0.875/0.804|0.75 26/0.826/0.643]0.6880.788/0.589(0.589|0.521/0.864|0.729(0.826(0.788/1.000/0.656/0.654/0.660/0.735/0.7220.711|
h 0.719]0.719/0.719(0.688/0.719(0.625/0.781]0.781/0.667|0.938/0.812/0.469]0.469/0.438/0.767|0.656{0.694|0.731/0.656/1.000/0.757]0.666/0.6670.708/0.63.
d 0.635|0.63. 635(0.615/0.635(0.577|0.673/0.673(0.730(0.714/0.692/0.549(0.49 609(0.647]0.548/0.59: 623/0.654(0.757|1.0000.706/0.730(0.752(0.729|
M0.6400.64 0.640/0.620/0.640[0.58 6 680/0.791(0.724[0.7000.669|0.669/0.678/0.655(0.617]0.604|0.700/0.660/0.666/0.706(1.000/0.840|0.8600.880|
w 0.706/0.706/0.706/0.676/0.706{0.618/0.765/|0.765/0.765(0.586(0.794/0.651/0.651/0.640/0.824/0.711(0.765(0.715|0.735/0.667|0.730(0.840{1.0000.972/0.836|
w 0.694/0.694/0.694/0.667]0.694(0.611/0.750/0.750{0.743/0.635(0.7780.635/0.63. 625(0.806/0.694{0.75 622(0.722(0.708(0.75: 860/0.972(1.000(0.811|
w0.684U.5840.6840.6580.6840.6050.7370.7370.7240.7440.76 0.620]0.620/0.612/0.789(0.680{0.737]0.687|0.711/0.633(0.72! 10. .811(1.00

Fig. 12. Pairwise similarities between shapes for the unweighted shock-trees.

study. From the third row down errors begin to emerge. For instance, a monkey
wrench (object 6) matches to a hammer (object 11), and a horse (object 22) matches
to a hand (object 25). Although there are six such errors in the third row (objects 6,
10, 11, 14, 16, and 22), several of those are associated with small differences in sim-
ilarity. This is the case with object 6, where a monkey wrench is matched to a ham-
mer. In both objects the dominant feature is the long handle. Additionally, for four
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Fig. 13. Top six matches for each shape for the weighted shock-trees.
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Fig. 14. Top six matches for each shape for the unweighted shock-trees.

of the objects the correct matches appear in the fourth (object 6, 16), fifth (object 14),
or sixth (object 22) position. It is only the two hammers that pose a real problem.
This is due to the fact that the handle, the main feature on both objects, shows var-
iation in its differential properties. Specifically, object 10 bulges on the grip, creating
a type one shock that splits the handle, whereas the handle of object 11 generates a
single shock segment. The problem could be solved by allowing the edit distance cal-
culation to merge segments, but this is beyond the scope of this paper.

Fig. 14 displays the top matches obtained using unattributed shock-trees. Here
too the top match is again always a perfect fit. However, the performance degrades
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more quickly as we descend the rows of the table. In fact, the first error emerge in the
second row of the figure.

To visualize the pairwise relationships between the different shapes, we have per-
formed multidimensional scaling on the set of pairwise similarities. Multidimensional
scaling is a well-known statistical technique for visualizing data which exists in the form
of pairwise similarities rather than ordinal values. Stated simply, the method involves
embedding the objects associated with the pairwise distances in a low-dimensional
space. This is done by performing principal components analysis on the matrix of pair-
wise similarities, and projecting the original objects into the resulting eigenspace. The
objects are visualized by displaying their positions in the space spanned by the leading
eigenvectors. The method has been widely exploited for data analysis in the psychology
literature. A comprehensive review can be found in the recent book of Cox and Cox
[14]. Details of the procedure can be found in Appendix A.

The projections of the edit distances onto the 2D space spanned by the two lead-
ing eigenvectors are shown in Figs. 15 (when the skeleton is weight with the edit dis-
tance) and 16 (when it is not). When the skeleton is weighted with the measure
(Fig. 15), then the MDS projection reveals some class structure emerging. However,
the full shape-structure is not captured by the two leading eigenvectors. For instance,
the hands, the fishes, the tools, and the brushes all appear close to each other. How-
ever, there is no clear delineation of the shape-classes. When the skeleton is not
weighted using the measure (Fig. 16) then the grouping of the shapes is even poorer,
with only the spectacles forming a well-separated group.

Encouraged by these results, we have performed a detailed pairwise clustering of
the pattern of similarities. Here we use the method recently described by Robles-
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Fig. 15. First and second principal components of the edit distances of the shapes for the weighted shock-
trees.
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Fig. 16. First and second principal components of the edit distances of the shapes for the unweighted
shock-trees.

Kelly and Hancock [28]. Details of the clustering algorithm are outside the scope of
this paper. However, the method uses an iterative log-likelihood algorithm to iden-
tify the pairwise clusters via matrix factorization. The initial and final matrices of
pairwise distance are shown in Fig. 17 for the measure-weighted skeleton and
Fig. 18 for the unweighted skeleton. In the case of the weighted skeleton the initial
pairwise similarity matrix shows a strong separation of the shape-groups, which is
further re-enforced by the iterative clustering method. Based on the block structure
of the final matrix of pairwise distances, we identify eight clusters. In the order of
importance, they are

Fig. 17. (A) Initial similarity matrix for the weighted tree edit distances; (B) final similarity matrix for the
weighted tree edit distances.



A. Torsello, E.R. Hancock | Computer Vision and Image Understanding 95 (2004) 1-29 25

Fig. 18. (A) Initial similarity matrix for the unweighted tree edit distances; (B) final similarity matrix for
the unweighted tree edit distances.
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In other words, the hands, tools, spectacles, and animals form clusters. However,
there are shapes which leak between these clusters. The problems encountered above
are due to the fact that certain shapes straddle the true shape-classes and cause clus-
ter-merging. When a pruned set of 16 shapes is used, then the following set of clus-
ters emerges:
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This is a much better set of clusters, that reflect the true shape-classes in the data.
We have repeated these clustering experiments with the unweighted skeletons.
Here the initial pairwise similarity matrix contains less structure than in the weighted
case, and iteration of the clustering algorithm results in a noisier set of final cluster
membership indicators (Fig. 12). In particular, the clusters extracted from
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unweighted shock-trees do not appear to correlate well with the shape classes in the
database. The ordered clusters are listed below:
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Clearly there is a considerable merging of and leakage between clusters. As
illustrated below, even reducing the size of the database does not improve the
classification:
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6. Conclusions

In this paper we presented a shape-measure defined on the skeleton. This quantity
has been used in the literature as a branch relevance measure during skeleton extrac-
tion and pruning. We show that the measure has greater informational utility, and
can be used to augment the purely structural information residing in a skeleton in
order to perform shape indexation and matching tasks. We show that the shape-
measure has a number of interesting properties that allow it to distinguish between
structurally similar shapes. In particular, the measure (a) changes smoothly through
topological transitions of the skeleton, (b) is able to distinguish between ligature and
non-ligature points and to weight them accordingly, and (c) it exhibits invariance un-
der “bending.” What makes the use of this measure particularly appealing is the fact
that it can be calculated with no added effort when the skeleton is computed using
the Hamilton—Jacobi method of Siddiqi et al. [34].

We have performed some experiments which verify the usefulness of the proposed
shape-measure. These showed that the distance increases monotonically as shapes
undergo smooth deformation. Moreover, the shape-measure can be used to cluster
perceptually similar shapes. We acknowledge that the method has been evaluated
on a relatively small set of shapes, and that large-scale experiments are needed.
Our future plans involve investigating whether the measure can be used to identify
small but perceptually salient features. Moreover, we are currently studying the ef-
fects of curvature in the computation of Hamilton—Jacobi skeleton and how curva-
ture impacts on the computation of the measure.
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Appendix A. Multidimensional scaling

Multidimensional scaling (MDS) [13] is a procedure which allows data specified in
terms of a matrix of pairwise distances to be embedded in a Euclidean space. The clas-
sical multidimensional scaling method was proposed by Torgenson [38] and Gower
[17]. Shepard and Kruskal [22] developed a different scaling technique called ordinal
scaling. Here we intend to use the method to embed shock-trees in a low-dimensional
space.

Suppose that d;; ;» is the edit-distance between the shock-trees indexed i1 and i2.
The first step of MDS is to calculate a matrix 7’ whose element with row » and col-
umn ¢ is given by

1 . . .
Te=—3ld. —d) — &+ &), (A1)
where
. 1 &Y
= _ i A2
d,. N;dn (A2)

is the average dissimilarity value over the rth row, d, is the similarly defined average
value over the cth column and

R l N N
d =13 Z:; ;d (A.3)

is the average similarity value over all rows and columns of the similarity matrix 7.

We subject the matrix 7 to an eigenvector analysis to obtain a matrix of embedding
coordinates X. If the rank of T is k, k < NV, then we will have k non-zero eigenvalues. We
arrange these k non-zero eigenvalues in descending order,ie., 4y = A, = -+ = 4, > 0.
The corresponding ordered eigenvectors are denoted by €; where /; is the ith eigenvalue.
The embedding coordinate system for the shock-trees is

X:[/_;l?]'b"'vf_:k]v (A4)

where fi = /€ are the scaled eigenvectors. For the shock-tree indexed i, the
embedded vector of coordinates is

%= (X, Xio, Xiz) " (A.5)
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