
Property Driven Program Slicing

Agostino Cortesi, Sukriti Bhattacharya

Dipartimento di Informatica

Università Ca' Foscari di Venezia, Venezia, Italy

Abstract

In this paper we are trying to combine the traditional proram slicing
technique proposed by Mark Weiser[1] along with the static analysis and
data�ow analysis results on a given program to remove the statements
that do not a�ect a given property. Hence we named it Property Driven
Program Slicing. In order to do that we apply a forward static analysis to
extract properties of each variable in each program point, followed by a
backward slicing algorithm to collect the slice based on the static analysis
based informations.The aim of the present paper is to further re�ne the
traditional slicing technique by combining it with abstract interpretation
and data �ow analysis.This results into a deeper insight on the strong
relation between slicing and property based dependency.

1 Introduction:

Program slicing is a technique to extract program parts with respect to some
special computation. Since Mark Weiser [1] �rst proposed the notion of slicing
in 1979, many applications of this technique have been studied in the literature.
Slicing was �rst developed to facilitate debugging, but it has been found help-
ful in many aspects of the software development life cycle, including software
testing, software measurement, program comprehension, software maintenance,
software reengineering, program parallelization and so on [2]. Di�erent tools
have also been developed, like CodeSurfer, Unravel, Indus, Bandera, and Kaveri,
just to name a few.

Generally speaking, by applying a slicing technique on a program P with a
slicing criterion C (i.e. a line of code in P), we get a program P′ that behaves like
P when focussing only on the variables in C. The sliced program P′ is obtained
through backward computation from P by removing all the statements that do
not a�ect neither directly nor indirectly the values of the variables in C.

The aim of the present paper is to further re�ne the traditional slicing tech-
nique by combining it with abstract interpretation and data �ow analysis [3,4].
This results into a deeper insight on the strong relation between slicing and
property based dependency.

The idea can be summarized as follows. Very often, we are interested on
a speci�c property of the variables in the slicing criterion C, not on their ex-

1



act actual values. For instance, when condering security properties, it may be
su�cient to consider just the parity of the variable containing a cyphertext, or
just its sign, or just if it stays into a given range. Therefore, when performing
slicing, not only the statements that do not a�ect Vars(C) can be discarded, but
also the statements that do not have any impact, respectively, on their parity,
on their sign or on their range.

The resulting proposal is a �xed point computation where each iterate has
two phases. First, by a forward (data�ow) static analysis, the control �ow anal-
ysis of the program is enhanced with information about the state of variables
with respect to the property of interest. Then, following a backward compu-
tation, we enhance the slicing technique by using such additional information
to identify relevancy of the statement to be kept (or removed) in the sliced
program.

2 Preliminaries:

Given a program P, we denote by Vars(P) the set of program variables in P and
by exp(Vars(P)) the set of expressions in P. We denote the expression evaluation
by eval: exp(Vars(P))→ Values, A property, ψ is a decidable boolean function
℘((Vars(P)),eval) → {True, False}.

De�nition 2.1 (Congruence with respect to a given property)

Given two programs P1 and P2 and a set K∈ Vars(P1) ∩Vars(P2), P1 and P2

are said to be K-congruent with respect to ψ if for each execution of P1 and
P2 with the same input, the �nal value of the variables in K are the same.

Example:

Consider for instance
P1: begin input(x); x=2*x; y=5; z=x+y ; end, and
P2: begin input(y); x=4; y=x/3+2; z=x+1 ; end.
P1is {x,y,z} congruent to P2 with respect to parity, since at the end of the

computation both programs behave the same wrt parity: x is even, y is odd and
z is odd.

De�nition 2.2 (Property driven program slicing)

Let P be a program, s be a statement of P, and V⊆ Vars(s). For statement s
and a given property ψ, the slice P

′
of program P with respect to the slicing

criterion (s,V) and ψ, is an executable program such that:
1. P

′
can be obtained by deleting zero or more statements from P.

2. P
′
is V-congruent to P with respect to ψ.

Example:

2



Consider, for instance, the following C program fragment , We want to slice P
with respect to the slicing criteria <5;{c}> and the sign property.

Stmt. NO. Original Program (P) Sliced program

1 scanf(%d,�&b�); /* b 6=0 */ scanf(%d,�&b�);
2 b=b*(-2); b=b*(-2);
3 c=b*2; c=b*2;
4 d=d+1;
5 d=c/b; d=c/b;
6 c=d; c=d;

Statement 4 in P is removed in the slice P′, since it is no more relevant when
considering the sign property and the slicing criterion, as the sign of c in line 6
is not a�ected by such statemet.

3 Algorithm:

At the macro level, our algorithm is �xed point iteration calternating analysis
and slicing, starting form a program P and a slicing criterion C and a property
ψ:

loop {
Pold=P;
A = Analysis(P, ψ);
P′= Slicer(P, C, ψ, A);

}until P′=Pold

More in detail, Slicer considers P as an ordered set of statements (all state-
ments that should not be removed), and the set N to hold all variables that have
been used. Slicer performs a �xpoint iteration: by using information collected
in the analysis phase.

For any statement s, STMT(s) denotes the succeeding statements.After the
inizialization phase,statements possibly a�ecting a variable in N are added to
P, and the used variables of these statements are added to N, until these sets do
not grow any more. Clearly, this process terminates since there are only a �nite
number of variables and assignments in a program.Variables may be read or
written through pointers. We assume, for each statement s and pointer variable
p, that there is a points-to [5] set PTS(p, s) which contains the set of variables
possibly pointed to by p in the statement s. The DEFS function calculates a set
of locations where the result of an assignment may be stored. If the left-hand
side of the assignment contains de-referenced pointers, then DEFS uses PTS to

3



calculate possible locations where the result might be stored.LIVE
out

s holds the
variables live [4], after the execution of statement s.

Each program �ow graph edge has an associated �ag, the ExecutableFlag.
This �ag is initially FALSE for all edges. ExecutableFlag value of program
�ow graph edges are marked TRUE by symbolically executing the program,
beginning with the start node. Whenever an assignment node is executed, the
ExecutableFlag value of the out-edge in the program �ow graph leaving that
node is marked as TRUE and added to the worklist. Whenever a conditional
node is executed, the expression controlling the conditional is evaluated and
we determine which branch (es) may be taken. If the expression evaluates to
⊥ (not predictable) then all branches may be taken. The ExecutableFlag value
corresponding to these branches are set to be TRUE. Otherwise, only one branch
can be taken, and the associated ExecutableFlag value is set to be TRUE.

The Slicer algorithm can be sketched as follow:

Slicer(P0, C, ψ, A={PTS,DFG
∗})

INPUT:
P0: The code to be sliced (set of statements)
C: The slicing criterion <n,V>
ψ: A given property
PTS: Mapping from pointer variables and statement numbers to points-to-sets
DFG∗: Data�ow graph of the program where each node associated with

Πin
v (ψs) (variables' value before executing statement s wrt ψ)

Πout
v (ψs) (variables' value after executing statement s wrt ψ)

OUTPUT:
P: A program slice which is V-congruent with ψ and s.
BEGIN
N=V
P={n}
Nold={∅}
while N +Nold do
Nold = N
for each statement s from n to 1 in P0 do
if ExE�g(STMT(s)) = = TRUE then
for each v ∈DEFS (PTS,s,STMT(s)) do
if v∈ N ∧Πin

v (ψs)6=Πout
v (ψs) ∧ v ∈ LIV Eout

s then
P = P∪{s}
N= N ∪ USES(PTS, s, STMT(s))

endif
endfor

endif
endfor

Termination:

4



This process terminates since there are only a �nite number of variables and
assignments in a program and at each step of the while loop the set N is strictly
increasing and is bounded by Vars(P).

Correctness:

The correctness of this algorithm relies on the following facts

• Underlaying static analysis

• The traditional slicing algorithm [1] is assumed to be correct.

• SLICE PropertyvSLICETradition

∀statement s ∈SLICETradition \ SLICE Property the impact on ψ(s)=NULL
where SLICETraditionrepresents the slice generated by tradition slicing al-
gorith proposed by Mark Weiser [1] on a program P. SLICEProperty rep-
resents the slice generated by property driven slicing algorithm proposed
here on the same program program P.

4 Conclusions:

This work combines static analysis and program slicing, i.e it re�nes slicing with
respect to a property of interest. It can also be combined with the abstract slic-
ing approach in [6]. We also notice one thing, Conditional Constant Propagation
in this context can be helpful to get more precise slice[7].An implementation of
the complete algorithm for C programs, where simple properties like sign and
partity are considered, has already been developed, and preliminary experimen-
tal results con�rm the scalability of the algorithm.

References

[1] M. Weiser. Program slicing. In ICSE '81: Proceedings of the 5th interna-
tional conference on Software engineering, pp. 439-449, Piscataway, NJ,
USA, 1981. IEEE Press.

[2] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, vol. 3, pp. 121-189, 1995.

[3] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Pro-
gram Analysis. Springer-Verlag New York, Inc., 1999.

[4] Patrick Cousot, Radhia Cousot. Abstract interpretation: a uni�ed lattice
model for static analysis of programs by construction or approximation of
�xpoints. In Conference Record of the Sixth Annual ACM SIGPLANSI-
GACT Symposium on Principles of Programming Languages, pp. 238-252,
Los Angeles, California, 1977. ACM Press, New York.

5



[5] Lars Ole Andersen . Program Analysis and Specialization for the C Program-
ming Language .Ph.D. Thesis , DIKU, University of Copenhagen,May 1994,
pp. 111-120.

[6] I. Mastroeni, D. Zanardini, Data Dependencies and Program Slicing: from
Syntax to Abstract Semantics, Proc. "ACM SIGPLAN 2008 Workshop on
Partial Evaluation and Program Manipulation", San Francisco, CA, USA ,
7-8 Gennaio 2008 , 2008 , ACM press, pp. 125-134 .

[7] Mark N.Wegman F. Kenneth Zadech .Constant propagation with conditional
branches. ACM, TOPLAS, April, 1991. pp. 183-193.

6


