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Abstract. The aim of this paper is double. From one side we survey the knowledge we have
acquired these last ten years about the lattice of all λ-theories (= equational extensions of
untyped λ-calculus) and the models of lambda calculus via universal algebra. This includes
positive or negative answers to several questions raised in these years as well as several
independent results, the state of the art about the long-standing open questions concerning
the representability of λ-theories as theories of models, and 26 open problems. On the other
side, against the common belief, we show that lambda calculus and combinatory logic sat-
isfy interesting algebraic properties. In fact the Stone representation theorem for Boolean
algebras can be generalized to combinatory algebras and λ-abstraction algebras. In every
combinatory and λ-abstraction algebra there is a Boolean algebra of central elements (play-
ing the role of idempotent elements in rings). Central elements are used to represent any
combinatory and λ-abstraction algebra as a weak Boolean product of directly indecompos-
able algebras (i.e., algebras which cannot be decomposed as the Cartesian product of two
other non-trivial algebras). Central elements are also used to provide applications of the
representation theorem to lambda calculus. We show that the indecomposable semantics
(i.e., the semantics of lambda calculus given in terms of models of lambda calculus, which
are directly indecomposable as combinatory algebras) includes the continuous, stable and
strongly stable semantics, and the term models of all semisensible λ-theories. In one of
the main results of the paper we show that the indecomposable semantics is equationally
incomplete, and this incompleteness is as wide as possible.

1 Introduction

Among the computational formalisms which have been introduced, the lambda calculus plays
an important role as a bridge between logic and computer science. The lambda calculus was
originally introduced by Church [?,?] as a foundation for logic, where functions, instead of sets,
were primitive, and it turned out to be consistent and successful as a tool for formalizing all
computable functions. The rise of computers and the development of programming languages
gave a new development to its theoretical studies. The lambda calculus is the kernel of the func-
tional programming paradigm, because its ordinary parameter-binding mechanism corresponds
closely to parameter binding in many functional programming languages and to variable binding
of quantifiers in logic.
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Lambda calculus has been originally investigated by using mainly syntactical methods (see
Barendregt’s book [?]). At the beginning researchers have focused their interest on a limited
number of equational extensions of lambda calculus, called λ-theories. They arise by syntactical
or semantic considerations. Indeed, a λ-theory may correspond to a possible operational seman-
tics of lambda calculus, as well as it may be induced by a model of lambda calculus through
the kernel congruence relation of the interpretation function. Syntactical proofs of consistency
of remarkable λ-theories (for example, the theory equating all unsolvable λ-terms) were given
in Barendregt’s 1971 thesis [?], while one of the most significant λ-theories is connected with
the study of the infinite normal forms of λ-terms through Böhm trees [?,?]. The set of λ-theories
is naturally equipped with a structure of complete lattice (see [?, Chapter 4]). The bottom ele-
ment of this lattice is the least λ-theory λβ, while the top element is the inconsistent λ-theory.
Although researchers have mainly focused their interest on a limited number of them, the lattice
of λ-theories, hereafter denoted by λT , has a very rich and complex structure (see e.g. [?,?,?]).

The lambda calculus, although its axioms are all in the form of equations, is not a genuine
equational theory since the variable-binding properties of lambda abstraction prevent “variables”
in lambda calculus from operating as real algebraic variables. Consequently the general methods
that have been developed in universal algebra, for defining the semantics of an arbitrary algebraic
theory for instance, are not directly applicable. There have been several attempts to reformulate
the lambda calculus as a purely algebraic theory. The earliest, and best known, algebraic models
are the combinatory algebras of Curry and Schönfinkel (see [?,?]). Although combinatory alge-
bras do not keep the lambda notation, they have a simple purely equational characterization and
were used to provide an intrinsic first-order, but not equational, characterization of the models of
lambda calculus, as a special class of combinatory algebras called λ-models [?, Def. 5.2.7]. The
connection between the syntax and the semantics of lambda calculus is established by the com-
pleteness theorem of lambda calculus: every λ-theory is the equational theory of some λ-model
(see [?]).

Semantical methods have been extensively investigated. Topology is at the center of the
known approaches to giving models of the untyped lambda calculus. After the first model, found
by Scott [?] in 1969 in the category of complete lattices and Scott continuous functions, a large
number of mathematical models for lambda calculus have been introduced in various categories
of domains and were classified into semantics according to the nature of their representable func-
tions, see e.g. [?,?,?]. Scott continuous semantics [?] is given in the category whose objects are
complete partial orders and morphisms are Scott continuous functions. Scott continuous seman-
tics includes the class of graph models, which were isolated in the seventies by Plotkin, Scott and
Engeler [?,?,?], and the class of filter models, which were isolated at the beginning of eighties
by Barendregt, Coppo and Dezani [?] after the introduction of intersection-type discipline at the
end of seventies by Coppo and Dezani [?]. Filter models were investigated by Coppo, Dezani,
Barendregt et al. in a series of papers and are perhaps the most established and studied semantics
of lambda calculus (see e. g. [?,?,?]). Other semantics of lambda calculus were isolated by Berry
[?] and Bucciarelli-Ehrhard [?]: Berry’s stable semantics and Bucciarelli-Ehrhard’s strongly sta-
ble semantics are refinements of the continuous semantics introduced to capture the notion of
“sequential” Scott continuous function. All these semantics are structurally and equationally rich
[?,?,?] in the sense that it is possible to build up 2ℵ0 λ-models in each of them inducing, pair-
wise distinct λ-theories. Nevertheless, the above denotational semantics do not match all possi-
ble operational semantics of lambda calculus. We recall that a semantics of lambda calculus is
equationally incomplete if there exists a λ-theory which is not the theory of any model in the
semantics. In the nineties the problem of the equational incompleteness was positively solved



by Honsell and Ronchi della Rocca [?] for Scott’s continuous semantics, and by Bastonero and
Gouy for Berry’s stable semantics [?]. The proofs of the above results are syntactical and very
difficult. In [?,?] it was shown the equational incompleteness of all semantics of lambda cal-
culus that involve monotonicity with respect to some partial order and have a bottom element
(including the incompleteness of the strongly stable semantics, which had been conjectured by
Bastonero-Gouy and by Berline [?,?]). The proof is simple, general and abstract. First a the-
orem relating the properties of a graph to the properties of a suitable binary operation on the
vertices of the graph is proven. Then the incompleteness is obtained by applying this theorem
to the graphs, whose vertices are the elements of a partially ordered model of lambda calculus,
and whose edges correspond to the symmetric and antireflexive relation which is the union of the
strict order and of the strict dual order of the model. This incompleteness removes the belief that
partial orderings with a bottom element are intrinsic to models of the lambda calculus, and that
the incompleteness of a semantics is only due to the richness of the structure of representable
functions. Instead, the incompleteness is also due to the richness of the structure of λ-theories.

The need of more abstract and sophisticated mathematical techniques in lambda calculus
arises when we recognize the difficulty of the problems we handle, for example in order to
investigate the structure of the lattice of λ-theories (see [?, Chapter 4] and [?,?]) in itself and
in connections with the theory of models. Salibra [?,?,?] has launched at the end of the nineties
a research program for exploring lambda calculus and combinatory logic using techniques of
universal algebra. The remark that the lattice of λ-theories is isomorphic to the congruence lattice
of the term algebra of the least λ-theory λβ is the starting point for studying lambda calculus
by universal algebraic methods, through the variety generated by the term algebra of λβ. In
[?] Salibra has shown that the variety generated by the term algebra of λβ is axiomatized by
the finite schema of identities characterizing λ-abstraction algebras. The equational theory of
λ-abstraction algebras, introduced by Pigozzi and Salibra [?,?], constitutes a purely algebraic
theory of the untyped lambda calculus in the same spirit that cylindric and polyadic (Boolean)
algebras constitute an algebraic theory of the first-order predicate logic. The variety LAA of λ-
abstraction algebras is intended as an alternative to the variety CA of combinatory algebras in this
regard since it is a first-order algebraic description of lambda calculus, which keeps the lambda
notation and hence all the functional intuitions. In [?] Salibra has shown that, for every variety
of λ-abstraction algebras, there exists exactly one λ-theory whose term algebra generates the
variety. Thus, the properties of a λ-theory can be studied by means of the variety of λ-abstraction
algebras generated by its term algebra.

Long-standing open problems of lambda calculus can be restated in terms of algebraic proper-
ties of varieties of λ-abstraction algebras. For example, the open problem of the order-incompleteness
of lambda calculus, raised by Selinger (see [?]), asks for the existence of a λ-theory not arising
as the equational theory of a non-trivially partially ordered model of lambda calculus. A partial
answer to the order-incompleteness problem was obtained by Salibra in [?], where it is shown
the existence of a λ-theory not arising as the equational theory of a non-trivially partially ordered
model with a finite number of connected components. The order-incompleteness of lambda cal-
culus is equivalent to the existence of an n-permutable variety of λ-abstraction algebras for some
natural number n ≥ 2 (see the remark after Thm. 3.4 in [?]). Plotkin, Selinger and Simpson (see
[?]) have shown that 2-permutability and 3-permutability are inconsistent with lambda calculus.
The problem of n-permutability remains open for n ≥ 4.

We wonder if it is possible to apply to the varieties LAA and CA the nice results developed
in universal algebra in the last thirty years, which essentially connect (a) identities or quasi-
identities in the language of lattices satisfied by congruence lattices; (b) properties of the com-



mutator; and (c) Mal’cev conditions, that characterize properties in varieties by the existence of
certain terms involved in certain identities. We recall that the structure of an algebra is affected
by the shape of its congruence lattice and that the commutator, a binary operation on this lattice,
provides a “measure” of this shape. The commutator was first introduce in group theory, where
the concept of Abelian group, and other important concepts, can be defined in terms of the com-
mutator operation on normal subgroups. The extension of the commutator to algebras other than
groups is due to the pioneering papers of Smith [?] and Hagemann-Hermann [?]. The commuta-
tor is very well behaved in congruence modular varieties (see Freese-McKenzie [?] and Gumm
[?]). However, in [?] it was shown that LAA is not congruence modular. As a consequence, it is
not possible to apply to LAA the nice theory of commutator developed for congruence modular
varieties. Lipparini [?,?] and Kearnes-Szendrei [?] have recently shown that under very weak hy-
potheses the commutator proves also useful in studying algebras without congruence modularity.
However, in [?] Lusin and Salibra have shown that a lattice identity is satisfied by all congruence
lattices of λ-abstraction algebras (combinatory algebras, respectively) iff it is true in all lattices.
Thus, there is a common belief that lambda calculus and combinatory logic are algebraically
pathological.

On the contrary, we will show that λ-calculus and combinatory logic do satisfy interesting
algebraic properties. One of the milestones of modern algebra is the Stone representation theo-
rem for Boolean algebras. This result was first generalized by Pierce to commutative rings with
unit and next by Comer to the class of algebras with Boolean factor congruences. By applying
a theorem by Vaggione [?], we show that Comer’s generalization of Stone representation theo-
rem also holds for combinatory and λ-abstraction algebras: any combinatory (or λ-abstraction)
algebra is isomorphic to a “weak” Boolean product of directly indecomposable algebras (i.e.,
algebras which cannot be decomposed as the Cartesian product of two other non-trivial alge-
bras). The proof of the representation theorem is based on the fact that every combinatory (or
λ-abstraction) algebra contains a Boolean algebra of central elements (introduced by Vaggione
[?] in universal algebra). These elements define a direct decomposition of the algebra as the
Cartesian product of two other algebras, just like idempotent elements in rings.

This result suggests a connection between propositional classic logic and combinatory logic;
what is the real meaning of this connection remains to be investigated. What we would like to
emphasize here is that central elements have been shown fundamental in the application of the
representation theorem to λ-calculus, as it will be explained in the next paragraph.

The representation theorem can be roughly summarized as follows: the directly indecompos-
able combinatory algebras and λ-abstraction algebras are the ‘building blocks’ in the respective
varieties. The notion of directly indecomposable combinatory algebra appears to be so relevant
that we find it even interesting to speak of the “indecomposable semantics” to denote the class of
models of lambda calculus which are directly indecomposable as combinatory algebras. This se-
mantics is very general since, as we will show, it encompasses the continuous, stable and strongly
stable semantics, and represents all semisensible λ-theories (theories which do not equate solv-
able and unsolvable terms). In one of the main results of the paper we show that the indecompos-
able semantics, although so general, is (largely) incomplete. More precisely, we will prove that it
omits a set of λ-theories which contains an antichain of cardinality 2ℵ0 and also countably many
intervals of cardinality 2ℵ0 .

In one of the last results of the paper we show that the set of λ-theories representable in each
of the classic semantics of λ-calculus is not closed under finite intersection, in particular it is not
a sublattice of the lattice of all λ-theories.



Outline. This paper is organized as follows: In Section 2 we review the basic definitions of
universal algebra which are involved in the rest of the paper. Section 3 is devoted to present the
λ-calculus from an algebraic point of view and to recall some results concerning its models. In
Section ?? we recall the properties of the lattice of λ-theories and we provide some new results.
The Stone representation theorem for combinatory and λ-abstraction algebras is presented in Sec-
tion ??. Section ?? is devoted to the equational incompleteness of the indecomposable semantics.
In Section ?? we present 26 open problems concerning models and theories of λ-calculus.

2 Preliminaries

2.1 Posets

A poset S is a pair (S,v), where S is a set and v is a reflexive, transitive and antisymmetric
relation.

Two elements s, s′ of a poset are incomparable if neither s v s′ nor s′ v s.
Given a poset S and S′ ⊆ S we recall that: S′ is a chain of S if it is totally ordered by v,

and S′ is an antichain in case its elements are pairwise incomparable.
The interval notation will have the obvious meaning, e.g., I[s, s′] = {s′′ ∈ S : s v s′′ v s′}

and I[s, s′[= I[s, s′]− {s′}.
A subset X of a poset S is directed if, for all s, s′ ∈ X , there exists u ∈ X such that s v u

and s′ v u.
A poset S is a complete partial order (cpo, for short) if it has a least element ⊥, and every

directed set X ⊆ S admits a least upper bound
⊔
X .

An element s of a cpo S is compact if, for every directed subset X of S, s v
⊔
X implies

s v u for some u ∈ X .

2.2 Lattices

A lattice is a poset S = (S,v) such that any two elements s, s′ ∈ S have a least upper bound
s ∨ s′ and a greatest lower bound s ∧ s′ which are respectively called, in this context, join and
meet. Then, v is definable from the meet or the join. A lattice is bounded if it has a top > and a
bottom ⊥ element. A lattice is complete if any A ⊆ S has a least upper bound (then all A’s have
also a greatest lower bound); in particular every complete lattice is bounded.

We say that an element s of a bounded lattice S is an atom (coatom) if it is a minimal element
different from ⊥ (maximal element different from >). A lattice S is atomic (resp. coatomic) if,
for every element s of S, there exists an atom a ≤ s (resp. a ≥ s).

Two elements s, s′ of a lattice are incompatible if s ∨ s′ = >; two intervals I[s, s′], I[s′′, s′′′]
are incompatible if s1, s2 are incompatible, for all s1 ∈ I[s, s′] and s2 ∈ I[s′′, s′′′].

A lattice S satisfies the modular law if the following condition holds, for all a, b, c ∈ S:

a ∧ (b ∨ (a ∧ c)) = (a ∧ b) ∨ (a ∧ c).

2.3 Algebras

An algebraic similarity type Σ is constituted by a non-empty set of operator symbols together
with a function assigning to each operator f ∈ Σ a finite arity. Operator symbols of arity 0 are
called nullary operators or constants.



Definition 1. AΣ-algebra A is a tuple (A, fA)f∈Σ , whereA is a non-empty set and fA : An →
A is an n-ary function for every f ∈ Σ of arity n.

A is trivial if its underlying set is a singleton.

Definition 2. Given two Σ-algebras A and B, a homomorphism from A into B is a map g :
A→ B such that g(fA(a1, . . . , an)) = fB(g(a1), . . . , g(an)) for each n-ary operation f ∈ Σ
and for all ai ∈ A.

Two Σ-algebras A and B are isomorphic, and we write A ∼= B, if there exists a bijective
homomorphism from A into B.

We say that an algebra A is a reduct of an algebra B (and that B is an expansion of A) if A
and B have the same underlying set and fA = fB for every operator symbol f in the algebraic
similarity type of A. Sometimes we will indicate an expansion of A as (A, f1, f2, . . .).

2.4 Congruences

Given a Σ-algebra A, a binary relation φ on A is compatible if for all f ∈ Σ of arity n, and for
all ai, bi ∈ A we have

(a1, b1) ∈ φ, . . . , (an, bn) ∈ φ⇒ (fA(a1, . . . , an), f
A(b1, . . . , bn)) ∈ φ.

A compatible equivalence relation on a Σ-algebra A is called a congruence. As a matter of
notation, we will often write aφb or a =φ b for (a, b) ∈ φ.

Given two congruences φ and ψ on an algebra A, we can form their relative product:

ψ ◦ φ = {(a, c) : (∃b ∈ A) a φ b ψ c}.

It is easy to check that ψ ◦φ is still a compatible relation on A, but not necessarily a congruence.
As a matter of notation, we define ψ ◦1 φ = ψ and ψ ◦n+1 φ = ψ ◦ (φ ◦n ψ) for n > 0.
We denote by Con(A) the complete lattice of the congruences of A, which is a sublattice of

the equivalence relations on A. The meet φ∧ψ of two congruences φ and ψ is their intersection,
while their join is the least equivalence relation including φ ∪ ψ:

φ ∨ ψ =
⋃
n>0

φ ◦n ψ.

The lattice Con(A) contains a top and a bottom element:

∇A = A×A; ∆A = {(a, a) : a ∈ A}.

When A is clear from the context we will omit the superscript A and write∇, ∆.

Lemma 1. Let A be a Σ-algebra.

(i) A congruence φ ∈ Con(A) is compact if there exists a finite subset X of A × A such that
φ = θ(X).

(ii) If ∇A is a compact element, then Con(A) is a coatomic lattice.

A congruence φ on A is called trivial if it is equal to∇ or ∆.

Notation 1. IfX ⊆ A×A and φ is a congruence, then we write θφ(X) for the least congruence
on A including φ∪X . If φ = ∆, then we write θ(X) for θ∆(X). θ(a, b) denotes the congruence
θ({(a, b)}).

An algebra A is simple if Con(A) = {∆,∇}.



2.5 Direct and subdirect products

Given two algebras A and B, we denote by A×B their (direct) product.

Definition 3. An algebra A is directly decomposable if there exist two non-trivial algebras B
and C such that A ∼= B×C; otherwise we say that A is directly indecomposable.

Definition 4. An algebra A is a subdirect product of the algebras (Bi)i∈I , written A ≤ Πi∈IBi,
if there exists an embedding f of A into the direct product Πi∈IBi such that the projection
πi ◦ f : A→ Bi is onto for every i ∈ I .

2.6 Varieties

Definition 5. A non-empty class K of algebras of the same similarity type is:

(i) A variety if it is closed under subalgebras, homomorphic images and direct products;
(ii) An equational class if it is axiomatizable by a set of equations.

Birkhoff proved in [?] (see also [?, Thm. 4.131]) that conditions (i) and (ii) are equivalent.
A variety K of algebras is generated by an algebra A ∈ K if every equation satisfied by A

is also satisfied by every algebra in K. We will denote by V(A) the variety generated by A.

Definition 6. A variety K is a subvariety of a variety K′ if K ⊆ K′.

Definition 7. An algebra is

(i) congruence distributive if its congruence lattice Con(A) is a distributive lattice.
(ii) congruence n-permutable (n ≥ 2) if φ ∨ ψ = φ ◦n ψ for all congruences φ, ψ ∈ Con(A).

Definition 8. A variety is

(i) congruence distributive if every algebra in the variety is congruence distributive.
(ii) congruence n-permutable (n ≥ 2) if every algebra in the variety is congruence n-permutable.

2.7 Free algebras

Let K be a class of Σ-algebras and A be a Σ-algebra.

Definition 9. If X is a subset of A, then we say that A has the universal mapping property for K
over X if, for every B ∈ K and for every mapping g : X → B, there is a unique homomorphism
f : A→ B that extends g (i.e., f(x) = g(x) for every x ∈ X).

Definition 10. A is free in K over X if A ∈ K, A is generated by X and A has the universal
mapping property for K over X .

If A is free in K over X , then X is called a set of generators for A, and A is said to be freely
generated by X .

A free algebra in the class of allΣ-algebras is called absolutely free. In the following we give
a concrete characterization of the absolutely free algebra.

Let X be a set. The set TΣ(X) of Σ-terms over X is defined by induction as follows:

– x ∈ TΣ(X) for every x ∈ X;



– a ∈ TΣ(X) for every nullary operator a ∈ Σ;
– if t1, . . . , tn ∈ TΣ(X) (n > 1) then f(t1, . . . , tn) ∈ TΣ(X) for all f ∈ Σ of arity n.

A Σ-term is ground if it does not contain variables. If t is a Σ-term, we write t ≡ t(x1, . . . , xn)
if the variables occurring in t are among x1, . . . , xn. If A is a Σ-algebra then every Σ-term
t(x1, . . . , xn) induces a term operation tA : An → A defined in the obvious way.

The absolutely free Σ-algebra over X is the Σ-algebra

TΣ(X) = (TΣ(X), fTΣ(X))f∈Σ ,

where
fTΣ(X)(t1, . . . , tn) = f(t1, . . . , tn), for all f ∈ Σ.

We will write TΣ for the absolutely free algebra TΣ(∅) over an empty set of generators.

Definition 11. A Σ-identity (or Σ-equation) is a pair (t, u) of Σ-terms, written also t = u. An
identity t(x1, . . . , xn) = u(x1, . . . , xn) holds in a Σ-algebra A if the n-ary term operations tA

and uA are equal.

2.8 Factor congruences

Definition 12. A congruence φ on an algebra A is a factor congruence if there exists another
congruence φ such that φ ∧ φ = ∆ and φ ◦ φ = ∇. In this case we call (φ, φ) a pair of
complementary factor congruences.

Under the hypotheses of Definition 12 the homomorphism f : A→ A/φ×A/φ defined by
f(x) = (x/φ, x/φ) is an isomorphism. Hence, we have:

Lemma 2. (φ, φ) is a pair of complementary factor congruences of A if, and only if, A ∼=
A/φ×A/φ.

So, the existence of factor congruences is just another way of saying “this algebra is a direct
product of simpler algebras”.

The set of factor congruences of A is not, in general, a sublattice of Con(A). ∆ and ∇ are
the trivial factor congruences, corresponding to A ∼= A × B, where B is a trivial algebra; of
course, B is isomorphic to A/∇ and A is isomorphic to A/∆.

Lemma 3. An algebra A is directly indecomposable if it admits only the two trivial factor con-
gruences (∆ and ∇).

Clearly, every simple algebra is directly indecomposable, while there are algebras which are
directly indecomposable but not simple: they have congruences, which however do not split the
algebra up neatly as a Cartesian product.

2.9 Decomposition operators

Factor congruences can be characterized in terms of certain algebra homomorphisms called de-
composition operators (see [?, Def. 4.32] for more details).

Definition 13. A decomposition operation for an algebra A is a function f : A × A → A such
that



– f(x, x) = x;
– f(f(x, y), z) = f(x, z) = f(x, f(y, z));
– f is an algebra homomorphism from A×A into A.

There exists a bijective correspondence between pairs of complementary factor congruences
and decomposition operations, and thus, between decomposition operations and factorizations
like A ∼= B×C.

Proposition 1. [?, Thm. 4.33] Given a decomposition operator f the binary relations φ and φ
defined by:

x φ y if, and only if, f(x, y) = y,

x φ y if, and only if, f(x, y) = x,

form a pair of complementary factor congruences. Conversely, given a pair (φ, φ) of comple-
mentary factor congruences, the map f defined by:

f(x, y) = u if, and only if, x φ u φ y, (1)

is a decomposition operation.

Notice that if (φ, φ) is a pair of complementary factor congruences, then for all x and y there
is just one element u such that x φ u φ y.

2.10 Boolean factor congruences and Boolean products

The product congruence of φ1 ∈ Con(A) and φ2 ∈ Con(B) is the congruence φ1 × φ2 on
A × B defined by: (b, c) φ1 × φ2 (b′, c′) if, and only if, b φ1 b′ and c φ2 c′. We denote by
Con(A)× Con(B) the sublattice of Con(A×B) constituted by all product congruences.

Definition 14. A variety C of algebras has factorable congruences if for every A,B ∈ C we
have Con(A×B) ∼= Con(A)× Con(B).

Definition 15. An algebra has Boolean factor congruences if its factor congruences form a
Boolean sublattice of the congruence lattice.

Most known examples of varieties in which all algebras have Boolean factor congruences are
those with factorable congruences. This is the case, for example, of the congruence distributive
varieties, and congruence permutable varieties in which the universal congruences are compact
(e.g., the variety of rings with unit).

Lemma 4. (Bigelow-Burris [?, Cor. 1.4]) If a variety C has factorable congruences, then every
A ∈ C has Boolean factor congruences.

The Boolean product construction allows us to transfer numerous fascinating properties of
Boolean algebras into other varieties of algebras (see [?, Ch. IV]). Actually, this construction has
been presented for several years as “the algebra of global sections of sheaves of algebras over
Boolean spaces” (see [?,?]); however, these notions were unnecessarily complex and we prefer
to adopt here the following equivalent presentation (see [?]). We recall that a Boolean space is a
compact, Hausdorff and totally disconnected topological space.



Definition 16. A weak Boolean product of a family (A)i∈I of algebras is a subdirect product
A ≤ Πi∈IAi, where I can be endowed with a Boolean space topology such that:

(i) the set {i ∈ I : ai = bi} is open for all a, b ∈ A, and
(ii) if a, b ∈ A and N is a clopen subset of I , then the element c, defined by ci = ai for every

i ∈ N and ci = bi for every i ∈ I −N , belongs to A.

A Boolean product is a weak Boolean product such that the set {i ∈ I : ai = bi} is clopen (i.e.,
open and closed) for all a, b ∈ A.

3 The λ-calculus in algebraic setting

The two primitive notions of the untyped λ-calculus are application, the operation of applying
a function to an argument, and lambda abstraction, the process of forming a function from the
“expression” defining it.

From now on we consider two fixed countable non-empty sets; namely, the set Na of names,
and the set Va of algebraic variables. The elements of Na will be denoted by a, b, c, . . . , while
the elements of Va by x, y, z, . . .

Definition 17. The algebraic similarity type Λ of lambda calculus is constituted by a binary
operator symbol “·”; a nullary operator symbol “a” and a unary operator symbol “λa”, for
every a ∈ Na.

The binary operator · is called “application” and the unary operator λa “lambda abstraction”.

Definition 18. A λ-term is a ground Λ-term.

We recall that the set of all Λ-terms is denoted by TΛ(Va), while the set of λ-terms by TΛ.
Λ-terms will be usually denoted by t, u, v, . . . , while λ-terms by M,N,P, . . .

The following are well known λ-terms, where the symbol ≡ denotes syntactical equality:

I ≡ λa(a); 1 ≡ λa(λb(a · b)); T ≡ λa(λb(a)); F ≡ λa(λb(b));
S ≡ λa(λb(λc((a · c) · (b · c)))); δ ≡ λa(a · a); Ω ≡ δ · δ.

λa(a · x) is an example of a Λ-term that is not a λ-term.

Notation 2. From now on, we will write λabc.M for λa(λb(λc(M))). The dot “·” of the ap-
plication operator is usually omitted and association is made on the left, so that, for example,
(((a · b) · c) · d) · e is written abcde. Then the above λ-terms can be rewritten as follows:

I ≡ λa.a; 1 ≡ λab.ab; T ≡ λab.a; F ≡ λab.b;
S ≡ λabc.ac(bc); δ ≡ λa.aa; Ω ≡ δδ.

Remark 1. Λ-terms and algebraic variables are called respectively contexts and holes in Baren-
dregt’s book [?, Def. 14.4.1].

An occurrence of a name a in a Λ-term is bound if it lies within the scope of a lambda
abstraction λa; otherwise it is called free. For example, the occurrence of a in λa.ac is bound,
whilst the one of c is free. The set of free names of M is denoted by FN(M). A λ-term without
free names is said to be closed. The set of all closed λ-terms is denoted by T oΛ.



Two kinds of substitution In the following we analyze the two kinds of substitutions that are
studied in this paper: the substitution for the free occurrences of a name and the substitution for
the occurrences of an algebraic variable.

The essential feature of a Λ-term is that a free name in a λ-term may become bound when
we substitute it for a variable within a Λ-term. This kind of substitution is the usual one of
the equational calculus and it does not matter of free and bound occurrences of names. More
precisely, given a Λ-term u, t{x := u} is defined by induction over the complexity of the Λ-term
t as follows:

– x{x := u} = u (x ∈ Va)
– a{x := u} = a (a ∈ Na)
– (t · t′){x := u} = (t{x := u}) · (t′{x := u})
– (λa.t){x := u} = λa.t{x := u}.

For example,
(λa.xa){x := λb.a} = λa.(λb.a)a.

The other substitution is proper of λ-calculus and concerns λ-terms. Given a λ-term M , we
denote by M [a := N ] the result of substituting the λ-term N for all free occurrences of a in M
subject to the usual proviso about renaming bound names in M to avoid capture of free names in
N . More precisely M [a := N ] is defined by induction over the complexity of M as follows:

– a[a := N ] = N
– b[a := N ] = b (b 6= a)
– (P ·Q)[a := N ] = (P [a := N ]) · (Q[a := N ])
– (λa.P )[a := N ] = λa.P
– b /∈ FN(N) ⇒ (λb.P )[a := N ] = λb.P [a := N ] (a 6= b)
– b ∈ FN(N) ⇒ (λb.P )[a := N ] = λc.P [b := c][a := N ] (a 6= b), where c is a new name

not occurring neither free nor bound in P .

For example,
(λa.ba)[b := aa] = λc.(aa)c,

where the new name c avoids capture of free names.
Note that the equations between λ-terms, unlike the associative and commutative laws for

example, are not always preserved when arbitrary λ-terms are substituted for free names (e.g.,
λa.ba = λc.bc does not imply λa.ca = λc.cc). On the contrary, the equations between Λ-terms
are always preserved when arbitrary λ-terms are substituted for algebraic variables.

3.1 λ-abstraction algebras

The λ-theories are the main object of study of the untyped λ-calculus, when, roughly speaking,
we consider “conversion” more important than “reduction”.

We start by defining the λ-theories as congruences including (β)-conversion (which ex-
presses the way of calculating a function λa.M on an argument N ) and (α)-conversion (which
avoids capture of free names).

Let us consider now the absolutely free Λ-algebra TΛ over an empty set of generators (see
Section 2.7).

Definition 19. A λ-theory is any congruence on TΛ including (α)- and (β)-conversion (here
M,N are arbitrary λ-terms and a, b are names):



(α) λa.M = λb.M [a := b], for any name b that does not occur free in M ,
(β) (λa.M)N =M [a := N ].

The least λ-theory is denoted by λβ, while the quotient of the absolutely free algebra TΛ by a
λ-theory φ is called the term algebra of φ and will be denoted by TΛ/φ.

The identities between λ-terms expressing (α)- and (β)-conversion do not provide a good
algebraization of the untyped λ-calculus, because algebraic variables do not occur in λ-terms. In
the remaining part of this section we show how it is possible to algebraize the lambda calculus.

The variety V(TΛ/λβ) generated by the term algebra of λβ is the starting point for studying
the lambda calculus by universal algebraic methods.

We recall that, by definition, V(TΛ/λβ) satisfies an identity between Λ-terms

t(x1, . . . , xn) = u(x1, . . . , xn)

if, and only if, the term algebra TΛ/λβ satisfies it. This means that all instances of the above
identity, obtained by substituting (without α-conversion) λ-terms for variables in it, fall within
λβ:

t(M1, . . . ,Mn) =λβ u(M1, . . . ,Mn), for all λ-terms M1, . . . ,Mn.

In Theorem 1, which was one of the main results of [?], it is shown that V(TΛ/λβ) is axiomatiz-
able by suitable equations between Λ-terms characterizing the class of lambda abstraction alge-
bras. Among the seven axioms below, the first six constitute a recursive definition of the abstract
substitution operator; they express precisely the meta-mathematical content of (β)-conversion.
The last one is an algebraic translation of (α)-conversion.

Definition 20. (Pigozzi and Salibra [?]) A Λ-algebra

A = (A, ·A, λaA, aA)a∈Na

is a λ-abstraction algebra if it satisfies the following identities, where a, b, c (a 6= b, b 6= c) are
names and x, y, z are variables:

(β1) (λa.a)x = x;
(β2) (λa.b)x = b;
(β3) (λa.x)a = x;
(β4) (λaa.x)y = λa.x;
(β5) (λa.xy)z = (λa.x)z((λa.y)z);
(β6) (λab.x)((λb.y)c) = λb.(λa.x)((λb.y)c);
(α) (λa.(λb.x)c) = λb.(λa.(λb.x)c)b.

The class of λ-abstraction algebras is a variety, denoted by LAA, and therefore it is closed
under subalgebras, homomorphic images, and Cartesian products.

In the following theorem it is shown that the term algebras of the λ-theories are the generators
of the subvarieties of LAA.

Theorem 1. (Salibra [?, Thm. 14, 16]) Every variety of λ-abstraction algebras is generated by
the term algebra TΛ/φ of a suitable λ-theory φ. In particular,

LAA = V(TΛ/λβ).



Remark 2. The meta-mathematical content of the phrase “a name a does not occur free in x”, or
equivalently “x does not depend on the name a”, can be expressed by an equation:

(λa.x)b = x (b 6= a).

Then, for example, axiom (β6) assumes the following natural form for all elements y which do
not depend on b:

(λab.x)y = λb.(λa.x)y, (a 6= b).

Remark 3. Thm. 1 is a consequence of [?, Thm. 13], which is a result relating identities between
Λ-terms and identities between λ-terms. Let A be a λ-abstraction algebra and t(x1, . . . , xn) =
u(x1, . . . , xn) be an identity between Λ-terms. Then there exist two λ-terms Mt and Mu such
that

A |= t(x1, . . . , xn) = u(x1, . . . , xn) ⇔ A |=Mt =Mu. (2)

We remark that the proof of (2) is not trivial, because λ-abstraction algebras may admit elements
which depend on all the names in Na. This is obviously not true for the term algebra of a λ-
theory because every λ-term is a finite string. As an example of this phenomenon, we consider
the Cartesian product A = (TΛ/λβ)

Na of Na-copies of the term algebra of λβ. Then all names
in Na occur free in 〈aA : a ∈ Na〉 ∈ A (see Remark 2). Another example concerns the elements
which are free generators of the free LAA-algebra.

What kind of variety is LAA? We wonder if it is possible to apply to λ-abstraction algebras
the nice results developed in universal algebra in the last thirty years. The following theorem
seems to show that λ-calculus is algebraically pathological.

A lattice identity is an identity in the similarity type {∨,∧,⊥,>} of bounded lattices.

Theorem 2. (Lusin-Salibra [?]) Every lattice identity holding in all congruence lattices of alge-
bras in LAA is trivial (i.e., true in all lattices).

Many problems on λ-calculus may be rephrased as problems of existence of a suitable subva-
riety of LAA (see Section 1). This explains why it is important to study the structure of the lattice
of the subvarieties of LAA, or dually of the lattice of the equational theories of λ-abstraction
algebras. The next theorem shows a first positive algebraic result about the subvarieties of LAA.

Theorem 3. (Berline-Salibra [?]) There exists a congruence distributive variety of λ-abstraction
algebras.

The existence of a variety of λ-abstraction algebras satisfying strong algebraic properties,
such as n-permutability or congruence distributivity was an open problem first raised in [?].

3.2 The models of λ-calculus

Combinatory logic is a formalism for writing expressions which denote functions. Combinators
are designed to perform the same tasks as λ-terms, but without using bound names.



Combinatory algebras. Schönfinkel and Curry discovered that a formal system of combina-
tors, having the same expressive power of the λ-calculus, can be based on only two primitive
combinators.

Definition 21. An algebra C = (C, ·C,kC, sC), where ·C is a binary operation and kC, sC are
constants, is called a combinatory algebra (see [?,?]) if it satisfies the following identities:

(k · x) · y = x; ((s · x) · y) · z = (x · z) · (y · z).

The superscript C and the symbol “·” are usually omitted. Association is made on the left, so
that, for example, the above axioms can be written as follows:

kxy = x; sxyz = xz(yz).

The class CA of all combinatory algebras constitutes a variety of algebras and, therefore, it is
closed under homomorphic images, subalgebras and direct products.

In the equational language of combinatory algebras the derived combinators i, ε and εn are
defined as follows:

i ≡ skk; ε ≡ ε1 ≡ s(ki); εn+1 ≡ s(kε)(s(kεn)).

Hence, every combinatory algebra satisfies the identities

ix = x; εxy = xy; ε2xyz = xyz; ε3xyzu = xyzu.

A function f : C → C is representable in a combinatory algebra C if there exists an element
x ∈ C such that x · z = f(z) for all z ∈ C. In this case, we say that c represents f in C.

Two elements x, y ∈ C are called extensionally equal if they represent the same function in
C. For example, the elements x and εx are extensionally equal for every x ∈ C. The combinator
ε will be used in the next subsection to select a canonical representative inside the class of all
elements y extensionally equal to a given element x ∈ C.

Lambda Models. Although lambda calculus has been object of study since the early thirties, its
model theory developed only much later, following Scott’s pioneering model construction. At the
end of the seventies, researchers were able to provide a general algebraic characterization of the
models of lambda calculus as an elementary subclass of combinatory algebras called λ-models
[?,?].

Definition 22. An environment with values in C is a total function ρ : Na→ C, where Na is the
set of names of λ-calculus.

We denote by EnvC the set of all environments with values in C. For every a ∈ Na and
x ∈ C we denote by ρ[a := x] the environment ρ′ which coincides with ρ, except on a, where ρ′

takes the value x.
Given a combinatory algebra C, the interpretation of a λ-termM is a function |M | : EnvC →

C and it is defined by induction as follows, for every environment ρ ∈ EnvC :

|a|ρ = ρ(a); |M ·N |ρ = |M |ρ · |N |ρ; |λa.M |ρ = ε ·m,

where m ∈ C is any element representing the following function fa : C → C:

fa(x) = |M |ρ[a:=x], for all x ∈ C. (3)



The drawback of the previous definition is that, if C is an arbitrary combinatory algebra, it may
happen that the function fa is not representable in C. The axioms characterizing λ-models were
expressly chosen to make coherent the previous definition of interpretation.

Definition 23. A combinatory algebra C is called a λ-model if it satisfies the identities ε2k = k,
ε3s = s and the Meyer-Scott axiom:

∀x∀y(∀z(x · z = y · z)⇒ ε · x = ε · y).

Here the combinator ε is used as an inner choice operator. Indeed, given any x, the element ε·x is
in the same equivalence class as x w.r.t. extensional equality; and, by Meyer-Scott axiom, ε ·x =
ε · y for every y extensionally equal to x. Thus, the set Y = {x : x · z = fa(z) for all z ∈ C} of
elements representing the function fa defined in (??) admits ε ·m as a canonical representative
and this does not depend on the choice of m ∈ Y .

As a matter of notation, we write C |=M = N if |M |ρ = |N |ρ for all environments ρ. A λ-
model univocally induces a λ-theory through the kernel congruence relation of the interpretation
function.

Definition 24. Let C be a λ-model. The equational theory of C is the λ-theory defined as follows

Th(C) = {(M,N) ∈ Λ× Λ : C |=M = N}.

Definition 25. A λ-model C represents (or induces) a λ-theory φ if φ = Th(C).

Functional λ-abstraction algebras and λ-models. The most natural λ-abstraction algebras are
algebras of functions that are obtained by coordinatizing λ-models. This situation is analogous
to that of algebraic logic: the most natural cylindric (and polyadic) algebras are algebras of
functions that are obtained by coordinatizing models of first-order logic.

Definition 26. Let C = (C, ·C,kC, sC) be a λ-model. The high-order expansion

Ch = (Ch, ·h, λah, ah)a∈Na

of C is an algebra in the similarity type of λ-abstraction algebras. The underlying set Ch is the
set of all functions F : EnvC → C satisfying the following condition: for every ρ ∈ EnvC , for
every sequence of distinct names a = a1 . . . an, there exists an element u ∈ C (which depends
on F , ρ and a) such that, for all x = x1 . . . xn ∈ Cn,

F (ρ[a := x]) = ux1 . . . xn−1xn.

The operations of application and lambda abstraction are defined as follows, for all F,G ∈ Ch
and ρ ∈ EnvC .

(i) ah(ρ) = ρ(a);
(ii) (F ·h G)(ρ) = F (ρ) ·C G(ρ);
(iii) λah(F )(ρ) = ε ·C x, where x ∈ C is any element satisfying x ·C y = F (ρ[a := y]) for all

y ∈ C.

The set Ch contains the interpretations of all λ-terms and all constant functions.



Theorem 4. (Pigozzi-Salibra [?]) The algebra Ch is a λ-abstraction algebra, and it is the
largest algebra of functions F : EnvC → C closed under the operations defined in (i)-(iii).

Definition 27. Any algebra isomorphic to a subalgebra of a high-order expansion of a λ-model
is called a functional λ-abstraction algebra.

The class of all these algebras is denoted by FLA. In [?] it was shown the following repre-
sentation theorem:

Theorem 5. (Goldblatt-Salibra [?]) LAA = FLA.

In other words, any λ-abstraction algebra is isomorphic to a subalgebra of a high-order ex-
pansion of a suitable λ-model. This makes clear the connection existing between lambda calculus
and combinatory logic.

Infinitary lambda calculus. Various infinitary versions of λ-calculus have been introduced by
several authors in [?,?,?]. Here, as an application of Thm. ??, we recall from [?] the completeness
theorem for the infinitary λ-calculus.

Let Λ⊥ be the similarity type obtained from the similarity type Λ of lambda calculus by
adding a new nullary operator symbol ⊥.

Definition 28. An infinitary λ-term is a finite or infinite rooted tree such that each leaf is either
labeled by a name a ∈ Na or by the constant ⊥, and the inner nodes are either binary ‘appli-
cation nodes’, or unary ‘abstraction nodes’, in which case they have a label of the form λa for
some a ∈ Na.

The set of infinitary λ-terms, which contains properly TΛ, is denoted by T∞ and its elements
by A,B,C, . . .

Infinitary λ-terms arise as ‘limits’ of infinite sequences of β-conversions. For example, let
ω3 ≡ λa.aaa and Ω3 ≡ ω3ω3. The λ-term Ω3 generates an infinite sequence of β-conversions

Ω3 =λβ Ω3ω3 =λβ (Ω3ω3)ω3 =λβ · · · =λβ ((((Ω3ω3)ω3)ω3)ω3)ω3 =λβ · · · .

Then it is natural to consider the infinitary λ-term

Ω∞3 ≡ ((((· · ·ω3)ω3)ω3)ω3) with infinitely many ω3’s

as the limit of the above sequence of β-conversions. Ω∞3 corresponds to the tree

· where ω3 is equal to λa

· ω3 ·
· ω3 · a

· ω3 a a

... ω3

The notions of free and bound occurrence of a name are easily extended to infinitary λ-terms.
The extension of the substitution is more subtle, and sometimes has an unexpected behaviour;
we refer the reader to [?, Sec. 3] for more details. Once defined A[a := B] we can consider the
infinitary versions (α∞) and (β∞) of the usual (α) and (β)-conversions.



Definition 29. The algebra of infinitary λ-terms is

T∞ = (T∞, ·T∞ , λT∞a , aT∞)a∈Na,

where A ·T∞ B is a tree having an applicative node as root, and A,B as left and right subtrees
respectively; λT∞a (A) is a tree having an abstraction node as root and A as subtree; aT∞ is tree
constituted by a unique node labeled by a.

Definition 30. An infinitary λ-theory is any congruence on T∞ including (α∞)- and (β∞)-
conversion.

The quotient algebra of T∞ by an infinitary λ-theory φ, denoted by T∞/φ, is called the term
algebra of φ.

Proposition 2. T∞/φ is a λ-abstraction algebra.

As a consequence of Thm. ?? we have the completeness of the infinitary λ-calculus.

Theorem 6. (Goldblatt-Salibra [?], Infinitary Completeness Theorem) Let φ be an infinitary λ-
theory. Then there exists a λ-model C such that the term algebra T∞/φ of φ embeds into Ch.

4 The lattice of λ-theories

The interval I[λβ,∇] of all λ-theories is a sublattice of the congruence lattice of the absolutely
free Λ-algebra TΛ over an empty set of generators, so that it is isomorphic to the congruence
lattice of the term algebra TΛ/λβ of λβ. The lattice of λ-theories is naturally equipped with a
structure of complete lattice, with meet defined as set-theoretical intersection. The join of two
λ-theories φ and ψ is the least equivalence relation including φ ∪ ψ. It is clear that the bottom
element of this lattice is λβ, while the top element∇ is the inconsistent λ-theoryΛ×Λ. Although
researchers have mainly focused their interest on a limited number of them, the lattice of λ-
theories, hereafter denoted by λT , constitutes a very rich and complex structure (see [?,?,?]).
Lambda theories interesting for computer scientists can be defined by classifying λ-terms in
terms of their computational behaviour.

Definition 31. A closed λ-term M is solvable if

M =λβ λa1 . . . an.aiM1M2 . . .Mk, (n, k ≥ 0 and 1 ≤ i ≤ n)

for some M1, . . . ,Mk ∈ TΛ. M is unsolvable, otherwise.

Intuitively, solvable λ-terms are interesting from the computational point of view since they
provide at least a partial fixed output, namely λa1 . . . an.ai−1 · · · −k, whilst unsolvable λ-terms
correspond to looping terms.

Looking at the λ-theories in terms of solvability/unsolvability, they are classified as:

– semisensible if they do not equate a solvable and an unsolvable λ-term;
– sensible if they equate all unsolvable λ-terms.



The following results can be found in [?, Sec. 16, 17]. The λ-theory H, generated by equating
all unsolvable λ-terms, is the minimal sensible λ-theory and it is consistent. H admits a unique
maximal consistent extension H∗. H∗ is a coatom (see Section 2.2) in the lattice of λ-theories.
A λ-theory φ is semisensible if, and only if, φ ⊆ H∗ and it is sensible if, and only if, H ⊆ φ.
Sensible consistent λ-theories are semisensible and never recursively enumerable (r.e., for short).

The semisensible λ-theory λβη, axiomatized by the axiom of extensionality:

M · a = N · a ⇒ M = N, (a not free in M,N ),

does not distinguish λ-terms which define the same function.
Summarizing, the lattice λT of λ-theories is divided into two parts: one containing all non-

semisensible λ-theories and the other one containing all semisensible λ-theories. The interval
I[H,H∗], which belongs to the latter part, constitutes the set of all sensible λ-theories.

λβ

H

H∗

∇

λβη

sensible
λ-theories

= least λ-theory

= inconsistent λ-theory

coatoms

non-semisensible
λ-theories

semisensible
λ-theories

least extensional
λ-theory

Techniques of universal algebra were applied in [?,?,?] to study the structure of the lattice
λT by the variety V(TΛ/λβ) and its subvarieties.

Theorem 7. (Salibra [?]) The lattice of the equational theories of λ-abstraction algebras is
isomorphic to the lattice of λ-theories.

We summarize in the next theorem some results which enlighten the structure of the lattice of
λ-theories. At the end of the nineties, Salibra proposed the conjecture that the lattice λT satisfies
no (non-trivial) lattice identity. This conjecture is still open, because Thm. 2 only implies that
every lattice identity e fails in the congruence lattice of a suitable λ-abstraction algebra that may
be different from TΛ/λβ. Moreover, there is a good reason to be also interested in large intervals
of the form I[φ,∇], where φ is a λ-theory, because this interval is isomorphic to the congruence
lattice of the term algebra of φ, which is a bridge to universal algebra.

Definition 32. Let S be a bounded lattice with least element ∆ and top element ∇, and a, b, ci
(i ∈ I) be elements of S . We say that S satisfies the Zipper Condition if the following condition
holds:

If
∨
i∈I

ci = ∇, ci ∧ a = b (i ∈ I) then a = b.



The following results have been shown by several authors.

Theorem 8. (i) λT has a continuum of coatoms.
(ii) [?] The meet of all coatoms of λT is different from λβ. In other words, there are identities

between non-(β)-equivalent λ-terms which are consistent with every λ-theory.
(iii) [?] Every countable partially ordered set embeds into λT by an order-preserving map.
(iv) [?] Every interval I[φ, ψ] where φ and ψ are r.e. λ-theories has a continuum of elements.
(v) [?] λT does not satisfy the modular law .
(vi) [?] λT satisfies the Zipper condition.
(vii) [?] There exists a finitely axiomatizable λ-theory φ such that the lattice interval I[φ,∇] is

distributive.

Proof. (i) There is a continuum of λ-theories that are pairwise incompatible (see e.g. [?]).
(ii)-(iv) are shown by using ingenious non-algebraic techniques.
(v) The non-modular pentagon N5 (see [?, Thm. 2.25]) embeds into λT .
(vi) follows from Thm. ?? and from Lampe’s results [?] on the lattices of equational theories

(see Thm. ?? below for another proof).
(vii) There is a λ-theory φ whose term algebra TΛ/φ has the lattice operations as term

operations.

The remaining results of the section are new.
Let L be a bounded lattice with least element ∆ and top element∇. For any x ∈ L we define

Lx = {y ∈ L − {∆} : x ∧ y = ∆}. Every element of Lx is called a lower semicomplement of
x. L is said to be lower semicomplemented if Lx is non-empty for all x 6= ∇.

Proposition 3. The maximal sensible λ-theory H∗ does not admit a lower semicomplement, so
that the lattice of λ-theories is not lower semicomplemented.

Proof. Let φ be any non-semisensible λ-theory. Assume, by the way of contradiction, that φ ∧
H∗ = λβ. It is well known that every equivalence class of a non-semisensible λ-theory contains
an unsolvable λ-term (see [?]). Then there exists an unsolvable U such that I =φ U . Since for all
unsolvable λ-terms M we have UM =φ M (by I =φ U ) and UM =H∗ M (by the sensibility
of H∗), then UM =λβ M follows from φ ∧ H∗ = λβ. In particular, we have UΩ =λβ Ω. By
[?, Lemma 1.10] this implies that either Ua =λβ a or Ua =λβ Ω, for a new name a. In the first
case, we contradict the semisensibility of λβ. In the second one we derive UM =λβ M =λβ Ω
for all unsolvable λ-terms M . This contradicts the fact that λβ is not sensible.

Proposition 4. Let φ be an r.e. λ-theory. Then the lattice interval I[φ,∇] is not lower semicom-
plemented.

Proof. By [?, Prop. 17.1.9] there exists a λ-term M such that θφ(M,N) 6= ∇ for all closed
λ-terms N . This implies that there exists an infinite number of maximal consistent λ-theories
extending φ. Since the interval I[φ,∇] is a coatomic complete lattice satisfying the Zipper con-
dition, and admitting a compact top element (see Theorem ??(vi) and Lemma 1), then the con-
clusion of the proposition follows from [?, Prop. 3], where it is shown that, under the above
hypotheses, a lattice is lower semicomplemented if, and only if, the coatoms form a finite de-
composition of the least element.



4.1 The commutator for λ-theories

The structure of an algebra is affected by the shape of its congruence lattice. The commutator, a
binary operation on this lattice, provides a “measure” of this shape. In this section we show that
the binary commutator on the set of λ-theories has a good behavior if one of its arguments is ∇.
As a consequence, we get that the lattice λT satisfies a condition (in the form of quasi-identity)
that, among other things, implies the ET and Zipper conditions.

Given two λ-theories φ and ψ, we write X (φ, ψ) for the set of all 2 × 2 matrices X = Xi,j

(1 ≤ i, j ≤ 2) of the form:

X =

(
t(M1, N1) t(M1, N2)
t(M2, N1) t(M2, N2)

)
where M1,M2 ∈ (TΛ)

n, N1, N2 ∈ (TΛ)
m, for some n,m ≥ 0, t is any m+n-ary Λ-term, and

M1φM2, N1ψN2. That is, if in a matrix X we shift along a line then we shift modulus ψ, if we
shift along a column we shift modulus φ.

If τ is another λ-theory, we say that φ centralizes ψ modulo τ (see e.g. [?]), in symbols
C(φ, ψ; τ), if and only if, for every matrix X such that:(

M1 N1

M2 N2

)
∈ X (φ, ψ)

we have:
M1τN1 ⇒ M2τN2.

The set of all λ-theories τ such that C(φ, ψ; τ) is non-empty and closed under arbitrary inter-
section (see [?]). The commutator [φ, ψ] of φ and ψ is defined as the least λ-theory τ satis-
fying C(φ, ψ; τ). Notice that φ always centralizes ψ modulo φ ∧ ψ, so that we have always
[φ, ψ] ≤ φ ∧ ψ.

In this first result we show that the commutator for λ-theories has a good behavior when one
of the involved congruences is∇.

Theorem 9. Let φ be a λ-theory. Then

[∇, φ] = [φ,∇] = φ.

Proof. Let M,N be λ-terms such that M =φ N . We define:

X ≡
(
FMF FNF
TMF TNF

)
=

(
F F
M N

)
∈M(∇, φ)

From (F ,F ) ∈ [∇, φ] it follows that (M,N) ∈ [∇, φ]. By the arbitrariness of M and N
such that M =φ N we obtain that φ ≤ [∇, φ]. Since [∇, φ] ≤ φ always holds, we obtain the
conclusion. Similarly we can show that [φ,∇] = φ.

Theorem 10. Let φ, ψ and δi (i ∈ I) be λ-theories. Then we have:

(i) If
∨
i∈I δi = ∇, φ ≥ ψ ∧ (δi ∨ (φ ∧ ψ)) (i ∈ I) then ψ ≤ φ.

(ii) If the lattice interval I[ψ,∇] is modular and
∨
i∈I δi = ∇ then φ =

∨
i∈I(δi ∧ φ) for every

φ, δi ≥ ψ.



Proof. (i) By [?, Prop. 1.2(6)] and by hypothesis we have C(
∨
i∈I δi, ψ;φ). Since

∨
i∈I δi =

∇ and [∇, ψ] = ψ we get ψ ≤ φ, because the commutator [∇, ψ] is the least congruence γ
satisfying C(∇, ψ; γ).

(ii) By [?, Cor. 1.3(e)] and the hypothesis of modularity [
∨
i∈I δi, φ] ≤

∨
i∈I [δi, φ]. Then we

have: φ = [∇, φ] = [
∨
i∈I δi, φ] ≤

∨
i∈I [δi, φ] ≤

∨
i∈I δi ∧ φ.

By putting φ = δi ∧ ψ in Thm. ??(i) we get another proof of the Zipper condition for λT .

5 The Stone representation theorem for λ-calculus

In this section we show that combinatory algebras and λ-abstraction algebras satisfy a theorem
which is similar to the Stone representation theorem for Boolean algebras.

5.1 The classical Stone and Pierce theorem

The Stone representation theorem for Boolean rings (the observation that Boolean algebras could
be regarded as rings is due to Stone) admits a generalization, due to Pierce, to commutative rings
with unit (see [?] and [?, Ch. V]). To help the reader to get familiar with the argument, we now
outline Pierce’s construction.

Let A = (A,+, ·, 0, 1) be a commutative ring with unit, and let E(A) = {a ∈ A : a ·a = a}
be the set of its idempotent elements. One defines a structure of Boolean algebra on E(A) as
follows. For all a, b ∈ E(A):

– a ∧ b = a · b;
– a ∨ b = a+ b− (a · b);
– a− = 1− a.

Then it is possible to show that for every a ∈ E(A), a 6= 0, 1 induces a pair (θ(a, 1), θ(a, 0))
of non-trivial complementary factor congruences. In other words, the ring A can be decomposed
in a non-trivial way as A ∼= A/θ(a, 1) × A/θ(a, 0). If E(A) = {0, 1}, then A is directly
indecomposable. Then Pierce’s theorem for commutative rings with unit can be stated as follows:

“Every commutative ring with unit is isomorphic to a Boolean product of directly
indecomposable rings.”

If A is a Boolean ring, we get the Stone representation theorem for Boolean algebras, because
the ring of truth values is the unique directly indecomposable Boolean ring.

The remaining part of this section is devoted to provide the statement and the proof of the
representation theorem for combinatory algebras and λ-abstraction algebras.

5.2 The Boolean algebra of central elements

We start by defining the constants which correspond to the elements 0 and 1 in a commutative
ring with unit:

– Combinatory algebras: 1 ≡ k; 0 ≡ sk,
– λ-abstraction algebras: 1 ≡ λab.a; 0 ≡ λab.b.



As a matter of notation, we set

θe ≡ θ(1, e); θe ≡ θ(e, 0).

Definition 33. (Vaggione [?,?]) Let A be an algebra with two constants 0, 1 such that θ(0, 1) =
∇. We say that an element e of A is central, and we write e ∈ Ce(A), if (θe, θe) forms a pair of
complementary factor congruences.

A central element e is trivial if it is equal either to 0 or to 1.

Lemma 5. Let A ∈ CA ∪ LAA and e ∈ Ce(A). Then we have:

(i) x θe exy θe y.
(ii) x θe y if, and only if, exy = y, and x θe y if, and only if, exy = x.

Proof. (i) Since 1 θe e θe 0 then x = 1xy θe exy θe 0xy = y.
(ii) By (i).

Lemma 6. Let A ∈ CA∪LAA and e ∈ A. Then we have: e ∈ Ce(A) if, and only if, θe∧θe = ∆.

Proof. (⇐) θe ◦ θe = ∇ follows from Lemma ??(i).

We now provide a new characterization of the notion of central element which works for
combinatory algebras and λ-abstraction algebras.

Theorem 11. Let C ∈ CA ∪ LAA. Then the following conditions are equivalent for all e ∈ C:

(i) e is central;
(ii) e satisfies the following identities:

1. exx = x,
2. e(exy)z = exz = ex(eyz),
3. e(xy)(zt) = exz(eyt),
4. e = e10,
5. e(λa.x)(λa.y) = λa.exy, (only for LAA).

(iii) The function fe defined by fe(x, y) = exy is a decomposition operator and fe(1, 0) = e.

Proof. (ii)⇔ (iii) It is a simple exercise to show that e satisfies the identities in (ii) if, and only
if, fe is a decomposition operator such that fe(0, 1) = e.

(i) ⇒ (iii) If e is central, then (θe, θe) is a pair of complementary factor congruences and
by Lemma ??(i) exy is the unique element such that x θe exy θe y. It follows that fe is a
decomposition operator. Moreover, fe(1, 0) = e10 = e, because e is the unique element such
that 1 θe e θe 0.

(iii) ⇒ (i) Let (φ, φ) be the pair of complementary factor congruences associated with fe,
that is, x φ y iff exy = x, and x φ y iff exy = y. We recall that exy is the unique element such
that x φ exy φ y. Since fe(1, 0) = e then e is the unique element such that 1 φ e φ 0. It follows
that θe ⊆ φ and θe ⊆ φ. For the opposite direction, let xφy, i.e., exy = x. Then, by 1 θe e we
have x = 1xy θe exy = y. Similarly, for φ.

It follows that an algebra C ∈ CA∪LAA is directly indecomposable if, and only if, Ce(C) =
{1, 0}.



Theorem 12. Let Dec(C) be the set of decomposition operators of an algebra C ∈ CA ∪ LAA.
Then the functions, mapping central elements into decomposition operators

e ∈ Ce(C)→ fe, where fe(x, y) = exy (4)

and decomposition operators into central elements

f ∈ Dec(C)→ f(1, 0) ∈ Ce(C),

form the two sides of a bijection.

Proof. Let f be a decomposition operator and let e = f(1, 0). We now show that e is central
and that f(x, y) = exy. The element e is the unique one satisfying 1 φ e φ 0, where (φ, φ) is the
pair of complementary factor congruences associated with the decomposition operator f . Since
φ and φ are compatible equivalence relations, it follows that for all x, y:

x = 1xy φ exy φ 0xy = y.

Since, by definition, f(x, y) is the unique element satisfying x φ f(x, y) φ y, we obtain:

f(x, y) = exy. (5)

Finally, the identities defining f as decomposition operator make e a central element by Thm. ??.
We now check that these correspondences form the two sides of a bijection. Assume e is

central, that is (θe, θe) is a pair of complementary factor congruences. Then f(x, y) = exy is a
decomposition operator because x θe exy θe y. If f is a decomposition operator, then by (??) we
have that ff(1,0)(x, y) = f(1, 0)xy = f(x, y) for all x, y.

Corollary 1. The functions, mapping central elements into pairs of complementary factor con-
gruences

e ∈ Ce(C)→ (θe, θe), (6)

and pairs of complementary factor congruences into central elements

(φ, φ)→ e if 1 φ e φ 0,

form the two sides of a bijection.

Lemma 7. The varieties CA and LAA have factorable congruences. Hence, every algebra C ∈
CA ∪ LAA has Boolean factor congruences.

Proof. Let A,B be combinatory algebras or λ-abstraction algebras; it is clear that, up to isomor-
phism, Con(A)×Con(B) ⊆ Con(A×B). Conversely, let φ ∈ Con(A×B). The “projections”
φ1, φ2 of φ are the binary relations on A and B, respectively, defined as follows:

x1φ1x2 ⇐⇒ ∃y1, y2 ∈ B such that (x1, y1) φ (x2, y2),
y1φ2y2 ⇐⇒ ∃x1, x2 ∈ A such that (x1, y1) φ (x2, y2).

It is obvious that φ ⊆ φ1×φ2. We now prove the opposite inclusion. Suppose that (x1, y1) φ1×
φ2 (x2, y2) for some x1, x2 ∈ A and y1, y2 ∈ B. Then, by definition of φ1 × φ2, we have that



x1φ1x2 and y1φ2y2. Hence, there exist x3, x4 ∈ A, y3, y4 ∈ B such that (x1, y3) φ (x2, y4) and
(x3, y1) φ (x4, y2). Since (1, 0) φ (1, 0) and φ is a compatible relation, we get:

(x1, y1) = (1x1x3, 0y3y1) φ (1x2x4, 0y4y2) = (x2, y2).

Thus we get φ = φ1 × φ2. It is easy to check that φ1, φ2 are reflexive, symmetric and com-
patible. We now show that φ1 is also transitive. Let x1φ1x2φ1x3, then there exist y1, y2, y3, y4
such that (x1, y1) φ (x2, y2) and (x2, y3) φ (x3, y4); from the symmetry of φ we have also
(x3, y4) φ (x2, y3). Since (1, 0) φ (1, 0) and φ is a compatible relation, we get:

(x1, y4) = (1x1x3, 0y1y4) φ (1x2x2, 0y2y3) = (x2, y3).

Finally, from (x1, y4) φ (x2, y3) and (x2, y3) φ (x3, y4) we get (x1, y4) φ (x3, y4) and, hence,
x1φ1x3; thus φ1 ∈ Con(A). An analogous reasoning gives φ2 ∈ Con(B). From this it is easy
to conclude that Con(A × B) ∼= Con(A) × Con(B). By Lemma 4, every algebra of a variety
with factorable congruences has Boolean factor congruences.

We now show that the partial ordering between central elements, defined by:

x ≤ y if, and only if, θx ⊆ θy (7)

is a Boolean ordering and the meet, join and complementation operations are internally repre-
sentable. 0 and 1 are respectively the bottom element and the top element of this ordering.

Theorem 13. The algebra (Ce(C),∧,∨,− , 0, 1) of central elements of C, defined by

x ∧ y = xy0; x ∨ y = x1y; x− = x01,

is a Boolean algebra isomorphic to the Boolean algebra of factor congruences.

Proof. By Lemma ?? C has Boolean factor congruences. It follows that the partial ordering
on central elements, defined in (??), is a Boolean ordering. There only remains to show that,
for all central elements x, y, the elements x−, x ∧ y and x ∨ y are central and are respectively
associated with the pairs (θx, θx), (θx ∨ θy, θx ∧ θx) and (θx ∧ θy, θx ∨ θx) of complementary
factor congruences.

We check the details for x−. Since x is central then (θx, θx) is a pair of complementary factor
congruences. The complement is the pair (θx, θx). We have that x− is the unique element such
that 0 θx x− θx 1. Then 1 θx x

− θx 0 for the pair (θx, θx). This means that x− is the central
element associated with the pair (θx, θx).

We now consider x ∨ y = x1y. First of all, we show that x1y = y1x. By Lemma ??(i) we
have that 1 θx x1y θx y, while 1 θx y1x θx y can be obtained as follows:

1 = y11 by Thm. ??(ii-1),
y11 θx y1x by 1 θx x,

y1x θx y10 by x θx 0,
y10 = y by Thm. ??(ii-4).

Since there is a unique element c such that 1 θx c θx y, then we have the conclusion x1y = y1x.
We now show that x1y is the central element associated with the factor congruence θx ∧ θy , i.e.,

1 (θe ∧ θd) x1y (θe ∨ θd) 0.

From y1x = x1y we easily get that 1 θx x1y and 1 θd x1y, that is, 1 (θe ∧ θd) x1y. Finally, by
Lemma ??, we have: x1y θe y = y10 θd 0, i.e., x1y (θe ∨ θd) 0. The same reasoning works for
x ∧ y.



We now provide the promised representation theorem. If I is a maximal ideal of the Boolean
algebra Ce(A), then θI denotes the congruence on A defined by:

x (θI) y if, and only if, x θe y for some e ∈ I .

By a Pierce variety (see [?] for the general definition) we mean here a variety of algebras for
which there are two constants 0, 1 and a term u(x, y, z, v) such that the following identities hold:
u(x, y, 0, 1) = x and u(x, y, 1, 0) = y.

Obviously, the variety of combinatory algebras and that of λ-abstraction algebras are Pierce
varieties: in both cases it is sufficient to take u(x, y, z, v) ≡ zyx.

Theorem 14. (Representation Theorem for CA and LAA) Let C ∈ CA ∪ LAA and X be the
Boolean space of maximal ideals of the Boolean algebra of central elements. Then, for all I ∈ X
the quotient algebra C/θI is directly indecomposable and the map

f : C → ΠI∈X(C/θI),

defined by
f(x) = (x/θI : I ∈ X),

gives a weak Boolean product representation of C.

Proof. By Lemma ?? the factor congruences of C constitute a Boolean sublattice of Con(C).
Then by [?] f gives a weak Boolean product representation of C. The quotient algebras C/θI are
directly indecomposable by [?, Thm. 8], because the varieties CA and LAA are Pierce varieties.

Note that, in general, it is not possible to obtain a (non-weak) Boolean product representation
of an algebra C ∈ CA ∪ LAA. This follows from Lemma ?? and two results due to Vaggione [?]
and Plotkin-Simpson [?]. Vaggione has shown that, if a variety has factorable congruences and
every member of the variety can be represented as a Boolean product of directly indecomposable
algebras, then the variety is a discriminator variety (see [?] for the terminology). Discriminator
varieties satisfy very strong algebraic properties, in particular they are congruence permutable
(i.e., in each algebra the join of two congruences is just their composition). Plotkin and Simp-
son [?, Thm. 3.7] have shown that this last property is inconsistent with λ-calculus and com-
binatory logic, hence by Lemma ?? and Vaggione’s theorem not all combinatory algebras and
λ-abstraction algebras have a Boolean product representation.

6 The indecomposable semantics

The Stone representation theorem for combinatory algebras can be roughly summarized as fol-
lows: the directly indecomposable combinatory algebras are the “building blocks” in the variety
of combinatory algebras. Then it is natural to investigate the class of models of λ-calculus, which
are directly indecomposable as combinatory algebras (indecomposable semantics, for short).

In this section we show that the indecomposable semantics encompasses the Scott-continuous,
the stable and the strongly stable semantics, and represents all semisensible λ-theories. In spite
of this richness, in the last results of this chapter we show that the indecomposable semantics is
incomplete, and that this incompleteness is as wide as possible. Finally, we will show that the set
of λ-theories induced by each of the main semantics is not closed under finite intersection, and
hence it does not form a sublattice of λT .



6.1 The main semantics of λ-calculus

After Scott, several models of λ-calculus have been defined by order theoretic methods and
classified into “semantics” according to the nature of their representable functions (see [?], for a
survey on these semantics).

The Scott-continuous semantics corresponds to the class of λ-models having cpo’s (complete
partial orders) as underlying sets and representing all Scott continuous functions.

The stable semantics (Berry [?]) and the strongly stable semantics (Bucciarelli-Ehrhard [?])
are refinements of the Scott-continuous semantics which have been introduced to capture the no-
tion of “sequential” continuous function. The underlying sets of the λ-models living in the stable
(strongly stable) semantics are particular algebraic cpo’s called dI-domains (dI-domains with co-
herences). These models represent all stable (strongly stable) functions between such domains. A
function between dI-domains is stable if it is continuous and, furthermore, commutes with “infs
of compatible elements”. A strongly stable function between dI-domains with coherence, is a
stable function preserving coherence. We refer the reader to [?,?] for a more detailed description
of these semantics.

All these semantics are structurally and equationally rich: in particular, in each of them it is
possible to build up 2ℵ0 models having pairwise distinct, and even incompatible, λ-theories.

6.2 Incompleteness of the indecomposable semantics

We now define various notions of representability of λ-theories in classes of models.

Definition 34. Given a class C of λ-models and a λ-theory φ, we say that:

1. C represents φ if there is some C ∈ C representing φ (i.e., Th(C) = φ).
2. C omits φ if there is no C ∈ C representing φ (i.e., Th(C) 6= φ for all C ∈ C).
3. C is complete for a set S ⊆ λT of λ-theories if C represents all elements of S (i.e., for every
φ ∈ S there exists C ∈ C such that Th(C) = φ).

4. C is incomplete if it omits a consistent λ-theory (i.e., there exists φ ∈ S such that Th(C) 6= φ
for all C ∈ C).

We now remark that the class of directly indecomposable combinatory algebras is a universal
class (i.e., it is an elementary class which can be axiomatized by universal sentences).

Proposition 5. The class of all directly indecomposable combinatory algebras (λ-abstraction
algebras, respectively) is a universal class, so that it is closed under subalgebras and ultraprod-
ucts.

Proof. By [?, Prop. 1.3].

The closure of the class of directly indecomposable combinatory algebras under subalgebras
is the key trick in the proof of the algebraic incompleteness theorem.

We have shown that any factor congruence can be represented by a central element, and in
particular that a combinatory (or λ-abstraction) algebra C is directly indecomposable if, and only
if, it only admits the trivial central elements.

If A is a λ-abstraction algebra, the combinatory reduct of A is the algebra

Cr(A) = (A, ·A, (λab.a)A, (λabc.ac(bc))A).



By [?, Thm. 29] Cr(A) is always a combinatory algebra. By [?, Cor. 5.2.13(ii)] it is a λ-model
under the hypothesis that A is the term algebra of a λ-theory.

In every λ-model the interpretations of the combinators k and sk coincide with those of the
λ-terms λab.a and λab.b. Then the role of the trivial central elements in a λ-abstraction algebra
and in its combinatory reduct is covered by the same elements.

Lemma 8. Let φ be a λ-theory and M be a closed λ-term. If [M ]φ is a non-trivial central
element of the term algebra Λφ, then every λ-model representing φ is directly decomposable. It
follows that the indecomposable semantics omits φ.

Proof. Let C be a λ-model. Then Th(C) = φ if, and only if, Λφ is isomorphic to a subalgebra
of the λ-abstraction expansion Cλ of C (see Section ??). By Prop. ?? and by the hypothesis we
obtain that Cλ is decomposable. Then the combinatory reduct Cr(Cλ) is decomposable. Finally,
C is decomposable because it is a subalgebra of Cr(Cλ) that contains the interpretation of all
closed terms.

We are now able to provide the promised algebraic incompleteness theorem.

Theorem 15. (Algebraic incompleteness theorem) The indecomposable semantics is incomplete.

Proof. By Lemma ?? it is sufficient to produce a λ-theory φ such that the term algebra Λφ of φ
has a non-trivial central element. By [?, Prop. 15.3.9] the λ-theories θ(Ω, λab.a) and θ(Ω, λab.b)
are non-trivial. Then, we conclude by Lemma ?? that [Ω]φ, where φ = θ(Ω, λab.a)∧θ(Ω, λab.b),
is a non-trivial central element of Λφ.

6.3 Continuous, stable and strongly stable semantics

In Thm. ?? below we show that, although the indecomposable semantics is incomplete, it is large
enough to represent all semisensible λ-theories.

We need now a technical lemma.

Lemma 9. Let φ be a λ-theory and e be a non-trivial central element of Λφ. Then, every λ-term
belonging to the equivalence class e is unsolvable.

Proof. Let M ∈ e. Since the congruences θe and θe on Λφ are non-trivial, then the λ-theories
φ1 = θφ(λab.b,M) and φ2 = θφ(λab.a,M) are consistent. By [?, Lemma 10.4.1(i)] it is con-
sistent to equate two solvable λ-terms only if they are equivalent according to [?, Def. 10.2.9].
If M were solvable then it should be equivalent both to λab.b and λab.a, so that these last terms
should be equivalent. But this is false. Then M must be unsolvable.

Theorem 16. The indecomposable semantics represents all semisensible λ-theories.

Proof. Let φ be a semisensible λ-theory. Assume, by the way of contradiction, that Λφ has a non-
trivial central element e (cf. Lemma ??). Let M ∈ e. Then, Λφ satisfies the identity exx = x
from which we derive MPP = P for every solvable P . This contradicts the semisensibility of
φ since M is unsolvable by Lemma ??.

In the next proposition we show that all λ-models living in the main semantics are simple
algebras. We recall that an algebra is simple when it has just the two trivial congruences, and is
hence directly indecomposable.



Proposition 6.

(i) All λ-models living in the Scott-continuous semantics are simple combinatory algebras.
(ii) All λ-models living in the stable or strongly stable semantics are simple combinatory alge-

bras.

Proof. Let us consider a λ-model C = (D, ·,k, s).
(i) Suppose that C lives in Scott-continuous semantics, so that D is a cpo and all Scott

continuous functions are representable in C. It is easy to check that, for all b, c ∈ D, the function
gb,c defined by

gb,c(x) =

{
c if x 6vD b,
⊥ otherwise,

is Scott continuous. Let φ be a congruence on C and suppose that there exist a, d such that a φ d
with a 6= d. We have a 6vD d or d 6vD a. Suppose, without loss of generality, that we are in the
first case. Since the continuous function gd,c is representable in the model (for all c), we have:
⊥ = gd,c(a) φ gd,c(d) = c, hence cφ⊥. By the arbitrariness of c we get that φ is trivial, so that C
is simple. Note that gd,c is neither stable nor strongly stable hence it cannot be used for proving
item (ii).

(ii) Suppose that C is a (strongly) stable λ-model. Consider two elements a, b ∈ D such that
a 6= b. We have a 6vD b or b 6vD a. Suppose, without loss of generality, that we are in the first
case. Then there is a compact element d of C such that d vD a and d 6vD b. The step function
fd,c defined by :

fd,c(x) =

{
c if d vD x,
⊥ otherwise,

is stable (strongly stable) for every element c. This function fd,c can be used to show that every
congruence on C is trivial as in the proof of item (i).

As a consequence of Prop. ??, we get, in a uniform way, the incompleteness of the main
semantics of λ-calculus. We will see later on that this incompleteness is very large.

Corollary 2. The Scott-continuous, the stable and the strongly stable semantics are incomplete.

Proof. By Prop. ?? and Thm. ??.

Given a class C of λ-models, Th(C) denotes the set of λ-theories which are represented in
C. In the remaining part of this subsection we show that, for each of the classic semantics of
λ-calculus, the set Th(C) is not closed under finite intersection, so that it is not a sublattice of
the lattice λT of λ-theories.

Theorem 17. Let C be a class of directly indecomposable models of λ-calculus. If there are two
consistent λ-theories φ, ψ ∈ Th(C) such that

Ω =φ λab.a; Ω =ψ λab.b,

then Th(C) is not closed under finite intersection, so it is not a sublattice of λT .

Proof. Let ξ = φ ∧ ψ. By Lemma ??, [Ω]ξ is a non-trivial central element of Λξ. It follows that
ξ /∈ Th(C).



We recall that the graph models (see, e.g., [?,?]) and the filter models (see, e.g., [?]) are
classes of λ-models within the Scott-continuous semantics.

Corollary 3. Let C be one of the following semantics: graph semantics, filter semantics, Scott-
continuous semantics, stable semantics, strongly stable semantics. Then Th(C) is not a sublattice
of λT .

Proof. In each of these semantics it has been proved that for all M ∈ Λo there exists a model
C such that Th(C) is consistent and Ω =Th(C) M . Then the conclusion follows from Thm. ??
and Prop. ??.

6.4 Concerning the number of decomposable and indecomposable λ-models

From the work done in the previous subsection, it is easy to conclude that there is a wealth of
directly indecomposable λ-models representing different λ-theories.

Theorem 18. Let CIND be the indecomposable semantics. Then Th(CIND) contains an interval
of cardinality 2ℵ0 and an antichain of cardinality 2ℵ0 .

Proof. We know from Thm. ?? that Th(CIND) contains the interval I[λβ,H∗], which has cardi-
nality 2ℵ0 by [?, Sec. 16.3] (see Section ?? for the definition of H∗). Moreover, Cor. ?? implies
that Th(CIND) also contains the set of all λ-theories represented by the class of graph models,
which has an antichain of cardinality 2ℵ0 by [?].

Now, we show that also the incompleteness of the indecomposable semantics is as wide as
possible.

First of all we need some results about λ-theories. The proof of the following lemma is similar
to that of [?, Prop. 17.1.9], where the case k = 1 (due to Visser) is shown, and it is omitted.

Lemma 10. Suppose that φ is an r.e. λ-theory and fix arbitrary pairs of λ-terms (Mi, Ni) for
1 ≤ i ≤ k such that Mi 6=φ Ni for all i ≤ k. Then there is M ∈ Λo such that, for all P ∈ Λo,
the λ-theory ψ = θφ(M,P ) is consistent and

Mi 6=ψ Ni, for every i ≤ k.

Then the following theorems are corollaries of the algebraic incompleteness theorem.

Theorem 19. Let φ be an r.e. λ-theory. Then, the interval I[φ,∇[ contains a subinterval I[ψ1, ψ2]
satisfying the following conditions:

– ψ1 and ψ2 are distinct r.e. λ-theories,
– every ψ ∈ I[ψ1, ψ2] is omitted by the indecomposable semantics,
– card(I[ψ1, ψ2]) = 2ℵ0 .

Proof. Since φ is r.e. we know by [?, Prop. 17.1.9] that there exists a λ-term Q such that
θφ(Q,M) is consistent for all M ∈ Λo. Note that, in particular, this implies Q 6=φ λab.a and
Q 6=φ λab.b.

Let ψ1 = θφ(Q,λab.a) ∧ θφ(Q,λab.b). Obviously, the λ-theory ψ1 is consistent, r.e. and
contains φ. By Lemma ??, [Q]ψ1 is a non-trivial central element of Λψ1 .

We apply Lemma ?? to the r.e. λ-theory ψ1 and to the pairs (Q,λab.a) and (Q,λab.b) such
that Q 6=φ λab.a and Q 6=φ λab.b. We get a λ-term R ∈ Λo such that Q 6=θψ1

(R,P ) λab.a and



Q 6=θψ1
(R,P ) λab.b, for all λ-terms P ∈ Λo. Let ψ2 = θψ1

(R, λa.a). We have that ψ2 is a proper
extension of ψ1.

The term algebra Λψ2 of ψ2 is a homomorphic image of the term algebra Λψ1 of ψ1, then
every equation satisfied by Λψ1

is also satisfied by Λψ2
. In particular, the equations expressing

thatQ is a central element. Finally, [Q]ψ2
is non-trivial as a central element becauseQ 6=ψ2

λab.a
and Q 6=ψ2

λab.b.
Hence, for every λ-theory ψ such that ψ1 ⊆ ψ ⊆ ψ2 the equivalence class of Q is a non-

trivial central element of the term algebra of ψ.
We get the conclusion of the theorem because card(I[ψ1, ψ2]) = 2ℵ0 by Thm. ??(iv).

Remark 4. From Lemma ?? it follows that all the λ-models C such that Th(C) belongs to the
interval I[ψ1, ψ2] above, are directly decomposable.

Theorem 20. Let CDEC be the class of all directly decomposable λ-models. Then we have that

(i) Th(CDEC) has an antichain of cardinality 2ℵ0 .
(ii) Th(CDEC) contains countably many “pairwise incompatible” intervals of cardinality 2ℵ0 .

Proof. (i) Let Un ≡ Ω(λx1 . . . xnx.x) and k be the k-th Church’s numeral. Given a permutation
σ of the set of Church’s numerals, we write ψσ, φσ for the λ-theories respectively generated by:

E1
σ = {U0 = λab.a} ∪ {Un = σ(n− 1) : n ≥ 1},

E0
σ = {U0 = λab.b} ∪ {Un = σ(n− 1) : n ≥ 1}.

From [?, Thm. 22] we get that ψσ, φσ are consistent and hence we have that the equivalence class
of U0 is a non-trivial central element of Λψσ∧φσ . Thus, ψσ ∧ φσ ∈ Th(CDEC) by Lemma ??.

If σ1, σ2 are two distinct permutations of the set of Church’s numerals, then ψσ1 ∧ φσ1 and
ψσ2 ∧ φσ2 are incompatible, because it is inconsistent to equate n = m for every n 6= m.

Hence, (i) follows since there exist 2ℵ0 permutations σ of the set of Church’s numerals which
give rise to pairwise incompatible λ-theories ψσ ∧ φσ ∈ Th(CDEC).

(ii) Let σ be a permutation of the Church’s numerals and ψσ, φσ be as in the proof of (i).
Suppose that σ is computable, then both ψσ and φσ are r.e. λ-theories, hence also ψσ ∧ φσ ∈
Th(CDEC) is r.e. Thus, the interval I[ψσ∧φσ,∇] contains an interval of 2ℵ0 λ-theories belonging
to Th(CDEC). The theorem follows since there exist countably many computable permutations
σ.

Corollary 4. The indecomposable semantics, and hence the Scott-continuous, the stable and the
strongly stable semantics omit a set of λ-theories which has an antichain of cardinality 2ℵ0 , and
even contains countably many pairwise incompatible intervals of cardinality 2ℵ0 .

7 Open problems

In this section we collect open problems and conjectures that are related to universal algebra and
topology. We start with the lattice of λ-theories.

7.1 The lattice of λ-theories

At the end of the nineties, the second author proposed the following conjecture:



(P1) The lattice λT satisfies no (non-trivial) lattice identity.

This conjecture is still open. The best we know about this problem was shown in [?]: for any
non-trivial lattice identity e, there exists a natural number n such that the identity e fails in the
lattice of λ-theories over a language of lambda calculus extended with n constants.

Another interesting problem to investigate is related to the lattices that are embeddable into
λT and in the congruence lattices of λ-abstraction algebras. In [?] it has recently been shown
that every finite Boolean lattice can be embedded into λT at the top. We propose the following
conjecture:

(P2) Every finite lattice can be embedded into λT .

Recall from [?] that the non-modular pentagon N5 is a sublattice of λT and that by Visser
[?] every countable partially ordered set embeds into λT by an order-preserving map. It is not
difficult to prove that the class L(LAA) of lattices embeddable into the congruence lattices of
λ-abstraction algebras is a prevariety (i.e., it is closed under isomorphism, subalgebras and direct
products). We conjecture that

(P3) L(LAA) is the variety of all lattices.

Meet irreducible elements give important information on the structure of a lattice. Then, it is
natural to investigate what λ-theories are meet irreducible. We have the following conjecture:

(P4) The least λ-theory λβ is meet irreducible.

Other interesting problems arise when we classify the λ-theories as sensible, semisensible
and non-semisensible. We recall thatH∗ is the unique maximal consistent sensible λ-theory.

(P5) What are the properties of the function mapping a λ-theory φ into the maximal semisensible
theory φ ∧H∗ contained within φ?

From Prop. ?? we have that φ ∧H∗ = λβ iff φ = λβ.
Another problem is related to the equations between non-β-equivalent λ-terms which are

consistent with every λ-theory. Their existence is a consequence of a result by Statman [?] stating
that the meet of all coatomic λ-theories is not λβ.

(P6) Classify the identities consistent with every λ-theory

Other problems are related to the commutator:

(P7) Define non-trivial λ-theories φ and ψ such that the commutator [φ, ψ] is strictly under φ∧ψ.

These λ-theories must exist, because the following basic property of commutator

[φ, ψ] = [γ, ψ] = δ ⇒ [φ ∨ γ, ψ] = δ

would imply the meet semidistributivity:

φ ∧ ψ = γ ∧ ψ = δ ⇒ (φ ∨ γ) ∧ ψ = δ,

and this property does not hold in λT .
The following are other interesting questions:



(P8) What varieties of λ-abstraction algebras have a “good” commutator?
(P9) Is there a property of the commutator which holds for λ-theories but not for λ-abstraction

algebras?

All the known properties of the commutator for λ-theories (see Section ?? and [?]) are also
true for 0, 1-algebras, i.e., algebras having a binary term with a right unit and a right zero. Then
it is natural to rise the following question:

(P10) Is it possible to find a property of the commutator which distinguish 0, 1-algebras and λ-
abstraction algebras or, more generally, find a new commutator distinguishing 0, 1-algebras
and λ-abstraction algebras in a natural way?

7.2 Models of lambda calculus

Concerning the models of λ-calculus, the result of incompleteness stating that any semantics
given in terms of partial orderings with a bottom element is incomplete leads us to the following
problem.

(P11) Find a class of models of lambda calculus, where partial orders and Scott topology do not
play any role.

As for the lattice of λ-theories, results on the structure of the set of λ-theories induced by a
semantics are still rare, and there exist several longstanding basic open questions. The following
natural questions were raised by Berline [?]:

(P12) Given a class of models of lambda calculus, is there a least λ-theory represented in the
class?

(P13) Given a class of models of lambda calculus, is there a least sensible λ-theory represented in
the class?

These two problems are related to one of the longstanding open problems of lambda calculus
raised by Honsell and Ronchi della Rocca [?]:

(P14) Is there a “non-syntactical” model of the untyped lambda calculus whose theory is exactly
the least (extensional) λ-theory λβ (λβη)?

Di Gianantonio, Honsell and Plotkin [?] have shown that there exists an extensional λ-theory
which is minimal among those represented by Scott continuous semantics.

Graph models and other classes of models. Graph semantics is the semantics G of lambda
calculus given in terms of graph models. The reasons to concentrate on G are the following. G is,
by far, the simplest class of models, nevertheless it contains a continuum of models with distinct
theories, so it is a rich class. Moreover, the techniques and results for G can often be transferred
to other classes of models.

Bucciarelli and Salibra [?,?,?] have shown that graph semantics admits a least graph theory
(where “graph theory” means “λ-theory of a graph model”) and a least sensible graph theory.
The least graph theory is not equal to λβ and it is trivially different from λβη. The following
interesting and difficult question is open:



(P15) Is the least sensible graph theory equal to the λ-theoryH generated by equating all unsolv-
able terms?

In [?] it was also shown that the λ-theory B (generated by equating λ-terms with the same
Böhm tree) is the greatest sensible graph theory. This result is a consequence of the fact that the
graph semantics omits all equationsM = N between λ-terms which do not have the same Böhm
tree, but have the same Böhm tree up to (possibly infinite) η-equivalence.

(P16) What are the equations omitted by the other semantics of lambda calculus (i.e., filter models,
stable models,...)?

In [?] it was recently shown that any “effective” model D of lambda calculus has an order-
theory (i.e., {M ≤ N : |M | vD |N |}) which is not r.e., so that λβ and λβη cannot be theories
of effective models. This enough surprising result holds in a strong way for graph models: the
least graph theory is the theory of an effective graph model and the order-theory of every graph
model is not r.e.

The following open problems deserve to be deeply investigated:

(P17) Is there a least “filter theory” (where “filter theory” means “λ-theory of a filter model”
[?])? If yes, is there an effective model representing it?

(P18) Is there a least sensible filter theory?

7.3 The order-incompleteness problem

One of the most interesting open problems of lambda calculus is whether every λ-theory arises
as the equational theory of a non-trivially ordered model (in other words, whether the semantics
of lambda calculus given in terms of non-trivially ordered models is complete). Selinger [?] gave
a syntactical characterization of the order-incomplete λ-theories (i.e., the theories not induced
by any non-trivially ordered model) in terms of so-called generalized Mal’cev operators. In an
algebraic setting the problem of the order-incompleteness can be expressed as follows:

(P19) Is there an n-permutable variety of λ-abstraction algebras for some n ≥ 2 (see [?] for the
definition of n-permutability)?

Plotkin, Selinger and Simpson [?] have shown that there exists no 2-permutable variety of λ-
abstraction algebras and no 3-permutable variety of λ-abstraction algebras. It is open the case
n ≥ 4.

Selinger has shown in [?] that the problem of the order-incompleteness is also related to the
following question by Plotkin [?]:

(P20) Is there an absolutely unorderable combinatory algebra, i.e., a combinatory algebra which
cannot be embedded in any non-trivially partially ordered combinatory algebra?

7.4 Topology and lambda calculus

Scott topology is at the center of Scott continuous semantics and its refinements. In [?] it was
shown that the semantic of lambda calculus given in terms of topological metric spaces is com-
plete. Then it is natural to investigate the following problems:

(P21) Are there topological models of lambda calculus with a significant topology different from
Scott topology?



(P22) Are there other (i.e. different from metric space) classes of topological models which are
complete semantics of the lambda calculus?

We recall that many authors tried to find models in Cartesian closed categories of topological
spaces. Abramsky (see [?, Thm. 5.11]) and Plotkin (see [?, Thm. 5.14]) have shown respectively
that there exists no non-degenerate model of the lambda calculus in the category of posets and
monotone mappings, and in the category of complete ultrametric spaces and non-expansive map-
pings. Hoffmann and Mislove [?] have shown that the category of k-spaces and continuous maps
has no non-degenerate, compact T2-topological model. A k-space is a topological space in which
a subset is open if and only if its intersection with each compact subset of the space is open in
the subspace. The following problem is still open.

(P23) (Hoffmann-Mislove) Is there a model of lambda calculus in the category of k-spaces?

Notice that every topological model, in which all continuous selfmaps of the model are repre-
sentable (as in the category of k-spaces), must have a connected topology because of the existence
of fixed points. Then the following natural question arises:

(P24) Is the semantics of lambda calculus given in terms of connected topological models, com-
plete?

Orderability/Unorderability. Selinger [?] has shown that the term algebras of the λ-theories λβ
and λβη are unorderable (i.e., they do not admit a non-trivial compatible partial order). Salibra
[?] has found out a continuum of λ-theories whose term algebras are unorderable.

The classification of the λ-models into orderable/unorderable models can be refined as fol-
lows (see [?]). For every λ-model C, let TC

i (i = 0, 1, 2, 21/2) be the set of all topologies τ
on C which make (C, τ) a Ti-topological model, where T0, . . . , T21/2 are the usual topological
separation axioms. It is obvious that in general we have

TC
0 ⊇ TC

1 ⊇ TC
2 ⊇ TC

21/2
.

We recall that a topology with a non-trivial specialization order (i.e., such that a < b for some
a, b) would be T0 but not T1, so that

C is unorderable iff TC
0 = TC

1 .

We say that a λ-theory φ is of (topological) type i (i = 0, 1, 2, 21/2) if the term algebra of φ
satisfies TΛφ

0 = T
Λφ
i . All λ-theories are of type 0; the λ-theory B, generated by equating two

λ-terms if they have the same Böhm tree, is not of type 1 (see [?]). λβ and λβη are of type 1
by Selinger’s result, while the λ-theory Π found out by Salibra in [?] is of type 21/2. Then the
following natural question arises:

(P25) Is λβ (λβη) of type 2?
(P26) Is λβ (λβη) of type 21/2?

8 Conclusions and further works

We generalized the Stone representation theorem to combinatory and λ-abstraction algebras
showing that every combinatory and λ-abstraction algebra can be decomposed as a weak product



of directly indecomposable algebras. We showed that the semantics of λ-calculus given in terms
of directly indecomposable λ-models, although huge enough to include all the main semantics,
is hugely incomplete. This gives a strong, uniform and elegant proof of the incompleteness of the
continuous, stable and strongly-stable semantics.

A related question is whether there exists a notion of decomposition which respects the partial
ordering of a model. Indeed there is no reason why the decomposition operators introduced in
this paper should decompose the λ-model respecting the associated ordering. Hence, it would be
interesting to find new kinds of decompositions which take into account also the partial order.
On the other hand, the result of incompleteness in [?], stating that any semantics of λ-calculus
given in terms of partial orderings with a bottom element is incomplete, removed the belief that
partial orderings were intrinsic to λ-models. It is an open problem to find new Cartesian closed
categories, where the partial orderings play no role and where the reflexive objects are directly
indecomposable as combinatory algebras.
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