Reflexive Scott domains are not complete for the extensional lambda calculus
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Abstract—A longstanding open problem is whether there
exists a model of the untyped \-calculus in the category Cpo
of complete partial orderings and Scott continuous functions,
whose theory is exactly the least A-theory A3 or the least
extensional \-theory \(37. In this paper we analyze the class of
reflexive Scott domains, the models of \-calculus living in the
category of Scott domains (a full subcategory of Cpo). The
following are the main results of the paper:

(i) Extensional reflexive Scott domains are not complete for
the A\(n-calculus, i.e., there are equations not in \3n
which hold in all extensional reflexive Scott domains.

(i) The order theory of an extensional reflexive Scott domain
is never recursively enumerable.

These results have been obtained by isolating among the
reflexive Scott domains a class of webbed models arising from
Scott’s information systems, called iweb-models. The class of
iweb-models includes all extensional reflexive Scott domains,
all preordered coherent models and all filter models living in
Cpo. Based on a fine-grained study of an “effective” version
of Scott’s information systems, we have shown that there are
equations not in A3 (resp. \37n) which hold in all (extensional)
iweb-models.

Keywords-Lambda calculus, lambda theories, Reflexive Scott
domains, Filter models.

I. INTRODUCTION

Lambda theories are congruences on the set of A-terms,
which contain [3-conversion; extensional A-theories are those
which contain (n-conversion. Lambda theories arise by
syntactical or by semantic considerations. Indeed, a A-theory
may correspond to a possible operational (observational)
semantics of A-calculus, as well as it may be induced by a
model of A-calculus through the kernel congruence relation
of the interpretation function. Although researchers have, till
recently, mainly focused their interest on a limited number
of them, the lattice of A-theories ordered by inclusion
constitutes a very rich, interesting and complex mathematical
structure of cardinality 280 (see [1], [3], [4]).

After the first model, found by Scott in 1969 in the
category of complete lattices and Scott continuous functions,
a large number of mathematical models for A-calculus,
arising from syntax-free constructions, have been introduced
in various Cartesian closed categories (ccc, for short) of
domains and were classified into semantics according to
the nature of their representable functions, see e.g. [1], [3],
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[17]. Scott continuous semantics [19] is the class of reflexive
cpo-models, that are reflexive objects in the category Cpo
whose objects are complete partial orders and morphisms
are Scott continuous functions. The stable semantics (Berry
[6]) and the strongly stable semantics (Bucciarelli-Ehrhard
[7]) are refinements of the continuous semantics, introduced
to approximate the notion of “sequential” Scott continuous
function; finally “weakly continuous” semantics have been
introduced, either for modeling non determinism, or for
foundational purposes [3], [11]. In each of these semantics
all models come equipped with a partial order, and some
of them, called webbed models, are built from lower level
structures called “webs”. The simplest class of webbed mod-
els is the class of graph models, which was isolated in the
seventies by Plotkin, Scott and Engeler within the continuous
semantics. The class of graph models contains the simplest
models of A-calculus, is itself the easiest describable class,
and represents nevertheless 280 (non-extensional) A-theories.
Another example of a class of webbed models, and the most
established one, is the class of filter models. It was isolated
at the beginning of the eighties by Barendregt, Dezani and
Coppo [2], after the introduction of the intersection type
discipline by Coppo and Dezani [9].

Scott continuous semantics and the other mentioned se-
mantics are structurally and equationally rich. Ten years
ago, Kerth [15], [16] has proved that in each of the above
semantics it is possible to build up 2%° models inducing pair-
wise distinct A-theories. Nevertheless, the above denotational
semantics do not match all possible operational semantics
of A-calculus. Honsell and Ronchi della Rocca [14] have
shown that there exist theories which do not have models in
the category Cpo. More recently, it has been proved in an
uniform way that there are 2%° theories which are omitted
by all ordered models of A-calculus with a bottom element
[18].

The question of the existence of a non-syntactical model
of A\G (or AfBn, the least extensional A-theory) has been
circulating since at least the beginning of the eighties', but
it was only first raised in print in [14]. This problem is
still open, but generated a wealth of interesting research and

ISee Problem 22 in the list of TLCA open problems [13].



results (surveyed in [3] and [4]), from which we only sketch
below what is relevant for the present paper.

In 1995 Di Gianantonio, Honsell and Plotkin succeeded
to build an extensional model having theory A(7, living
in some weakly continuous semantics [11]. However, the
construction of this model as an inverse limit starts from
the term model of A7, and hence involves the syntax of
A-calculus. Furthermore the existence of a model living in
Scott semantics itself, or in one of its two refinements,
remains completely open. Nevertheless, the authors also
proved in [11] that the set of extensional theories repre-
sentable by models living in Scott continuous semantics has
a least element.

In view of the second result of [11], it becomes natural to
ask whether, given a (uniformly presented) class of models
of A-calculus, there is a minimum A-theory represented in
it; a question which was raised in [3]. In [8] Bucciarelli and
Salibra showed that the answer is also positive for the class
of graph models, and that the least A-theory in this class is
different from A and of course A\37.

We notice also that there are only very few theories of non
syntactical models which are known to admit an alternative
(i.e., non-model-thoretic) description (e.g. via syntactical
considerations), and that all happen to coincide either with
the theory of Bohm trees [I] or some variations of it,
and hence are not recursively enumerable (r.e., for short).
This led Berline, Manzonetto and Salibra [5] to raise the
following problem, which is a natural extension of the initial
problem: can a model living in Scott continuous semantics
or in one of its refinements have an r.e. equational theory?
Based on a notion of an effective model of A-calculus, in
[5] it was shown that the order theory of an effective model
cannot be r.e. and its equational theory is different from
AB (ABn). Effective models are omni-present: in particular,
all the models which have been introduced individually in
the literature can easily be proved effective. Concerning
the above mentioned semantics, it was also proved that
no effective model living in the stable or strongly stable
semantics has an r.e. equational theory and that no order
theory of a graph model can be r.e.

The category of algebraic cpos (a full subcategory of
Cpo) has many nice properties but unfortunately lacks the
essential characteristic of being a ccc: the function space of
two algebraic cpos need not be algebraic. As the function-
space construction is often used in denotational semantics
and the models of A-calculus are reflexive objects in a ccc,
this is a serious drawback. Fortunately there are Cartesian
closed (full) subcategories of algebraic cpos. The most
important, introduced by Scott [20], is the ccc SD of Scott
domains (i.e., bounded complete algebraic cpos). Most of
the reflexive cpo-models of A-calculus introduced in the
literature in the last forty years are reflexive Scott domains,
i.e., reflexive objects in SD.

In this paper we work with a category equivalent to SD

but more “concrete” and easier to work with, namely the
ccc Inf of information systems introduced by Scott in early
eighties [20]. We use Inf to isolate a class of webbed
models, called iweb-models, which is strictly contained
within the class of reflexive Scott domains, but includes all
extensional reflexive Scott domains, all preordered coherent
models and all filter models living in Cpo. Based on a fine-
grained study of an “effective” version of Scott’s information
systems, in the key technical theorem of this paper we
prove that there exists an effective model of A-calculus, not
living in Cpo, whose order theory is contained within the
order theory of every iweb-model. By applying the above
mentioned results on effective models [5] and Selinger’s
result [21] on the triviality of every compatible order on
the term model of A3 (A\3n), we show that the order theory
of an iweb-model is never r.e., and that there are equations
not in A (resp. ABn) which hold in all (extensional) iweb-
models. As a consequence we get the main results of the
paper:

(i) Extensional reflexive Scott domains are not complete
for the A\(3n-calculus, i.e., there are equations not in A3
which hold in all extensional reflexive Scott domains.

(i) The order theory of an extensional reflexive Scott
domain is never r.e.

II. PRELIMINARIES

If A is a set, then we denote by P(A) the power set of
A and by P:(A) the set of all finite subsets of A. We write
a C¢ A for a C A and a is finite.

If f: A— B is a function and Y C A, then f(Y) =

{fy):yeY}
A. PFartial Orderings

Let (D,Cp) be a partially ordered set (poset, for short).
When there is no ambiguity we write D instead of (D, Cp).
Two elements u and v of D are: comparable if either u Cp v
or v Cp u. A C D is directed if, for all u,v € A, there
exists z € A such that u Cp z and v Cp 2. A C D is
downward closed if v € A and u Cp v imply u € A.

A poset D is a complete partial order (cpo, for short) if
it has a least element (denoted by L p) and every directed
set A C D admits a least upper bound (denoted by LIA).
If D is a cpo, then [D — D] denotes the cpo of Scott
continuous functions ordered pointwise. Cpo denotes the
Cartesian closed category (ccc, for short) of cpos and Scott
continuous functions.

An element d € D is called compact if for every directed
A C D we have that d Cp UA implies d Cp v for some v €
A. We write IC(D) for the collection of compact elements
of D. A cpo D is algebraic if for every u € D the set
{d € K(D) : d Cp u} is directed and wu is its least upper
bound.

A cpo is bounded complete if L{u, v} exists for all upper
bounded elements u,v. A bounded complete algebraic cpo



is called a Scott domain [20]. The category SD of Scott
domains and Scott continuous functions is a ccc.

B. Numberings

We denote by N the set of natural numbers. A set A C N
is r.e. if it is the domain of a partial recursive function. The
complement of a r.e. set is called a co-re. set. If both A and
its complement are r.e., A is called decidable or recursive.

Definition 1. A numeration is a pair (A,o), where o :
N — A is a surjective total map; the function o is called a
numbering of A. We write o, in place of o(n).

Let e : Pr(N) = N be the well known coding of finite
sets of natural numbers. If (4, o) is a numeration, then the
function &, defined by o(n) = {0, : m € e71(n)}, is a
numbering of Pr(A). Let (_, ) : N x N = N be the well
known coding of pairs of natural numbers. If (A4,0) and
(B, T) are two numerations, then the function o x 7, defined
by (o x 7)({n,m)) = (o, Tm), is a numbering of A x B.
Moreover, we say that:

o A subset X C A is o-re. (decidable) if {n: o, € X} is
r.e. (decidable).

e A partial function f : A — B is (o, 7)-computable if
there exists a partial recursive function ¢ : N — N such that
o, € dom(f) iff n € dom(p), and f(0,) = Ty(n). In such
a case, we say that ¢ tracks f. If dom(p) is decidable, then
f is called strongly computable.

Definition 2. A numeration (A,c) is computable iff the
equality relation on A is o-decidable.

Note that if (A, o) and (B, 7) are computable, then so are
(Pt(A),0) and (A x B,o x T).

C. Lambda calculus and lambda models

With regard to the A-calculus we follow the notation and
terminology of [1]. A and A° are, respectively, the set of
A-terms and of closed A-terms. We denote «(-conversion
by A3. A A-theory is a congruence on A (with respect to
the operators of abstraction and application) which contains
AB. A A-theory is extensional if it contains the equation
Az.x = Azy.zy; A\Gn is the least extensional \-theory.

If C is a category, then a pair (F, Q) is a retraction pair
from an object £ into an object D if ' : D — & and
G : £ — D are two morphisms satisfying FoG = idg. If
the morphims in C are partially ordered, then a retraction
pair satisfying GoF' < idp (GoF = idp) is called an e.p.-
(iso-) pair.

It is well known [1, Ch. 5] that a model of the untyped
A-calculus, or A\-model here, is nothing else than a reflexive
object (D, F,G) of a ccc C, that is to say (F,G) is a
retraction pair from [D — D] into D, where [D — D] is the
exponent object of C. A A-model is extensional if (F,G)
is an iso-pair, while it is semi-extensional if (F,G) is an
e.p.-pair.

In the following we will be interested in the ccc Cpo
(Scott continuous semantics). Reflexive objects in Cpo will
be called reflexive cpo-models, while reflexive objects in
the ccc SD of Scott domains will be called reflexive Scott
domains.

Let D = (D, F, G) be a A-model. We let Envp be the set
of environments with values in D. For every x € Var and
d € D we denote by plx := d] the environment p’ which
coincides with p, except on x, where p’ takes the value d.
The interpretation |M| : Envp — D of a A-term M is
defined by structural induction on M, as follows:

o |zl = pla);  [MN[) = F(MJ)(INI);

o NoM[D =G(deD M, _y).

We write |[M|P for [M|P if M is a closed A-term.

Each A-model D induces a A-theory, denoted here by
Eq(D), and called the equational theory of D. Thus,
M = N € Eq(D) if, and only if, M and N have the
same interpretation in D. A partially ordered A-model D
induces also an order theory Ord(D) = {M C N
|M|P Cp [N[} for all environments p}.

D. Effective lambda models

In this section we introduce the notion of an effective \-
model and we present from [5] the main properties of these
models.

Definition 3. [12], [22] An effective Scott domain is a
pair (D,o) where D is a Scott domain, (K(D),0) is a
numeration and the following predicates on K(D) are o-
decidable:

e Com = {(z,y) € K(D)?: 32 € K(D). z > z,y}

e Sup = {(z,y,2) e K(D)?: 2=z Uy}

It follows that the order relation Cp and the equality on
K (D) are decidable, i.e., o is a computable numbering of
K(D).

An element x € D is called re. (decidable) if the set
{y € K(D) : y < z} is re. (decidable). We write D™
(D%c<) to indicate the set of all r.e. (decidable) elements of
D. Clearly K(D) C Ddee.

If D is an effective Scott domain, then [D — D] is an
effective Scott domain too.

Using standard techniques of recursion theory it is possi-
ble to get in a uniform way a numeration ¢™¢ : N — D¢
which is adequate in the sense that the relation o, Cp 0,
is re. in (k,n) and the inclusion mapping ¢ : K (D) — D"
is computable w.r.t. o,0™.

Proposition 4. [22, Ch. 10, Prop. 3.7] Let (D, 0) and (€, T)
be effective Scott domains. Then the following statements are
equivalent:
(i) fe[D— &
(i) {(2,y) € K(D) x K(€) : y Ce ()} is re.
(iii) The restriction f[|: D™ — & s (o™, 77¢)-
computable.



Definition 5. [5, Def. 5] A A-model D = (D, F,G) is
weakly effective if D is an effective Scott domain, F €
[D— [D — D]|"¢ and G € [|[D — D] — D|"*.

If D is an effective domain, then the set Envp of
environments is an effective domain too. Let A} = AU{L}
be the usual flat domain of A-terms. The element | is always
interpreted as L p in a reflexive Scott domain D.

Proposition 6. [5, Prop. 1] If D is a weakly effective \-
model and | — |P is the interpretation function of \-terms,
then | — |P € [A, x Envp — D]"¢.

A set X C A% is B-closed if M € X and M =3 N
imply N € X, for all M, N € A°. Similarly for X C A.

The following theorem is a slight modification of [5, Thm.
4].

Theorem 7. Let D be a weakly effective \-model for which

there exists M € A° such that |M|P € D¢, Then we have:
(i) {N € A°:|NIP C |M|P} is a B-closed co-re. set.
(ii) Ord(D) is not re.

(i) Eq(D) # AB, ABn.

Proof: (i) follows from Prop. 6 and the fact that [M|P €
Ddec.
(i1) is an immediate consequence of (i).
(iii) follows from (ii) and Selinger’s result [21] on the
triviality of every compatible order on the term model of

AB (ABm). n

III. INFORMATION SYSTEMS

Scott domains have an appealing and suggestive repre-
sentation as information systems introduced by Dana Scott
in [20]. An information system consists of a set of tokens,
which are related by entailment and consistency relations.
It determines a Scott domain with elements those sets of
tokens which are consistent and closed with respect to the
entailment relation; the ordering is just set inclusion. Vice
versa a Scott domain defines an information system through
its compact elements. In this section we review the basic
notions on information systems.

Definition 8. An information system is a triple A =
(A,Cong,t4), where Cong C Pr(A) is a downward
closed family containing all singleton sets, and F, C
Cong x A satisfy the three axioms listed below. We adopt
the following conventions: letters o, 3,7, ... are used for
tokens, i.e., elements of A; letters a,b,c,... are used for
elements of Cony, letters x,vy, z, ... are used for arbitrary
elements of P(A).

(IS1) ifa€a, thenal 4 «

(IS2) ifvVBeb. alg B and bl 4 «, then a4 «

(IS3) if ak 4 a, then aU {a} € Cony

We say that © C A is consistent if Pr(z) C Con. If x is
consistent, then we define: (i) 4 2 = {a:ata a,a Ci )

()xtFgaifac gz (i) xbgyify CYa x. We often
write || « for 4 x. When we write x - « or z F y it is
always implicitly assumed that x is consistent. The notation
a —F f means a - (G and B+ «a.

A consistent subset x C A is a point of A if |,= =z.
The set of all points of A, ordered by inclusion, is a Scott
domain.

Given information systems 4 and B, a relation R C
Con 4 x Cong is said to be approximable ( [20, Def. 5.1]) if
(0,0) € R, and for all a,a’ € Cony and all b, ¥, c € Conp:

1. if (a,b), (a,c) ER, then bUceCong and (a,bU c)ER

2. ifa' Faa, (a,b) €R, and bFp bV, then (a/,b') € R
Any approximable relation R is uniquely determined by its
trace Tr(R) = {(a,f) : (a,{B}) € R} in the sense that
R={(a,{f1,..-,0n}): (a,1),...,(a,0n) € Tr(R)}.

We will call Inf the category which has information
systems as objects and traces of approximable relations as
arrows; in this category the identity of an object A is its
entailment relation 4. Note that any hom-set Inf(A, B),
ordered by inclusion, is a Scott domain.

The information system (0, {0}, ?) is the terminal object
for this category and it is well-known that it is possible to
define Cartesian products ( [20, Def. 6.1] (defined as disjoint
unions W of information systems) and exponential objects (
[20, Def. 7.1]) in Inf in such a way that it constitutes a ccc.
For later purposes, we define (up to iso in Inf) the exponent
of Aand B as A = B = (Conyg x B,Con,}), where

® {(a17ﬂ1)7 R (am;ﬁm)} € Cong= p iff
VI C[1,m]. Ujera; € Cong = {B; :i € I} € Conp

e {(a1,61),-..,(an,Bn)} F (c,0) iff {B;: ct a;} 6.

The two categories SD of Scott domains and Inf of
information systems are equivalent; to show this, define two
functors (=)~ : SD — Inf and (—)" : Inf — SD as
follows:

o for A € Obj(Inf), A" is the Scott domain of all points

of A, ordered by inclusion;

o for R € Inf(A,B), Rt (z) = {8 :3a C . (a,B) €
R} (x € A™T). The continuous function R™ will be
denoted by fun(R).

o for D € Obj(SD), D~ = (K(D), Con,F), where a €
Con iff a C¢ (D) is upper-bounded in D; (ii) a - «
iff o < Ua.

o for f € SD(D,E), f~ ={(a,0) : B € f(Ua)}. The
trace f~ will be denoted by gph(Jf).

Proposition 9. The functors (—)~ : SD — Inf and
(=)t : Inf — SD are both full and faithful, and the two
composite endofunctors (=)~ o (=)T and (=)t o (=)~ are
naturally isomorphic to the identity functor of Inf and SD,
respectively. Moreover the functors (—)~ and (=) preserve
exponentials and products, i.e. (A = B)t = [AT — BT]
and (AW B)T = A" x BT in the category SD, and
D —- & =D =& and (DxE)™ XD WE in
the category Inf.



Proof: The family of arrows of Inf given by
(va: A— AT A€ Inf)

with components v4 = {(a,{ b) : b C || a} is a natural
isomorphism. The family of arrows of SD given by

{(up : D — D~ :D e SD)

with components pp(z) = {a € K(D) :
another natural isomorphism.

Inf(A,B) and (A = B)*t are the same Scott domain.
fun : (A = B)T = [AT — B*] and gph : [D — &] &
(D~ = &))" are isomorphisms determined by the functors
(—)* and (—)~ restricted to the hom-sets. Clearly [D —
ETT 2 [D— & 2 (D™ = &) in SD; the conclusion
easily follows. ]

From the correspondence given in Prop. 9 it follows that

a Cp z} is

(i) there exists a retraction (e.p.-, iso-) pair from £ to D
in SD iff there exists a retraction (e.p.-, iso-) pair from
€7 to D™ in Inf.

(i) D is a (semi-extensional, extensional) reflexive object
in SD iff D~ is a (semi-extensional, extensional)
reflexive object in Inf.

IV. WEBBED MODELS FOR EXTENSIONAL REFLEXIVE
SCOTT DOMAINS

In this section we introduce a class of webbed models,
called iweb-models, arising from information systems. In the
main result of the section we show that iweb-models include,
besides the filter models living in Cpo, all extensional
reflexive Scott domains.

It is well-known that if (F,G) is an e.p.-pair from &
into D in SD, then F' is uniquely determined by G, in the
sense that F'(z) = | {y € F : G(y) < z}. The situation
is even better in the category Inf, where an e.p.-pair, that
is a suitable pair of (traces of) approximable relations, is
determined by a unique function with suitable properties (see
Lemma 13 below).

Definition 10. Let A, B be information systems. A morphism
¢ is a function from A into B satisfying the following
condition

(H1) a € Cony < ¢(a) € Cong.

If ¢ : A — B is a morphism, we define ¢~ : AT — BF
and ¢~ : Bt — AT as follows:

o ¢ (z) =Ip{d(c) : @ € z}, for every point = of A;

e o (y) = Va{a: ¢(a) €y}, for every point y of 5.
Lemma 11. ¢, ¢ are well defined and Scott continuous.

¢~ and ¢ are candidate to be a retraction, but we need
more hypotheses.

Definition 12. We say that a morphism ¢ : A — B is a:

1. backward morphism (b-morphism, for short) if it sat-
isfies

(H2b) ¢é(a) B ¢p(a) = al4 a.
2. forward morphism (f-morphism, for short) if it satisfies
H2f) abaa = ¢a) g o).

3. bf-morphism if it is both a b-morphism and an f-
morphism.

4. strong bf-morphism (sbf-morphism, for short) if it is a
bf-morphism satisfying

H3) bk B = bNnran(é) s B.

The relativization of the various notions of morphism to
the case in which ¢ is a partial map is obtained by requiring
a € dom(¢) in (H1) and a U {a} € dom(¢) in (H2f) and
(H2b).

Lemma 13. (i) Let ¢ : A — B be a b- (bf-, sbf-)
morphism. Then (¢, ¢7) is a retraction (e.p.-, iso-)
pair from AT to BT.

(ii) Let (F,QG) be an e.p.- (iso-) pair from & to D. Then G
restricted to K(E) is a bf- (sbf-) morphism from £~
to D~.

Proof: (1) From (H2b) it follows ¢~ o ¢~ = Id 4+,
while the relation ¢~ o ¢ < Idg+ follows from (H2f).
(ii) By G o F < idp the map G restricted to K(&) is an
injection from KC(€) into IC(D); (H1) follows from F oG =
tdg and the monotonicity of F, G. Finally, (H2b) and (H2f)
are consequences of F' o G = idg and the continuity of G,
respectively. [ ]

Definition 14. A pair A = (A, ¢4) is called an iweb if
A is an information system and ¢4 : (A= A) — Aisa
b-morphism.

Partial iwebs are defined by partial b-morphisms. If A is
a partial iweb, then we implicitly mean that A = (A, ¢4).

A is a finite iweb if it is a partial iweb and A is a finite
set.

Proposition 15. If A is an iweb, then AT = (AT, fun o
¢, ¢4 o gph) is a reflexive Scott domain.

Proof: By Lemma 13(i) and by Prop. 9. [ ]
Semi-extensional and extensional iwebs are respectively
defined by bf-morphisms and sbf-morphisms. They generate
respectively semi-extensional and extensional reflexive Scott
domains.

Definition 16. Let A be an iweb. Then the reflexive Scott
domain A is called an iweb-model.

Let A be an iweb. The interpretation function | — |4 :
A x Env g+ — AT of M\-terms is defined inductively in the
standard way:



o lyl2=py)
o Py MA = b{6a(a,a) o e [MA )
o [IMN|}={6:3a C N[ (a,8) € ¢p5(IM|2)}.

Example 17. (Filter Models) Let (A,A\) be a meet-
semilattice. Then A = (A, P¢(A),F), where a - « iff
(Aa) < «, is an information system. If — is a binary
operation on A, then define ¢ : Pi(A) x A — A by
dla,a) = (Na) — a. Map ¢ is a morphism, ie., it
satisfies (HI), because Cong = Pi(A). (A, ¢) satisfies
(H2b) (i.e., it is an iweb) iff the following property holds
(see [10, Def. 2.12]): if Ni_i(c; — Bi) < v — & then
(/\ie{i:'ygai} ﬁl) < d.

Example 18. (Preordered Coherent Models) A preordered
set with coherence is a triple (A, <,<), where A is a non-
empty set, < is a preorder on A and <= is a coherence (i.e.,
a reflexive, symmetric relation on A) compatible with the
preorder (see [3, Def. 120]). A pc-information system is a
triple A = (A, Con, ), where Con = P{°N(A) (the finite
coherent subsets of A) and a & « iff 30 € a. > a. A pc-
web (see [3, Def. 153]) is determined by a pc-information
system A and a b-morphism ¢ from A = A to A. This
means that ¢ satisfies:

H1) ¢(a,a) < (b, B) iff (aUb € P{"(A) = a<f)

(H2b) if ¢(a,a) < ¢(b,B), then o < 3 and (Vy € b 0 €
ary <9).

Clearly Krivine models of M\-calculus [3, Section 5.6.2] arise
from pc-webs in which < = A x A, while graph models [3,
Section 5.5] from pc-webs in which = = A X A and < is
the equality.

Let £, D be Scott domains. If o € K(€) and 5 € K(D),
we denote by o ~~ 3 the step function from £ into D defined
by

(a ~ B)(x) = if & > « then S else Lp.

Theorem 19. For every (semi-)extensional reflexive Scott
domain D = (D, F,G) there exists an iweb-model with the
same equational and order theories of D.

Proof: We prove the statement for the extensional case.
First of all, we define a sbf-morphism v of information
systems from D~ = D~ onto [D — D]~ as follows:

v(a,B) =Ua ~ B, fora€ Conp- and 8 € K(D).

It follows from Lemma 13(1) that the Scott domains (D~ =
D~)* and [D — D]~ are isomorphic via the map 7.

Define A = (D~,G ov). By Lemma 13(2) Gov is a
sbf-morphism, so that A is an extensional iweb and A7 is
an extensional reflexive Scott domain.

The A-models D and A™ are isomorphic because up is
an isomorphism between the Scott domains D and D~ and
G=pp'o(Gov)~o (1/")_1 o pp—pj], where all involved
maps are isomorphisms. Recall the definition of y from the
proof of Prop. 9. [ |

V. COMPLETION OF PARTIAL IWEBS

Starting from a partial iweb A, it is possible to obtain by
“completion” a total one which “extends” A. We apply this
method to show that, if an inequality fails in an iweb-model,
then it fails in an iweb-model arising from the canonical
completion of a suitable finite iweb.

Let A be a partial iweb. We define an information system
A* extending A and a map ¢* : Cony x A — A*, which
is a b-morphism from A = A into A*:

o A* =AU ((Cony x A) — dom(da))

o ¢*(a) = if a € dom(¢4) then ¢a(a) else «

o x € Con™ iff

— either x € Cony

— or there are X € Cong— 4 and b C¢ A\ ran(da)
such that ¢*(X) N A € Cong, ¢*(X)NAkF4b,
and z C ¢*(X)UD

e al* aiff a € Con™ and (either aNAF4 « or o € a)

Lemma 20. Let A be a partial iweb. Then A* is an
information system and ¢* is a b-morphism from A = A

to A*.

Proof: We proceed to verify all the axioms of infor-
mation system. Clearly Con™® contains all singletons, and
() € Con™ because ) € Con,4. Moreover Con™ is downward
closed by definition. Axiom (IS1) is satisfied by definition
of +*. For (IS2), assume a H* b H* «. If o € b, then we
have the conclusion; otherwise, we have that bN A 4 a.
From a N A F4 bN A, by applying property (IS2) for A,
we get a N A F4 « and hence a F* a. We now prove
axiom (IS3). Assume a F* «: if @ € Cony or o € a, then
the result is obvious. Otherwise a N A -4 « and there exist
X € Cong— 4 and b Cr A\ran(¢pa) such that p*(X)NA €
Cong, ¢*(X)NAFAb, and a C ¢*(X) Ub. Then we get
(¢*(X)NA)Ub F 4 « and therefore ¢*(X)NAF4 {a}Ub,
so that a U {a} C ¢*(X)UbU {a}.

If « € ran(¢pa), then by definition of Con™ we have that
aU{a} € Con™.

If & € ran(¢a), then o = ¢4(c,7) for some ¢, . Let
Y = XU{(¢,7v)}. Then we have aU{a} C ¢*(Y)Ub. From
d (X)NA = ¢pa(X Ndom(¢a)) it follows that ¢4 (X N
dom(¢pa)) Fa ¢a(e,7). Then by property (H2b) for ¢4 we
get XNdom(¢pa) Fa=a (c,7y) and thus X Fa— 4 (c,7v). We
now conclude aU{a} € Con™ by noting that Y € Con -, 4,
»*(Y)NA = ¢a(YNdom(da)) € Cony (by property (H1)
for ¢ 4), and finally ¢*(Y)N A+ 4 b.

This shows that A* is an information system. We now
prove properties (H1) and (H2b) for ¢* : A = A — A*,
making it a b-morphism.

(H1) Assume X € Cong— 4. We have to show that
¢*(X) € Con”. Clearly X N dom(¢a) € Conam4 and
using (H1) for ¢4 we get that ¢4 (X N dom(da)) =
¢*(X)NA € Cony. The conclusion follows by the definition
of Con™ with b = ().



Assume ¢*(X) € Con®. If ¢*(X) € Cony, then the
conclusion follows immediately by (H1) for ¢ 4. Otherwise
there exist Y € Cong— 4 and b C¢ A\ ran(¢p,) such that
¢*(Y)NA € Cong, ¢*(Y)NAF4 band ¢*(X) C ¢*(Y)U
b. From b C A\ ran(¢.) it follows that ¢*(X) C ¢*(Y).

Since ¢* is the identity on all elements not in the domain
of ¢4, it follows that X \ dom(¢4) C Y \ dom(¢4) and
for every (a,a) € X Ndom(¢,) there exists (¢,y) € Y N
dom(pa) such that ¢p4(a, ) = ¢a(c,7). By the property
(H2b) of ¢4 we derive (a, ) 4= 4 (c,7). It follows that
Y Faza (a,a) for all (a,a) € X Ndom(¢4). This means
that Y F4— 4 X, and hence X € Cong— 4.

(H2b) Assume that ¢*(X) H* ¢*(a). Since ¢*(X) €
Con*, by (H1) for ¢* we derive that X € Con 4. There
are two cases to be dealt with.

If « € dom(¢a), then ¢*(X) N A 4 ¢a(a) and we
derive ¢4 (XNdom(¢pa)) Fa ¢a(a) so that by (H2b) for ¢4
we have that X Ndom(¢4) Fa=a o and hence X Fa 4 a.

If « € dom(¢a), then a = ¢*(a) € ¢*(X), so that
a € X and this concludes the proof. ]

Let A be a partial iweb, and assume A does not con-
tain any pairs. Define inductively (A,,®,) as follows:
(Ao, o) = (A pa); (Ant1, dnt1) = (A7, 9).

The canonical completion of A is the following structure
Aw = (Au, 00): Aw := UmenAms du = U,y @m- In the

following we write Con,, and |}, for Conu,, and | 4.
Proposition 21. If A is a partial iweb, then A, is an iweb.

Proof: By Lemma 20 ¢, 41 : A, = A, — Apyq is a
b-morphism. Then ¢, : A, = A, = (Upen A, = A,) —
A, = UpenApa1 is a b-morphism. [ ]

Definition 22. 1. The restriction of an information sys-
tem A to S C A is the information system A |s=
(S,Cong,tg), where Cong = {a € Cony : a C S}
and g =F,4 N Cong X S. S is said to be a subsystem
of an information system A if S = Algs.

2. A partial iweb S is a subweb of an iweb A if S is a
subsystem of A, and ¢s5 C ¢4 N (Cong x S) x S.

3. A morphism of iwebs from an iweb B = (B, ¢p) to
an iweb C = (C,¢¢) is a morphism g : B — C of
information systems satisfying

(H4) g(¢p(a, @) = dc(9(a). g(a)).
Similarly for the other types of morphism.

Lemma 23. A morphism g : B — C of information systems
induces a morphism g~ : B = B — C = C by compo-
nentwise definition: g~ (b, 3) = (g(b), g(B)). Moreover we
have that, if g is a b-morphism (resp. f-morphism), then so
is g~ .

The following lemma holds with a very weak hypothesis.

Lemma 24. Let B and C be iwebs, and h : B — C be
a function satisfying (H2f) and (H4). Then, for every Z €

A, we have that h(|Z|B) C |Z|S(p), where h(p)(z) = o
h(p(x)).

Proof: The proof is by induction on the complexity of
the \-term Z.

(Z = PQ) If g € |PQ l],?’, there exist a C \Q|lp3 and
X € Conp=p such that ¢p(X) C |P|l])3 and X Fp_p
(a,3). By (H4) and by the induction hypothesis we have
that h(a) C |Q[F,) and ¢c(h™ (X)) C |P|5 .

If we prove that there is a subset Y of X such that
h=(Y) Fe=c (h(a), h(a)), then this last condition together
with h(a) C |Q|Sp and ¢c(h~(Y)) C |P|Sp imply that
ha) € [PQIS,

Since X Fpop (a,a) iff {8 : 3(b,8) € X,a Fp b}
Fp «, then by (H2f) we have that {h(8) : 3(b,5) €
X,a bp b} Fe h(a). But by applying again (H2f) we get
{h(B) : 3A(b,B) € X,a kg b} C{h(B) : I(h(b),h(B)) €
h=(X),h(a) ke h(b)}. We get the conclusion by putting
Y ={(b,p0)€eX:atphb}.

(Z = M\y.P) Clearly a € \P\f’[y:: ) implies h(a) €
h(|P|f"[y:: U«Ba]). Moreover, by (H2f) h({za) C ¢ h(a),
so that it holds:

() hlply = Ipal) € hp)ly :== Ych(a)]
Hence we can proceed as follows:
h(|hy.P[B) = h( Up{bs(a,0):ac |P|§[y::b3a]}) c
Yo {6 (hla), h@)) : h(a) € A(IPB,_y, )}

by (H2f)-(H4)
C lo{pc(h(a),h(a)) : h(e) € |P‘S(p[y;: llch(a)])}

by induction hypothesis and (x)
- |)\y.P|hc(p) [ |

The following is the main theorem of the section.

Theorem 25. Let A be an iweb and M T N be an
inequality which fails in the iweb-model AT. Then there
is a finite subweb S of A such that M T N fails in the
iweb-model S arising from the canonical completion S,
of S.

Proof: For an A-environment p, and S C A, we let pN.S
be the S-environment defined by (p N .S)(z) = p(x) N S.
Let o € |M \ﬁ‘ \ |N |pA for some A-environment p.

Claim 26. There exists a finite subweb S of A such that
a€|M |§m 5

Proof: The proof is by induction on the structure of M
by showing that o € |M |§ depends only on a finite number
of elements of A. For example, if M = PQ and « € |PQ|A,
then there exist a C [Q[2 and ¢;,7y; (i < n) such that
¢A(Ci>’7i) € |P|? with {(01771)7 R (cn7’yn)} Fa=a
(a, ). By induction hypothesis for each pair (c;,;) there
exists a finite subweb S; of A such that ¢ 4(c;, ;) € | P ,Sm s,
and for all § € a, there exists a finite subweb S5 of A
such that § € |Q|§r‘;sé. Then we set S = (U, S;) U

(Usea S5)U(Uizy ci) U{a, 1, -, ), S = Als; finally




we put ¢ g equal to ¢4 restricted to set (U?:1 dom(gbgi)) U
(Uéeadom(¢55)) U{(Cl7’71)7'~‘7(cn77n)}- u

Claim 27. There exists an f-morphism g, from the canonical
completion S, of S into A.

Proof: As usual Sp = S and S,4; is the (n + 1)-st
information system produced by the canonical completion
procedure of S. We define g, = Upengn, Where g, @ S, —
A is inductively defined as follows:
® go = ids;

o grir(a) = gn(@) if « €5,

¢algy (0,8)) if a=(b,5) € Sny1\ Sn
(H2f): Straightforward to verify, since I-,, coincides with

€ for elements of S,,\S.

H4): If (a,c) ¢ dom(os), gu(dw(a,a)) = gu(a,a)
= ¢a(9u(a), gu(@)). If (a,a) € dom(¢g) then g, is the
identity on S and ¢, = ¢s = ¢4 restricted to dom(¢pg).

(H1): We show by induction that g, : S, — A is a
morphism of information systems. The condition trivially
holds for go. Assume that g,, : S,, — A is a morphism. Then
by Lemma 23 ¢ : S, = S,, — A = A is a morphism too.
Since gn+1o¢n+1 = ¢Aogr? we have: (bn-i-l ((1) € C0n5n+1
iff a € Congn:sn iff gf(a) € Cong 4 iff gi)A(gff(a)) =
gn+1(¢n+1(a)) € COHA. n

Claim 28. o € [M |54 \ [N[3ss.

Proof: Recall that a € S and that o € |M |,S)r°?s
by Claim 26. Assume, by the way of contradiction, that
o € |[N|32,. Then from Lemma 24 it follows that g,,(a) €
90 (pNS)? that is, o € |N|£‘ms - |N|l‘;“, because g, is
the identity restricted to S. This contradicts the original
hypothesis. ]

This concludes the proof of Thm. 25. [ |

VI. EFFECTIVE INFORMATION SYSTEMS

Definition 29. An effective information system is pair
(A, 0), where A is an information system and (A,0) is a
numeration such that the predicates Con and & are both
o-decidable.

Lemma 30. Ler (A,0) and (B, T) be effective information
systems. Then there are a numbering ot of the compact
points of A and a numbering o = 1 of Cony X B such
that

(i) (AT,o™) is an effective Scott domain.
(i) (A= B,o = 1) is an effective information system.
(iii) ([AT — Bt],funo (o = 7)") is an effective Scott
domain.

Proof: Let ¢ : N — P;(A) be the standard numbering
obtained from o (see Section II-B).

(i) We define a numbering o of the compact elements
of AT by

ot =if 5, € Cony then || 7, else | 0.

n

It is now clear that for two compact points o', a: we have:

o, 0 compatible <= G, Ud; € Cony; hence the
relation of compatibility is ot-decidable, since Con4 is o-
decidable. For three compact points 0,0, o, and o;" we
have: o;f Lot = a,': iff 5, Ua,, € Cony and o -+ (0, U
Gm) and thus the relation of supremum is o'-decidable,
since the right-hand side is o-decidable.

(ii) Recall the bijective coding (_,_) of Section II-B and
define: &, 1y = if 7, € Cony then (7, 71) else (0, 7%).

(iii) By (i)-(ii) we have that ((A = B)*, (o = 7)1) is
an effective Scott domain. Then the conclusion follows from
Prop. 9, where it is defined an isomorphism fun : (A =
B)t = [AT — BT]. [ |

From now on whenever (A, o) is an effective information
system, then we will always consider the numbering o+
described in Lemma 30 as a standard one for the domain
AT,

For every point = € A1 we have that {n : 0,7 C z} isre.
iff {n: o, € x}isre. Then z € (A1) iff x is a o-r.e. set.
For any o-re. consistent subset z of A, {4 x € (AT)"¢.

Lemma 31. If (D,o) is an effective Scott domain, then
(D~,0) is an effective information system.

The following corollary provides an easy proof of a well-
known result.

Corollary 32. If (D,o) and (E,7) are effective Scott
domains, then [D — &] is an effective Scott domain too.

Proof: By Lemma 30(iii) and Lemma 31 we have that
([D~* — & T],funo (¢ = 7)) is an effective Scott
domain. Then the conclusion follows from D= D~-t. m

Lemma 33. Let (A,0) and (B, T) be effective information
systems. If ¢ : A — B is a (o,7)-computable morphism,
then ¢~ € [AT — BT|"¢ and ¢~ € [BT — AT]™e.

Proof: ¢~ € [AT — BT]"™¢ follows by applying Prop.
A(iii) to ¢~ | (A*)"¢. Similarly for ¢*. n

VII. EFFECTIVE IWEB-MODELS

Definition 34. A (partial) iweb A is effective if there exists
a numbering o of A such that (A, o) is an effective infor-
mation system, ¢4 : A= A — Ais a strongly (60 = 0,0)-
computable function and ran(¢ ) is o-decidable.

Theorem 35. If a partial iweb is effective, then its canonical
completion is effective too.

Proof: Let (A, o), where A # (), be an effective partial
iweb and consider the sequence (A, ¢, )n<. defined in
the canonical completion procedure, where (Ag, o) :=
(A, pa). We recall that A, is a subsystem of A,,+; and
that ¢,11 : A, = A, — A,41 is a b-morphism. Now
set 0(®) := ¢ and assume that a sequence ¢(©) ... o("
of numberings, with n > 0, has already been constructed
in such a way that (A,,0(™) is an effective information



system, ¢,, is strongly (o(*~1) = ¢(*=1 5("))_computable
and ran(¢,) is o(™-decidable. Then it is routine to devise
a numbering for (Con,, x A,) \ dom(¢,) and from it to
produce a numeration (A, 41, in such a way that it
is possible to decide whether a given element 07(7? 1) belongs
to Ap41 \ 4, or to A, e.g., assigning to even numbers the
elements of A,, and to odd numbers the “new” pairs from
(Con,, x A,) \ dom(op,).

Now ¢,+1 extends ¢,, mapping pairs to themselves and
Fn+1 extends F,, with membership, so that it is not difficult
to show that ¢, 1 is strongly (¢ = o) g(+1).
computable, ran(¢,,1) is o™ V-decidable and 1 is
o("*t1)_decidable. Now a quick look at the definition of
Cony,4+1 allows to conclude that this predicate is indeed
o("+1)_decidable.

Let p,, be the (n + 1)-st prime natural number. We now
construct a numeration (A, ¢) as follows:

(n)

%

(m)

Cm = if m = (p,)* then o, else o, (D)

By using the corresponding properties of ¢,,, -, and Con,,,
it is not difficult then to see that dom(¢,,), . and Con,
are all (-decidable and ¢, is strongly (-computable. Now
since A, \ran(¢,) = A\ran(da), it is clear that ran(p,,)
is (-decidable. It follows that A, is an effective iweb. N

Lemma 36. Let A, be the canonical completion of some
finite iweb A. Then for any decidable consistent subset x of
Ay, Vo € (AS)dee,

Proof: Let © C A, be a consistent decidable set. By
definition of A,, we have that |, z =2 Ul (zNA) and
hence v € |, ziffa € zV(a € AANTa € CongNx.aty
«) The above predicate is clearly recursive, since Cony is
a finite set and the predicate o € A is (-decidable (by (1)
above (,, € A iff m is a power of 2). ]

Theorem 37. If (A, 0) is an effective iweb, then (AT, o)
is a weakly effective reflexive Scott domain.

Proof: By Lemma 30 (A*,0™") is an effective Scott
domain, while by Lemma 33 ¢ € [(4 = A)T — AT]"e.
Since gph : (A = A)* = [AT — A*] is an isomorphism,
then we get that G = ¢ o gph € [[AT — AT] — AT]™e.
Similarly for F' = fun o ¢%. ]

Lemma 38. Let A, be the canonical completion of a finite
iweb A. Then |\v.z|A% € (A)dee,

Proof: The finite iweb A is effective and hence, by
Thm. 35, so is its canonical completion A,,. Then by Thm.
37, Ai is a weakly effective reflexive Scott domain. Then
we have:

|/\3L".x\A;r = o {pa, (a,0):abtyu, a}
ba{oala,a):abtaa,(a,a) € dom(da)}
{(ba /6) : ﬁ € ba (bv ﬁ) ¢ dom(¢A)}

{e,y):enAFay,(e7) & dom(¢a)}

C C

The conclusion follows from the last equality recalling that
A is finite. ]

Theorem 39. Let A, be the canonical completion of a finite
iweb A. Then Ord(A}) is not r.e. and Eq(AY) # N3, \Bn.

Proof: By Thm. 37 A} is a weakly effective A-model
and by Lemma 38 |Az.z|A% € (AZF)?c. Hence we conclude
by Thm. 7(i). n

VIII. THE MAIN THEOREMS

The following lemma is important to obtain our main
theorems.

Lemma 40. (i) (Scott [1, Thm. 6.6.4]) Let X C A° be
B-closed and non-trivial (i.e., # (), A°) . Then X is not
decidable.

@ii) (Visser [1, Prop. 17.1.14]) No B-closed re. set of A-
terms different from A contains a non-empty [3-closed
co-re. set of \-terms.

Recall from [1] that the class of A-models is closed under
the construction of Cartesian product. Then the product D =
[I1.cn D& of a countable family of reflexive Scott domains is
a A-model (although it is not a reflexive object in SD) such
that Eq(D) = NkenEq(Dy) and Ord(D) = NgenOrd(Dy,).

Let D be a partially ordered A-model and M € A°. Then
we define: MP = {N € A?: [N|P Cp [M|P}.

Lemma 41. Let Ay = (Ag, ¢x) (k € N) be the family of all

finite iwebs with Ay, C¢ N, let Ay, (k € N) be the family

of their canonical completions and let P = [], oy Azw be

the Cartesian product of the reflexive Scott domains A;w.

Then '
i P= erN A',;w is an effective Scott domain;

(i) |A\v.z|P € P and (/\x.x)i) is a co-re. set;

(iil) Ord(P) is not re.

Proof: (i) It is not difficult to define an effective
bijective numbering of all the finite iwebs whose carrier set
is a finite subset of N. Let B = WecnAyg . Recalling Prop.
9, the product P is isomorphic to B*. Now consider an ef-
fective bijective function from N onto the set B = WyenAj o
making B an effective information system. By Lemma 30
BT is an effective Scott domain. Then P is an effective Scott
domain too.

(i) Every element x of the effective domain P is a
sequence (g, Z1,.-.,Tk,.-.) of sets which, without loss
of generality, we can represent by the set Wienxg, Where
x) 1s a point in the Scott domain A:.w Hence, we write
|M|P = Wyen|M|A%«, where | M|+« is the interpretation
of M in the reflexive Scott domain A;;w.

Now we show that [\z.z|P = Wyey|A\z.z|Are € Pdec,
Let & € WyenAp . First find the unique £ € N such that
a = (k,d) and o/ € Aj,. By Lemma 38 we have that
|Az.z|Are € (A;w)dec, so that we can decide whether o’ €
|A\z.z|A%« or not.



Finally, the set ()\:v.:n)f is co-re., because |M|F Zp
|Ao.z|P iff Ik [M|A*e & |Az.x|A*« and this last relation
is r.e. again by Lemma 38.

(iii) If Ord(P) is re., by (ii) the set ()\x.x)f is [-closed
and decidable. From Lemma 40(i) it follows that ()\x.x)f =
A°. Then [Azy.y|F¥ Cp |A\y.y|F, that implies |\y.y|F Cp
|M|P forall M € A°. Hence, the theory of P is inconsistent.
Contradiction. [ |

Theorem 42. The order theory of an iweb-model is never
r.e. and its equational theory is never equal to A3, \Bn. In
particular, this result applies to preordered coherent models
and to those filter models which live in Cpo.

Proof: By Lemma 41 the order theory Ord(P) of the
product P (as defined in Lemma 41) is not r.e. Now let A
be an arbitrary iweb: it is clear that Ord(P) C Ord(A™),
since by Thm. 25 any inequation between A-terms which
fails in AT, fails in a reflexive Scott domain arising from
the canonical completion of a finite iweb, and then in P
too. If Ord(A ™) is re., then (A:c.sc)f‘ is a B-closed r.e. set
of A-terms containing ()\x.x)f; by Lemma 41(ii) the latter
set is a [-closed co-r.e set: this leads to a contradiction of
Lemma 40(ii). In conclusion, Ord(A™) is not r.e. Because
of this, if Eq(A™) is r.e. then Ord(A™) strictly contains
Eq(A™); hence Ord(A™) is nontrivial on the interpretation
of A-terms. The conclusion follows from Selinger’s result
stating that in any partially ordered A-model, whose theory
is A8 (AfOn), the interpretations of distinct closed terms are
incomparable [21, Cor. 4]. [ |

Corollary 43. The order theory of an extensional reflexive
Scott domain is never r.e. and its equational theory is never
equal to \fBn.

Still, the intersection of all A-theories arising as equational
theories of extensional reflexive Scott domains might be
ABn. This case is not possible as shown in the next theorem.

Theorem 44. Extensional reflexive Scott domains are not
complete for the A\Pn-calculus, i.e., there are equations not
in \Bn which hold in all extensional reflexive Scott domains.

Proof: Let P be the A-model introduced in Lemma 41.
Let R be the Cartesian product of all extensional reflexive
Scott domains. Then we have Ord(P) C Ord(R). If Ord(R)
is r.e., we get a contradiction as in the proof of Thm. 42. ®
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