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Abstract. In the 2-period Balanced Traveling Salesman Prol{l#8aTSP), the customers
must be visited over a period of two days: sometrbesvisited daily, and the others on
alternate days (even or odd days); moreover, tingbeu of customers visited in every tour
must be ‘balanced’, i.e. it must be the same dermdtively, the difference between the
maximum and the minimum number of visited customemsst be less than a given
threshold. The salesman’s objective is to minintieetotal distance travelled over the two
tours. Although this problem may be viewed asagiqular case of the Period Traveling
Salesman Problem, in the 2-period Balanced TSRassamptions allow for emphasizing
on routing aspects, more than on the assignmethieafustomers to the various days of the
period. The paper proposes two heuristic algorithpagticularly suited for the case of
Euclidean distances between the customers. Congnabexperiences and a comparison
between the two algorithms are also given.
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O Introduction.

In the organization of picking up orders for comangr firms, it often
happens that an agent (or vehicle) has to visih@iscustomers (or cities)
periodically but at different times on the grourmfsthe number and the
frequency of the orders. The simplest, but freguease is when the set V
of customers can be divided into two sets over aogeof two days:
customers visited daily (set D) and customersedsdnly once in the period
(set S). This way, two tours must be constructeduch a way that both
contain all the elements in D, while the customerS are partitioned
between them.

Moreover, we wish the agent to work every day alntbhe same
time amount: this way, we alsmposesome balancing constraints on the
two tours.

This can be achieved in different ways: we can iregtat the difference
between the number of customers, which are visitegiach day, must be
below a given threshold or, in a multi-objectivettieg, it must be

minimised.
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In this paper we particularly consider the caswliich the two tours
contain the same number of customers or they déer Oy one.

The objective is to minimise the total distancavélled in the two
days.

The (non-balanced) 2-period TSP may be viewedstecular case
of the Period Traveling Salesman Problem (PTSP) Th]s last problem
generalizes the TSP by extending the planning gelog days. In PTSP
every customer must be visited a specified numbémes: in many cases
for each customer a set of feasible (allowable)moations of visit days is
also given. The aim is to buifaroutes (one route for every day) in order to
minimize the total covered distance: obviously, PT&d 2-period TSP are
NP-hard problems.

The literature on periodic routing problems is nety extensive.

The earliest work can be considered the paperb]Christofides
and Beasley (1984). In this paper, the authorpgse solution approaches
for the routing problem over more than one dayyaalgh the purpose is to
study the PVRP (Period Vehicle Routing Probleng, & problem with
weighted nodes and a capacity constraint on thielesh They propose two
heuristic algorithms which make use of the solutminother NP-hard
problems, i.e. the Period Median Problem and thé kveown Travelling
Salesman Problem.

Other heuristic approaches were subsequently peopws 1992 by
Paletta [15], and Chaet al. [5]; then, in 1997, Cordeau, Gendreau and
Laporte [8] present a tabu search technique; 02Z®aletta [16] presents a
new heuristic algorithm for the PTSP, improved iartdzzi, Paletta and
Speranza [3] in 2004. Other works are involvechwRtVRP [9] and with
asymmetric PTSP [17].

In PTSP there are two interrelated problems: aigasgnt problem,
because for each customer a feasible combinatiovistf days must be
chosen, and then a routing problem, in order td fhre best tour that visits
the customers of each particular day of the peribgese problems are often
solved subsequently: then improvement-exchangeedioes are used to get
a better solution.

Butler, Williams and Yarrow, in 1997 [4], introdudbe 2-Period
TSP. The authors solve exactly a particular casdysapplied to milk
collection in Ireland. Their work appears to bdapendent from the paper
of Christofides and Beasley [6] (which they do nmaote). After
introducing the problem, they give an integer paogming formulation.
The procedure they suggest is an exact approadhetgporoblem by a
combination of cuts and Branch and BoundHowever, in their
development, as the authors say, decisions ‘on dibeut the introduction
of constraints must be made.

Balancing constraints are never explicitly consde(both in PTSP
and 2-period TSP): in [5], in the assignment phasehe beginning of the
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algorithm, a uniform distribution of customers ttvisit days is searched
for. But in the improvement steps, the solution bacame not balanced. In
[6], a constraint on the maximum length of eachteds given. In [4] the
solution to the particular case gives two toursjtgrespectively 24 and 31
nodes (including the depot: the nodes to be vigitaty are 12).

The 2-period balanced TSP is the particular casth@fPTSP in
which the period consists of two days (p = 2) andhis way, two tours F
and T* must be built: differently from the (more gener@IJSP, in the 2-
period balanced TSP there is not a set of diffecembbinations of visit
days.

In this paper we propose two heuristics particylaited for the
case in which the underlying graph satisfies ttangular property.

The paper is divided into two sections: in thetfoee, after giving
some notations and definitions, the 2-period badnESP is formulated as
an integer programming problem; in the second dhe, two heuristic
algorithms are described. Last, conclusions acetta

1 Aninteger programming model for the 2BT SP.

Let G = (V, E)a complete graph of nodes f > 1) without loops. Let; be
the weight of the edge, (). In the 2-period balanced TSP the ¥atan be
partitioned into two (disjoint) subsets:

- the set of single-nod&s={s;, &, ... , &}, i.e. the ones to visit once
over two days;

- the set of double-nodés = {d;, &, ... , @}, i.e. the ones to visit
every day.

Obviously,h + k=n.

In [4] a depot is also defined: here, for sake ofpdicity, and
without lack of generality, we include it in thet & of double-nodes. This
way,D # /.

In what follows, a node belonging to the set or t§uwill be called
X-node. Besides this, given a getwe shall denote withA/ its cardinality
and with/x_/, x being a real number, the greatest integer

We want to build two toursT* and T? (one for every day), which
satisfy a balance constraint, in order to minintteetotal travelled distance.
Both tours visit all théd-nodes, while every single-node, i.e. evEmyode,
can be inserted only in one of the two todrsor T-.

This way, in every feasible solutio8js partitioned into two subsets,
S'andS (with S=S' 0 S andS' n & = /), the first one made up of nodes
visited on the first (or odd) day and the second on the second (or even)
day.
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Let k; be the cardinality 08" andk, the cardinality o , so thatk,
+ ko= k. T'-nodes constitute the s& O S', while T*nodes ar® 0 <.
Balance constraints can be formulated in several: wae use a
parameterg* which represents the maximum allowed differenceveen
the number of customers to be visited on the arsd on the second day.
Thus, we must have:

[ki- k[ < g*.

Letting g* = 1, then in a feasible solution the number of visited
customers must be equal in the two dayk (& even), or it can differ by one
unit (whenk is odd).

The problem can be formulated as an integer lipgagramming
one introducing the following Boolean variables:

- Xijg = 1 if and only if the customgris visited immediately

afteri on theg-day and O otherwiseq & 1 or 2);
- Yiq = 1 iff the customeri is visited on theg-day and O
otherwise (for every nodg [ Sandq = 1 or 2).

The 2-period balanced TSP formulation is:

Min >’ ZZ:C” Xiq (1)

(i,j)0E g=1
S.t.
vaijq =1 Ui0D;q (2)
3 X =1 0i 0D; 0g 3)
Yt ¥z =1 nios )
2 %1 = 2 X Ty bigs (5)
v jov
2 %2 = 2 X2 = Yz LS (6)
v jov
¥ %, <|Z]-1 Z 0SOD;Oq 7)
i,j0z
2 Y~ XYlS9¥ (8)
i0s i0s
Yiq {01} 0i 0S;0Oq (9)
X O {01} 0@, j)OE;Oq (10)

The objective function minimizes the total costs.

Constraints (2) and (3) impose that all double sodéD are visited
every day, both for oddj(= 1) and for evend = 2) days.

Constraints (4) guarantee that every single-nddes is visited only
once, either on even or on odd days; next conssré) and (6) compel the
existence of only one outside edge and one inglde r any nodel] S.
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Constraints (7) are classical sub-tour eliminatmmstraints of the
TSP,Z being a subset of nodes of the gr&p(see [12] and [13]).

Inequalities (8) represent the ‘balance constraitiiey impose an
upper bound to the difference between the numbaodés (customers) that
can be visited by a vehicle in each day.

There are two extreme cases: whBncontains only the depot, the
problem becomes a VRP in which customers havederntand and there
are two vehicles, each of them associated to awdiély,capacity/ (k+g*)/2_/

; on the other hand, iIS= /J/ (so that every node has to be visited every
day) the problem becomes a TSP.

Obviously, the 2-period balanced TSP is a NP-haotlpm (see [6],
[8], [13]).

2 Two heuristic techniquesfor 2BT SP.

The core of the 2-period balanced travelling sablesmroblem is how to
partition optimally the customers Binto the two sub-setS' and S, to be
attributed, respectively, to the two days of theique This appears the
crucial point, because softwares now availablesatim solve the subsequent
Travelling Salesman Problems,In/7 S' andD 7 S, in an exact way, at
least for instances with some hundreds of nodegdad example is
constituted by Concorde). This encourages theafisexact subroutines
which solve TSP as a step in the achievement @fpanoximate solution of
the 2-balanced period TSP.

Even the non balanced version of the period TSReagpquite
difficult to solve in an exact way: as we pointad above, Butler, Williams
and Arrows, in [4], propose a solution for a paride problem of 42 nodes,
but they do not give a fully automatised procedur@. our experience,
branch and cut takes a too long time also for maidesize instances. So
approximate algorithms are useful.

We propose two heuristics, that we shall call Ald aA2,
respectively, for the case in which, in the balagotonstraintg*=1. The
two procedures, particularly A2, work & is a geometric graph or if it
satisfies the triangular property.

Al is a very simple technique which quickly prowda feasible
good solution.

The second algorithm, A2, taking into account tlessibility of
‘edge crossing’ (i.e., “two different edges crass graph drawing if their
geometric representations intersect” [1]), give$easible solution, often
better than the one obtained by Al but at a greateputational cost.

Al and A2 both require, as a prerequisite, a hamdin cycle GT
over all the nodes in V (General Tour): in practiGd can be obtained by
well known softwares, once more, for instance, Cote.

In this section first we describe the algorithm Alien we motivate
it; finally, we introduce the algorithm A2 on thadis of some observations
concerning Al.
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Al algorithm

Step 1. Choose a visit direction on the circuit GT. Choa$® a single
nodes. PutS' = {s}. If kis even, go to step 2; otherwise go to step 3.

Step 2. Add toS' the (k/2) — 1subsequent single nodes followiadn the
chosen order of visit in GT. Put 8 thek/2 (following) remaining single
nodes. Go to step 4.

Step 3. Add to S the[(k-1)/2] single nodes following in the chosen order
of visitin GT. Put in$ the remainingk-1)/2single nodes. Go to step 4.

Step 4. Solve the TSP both i8'2D and in§/D. If there are other single
nodes not yet considered as first node, chooseandego back to step 1.
Otherwise go to step 5.

Step 5. Choose the best solution between the ones givem fiioe
procedure. STOP.

Al is motivated by the following considerations.

Given a region R of areR, in which N customers are uniformly
distributed, providedN is sufficiently large, i.e., at least a few dozemsvell
known formula (see for example [7]) gives a googragimation for the
total distance coveret in a TSP. This value is the square root of the
productRN, multiplied by a constant, which depends on the metrics we
use:

L=c+RN

To be true, in this formulaN#1) should be used, instead Mf but
for largeN this can be disregarded.

In our problem, due to the balance constraintspwst visit every
day all the double nodes and (with an approximatémmost, of one unit!)
one half of the total number of single nodes.

Let us divide Rnto two compact sub-regions; Bnd R having the
same area. We must decide how many single nodes &e visited on the
first day from each sub-region in such a way thattotal number of single
nodes chosen ig. Of course, thé&; single nodes, which are not yet visited
on the first day, must be included in the secomul.to

Introducing a parametaw, which represents the fraction of nodes
visited in region R the distance travelled during the first day can b
approximated by the following formula:

L=c (RI2((h/2)+ak,) +c (RI2((N/2)+@-a)k,)
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Obviously, the same formula is valid for the diswrravelled during the
second day, replacirig with k.

Due to the concavity of the square root functiois easy to see that
the minimum ofL is attained whem = 0 or @ = 1. This suggests to visit all
the single nodes which belong to a sub-region atay and to visit the
remaining ones (in the other sub-region) on thermday.

From an operative point of view, we must give B o define the
two sub-regions.

To this aim, experience shows that sub-paths ofa@&Tvery often
used in the optimal tours for each day. Thisummtsuggests to dividgin
two subsets putting in the same g6t+1)/2/ single points which are
consecutively visited in GT: these points are rduygiontained in a sub-
region having, more or less, half the area of thele/region containing all
the points.

This way, we have the possibility to construct maléferent
solutions, depending on which is the first singbelé of thek/2 consecutive
ones to be visited on a particular day: it shouddnoted that, whek is
even, the number of different solutions is exa&l®;, but whenk is odd,
then the number of different solutions (due to dhigerence between the
numbers of customers visited each day) grows Wlp to

Finally, once we have determined these two subSetsd S, we
solve two TSPs, one for the first day and the otbethe second one.

A2 algorithm

The algorithm A2, taking into account the trianguleequality, looks for a
feasible solution often better than the one obthibg A1l. Consider, for
example, the case of the graph in the followingrfey

Fig. 1 A graph and a shortest Hamiltonian Circuit
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Black nodes are single ones and white nodes arklelames. One
(minimum cost) General Tour is clearly the one @avy lines. A typical
solution given by the algorithm Al is: a first towhich visits all the nodes
from A to C (in the same order as in the GT), titevisits D and comes
back to A; a second tour, which is symmetric wiglspect to the first one
(see fig.2: continuous and dotted lines).

However, this solution is not optimal, becausetttagular property
is not adequately taken into account. Focusingattention on paths from
Ato B, it is clear (see once more fig. 1) that ldvegth of the path {A, a &,
B} on the first day plus the length of the edge B),on the second day is
greater than the length of the path {A, B} (to be run on the first day) plus
the length of {A, a B} (to be attributed to the second day).

This way, in an optimal solution, the two singledes, a and a,
between A and B must be visited on different daie Game is true for
every couple of adjacent single nodes in GT; sg8)ii

Fig 3. The tvauts in an optimal solution.
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More generally speaking, here the crucial poirthesfollowing: if a
path in GT linking two double nodes, sayandv, and containing some
single nodes, crosses the choud ), the single nodes on one side of this
chord must be visited in a different day with reggde the ones on the other
side. This is the most important point in A2.

Before giving A2 in detail, some more definitione aiseful.

Let “single-node path’P(u, v), SNP for short, be any path in GT
having node sety, s, &, ...$1, vV}, andr = 2 edges, in which the two
endpointsy andv, are double-nodes, while nodes,s, ...$.1 are single.

Single node paths are univocally defined wheneveo@ains more
than two double nodes. In the case in which tla@ee only two double
nodes, (including the depot) we have two single en@aiths: they are
distinguishable introducing a visit order in GT.

Let thecardinality of a SNP be the number of nodes in the path and
indicate it byl IP(u, v}l

As well as in the case of Al, in A2 also we musbagse a visit
direction for GT. In our computational experiesic&e introduced the visit
order in which the nodes of the convex hullére met clockwise.

The algorithm A2 consists of two phases. In thstfione, every
single node path which crosses its respective cisoadalysed and its nodes
are divided into two subsets; then, a partitionbfgm is solved, step by
step, inserting single nodes into two grapB$ and G? i.e. the graphs
containing the nodes to be visited respectivelyhim first and the second
day, in such a way that the balancing constrairftlidled. In this phase
some heuristics are required in order to solve ghigition problem. In the
second phase the TSP is solved bottsirandG? in order to find the best
toursTH* andT?.

A2 algorithm

Step 0. Choose a visit direction in GT. Let = G*= (D, [J). List
all the SNP’s in GT aBy(us, v1), Po(Uz, W), ..., R(uy, w). Go to step 1.

Step 1. Fori =1, ...t,consider the SNP; (u;, v) 0 GT. Test if any
edge(s!, &) O Pi(u;, V) crosses the chor@i, ) by the crossing-edge test:
if yes, putP; (u;, V) in a setW of ‘crossing SNP’s’. Otherwise, pB} (ui, v)
in a seZ of ‘non-crossing SNP’s’. Re-number SNP’s, botMirand inZ.
Letw = [W/J7andz = [Z/1 (We will suppose, without lack of generalit,

Z[] ZZ. In case this would not be true, the modification the algorithm
are quite evident). Go to step 2.

Step 2. Fori = 1,...w, consider the SNP;(u;, ) 7 W. Delete in
Pi(u;, v) every edgds,', ') which crosses the cho(d, v).
Let P!, P2 ... R"bethe disjoint sub-path8 Pi(u;, «) (possibly consisting
of only one node) in the sequence in which thewesiged inP;(u;, ).
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Insert single nodes which belong to sub-p&hsith odd apex into a s&W_
and the ones with even apex into a\t Letwig = Wgr ] Wy = M [
Go to step 3.

Step 3. Fori =1,...z consider the SNP;(u;, ) //Z. Insert single
nodes of this path in a sét Letz = /% /1 Go to step 4.

Step 4. Solve the following partition problem

) Min  Sie " (Guwie + XirWiR) +  i=1” Yz
s.t. Siz1" (XLWiL + XRWR) + Ziz1“Viz =2 k/2 (%)
X =1-%r (**)

XL, %R, ¥ {0, 1L

Insert intoG* the single nodes of the saté, Wk, Z for which the
corresponding variable, in the optimal solutionedmial to 1. Insert intG?
the remaining single nodes. Insert both iBtoandG? all the double nodes.
Go to step 5.

Step 5. Solve (twice) the TSP both & andG? call, respectively,
T andT? the two optimal tour. Go to step 6.

Step 6. If the (absolute) difference betwepd| and|G?| is< g*, i.e.
if the balancing constraint is satisfiélfOP. If the balancing constraint is
not fulfilled, go to step 7.

Step 7. Let w.l.o.g.|G' > |G?. For every single-nods in G,
consider its two neighbourhood nodesTitt: let them be called(s) and
b(s) Compute the transfer-cags) given by

r(S) =Ca(s).bs)— G.as— Gsbs) ¥ MiNg ) Gs+ Csj— G,

where the minimum has to be computed with resmeatltthe edges,(j) /7
T%. Go to step 8.

Step 8. Find the single-node* with the minimum transfer-cost.
Transfers* from G'into G%. Go to step 5.

A2 requires the resolution of the partition probléR). In the
formulation, constraints (**) guarantees that, éoery crossing SNP &(v),
the single nodes on opposite sides with respettteeahord linkingu andv
will be visited in different days.

(P) can be reduced to the following subset sum problem

10
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P) Min T xi W+ 2=’ yiz

S.t. Zizlw Xiw + Zizlz Vizi 2 E/Z

iy XYi Ll {O, 1},
with the substitution:

W, = Dwi, - Wig] k =k- =" min (WL , W)

(P) can be solved by different techniques (see [14] dor exhaustive
analysis).

A feasible solution t@P) can be built from the one () as follows. If in
the optimal solution = 1, put in G the nodes of the setWff | Wi | >

| Wir| ; otherwise put in &the nodes in W. (Note that ifl Wi | = | Wig]
then W, = 0 and it is indifferent to put the nodes ofi W G" or in G but,

anyway, not in the same set where nodes gfafé inserted!).

The algorithm A2, in order to satisfy the balancownstraints (8), firstly
partitions all the single-nodes paths in two Sétsand Z. Then, it partitions
the nodes of the SNP’s in the subsets VWVir and Z. Note that, while the
elements of W and Z are paths, the elements isdtee W , Wirand Z are
(single) nodes. The aim is to build the two sétsagles, G and G in such
a way that the difference of cardinality betweehadd G is as close as
possible to zero. In step 2, the setg \Whd Wk contain, respectively, the
single nodes that lie by the same side with resjpeitte path fronu; to v;.

The complexity of the algorithm A2 depends first af on the
resolution of TSP. Excluding from consideratioe thSP, the complexity
depends on [9]:

- the complexity of “crossing-edge test” (step 18, ©(n?);

- the complexity of the insertion cost of a hode{st® and

10), i.e.O(n?).

Observation From a practical point of view, the best solatmpst
given by the first algorithm is less than twice tusst of GT.

3 Computational experiences.

In order to compare the two heuristics, we congderO random instances,
each of them consisting in a graph of 48 nodesylo€h 16 were double.
So, every day, 32 nodes must be visited.

We number these instances asli, ..., lo. The instances were
drawn using Concorde.

In each instance, and both for A1 and A2, we digtished the case
in which the obtained tours™Tand T* ‘crossed each other’ or not, i.e.,
there exists (at least) one couple of edges, ofié*imnd the other in F,
which cross each other.

11
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In the ‘crossing’ situation, we performed a pos#igsis, in order to
improve he solution, taking account of the triamgubroperty. This was
done by an exchange technique, moving sectionsmgliesnode paths from a
tour to the other one. This operation gave a betéution in many cases
and changed the performance of one algorithm vatipect to the other: it
must be said, however, that the (happily limiteid)ehsions of the instances
allowed a visual analysis and consequent choicethef nodes to be
exchanged. Moreover, the subset sum problems toled were easily
handled: in most cases they have multiple solut{and the choice between
them was a ‘problem inside the problem)! Unfortehg it was not
possible to compare the obtained solutions withriine optima.

The results we obtained are reported in the folhgwable: the value
of the best solution is in heavy line. Stars dertbe best solution which we

obtained without using improvement techniques.

Al A2
Istances | Value | crossing | improved value crossing | Improved
sol. sol.
[ 338.04* yes 331.51 340.29 no -
I, 309.29* no - 311.05 no -
I3 305.96* yes 305.49 311.98 yes 303.14
Iy 290.85 yes 286.86 287.131 yes 285.58
Is 273.23* no - 274.25 yes 272.07
le 330.65 yes 329.58 329.15* no -
I 334.89 yes 325.61 331.44* no -
lg 311.13 yes 307.51 309.74* no -
lg 352.58* yes 346.97 353.35 yes 350.76
l1g 316.28* yes 313.95 317.99 no -

The table shows that it is not possible to say what the two
proposed algorithms is to be preferred. But we ruate that the algorithm
A2 behaves better, almost always, only after theniehtion of ‘edge
crossing’.

Finally, we do not give solution times: generallyeaking, they
obviously depend on the number of TSPs to be salvdabth algorithms.
In the studied instances, few seconds were requifdlis a little bit faster
in that it requires a lesser number of these steps.

4 Concluding remarks.

In this paper we have introduced, formulated arldesbthe Single-Double
Balanced TSP. Two heuristic algorithms are propdseds solution.

The performance of the heuristics depends abovanatie quality of
the initial solution and on the chosen improvingtmoes. Different
improving methods lead to algorithms more or leffscéve according to
objectives; this way the computational cost camgeavery deeply.

12
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An interesting generalization of the problem, tlcah have also
practical application, is concerned with the uéition of more vehicles and
of different cost functions linked to the visitiwddes. This can be matter of
future research.
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