
Università Ca’ Foscari di Venezia

Dottorato di Ricerca in Informatica
Scuola di Dottorato in Scienze e Tecnologie - XXIII Ciclo

(A.A. 2010–2011)

Tesi di Dottorato
Settore Scientifico Disciplinare: INF/01

Enhancing Web Search User Experience:
from Document Retrieval
to Task Recommendation

Gabriele Tolomei
matricola n. 955515

Tutore del Dottorando

Prof. Salvatore Orlando

Direttore della Scuola

Prof. Paolo Ugo

Ottobre 2011

Pagina Web dell’autore: http://miles.isti.cnr.it/~tolomei

Posta elettronica dell’autore: tolomei@dsi.unive.it

Indirizzo dell’autore:

Dipartimento di Informatica
Università Ca’ Foscari di Venezia
Via Torino, 155
30172 Venezia Mestre – Italia
tel. +39 041 2348411
fax. +39 041 2348419
web: http://www.dsi.unive.it

http://miles.isti.cnr.it/~tolomei
mailto:tolomei@dsi.unive.it

A Nonna Giordana

Abstract

The World Wide Web (i.e., Web) is the biggest and most heterogeneous database
that humans have ever built, making it the place of choice where people look at
whenever they come up with any sort of information need. Today, most of Web
users put their trust in Web search engines for pursuing and satisfying their infor-
mation needs.
Of course, modern Web search engines radically evolved since their first appear-
ance almost fifteen years ago. Indeed, nowadays they provide a still growing set of
capabilities for enhancing users’ experience during the whole search process. Nev-
ertheless, they are still in essence Web documents retrieval tools, namely Web-scale
information retrieval systems, whereas users’ expectations and needs are increas-
ingly becoming more complex and heterogeneous. This trend is actually confirmed
by a growing “addiction to Web search”: no matter what an information need is,
user is anyway brought to ask for it to a Web search engine, which will hopefully
give the answer she expects. Moreover, there is a common belief that people are
increasingly asking Web search engines also for accomplishing their daily tasks (e.g.,
“planning holidays”, “obtaining a visa”, “organizing a birthday party”, etc.), instead
of simply looking for Web pages of interest. Therefore, Web search engines have to
face up to a group of emerging research challenges in order to coherently respond
to such novel users’ requests, thus to enhance search experience of users by really
supporting them during their daily “Web lives”.
The common aspect of all these challenges is that they strictly rely on an improved
understanding of user search behaviors. A possible effective method for capturing
how users interact with Web search engines comes from the analysis and mining of
query logs. These are archives that record user search activities by means of streams
of timestamped events (e.g., issued queries, click actions, etc.) and they could reveal
the presence of valuable usage patterns.
This dissertation sketches two core issues for enabling next-generation Web search,
which both represent fruitful applications of query log mining. From a side, we
successfully apply query log mining techniques for discovering actual user search
sessions from the raw stream of queries stored in Web search engine query logs,
whose final aim is to perform atomic tasks (e.g., “booking a hotel room”). Some-
how, for each user we are able to re-build every small search task she performed by
partitioning, i.e., clustering, each stream of submitted requests into disjoint sets of

queries issued for achieving the same task. Furthermore, on the basis of the small
search tasks discovered, we are able to address a second, more ambitious, challenge.
Instead of considering user search process on a “query-by-query” perspective, we
look at it from a higher level of abstraction, namely on a “task-by-task” perspective.
To this end, we propose a model of search tasks for representing more complex user
behaviors, while interacting with Web search engines. This model describes what
small tasks are mostly searched for and how users typically “combine” them in order
to achieve a more complex search task, i.e., a mission. Moreover, on top of such user
search task model, we design a novel task-oriented recommender system that goes
beyond traditional query suggestion. Given a portion of the query stream, the Web
search engine may first recognize the actual small task behind that subsequence of
queries. Finally, it generates lists of recommendations, which are not only related
to the subsequence of queries that originated the suggestions, but also to a complex
mission, which the small task could be part of, according to our model of users’
search tasks.

Sommario

Il World Wide Web (Web) costituisce la più grande ed eterogenea sorgente di dati
e contenuti realizzati ed usufruibili dall’uomo. Queste insolite caratteristiche, non
riscontrabili in nessun’altra base di dati, hanno fatto s̀ı che il Web divenisse sempre
più il “luogo” di riferimento cui accedere per soddisfare qualsiasi sorta di bisogno
informativo.
Ad oggi, la maggior parte degli utenti Web si affida completamente ai motori di
ricerca Web per recuperare informazioni di interesse. A partire dalla loro prima
apparizione sul panorama del Web circa quindici anni fa, i motori di ricerca si so-
no certamente evoluti. Infatti, i più moderni motori di ricerca possono vantare
un incredibile e crescente insieme di funzionalità, continuamente teso a migliorare
l’esperienza di ricerca di ogni singolo utente. Nonostante ciò, i motori di ricerca
Web restano essenzialmente “classici” sistemi di recupero di documenti, proiettati
però su larga scala. D’altra parte, allo stesso modo le aspettative e le necessità
informative degli utenti sono divenute sempre più complesse ed eterogenee. Questo
andamento trova conferma in quella che si può definire un’autentica “dipendenza
da ricerca Web”: indipendentemente dalla specifica connotazione di un certo biso-
gno informativo, l’utente, prima o poi, è portato a rivolgersi al motore di ricerca di
propria fiducia che, sperabilmente, fornirà la risposta attesa sia per genere che per
contenuto. Inoltre, è opinione ormai ampiamente diffusa che le persone si rivolgano
ai motori di ricerca Web non solo per accedere semplicemente a pagine Web di loro
interesse, ma anche per eseguire le attività quotidiane più disparate (ad es., “pia-
nificare una vacanza”, “ottenere un visto”, “organizzare una festa di compleanno”,
etc.). Di conseguenza, i motori di ricerca Web devono affrontare una serie di emer-
genti sfide di ricerca per poter rispondere in modo efficace ed esauriente alle nuove
richieste dei propri utenti, cioè per poter fornire un supporto allo svolgimento di
tutte quelle attività che ciascun individuo esegue quotidianamente sul Web.
Il fattor comune di tutte queste sfide è che esse dipendono fortemente da una de-
cisa comprensione dei comportamenti di ricerca degli utenti. A questo proposito,
un metodo per identificare i meccanismi di interazione tra gli utenti ed i motori
di ricerca Web viene fornito dall’analisi dei query logs. I query logs sono archivi
che memorizzano le attività di ricerca degli utenti sotto forma di sequenze di eventi
(ad es., queries sottomesse al sistema, eventuali clicks su pagine risultato, etc.). Se
opportunamente analizzati tramite note tecniche di data mining (query log mining),

essi possono rivelare la presenza di interessanti schemi d’uso, ovvero di consentire
l’acquisizione di “nuova conoscenza”.
Questa tesi affronta due temi fondamentali per realizzare i motori di ricerca Web di
prossima generazione. Entrambi i temi rappresentano due vantaggiosi esempi di ap-
plicazioni del query log mining. Da un lato, abbiamo applicato con successo alcune
tecniche di query log mining per estrarre sessioni di ricerca, memorizzate nei query
logs, il cui scopo fosse quello di eseguire un’attività atomica (ad es., “prenotazione
camera albergo”). Per ogni utente, siamo stati capaci di ricostruire ogni attività
di ricerca che questo voleva eseguire attraverso il partizionamento (clustering) delle
queries sottomesse e finalizzate a compiere una singola attività. Inoltre, sulla base
delle attività di ricerca identificate con la tecnica descritta in precedenza, abbiamo
affrontato la seconda e, per certi versi più ambiziosa, sfida. Anziché considera-
re il processo di ricerca dell’utente come una mera sequenza di queries successive
(“query-by-query”), abbiamo cercato di analizzarlo ad un livello di astrazione più
alto, ovvero come un insieme di attività (“task-by-task”). A questo scopo, abbiamo
proposto un modello di attività di ricerca che rappresentasse comportamenti degli
utenti anche complessi durante le interazioni con i motori di ricerca Web. Questo
modello è in grado di descrivere quali attività atomiche sono più diffuse durante le
ricerche degli utenti e come gli stessi utenti sono soliti “combinare” queste attività
per eseguirne altre più complesse (missioni). Sulla base di questo modello delle
attività di ricerca degli utenti, abbiamo progettato un nuovo sistema di raccoman-
dazione task-oriented che supera il tradizionale schema del suggerimento di queries.
Data una certa sottosequenza di queries, il motore di ricerca può essere in grado di
riconoscere l’attività atomica che sottende la sottosequenza stessa. Infine, il sistema
è in grado di generare insiemi di raccomandazioni che non sono collegati solamente
all’attività atomica cui si riferisce la sottosequenza di queries iniziale, ma anche ad
una o più attività che sono ad essa correlate e che concorrono alla realizzazione di
una missione più complessa, sulla base del modello estratto a partire dallo storico
delle attività di ricerca degli utenti.

Acknowledgments

If there wouldn’t have been some old and new lovable people staying so close to me
during these last four years, I truly couldn’t have been able to come up with any of
the ideas presented in this work.

Now, that we’re all going to relax a little bit, I like thinking of all those people
spreading around me, just waiting for me to speak something.

In the following few lines, I’ll try to hug them all, one by one.
First, I’d like to thank my supervisor Salvatore Orlando who always supported

my work even when it apparently seemed to be unfruitful. In the same way, Fabrizio
Silvestri unconditionally encouraged me with his friendly and fraternal habits, thus
convincing me of reaching the goals we planned to achieve.

My special thought goes to Domenico Laforenza and Raffaele Perego, which are
the former and current heads of the High Performance Computing Lab at ISTI-
CNR, respectively. They welcomed me on board and now I’m so proud to be part of
this “troop”. To this end, I’d like also to thank other colleagues of mine, especially
those who shared the most with me other than work troubles and pains: Franco
Maria, Gabriele, and Diego have been, and I hope they always will be, much more
than colleagues. I want to say them: “Hey guys, C-64 will be forever with me!”.

Anyway, if today I’m here, I’ve to be grateful to Fabio, a schoolmate, a friend,
and lastly a colleague. He perfectly understood my pains coming from my past job
and he suddenly translated them into precious advices for my future.

I want to hug my parents and all my family. Together, they have been able to
support my choice simply because they blindly put their trust on me and because
they wanted to see me really happy. In particular, I dedicate all my efforts to my
grandmother Giordana, who unfortunately is not be able to share this joy with
me due to her conditions. Besides, during these years I’ve been delighted by the
happiness that only a small baby could give: my niece Martina.

And now that this path seems to come to an end, I’m looking forward to starting
a brand new journey, walking hand in hand with someone who appeared when
everything seemed to be broken... I don’t simply give my thanks to Sara, I’m gonna
give her all the days of my life.

Ringraziamenti

Nessuna delle idee contenute in queste pagine si sarebbe potuta materializzare se,
durante questi ultimi quattro anni di cammino, non avessi avuto vecchi e nuovi
compagni di viaggio disposti a sopportare i ritmi e l’incedere dei miei passi. Adesso
che insieme ci stiamo fermando per riprendere fiato ed assaporare un po’ di meritato
riposo, mi piace immaginarli tutti l̀ı, sparsi qua e là intorno a me, pronti ad aspettare
che sia io a dire la prima parola o a fare il primo gesto.

In queste poche righe cerco di abbracciarli tutti, uno ad uno.

Desidero innanzitutto ringraziare il mio supervisore Salvatore Orlando che si è
adoperato con infaticabile dedizione per sostenere costantemente il mio lavoro, anche
quando questo sembrava non trovare una collocazione che fosse riconosciuta ed ap-
prezzata dalla comunità scientifica. Allo stesso modo, seppur con un approccio più
amichevole e fraterno, ma non per questo meno duro ed efficace, sono consapevole
che non avrei raggiunto questo traguardo se Fabrizio Silvestri, con i suoi incondi-
zionati incoraggiamenti, non avesse quotidianamente tentato di controbilanciare la
mia innata tendenza ad abbattermi quando le cose non andavano come avrebbero
dovuto, donandomi quell’equilibrio e quella serenità indispensabili per raggiungere
gli obiettivi che insieme ci eravamo prefissati.

Dedico un pensiero speciale a Domenico Laforenza e Raffaele Perego, rispettiva-
mente ex ed attuale responsabile dell’High Performance Computing Lab dell’ISTI-
CNR, che hanno saputo accogliermi nella loro “truppa” fino al punto di farmi sentire,
oggi, parte integrante di questo gruppo. Per questo, ringrazio anche tutti i colleghi
di laboratorio e, in particolare, quelli con cui ho maggiormente condiviso momenti di
vita che sono andati ben oltre la semplice sfera professionale: Franco Maria, Gabrie-
le e Diego sono stati, e spero rimangano, molto più che semplici colleghi di lavoro
quanto piuttosto quegli esempi reali di amicizia che nasce tra i banchi di scuola. A
loro voglio dire: “La C-64 resterà sempre con me!”.

Se oggi sono qui lo devo soprattutto a Fabio, compagno di università, amico
ed infine collega, che ha saputo leggere le frustrazioni e le insoddisfazioni del mio
precedente lavoro e le ha tradotte in consigli ed indicazioni per il mio futuro.

Abbraccio i miei genitori e tutta la mia famiglia, che insieme hanno saputo asse-
condare la mia scelta di tornare studente fidandosi in modo cieco e quasi incosciente
delle mie capacità di sapermi costruire un percorso che, per quanto complicato e
rischioso, avrebbe potuto rendermi più felice. In particolare, dedico tutti gli sforzi

di questo lavoro a mia nonna Giordana, i cui avversi segni del tempo che suo mal-
grado è costretta a portare su di sé non le consetiranno di gioire come meriterebbe.
D’altra parte, in questi anni ho potuto assaporare il gusto della spensieratezza che
solo una piccola creatura sa donare: mia nipote Martina.

E adesso, che questo cammino sembra concluso, non vedo l’ora di iniziarne uno
nuovo per mano a colei che aspettavo da sempre e che è arrivata proprio quando
tutto sembrava non funzionare... A Sara non vanno solo i miei ringraziamenti, a lei
donerò i miei giorni.

Contents

1 Introduction 1
1.1 Contribution . 4
1.2 Organization . 5

2 Web Search Engines 7
2.1 The Big Picture . 9
2.2 Crawling . 11

2.2.1 The Crawling Algorithm . 11
2.2.2 The Crawl Frontier . 12
2.2.3 Web Page Fetching . 13
2.2.4 Web Page Parsing . 14
2.2.5 Web Page Storing . 15

2.3 Indexing . 16
2.3.1 Text-based Indexing . 16
2.3.2 Link-based Indexing . 18

2.4 Query Processing . 18
2.4.1 Text-based Ranking . 20
2.4.2 Link-based Ranking . 22

3 Query Log Mining 27
3.1 What is a Query Log? . 28
3.2 A Characterization of Web Search Queries 30
3.3 Time Analysis of Query Logs . 35
3.4 Time-series Analysis of Query Logs 41
3.5 Privacy Issues in Query Logs . 44
3.6 Applications of Query Log Mining . 45

3.6.1 Search Session Discovery . 46
3.6.2 Query Suggestion . 49

4 Search Task Discovery 57
4.1 Introduction . 58

4.1.1 Contribution . 60
4.1.2 Organization . 61

4.2 Related Work . 62
4.3 Query Log Analysis . 65

4.3.1 Session Size Distribution . 65
4.3.2 Query Time-Gap Distribution 66

ii Contents

4.4 Task Discovery Problem . 67
4.4.1 Theoretical Model . 67

4.5 Ground-truth: Definition and Analysis 69
4.6 Task-based Query Similarity . 74

4.6.1 Time-based Approach . 75
4.6.2 Unsupervised Approach . 75
4.6.3 Supervised Approach . 78

4.7 Task Discovery Methods . 83
4.7.1 TimeSplitting-t . 84
4.7.2 QueryClustering-m . 85

4.8 Experiments . 88
4.8.1 Validity Measures . 88
4.8.2 Evaluation . 90

4.9 Summary . 99

5 Search Task Recommendation 101
5.1 Introduction . 102

5.1.1 Contribution . 103
5.1.2 Organization . 103

5.2 Related Work . 104
5.3 Anatomy of a Task Recommender System 106
5.4 Task Synthesis . 109

5.4.1 Basic Task Representation . 109
5.4.2 Task Document Clustering . 109

5.5 Task Modeling . 110
5.5.1 Random-based (baseline) . 110
5.5.2 Sequence-based . 111
5.5.3 Association-Rule based . 111

5.6 Experiments . 112
5.6.1 Experimental Setup . 112
5.6.2 Evaluating Recommendation Precision 121
5.6.3 User Study . 126
5.6.4 Anecdotal Evidences . 127

5.7 Summary . 128

Conclusions 131

Bibliography 135

List of Figures

2.1 The typical architecture of a Web search engine [120]. 10
2.2 The typical structure of a distributed Web search engine [120]. 17

3.1 An example of the 2006 AOL query log [98]. 30
3.2 The distribution of query popularity (log-log scale) of two query logs:

Excite [88] (a) and AltaVista [78] (b). 33
3.3 The top-20 queries of two query logs: Excite [88] (a) and AltaVista [78]

(b). 34
3.4 A word cloud of the 250 most frequent words in the AOL query

log [98], generated using wordle.net [120]. 34
3.5 The distribution of query samples across general topic categories of

two query logs: Excite [88] (a) and AOL [22] (b). 36
3.6 The distribution of term popularity (log-log scale) of two query logs:

Excite [88] and AltaVista [78]. 37
3.7 Distances (in number of queries) between subsequent submissions of

the same query for the AltaVista and Excite logs. 38
3.8 Frequencies of queries submitted to the AOL search engine during

the day [98]. 38
3.9 Percentage of the query stream covered by selected categories over

hours in a day [22]. 40
3.10 Average percentage of the query stream coverage and KL-divergence

for each category over hours in a day [22]. 41
3.11 Comparing two time series using DTW vs. linear mapping [2]. 42
3.12 An example of user search behavior represented by means of Query

Flow Graph [28]. 54

4.1 The distribution of long-term sessions size (log-log scale). 66
4.2 The distribution of time gaps between each consecutive query pair

(log-log scale). 68
4.3 A snapshot of the Web application used for generating the ground-truth. 70
4.4 The distribution of time-gap session duration. 71
4.5 The distribution of time-gap session size. 72
4.6 The distribution of task-oriented session size. 73
4.7 The distribution of tasks per time-gap session. 73
4.8 The distribution of multi-tasking degree. 74

5.1 Clustering using the rb method: curve progress of the i2 criterion
function by varying the number K of produced clusters. 115

iv List of Figures

5.2 Clustering using the rb method: curve progress of the e1 criterion
function by varying the number K of produced clusters. 115

5.3 Clustering using the rb method: curve progress of the h2 criterion
function by varying the number K of produced clusters. 116

5.4 Clustering using the rbr method: curve progress of the i2 criterion
function by varying the number K of produced clusters. 116

5.5 Clustering using the rbr method: curve progress of the e1 criterion
function by varying the number K of produced clusters. 117

5.6 Clustering using the rbr method: curve progress of the h2 criterion
function by varying the number K of produced clusters. 117

5.7 Clustering using the directmethod: curve progress of the i2 criterion
function by varying the number K of produced clusters. 118

5.8 Clustering using the directmethod: curve progress of the e1 criterion
function by varying the number K of produced clusters. 118

5.9 Clustering using the direct method: curve progress of the h2 crite-
rion function by varying the number K of produced clusters. 119

5.10 Precision vs. Coverage for top-1 recommendations in medium-size
sessions. 123

5.11 Precision vs. Coverage for top-1 recommendations in large-size sessions.123
5.12 Precision vs. Coverage for top-3 recommendations in medium-size

sessions. 124
5.13 Precision vs. Coverage for top-3 recommendations in large-size sessions.124
5.14 Precision vs. Coverage for top-5 recommendations in medium-size

sessions. 125
5.15 Precision vs. Coverage for top-5 recommendations in large-size sessions.125

List of Tables

3.1 Features of the most important query logs that have been analyzed
in the latest years. The dash sign (–) means that the feature in the
relative column was non-disclosed. 29

3.2 List of the fifty most co-occurring terms (term1–term2, frequency) in
the Excite query log [126]. 35

3.3 Comparative statistics for Excite Web queries [122]. 39
3.4 Comparison of categories breakdown (in %) for Excite (1997–2001)

and Altavista (2002) Web queries [61]. 39
3.5 Query classification on the basis of user survey [33]. 46

4.1 Supervised task-based query similarity functions. 81
4.2 Performance evaluation of the set of classifiers derived from Cdt. . . . 82
4.3 Performance evaluation of the set of classifiers derived from Cnb. . . . 82
4.4 Performance evaluation of the set of classifiers derived from Clr. . . . 83
4.5 TS-5, TS-15, and TS-26. 91
4.6 QFG varying the threshold η. 92
4.7 QC-Means using unsupervised task-based query similarity functions

σ1 and σ2. 93
4.8 QC-Scan using unsupervised task-based query similarity functions

σ1 and σ2. 93
4.9 QC-wcc using unsupervised task-based query similarity functions σ1

and σ2. 94
4.10 QC-htc using unsupervised task-based query similarity functions σ1

and σ2. 95
4.11 QC-wcc vs. QC-htc using supervised task-based query similarity

function σ4
dt. 96

4.12 QC-wcc vs. QC-htc using supervised task-based query similarity
function σ1

nb or σ
3
nb. 96

4.13 QC-wcc vs. QC-htc using supervised task-based query similarity
function σ∗

lr (∗ ∈ {1, 2, 3, 4}). 97
4.14 Best results obtained with each task discovery method using both

unsupervised and supervised similarity. 98
4.15 The impact of Wikipedia: σ1 vs. σ2. 98

5.1 Recommended and performed tasks. 128
5.2 Recommended and surprising tasks. 129

vi List of Tables

1
Introduction

“The Web is more a social creation than a technical
one. I designed it for a social effect to help people work
together and not as a technical toy. The ultimate goal of
the Web is to support and improve our weblike existence
in the world.”

Tim Berners-Lee
Weaving The Web (1999)

TheWorld Wide Web (i.e., Web) is the biggest and most heterogeneous database
that humans have ever built, making it the place of choice where people look at
whenever they come up with any sort of information need.

However, this great repository of data as we know it today is really far away from
the original idea of the Web as it was first conceived in 1989 at the Conseil Européen
pour la Recherche Nucléaire (CERN) by Sir Tim Berners-Lee. Basically, Berners-Lee
presented a document called “Information Management: A Proposal” [27], in which
he expressed the need for a simple protocol that could request information stored
in remote systems through networks and for a scheme by which such information
could be exchanged in a common format and documents could be linked to each
other by hyperlinks.

More simply, the Web was born as a distributed computer platform that allows
academic and research people connecting to each other, thus sharing and exchanging
data stored across several computing systems in a standardized way via the world-
wide computer network, also referred to as the Internet.

The raison d’être of the Web relies on the structure of its composing hypertext
documents, i.e., Web pages, which allows authors to link their documents to other
related documents stored in computers anywhere across the Internet.

Quickly, the Web has unexpectedly become an extraordinary socioeconomic phe-
nomenon because of two main impact factors: users and contents.

From a side, an increasing number of end users, which were not necessarily
involved in academia or research activities, have rapidly started to have access to the
Web as well because personal computers became more affordable and the Internet
infrastructure and services spread to wider geographical areas. According to latest

2 1. Introduction

2011 Internet statistics, there are more than two billion of Web users all around the
world1. Moreover, during the 90’s there has been a proliferation of a broad spectrum
of applications running on the Web, which were mostly targeted to “common” people
and also to business enterprises, thus resulting in a growing number of Web contents.

However, in this first Web era there was still a clear separation of roles between
few content providers, i.e., typically skilled workers and professionals, and many
content consumers, i.e., common end users. During the last years, a new trend has
gained momentum: new “social-oriented” applications that allow easy authoring
and content creation have lead to an increased democratization and collaborative in-
volvement in the Web (e.g., Wikipedia, Flickr, YouTube, Facebook, Twitter, etc.).
Somehow, this process caused the end of the first Web era, by bringing down the
wall between content providers and consumers, which now can play both roles in-
terchangeably from time to time. Therefore, information available on the Web have
started raising at a tremendous rate, reaching nowadays a huge and still growing
number of contents, which spread over several media types (e.g., text, images, au-
dio/video, etc.).

In order to have access to such a huge collection of data in a feasible and effec-
tive way, Web users have been provided with specific applications, i.e., Web search
engines.

On one side, Web search engines aim at building a back-end infrastructure, where
Web contents may be collected and managed both effectively and efficiently. Such
infrastructure is in turn exploited by the front-end, i.e., an interface which users rely
on for searching and retrieving contents they are interested in.

Although the huge number of features which now the most popular Web search
engines come with, in essence they still belong to the category of Web documents
retrieval tools. The typical interaction between a user and a search engine is based
on the well-known “query-look-refine” paradigm, which is indeed proper of the tra-
ditional Information Retrieval (IR) domain. First, user formulates her information
need by phrasing a natural language query, i.e., a list of keywords, then she submits
it to the search engine throughout its user-friendly interface. Therefore, search en-
gine exploits its back-end infrastructure for retrieving a list of Web contents that are
considered relevant to the user’s intent. Finally, user looks at one or more Search
Engine Results Pages (SERPs), i.e., lists of “ten blue links”, thereby either she
clicks on some of the retrieved results or she re-phrases a brand new query in order
to better specify her needs.

This paradigm of interaction is effective whenever the need behind a user query
is to find information on topics of interest contained in Web pages. However, there
is a common belief that people are increasingly asking Web search engines also for
accomplishing their daily tasks (e.g., “planning holidays”, “obtaining a visa”, “or-
ganizing a birthday party”, etc.), in an easier way. This claim is strongly supported

1http://www.internetworldstats.com/stats.htm

http://www.internetworldstats.com/stats.htm

3

by the most authoritative people in the Web search domain. To this end, in 2008
Peter Norvig from Google2 and Prabhakar Raghavan from Yahoo! 3 agreed that:

“People intrinsically don’t want to search. People don’t come to work
every day saying ’I need to search’. . .They want to run their lives!” 4

At the same time, Ricardo Baeza-Yates from Yahoo! said that:

“People want to get tasks done!” 5

Furthermore, this trend is actually confirmed by a growing “addiction to Web
search”: no matter what an information need is, user is anyway brought to ask
for it to a Web search engine, which will hopefully give the answer she expects.

Anyway, whenever the user’s need behind a certain query is a task to be ac-
complished, the traditional “query-look-refine” paradigm should be improved for
“driving” the user towards the execution of her desired task. Hence, we believe
next-generation Web search engines should provide new features and capabilities to
support users in their everyday activities, thus to enhance the overall user search
experience.

Of course, this opens up novel and exciting research challenges, ranging from the
ability to recognize the tasks behind user queries, to the design of new recommen-
dation strategies as well as new user interfaces for showing relevant results. Some
of these challenges represent the core of the whole research roadmap devised during
the very first stage of Ph.D. activities. To this end, a sketch of the research pre-
sented in this dissertation was also initially proposed to the scientific community. In
particular, we came up with a research proposal submitted to two Doctoral Consor-
tia, namely the 3rd ACM Recommender Systems Doctoral Consortium (RecSys ’09)
and the 26th IEEE International Conference on Data Engineering Ph.D. Workshop
(ICDE ’10) [132, 133].

In this way, we were able to evaluate the validity and the strength of our research
ideas, which were indeed positively judged by “offline” feedbacks coming from many
expert computer scientists. In fact, the submitted proposal was successfully accepted
to both events, thereby presented at the corresponding Conferences. There, other
“online” comments and suggestions from many valuable researchers helped us to
better clarify each step of our research roadmap and they were decisive for leading
us to the results we achieved and that here we describe in the rest of this dissertation.

2http://www.google.com
3http://www.yahoo.com
4http://blogoscoped.com/archive/2008-11-06-n63.html
5http://www.cwr.cl/la-web2008/slides/Wisdom-of-Crowds-long.pdf

http://www.google.com
http://www.yahoo.com
http://blogoscoped.com/archive/2008-11-06-n63.html
http://www.cwr.cl/la-web2008/slides/Wisdom-of-Crowds-long.pdf

4 1. Introduction

1.1 Contribution

The main contribution of this work concerns two distinct yet related topics, namely
(i) the discovery of search tasks that users look for when interacting with Web search
engines and (ii) the development of a novel task-oriented recommender system that
goes beyond traditional query suggestion.

The first aspect, namely the discovery of user search tasks, is completely covered
by Chapter 4 and it is based on the work proposed in three research papers, i.e.,
“Detecting Task-based Query Sessions Using Collaborative Knowledge” [81], “Iden-
tifying Task-based Sessions in Search Engine Query Logs” [83], and “Discovering
User Tasks in Long-Term Web Search Engine Logs” [82].

This Chapter describes how we tackle the problem of identifying “logical” search
sessions from the stream of user queries stored in query logs of Web search engines.
Each logical search session may be considered as a set of queries issued by a certain
user for accomplishing a specific task, i.e., task-oriented session. To this end, we
first built, by means of a manual labeling process, a ground-truth where the queries
of a real query log have been grouped in tasks. Our analysis of this ground-truth
shows that users tend to interleave several search tasks within relatively small units
of time, since about 75% of the submitted queries involve a multi-tasking activity.

Moreover, we define the Task-oriented Session Discovery Problem (TSDP) as
the problem of best approximating the above ground-truth. The TSDP deals with
two issues: (i) a robust measure of the task relatedness between any two queries,
i.e., task-based query similarity, and (ii) an effective method for actually discovering
task-oriented sessions by using the above measure of task relatedness.

Concerning (i), we propose and compare both unsupervised and supervised ap-
proaches for devising several task-based query similarity functions. These functions
also exploit the collaborative knowledge collected by Wiktionary6 and Wikipedia7

for detecting query pairs that are not similar from a lexical content point of view,
but actually semantically related.

Finally, we tackle (ii) by introducing a set of query clustering methods that
exploit the above similarity functions for detecting user tasks. All the proposed
solutions were evaluated on the ground-truth and two of them have shown to perform
better than state-of-the-art approaches.

Chapter 5 presents the second challenge addressed in this dissertation, which
is based on the the work proposed in the research paper “Beyond Query Sugges-
tion: Recommending Tasks to Search Engine Users” [84] as an evolutionary step
of the first research topic discussed above. Basically, it concerns the investigation
of a novel recommendation strategy that goes beyond traditional query suggestion
mechanisms provided by modern Web search engines. In fact, current query sug-

6http://www.wiktionary.org
7http://www.wikipedia.org

http://www.wiktionary.org
http://www.wikipedia.org

1.2. Organization 5

gestion mechanisms are able to recommend to users lists of alternative queries that
better specify their actual information needs.

So far, suggestions generated for a certain query are all related the same search
task expressed by that original query. For instance, a user issuing the query “new
york hotel” typically is provided with suggestions such as “cheap new york ho-

tels”, “times square hotel”, “waldorf astoria”, etc. Although these recom-
mended queries are all related to the original query, they still refer to the same
search task, i.e., “finding a hotel room in New York”.

However, it might be the case that the “bigger” search need, i.e., mission, behind
such first user query is to “plan a travel to New York”. Therefore, if the Web search
engine would be able to make this prediction, i.e., to conjecture the global mission
that user is willing to perform, we could generate suggestions that are not only
strictly related to her current task but that also refer to other tasks being part of
the mission as a whole. In our example, this means recommending queries like “mta
subway”, or “broadway shows”, or “jfk airport shuttle”.

In this Chapter, we propose an innovative recommender application, namely
task-oriented recommender system, which generates task suggestions on the basis of
a model of user search tasks learned from the historical activities recorded in query
logs. Experimental results show that our solution is able to suggest queries belonging
to tasks that are different from the ones that users are currently performing but
related to those which users are going to look for in the next future. Moreover, even
when generated recommendations are not strictly part of future users’ searches, we
show that they could anyway represent surprising hints.

1.2 Organization

The dissertation is organized as follows. Chapter 2 presents an overview of Web
search engines both from functional and architectural perspectives. Chapter 3 con-
tains a survey of the main state-of-the-art contributions on the analysis of query
logs collected by Web search engines as a method for extracting useful and valuable
knowledge. In particular, we focus on discussing the statistical properties of various
examples of real-world query logs. Moreover, we describe how query log analysis
may be exploited in order to improve both the effectiveness and efficiency of Web
search engines as well as to enhance user search experience. Chapter 4 is completely
dedicated to the problem of discovering user search tasks from the stream of queries
stored in query logs of Web search engines. In Chapter 5, we investigate how search
tasks discovered by using the methodology described in Chapter 4 may be exploited
for proposing a new recommendation model, which goes beyond traditional query
suggestion schemes. Finally, Conclusions summarizes the work presented in this
dissertation and points out some future challenges.

6 1. Introduction

2
Web Search Engines

“Una volta un tale che doveva fare una ricerca andava
in biblioteca, trovava dieci titoli sull’argomento e li
leggeva; oggi schiaccia un bottone del suo computer,
riceve una bibliografia di diecimila titoli, e rinuncia.”
(Once, a person looking for something was used to go to
the library, there she found ten subjects and simply read
them; now, the same person clicks on a button of a PC,
gets back ten thousands references then she gives up.)

Umberto Eco
La Bustina di Minerva (2000)

The smallest unit of information addressable on the Web is a resource identified
by a proper “name”, i.e., a URL1, which typically points to a Web page or to any
other kind of Web entity stored at a specific location, i.e., a Web site. Each Web
resource is delivered through a specific protocol, i.e., HTTP2, from a Web server
where the resource is physically hosted to a Web client(i.e., usually a Web browser).

The content of a Web resource can be either static or dynamic, namely generated
“on-the-fly” by the Web server depending on the client request. Anyway, whether
the resource is static or dynamic it may contain unstructured data (e.g., ASCII plain
text), as well as semi-structured or structured data (e.g., HTML or XML files).

There are three important factors that affect data and contents on the Web:

• size: there is a huge and still growing number of Web contents, which now
can be directly “pushed” by almost every user at any time;

• heterogeneity: contents vary significantly among existing Web resources
(e.g., text, images, audio/video, etc.);

• dynamism: new Web resources and applications rapidly appear while others
disappear as well, so that available Web contents change very quickly from
time to time.

1Uniform Resource Locator (http://www.faqs.org/rfcs/rfc1738.html)
2HyperText Transfer Protocol (http://www.faqs.org/rfcs/rfc2616.html)

http://www.faqs.org/rfcs/rfc1738.html
http://www.faqs.org/rfcs/rfc2616.html

8 2. Web Search Engines

As the total number of Web contents increases, a feasible way for retrieving and
accessing them becomes necessary. In the last fifteen years, this resulted in the
development of new software systems and applications, which represent the default
“Web portal” for the users. Typically, people try to satisfy their information needs,
namely their intents, through a specific category of such systems, called Web search
engines. Therefore, Web search engines have become a sort of universally accepted
interface to the whole information contained on the Web.

Although the huge number of features which now the most popular Web search
engines come with, in essence they are still part of a broader class of popular and
well-established software systems, namely Information Retrieval (IR) systems. Such
systems were born in the early 1960s in order to respond to two main needs, namely
(i) to allow people searching through remote digital libraries and (ii) to allow end
users searching through the data stored in their own local digital repositories.

An IR system is a software whose main purpose is to return a list of documents
in response to a user query. Somehow, this makes IR systems similar to DataBase
(DB) systems. However, the most important difference between DB and IR systems
is that DB systems return objects that exactly match the user query, which in turn
is formulated using a standardized and “structured” dialect, i.e., SQL3. Besides, IR
systems allow users to phrase “unstructured” natural language queries that makes
it almost impossible to return perfect matches. As an example, the keyword “kobe”
could either refer to Kobe Bryant (one of the best and most famous NBA basketball
player), to a particular cuts of beef, or even to a Japanese city. Therefore, every
single query may mean several things to several users.

Web search engines inherit from IR systems the well-known “query-look-refine”
scheme that governs the interaction between users and those kinds of systems [26].
According to this paradigm, a user first formulates her information need by phrasing
a natural language query, namely a list of keywords that she believes to be the most
suitable for representing her intents, thus for retrieving relevant results. Then, user
submits her query to the Web search engine throughout its user-friendly interface.
Therefore, the Web search engine exploits its back-end infrastructure for retrieving
a list of Web contents, which are assumed to be relevant to the user’s intent. Finally,
user scans and looks at one or more Search Engine Results Pages (SERPs), i.e., lists
of “ten blue links” to Web pages, thereby either she clicks on some of the retrieved
results or she re-phrases a brand new query in order to better specify her needs.

Many Web search engines adopt classical IR algorithms and techniques in order
to implement their functionalities. Such approaches have proven to be very effective
in the traditional IR domain, where information to collect and among which users
look for is relatively small, static, and homogeneous. Besides, the size, dynamism,
and heterogeneity of the Web make IR techniques as they are almost unsuitable
for the Web context. Thereby, traditional IR algorithms have to be extended, and

3Structured Query Language (http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=45498)

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45498
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45498

2.1. The Big Picture 9

sometimes brand new techniques must be thought from scratch. In that way, the
scalability, manageability, efficiency, and effectiveness of Web retrieval systems are
improved, moving from classical IR search engines to modern Web search engines.

The first systems similar to modern Web search engines started to operate around
1994. To this extent, World Wide Web Worm (WWWW) [90] created by Oliver
McBryan at the University of Colorado and the AliWeb search engine [72] created
by Martijn Koster in 1994, are the two most famous examples. Since then, many
examples of such systems have appeared on the Web, e.g., AltaVista, Excite, Lycos,
Yahoo!, Google, Ask, MSN, etc.

Nowadays, Web search is considered one of the most useful and used application
as well as one of the most exciting computer science research topic. To this end,
Baeza-Yates et al. [7] overview and highlight the challenges in the design of modern
Web search engines, stating that:

“The main challenge is hence to design large-scale distributed systems
that satisfy the user expectations, in which queries use resources effi-
ciently, thereby reducing the cost per query.”

Thereby, two key performance indicators for this kind of application are: (i) the
quality of returned results and (ii) the speed with which results are returned.

2.1 The Big Picture

A Web search engine is one of the most complicated software to develop. Consisting
of tens of interdependent modules, it represents a big challenge in today’s computer
engineering world.

Many research works and books sketch the architecture of Web search engines.
To this extent, Barroso et al. [20] present the architecture of Google as it was in
2003. Other Web search engines are supposed to have similar architectures.

According to [30, 86], a Web search engine is responsible for three main activities:
(i) crawling, (ii) indexing, and (iii) query processing.

Every modern Web search engine is usually designed according to a modular
architecture in order to accomplish all those activities above [5]. Typically, the
architecture of a large-scale search engine is composed of several modules that work
together and cooperate in a structured way, as depicted in Figure 2.1.

In the following Sections, we describe the three activities that a Web search
engine is assumed to realize as well as how the modules implementing such activities
interact to each other. Before going into further detail, we set up some useful
notations that are used all along the rest of this Chapter.

We start by indicating with W = {w1, w2, . . . , w|W |} the set of all the available
Web resources, i.e., Web pages. Moreover, we define U to be the set of known Web
URLs, i.e., U = {u1, u2, . . . , u|U |}. Since each wi ∈ W is referenced by at least one

10 2. Web Search Engines

computer engineering world.

Many papers and books sketch the architecture of web search engines. For example Barroso et

al. [26] present the architecture of Google as it was in 2003. Other search engines are believed to

have similar architectures. When a user enters a query, the user’s browser builds a URL (for example

http://www.google.com/search?q=foundations+trends+IR). The browser, then, looks up on a

DNS directory for mapping the URL main site address (i.e. www.google.com) into a particular

IP address corresponding to a particular data-center hosting a replica of the entire search system.

The mapping strategy is done accordingly to different objectives such as: availability, geographical

proximity, load and capacity. The browser, then, sends a HTTP request to the selected data-center,

and thereafter, the query processing is entirely local to that center. After the query is answered by

the local data-center, the result is returned in the form of a HTML page, to the originating client.

Figure 1.1 shows they way the main modules of a web search engine are connected.

!"#$%&'()*$++)(&

!"#$%&

'()"*+,"-.&

/01(2(-&

!",$(-$#&

!"#$%&

.)(/0(#&

1"#$%&

.)(/0(#&

1"#$%&

2)*34$"-&

#$+*(15-)(+&
678	&

:;$&!"#$%&

:;$&<(0/=$(&

>3$(?&'()*$++)(&

'$03+04&

'(*5%,&'(01(-+04&

Fig. 1.1: The typical structure of a web search engine. Note that throughout the text IR core, index

server, and query server are all terms that are used interchangeably.

Web search engines get their data from different sources: the web (primarily), Image and video

repositories (e.g. Flickr, or YouTube), etc. In particular, in the case of web content, a crawler

scours through hypertext pages searching for new documents, and detecting stale, or updated

content. Crawlers store the data into a repository of content (also known as web document cache),

and structure (the graph representing how web pages are interconnected). The latter being used,

mainly, as a feature for computing static document rank scores (e.g. PageRank [148], or HITS [115]).

3

Figure 2.1: The typical architecture of a Web search engine [120].

URL, it usually holds that |W | ≤ |U |. In fact, it is not uncommon to have two
syntactically distinct URLs referring exactly the same Web page (i.e., spider trap).

Therefore, in order to map each URL to a specific Web page, there should exist
an onto function f : U −→ W , such that f(uj) = wi. However, for the sake of
simplicity, here we instead assume that there exists a one-to-one correspondence g
between the sets U and W , i.e., g : U −→ W , such that g(ui) = wi. Nevertheless,
although sometimes URLs and Web pages can be used both interchangeably, still
they have to be considered as separate objects.

Moreover, U(i) ⊆ U represents the set of URLs contained in a Web page wi ∈ W ,
namely the set of outgoing links of wi. Similarly, O(i) ⊆ W and I(i) ⊆ W are the
sets of Web pages which wi ∈ W points to and are pointed by, respectively, that is:

O(i) = {g(uj) | uj ∈ U(i) ∧ g(uj) 6= wi},

I(i) = {g(uh) | ui ∈ U(h) ∧ g(uh) 6= wi}.

Finally, we define V = {t1, t2, . . . , t|V |} to be the vocabulary of terms contained in
the collection of Web pages W .

2.2. Crawling 11

2.2 Crawling

The crawling activity is performed by the Crawler Module (CM), which represents
the basis on top of which any other operation is performed. The CM is composed
of small programs, called crawlers (or also wanderers, robots, spiders, etc.), that
“browse” the Web on the search engine’s behalf, in the same way in which human
users follow links to reach several Web pages.

Typically, a crawler retrieves Web pages starting from an initial set of seed URLs,
i.e., Useed ⊆ U . Then, it downloads and copies the Web pages associated with
each URL of the seeds to a local repository, i.e., the Web Page Repository (WPR).
Furthermore, the crawler fetches all the URLs contained in each just stored Web
page and adds them to a list of unvisited URLs, called crawl frontier, later on
indicated with Φ.

More formally, the crawler first places the seeds in the crawl frontier, where all
the URLs to be retrieved are kept and eventually prioritized, i.e., Φ = Useed. Then,
it starts the so-called crawling loop phase, which consists of the following steps:

1. picking a URL uj ∈ Φ in some order, following a policy specified by a dedi-
cated Crawler Control Module (CCM);

2. fetching the corresponding Web page, i.e., wi = g(ui);

3. parsing wi to extract the set of URLs in it contained, i.e., U(i);

4. adding the new set of unvisited URLs to the crawl frontier, i.e., Φ = Φ ∪ U(i).

The crawling loop phase is repeated for a specific number of times, until the crawler
decides to stop. However, in modern Web search engines, crawlers continuously
execute this phase, thus updating incrementally the content of their local repository.

According to [97], in the following Sections we sketch the main activities, which
a crawler is responsible for, i.e., the steps of the crawling algorithm. In addition,
we present a detailed description of the main components, i.e., modules, a crawler
is usually made of, and data structures it uses for implementing its mechanisms.

2.2.1 The Crawling Algorithm

The core of the whole crawling process is represented by the crawling algorithm,
which describes the behavior and the choices of the crawling phase with respect to
the following four main issues:

• What Web pages should a crawler download?

In most cases, crawlers cannot together download all the pages available on the
Web. So, a crawler algorithm must be designed to carefully select which Web
pages have to be fetched, thus to visit “important” Web pages first by properly

12 2. Web Search Engines

prioritizing the URLs contained in the frontier Φ. This selection policy is
managed and specified by the Crawler Control Module (CCM) and it may vary
among different Web search engines. As an example, some crawlers might be
biased to download as many Web pages as possible, stressing their goal on
exhaustivity, while other crawlers might specialize on Web pages belonging to
certain domain, stressing their goal on focusing. The first case represents a
traditional crawler (breadth-first crawler), while the second represents a so-
called focused or topic crawler (best-first crawler or its variations). Anyway,
the fraction of the Web that is visited and kept up-to-date should be as more
meaningful as possible.

• How should a crawler refresh Web pages?

Once a crawler has downloaded a significant number of Web pages, it has to
start to revisiting them in order to detect possible changes and refresh the
downloaded collection. Because Web pages changing at very different rates,
the crawler needs to carefully decide what Web pages to revisit and what to
skip, thereby affecting significantly the freshness of the downloaded collection.

• How should the load on visited Web sites be minimized?

Clearly, when the crawler retrieves and collects Web pages it consumes re-
sources belonging also to other organizations. As an example, when the crawler
requests to download a (static) Web page hosted on a remote machine, that
machine needs to get the requested document from its local filesystem, thus
consuming disk and CPU resources. Moreover, after the remote machine has
retrieved the document from its filesystem, such Web page still needs to be
transferred through the network, which again is another resource shared among
different entities. The crawler should be designed also to minimize its impact
on these kinds of resources.

• How should the crawling process be parallelized?

Web’s size is very huge and so crawlers often run on multiple machines and
download pages in parallel. This kind of parallelization is necessary in order to
download a large number of pages in a reasonable amount of time, increasing
the throughput. Clearly, parallel crawlers must be coordinated properly, so
that different crawlers do not visit the same Web site multiple times.

2.2.2 The Crawl Frontier

The crawl frontier Φ represents the “to-do list” of a crawler and it contains URLs
of unvisited Web pages. Although it may be necessary to store the frontier on disk
for large-scale crawlers, it can be considered as an in-main memory data structure
by setting a maximum frontier size.

2.2. Crawling 13

The frontier can be implemented as a simple FIFO queue to which corresponds
a breadth-first crawler that can be used to blindly browse the Web. The URL uj to
be next fetched and visited is the head of the queue, while any new URLs are added
to the tail of the queue.

Due to the limited size of Φ, it must be avoided to add duplicate URLs into the
frontier. A linear search to find out if a newly extracted URL is already in the frontier
is costly. Therefore, one solution is to allocate some amount of available memory
to maintain a separate hash table with URL as key in order to store each URL
currently in the frontier for fast lookup operations. Obviously, this hash table has
to be kept synchronized and consistent with the current frontier. Another solution
is to implement the frontier Φ itself as a hash table, again with the URL as key.
However, each time the crawler needs a URL to visit, it would need to search and
pick the URL with the earliest timestamp, that is the time at which the URL was
added to the frontier.

If the frontier is implemented as a priority queue, the corresponding crawler is
a so-called preferential crawler, also known as best-first crawler. The priority queue
can be a dynamic array that is always kept sorted by the estimated score assigned
to unvisited URLs. At each step, the best URL ui is picked from the head of the
queue. Once the corresponding Web page wi = g(ui) is fetched, all the URLs which
wi contains, i.e., U(i), are extracted and scored basing on some heuristic. Those
URLs are then added to the frontier in such a way that the order of the priority
queue is maintained.

The whole crawling process stops whenever the crawler finds the frontier empty
when attempting to fetch the next URL. Anyway, with high values of the maximum
frontier size this situation is quite uncommon.

Another classical problem derives from so-called spider trap. A spider trap leads
the crawler to a large number of syntactically different URLs which all refer to
the same Web page. One simple way for alleviating such problem is limiting the
number of Web pages that the crawler accesses from a given domain. The code
associated with the frontier can make sure that each consecutive sequence of k URLs
picked by the crawler contains only one URL from a fully-qualified host name. As a
consequence, the crawler is polite by not accessing the same Web site too often [43]
and the crawled Web pages tend to be more heterogeneous.

2.2.3 Web Page Fetching

The fetching step of the whole crawling process consists in requesting and down-
loading a Web page associated with a specific URL.

In order to fetch a Web page, a HTTP client who sends a HTTP request for
that Web page and reads the received response is needed. Obviously, the HTTP
client must set timeouts properly to make sure it does not waste too much time for
connecting and/or downloading a Web page from a remote Web server.

14 2. Web Search Engines

Typically, the client downloads only the first 10-20 kilobytes of the Web page,
then it parses the HTTP response header for status codes and redirections and
possibly the last-modified header parameter to determine the age of the document.

It is worth to mention a particular issue of the fetching step, that is the Robot Ex-
clusion Protocol. This protocol provides a mechanism for Web server administrators
to communicate their file access policy, more specifically to identify files that may
not be accessed by a crawler. This is done by keeping a file named robots.txt un-
der the root directory of the Web server. This file provides access policy for different
user-agents (robots or crawlers). For example, a user-agent value of “∗” denotes
a default policy for any crawler that does not match other user-agent values in
the file. Moreover, a number of disallow entries may be provided for a user-agent.
Any URL that starts with the value of a disallow field must not be retrieved by a
crawler matching the corresponding user-agent.

When a crawler wants to download a Web page from a Web server, it must first
fetch the appropriate robots.txt file and make sure that the URL to be fetched
is not disallowed. It is efficient to cache the access policies of a number of recently
visited Web servers, avoiding accessing robots.txt file each time a URL must be
fetched.

2.2.4 Web Page Parsing

Once a Web page has been downloaded, it is necessary to parse its content in order
to extract information that will feed and possibly drive the future choices in the
crawling process. Parsing may simply consist of hyperlink/URL extraction or it may
involve the more complex process of tidying up the HTML content for analyzing the
HTML tag tree [96].

2.2.4.1 URL Extraction and Normalization

HTML parsers are easily available for several programming languages. They basi-
cally provide the functionality to identify HTML tags, associating attribute-value
pairs in a given HTML document.

In order to extract hyperlink URLs from a certain Web page, those parsers
can be used to find anchor tags and grab the values of associated href attributes,
converting any relative URLs to absolute ones using the base URL of the Web page
from which they were retrieved.

As previously said, spider traps, that is syntactically different URLs correspond-
ing to the same Web page, represent a serious problem affecting the performance of
the overall crawling process. In order to avoid fetching the same Web page follow-
ing syntactically different URLs, a normalization (or canonicalization) procedure is
needed. Some of the typical steps in URL normalization procedure involve:

– converting the protocol and the hostname to lowercase;

2.2. Crawling 15

– removing the “anchor” or “reference” part of the URL (“#”);

– performing URL encoding for some commonly used character such as “∼”;

– adding trailing slash “/” basing on some heuristics;

– using heuristics to recognize default Web page (e.g., removing from URLs file
names such as index.html or index.htm);

– removing from the URL path “..” and its parent directory;

– leaving the port numbers in the URL unless it is the default HTTP port
number 80 or, as an alternative, leave the port numbers in the URL and add
port number 80 when no port number is specified.

Anyway, the only thing which is really important in URL normalization is to keep
and preserve consistency when applying normalization rules.

2.2.4.2 Stoplisting and Stemming

When parsing the content of a Web page it is often helpful to remove commonly used
words or stopwords4 (e.g., “it”, “can”, etc.). The procedure of removing stopwords
from a text is called stoplisting. In addition to stoplisting, it is also useful to “stem”
the terms found in the Web page; the stemming procedure normalizes terms by
conflating a number of morphologically similar terms to a single root form or stem.
As an example of stemming procedure, the english terms “connect”, “connected”,
and “connection” are all reduced to the stem “connect”. One of the most popular
english stemming procedure is provided by the Porter stemming algorithm, which
was introduced by Martin Porter in 1980 [102].

2.2.5 Web Page Storing

Once a Web page is fetched and downloaded it has to be stored/indexed in order to
be used by the master application, such as a Web search engine.

The Web Page Repository (WPR) is a scalable storage system for managing
such large collections of Web pages and performs two main functions: (i) it provides
an interface for crawlers of the CM to store Web pages they download and (ii)
it supplies an efficient Application Programming Interface (API), which both the
Indexer Module (IM) and the Collection Analysis Module (CAM) may use to retrieve
Web pages (Section 2.3).

In its simplest form, the WPR may store the crawled Web pages as separate
files and in that case, each Web page must map to a unique file name. One way

4for an example list of stopwords refer to http://www.dcs.gla.ac.uk/idom/ir_resources/

linguistic_utils/stop_words

http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

16 2. Web Search Engines

to obtain that scheme is to map each URL corresponding to a Web page to a
compact string using some form of hash function with low probability of collision.
The resulting hash value is then used as the file name. To this end, the MD55 is
a widely used one-way hash function that provides a 128 bit fingerprint for each
URL, thus addressing 2128 possible file names. This fingerprint is “non-reversible”,
meaning that it is computationally infeasible, i.e., hard, to determine a file name,
which the fingerprint originated from.

2.3 Indexing

The Indexer Module (IM) and the Collection Analysis Module (CAM) build a variety
of indexes on the set of Web pages crawled by the CM. The IM builds two basic
indexes: a Text (or Content) Index and a Link (or Structure) Index. Such indexes
are useful data structures which Web search engines rely on for selecting Web pages
relevant to specific user queries among the overall crawled collection of documents
stored on the Web Page Repository (WPR).

2.3.1 Text-based Indexing

The primary method for identifying relevant Web pages to a certain user query still
derives from the classical text-based retrieval. This method has been widely adopted
in traditional IR contexts and it is based on searching for Web pages containing the
keywords formulated in the query. Indexes to support such text-based retrieval can
be implemented using any of the access methods typically used to search over text
document collections. Examples include suffix arrays, inverted indexes or inverted
files, and signature files. In Web domain, inverted indexes have become the index
structure of choice.

The rest of this Section describes the Text Index and, in particular, it addresses
the problem of quickly and efficiently building inverted indexes over Web-scale doc-
ument collections.

2.3.1.1 Index Structure

The name inverted index is actually quite redundant because an index always maps
back from terms to the portion of a document where they occur.

The basic idea behind an inverted index is to keep a dictionary D of terms
(sometimes also referred to as vocabulary or lexicon). Let us use dictionary D to
indicate the data structure and vocabulary V = {t1, t2, . . . , t|V |} for representing the
set of terms of the whole collection of Web pages W = {w1, w2, . . . , w|W |}.

Each term ti ∈ V is associated with a list, called posting list (or inverted list),
that records which Web page wj ∈ W the term ti occurs in. Each element of such

5http://tools.ietf.org/html/rfc1321

http://tools.ietf.org/html/rfc1321

2.3. Indexing 17

list is called posting and, in its simplest form, it only stores the unique identifier
of the Web page containing the specific term ti. However, the generic posting for
the term ti often stores other information, such as the frequency of ti in wj or the
position(s) where ti appears in wj. All the posting lists taken together are referred
to as postings.

Thus, an inverted (text) index over the collection of Web pages W consists of
two parts: the dictionary D, which stores all the terms of the vocabulary V , and
the corresponding postings.

Finally, the dictionary D has to be lexicographically-sorted, and the posting lists
associated with each term must also be sorted by Web page identifier.

2.3.1.2 Index Partitioning

In real-world search engines, Web-scale inverted index requires a highly scalable
and distributed architecture to improve the overall system efficiency (i.e., through-
put, query response time, etc.) when processing a huge amount of incoming user
queries [20].

Typically, the index is distributed among a set of k query servers coordinated
by a broker, as showed in Figure 2.2.

8 Introduction

Fig. 1.3 The typical structure of a distributed web search engine.

retrieve relevant documents, compute scores, rank results and return

them back to the broker which renders the result page and sends it to

the user. Figure 1.3 shows the interactions taking place among query

servers and the broker.

The broker is usually the place where queries are grabbed and stored

in the query logs. A module dedicated to analyze past queries is also

usually available within the architecture components.

1.2.1 The Index

An Inverted File index on a collection of web pages consists of several

interlinked components. The principal ones are the lexicon, i.e.,

the list of all the index terms appearing in the collection, and the

corresponding set of inverted lists, where each list is associated with

a distinct term of the lexicon. Each inverted list contains, in turn, a

set of postings. Each posting collects information about the occurrences

of the corresponding term in the collection’s documents. For the sake

of simplicity, in the following discussion we consider that each posting

Figure 2.2: The typical structure of a distributed Web search engine [120].

The broker, accepts a user query and distributes it to the set of query servers.
Thus, the index servers retrieve relevant Web pages, compute scores, rank results
and return them back to the broker which renders the result page and sends it to
the user.

Basically, there are two strategies for partitioning the inverted index across the
set of query servers, i.e., local inverted file and global inverted file. In the local

18 2. Web Search Engines

inverted file organization, each query server is responsible for a disjoint subset of
Web pages of the whole collection, thus resulting in a partition over the Web pages
(i.e., document partitioning).

In the global inverted file organization, index terms are partitioned, so that each
query server stores inverted lists only for a subset of the terms in the collection, thus
resulting in a partition over the index terms (i.e., term partitioning).

Finally, the broker is also the place where user activities (e.g., submitted queries,
clicked results, etc.) are stored in files called query logs.

2.3.2 Link-based Indexing

Differently from traditional text documents, Web pages have also hypertext links
for connecting them to each other. This information, namely the presence on a Web
page wi of a link pointing to another Web page wj, could be useful for determining
the quality and relevance of retrieved results.

To this end, the crawled portion of the Web is modeled as a directed graph
G = (W,E), where W is the set of vertexes (or nodes) and E is the set of edges.
Each vertex in the Web graph corresponds to a Web page wi and a directed edge
between two vertexes (wi, wj) represents a hypertext link on page wi that points to
wj. A Link Index on that structure is a scalable and efficient representation of the
Web graph G.

The most common structural information that can be derived from such link
index and used in turn by search algorithms is neighborhood information. Given a
certain Web page wi, it is easy to retrieve the set O(i) of Web pages which wi points
to (outgoing pages), or the set I(i) of Web pages pointing to wi (incoming pages).

2.4 Query Processing

The typical interaction between a user and a Web search engine starts with the for-
mulation of a natural language query, which represents a certain user’s information
need. It is worth noting that the information need is different from the query: the
former is the topic about which the user desires to know more about, while the latter
is what the user conveys to the system in an attempt to communicate her request.

A user query q consists of a list of terms, each one representing a specific keyword :

q = {t1, t2, . . . , t|q|}.

Usually, q is composed of a little number of terms [62, 118, 122, 65], i.e., |q| is about
2.5 on average.

Once a user has submitted a query q, the Web search engine starts its searching
process in the background. First, the Query Engine Module (QEM) accesses to
the back-end infrastructure (e.g., Text and Link Indexes, Web Page Repository,
etc.). Eventually, it retrieves a single, uncategorized list of k result Web pages,

2.4. Query Processing 19

i.e., Rk(q) = 〈w1, w2, . . . , wk〉, which are ranked according to their relevance to the
guessed user’s need, that is Web pages appearing in the top positions of Rk(q) are
also the most likely to be relevant to the user query q. Usually, k = 10 and the list
of retrieved Web pages are rendered and displayed on user’s screen as a single page
containing the k URLs pointing to the corresponding results, i.e., Search Engine
Results Page (SERP) or “ten blue links”.

Anyway, before user is presented with the final ranked list of results Rk(q), the
following procedure has to take place. Indeed, Rk(q) contains a very small portion of
all the crawled Web pages W , i.e., k � |W |. In order for the search engine to select
the k ultimate results that best match the guessed user’s need, it has to look at
each Web page in the collection. To this end, a first rough list R(q) composed of all
the candidate Web pages containing the keywords specified in q has to be retrieved.
However, |R(q)| is usually very large because of the huge number of available Web
pages.

Therefore, R(q) has to be ranked by an appropriate component, i.e., the Ranking
Module (RM), which sorts R(q) so that Web pages near the top of the list are the
most likely ones that represent what the user is actually looking for. Once R(q) has
been sorted, a sublist Rk(q) with the first k elements of R(q) is finally returned to
the user.

Sorting results by relevance requires establishing how much each Web page is
relevant to the query issued by the user. More formally, given W the domain of all
the available Web pages, and Q the domain of all possible queries, each Web page
wi ∈ W must be associated with a relevance score, which is evaluated through a
proper function rel, as follows:

rel : W ×Q −→ R+ ∪ {0}.

Each relevance score rel(wi, q) is in turn used for ranking the ultimate result list
Rk(q), so that:

– |Rk(q)| = k;

– rel(wi, q) ≥ rel(wi+1, q) ∀i ∈ {1, 2, . . . k − 1};

– wi ∈ Rk(q) ⇒ rel(wi, q) ≥ rel(wj, q) ∀wi ∈ Rk(q),∀wj ∈ R(q) \Rk(q).

Roughly, there are two approaches for computing the relevance score of a Web page
with respect to a issued query: Text-based and Link-based. The first one is a popular
technique in traditional IR and it is based only on the lexical content of the Web
page and the query, whereas the second one is typical of the Web domain and it
exploits the hyperlinks connecting Web pages to each other.

20 2. Web Search Engines

2.4.1 Text-based Ranking

In order to sort the retrieved result list Rk(q), early Web search engines only adopted
a text-based ranking scheme, which measures the relevance score of a Web page w ∈
W with respect to a query q as the textual similarity between w and q. Typically, the
textual similarity between w and q is measured by using traditional IR approaches.
According to such approaches, both w and q are viewed as text documents and each
document is treated as a “bag of words”, i.e., a set of distinct terms.

In traditional IR, given V = {t1, t2, . . . , t|V |} a vocabulary of terms over a col-
lection of text documents D = {d1, d2, . . . , d|D|}, the generic document dj ∈ D can
be represented by a n-dimensional weighted term vector, i.e., dj, where n = |V |.
Moreover, the i-th component of such vector quantifies the level of importance of
the term ti ∈ V in the document d.

Several weighting schemes have been proposed for evaluating each component of
a term vector associated with a given document d. To this end, a first attempt relies
on the well-known IR boolean model [112].

Using this model, dj can be represented as a binary vector, i.e., dj ∈ {0, 1}n, and
its i-th component is obtained as follows:

dj[i] =


1 if the term ti appears in dj,
0 otherwise.

The boolean model only records term presence or absence inside the document,
anyway it should be arguable to give more “weight” to documents where the term
ti appears several times as opposed to ones that contain it only once.

Therefore, a better approach to build the vector dj could be obtained with the
best known and most widely used IR vector space model [112]. Following this model,
each document is represented as a weighted vector, in which each component weight
is properly computed. The value dj[i] for term ti in document dj is no longer
in {0, 1} as in the boolean model, but it can be any real number, that is ∀i ∈
{1, 2, . . . , n}, dj[i] ∈ R, namely dj ∈ Rn.

Again, the vector dj depends on the documents dj from which it is built. If
the term ti does not appear in a document dj, the corresponding component dj[i]
is 0. On the other hand, if ti appears in dj, the corresponding component in the
document vector dj[i] represents the significance of the term.

One common way to compute the significance of a term, namely the value dj[i],
is given by the term frequency scheme (tf). In this scheme, the value dj[i] coincides
with the number of times ti occurs in dj and it is indicated with tf(ti, dj).

The shortcoming of the tf scheme is that it does not consider the situation where
a term appears in many documents of the collection. In order to address also that
situation, it is needed a mechanism for smoothing the effect of terms that occur too
often in the collection to be meaningful for determining their significance. A first
idea could be to scale down the weights of terms with high collection frequency (cf),

2.4. Query Processing 21

which is defined to be the total number of occurrences of a term ti in the whole
collection of documents D:

cf(ti,D) =


dk∈D
tf(ti, dk).

Thus, each vector component can be scaled down as follows:

dj[i] =
tf(ti, dj)

cf(ti,D)
=

tf(ti, dj)
dk∈D tf(ti, dk)

.

However, instead of cf it is more commonplace to use the document frequency (df),
defined to be as the number of documents in the collection D that contain a specific
term ti and indicated with df(ti). The df scheme is used to scale down the weight
of a term ti, through the inverse document frequency (idf). Given |D| the total
number of documents in the collection D, the idf is computed as follows:

idf(ti) = log
|D|
df(ti)

.

Therefore, each vector component can be scaled down following the tf -idf weighting
scheme:

dj[i] = tf -idf(ti, dj) = tf(ti, dj)× idf(ti) = tf(ti, dj)× log
|D|
df(ti)

.

In other words, the tf -idf weighting scheme assigns to a term ti appearing in a
document dj a weight that is:

• highest when ti occurs many times within a small number of documents, thus
lending high discriminating power to those documents;

• lower when ti occurs fewer times in dj, or occurs in many documents, thus
offering a less pronounced relevance signal;

• lowest when ti virtually occurs in all documents of the collection.

Now, let us turn back to the representations of the Web page w ∈ W and the query
q according to the vector space model and following the tf -idf weighting scheme,
as described before. Each document associated with w and q is represented by a
weighted term vector, i.e., w and q. Moreover, let us indicate with tf(ti, w) the
number of occurrences of the term ti in the Web page w and let analogously tf(ti, q)
counts the number of times the term ti appears in the query q. Also, idf(ti) is the
inverse document frequency for the term ti in the Web page collection W . Given
W = {w1, w2, . . . , w|W |}, the i-th component of w and q is computed as follows:

w[i] = tf -idf(ti, w) = tf(ti, w)× idf(ti) = tf(ti, w)× log
|W |
df(ti)

,

22 2. Web Search Engines

q[i] = tf -idf(ti, q) = tf(ti, q)× idf(ti) = tf(ti, q)× log
|W |
df(ti)

.

Therefore, the textual similarity between w and q, i.e., the relevance score rel(w, q),
is represented by the dot product between the two corresponding vectors w and q,
that is:

w · q =
n

i=1

w[i] · q[i] = w[1] · q[1] +w[2] · q[2] + . . .+w[n] · q[n]. (2.1)

Using the Euclidian geometry interpretation, the dot product between two vectors
w and q is strictly related to their length (or magnitude), i.e., ‖w‖, ‖q‖, and the
angle θ between them, namely:

w · q = ‖w‖ · ‖q‖ · cos θ. (2.2)

Consequently, the measure of textual similarity between two documents codified as
vectors assumes maximum value when cos θ = 1, that is when θ = 2kπ (k ∈ N).
Intuitively, that situation indicates that the two vectors have the same direction.

On the opposite side, the textual similarity assumes its minimum value when
cos θ = −1, that is when θ = π + 2kπ (k ∈ N), namely when the two vectors have
opposite directions.

Finally, when cos θ = 0, that is θ = π
2
+ kπ (k ∈ N) then the whole product is 0.

Intuitively, that situation indicates that the two vectors have orthogonal directions.
In real-world Web search engines, the state-of-the-art tf -idf -like ranking function

is represented by BM25, which was first introduced by Robertson et al. and that
it is also known as “Okapi BM25” [110].

2.4.2 Link-based Ranking

Unfortunately, traditional text-based IR techniques may not be effective in ranking
query results when dealing with Web-scale domain. First, Web is very large, with
great variation in the amount, quality, and type of information contained in Web
pages. Thus, many Web pages that contain the search terms might be of poor
quality or not relevant at all. Second, many Web pages are not sufficiently self-
descriptive, so the IR techniques examining only the contents of a Web page might
not effectively work.

Moreover, Web pages are frequently altered by adding misleading terms so that
they are ranked higher by a Web search engine (i.e., spamming). Therefore, ap-
proaches that are based only on the content of Web pages can easily be manipulated.

Fortunately, the hyperlink structure of the Web hides important implicit infor-
mation and can help in filtering or ranking Web pages, thus in providing a valuable
relevance scoring function. In particular, the existence of a link from a Web page

2.4. Query Processing 23

wi to another wj can be viewed as a sort of recommendation of Web page wj by the
author(s) of wi.

To this end, two interesting link-based approaches are PageRank [30] andHITS [70],
which in the following are described in more detail. Both these approaches rely on
the notion of Web graph, as it was already introduced in Section 2.3.2. This is a
graph G = (W,E), where W is the set of Web pages and a directed edge between
two vertexes (wi, wj) represents a hypertext link on page wi that points to wj.

2.4.2.1 PageRank

The PageRank algorithm proposed by Brin and Page [30] defines a global ranking
scheme, which tries to capture the notion of “importance” of a Web page. The
key parameter affecting the importance of a certain Web page wi is reflected in the
number of other Web pages wj that point to wi. Thus, the rank of wi could be
defined as the number of Web pages in the Web that point to wi and could be used
to rank results of a search query. However, citation ranking itself does not work well
especially against spamming, since it is quite easy to artificially create a lot of Web
pages to point to a desired target Web page.

For that reason, PageRank extends the classic citation ranking idea by taking
into consideration the importance of the Web pages that point to a given Web page.
Therefore, a Web page receives more importance if the Web pages pointing to it
are important as well. In contrast, classical citation ranking does not make this
distinction. This means that the definition of PageRank is recursive, namely the
importance of a Web page both depends on and affects the importance of other
Web pages.

Simple PageRank. Let us first introduce a simple definition of PageRank, before
describing a practical variant of it.

Given W = {w1, w2, . . . , w|W |} the set of Web pages in the collection, let O(i) be
the set of Web pages which wi points to and let I(i) be the set of Web pages that
point to wi (Section 2.1).

Furthermore, let us assume that Web pages form a strongly connected graph,
that is for each Web page wi it always exists a path on the graph G, such that wi

can reach any other Web page wj.

Therefore, the simple PageRank for a Web page wi, i.e., PR(wi), can be defined
as follows:

PR(wi) =


wj∈I(i)
PR(wj)/|O(j)|. (2.3)

The division by |O(j)| captures the intuition that Web pages which point to wi

evenly distribute their rank boost to all of the Web pages they point to.

24 2. Web Search Engines

Practical PageRank. Simple PageRank is well-defined only if the Web graph
G is strongly connected. However, the Web is far from being strongly connected.
In particular, there are two related problems arising on the real Web, namely rank
sinks and rank leaks.

Any strongly connected cluster of Web pages within the Web graph from which
no links point outwards forms a rank sink. An individual page that does not have
any outward links constitutes a rank leak. In the case of rank sink, nodes which are
not part of the sink receive a zero rank, meaning that it is not possible to distinguish
the importance of such nodes. Besides, any rank reaching a rank leak is lost forever.

A possible solution is to remove all the leak nodes with out-degree = 0. Second,
a decay factor δ, such that 0 < δ < 1, is introduced in the original PageRank
definition. In this modified version, only a fraction δ of the rank of a Web page is
distributed among the nodes that it points to, while the remaining rank is distributed
equally among all the other Web pages in the collection. Thus:

PR(wi) = δ ×


wj∈I(i)
PR(wj)/|O(j)|+ (1− δ)/|W |, (2.4)

where |W | is the total number of nodes in the graph, that is the total number of
Web pages in the collection.

Using PageRank for keyword searching. The Google search engine uses both
classical IR techniques, i.e., text-based, and PageRank, i.e., link-based approaches,
to answer users requests via keyword queries. Given a query q = {t1, t2, . . . , t|q|} the
Google search engine computes a text-based relevance score for all the Web pages
which contains the query terms of q. This score is then combined with the PageRank
of these Web pages in order to determine the final rank for this query results.

2.4.2.2 HITS

The Hypertext Induced Topic Search (i.e., HITS) is another important link-based
ranking algorithm. In contrast to the PageRank algorithm, which assigns a global
rank to every Web page, the HITS algorithm is a query dependent ranking technique.
Moreover, instead of producing a single ranking score, HITS generates two scores:
the authority score and the hub score.

Web pages classified as authority are those most likely to be relevant to a par-
ticular query, whereas hub Web pages are not necessarily authorities themselves but
they are required to point to several authority Web pages.

There are basically two reasons why hub Web pages are interesting. First, they
are used in the HITS algorithm to compute the authority Web pages. Second, hub
Web pages represent themselves a useful set of documents to be returned to the user
in response to a query [37].

2.4. Query Processing 25

There exists a mutually reinforcing relationship between the hubs and the au-
thorities: an authority Web page is pointed to by many hubs, whereas hubs are Web
pages pointing to many authorities.

The HITS algorithm. The basic idea of the HITS algorithm is to identify a
small subgraph G′ of the Web graph G, such that G′ ⊂ G, and apply link analysis
on this subgraph G′ to locate the authority and hub Web pages for a given query.
The subgraph that is chosen depends on the user query and, since both the subgraph
selection and its analysis are done at query-time, it is important to perform them
as quick as possible.

Link Analysis. Let the set of Web pages in the focused subgraph G′ be denoted
as W ′. The link analysis algorithm produces an authority score, i.e., a(i), and a
hub score, i.e., h(i), for each Web page w′

i ∈ W ′. At the beginning, both a(i) and
h(i) are initialized to arbitrary values. The algorithm is iterative and performs two
kinds of operations at each step, called I and O, respectively. In the I operation,
the authority score of each Web page is updated to the sum of the hub scores of all
the Web pages pointing to it, that is:

a(i) =


wj∈I(i)
h(j). (2.5)

In the O step, the hub score of each Web page is updated to the sum of the authority
scores of all the Web pages that it points to, that is:

h(i) =


wj∈O(i)

a(j). (2.6)

The above definitions capture the intuition that a good authority Web page is
pointed to by many good hub Web pages and, conversely, that a good hub Web
page points to many good authority Web pages. Obviously, a Web page may be,
and often is, both a hub and an authority.

26 2. Web Search Engines

3
Query Log Mining

“La science avec des faits comme une maison avec des
pierres; mais une accumulation de faits n’est pas plus
une science qu’un tas de pierres n’est une maison.”
(Science is built up of facts, as a house is built of stones;
but an accumulation of facts is no more a science than a
heap of stones is a house.)

Jules-Henri Poincaré
La Science et l’Hypothèse (1901)

In Chapter 2, we described the main functionalities and sketched the general
architecture of a real-world Web search engine. Moreover, we caught how the overall
quality of such a complex software system is affected by its capability in retrieving
results that are relevant to user intents expressed by search queries.

Unfortunately, a key problem of modern Web search engines is that the ac-
tual needs behind user queries are very hard to recognize and understand. Indeed,
keyword-based queries are not always an effective descriptor of user search intents.
A first issue occurs because the ability of each single user to phrase effective queries
highly depends on her subjective skills. It might be the case that two users, having
exactly the same search intent, formulate two completely different queries, on the
basis of their familiarity with the specific terminology of the knowledge domain.
Moreover, even well-formulated and effective queries may suffer of ambiguity issues
that arise in many terms of a language, thus resulting in retrieved Web pages which
are not relevant to what users are really searching for. This phenomenon is even
more remarkable if we consider that users typically submit very short queries, i.e.,
2.5 terms on average [62, 118, 122, 65], which are more likely to be ambiguous.

However, differently from smaller scale IR systems, Web search engines can rely
on a huge amount of historical usage data stored in their query logs. Such logs,
indeed, represent a valuable source of knowledge for enhancing both the effectiveness
and efficiency of Web search systems.

To this end, Query Log Mining is concerned with all the techniques aiming to
discover interesting patterns from query logs with the purpose of enhancing the
overall provided service. Somehow, query log mining may be considered as a branch

28 3. Query Log Mining

of the more general Web Analytics scientific discipline [59], which, according to the
Web Analytics Association, is defined as:

“The measurement, collection, analysis and reporting of Internet data
for the purposes of understanding and optimizing Web usage.” [6]

Moreover, query log mining represents a special application of Web Usage Min-
ing [127], which generally refers to the discovery of user access patterns from Web
usage logs.

3.1 What is a Query Log?

A query log keeps track of information about the interaction between users and
the Web search engine. It records the issued queries and also a lot of additional
information, such as an anonymized identifier of the user submitting the query, the
pages viewed and clicked in the result set, the ranking of each result, the exact time
at which a particular action took place, etc.

In its most general form, a query log QL stores the search activities of a set of
users U = {u1, u2, . . . , uN} during a given observation period. Let qi ∈ QL be a
generic query issued by user ui and qi,j ∈ QL be the j-th query issued by user ui.
Furthermore, let τ(qi,j) be the time at which the query qi,j is issued. Finally, let Ri,j

and Ci,j (Ci,j ⊆ Ri,j) be the set of retrieved and clicked results in response to qi,j,
respectively.

Moreover, let Si be the sequence of all the queries qi ∈ QL issued by user ui ∈ U ,
chronologically ordered during the period of observation recorded in the query log:
Si = 〈qi,1, qi,2, . . . , qi,|Si|〉. Thus, Ri = 〈Ri,1, Ri,2, . . . , Ri,|Si|〉 is the sequence of result
sets returned and Ci = 〈Ci,1, Ci,2, . . . , Ci,|Si|〉 is the sequence of result sets, which
user clicked on. Therefore,

QL =
N

i=1

〈Si,Ri, Ci〉.

Each sequence Si is roughly defined as a “query session”. However, several kinds
of query sessions may be specified. To this end, later on Section 3.6.1 we refer to a
specific kind of query session, i.e., “(logical) search session”, namely sets/sequences
of queries that are all related to the same search goal. Moreover, click-through data,
i.e., Ci, represent a sort of implicit relevance feedback information. In particular,
every single user action (also, for instance, the action of not clicking on a query
result) may be exploited to derive aggregate statistics, which are very useful for the
optimization of the search engine effectiveness.

Unfortunately, not all the data stored in a query log are equally relevant to
the final analysis. Usually, data pre-processing and preparation steps are needed
for producing a suitable data set from which knowledge could be better extracted.

3.1. What is a Query Log? 29

These steps typically include: data cleaning, query session identification, merging
query logs from several applications and removing requests issued by robots, etc.
The final aim of this initial phase is to remove “noisy” items, so that the resulting
inferred knowledge and statistics reflect accurately the actual user behaviors while
interacting with the Web search engine.

Although query logs are undoubtedly sources of inspiration for devising novel
research topics, real-world Web search engines have been often reluctant to re-
lease their historical usage data to the public. This is mostly because today query
logs have also a great impact on the decision-making processes and strategic plans
adopted by commercial Web search engines. Moreover, several issues arise when-
ever such sensible users’ data are released without planning any effective privacy-
preserving mechanism (Section 3.5).

Since 1997, only the following query logs have been made publicly available: Ex-
cite (1997), AltaVista (1998, 1999), AOL (2003, 2004, and 2006), and MSN (2006).
Table 3.1 resumes the most important features of the query logs that have been
analyzed in the latest years.

Query Log Name Public Period # Queries # Sessions # Users

Excite (1997) Y Sep 1997 1,025,908 211,063 ∼410,360

Excite Small (1997) Y Sep 1997 51,473 – ∼18,113

Altavista N
Aug 2, 1998

993,208,159 285,474,117 –
Sep 13, 1998

Excite (1999) Y Dec 1999 1,025,910 325,711 ∼540,000

Excite (2001) Y May 2001 1,025,910 262,025 ∼446,000

Altavista (public) Y Sep 2001 7,175,648 – –

Tiscali N Apr 2002 3,278,211 – –

TodoBR Y
Jan 2003

22,589,568 – –
Oct 2003

TodoCL N
May 2003

– – –
Nov 2003

AOL (big) N
Dec 26, 2003 ∼100,000,000 – ∼50,000,000
Jan 01, 2004

Yahoo! N
Nov 2005

– – –
Nov 2006

AOL (small) Y
Mar 1, 2006 ∼20,000,000 – ∼657,000
May 31, 2006

Microsoft RFP 2006 Y
Spring 2006 ∼15,000,000 – –
(one month)

Table 3.1: Features of the most important query logs that have been analyzed in the latest years.
The dash sign (–) means that the feature in the relative column was non-disclosed.

30 3. Query Log Mining

The most famous publicly-available query log is undoubtedly from AOL, which
was released on August 2006. This query log is a very large and long-term collection
consisting of about 20 million of Web queries issued by more than 657, 000 users to
the AOL search portal over a period of three months, i.e., from 1st March, 2006 to
31st May, 2006. After the controversial discussion related to users’ privacy issues
followed to its initial public delivery, AOL has withdrawn the query log from its
servers and is not offering it for download anymore. Nevertheless, this data set is
still hosted on many other mirror servers and available for download.1

1.1 Web Search Engines 5

Fig. 1.1 A fragment of the AOL query log [160].

How query logs interact with search engines has been studied in

many papers. For a general overview, [12, 20] are good starting point

references.

In this paper, we review some of the most recent techniques deal-

ing with query logs and how they can be used to enhance web search

engine operations. We are going to summarize the basic results con-

cerning query logs: analyses, techniques used to extract knowledge,

most remarkable results, most useful applications, and open issues and

possibilities that remain to be studied.

The purpose is, thus, to present ideas and results in the most

comprehensive way. We review fundamental, and state-of-the-art tech-

niques. In each section, even if not directly specified, we review and ana-

lyze the algorithms used, not only their results. This paper is intended

for an audience of people with basic knowledge of computer science. We

also expect readers to have a basic knowledge of Information Retrieval.

Everything not at a basic level is analyzed and detailed.

Before going on, it is important to make clear that all the analyses

and results reported were not reproduced by the author. We only report

Figure 3.1: An example of the 2006 AOL query log [98].

Figure 3.1 shows a fragment of the 2006 AOL query log. Each row of this query
log consist of records collecting five fields: (i) the anonymous identifier of the user
issuing the query, (ii) the issued query, (iii) the timestamp at which the query was
issued to the search engine, (iv) the position of the clicked result in the retrieved
result list, and (v) the domain name of the machine hosting the clicked document.

Furthermore, many queries stored in query logs reveal sometimes curious and
funny user search behaviors. Just to give an example, from the 2006 AOL query
log, user #2386968 asked “why is my husband so talkative with my female friends”,
thus revealing a jealous wife who is worried about her perhaps “lady-killer” husband.
Another bizarre example is the request submitted by user #427326 who phrased the
query “where is my computer?”. Maybe, this user was looking for the path of the
“My computer” directory on a MS Windows file system.

3.2 A Characterization of Web Search Queries

In this Section, we aim at presenting a characterization of query logs by showing
how queries are distributed over time. In particular, we analyze topic-popularity,

1http://sifaka.cs.uiuc.edu/xshen/aol_querylog.html

http://sifaka.cs.uiuc.edu/xshen/aol_querylog.html

3.2. A Characterization of Web Search Queries 31

term-popularity, differences with respect to the past, variations of topics during day
hours, etc.

Some important efforts have been spent in the past to study how people interact
with small-scale IR systems (commonly used for digital libraries or legal document
retrieval), by analyzing the historical search data of their users [58, 46, 117, 125, 53].
However, the nature of query logs coming from large-scale Web search engines is
different from that coming from small-scale IR systems. As an example, search
operators, like quotes, “+”, “-”, etc., are rarely used by Web users.

The characteristics of query logs coming from some of the most popular Web
search engines have been deeply studied [22, 23, 60, 61, 62, 64, 71, 89, 94, 95, 98,
122, 123, 142]. Typical statistics that can be drawn from query logs are: query
popularity, term popularity, average query length, distance between repetitions of
queries or terms.

The very first contribution in analyzing query logs comes from Silverstein et
al. [118]. Here, the authors propose an exhaustive analysis by examining a large
query log of the AltaVista search engine containing about a billion queries submitted
by 285 million users during a period of 42 days. The study shows some interesting
results, including the analysis of the query sessions for each user and the correlation
among the terms of the queries. Similarly to other works, authors highlight that the
majority of the users (i.e., about 85%) visit the first page of results only. They also
show that 77% of the user sessions end up just after the first query.

Jansen et al. [62] analyze a log consisting of 51,473 queries submitted by 18,113
Excite users. The query log is properly anonymized. As the information are com-
pletely decontextualized, no user profiling can be carried out on this query log.

Lempel and Moran [78], as well as Fagni et al. [45], study the content of a publicly
available AltaVista log. The log consist of 7,175,648 queries issued to AltaVista
during the summer of 2001. No information referring the number of logged users
is released. This second AltaVista log is three-years following the one used for the
studies proposed by Jansen et al. and Silverstein et al. Furthermore, the log is
smaller than the first one, nevertheless it represents a good picture of Web search
engine users.

Moreover, previous works on query log analysis revealed that Web search queries
are usually quite short. For instance, the average length of a query in the 1998
Excite log is 2.35 terms. Also, less than 4% of the queries contains more than
6 terms. In the case of the AltaVista log, the average query length is slightly
greater, i.e., 2.55. These statistics are significantly different from the ones resulting
from the analysis of classical IR systems, where the length of a query ranges from
7 to 15 terms. A possible explanation of this phenomenon is that the Web is a
medium used by different people from different part of the world looking for disparate
information, while traditional IR systems are instead manually used by professionals
and librarians searching for very focused information, who are more able to precisely
formulate their needs.

32 3. Query Log Mining

Both the query popularity and term popularity distributions are characterized
by a power law [107]. This means that the number of occurrences f(x) of a query
(or a term) is proportional to x−α, where x is the popularity rank and α > 1 is a
real parameter measuring how popularity decreases against the rank. In a formula,
f(x) ∝ Kx−α, where K is a real positive constant corresponding to the query with
the highest popularity.

Markatos [88] is the first who shows that query popularity distribution is char-
acterized by a power law with an exponent α = 2.4. He analyzes the Excite query
log and plots the occurrence of the first 1,000 most popular queries (Figure 3.2 (a)).

Eventually, later studies confirm the previous power law trend in two other query
logs: AltaVista [78] (Figure 3.2 (b)) and Yahoo! [8].

Tables in Figure 3.3 detail the top-20 queries for the Excite [88] and AltaVista [78]
logs, respectively. Many queries in both logs refer to sex and sexually explicit topics
and many others can be somehow related to the same topics as well. Furthermore,
there are some unexpected outcomes in query logs. For instance, the most frequent
query in the Excite query log is the empty query. This request accounts for 5%
of the total amount of issued queries. Authors in [62] give a possible explanation
of this phenomenon. Basically, they state it could be caused either by (i) possible
errors in typing queries in the search box or (ii) Excite reaction to user actions.
As an example, Excite result pages have a link pointing to a “More Like This”
function that, if clicked, returns pages related to the ones selected. Excite counts
that behavior as an empty query, thus incrementing the empty query count.

Moreover, topics covered by queries contained in search engines logs are the most
disparate. Figure 3.4 highlights the 250 most frequent terms in the AOL query log
by means of a word cloud. The dimension of each term in the word cloud is directly
related to its frequency in the query log. The bigger a term in the word cloud,
the more frequent it is in the log. As an example,“google” and “free” are the two
most frequent terms in the log. Other very frequent words are: “yahoo”, “new”,
“county”, “pictures”, “http”.

A proof of this multitude of topics may also be given by Figure 3.3. A very
first result in categorizing queries is provided by [122]. Here, the authors show
the percentage of queries submitted for each topic to the Excite search engine in
1997. Categorizing queries into topics is not a trivial task. Recent papers showing
techniques for assigning labels to each query [54, 114, 138, 24, 25, 35] adopt a set of
multiple classifiers, subsequently refining the classification phase.

Classification of the Excite queries made by Spink et al. in [122] shows that there
is no way for “pornography” to be a major topic of Web queries, even though the
top ranked query terms may indicate this. Only one in about six Web queries have
been classified as about sex (“XXX”). Commerce, including travels, employment,
and a number of economic topics are also high in the list. Furthermore, about 10%
of the queries are about health and sciences.

Authors of [24, 22] outline similar results on a different query log. The log is
made up of billions of Web queries constituting the total query traffic for six months

3.2. A Characterization of Web Search Queries 33

20 The Nature of Queries

(a) (b)

(c)

Fig. 2.2 Plots displaying query popularity for various query logs. (a) The 1,000 most pop-

ular queries in the Excite Log [144]; (b) Query popularity of Altavista queries [129] and (c)

Query popularity of Yahoo! queries [15].

reports in a graph like the one shown in Figure 2.2(a) that the popu-

larity follows the usual linear trend in a log-log scale. We can see from

the plot that the most popular query is submitted 2,219 times, while

the 1,000th most popular query is submitted 27 times [144]. A power-

law trend is confirmed also in other studies and other query logs, such

as the AltaVista [129] (Figure 2.2(b)), and Yahoo! [15] (Figure 2.2(c))

logs.

Figures 2.3(a), and 2.3(b) detail the 20 top queries for the Excite

and Altavista logs, respectively.2 As one would probably have guessed,

many queries in both logs refer to sex and sexually explicit topics

2 Provisioning of the same information for the Yahoo! log is not possible due to privacy and

restriction policies.

(a)

20 The Nature of Queries

(a) (b)

(c)

Fig. 2.2 Plots displaying query popularity for various query logs. (a) The 1,000 most pop-
ular queries in the Excite Log [144]; (b) Query popularity of Altavista queries [129] and (c)
Query popularity of Yahoo! queries [15].

reports in a graph like the one shown in Figure 2.2(a) that the popu-

larity follows the usual linear trend in a log-log scale. We can see from

the plot that the most popular query is submitted 2,219 times, while

the 1,000th most popular query is submitted 27 times [144]. A power-

law trend is confirmed also in other studies and other query logs, such

as the AltaVista [129] (Figure 2.2(b)), and Yahoo! [15] (Figure 2.2(c))

logs.

Figures 2.3(a), and 2.3(b) detail the 20 top queries for the Excite

and Altavista logs, respectively.2 As one would probably have guessed,

many queries in both logs refer to sex and sexually explicit topics

2 Provisioning of the same information for the Yahoo! log is not possible due to privacy and
restriction policies.

(b)

Figure 3.2: The distribution of query popularity (log-log scale) of two query logs: Excite [88] (a)
and AltaVista [78] (b).

34 3. Query Log Mining

2.1 Basic Statistics 21

query freq.

Empty Query 2,586
sex 229

chat 58
lucky number generator 56

p**** 55
porno 55
b****y 55

nude beaches 52
playboy 46

bondage 46

porn 45
rain forest restaurant 40

f****ing 40
crossdressing 39

crystal methamphetamine 36
consumer reports 35

xxx 34
nude tanya harding 33
music 33

sneaker stories 32

query freq.

christmas photos 31,554
lyrics 15,818

cracks 12,670
google 12,210

gay 10,945
harry potter 7,933
wallpapers 7,848

pornografia 6,893
“yahoo com” 6,753

juegos 6,559

lingerie 6,078
symbios logic 53c400a 5,701

letras de canciones 5,518
humor 5,400

pictures 5,293
preteen 5,137

hypnosis 4,556
cpc view registration key 4,553
sex stories 4,521

cd cover 4,267

(a) (b)

Fig. 2.3 The most popular queries out of the Excite and publicly available Altavista Logs.
Potentially offending terms have been replaced by similar terms containing asterisks (‘*’).

Query have not previously filtered to remove stop-words and terms in queries have not been
reordered. (a) Excite; (b) Altavista.

(“XXX”). While, unsurprisingly, many others can be somewhat related

to XXX as well. As often happens, there are some unexpected outcomes

in query logs. For instance, rather surprisingly the most frequent query

in the case of the Excite log is the empty query! They account for more

than 5% of the queries. Authors of [108] try to explain this strange

fact. Probably, the most obvious reason is that users often wrongly

type queries in the search box. This phenomenon could also be due to

how search engines react to user actions. For instance, Excite had a

link pointing to a “More Like This” function that, if clicked, returned

pages related to the one selected. Excited counted that as an empty

query thus raising the empty query count. Therefore, the frequency of

empty query in this logs, could, more likely, identify the usage of the

“More Like This” feature of Excite.

As it can be seen from tables in Figure 2.3 many different topics are

represented in query logs. Figure 2.4(a), from [208], shows the percent-

age of queries submitted for each topic to the Excite search engine in

Figure 3.3: The top-20 queries of two query logs: Excite [88] (a) and AltaVista [78] (b).

1.3 Fun Facts about Queries 11

Fig. 1.5 A cloud of the 250 most frequent queried terms in the AOL query log [160]. Picture
has been generated using http://www.wordle.net.

and independently from a partition of the whole collection. The sec-

ond phase collects global statistics computed over the whole inverted

index. One of the most valuable advantages of document partitioning

is the possibility of easily performing updates. In fact, new documents

may simply be inserted into a new partition to independently index

separately from the others [169].

Since the advent of web search engines, a large number of papers

have been published describing different architectures for search

engines, and search engine components [10, 25, 47, 33, 96, 97, 147,

150, 153, 204]. Many other papers [13, 14, 100, 101] enumerate the

major challenges search engine developers must address in order to

improve their ability to help users in finding information they need.

Interested readers shall find in the above referenced papers many inter-

esting insights. Needless to say, you shall not find any particular details,

in this survey, about the real structure of a search engine. Usually, this

kind of information is highly confidential and it is very unlikely that

search companies will ever disclose them.

1.3 Fun Facts about Queries

Due to their “commercial importance”, finding query logs has always

been a difficult task. The very first publicly available query log dates

Figure 3.4: A word cloud of the 250 most frequent words in the AOL query log [98], generated
using wordle.net [120].

3.2. A Characterization of Web Search Queries 35

of AOL. Categories are different as well as results (in terms of category percentages
breakdown). The difference is caused by the distinct period of time in which the
analysis was conducted: while the Excite log refers to queries issued in 1997, the
AOL log is younger as it consists of queries issued in 2003. Furthermore, porn
queries fell down considerably.

Query terms are distributed according to a power law as well (i.e., in particular,
a double Pareto log-normal distribution). In fact, the curve of term distribution
falls down sharply, thus denoting that the most frequent terms are much more
frequent that the rest of the terms. Figure 3.6 depicts the curve progress of the term
popularity distribution in the case of two query logs: Excite [88] and AltaVista [78].

An interesting statistics obtained from query logs is focused on understanding
how terms co-occur. In [126], a follow-up of the work presented in [62], Spink et al.
show the first fifty most frequently co-occurrent terms. Figure 3.2 depicts how terms
co-occur in queries without reflecting topic popularity. The majority of term pairs
concern “non-XXX” topics, whereas in the same analysis they found that “XXX”
queries are highly represented. This highlights that, for some topics, people use more
terms to search for precise information, while for other topics the same information
need may be satisfied by shorter queries.

2
.1

B
a
sic

S
ta

tistics
2
5

Table 2.2. List of the fifty most co-occurring terms in the Excite log (term1 — term2 frequency) [212].

and-and 6,116 of-and 690 or-or 501 women-nude 382 sex-pics 295
of-the 1,901 pictures-of 637 sex-pictures 496 pics-nude 380 north-carolina 295
pics-free 1,098 how-to 627 nude-pictures 486 of-department 365 free-teen 293
university-of 1.018 and-the 614 for-sale 467 united-states 361 free-porn 290
new-york 903 free-pictures 637 and-not 456 of-history 332 and-nude 289
sex-free 886 high-school 571 and-sex 449 adult-free 331 and-pictures 286
the-in 809 xxx-free 569 the-to 446 of-in 327 for-the 284
real-estate 787 and-free 545 the-the 419 university-state 324 new-jersey 280
home-page 752 adult-sex 508 princess-diana 410 sex-nudes 312 of-free 273
free-nude 720 and-or 505 the-on 406 a-to 304 chat-rooms 267

Table 3.2: List of the fifty most co-occurring terms (term1–term2, frequency) in the Excite query
log [126].

Another interesting analysis that can be conducted on search engine logs con-
cerns the repetition of some queries. Since many queries are seen only a few times,
one could expect that in the majority of the cases the distance between subsequent
submissions of the same query would be very large. Figure 3.7 shows the distance,
measured in number of queries, between the submissions of two same queries. Dif-
ferently from what is expected, the majority of queries have distances that are less
than 1000 queries. A possible explanation is the bursty nature of query logs, i.e.,
a large number of people start looking for a topic at the same time. The bursty
nature of queries is a feature that is indeed extensively used in many techniques for
enhancing both the effectiveness and efficiency of Web search engines.

36 3. Query Log Mining

22 The Nature of Queries

Topic Percentage

Entertainment or recreation 19.9%

Sex and pornography 16.8%

Commerce, travel, employment, or economy 13.3%

Computers or Internet 12.5%

Health or sciences 9.5%

People, places, or things 6.7%

Society, culture, ethnicity, or religion 5.7%

Education or humanities 5.6%

Performing or fine arts 5.4%

Non-English or unknown 4.1%

Government 3.4%

(a)

Topic Percentage

Entertainment 13%

Shopping 13%

Porn 10%

Research & learn 9%

Computing 9%

Health 5%

Home 5%

Travel 5%

Games 5%

Personal & Finance 3%

Sports 3%

US Sites 3%

Holidays 1%

Other 16%

(b)

Fig. 2.4 Distribution of query samples across general topic categories for two different query

logs. Excite 2.4a, and AOL 2.4b. (a) Excite [208]; (b) AOL [34].

1997. Categorizing queries into topics is not a simple task. There are

papers showing techniques for assigning labels to each query. Recent

papers on the topic [36, 37, 49, 92, 192, 224] adopt a set of multiple

classifiers subsequently refining the classification phase. Due to space

limitations we cannot provide here a complete and detailed analysis of

query classification literature. Interested readers can refer to the liter-

ature for a thorough analysis of this subject.

Classification of the Excite queries made by Spink et al. [208] shows

that in no way is pornography a major topic of web queries, even though

the top ranked query terms may indicate this. Only one in about six web

queries have been classified as about sex. Web users look interested on a

(a)

22 The Nature of Queries

Topic Percentage

Entertainment or recreation 19.9%

Sex and pornography 16.8%

Commerce, travel, employment, or economy 13.3%

Computers or Internet 12.5%

Health or sciences 9.5%

People, places, or things 6.7%

Society, culture, ethnicity, or religion 5.7%

Education or humanities 5.6%

Performing or fine arts 5.4%

Non-English or unknown 4.1%

Government 3.4%

(a)

Topic Percentage

Entertainment 13%

Shopping 13%

Porn 10%

Research & learn 9%

Computing 9%

Health 5%

Home 5%

Travel 5%

Games 5%

Personal & Finance 3%

Sports 3%

US Sites 3%

Holidays 1%

Other 16%

(b)

Fig. 2.4 Distribution of query samples across general topic categories for two different query

logs. Excite 2.4a, and AOL 2.4b. (a) Excite [208]; (b) AOL [34].

1997. Categorizing queries into topics is not a simple task. There are

papers showing techniques for assigning labels to each query. Recent

papers on the topic [36, 37, 49, 92, 192, 224] adopt a set of multiple

classifiers subsequently refining the classification phase. Due to space

limitations we cannot provide here a complete and detailed analysis of

query classification literature. Interested readers can refer to the liter-

ature for a thorough analysis of this subject.

Classification of the Excite queries made by Spink et al. [208] shows

that in no way is pornography a major topic of web queries, even though

the top ranked query terms may indicate this. Only one in about six web

queries have been classified as about sex. Web users look interested on a

(b)

Figure 3.5: The distribution of query samples across general topic categories of two query logs:
Excite [88] (a) and AOL [22] (b).

3.2. A Characterization of Web Search Queries 37

24 The Nature of Queries

(a)

(b)

(c)

Fig. 2.5 Plots displaying the number of requests for terms in various query logs. (a) Excite;
(b) Altavista and (c) Yahoo! (from [15]).

(a)

24 The Nature of Queries

(a)

(b)

(c)

Fig. 2.5 Plots displaying the number of requests for terms in various query logs. (a) Excite;
(b) Altavista and (c) Yahoo! (from [15]).

(b)

Figure 3.6: The distribution of term popularity (log-log scale) of two query logs: Excite [88] and
AltaVista [78].

38 3. Query Log Mining26 The Nature of Queries

Fig. 2.6 Distances (in number of queries) between subsequent submissions of the same query

for the Altavista and Excite log.

Differently from what is expected, the majority of queries have dis-

tances that are less than 1,000 queries. A possible reason is the inherent

bursty [121] nature of query logs: a large number of people start looking

for a topic almost at the same time. This observation is very important,

as we show in the rest of the survey that the bursty nature of queries

is a feature that is extensively used in many techniques for enhancing

both effectiveness and efficiency of web search engines.

2.2 Trends and Historical Changes in Queries

Queries are issued on several different topics [160] depending also on

the historical period [208]. Going at a daily granularity level of analysis,

some of the topics are more popular in an hour than in another [34, 35].

During the daytime frequency of querying varies considerably.

Ozmutly et al. [156] analyze query frequency against arrival time for the

Excite query log in a time period ranging from 9 a.m to 5 p.m. Table 2.3

shows how frequencies are distributed within hours of the day.

Querying activity is higher during the first hours of the day than the

afternoon. There is a sharp decrease in the number of queries submitted

going down from 679 at 9 a.m to 224 at 4 p.m. That is 30% of the

queries that are usually submitted at 9 a.m. These numbers are small if

Figure 3.7: Distances (in number of queries) between subsequent submissions of the same query
for the AltaVista and Excite logs.

3.3 Time Analysis of Query Logs

Queries may refer to several topics [98], depending also on the historical period [122].
Query logs can be analyzed at different levels of time granularity. On a daily granu-
larity level, some of the topics have shown to be more popular during certain hours
of the day [22, 23].

Frequency of queries vary considerably during the day. Ozmutlu et al. [95] ana-
lyze query frequency against arrival time for the Excite query log in a time period
ranging from 9a.m. to 5p.m. Querying activity is higher during the first hours of
the day than in the afternoon. There is a sharp decrease in the number of queries
submitted, going down from 679 at 9a.m. to 224 at 4p.m. In particular, the num-
ber of queries at 4p.m. is about 30% of the queries that are usually submitted at
9a.m. Note that these numbers are small if compared to the activity of today’s
Web search engines. Comparing these numbers with a similar statistic performed
in 2006 [98], results are completely different. Figure 3.8 illustrates how frequencies
are distributed within the hours of the day. At 9a.m. queries submitted are almost
half of those submitted at 5p.m.

Spink et al. [122] show how time periods affect querying behavior of users. Ta-
ble 3.3 describes how the querying behavior is not changed from a statistical point
of view, in a period of four years. The mean number of terms per query is only
slightly raised in 2001, while the number of terms per query and the mean queries
per user are basically unchanged in four years. Even if this study dates back to
2001, it is very likely that the results it presents are still valid today.

Obviously, the more spread a new technology is the more users become skilled
on using it. From Table 3.4 it is clear that users querying for “People, Places or

3.3. Time Analysis of Query Logs 39

2.2 Trends and Historical Changes in Queries 27

Table 2.3. Number of query
arrivals with respect to hours
of the day — Excite query
set [156].

Hour of the Day frequency

9:00–10:00 679
10:00–11:00 486
11:00–12:00 437
12:00–13:00 367
13:00–14:00 358
14:00–15:00 333
15:00–16:00 304
16:00–17:00 224

Fig. 2.7 Frequency of query submitted to the AOL search engine during the day [160].

compared to the number of queries submitted to today’s search engines.

When compared to the same statistics in 2006 [160], results are com-

pletely turned upside-down. At 9 a.m queries submitted are almost half

of those submitted at 5 p.m (Figure 2.7).

Spink et al. [208] showed how time periods affect querying behavior

of users. In Table 2.4, extracted from the above mentioned paper, it

is possible to observe that querying behavior is not changed from a

statistical point of view, in a period of 4 years. The mean number of

terms per query is only slightly raised in 2001, while the number of

terms per query, the main queries per user, are basically, unchanged in

four years. Even if this study dates back to 2001, it is very likely that

the results are still valid today. Users mostly tend to look for places to

buy goods, or to look for particular sites they already know. For this

reason, the number of keywords is usually low.

Figure 3.8: Frequencies of queries submitted to the AOL search engine during the day [98].

28 The Nature of Queries

Table 2.4. Comparative statistics for Excite web

queries [208].

Characteristic 1997 1999 2001

Mean terms per query 2.4 2.4 2.6
Terms per query

1 term 26.3% 29.8% 26.9%

2 term 31.5% 33.8% 30.5%

3+ term 43.1% 36.4% 42.6%
Mean queries per user 2.5 1.9 2.3

Table 2.5. Comparison of categories breakdown (in %) for Excite web

queries (from 1997 to 2001), and Altavista (2002) [107].

Category 1997 1999 2001 2002

People, places, or things 6.7 20.3 19.7 49.3

Commerce, travel, employment, or economy 13.3 24.5 24.7 12.5

Computers or Internet 12.5 10.9 9.7 12.4

Health or sciences 9.5 7.8 7.5 7.5
Education or humanities 5.6 5.3 4.6 5.0

Entertainment or recreation 19.9 7.5 6.7 4.6

Sex and pornography 16.8 7.5 8.6 3.3
Society, culture, ethnicity, or religion 5.7 4.2 3.9 3.1

Government 3.4 1.6 2.0 1.6

Performing or fine arts 5.4 1.1 1.2 0.7

Non-English or unknown 4.1 9.3 11.4 0.0

As it has been shown above, users have changed their prefer-

ences and inclinations during time. Obviously, the more penetrated

a new technology is the more users become skilled and acquainted with

using it. Probably users’ understanding of the potentiality of this new

medium, the web, has made them prone to use it as a way of conducting

business.

From the data in Table 2.5 it is evident that users (at least those

of US-based search engines) querying for People, Place or Things was

accounting for nearly 50% in 2002. Moreover, there is a clear rise in

interest from users for this category: back in 1997 queries referring

to People, Place or Things accounted for less than 7%. The 25% of

users in 2002 queries for Commerce, Travel, Employment or Economy

and Computers, Internet or Technology. This percentage has seen an

“up-and-down” trend,3 varying from a minimum of about 25% and to

3 Unless due to the use of different classification algorithms for the different query logs.

Table 3.3: Comparative statistics for Excite Web queries [122].

Things” were about 50% in 2002. Moreover, on the side of users there is an evident
rise of interest for this category: in 1997 queries referring to “People, Places or
Things” accounted for less than 7%. The 25% of users in 2002 query for “Commerce,
Travel, Employment or Economy” and “Computers, Internet or Technology”. This
percentage shows an “up-and-down” trend, varying from a minimum of 25% to a
maximum of 35%. Furthermore, “Sex and Pornography” shows a falling trend: from
16.8% in 1997 to 3.3% in 2002.

Beitzel et al. [22] measure the relative popularity of different categories over the
hours in a day. Figure 3.9 shows the percentage of total query volume broken-down
to a selected group of category. Different topical categories are more or less popular
at different times of the day. As an example, while “Personal Finance” popularity
raises during the first hours of the morning between 7a.m. and 10a.m., “Porn” is a
category whose popularity raises during late-night until 6a.m.

Figure 3.10 depicts a different analysis on the same categories obtained by ap-
plying the Kullback-Leibler divergence (KL-divergence) [73]. The reason of applying
this measure is to compare categories with a different relative level of popularity in
a better way. The comparison is, in fact, affected by popularity shift. To overcome
this issue, Beitzel et al. compute the KL-divergence between the likelihood of receiv-
ing a query on any topic at a particular time and the likelihood of receiving a query
in a particular category. The KL-divergence measures a sort of “most surprising”
category for a particular time of the day. Instead of measuring the popularity as the

40 3. Query Log Mining

28 The Nature of Queries

Table 2.4. Comparative statistics for Excite web

queries [208].

Characteristic 1997 1999 2001

Mean terms per query 2.4 2.4 2.6
Terms per query

1 term 26.3% 29.8% 26.9%

2 term 31.5% 33.8% 30.5%

3+ term 43.1% 36.4% 42.6%
Mean queries per user 2.5 1.9 2.3

Table 2.5. Comparison of categories breakdown (in %) for Excite web
queries (from 1997 to 2001), and Altavista (2002) [107].

Category 1997 1999 2001 2002

People, places, or things 6.7 20.3 19.7 49.3
Commerce, travel, employment, or economy 13.3 24.5 24.7 12.5

Computers or Internet 12.5 10.9 9.7 12.4

Health or sciences 9.5 7.8 7.5 7.5
Education or humanities 5.6 5.3 4.6 5.0

Entertainment or recreation 19.9 7.5 6.7 4.6

Sex and pornography 16.8 7.5 8.6 3.3
Society, culture, ethnicity, or religion 5.7 4.2 3.9 3.1

Government 3.4 1.6 2.0 1.6

Performing or fine arts 5.4 1.1 1.2 0.7

Non-English or unknown 4.1 9.3 11.4 0.0

As it has been shown above, users have changed their prefer-

ences and inclinations during time. Obviously, the more penetrated

a new technology is the more users become skilled and acquainted with

using it. Probably users’ understanding of the potentiality of this new

medium, the web, has made them prone to use it as a way of conducting

business.

From the data in Table 2.5 it is evident that users (at least those

of US-based search engines) querying for People, Place or Things was

accounting for nearly 50% in 2002. Moreover, there is a clear rise in

interest from users for this category: back in 1997 queries referring

to People, Place or Things accounted for less than 7%. The 25% of

users in 2002 queries for Commerce, Travel, Employment or Economy

and Computers, Internet or Technology. This percentage has seen an

“up-and-down” trend,3 varying from a minimum of about 25% and to

3 Unless due to the use of different classification algorithms for the different query logs.

Table 3.4: Comparison of categories breakdown (in %) for Excite (1997–2001) and Altavista
(2002) Web queries [61].

30 The Nature of Queries

Fig. 2.8 Percentage of the total query stream covered by selected categories over hours in
a day [34].

Also shown in Figure 2.9 is the average percentage of the entire query

volume and distinct queries that match each category. Although the

categories that cover the largest portions of the query stream also have

the most relative popularity fluctuation, this correlation does not con-

tinue throughout all categories. Beitzel et al. [34] reach the same con-

clusion by thoroughly discussing a more through analysis on weekly

and monthly basis.

2.3 Summary

In this section, we presented an overview of the papers presenting

statistics computed over different search engine query logs sampled over

Figure 3.9: Percentage of the query stream covered by selected categories over hours in a day [22].

3.4. Time-series Analysis of Query Logs 41

most numerous topic, the KL-divergence measures how popular is a query in terms
of how much it is not being expected.

2.3 Summary 31

Fig. 2.9 Average percentage of query stream coverage & KL-divergence for each category
over hours in a day [34].

different periods of time. Some of the conclusions that can be drawn

are common to all of the logs considered:

• Queries contains very few terms, on average ranging between

2 and 3 terms. This means that devising good results for a

query is a very difficult task given that this very low number

of terms often contains also ambiguous terms.
• The distribution of query popularity follows a power law.

The most popular queries account for a very small fraction

of the total number of unique queries. This phenomenon, also

knows as the Long Tail [9], is pretty well known today and

seems to arise whenever we deal with social and economical

aspects of the new (internet) economy.
• Two conflicting claims have been presented. Following Spink

et al. [208] it seems that X-rated query popularity is declin-

ing. Beitzel et al. [35], instead, claim that XXX queries are

more surprising than others on certain time periods. On the

other hand, non-XXX queries do not show any particular

peaks in submission frequency. This is the reason why they

define XXX queries more frequent than others.

Figure 3.10: Average percentage of the query stream coverage and KL-divergence for each cate-
gory over hours in a day [22].

A more recent work presents similar results on a MSN Web search engine query
log [146]. Authors outline some results that are not detailed with respect to topics,
as presented in the previous paper, yet they do not disagree with the overall results
presented in [22]. This analysis reveals that the top three categories in terms of
popularity are “pornography”, “entertainment”, and “music”. Beitzel et al. [22]
reach the same conclusion by discussing a more through analysis on weekly and
monthly perspective.

3.4 Time-series Analysis of Query Logs

Queries issued by users can be considered as signals in the domain of time. In each
time unit it is possible to record the occurrences of the query. The result is a sort
of signal to which standard temporal series techniques could be applied [136, 137,
49, 36, 148]. These works introduce techniques for discovering query features, like
periodicity or “burstiness”.

Adar et al. [2] use time series to predict either (i) why users issue queries and (ii)
how users react and cause new spreading. In particular, they propose a novel way
to compare signals coming from different sources of information. Dynamic Time
Warping (DTW) is a way to compare two time series also capturing behavioral
properties by mapping inflection points and behavior, such as the rise in one curve
to the rise in the second, peak to peak, run to run. Figure 3.11 shows an example
of DTW, against a simple linear mapping. Lines going from a curve to the other
show how events are mapped within each line.

42 3. Query Log Mining

152 New Directions

Dynamic Time Warping (DTW) is a way to compare two time series

also capturing behavioral properties by mapping inflection points and

behaviors such as the rise in one curve to the rise in the second, peak

to peak, run to run. Figure 6.2 shows an example of DTW, against a

simple linear mapping. Lines going from a curve to the other show how

events are mapped within each line.

Computing a DTW is simply done by a dynamical programming

algorithm minimizing the distance in terms of euclidean distance

between to time series points.

The algorithm shown in Figure 6.1 produces a two-dimensional

array, DTW, containing how the two time series maps. The best warp-

ing path is simply obtained by crawling the array from the extreme

corner in a backward fashion along the minimum gradient direction.

Fig. 6.2 The difference of using DTW against a simple linear mapping for comparing two

time series.

Table 6.1. Dynamic time warping algorithm.

Procedure DynamicTimeWarping(x, y).

(1) DTW[0,0] = 0;

(2) for i = 1..length(x)

(a) DTW[0, i],DTW[i,0] = ∞;

(b) for i = 1..length(x)

i. for i = 1..length(y)

A. cost = |x(i) − y(j)|;
B. DTW[i, j] = min(DTW[i − 1, j] + cost,

DTW[i, j − 1] + cost, DTW[i − 1, j − 1] + cost);

Figure 3.11: Comparing two time series using DTW vs. linear mapping [2].

DTW is obtained by applying a dynamical programming algorithm minimizing
the distance in terms of Euclidean distance between two time series points. The
algorithm produces a two dimensional array, i.e., DTW, containing how the two time
series map to each other. The best warping path is simply obtained by crawling the
array from the extreme corner backwardly along the minimum gradient direction.

The goal of this work is to discover how time-series are correlated in order to
be able to use events in one information source to predict those in another. The
data sets used are two query logs (i.e., MSN and AOL), a Web blog, and a news
channel. By using human-based tests, authors devise the following five different
general trends in time-series-based behavior prediction:

• News of the weird: events that are so weird and/or strange to be able to
virally spread over a huge amount of people.

• Anticipated events: events that produce a lot of queries but only few blog
posts.

• Familiarity breed contempt: events that are newsworthy but not searched
by users.

• Filtering behaviors: events that have the capability of deepening the filter-
ing of categories.

• Elimination of noise: events that, if combined, reduce the noise that might
have been generated around a topic (e.g., a set of blog posts discussing a news
article).

The models describing the aggregated and social behavior of users studied by Adar
et al. [2] can be used in practice, for instance, to analyze the market, or to make
search engines more reactive to changing user needs.

3.4. Time-series Analysis of Query Logs 43

Zhang et al. [145] study time-series analysis to evaluate predictive scenarios us-
ing search engine transactional logs. Authors deal with developing models for the
analysis of user behaviors over time and investigate if time series analysis is a valid
method for predicting relationships between searchers actions. Time-series analysis
is a method often used to understand the underlying characteristics of temporal data
in order to make forecasts. The study uses a Web search engine transactional log
and time-series analysis to investigate user actions. Authors conduct their analysis
in two main phases. The initial phase employs a basic analysis and finds that 10%
of searchers clicked on sponsored links. Furthermore, the analysis reveals that, from
10p.m. to 12a.m., searchers almost exclusively click on organic links with almost
no clicks on sponsored links. The second and more extensive phase deals with us-
ing a one-step prediction time-series analysis method along with a transfer function
method. Authors show that the period rarely affects navigational and transactional
queries, while rates for transactional queries vary during different periods. Results
also highlight that the average length of a searcher session consists of about 2.9 in-
teractions and that this average is consistent across time periods. Moreover, results
reveal that searchers who submit the shortest queries (i.e., in number of terms) click
on highest ranked results.

Some other recent works deal with applying time-series to query log analysis and
predicting users behavior.

Vlachos et al. [136] present several methods for mining knowledge from the
MSN query logs. They analyze time-series built on each query of the log. They
demonstrate how to efficiently and accurately discover the important periods in
a time-series. Authors also propose a simple but effective method for identifica-
tion of bursts (either long- or short-term). Later, Vlachos et al. [137] motivate the
need for more flexible structural similarity measures between time-series sequences,
which are based on the extraction of important periodic features. Authors present
non-parametric methods for accurate periodicity detection and introduce new peri-
odic distance measures for time-series sequences. Furthermore, they combine these
new measures with an effective metric tree index structure for efficiently answering
k-nearest-neighbor queries. The goal of these tools and techniques is to assist in
detecting, monitoring and visualizing structural periodic changes. Authors claim
that these methods can be directly applicable in the manufacturing industry for
preventive maintenance and in the medical sciences for accurate classification and
anomaly detection.

Moreover, Vlachos et al. [135] investigate lower and upper distance bounds on
time-series logs when working directly in a compressed form. Optimal distance
estimation means tighter bounds, leading to better candidate selection/elimination
and ultimately faster search performance. Their derivation of the optimal distance
bounds is based on the careful analysis of the problem using optimization principles.
The experimental evaluation shows a clear performance advantage of the proposed
method, compared to previous compression/search techniques. This method results

44 3. Query Log Mining

in a 10–30% improvement on distance estimations, which in turn leads to 25–80%
improvement on the search performance.

Yizhou et al. [143] study the problem of mining causal relation of queries in Web
search engine logs. They firstly detect events in query logs by applying a statistical
frequency threshold. Then, the causal relation of queries is mined by the geometric
features of the events. The experimental results demonstrate that this approach
can accurately detect the events in temporal query logs and effectively identify the
causal relation of queries.

Finally, Chien et al. [38] try to find semantically related search engine queries
based on their temporal correlation. They figure out that two queries are related
if their popularity behave similarly over time. They also define a new measure of
the temporal correlation of two queries based on the correlation coefficient of their
frequency functions. Eventually, authors come up with a method for efficiently
finding the highest correlated queries for a given input query.

3.5 Privacy Issues in Query Logs

Privacy in query logs becomes a hot topic in 2006 when AOL compiled a statisti-
cal sampling of more than 20 million queries entered by approximately 657,000 of
their users. Such huge quantity of data was released for research purposes. User-
names were anonymized replacing them by unique numbers. Anyway, these numbers
provide a sort of thread by which queries of a given user could be identified. The
identification process is easy if user entered some pieces of information, which allows
her identity to be discerned.

Many commercial search engines overcome the problem by simply not publishing
their logs. However, lot of efforts have been spent in order to find good techniques
for “sanitizing” query logs. As an example, Bar-Ilan in [16] state that “interesting
results can be obtained from query logs without jeopardizing the privacy of users”.

A seminal solution to the anonymity preservation challenge has been proposed
by Sweeney in [130]. Sweeney introduces the concept of k-anonymity, which ensures
that each information request contains at least k (anonymized) individuals with the
same values, so that it is not possible to identify one individual in particular.

Jones et al. [68] provide a detailed description of a data analysis process that
leads to information disclosure in a query log. They show how the combination of
simple classifiers can be used to map a series of user queries into a gender, age, and
location, showing that this approach remains very accurate even after personally
identifying information have been removed from the log. Authors emphasize that a
user can be identified by a real-life acquaintance. This type of person has background
knowledge on the user (e.g., location, age, gender, or even access the user’s browser)
and can use it to disclose the activities of the user in the log.

Adar [1] elaborates on vulnerabilities in the AOL log and shows that traditional
privacy preservation methods cannot be transferred directly to query logs. Adar also

3.5. Privacy Issues in Query Logs 45

points out that k-anonymity is too costly for query log “anonymization”, because
this type of data set changes very rapidly. Two user anonymization methods are
proposed, whose goal is to balance the achieved privacy and the retained utility,
i.e. the usability of the anonymized log for statistical analysis. The term “utility”
refers to the data utility of the anonymized log for the purposes of non-adversarial
information acquisition. Verykios et at. [134] count utility as one of the important
features for the evaluation of privacy preserving algorithms (next to the performance
of the algorithm) the level of uncertainty with which the sensitive information can
be predicted and the resistance to different data mining techniques.

Xiong and Agichtein [141] describe some important applications of query log
analysis and discuss requirements on the degree of granularity of query logs. Then,
authors analyze the sensitive information in query logs and classify them from the
privacy perspective. Two orthogonal dimensions are described for anonymizing
query logs and a spectrum of approaches along those dimensions is presented. Fur-
thermore, the authors discuss whether existing privacy guidelines such as HIPAA2

can apply to query logs directly.

Cooper [39] assesses seven state-of-the-art privacy-preserving techniques against
three main criteria: (i) how well the technique protects privacy, (ii) how well the
technique preserves the utility of the query logs, and (iii) how well the technique
might be implemented as a user control. The author highlights that achieving the
right balance between protecting privacy and promoting the utility of the query logs
is thus difficult but necessary to ensure that Web users still rely on search engines
without fear of adverse privacy consequences.

Poblete et al. [101] look into the privacy related implications of query log analysis
and, in particular, they analyze a new concern, namely the privacy of businesses.
This includes both institutions, such as companies, and people in the public eye,
such as political leaders. Authors provide a definition of confidential information and
analyze attacks that lead to confidentiality breaches, including methods to prevent
information disclosure.

Kumar et al. [74] study the privacy preservation properties of a specific tech-
nique for query log anonymization: token-based hashing. In this approach, each
query is tokenized and then a secure hash function is applied to each token. Au-
thors show that statistical techniques may be applied to partially compromise the
anonymization. Thereby, authors analyze the specific risks that arise from these
partial compromises, focused on revelation of identity from unambiguous names,
addresses, and the revelation of facts associated with an identity that are deemed
to be highly sensitive. The goal of the study is twofold: from a side it observes
that token-based hashing is unsuitable for anonymization and on the other hand it
presents a concrete analysis of specific techniques that may be effective in breaching
privacy, against which other anonymization schemes should be measured.

2http://www.hhs.gov/ocr/privacy/hipaa/administrative/privacyrule/index.html

http://www.hhs.gov/ocr/privacy/hipaa/administrative/privacyrule/index.html

46 3. Query Log Mining

3.6 Applications of Query Log Mining

Query log mining is useful for enhancing the experience of Web search engine users
both in terms of the effectiveness and efficiency. Effectiveness in search systems
refers to the quality of returned results. To this aim, the following main applications
may be highlighted: (i) search session discovery, (ii) query suggestion, (iii) query
expansion, (iv) personalized query results, (v) learning to rank, and (vi) query spelling
correction. Furthermore, efficiency in search systems refers to the speed at which
results are returned. It basically consists of two main topics that gain a lot of
attention in the latest years: (i) caching and (ii) index partitioning and querying in
distributed Web search systems.

In the rest of this Chapter, we report the major state-of-the-art contributions
that are related to the two main subjects of this dissertation. In particular, we
discuss about search session discovery and query suggestion, which are thereby ad-
dressed in Chapter 4 and Chapter 5, respectively. Finally, we refer to [120] those
readers who are interested in topics that are not fully covered by this Chapter.

3.6.1 Search Session Discovery

The vast majority of the works concerning with query log mining aim to understand
the real intent behind queries issued by users. To this end, Broder [33] claims that
the “need behind the query” in Web context is not clearly informational like in clas-
sical information retrieval domain. Hence, he proposes a taxonomy of Web searches
by classifying the queries according to their intent into three classes: (i) navigational,
whose goal is to reach a specific Web site (e.g., “nba.com”), (ii) informational, which
aims to acquire some information assumed to be present in one or more Web docu-
ments (e.g., “2011 best nba player”), and finally (iii) transactional, whose intent
is to perform some Web-mediated activity (e.g., “nba tickets”).

Table 3.5 shows the result of a survey presented to AltaVista users for trying to
determine their intents. Results in this table are obtained by means of a series of
questions presented to users through a pop-up window opening for some randomly
chosen result pages. The survey obtained a response ratio of about 10%, consisting of
about 3,190 valid returns. The “query log analysis” column in Table 3.5 is obtained
by selecting 1,000 queries at random and by manually removing: (i) non-English
queries and (ii) sexually-oriented queries. From the remaining set, the first 400
queries are inspected. Queries that are neither transactional, nor informational, are
assumed to be informational.

Moreover, Rose and Levinson [111] propose their own user search goals clas-
sification by extending the taxonomy devised by Broder in [33] and adding more
hierarchical levels.

However, queries taken on their own are often not enough to determine actual
user search goal. In order to overcome this issue, a very important piece of informa-
tion we can extract from a query log is represented by “search sessions”, i.e. specific

3.6. Applications of Query Log Mining 47

33

Studies investigate the goals users have when using a web search

engine. As it has been shown in the previous section, web IR and “tra-

ditional” IR users are very different. Usually they tend to type less,

but still they want highly precise results.

In one of the first paper devoted to discovery user intent behind

queries, Andrei Broder [48] studies the goal a user wants to reach when

submitting a query to a search engine. Following Broder’s formulation a

query can be either a Navigational query — where the immediate intent

is to reach a particular site (e.g. Greyhound Bus, american airlines

home, or Don Knuth); an Informational query — where the intent is

to acquire some information assumed to be present on one or more

web pages (e.g. San Francisco or normocytic anemia); a Transactional

queries — where the intent is to perform some web-mediated activity

(e.g. online music, or online flower delivery service).

Table 3.1 shows the result of a survey presented to Altavista users

to try to determine their intent.

The results shown in Table 3.1 have been obtained by means of

a series of questions presented to users through a “pop-up” windows

opening for some randomly chosen result pages. The survey obtained

a response ratio of about 10% consisting of about 3,190 valid returns.

The query log analysis column in Table 3.1 corresponds to a manual

analysis of query entries. They firstly selected at random a set of 1,000

queries and removed both non-English queries, and sexually oriented

queries. From the remaining set the first 400 queries were inspected.

Queries that were neither transactional, nor navigational, were assumed

to be informational in intent.

Results from both the survey, and manual inspection confirmed

what we were arguing in the previous section: in the majority of the

cases, users surf the web looking for places where to buy goods, or

looking for particular sites they already know.

Table 3.1. Query classification on the basis of user survey.
Adapted from [48].

Type Surveyed Estimated (from Query Log)

Navigational 24.5% 20%
Informational ∼ 39% 48%
Transactional ∼ 36% 30%

Table 3.5: Query classification on the basis of user survey [33].

sets/sequences of queries submitted by a user while interacting with a Web search
engine for satisfying a specific information need. Indeed, users typically submit a
series of queries as part of a single information seeking activity.

Unfortunately, effectively discovering user search sessions from the queries issued
in a row and stored in query logs is not straightforward. The main problem is that
users often interact with the Web search engine in a multi-tasking way, namely they
interleave queries related to different search needs within a small amount of time.

Previous works on search session discovery may be classified into: (i) time-based,
(ii) content-based, and (iii) ad-hoc, which usually combines both (i) and (ii).

Time-based. These techniques have been extensively proposed for detecting mean-
ingful search sessions due to their simplicity and ease of implementation. Indeed,
these approaches are based on the assumption that time between adjacent issued
queries is the predominant factor for determining a topic shift in user search activ-
ities. Roughly, if the time gap between two issued queries is lower than a certain
threshold then they are also likely to be related.

Silverstein et al. [118] present a broad analysis of a very large query log data set
collected by the AltaVista search engine and firstly define a concept of session as
follows: two consecutive queries are part of the same session if they are issued at
most within a 5-minutes time window. According to this definition, they find that
the average number of queries per session in the data they analyzed is 2.02. He and
Göker [55] use different timeouts to split user sessions of Excite query log, ranging
from 1 to 50 minutes.

Radlinski and Joachims [105] observe that users often perform a sequence of
queries with a similar information need and they refer to those sequences of refor-
mulated queries as query chains. Their work presents a method for automatically
detecting query chains in query and click-through logs using 30 minutes threshold
for determining if two consecutive queries belong to the same search session.

Jansen and Spink [61] make a comparison of nine Web search engines transaction
logs from the perspectives of session length, query length, query complexity, and
content viewed. Here, they provide another definition of session, i.e. search episode,
describing it as the period of time occurring from the first to the last recorded
timestamp on the Web server from a particular user in a single day, so that session
length might vary from less than a minute to a few hours. Moreover, using the
same concept of search episode, Spink et al. [124] investigate also multi-tasking

48 3. Query Log Mining

behaviors, while users interacting with a Web search engine. Multi-tasking during
Web searches involves the seek-and-switch process among several topics within a
single user session. Again, a user session is defined to be the entire series of queries
submitted by a user during one interaction with the system, so that session length
might vary from less than a minute to a few hours. The results of this analysis
performed on an AltaVista query log show that multi-tasking is a growing element
in Web searching.

Finally, Richardson [109] shows the value of long-term query logs with respect to
short-term, i.e., within-session, query information. He claims that long-term query
logs can be used to better understand the world where we live, showing that query
effects are long-lasting. Basically, in his work Richardson does not look at term
co-occurrences just within a search session (which he agree to be a 30-minutes time
window) but rather across entire query histories.

Content-based. Content-based approaches suggest to exploit the lexical content
of the queries themselves for determining a possible topic shift in the stream of
issued queries and thus a session boundary [75, 56, 93].

To this extent, several search patterns have been proposed by means of lexi-
cal comparison, using different string similarity scores (e.g., Levenstein, Jaccard,
etc.). However, approaches relying only on content features suffer of the so-called
vocabulary-mismatch problem, namely the existence of topically-related queries with-
out any shared terms (e.g., the queries “nba” and “kobe bryant” are completely
different from a lexical content perspective but they are undoubtedly related).

In order to overcome this issue, Shen et al. [115] compare expanded representa-
tion of queries, instead of the actual queries themselves. Each individual expanded
query was obtained by concatenating the titles and the Web snippets for the top-50
results provided by a search engine for the specific query. Thus, the relatedness be-
tween query pairs is computed using the cosine similarity between the corresponding
expanded queries.

Ad-hoc. Usually, these approaches propose to combine the two previous tech-
niques. Jansen et al. [63] assume that a new search pattern always identifies the
start of a new session. Moreover, He et al. [56] show that statistical information
collected from query logs could be used for finding out the probability that a search
pattern actually implies a session boundary. In particular, they extend their previ-
ous work [55] to consider both temporal and lexical information.

Similarly, Ozmutlu et al. [93] describe a mechanism for identifying topic changes
in user search behavior by combining time and query content features. They test
the validity of their approach using a genetic algorithm for learning the parameters
of the topic identification task. The algorithm takes into account topic shift and
continuation probabilities of the data set leveraging on query patterns (i.e., lexical
content) and time intervals. Seco and Cardoso [113] propose that a candidate query

3.6. Applications of Query Log Mining 49

belongs to a new session if it does not have any common terms with the queries of
the current session or the time interval between the candidate query and the last
query in the current session is greater than 60 minutes. Gayo-Avello [51] presents
an exhaustive survey on session boundary detection methods and proposes a new
technique, which works on the basis of a geometric interpretation of both the time
gap and content similarity between consecutive query pairs.

Boldi et al. [28] introduce the Query Flow Graph (QFG) as a graph model for
representing data collected in Web search engine query logs. Intuitively, in the QFG
a directed edge from query qi to query qj means that the two queries are likely
to be part of the same search goal. Any path over the QFG may be seen as a
searching behavior, whose likelihood is given by the strength of the edges along
the path. Figure 3.12 shows an example of the user search behavior represented by
means of a QFG. Authors propose a methodology that builds a QFG by mining time
and textual information as well as aggregating queries from different users. Using
this approach, authors build a real-world QFG from a large-scale query log and
demonstrate its utility in two concrete applications: (i) discovering search sessions
and (ii) query suggestion. Concerning (i), they exploit this model for segmenting
the query stream into sets of related information-seeking queries, leveraging on an
instance of the Asymmetric Traveling Salesman Problem (ATSP). The application
of QFG to the query suggestion problem is explained later on Section 3.6.2.

Finally, Jones and Klinkner [67] argue that within a user’s query stream it is
possible to recognize particular hierarchical units, i.e., search missions, which are
in turn subdivided into disjoint search goals. A search goal is defined as an atomic
information need, resulting in one or more queries, while a search mission is a set of
topically-related information needs, resulting in one or more goals. Given a manually
generated ground-truth, Jones and Klinkner [67] investigate how to learn a suitable
binary classifier, which is aimed to precisely detect whether two queries belong to
the same task or not. Among various results, they realize that timeouts, whatever
their lengths, are of limited utility in predicting whether two queries belong to the
same goal and thus unsuitable to identify session boundaries.

3.6.2 Query Suggestion

Often users of Web search engines refine their previously submitted queries by adding
or modifying keywords until they satisfy their search goal. In order to support users
during the search process, modern Web search engines have started to add mech-
anisms and features aimed to help people in better formulating their information
needs, thus to quickly satisfy their goals. In this regard, query suggestion plays a
significative role by recommending lists of alternative yet related queries that are
likely to better specify user search needs.

Differently from query expansion [41], query suggestion aims at producing hints
for users, thus giving them the possibility to select the best similar query to re-

50 3. Query Log Mining

fine their search, instead of having the query automatically expanded with a lot of
different terms.

The activity of producing suggestions from queries submitted in the past may be
considered as a way of “exploiting queries submitted by experts to help non-expert
users” [10], namely as a way of profiting by the so-called “wisdom of crowds” [129].
Therefore, the majority of query suggestion techniques detect related queries by se-
lecting those that are mostly similar to the ones submitted in the past by other users.
This means that suitable lists of recommended queries are obtained by analyzing
past user search activities recorded on query logs.

A näıve approach to devise a list of candidate queries to recommend for a given
query simply looks at those queries sharing many common terms. Using this ap-
proach, the two queries “new york knicks” and “new york yankees” would be con-
sidered to some extent similar, as they both share the terms “new” and “york”. The
example above shows that the näıve approach might result in misleading suggestions
for users.

Lot of efforts have been spent on query recommendation thus producing several
contributions in the field. Some works propose to select queries to be suggested
from those that frequently appear in query sessions [48]. Other works use clustering
to devise similar queries on the basis of clustering membership [10, 11, 12], or they
exploit click-through data information to devise query similarity [147, 40].

Query sessions can be an important source of information for devising potentially
related queries to be suggested to a user. An important intuition is that if a lot of
users in the past asked for a certain query qj after they issued the query qi, then qj
is likely to be a valid, i.e., interesting, suggestion for qi.

Fonseca et al. [48] exploit the idea above by mining association rules from query
logs. Authors run an association rules mining algorithm on a query log. However,
extracting association rules from query logs could be computationally expensive
due to the typical dimensions of the data sets. Thereby, the approach presented
by Fonseca et al. [48] mines only rules of the form qi ⇒ qj, thus reducing the
total effort needed for the overall computation. Basically, for each query qi, all the
associations whose support is above a given threshold σ are sorted by confidence
level and saved in the form of rules qi ⇒ q1, qi ⇒ q2, . . . , qi ⇒ qm. Authors test
the proposed technique on a real-world query log coming from a Brazilian search
engine consisting of 2.312.586 queries. Experiments use a support threshold σ = 3.
The produced recommendations are evaluated by means of a survey involving five
assessors. Results are encouraging as the technique scores 90.5% of precision (with
five queries suggested) measured as the number of suggestions retained relevant for
the five assessors. By augmenting the number of suggestions provided to users,
precisions drops to 89.5% when ten queries are suggested and down to 81.4% when
20 queries are suggested.

Zäıane and Strilets [144] use a Query Memory model to store past queries and
retrieve them according to the one submitted. The method computes associations
on-the-fly at query resolution time. A Query Memory is a set of queries represented

3.6. Applications of Query Log Mining 51

by six different features, namely (i) a bag of words representation of the query
(BagTerms), (ii) the frequency with which the query has been submitted (Count),
(iii) the timestamp recording the last time the query was submitted (LDate), (iv)
the timestamp recording the first time the query was submitted (FDate), (v) the
query result list stored as records made up of: URL, Title and Snippet of each result
page (QResult), and (vi) the timestamp recording the date at which results were
obtained. In order to produce query recommendations, seven different methods may
be used:

• Näıve query-based method: returns queries having in common at least one
term;

• Näıve simplified URL-based method: returns queries having in common
at least one URL in the result lists;

• Näıve URL-based method: returns queries having in common a large por-
tion of the URLs in the result list;

• Query-Title-based method: returns queries where terms in their result
titles are contained in the submitted query;

• Query-Content-based method: the same as the above only considering
snippet terms instead of title terms;

• Common query title method: returns queries whose results share title
terms;

• Common query text method: the same of the previous one only consider-
ing snippet terms instead of the title terms.

The evaluation of the technique is conducted by means of a user study. Authors
claim that it is difficult to find a winner strategy. Furthermore, authors investigate
the scalability of the method. They observe that the use of the Query Memory
model in a real-world search engine needs the use of an index focused on the search
of queries containing a keyword. This implies that the method performs a double
index access for each submitted query. These two accesses can be executed in parallel
on a distributed platform.

Baeza-Yates et al. [10] use a clustering approach to query recommendation. The
query recommendation technique works by following a two-level approach. An offline
process clusters past queries using text from queries and clicked URLs. Moreover,
an online process performs the following two steps, that is (i) given an input (i.e.,
a query), the most representative cluster is found and (ii) each query in the cluster
is ranked according to two criteria: the similarity and the attractiveness of query
answer, i.e., how much the answers of the query have attracted the attention of
users. In their work, authors refer to this as support. Moreover, it should not be

52 3. Query Log Mining

confused with the more famous support of association rules [3]. The offline query
clustering algorithm operates over queries that are previously enriched by a selection
of terms extracted from the clicked documents. Clusters are computed by applying
a K-means algorithm [85]. The similarity between queries is computed according
to a vector space approach. Therefore, each query q is represented by a vector q
whose i-th component q[i] is computed as:

q[i] =


u∈URLs

Clicks(q, u)× tf(ti, u)

argmaxt tf(t, u)
,

where Clicks(q, u) is the percentage of clicks the URL u receives when answered in
response to the query q and tf(t, u) is the number of occurrences of the term t in the
document pointed to URL u. All the clicked URLs are considered in computing the
sum. The distance between two queries is computed by the cosine similarity of their
relative vectors. The approach is evaluated on the TodoCL search engine3 query
log containing 6,042 unique queries with the associated click-through information.
Also, 22,190 clicks are present in the log referring to 18,527 different URLs. The
evaluation is performed on ten queries by means of a user study. Results show that
presenting query suggestions ranked by support (i.e., the frequency of the query in
the query log) yields to more precise and high quality suggestions.

Jones et al. [69] propose a model for suggesting queries based on the concept of
query rewriting. Basically, a query is rewritten into a new one by means of query
or phrase substitution. The rewriting process is based on the Log-Likelihood Ratio
(LLR) measure [87] to assess interdependencies between terms of queries. Given
two terms, the higher is the LLR, the higher is the likelihood of the two words of
being dependent to each other. Thus, query pairs with high LLR are identified as
substitutable. Authors also propose a systemization of possible suggestions into four
classes, ranging from the most precise to the less accurate class: precise rewriting,
approximate rewriting, possible rewriting, and clear mismatch. Precise rewriting
means that the suggested query has exactly the same semantic of the one to be
replaced. Approximate rewriting is the class containing narrowed or broadened
queries of the initial one. Possible rewriting is a still less precise query suggestion
methodology: queries are in some categorical relationship. The last class, i.e., clear
mismatch, is the less precise and contains query pairs where no relationships can be
found.

Authors use such four classes for defining the two general tasks of query sugges-
tion: specific rewriting (i.e., precise and approximate rewriting) and broad rewriting
(i.e., precise, approximate, and possible rewriting). Given these two tasks, the
problem of generating query recommendations can be considered as a classification
problem. Authors thus adopt and test different classifiers. Training is performed
on a set of manually annotated candidate substitutions extracted from queries of
a query log. The assessment of the method is performed by using an automatic

3http://www.todocl.cl/

http://www.todocl.cl/

3.6. Applications of Query Log Mining 53

evaluation. For the query log used in [69], the precision of the method has been
measured to be 76% with a recall figure of 92%.

Boldi et al. [28] introduce the Query Flow Graph (QFG), a graph representation
of the interesting knowledge about latent querying behavior. Using this approach,
authors build a real-world QFG from a large-scale query log and demonstrate its
utility for generating valuable query recommendations.

In a later study, Boldi et al. [29] propose, and experimentally study, query recom-
mendations based on short random walks on the query flow graph. The conducted
experiments show that these methods can match in precision, and often improve,
recommendations based on query-click graphs, without using click-through data.
Experiments also show that it is important to consider transition-type labels on
edges for having good quality recommendations.

Moreover, Baraglia et al. [18, 19] present a study of the effects of time on rec-
ommendations generated by using the QFG introduced by [28]. Indeed, user search
interests change over time and the knowledge extracted from query logs may suf-
fer of aging effects, as new interesting search topics appear. In order to overcome
this issue, authors propose a novel incremental algorithm for keeping up-to-date the
QFG recommendation model, without having to rebuild it from scratch every time
freshest query log data happen. Furthermore, Broccolo et al. [31] propose two novel
query recommendation algorithms that incrementally update the model on top of
which suggestions are generated, taking care of each new processed query.

Baeza-Yates and Tiberi [14] use click-through data as a way to provide recommen-
dations. The method is based on the concept of cover graph. A cover graph is a
bipartite graph of queries and URLs, where a query and a URL are connected if
the URL was returned as a result for the query and a user clicked on it. To catch
the relations between queries, a graph is built out of a vectorial representation for
queries. In such a vector space, queries are points in a high-dimensional space where
each dimension corresponds to a unique URL u that was, at some point, clicked by
some user. Each component of the vector is weighted according to the number of
times the corresponding URL has been clicked when returned for that query.

For instance, let us suppose to have five different URLs, namely, u1, u2, . . . , u5,
and suppose also that for query q users have clicked three times on URL u2 and
four times on URL u4, thereby the resulting vector is (0, 3, 0, 4, 0). Queries are then
arranged as a graph with two queries being connected by an edge if and only if
the two queries share a non-zero entry, that is, if for two different queries the same
URL received at least one click. Furthermore, edges are weighted according to the
cosine similarity of the vectors representing the linked queries. More formally, the
weight ω (q, q′) of an edge e = (q, q′) is computed according to Equation (3.1). In
the formula, D is the number of dimensions of the space, i.e., the number of distinct
clicked URLs, whereas q and q′ are the vectors associated with q and q′, respectively.

54 3. Query Log Mining

barcelona fc

<T>

0.506

barcelona fc
website

0.043
barcelona fc

fixtures
0.031

real
madrid

0.017

barcelona
weather

0.523

barcelona
hotels

0.018

barcelona
weather
online

0.100

barcelona

0.018

0.011

0.439

cheap
barcelona

hotels

0.072

luxury
barcelona

hotels

0.029

0.080

0.416

0.043

0.023

Figure 2: A portion of the query flow graph using
the weighting scheme based on relative frequencies,
described on Section 4.

Let f(s, q) and f(q, t) indicate the number of times query q
is the first and last query of a session, respectively.

The weight we use is:

w′(q, q′) =

{
f(q,q′)

f(q)
if (w(q, q′) > θ) ∨ (q = s) ∨ (q = t)

0 otherwise,

which uses the chaining probabilities w(q, q′) basically to
discard pairs that have a probability of less than θ to be
part of the same chain.

By construction, the sum of the weights of the edges go-
ing out from each node is equal to 1. The result of such a
normalization can be viewed as the transition matrix P of a
Markov chain.

In Figure 2 we show a small snapshot of the query flow
graph we produce with this weighting scheme. This contains
the query “barcelona” and some of its followers up to a
depth of 2, selected in decreasing order of count. Also the
terminal node t is present in the figure. Note that the sum of
outgoing edges from each node does not reach 1 just because
not all outgoing edges (and relative destination nodes) are
reported.

5. FINDING CHAINS
In this section we describe our first application of the

query-flow graph: finding chains of queries in user sessions.
As we have already mentioned, finding chains is a very im-
portant problem as it allows improving query-log analysis,
user profiling, mining user behavior, and more. For this
application we use the first weighing scheme described in
Section 4 based on chaining probabilities.

The problem we consider is the following. We are given a
supersession S = 〈q1, q2, . . . , qk〉 of one particular user. We

are also given the query-flow graph, which has been com-
puted with the sessions of S as part of its input. The chain-
finding problem can also be defined in the case that the
sessions of S have not participated in the construction of
the query-flow graph. However, in this paper we focus on
the former case and we leave the latter for future work.

One of the challenges of the problem we consider arises
from our definition of chains: we allow chains not to be con-
secutive in the supersession S; in other words, the super-
session S may contain many intertwined chains such as the
ones shown in the Table 1. Previous work has mostly focused
on the case where all chains are consecutive.

Chain #1 Chain #2

.
football results january 2nd pointui forum
royal carribean cruises audi ipswich
holidays golfers elbow
motherwell football club cox ipswich
... ...

Table 1: Two fragments from actual sessions con-
taining non-consecutive chains.

The chain-finding problem can be formalized as follows:
let us define a chain cover of S = 〈q1, q2, . . . qk〉 as a par-
tition of the set {1, . . . , k} into subsets C1, . . . , Ch. Each
set Cu = {iu1 < · · · < iu!u

} is thought of as a chain Cu =
〈s, qiu

1
, . . . , qiu

!u
, t〉, that is associated the probability

P (Cu) = P (s, qiu
1
)P (qiu

1
, qiu

2
) . . . P (qiu

!u−1
, qiu

!u
)P (qiu

!u
, t)

and we want to find a chain cover maximizing P (C1) . . . P (Ch).
When a query appears more than once, “duplicate” nodes

for that query are added to the formulation, which makes the
description of the algorithm slightly more complicated than
what is presented here. For simplicity of the presentation we
omit the details related to queries appearing more than once
below, which are not fundamental to the understanding of
the algorithm.

We separate this problem into two subproblems: session
reordering and session breaking. The session reordering prob-
lem is to ensure that all the queries belonging to the same
search mission are consecutive. Then, the session breaking
problem is much easier as it only needs to deal with non-
intertwined chains.

5.1 Session re-ordering by ATSP
We formulate the session re-ordering problem as an in-

stance of the Assymmetric Traveler Salesman Problem (ATSP).
Let w(q, q′) be a weight defined as a chaining probability
from Section 4. Given the session S = 〈q1, q2, . . . qk〉, con-
sider a directed weighted graph GS = (V, E, h) with nodes
V = {s, q1, . . . , qk, t}, edges E and edge weights h defined
as h(qi, qj) = − log w(qi, qj) . An edge (qi, qj) exists in E if
w(qi, qj) > 0.

An optimal ordering is a permutation π of 〈1, 2, . . . k〉 that
maximizes

k−1∏

i=1

w(qπ(i), qπ(i+1)).

This is equivalent to finding a Hamiltonian path of minimum
weight in this graph.

613

Figure 3.12: An example of user search behavior represented by means of Query Flow Graph [28].

3.6. Applications of Query Log Mining 55

ω (q, q′) =
q · q′

‖q‖ · ‖q′‖
=


i≤D

q[i] · q′[i]


i≤D

q[i]2


i≤D

q′[i]2
. (3.1)

Suggestions for a query q are obtained by accessing the corresponding node in the
cover graph and extracting the queries at the end of the top scoring edges.

Baraglia et al. [17] propose a model for query recommendation, which address a
newly introduced problem, i.e., the Search Shortcut Problem (SSP), which basically
consists in recommending successful queries, namely those queries that in the past
allowed other users to satisfy similar information needs. This new model presents
several advantages with respect to traditional query suggestion approaches. Firstly,
it allows a straightforward evaluation of algorithms from available query log data.
Moreover, it simplifies the application of several recommendation techniques from
other domains. In particular, authors apply collaborative filtering techniques to this
problem. The proposed query recommendation technique is evaluated on two large
query logs (i.e., AOL and MSN). Different techniques for analyzing and extracting
information from query logs, as well as new metrics and techniques for measuring
the effectiveness of recommendations, are proposed and evaluated. The presented
approach highlights notably accurate results, which demonstrate that collaborative
filtering techniques can be useful in recommending queries.

So far, most of the described studies only focus on popular queries. Since rare
queries have much less information (e.g., clicks) than popular queries in the query
logs, it is much more difficult to efficiently suggest relevant queries to a rare query.

Yang et al. [121] propose an optimal rare query suggestion framework by lever-
aging on implicit feedbacks from users in the query logs. The model resembles
the principle of pseudo-relevance feedback, which assumes that top-returned results
by search engines are relevant. However, authors argue that the clicked URLs and
skipped URLs contain different levels of information and thus should be treated sep-
arately. Hence, the query suggestion framework optimally combines both the click
and skip information from users and uses a random walk [99, 100] model to optimize
the query correlation. The proposed model specifically optimizes two parameters:
(i) the restarting (jumping) rate of random walk and (ii) the combination ratio of
click and skip information. Unlike the Rocchio algorithm [86], the proposed learning
process does not involve the content of the URLs but simply leverages on the click
and skip counts in the query-URL bipartite graph. Consequently, the model is able
to scale up to the need of commercial search engines.

Broder et al. propose to rely on the results from search engines as an external
knowledge base for building the word features for rare queries [35]. The authors
train a classifier on a commercial taxonomy consisting of 6,000 nodes for catego-
rization. Results show a significant boost in term of precision with respect to the
baseline query expansion methods. Lately, Broder et al. propose an efficient and ef-
fective approach for matching ads against rare queries [34]. The approach builds an

56 3. Query Log Mining

expanded query representation by leveraging offline processing done for related pop-
ular queries. Experimental results show that the proposed technique significantly
improves the effectiveness of advertising on rare queries with only a negligible in-
crease in computational cost.

Mei et al. propose a novel query suggestion algorithm based on ranking queries
with the hitting time on a large-scale bipartite graph [91]. The rationale of this
method is to capture semantic consistency between the suggested queries and the
original query. Empirical results on a query log from a real-world search engine
outline that hitting time is effective to generate semantically consistent query sug-
gestions. Authors show that the proposed method and its variations are able to
boost long-tail queries and personalized query suggestion.

Finally, Broccolo et al. [32] propose an efficient and effective query recommen-
dation algorithm that can “cover” also rare, i.e., long-tail, queries by exploiting the
Search Shortcut model introduced in [17].

4
Search Task Discovery

“Un même sens change selon les paroles qui l’expriment.
Les sens reçoivent des paroles leur dignité, au lieu de la
leur donne.”
(The same meaning changes with the words which
express it. Meanings receive their dignity from words
instead of giving it to them.)

Blaise Pascal
Pensées (1669)

In this Chapter, we present an innovative approach to the first research challenge
already introduced in Section 3.6.1, namely the application of query log mining
techniques for effectively discovering actual user search sessions “hidden” inside the
raw stream of queries stored in Web search engine query logs. The contents of
this Chapter are based on three research papers, i.e., “Detecting Task-based Query
Sessions Using Collaborative Knowledge” [81], “Identifying Task-based Sessions in
Search Engine Query Logs” [83], and “Discovering User Tasks in Long-Term Web
Search Engine Logs” [82]. The first paper was published in the Proceedings of
the International Workshop on Intelligent Web Interaction (IWI 2010), which was
held in conjunction with the IEEE/WIC/ACM International Conferences on Web
Intelligence. The second one was published in the Proceedings of the 4th ACM
International Conference on Web Search and Data Mining (WSDM 2011) and it
was also one of the six candidates to the best paper award. Finally, the third
paper represents the completion of the first one and it was submitted to the ACM
Transactions on Information Systems (TOIS) journal.

People are increasingly asking Web search engines for satisfying the information
needs related to accomplish their daily tasks, such as “planning holidays”, “obtaining
a visa”, “organizing a birthday party”, etc. Although the huge number of features
which now the most popular Web search engines come with, in essence they still
belong to the category of Web documents retrieval tools. Indeed, results provided
by modern search engines in response to a user query are still unstructured lists of
“ten blue links” to Web pages. However, when the user’s need behind a certain

58 4. Search Task Discovery

query is a task to be accomplished, the traditional “query-look-refine” paradigm
should be improved for “driving” the user towards the execution of her desired task.
Therefore, we believe next-generation Web search engines should provide new fea-
tures and capabilities to support users in their everyday activities. Of course, this
opens up novel and exciting research challenges, in particular the ability to recognize
the tasks behind user queries. Thus, we focus on identifying task-oriented sessions
from past issued queries, i.e., sets of possibly non-contiguous queries phrased by
users for carrying out various tasks. First, we built, by means of a manual labeling
process, a ground-truth where the queries of a real query log have been grouped
in tasks. Our analysis of this ground-truth shows that users tend to interleave
several search tasks within relatively small units of time, since about 75% of the
submitted queries involve a multi-tasking activity. Moreover, we define the Task-
oriented Session Discovery Problem (TSDP) as the problem of best approximating
the above ground-truth. The TSDP deals with two aspects: (i) a robust measure of
the task relatedness between any two queries, i.e., task-based query similarity, and
(ii) an effective method for actually discovering task-oriented sessions by using the
above measure of task relatedness. Concerning (i), we propose and compare both
unsupervised and supervised approaches for devising several task-based query simi-
larity functions. These functions also exploit the collaborative knowledge collected
by Wiktionary and Wikipedia for detecting query pairs that are not similar from
a lexical content point of view, but actually semantically related. Therefore, we
tackle (ii) by introducing a set of query clustering methods that exploit the above
similarity functions for detecting user tasks. All the proposed solutions have been
evaluated on the ground-truth and two of them have been shown to perform better
than state-of-the-art approaches.

4.1 Introduction

The World Wide Web (i.e., Web) was born as a platform to connect academic and
research people, which exploit the Internet as the communication medium infras-
tructure. Rapidly, an increasing number of users, which were not directly involved
in academia or research activities, have started to have access to the Web as well.

Nevertheless, in the first Web era there was still a clear separation of roles be-
tween few content providers, i.e., typically “authoritative” skilled workers and pro-
fessionals, and many content consumers, i.e., common end users. During the last
years, a new trend has gained momentum: new “social-oriented”applications that
allow easy authoring and content creation have lead to an increased democratiza-
tion and collaborative involvement in the Web. Somehow, this process caused the
end of the first Web era, by bringing down the wall between content providers and
consumers, which now can play both roles interchangeably from time to time. There-
fore, information made available on the Web have started raising at a tremendous

4.1. Introduction 59

speed rate, reaching nowadays a huge and still growing number of contents, which
spread over several media types (e.g., text, images, audio/video, etc.).

This great repository of data makes the Web the place of choice where people
look at whenever they come up with any sort of information need. Indeed, there is a
common belief that the Web is increasingly used not only for consulting documents
but also for trying to simplify the accomplishment of various everyday activities,
i.e., tasks. Moreover, most of the interactions between users and the Web are often
mediated by Web search engines, which are amongst the most important and used
Web-based tools. This trend is confirmed by a rising “addiction to Web search”: no
matter what an information need is, user is anyway brought to ask for it to a Web
search engine, which will hopefully give the answer she expects.

Although the huge number of features which now the most popular Web search
engines come with, in essence they still belongs to the category of Web-scale in-
formation retrieval tools. The results they provide in response to a user query are
given according to the traditional “ten blue links” paradigm, i.e., links to Web pages
that are considered relevant to the given user query. If results are not satisfactory,
decision taken by looking at some of them, users may decide to “re-phrase” the
query to try to refine the retrieved results.

However, when the need behind a certain query is a task to be accomplished,
this “query-look-refine” paradigm could not satisfy user’s expectation, which does
not refer to simply consulting Web pages but, instead, aims at executing an activity.
In other words, for certain (quite popular) tasks, Web search engines as we know
can be considered obsolete tools.

We believe next-generation Web search engines should turn from mere Web doc-
uments retrieval tools to multifaceted systems, which fully support users while they
are interacting with the Web. Of course, this opens up novel and exciting research
challenges, in particular the ability to recognize implicit user tasks from the issued
queries.

In this Chapter, we focus on discovering implicit user tasks from past issued
queries, i.e., sets of possibly non contiguous queries phrased by the users of a Web
search engine for carrying out various tasks. Since user search activities are recorded
by most Web search engines into log files, i.e., query logs, interesting behaviors
and patterns can be revealed by analyzing and mining Web search engine query
logs [33, 111, 77, 61, 120].

In particular, a very important piece of information we can extract from a query
log is represented by “query sessions”, i.e. specific sets/sequences submitted by
a user while interacting with a Web search engine. Sessions represent the basic
unit of information for query suggestion [28], learning to rank [105], enhancing the
interactions with the Web search engine [140], etc.

In the literature, there are many definitions of query sessions. Here, we are
interested in identifying sessions composed of queries issued by users having in mind
a particular task [124], i.e., task-oriented sessions or Web-mediated tasks. In our
vision, a Web-mediated task can be thought as a template for representing any

60 4. Search Task Discovery

atomic activity, which is achievable by exploiting Web information: e.g., “find a
receipe”, “book a flight”, “read news”, etc.

So far, sessions are simply obtained by considering fixed-length time windows of
successive queries entered by the same user. Unfortunately, this time-based detection
methods fails in revealing such task-oriented sessions due to the multi-tasking users’
behavior.

Multi-tasking refers to the way users interact with a Web search engine, by
intertwining different tasks within a small time period. Therefore, the extraction
of such task-oriented sessions firstly requires to detect whether pairs of user queries
are task-related, in other words the goal is to compute their task-based similarity.

4.1.1 Contribution

This Chapter starts with an exhaustive analysis of our benchmark Web search engine
query log, thereby showing that users perform multi-tasking search activities in the
issued query streams. This makes it unsuitable to identify task-oriented sessions by
only exploiting techniques that simply split the stream of queries. Thus, a more
precise notion of a measure of the task relatedness between query pairs is needed.
To this end, we first propose an unsupervised approach for measuring the task-based
query similarity, which relies on a suitable selection of both internal and external
query log features. Internal features are directly available from the original query
log data, whereas external ones might be somehow derived by exploiting other data
sources. This approach results in two query similarity functions. The first one,
i.e., σ1, is a simple convex combination of the selected query log features. The
second one, i.e., σ2, combines classical lexical content similarity measures, with the
collaborative knowledge provided by Wiktionary1 and Wikipedia2 in a smart way.
These external knowledge bases are used to enrich the meaning of each issued query,
i.e., to “wikify” each query and thus to make more accurate decisions during the
actual task-oriented session discovery.

Moreover, we propose a refined analysis showing the way in which task related-
ness is determined. In fact, we also introduce and evaluate a supervised approach
for establishing the task-based similarity between any two queries. Roughly, un-
like the pure unsupervised approach, in which we exploit some query log features
for computing a task-based query similarity function, here the task relatedness is
learned by training a classifier on a manually built ground-truth, i.e., a set of task-
oriented sessions manually detected over the queries submitted by several users. In
particular, we exploit the binary classifier introduced by Jones et al. [67] and we use
the prediction provided by such classifier in order to determine if two queries are
task-related or not. Since this prediction comes with an accuracy value associated,

1http://www.wiktionary.org
2http://www.wikipedia.org

http://www.wiktionary.org
http://www.wikipedia.org

4.1. Introduction 61

this is also used as a measure of how strong the task relatedness is between pairs of
queries.

In more detail, we train a set of classifiers by taking into account all the features
that Jones et al. [67] claim to be most suitable for predicting whether two queries
belong to the same search goal. We extend the set of query log features on top of
which the classifiers are trained by considering both Wikipedia, i.e., the “wikifica-
tion” of the query, and the URL overlapping degree between the results associated
with each query, i.e., the Jaccard similarity score between the top-20 results returned
for each query.

Both unsupervised and supervised approaches for measuring the “task related-
ness” between query pairs may be thus exploited by an effective method for discov-
ering the actual task-oriented sessions. To this end, we propose a set of clustering-
oriented approaches, i.e., query clustering methods, whose aim is to group together
task-related queries, namely queries that are supposed to be part of the same task
according to a specified task relatedness measure.

Therefore, we compare and evaluate the quality of all these methods by exploiting
the manually generated ground-truth. In particular, we compare two techniques de-
rived from well-known clustering algorithms, i.e., K-Means [85] and DB-Scan [44]
with two other graph-based techniques for detecting Web-mediated tasks. The ob-
tained results show that the latter two techniques perform better than the former.
Indeed, they noticeably improve current state-of-the-art approaches.

Finally, experimental results show that combining supervised task relatedness
learning to our best-performing clustering-oriented task discovery methods does not
significantly enhance the overall effectiveness in discovering task-oriented sessions.

4.1.2 Organization

The rest of the Chapter is organized as follows. Section 4.2 describes related work
on query log analysis and mostly focuses on search session boundaries detection.
Section 4.3 provides the description and analysis of our benchmark data set, i.e.,
the 2006 AOL query log. In Section 4.4, we propose our theoretical model and
the statement of the Task-oriented Session Discovery Problem (TSDP). Section 4.5
presents the construction of a ground-truth by manually grouping queries that are
claimed to be task-related in a portion of our sample data set. Also, we propose some
statistics on such corpus of manually identified tasks. Section 4.6 presents several
approaches for measuring the task relatedness between query pairs, i.e., task-based
query similarity functions, which in turn are exploited by the task-oriented session
discovery methods proposed and compared in Section 4.7. Thus, Section 4.8 shows
the experiments we conducted as well as the results we obtained. Finally, Section 4.9
presents our conclusions and points out any possible future work.

62 4. Search Task Discovery

4.2 Related Work

Analysis of query logs collected by most Web search engines has increasingly gained
interest across Web mining research community. Roughly, query logs record infor-
mation about the search activities of users and so they are suitable data sources
for understanding how people search the Web [120]. Moreover, Silvestri et al. [119]
show a number of applications, i.e., caching, index partitioning, and document pri-
oritization that can benefit from analysis performed on Web search engine logs.

Typical statistics that can be drawn from query logs either refer to (i) the analysis
on the query set itself (e.g., query popularity, term popularity, average query length,
distance between repetitions of queries or terms, etc.) or (ii) a higher level analysis
of search sessions, i.e., sequences of queries issued by users for satisfying specific
information needs.

The first study on a transaction log from a commercial Web search engine was
conducted by Jansen et al. [62]. There, authors analyze a one-day log collected
by the Excite search engine, which contains 51, 473 queries issued by 18, 113 users.
Furthermore, Silverstein et al. [118] present an exhaustive analysis of a very large
query log data set collected by the AltaVista search engine, which consists of about
a billion queries submitted in a period of 42 days by approximately 285 million users.
Authors show interesting results including the analysis of the query sessions for each
user and the correlation among query terms.

However, most works concerning with mining of query logs aim to understand the
real intent behind queries issued by users. Broder [33] claims that the “need behind
the query” in Web context is not clearly informational like in classical information
retrieval domain. Hence, he proposes a taxonomy of Web searches by classifying the
queries according to their intent into three classes: (i) navigational, whose intent is to
reach a specific Web site, (ii) informational, which aims to acquire some information
from one or more Web documents, and finally (iii) transactional, whose intent is
to perform some Web-mediated task. Moreover, Rose and Levinson [111] propose
their own user search goals classification by extending the taxonomy devised in [33]
adding more hierarchical levels. Lee et al. [77] describe whether and how search goal
identification process behind a user query might be automatically performed on the
basis of two features, that is past user-click behavior and anchor-link distribution.

Besides, many other works deal with the identification of users’ search sessions
boundaries. Previous works on session identification can be classified on the ba-
sis of their used method into: (i) time-based, (ii) content-based, and (iii) ad-hoc
techniques, which usually combine both (i) and (ii).

Time-based. Time-based techniques have been extensively proposed in past re-
search works for detecting meaningful search sessions because of their simplicity and
ease of implementation. Indeed, these approaches are based on the assumption that
time between adjacent issued queries is the predominant factor for determining a

4.2. Related Work 63

topic shift in user search activities. Roughly, if the time gap between two issued
queries is lower than a certain threshold then they are also likely to be related.

According to this vision, Silverstein et al. [118] firstly define a concept of “ses-
sion” as follows: two consecutive queries are part of the same session if they are
issued at most within a 5-minutes time window. Applying this definition to the data
set they used, authors find 2.02 queries per session on the average. He and Göker [55]
use different timeouts to split user sessions of the Excite query log, ranging from 1
to 50 minutes.

Radlinski and Joachims [105] observe that users often perform a sequence of
queries with a similar information need and they refer to those sequences of refor-
mulated queries as query chains. Their work presents a method for automatically
detecting query chains in query and click-through logs using 30 minutes threshold
for determining if two consecutive queries belong to the same search session.

Jansen and Spink [61] make a comparison of nine Web search engine transaction
logs from the perspectives of session length, query length, query complexity, and
content viewed. Here, they provide another definition of session, i.e. search episode,
describing it as the period of time occurring from the first to the last recorded
timestamp on the Web search engine server from a particular user in a single day,
so that session length might vary from less than a minute to a few hours.

Moreover, using the same concept of search episode, Spink et al. [124] investigate
alsomulti-tasking behaviors while users interacting with a Web search engine. Multi-
tasking during Web searches involves the “seek-and-switch” process among several
topics within a single user session. Again, a user session is defined to be the entire
series of queries submitted by a user during one interaction with the Web search
engine, so that session length might vary from less than a minute to a few hours.
The results of this analysis performed on an AltaVista query log show that multi-
tasking is a growing element in Web searching. In our work, we show the presence
of multi-tasking also within shorter user activities.

Shi and Yang [116] describe the so-called dynamic sliding window segmentation
method, which relies on three temporal constraints: α as the maximum time interval
between two consecutive queries in the same session, β as the maximum inactivity
time within the same session, and γ as the maximum length of a single session.
They empirically estimate α, β, and γ to be 5 minutes, 24 hours, and 60 minutes,
respectively.

Finally, Richardson [109] shows the value of long-term Web search engine query
logs with respect to short-term, i.e., within-session, query information. He claims
that long-term query logs can be used to better understand the world where we live,
showing that query effects are long-lasting. Basically, in his work Richardson does
not look at term co-occurrences just within a search session (which he agree to be a
30-minutes time window) but rather across entire query histories.

64 4. Search Task Discovery

Content-based. Some works suggest to exploit the lexical content of the query
itself for determining a possible topic shift in the stream of issued queries and thus
a session boundary [75, 56, 93]. To this extent, several search patterns have been
proposed by means of lexical comparison, using different string similarity scores
(e.g., Levenshtein, Jaccard, etc.). However, approaches relying only on content fea-
tures suffer of the so-called vocabulary-mismatch problem, namely the existence of
topically-related queries without any shared terms (e.g., the queries “nba” and “kobe
bryant” are completely different from a lexical content perspective but they are
undoubtedly related). In order to overcome this issue, Shen et al. [115] compare
“expanded representation” of queries, instead of the actual queries. Each individual
expanded query is obtained by concatenating the titles and the Web-snippets for
the top-50 results provided by a Web search engine for the specific query. Thus,
the relatedness between query pairs can be computed using the cosine similarity
between the corresponding expanded queries.

Ad-hoc. Jansen et al. [63] assume that a new search pattern always identifies the
start of a new session. Moreover, He et al. [56] show that statistical information
collected from query logs could be used for finding out the probability that a search
pattern actually implies a session boundary. In particular, they extend a previous
work [55] to consider both temporal and lexical information.

Similarly, Ozmutlu and Çavdur [93] describe a mechanism for identifying topic
changes in user search behavior combining time and query content features. They
test the validity of their approach using a genetic algorithm for learning the parame-
ters of the topic identification task. The algorithm takes into account topic shift and
continuation probabilities of the data set leveraging on query patterns (i.e., lexical
content) and time intervals.

Seco and Cardoso [113] propose that a candidate query belongs to a new session
if it does not have any common terms with the queries of the current session or the
time interval between the candidate query and the last query in the current session
is greater than 60 minutes.

Gayo-Avello [51] presents an exhaustive survey on session boundary detection
methods and proposes a new technique, which works on the basis of a geometric
interpretation of both the time gap and content similarity between consecutive query
pairs.

Other approaches tackle the session boundary detection problem by leveraging
on more complex models and by combining more features.

Boldi et al. [28] introduce the Query Flow Graph (QFG) as a model for repre-
senting data collected in Web search engine query logs. Intuitively, in the QFG a
directed edge from query qi to query qj means that the two queries are likely to be
part of the same search goal. Any path over the QFG may be seen as a searching
behavior, whose likelihood is given by the strength of the edges along the path.
The authors exploit this model for segmenting the query stream into sets of related

4.3. Query Log Analysis 65

information-seeking queries, reducing the problem to an instance of the Asymmetric
Traveling Salesman Problem (ATSP).

Finally, Jones and Klinkner [67] address a problem that appears to be similar
to ours. In particular, they argue that within a user’s query stream it is possible to
recognize specific hierarchical units, i.e., search missions, which are in turn divided
into disjoint search goals. A search goal is defined as an atomic information need,
resulting in one or more queries, while a search mission is a set of topically-related
information needs, resulting in one or more goals.

Given a manually generated ground-truth, authors investigate how to learn a
suitable binary classifier, which is aimed to precisely detect whether two queries
belong to the same task or not. Among various results, they realize that timeouts,
whatever their lengths, are of limited utility in predicting whether two queries belong
to the same goal and thus unsuitable to identify session boundaries.

4.3 Query Log Analysis

The overall research challenge we want to address in this Chapter strongly relies on
extracting useful patterns from Web search engine query log data. Indeed, meaning-
ful analysis of query logs is often hard due to the lack of available data collections.
To this extent, we used the 2006 AOL query log as our testing data set. This query
log is a very large and long-term collection consisting of about 20 million of Web
queries issued by more than 657, 000 users over 3 months (from 1st March, 2006 to
31st May, 2006)3.

4.3.1 Session Size Distribution

We have analyzed the entire AOL query log and we have extracted several statistics,
such as the number of queries, the number of queries in each original long-term
session, its average duration, etc.

The distribution of long-term sessions size on the entire collection, depicted in
Figure 4.1, is characterized by a Zipf’s law [151], i.e., one of a family of related
discrete power law probability distributions [107].

Indeed, 67.5% of user sessions contains less than 30 queries, meaning that more
than 2/3 of the users had issued about 10 queries per month on average. Besides,
longer user sessions, i.e., sessions with more than 1, 000 queries over 3 months,
represent only ≈ 0.14% of the whole data set.

To some extent, this result is compliant with the outcomes about the distribution
of query frequencies and query term frequencies showed by Baeza-Yates et al. in [9].
Here, the authors observe that a small portion of the terms appearing in a large
query log are used most often, while the remaining terms are individually used less

3http://sifaka.cs.uiuc.edu/xshen/aol_querylog.html

http://sifaka.cs.uiuc.edu/xshen/aol_querylog.html

66 4. Search Task Discovery

Figure 4.1: The distribution of long-term sessions size (log-log scale).

often. In the same way, a small portion of the user sessions contains many queries,
while the remaining sessions are composed of few queries.

Finally, it is worth to remark that in our analysis we do not consider empty
sessions, which globally account for ≈ 0.99% of the total.

4.3.2 Query Time-Gap Distribution

Since users tend to issue bursts of queries for relatively short periods of time, which
are usually followed by longer periods of inactivity, the time gap between queries
plays a significative role in detecting session boundaries.

According to [118], we detect the session boundaries by considering the user’s
inactivity periods, i.e. the time gaps between consecutive queries in each long-term
user session. To this end, we have to devise a suitable time threshold tφ, which can
be obtained by analyzing the distribution of time gaps between all the consecutive
query pairs in our original and complete data set described before. We divide all
the time gaps into several buckets, 60-seconds each. Therefore, we analyze the
query inter-arrival times distribution, which, again, is revealed to be a power law
(Figure 4.2).

This model tightly fits user behaviors during Web search activities, when consec-
utive queries issued within a short period of time are often not independent because
they are also task-related.

More formally, given the following general form of a power law distribution p(x):

4.4. Task Discovery Problem 67

p(x) =
α− 1

xmin


x

xmin

−α

,

where α > 1 and xmin is the minimum value of x from which the law holds, we were
interested in finding the value x̄, such that two consecutive queries whose time gap
is smaller than x̄ are considered to belong to the same time-gap session.

Whenever the underlying distribution is unknown, it makes sense to assume a
Gaussian distribution and use a threshold x̄ = µ + σ being equal to mean µ plus
standard deviation σ, which results in “accepting” λ = 84.1% of the samples. This
is equivalent to consider the cumulative distribution P (x̄) = Pr(X ≤ x̄) and to
determine x̄, such that P (x̄) = λ. Since we know the underlying distribution, and
since P (x̄) = Pr(X ≤ x̄) = 1 − P ′(x̄) = 1 − Pr(X > x̄), we map the threshold λ
into our context as follows:

P ′(x̄) = C

 ∞

x̄

p(X) dX =
α− 1

x−α+1
min

 ∞

x̄

X−α dX =


x̄

xmin

−α+1

.

Hence, for our purpose we have to solve the following equation in x̄:

P (x̄) = 1− P ′(x̄) = 1−


x̄

xmin

−α+1

= λ = 0.841 . (4.1)

The value xmin represents the minimum query pair time gap and corresponds to the
first interval, i.e., 60 seconds. Therefore, we estimated α = 1.564 and finally we can
solve Eq. 4.1 finding x̄ ' 26 minutes. This means to assume 84.1% of consecutive
query pairs are issued within 26 minutes. Finally, we used this value x̄, as the
threshold tφ for splitting each long-term user session of the the query log.

4.4 Task Discovery Problem

In this Section, we describe the theoretical model we adopt in order to formally
define our research problem, i.e., finding user search sessions stored on a Web search
engine query log whose final aim is to perform some tasks.

4.4.1 Theoretical Model

A Web search engine query log stores queries submitted by users, along with other
information, such as userIDs, timestamps, etc. We denote with QL a Web search
engine log of the queries submitted by a set of users U = {u1, u2, . . . , uN} during a
given observation period. Moreover, let qi ∈ QL be a generic query issued by user
ui and qi,j ∈ QL be the j-th query issued by user ui.

The methods that extract meaningful user sessions from QL have to analyze all
the queries issued by each user ui. Let Si be the sequence of all the queries qi ∈ QL

68 4. Search Task Discovery

Figure 4.2: The distribution of time gaps between each consecutive query pair (log-log scale).

issued by user ui ∈ U , chronologically ordered during the period of observation
recorded in the query log: Si = 〈qi,1, qi,2, . . . , qi,|Si|〉.
Therefore,

QL =
N

i=1

Si.

The “bursty” nature of user query submission makes time interval between consec-
utive query pairs playing a significative role in detecting session boundaries. As it
has been done by Silverstein et al. [118], we detect session boundaries by considering
user’s inactivity periods, i.e. the time gaps between consecutive queries in each Si.

Definition 4.4.1 (Time-Gap Session φi,k) Let τ(qi,j) bet the time at which the
query qi,j is issued and tφ be the maximum time gap threshold. The ordered set of
consecutive queries φi,k = 〈qi,sk , . . . , qi,ek〉 ⊆ Si, with sk < ek, is said to be a time-gap
session if: (i) τ(qi,j+1) − τ(qi,j) ≤ tφ for every j, sk ≤ j < ek; and (ii) there is no
time-gap session being a superset of φi,k. �

This splitting technique makes no restrictions on the total elapsed time between
the first and the last query of the sequence φi,k. Usually, the inactivity threshold
is fixed arbitrarily. In fact, in our tests we set tφ = 26 minutes. This parameter is
obtained by analyzing the distribution of the time gaps in the query log used for the
experiments as described later on Section 4.5.

4.5. Ground-truth: Definition and Analysis 69

We remark that here we are interested in studying to which extent in such time-
gap sessions we can further recognize task-oriented sessions, i.e. sets of queries aimed
at performing some Web-mediated tasks. Queries within the same task-oriented
session do not necessarily occur consecutively in the time-gap session φi,k. As a
matter of fact, we will show that a generic user ui usually interleaves many different
information needs and related queries in each φi,k.

Definition 4.4.2 (Task-oriented Session θji,k) Let φi,k be a time-gap session in-

cluded in Si and let θji,k ⊆ φi,k be a task-oriented session, i.e., a set of (not neces-
sarily consecutive) queries issued by user ui for performing a given Web-mediated
task. Such tasks form a disjoint partitioning of a time-gap session. �

We denote by Θi,k = ∪jθ
j
i,k all the task-oriented sessions in a given time-gap

session φi,k and by Θ = ∪i,kΘi,k the set of all the task-oriented sessions in the query
log QL, i.e. the union-set of Θi,k for all users i and associated time-gap sessions k.

Therefore, the problem of finding Θ in a given query log can be formulated as
the Task-oriented Session Discovery Problem (TSDP), whose goal is to find the best
query partitioning strategy π that, when used to segment each time-gap session φi,k

in QL, approximates the actual user task-oriented sessions Θi,k.

Task-oriented Session Discovery Problem (TSDP): Given
a query logQL, let Ti,k = {t1i,k, t2i,k, . . .} be the task-oriented sessions
discovered by the query partitioning strategy π, when applied to φi,k,
i.e., π(φi,k) = Ti,k. Also, let Θ = ∪i,kΘi,k and Tπ = ∪i,kTi,k.
The TSDP requires to find the best partitioning π̄, such that:

π̄ = argmax
π

ξ(Θ, Tπ). (4.2)

Several quality measures can be used to evaluate the accuracy of a task-oriented
session extraction, and consequently, several ξ functions can be devised. In Sec-
tion 4.8, we instantiate ξ in terms of F-measure, Rand index and Jaccard index.

4.5 Ground-truth: Definition and Analysis

According to the Task-oriented Session Discovery Problem statement defined in Sec-
tion 4.4.1, we need to find the query partitioning strategy Tπ̄ that best approximates
the actual task-oriented segmentation Θ. Such optimal task-oriented partitioning
can be manually built from real Web search engine query log data. To this end, we
develop a Web application that helps human assessors to manually identify the opti-
mal task-oriented query sessions from the previously prepared AOL query log, thus
producing a ground-truth that can be used for evaluating automatic task-oriented

70 4. Search Task Discovery

session discovery methods and which is also freely available for download4. Fig-
ure 4.3 shows a snapshot of the Web application we used to annotate and produce
the ground-truth used in our experiments.

Figure 4.3: A snapshot of the Web application used for generating the ground-truth.

Human annotators group together queries that they claim to be task-related
within each time-gap session. Also, they have chance to discard meaningless queries
from those sessions. For each manually identified task (i.e., set of task-related
queries), evaluators have to add a tag and, optionally, a longer description. Such
data source could possibly represent a semantic knowledge base of users search goals
(i.e., taxonomy of tasks).

Furthermore, dealing with such massive data sets typically needs a pre-processing
phase in order to “clean” the collection and to make it more suitable for perform-
ing analysis steps. In particular, pre-processing concerned the following aspects.
First of all, we removed query log records containing both empty and “nonsense”
query strings (e.g., query strings composed of only punctuation symbols). Also, we
removed all the stop-words from each query string. Then, we run the Porter stem-
ming algorithm [102] for removing the most common morphological and inflectional
English endings from the terms of each query string. Finally, the data cleaning

4http://miles.isti.cnr.it/~tolomei/?page_id=36

http://miles.isti.cnr.it/~tolomei/?page_id=36

4.5. Ground-truth: Definition and Analysis 71

phase involved removing the long-term user sessions containing too much queries,
which were probably generated by robots, instead of human users.

Therefore, we considered as a sample the 500 user sessions with the highest
number of queries, hereinafter the top-500 data set. This data set contains a total
amount of 518, 790 queries, meaning that each user issued on average ≈ 1, 038
queries in 3 months, i.e., ≈ 12 queries per day. The maximum number of queries in
a user session is 7, 892 and the minimum is 729. As a consequence, this means users
submitted from a minimum of ≈ 8 to a maximum of ≈ 88 queries per day. As a last
remark, human evaluators are people selected from our laboratory, but not directly
involved in this work.

Manual annotation concerns a total of 2, 004 queries, from which 446 time-gap
sessions are extracted automatically. A total of 139 time-gap session are discarded
as meaningless by the annotators and, therefore, they are removed from the ground-
truth. Eventually, 1, 424 queries are actually clustered from 307 time-gap sessions.

Figure 4.4: The distribution of time-gap session duration.

Figure 4.4 shows the distribution of time-gap session length, using a discretiza-
tion factor of 60 seconds. While there are many sessions being shorter than 1 minute,
usually containing only one or two queries, the duration of a time-gap session is 15
minutes on average. Indeed, we observe, with a non-negligible frequency, sessions
lasting for 40 (or more) minutes. Also, in this cases, the session length suggests
that the interaction of users with Web search engines is non trivial and it is likely
to involve multi-tasking. The longest time-gap session lasts 9207 seconds, i.e. about
2 hours and a half and this happens only once in our data set.

72 4. Search Task Discovery

In Figure 4.5 we report the time-gap session size distribution. On average, each
time-gap session contains 4.49 queries, the sessions with at most 5 queries cover
slightly more than half of the query log. The other half of the query log contains
longer sessions with high probability of having multiple tasks being carried on in
the same session.

Figure 4.5: The distribution of time-gap session size.

The total number of human annotated task-oriented sessions is 554, with an
average of 2.57 queries per task. The distribution of the task-oriented sessions size
is illustrated in Figure 4.6. The number of tasks accomplished in a time-gap session
is 1.80 (Figure 4.7).

Among all the 307 time-based sessions considered, 145 contain multiple tasks.
We find that this 50% split between single-tasking and multi-tasking sessions is
consistent across the various users. Interestingly enough, this shows that a good
task detection algorithm have to be able to handle efficiently both single and multi-
tasking sessions.

If we consider all the queries included in each task, then 1, 046 out of 1, 424
queries are included in multi-tasking sessions, meaning that about 74% of the user
activity is multi-tasking.

Finally, we also evaluate the degree of multi-tasking by taking into account the
number of overlapping task-oriented sessions. We say that a jump occurs whenever
two queries in a manually labelled task-oriented session are not consecutive. For
instance, let φ = 〈q1, q2, . . . , q9〉 be a time-gap session and let π(φ) = {θ1, θ2, θ3}
be the result of the manual annotation procedure for φ, where θ1 = {q1, q2, q3, q4},

4.5. Ground-truth: Definition and Analysis 73

Figure 4.6: The distribution of task-oriented session size.

Figure 4.7: The distribution of tasks per time-gap session.

74 4. Search Task Discovery

θ2 = {q5, q7} and θ3 = {q6, q8, q9}. In this case, the number of jumps observed in φ
is 2, because there are two query pairs (q5, q7) ∈ θ2 and (q6, q8) ∈ θ3, which are not
consecutive.

The number of jumps gives a measure of the simultaneous multi-tasking activity.
We denote with j(φ) the simultaneous multi-tasking degree of φ as the ratio of task-
oriented sessions in φ having at least one jump. In the previous example j(φ) ' 0.67,
since 2 out of 3 tasks contain at least one jump.

In Figure 4.8, we show the distribution of the multi-tasking degree over all the
time-gap sessions. Note that the result for j(φ) = 0 is omitted, because we already
know that 50% of the sessions are single-tasking.

Figure 4.8: The distribution of multi-tasking degree.

4.6 Task-based Query Similarity

We define the measure of how likely two queries are part of the same search task as
task relatedness. In other words, task relatedness measures how similar two queries
are, with respect to a hypothetic common search task.

In this Section, we describe three different ways of computing the task relatedness
between any two queries (qi, qj), which results in several task-based query similarity
functions. The first approach, i.e., time-based, is the most simple and takes into
account only the time gap between two adjacent queries. Therefore, we present an
unsupervised approach for computing task-based query similarity functions. Such

4.6. Task-based Query Similarity 75

similarity functions exploit a set of features extracted from query log data. Finally,
we introduce a supervised approach, which learns task relatedness by training a
classifier on a set of features derived from the query log itself.

4.6.1 Time-based Approach

In the literature, the simplest approach for measuring task-based similarity between
two queries is that proposed by [118], which only takes into account the query
submission time. This measure is based on the assumption that if two consecutive
queries are issued within a “small enough” time window then they are also likely to
be related. In fact, having two consecutive queries whose time gap is greater than
a certain value could reveal a topic shift in user search behavior.

The main issue with this approach is how to effectively define what a “small
enough” time window means, i.e., to devise a time threshold t̄ on the inter-query
submission time, so that as long as two adjacent queries are issued within t̄ they
are also high probably task-related. On the basis of this threshold, it can then
be devised a time-based binary similarity function σtime, only defined for adjacent
query pairs as follows:

σtime(qi, qj) =





1 if |τ(qj)− τ(qi)| ≤ t̄ and j == i+ 1,
0 if |τ(qj)− τ(qi)| > t̄ and j == i+ 1,
⊥ otherwise.

(4.3)

Of course, the overall effectiveness of this approach changes by varying the value cho-
sen for the threshold t̄. Several past works perform their experimental evaluation
by empirically testing different values of t̄, ranging from 5 to 60 minutes thresh-
olds [118, 116, 109]. Instead, in this work we devise this threshold value directly
from the query log data, as specified in Section 4.3.2.

4.6.2 Unsupervised Approach

Following this approach, we first have to select the set of query log features we
want to take care of for determining the task-based query similarity. Thus, in the
remaining of this Section we describe a selection of features derived from query
log data, either internally or externally available, which we claim to be useful in
establishing if two queries are task-related. Therefore, we also figure out two task-
based query similarity functions, which combine the selected features in two different
ways.

4.6.2.1 Feature Selection

Evaluating the similarity between two queries is a very complex issue and even harder
is determining their similarity in terms of a search task, i.e., their task relatedness.
Most of the previous approaches are based on the similarity between query lexical

76 4. Search Task Discovery

content [112]. The precision of those approaches results to be quite low due to
the short length of queries [118] and the lack of the contextual information in which
queries are issued [139]. Thus, some approaches try to expand those short queries by
exploiting resulting URLs returned by Web search engines [52], or the returned Web-
snippets [80], or the documents themselves [106]. Two queries might be considered
similar if they return similar results, or similar documents. Unfortunately, it might
be the case for unrelated queries to share some results.

Here, we propose two features and two similarity measures for assessing the task
relatedness of two queries qi and qj, both in terms of their lexicographical content
and their semantics.

Content-based (σcontent). Two queries that share some common terms are likely
related. Sometimes, such terms may be very similar, but not identical, due to
misspelling, or different prefixes/suffixes. To capture content similarity between
queries, we adopt a Jaccard index on tri-grams [66]. Let T (q) be the tri-grams
resulting from the terms of query q, we define the similarity σjaccard as follows:

σjaccard(qi, qj) =
|T (qi) ∩ T (qj)|
|T (qi) ∪ T (qj)|

.

In addition, we exploit a normalized Levenshtein similarity σlevenshtein, which Jones
and Klinker [67] claimed to be the best edit-based feature for identifying goal bound-
aries. Finally, the overall content-based similarity is computed as follows:

σcontent(qi, qj) =
σjaccard(qi, qj) + σlevenshtein(qi, qj)

2
.

Semantic-based (σsemantic). We are interested in finding a measure of the seman-
tic relatedness between query pairs. Typically, humans can easily judge the semantic
relatedness between two terms. This human ability is backed by their experience
and knowledge, which makes it a hard task for machines. If a machine has to solve
this task, it also needs some source of knowledge. Usually, this knowledge comes
from: (i) large text collections, i.e., corpora, or from (ii) semantic resources. Thus,
we figured out that we could expand each query with its “wikification”. Basically,
we exploit both Wiktionary and Wikipedia external data sources for increasing the
meaningfulness of each query, trying to overcome its lack of semantic information.

Several semantic relatedness metrics dealing with semantic resources have been
proposed in the past. Roughly, they can be classified into:

• path-based : represent knowledge as a graph of concepts and compute paths
over that graph [104, 76];

• information content-based : take into account the information content of
a concept [108];

4.6. Task-based Query Similarity 77

• gloss-based : rely on term overlaps between definitions of concepts [79];

• vector-based : model each concept as a vector of anchor links [92] or terms [50].

Following the last approach, we assume that a Wiktionary entry, or a Wikipedia
article, describes a certain concept and that the presence of a term in a given article
is an evidence of the correlation between that term and that concept. Thus, we

describe the wikification
−→
C (t) of a term t as its representation in a high dimensional

concept space
−→
C (t) = (c1, c2, . . . , cW), where W is the number of articles in our

collections and ci scores the relevance of the term t for the i-th article. We measure
this relevance by using the well known tf -idf score [112].

In order to “wikify” the whole string associated with a query q, we sum up the
contribution from its terms, i.e.:

−→
C (q) =



t∈q

−→
C (t).

Then, we compute the relatedness σwikification(qi, qj) between two queries qi and qj
as the cosine similarity of their corresponding concept vectors:

σwikification(qi, qj) =

−→
C (qi) ·

−→
C (qj)

‖
−→
C (qi)‖‖

−→
C (qj)‖

.

Of course, we use the same approach both for computing σwiktionary and σwikipedia

similarity measures, taking into account Wiktionary and Wikipedia corpora, respec-
tively. Finally, the overall semantic-based similarity is obtained as follows:

σsemantic(qi, qj) = max(σwiktionary(qi, qj), σwikipedia(qi, qj)).

4.6.2.2 Similarity Functions

An immediate way to put together (i) the lexical content (σcontent) and (ii) the
semantic expansion (σsemantic) similarity is via a convex combination:

σ1 = α · σcontent + (1− α) · σsemantic . (4.4)

In addition, we propose a novel conditional similarity function σ2 based on the
following heuristic: if the content-based similarity between two queries is equal to
or greater than a certain threshold t then we can be confident that queries are
also task-related; otherwise, we look at the semantic expansion of the queries and
we compute the final similarity score as the maximum between content-based and
semantic-based similarity values.

σ2 =


σcontent if σcontent ≥ t,
max(σcontent,b · σsemantic) otherwise.

(4.5)

78 4. Search Task Discovery

The rationale for introducing the conditional similarity function σ2 is based on the
following conjecture: if two queries are close in term of lexical content, the semantic
expansion could be unhelpful. Vice-versa, nothing can be said when queries do not
share any common content feature (e.g., again consider the two queries “nba” and
“kobe bryant”).

Both σ1 and σ2 rely on the estimation of some parameters, i.e., α for σ1 and t
as well as b for σ2, which are learned directly from the ground-truth.

4.6.3 Supervised Approach

In Section 4.2, we pointed out that Jones and Klinkner [67] addressed a problem
which is similar to the TSDP. They argue that user search activities can be divided
into particular hierarchical units, i.e., search missions, which are in turn composed
of disjoint search goals. According to the authors, a search goal is defined as an
atomic information need, resulting in one or more queries, while a search mission is
a set of topically-related information needs, resulting in one or more goals. Up to
here, there is a clear similarity between a search goal and what we have defined to
be a task-oriented session, according to Def. 4.4.2.

However, in [67] authors investigate a completely supervised approach in order to
learn a suitable binary classifier for precisely detecting whether two queries belong
to the same goal/mission or not. Basically, given a manually generated ground-truth,
they exploit several characteristics (i.e., temporal, word- and character-edit, query
log sequence, and Web search features) for predicting whether two queries belong
to the same goal/mission and thus to identify goal/mission boundaries. Anyway,
authors do not explore how such binary classifier could be exploited for segmenting
users’ query streams into goals and missions, thus for actually discovering search
goals, i.e., task-oriented sessions and search missions.

Nevertheless, it is worth noting that this supervised approach could also be used
for deriving another task-based query similarity measure, which in turn might be
further exploited by task discovery methods. In particular, the task relatedness
between two queries (qi, qj) could be derived from the prediction value with which
qi and qj are classified in the same search goal, i.e., same task.

The rest of this Section is structured as follows. First, we start by describing the
set of features Fjk that Jones and Klinkner [67] claim to provide the best accuracy
results in predicting whether two queries belong to the same task or not. Moreover,
as another major novel contribution of this work, we introduce a set of features
F ′ that might be combined with Fjk. Therefore, we train several binary classifiers
using various combination of features on top of our manually generated ground-
truth described in Section 4.5. Finally, we exploit the output of such classifiers for
determining 12 new task-based query similarity functions, each of which will be in
turn exploited by two task discovery methods, as specified in Section 4.7.2.1.

4.6. Task-based Query Similarity 79

4.6.3.1 Feature Selection

According to [67], given any two queries qi and qj, the following set of features Fjk

provides best accuracy results in predicting whether they are part of the same task:

– edlevGT2 : this is a binary feature that evaluates to 1 if the normalized Lev-
enshtein edit distance between qi and qj is greater than 2, 0 otherwise;

– wordr : this feature corresponds to the Jaccard distance between the sets of
words which qi and qj are composed of;

– char suf : this feature counts the number of common characters between qi
and qj, starting from the right;

– nsubst qj X : given P (qi −→ qj) the probability of qi being reformulated as qj,
this feature is computed as count(X : ∃ P (qj −→ X));

– time diff : this feature represents the inter-query time gap between qi and qj,
expressed in seconds;

– sequential : this binary feature is positive if the queries qi and qj are sequentially
issued;

– prisma: this feature refers to the cosine distance between vectors obtained
from the top-50 search results for the terms of qi and qj, respectively;

– entropy qi X : this feature concerns with the entropy of rewrite probabilities
from query qi and it is computed as


k P (qk|qi) log2(P (qk|qi)).

In addition to the above set Fjk, we propose another set of features F ′, as a
novel contribution of this work. This is composed of a semantic feature we already
used for computing the task relatedness measures of our unsupervised approaches,
i.e., σwikipedia (Section 4.6.2.1). Moreover, F ′ also contains another feature, i.e.,
σjaccard url, which measures the Jaccard similarity between the top-20 domain URLs
returned as search results in response to qi and qj, respectively. The rationale of this
last feature is to capture the similarity of two apparently different queries, which
share many relevant links to Web documents, i.e., URLs, of the retrieved results pro-
vided by most popular Web search engines. Thus, given url20(qi) = {u1

i , u
2
i , . . . , u

20
i }

the set of top-20 domain URL results returned by a Web search engine in response
to the query qi, this feature is computed as follows:

σjaccard url(qi, qj) =
|url20(qi) ∩ url20(qj)|
|url20(qi) ∪ url20(qj)|

.

80 4. Search Task Discovery

4.6.3.2 Binary Classifiers

Following the approach presented in [67], we exploit both the sets of features previ-
ously described in Section 4.6.3.1 for training several binary classifiers. In particular,
we devise four different combinations of features extracted from our manually gen-
erated ground-truth described in Section 4.5:

– F1 ≡ Fjk;

– F2 = Fjk ∪ σwikipedia;

– F3 = Fjk ∪ σjaccard url;

– F4 = Fjk ∪ F ′.

Moreover, we decide to use three different classification models:

– Cdt: a clone of the C4.5 Decision Tree learner [103];

– Cnb: a Näıve Bayesian learner;

– Clr: a Logistic Regression learner.

Therefore, the classification step requires the training of the set of classifiers, i.e.,
C = {Cdt, Cnb, Clr}, over the set of feature sets, i.e., F = {F1,F2,F3,F4}. By
combining each of the three classifier models with each feature set, we obtain 12
distinct classifiers, i.e., Cy

x, where x ∈ {dt, nb, lr} and y ∈ {1, 2, 3, 4}.
All these classifiers are trained on the manually built ground-truth described in

Section 4.5. Roughly, for each query pair (qi, qj) of the ground-truth we extract a
specific set of features Fy ∈ F and we assign the class attribute “same task = yes”
if and only if qi and qj are part of the same task in the ground-truth, “same task

= no” otherwise. Furthermore, we run a classifier model Cx ∈ C on such training
data set for building a binary classifier, which could be able to predict if any two
queries are part of the same task-oriented session or not. Moreover, each prediction
made by a certain classifier for a specific query pair comes with an accuracy value,
i.e., a measure of the “strength” of the provided prediction. Thus, such accuracy
value could also be used as a task relatedness measure between each query pair.
Of course, by training 12 different binary classifiers, we generally have 12 distinct
accuracy values for each query pair (qi, qj) in predicting if qi and qj are task-related.

4.6.3.3 Similarity Functions

According to Section 4.6.3.2, the accuracy of prediction provided by a binary clas-
sifier for estimating if any two queries belong to the same search task could be
interpreted as a similarity score, which in turn could be exploited by any clustering-
oriented technique that will be presented in Section 4.7.2.1.

4.6. Task-based Query Similarity 81

Here, we propose 12 new similarity functions, which exploit the output of the
same binary classifiers. Table 4.1 contains the name of each similarity function
obtained as combination of the classifier model and the set of exploited features.

Feature Set

F1 F2 F3 F4

Classification Model

Cdt σ1
dt σ2

dt σ3
dt σ4

dt

Cnb σ1
nb σ2

nb σ3
nb σ4

nb

Clr σ1
lr σ2

lr σ3
lr σ4

lr

Table 4.1: Supervised task-based query similarity functions.

Let accyx(qi, qj) ∈ [0, 1] be the accuracy value of the classifier Cx trained on the
set of features Fy in predicting that qi and qj are part of the same search task.
Thus, each similarity function σy

x, where x ∈ {dt, nb, lr} and y ∈ {1, 2, 3, 4} might
be instantiated as follows:

σy
x(qi, qj) = accyx(qi, qj). (4.6)

However, in order to detect which similarity functions are supposed to provide better
results, we first have to compare the performances of the classifiers which they are
derived from.

Typically, the performance of a classifier is measured by counting the proportion
of correctly predicted examples in an unseen data set, i.e., test data set, which is
different from the training data set. This proportion is called 1-ErrorRate (or also
accuracy). However, a more elaborate method for measuring the performance of
a classifier is cross-validation, where a number n of folds is specified. Here, the
training data set is randomly reordered and then split into n folds of equal size. At
each iteration, one fold is used for testing and the other n − 1 folds are used for
training the classifier. The test results are collected and averaged over all folds and
this provides the cross-validation estimate of the accuracy.

In the following, we describe the performances of each binary classifier obtained
using a specific classification model and varying the set of training features. All the
evaluations are measured according to 10-fold cross-validation.

We decide to express the performance of each binary classifier in terms of TP
Rate, FP Rate, Precision, Recall, and F-measure. All these measures are opportunely
averaged with respect to the two distinct prediction classes, i.e., “same task = yes”
and “same task = no”. In particular, TP Rate refers to the ratio of true positive
examples, i.e., examples that are correctly classified for both prediction classes and
it is equivalent to Recall. Similarly, FP Rate describe the ratio of false positive
examples, i.e., examples that are misclassified for both prediction classes. Moreover,
Precision is the proportion of the examples which truly have a certain class among

82 4. Search Task Discovery

all those which are classified with that class. Finally, F-measure is the weighted
harmonic mean of Precision and Recall :

F-measure =
2× Precision× Recall

(Precision+ Recall)
.

Decision Tree Classifier (Cdt). This classification model is based on a clone
of the C4.5 Decision Tree learner [103]. Table 4.2 describes the performance of four
binary classifiers, i.e., C1

dt, C2
dt, C3

dt, and C4
dt, obtained using this model in combination

with the sets of features F1,F2,F3, and F4, respectively.

Accuracy Measures

TP Rate FP Rate Precision Recall F-measure

Classifiers

C1
dt 0.987 0.463 0.985 0.987 0.985

C2
dt 0.987 0.457 0.985 0.987 0.985

C3
dt 0.987 0.457 0.986 0.987 0.986

C4
dt 0.987 0.450 0.986 0.987 0.986

Table 4.2: Performance evaluation of the set of classifiers derived from Cdt.

All the binary classifiers behave similarly. However, the very best performance
is obtained with C4

dt, which is trained using the set of features F4. This means that
the similarity function of choice for this classification model is σ4

dt.

Näıve Bayesian Classifier (Cnb). This classification model is based on a Näıve
Bayesian learner. Table 4.3 describes the performance of four binary classifiers, i.e.,
C1
nb, C2

nb, C3
nb, and C4

nb, obtained using this model in combination with the sets of
features F1,F2,F3, and F4, respectively.

Accuracy Measures

TP Rate FP Rate Precision Recall F-measure

Classifiers

C1
nb 0.982 0.488 0.981 0.982 0.981

C2
nb 0.981 0.516 0.980 0.981 0.980

C3
nb 0.982 0.489 0.981 0.982 0.981

C4
nb 0.981 0.515 0.980 0.981 0.980

Table 4.3: Performance evaluation of the set of classifiers derived from Cnb.

As for the Decision Tree model, all the binary classifiers perform similarly. How-
ever, the very best accuracy is obtained both with C1

nb and C3
nb, thus using the set

4.7. Task Discovery Methods 83

of features F1 and F3, respectively. Here, the chosen similarity functions for this
classification model might be either σ1

nb or σ
3
nb.

Logistic Regression Classifier (Clr). This classification model is based on Lo-
gistic Regression. Table 4.4 describes the performance of four binary classifiers,
i.e., C1

lr, C2
lr, C3

lr, and C4
lr, obtained using this model in combination with the sets of

features F1,F2,F3, and F4, respectively.

Accuracy Measures

TP Rate FP Rate Precision Recall F-measure

Classifiers

C1
lr 0.983 0.617 0.981 0.983 0.981

C2
lr 0.983 0.616 0.981 0.983 0.981

C3
lr 0.983 0.612 0.981 0.983 0.981

C4
lr 0.984 0.609 0.981 0.984 0.981

Table 4.4: Performance evaluation of the set of classifiers derived from Clr.

Apart from a little difference in the FP Rate, the Logistic Regression model
leads to four same performing binary classifiers. Thus, any classifier could be chosen
almost arbitrarily as well as the similarity functions, i.e., σ∗

lr, where ∗ ∈ {1, 2, 3, 4}.
Globally, the best performing classifier is C4

dt. Indeed, it gains ≈ 0.50% in terms
of F-measure and it reduces the FP Rate of ≈ 8.44% with respect to the best Näıve
Bayesian classifiers, i.e., C1

nb and C3
nb. Similarly, it gains ≈ 0.50% in terms of F-

measure and it reduces the FP Rate of ≈ 35.33% with respect to the best Logistic
Regression classifiers, i.e., C4

lr. This means that σ4
dt might be considered the very

best query similarity function for determining task relatedness.

Finally, in Section 4.8.2.3 we show the results obtained when the two best-
performing task discovery methods exploit the three best-performing supervised sim-
ilarity functions, i.e., σ4

dt, σ
1
nb (or, equivalently, σ

3
nb), and σ∗

lr, where ∗ ∈ {1, 2, 3, 4}.

4.7 Task Discovery Methods

In this Section, we address the Task-oriented Session Discovery Problem (TSDP)
introduced in Section 4.4.1 by proposing and comparing several methods and tech-
niques. The first family of task discovery methods we describe is globally referred
to as TimeSplitting-t. Basically, TimeSplitting-t relies on the task relatedness mea-
sure presented in Section 4.6.1, i.e., σtime, and it consists of splitting each session
when the time between two query submissions is greater than a threshold t̄. In the
following, this set of methods will be considered as our baseline.

84 4. Search Task Discovery

Therefore, we introduce QueryClustering-m, i.e., a family of clustering-oriented
task discovery techniques based on several query clustering methods m.

The rationale of using query clustering leverages on the idea that queries ending
up in the same cluster are also likely to be task-related, as long as the adopted
clustering strategy is properly designed for dealing with query log data and for
the problem we want to address. All the query clustering techniques presented in
this work rely both on the unsupervised and supervised query similarity functions
proposed in Section 4.6.

4.7.1 TimeSplitting-t

Time splitting techniques totally leverage on time-based approaches for measuring
the task relatedness between two adjacent query pairs described in Section 4.6.1,
i.e., σtime. Roughly, they work as follows: for any given consecutive query pair
(qi, qi+1) if σtime(qi, qi+1) evaluates to 1 then qi and qi+1 become part of the same
task-oriented session, otherwise they are considered the last and the first query of
two distinct task-oriented sessions, respectively.

According to Def. 4.4.1 of our theoretical model, time splitting techniques are
used for detecting time-gap sessions, which represent a preliminary step before iden-
tifying task-oriented sessions. In particular, we use a time threshold t̄ = tφ = 26
minutes for identifying time-gap sessions of our query log (i.e., TS-26). This thresh-
old was figured out from the testing data set as described in Section 4.3.2.

Also, the TSDP requires to find the best partitioning strategy over all the time-
gap sessions available in the query log. A trivial partitioning strategy is the one that
simply consider each time-gap session as a task-oriented session. In our case, this is
equivalent to use only TS-26 for addressing the TSDP. However, other partitioning
strategies might be devised by simply applying different time splitting techniques
to each identified time-gap session. In this regard, there are several time thresholds
that have been extensively proposed in literature [118, 55]. In this work, we use
TS-5 and TS-15, i.e., 5 and 15 minutes thresholds, respectively.

The most prominent advantage of these techniques is their computational com-
plexity, which is linear in the size of the input, i.e., number of queries. Indeed,
since σtime is only defined on consecutive query pairs and given that a sequence of
n elements contains exactly n− 1 consecutive pairs, the overall time complexity of
time-splitting techniques results to be linear in the number of input queries.

However, the main drawback of time splitting methods is that they are unable
to properly deal with multi-tasking sessions, since identified sets of task-related
queries are actually composed of temporarily ordered consecutive queries. Moreover,
this makes splitting methods unsuitable since multi-tasking sessions represent a
significative sample of the total available sessions, at least according to the analysis
of our testing data set we provided in Section 4.5.

In Section 4.8.2, we compare the results provided by TS-5, TS-15, and TS-26.
Also, we show that alone they are not suitable for identifying task-oriented sessions.

4.7. Task Discovery Methods 85

4.7.2 QueryClustering-m

We also propose a family of clustering-oriented task discovery methods, called Que-
ryClustering-m. Basically, they differ from each other on the basis of the chosen
clustering method m. To this extent, we start studying two algorithms derived from
well-known clustering methods: QC-Means [85] and QC-Scan [44]. Moreover,
we introduce two graph-based techniques: QC-wcc and its computationally-lighter
variationQC-htc. All clustering algorithms have been applied to time-gap sessions,
which in turn have been previously identified using TS-26 time splitting technique.

As for any other clustering problem, the effectiveness of these set of task dis-
covery methods mostly depends on the robustness of the similarity function used
by the algorithms, i.e., the measure of task-based query similarity as described in
Section 4.6.

4.7.2.1 Algorithms

In the following, we describe four clustering algorithms, i.e., QC-Means, QC-
Scan, QC-wcc, and QC-htc, which exploit the task-based query similarity func-
tions proposed in Section 4.6. The first two are inspired to well-known clustering
algorithms and they only make use of the task relatedness measures derived from
the unsupervised approach, i.e., σ1 and σ2.

The last two algorithms follow a graph-based approach: QC-wcc identifies task-
oriented sessions with the connected components of a query similarity graph, while
QC-htc, which is a variation of QC-wcc, aims at reducing the computational
cost of the clustering without impacting on the overall effectiveness. Both these
two graph-based query clustering methods exploit the task relatedness scores either
derived from unsupervised and supervised approaches.

Anyway, each algorithm takes as input the generic time-gap session φi,k =
〈qi,sk , qi,2, . . . , qi,ek〉, where |φi,k| = |ek − sk| = n, and it is associated with a specific
partitioning strategy πx. Thus, each algorithm provides as output πx(φi,k) = Ti,k =

{t1i,k, t2i,k, . . . t
|Ti,k|
i,k }, i.e., the set of task-oriented sessions of φi,k obtained by applying

the partitioning strategy πx, where x ∈ {QC-Means,QC-Scan,QC-wcc,QC-htc}.

QC-Means. It is a centroid-based algorithm and represents a variation of the well-
known K-Means [85]. Here, we replace the usual K parameter, i.e. the number of
clusters to be extracted, with a threshold ρ that defines the maximum radius of a
centroid-based cluster. This allows us to better deal with the variance in length of
user sessions as well as to avoid specifying the number of final clusters apriori.

At each step, a query qi,j ∈ φi,k is either added to an existing cluster of queries
tγi,k if its similarity with respect to the centroid query of tγi,k is at least 1−ρ, otherwise

qi,j itself becomes the centroid of a brand new cluster tγ
′

i,k. Query similarity score is
computed using the unsupervised task-based query similarity functions described in
Section 4.6.2.2, i.e., σ1 and σ2.

86 4. Search Task Discovery

It is clear that the worst case happens when each cluster contains a single query,
so that in the end the similarity between all query pairs has to be computed, making
the the time complexity ofQC-Means quadratic in the size of the input, i.e., O(n2).

QC-scan. It is the density-based DB-Scan algorithm [44], specifically tailored for
extracting task-oriented sessions from Web search engine query logs. The rationale
of evaluating also a variation of DB-Scan is that centroid-based approach may
suffer the presence of noise in query logs. Moreover, the ε-neighborhood of each
query is computed on the basis of the two unsupervised task-based query similarity
functions σ1 and σ2.

Again, in the worst case QC-Scan requires to compute all query pairs similarity,
making its time complexity quadratic in the size of the input, that is O(n2).

QC-wcc. It is a query clustering algorithm based on finding the weighted con-
nected components of a graph. Given a time-gap session φi,k, this algorithm builds
a complete graph Gφi,k

= (V,E,w), whose nodes V are the queries in φi,k, i.e.,
V = {qi,j | qi,j ∈ φi,k}, and whose E edges are weighted by the similarity of
the corresponding nodes. The weighting function w is a query similarity function
w : E −→ [0, 1] that can be easily computed in terms of the task-based query
similarity functions proposed in Section 4.6. Thus, the graph Gφi,k

describes the
task-based similarity between any pair of queries in the given tim-gap based session.

The rationale of QC-wcc is to drop weak edges, i.e., with low similarity, since
the corresponding queries are not related, and to build clusters on the basis of the
strong edges, i.e., with high similarity, which identify the related query pairs. The
algorithm performs two steps. In the first step, given the graph Gφi,k

all the edges
e ∈ E whose weight is smaller than a given threshold, that is w(e) < η, are removed,
thus obtaining a pruned graph G′

φi,k
. In the second step, the connected components

of G′
φi,k

are extracted. Such connected components identify the set of clusters of

related queries Ti,k = {t1i,k, t2i,k, . . . t
|Ti,k|
i,k }, which are returned by the algorithm.

Indeed, assuming a robust similarity function, the QC-wcc algorithm is able
to handle the multi-tasking nature of users sessions. Groups of related queries are
isolated by the pruning of weak edges and links with large similarity identify the
generalization/specialization steps of the users, as well as restarts from a previous
query when the current query chain is found to be unsuccessful.

The computational complexity of QC-wcc is dominated by the construction of
the graph Gφi,k

. Indeed, the similarity between any pair of edges must be computed,
resulting in a number of similarity computations quadratic in the number of nodes,
i.e., O(n2), where n = |V | = |φi,k| is the number of queries in the session φi,k. In-
stead, all the connected components are easily computed in linear time with respect
to the number of nodes in Gφi,k

, i.e., O(n), by using either breadth-first or depth-first
search.

4.7. Task Discovery Methods 87

QC-htc. It is a variation of the previous QC-wcc algorithm, which is based on
head-tail components and does not need to compute the full similarity graph. Since
queries are submitted one after the other by the user, the QC-htc algorithms takes
advantage of this sequentiality to reduce the number of similarity computations
needed by QC-wcc. The algorithm works in two phases as follows.

The first step aims at creating an approximate fine-grained clustering of the
given time-gap session φi,k. Every single Web-mediated task generates a sequence
of queries. Due to the multi-tasking behavior of users, multiple Web-mediated tasks
are carried on at the same time, therefore the query log records such overlapping
tasks and the corresponding query sequences. As a consequence, each Web-mediated
task is observed as a set of fragments, i.e. smaller sets of consecutive queries, and
fragments of different tasks are interleaved in the query log because of multi-tasking.

The algorithm exploits the sequentiality of user queries and tries to detect the
above fragments, by partitioning the given time-gap session φi,k into sequential clus-
ters, where a sequential cluster, denoted with t̃γi,k, must contain only queries that
occur in a row within the query log, such that each query is similar enough to the
chronologically following one.

The second step of the algorithm merges together those fragments when they are
related, trying to overcome the interleaving of different tasks. Here, we introduce
another assumption that reduces the computational cost of the algorithm. We as-
sume that a cluster of queries can be well described by just the chronologically first
and last of its queries, respectively denoted with head(t̃γi,k) and tail(t̃γi,k). Therefore,

the similarity sim between two clusters t̃γ1i,k, t̃
γ2
i,k is computed as:

sim(t̃γ1i,k, t̃
γ2
i,k) = min

q∈{head(t̃γ1
i,k

),tail(t̃
γ1
i,k

)}

q′∈{head(t̃γ2i,k),tail(t̃
γ2
i,k)}

w(e(q, q′)).

where w weights the edge e(q, q′) linking the queries q and q′ with respect to their
task-based similarity, analogously to QC-wcc.

The final clustering is produced as follows. The first cluster t1i,k is initialized with

the oldest sequential cluster t̃1i,k, which is removed from the set of sequential clusters.

Then, t1i,k is compared with any other chronologically-ordered sequential cluster t̃γi,k
by computing the similarity as above. Given a threshold η, if sim(t1i,k, t̃

γ
i,k) ≥ η, then

t̃γi,k is merged into t1i,k, the head and tail queries of t1i,k are updated consequently

and t̃γi,k is removed from the set of sequential clusters. The algorithm continues
comparing the new cluster t1i,k with the remaining sequential clusters. When all the
sequential clusters have been considered, the oldest sequential cluster available is
used to build a new cluster t2i,k, and so on and so forth.

The algorithm iterates this procedure until no more sequential clusters are left.
In the worst case, the complexity of QC-htc is still quadratic in the number

of queries in φi,k. However, there are frequent cases in which the complexity is
much smaller. We have seen that 52.8% of the time-gap sessions contain one task

88 4. Search Task Discovery

only. In this case, it is very likely that this task is found after the first step of the
algorithm, if each query is sufficiently similar to the next one. Since the first step
of the algorithm only requires to compute the similarity between timely-adjacent
query pairs, its computational cost is linear in the number of nodes, i.e., O(n),
where n = |V | = |φi,k| is the number of queries in the session φi,k. Nevertheless, for
multi-tasking sessions, the time complexity of the second step is quadratic in the
number of sequential clusters extracted, i.e., O(m2) if m is the number of sequential
clusters. Also in this case, the cost reduction may be significant. Suppose that the
number of sequential clusters is m = β|φi,k| = βn, with 0 < β ≤ 1, then the time
complexity of the algorithm is O(β2n2). Let the number of sequential clusters be
the half of the number of queries, i.e., m = n/2 so that β = 1/2, then the overall
algorithm complexity is O(n2/4), namely four times cheaper than QC-wcc. Still,
this is an upper bound of the computational cost, since the QC-htc algorithm does
not compute the pair-wise similarities among sequential clusters in advance.

It is worth noting that we first instantiate the query similarity function w of both
QC-wcc and QC-htc with the unsupervised task-based query similarity functions,
i.e., w = σ1 and w = σ2. Moreover, since experimental evaluation showed QC-
wcc and QC-htc outperformed both other clustering-oriented methods, i.e., QC-
Means and QC-Scan, as well as state-of-the-art approaches, i.e., QFG introduced
by [28], we also instantiate the query similarity function w with the supervised task-
based query similarity functions, i.e., w = σ4

dt, w = σ1
nb (or, equivalently, w = σ3

nb),
and w = σ∗

lr, where ∗ ∈ {1, 2, 3, 4}.
All the obtained results are fully described in Section 4.8.2.

4.8 Experiments

In this Section, we analyze and compare the results obtained with all the task
discovery methods we described in Section 4.7 for approaching the TSDP. Moreover,
we compare our results with the ones provided by two other task discovery methods:
(i) the simple time splitting technique TS-26, which is considered as the baseline
solution and (ii) the session extraction method based on the Query Flow Graph
model proposed by Boldi et al. [28], which may be considered as the state-of-the-art
approach.

4.8.1 Validity Measures

In order to evaluate and compare all the methods we mentioned, we need to measure
the degree of correspondence between manually extracted tasks of the ground-truth
(Section 4.5) and tasks produced by our algorithms. To this end, we use both
classification- and similarity-oriented measures [131]. In the following, we thus
refer to “predicted classes” as the task-oriented sessions detected by a specific al-

4.8. Experiments 89

gorithm, whereas the “true classes” just correspond to the task-oriented sessions of
the ground-truth.

Classification-oriented approaches measure the degree to which predicted classes
correspond to true classes and F-measure is one of the most popular score in this
category. It combines both Precision and Recall : the former measures the fraction
of a task that consists of objects of a specified class, while the latter measures the
extent to which a task contains all objects of a specified class. Thus, globally F-
measure evaluates the extent to which a task contains only objects of a particular
class and all objects of that class. Given p(i, j), r(i, j) the precision and recall of
task i with respect to class j, the F-measure corresponds to the weighted harmonic
mean of p(i, j) and r(i, j):

F (i, j) =
2× p(i, j)× r(i, j)

p(i, j) + r(i, j)
.

In order to compute a global F-measure, for each generic time-gap session φi,k we first

consider the set of its associated predicted tasks π(φi,k) = Ti,k = {t1i,k, t2i,k, . . . , t
|Ti,k|
i,k },

i.e., the set of all the task-oriented sessions extracted from φi,k, by using the parti-
tioning strategy π. Analogously, we take into account the set of true tasks Θi,k =

{θ1i,k, θ2i,k, . . . , θ
|Θi,k|
i,k }, i.e., the set of task-oriented sessions of the ground-truth.

Moreover, in order for those two sets Ti,k and Θi,k to have the same size, i.e.,
|Ti,k| = |Θi,k|, we pad both of them with all the “unclassified” queries, namely with
all the queries that appear in the original session φi,k but that have been somehow
discarded either during the automatic and/or the manual clustering. Somehow,
this is equivalent to consider discarded queries as singleton clusters, i.e., single task
composed of only one query.

Thus, for each predicted task tji,k we compute the maximum F-measure, i.e.,

Fmax(t
j
i,k), with respect to the true tasks as follows:

Fmax(t
j
i,k) = argmax

x
F (tji,k, θ

x
i,k).

Globally, the F-measure is averaged on the set of all predicted tasks T =


i,k Ti,k

with respect to the set of all true tasks Θ =


i,k Θi,k as follows:

F (T ,Θ) =
wj · Fmax(t

j
i,k)|T |

j=1wj

,

where wj = |tji,k|.
Besides, similarity-oriented measures consider pairs of objects instead of single

objects. Again, let φi,k be the generic time-gap session such that |φi,k| > 1, Ti,k

the set of its predicted tasks, and Θi,k the set of its true tasks (both padded with
discarded queries as described above). Thus, for each φi,k we retrieve:

90 4. Search Task Discovery

– f00 = number of query pairs that are in different true tasks and in different
predicted tasks (true negative);

– f01 = number of query pairs that are in different true tasks but in the same
predicted task (false positive);

– f10 = number of query pairs that are in the same true task but in different
predicted tasks (false negative);

– f11 = number of query pairs that are in the same true task and in the same
predicted tasks (true positive).

Thus, two different measures are defined:

– Rand index R(Ti,k) =
f00+f11

f00+f01+f10+f11
;

– Jaccard index J(Ti,k) =
f11

f01+f10+f11
.

A global value of both Rand and Jaccard index, i.e., R and J respectively, might be
computed as follows:

R =
wj ·R(Ti,k)|T |

j=1wj

,

J =
wj · J(Ti,k)|T |

j=1 wj

,

where wj = |φi,k|.
As specified before, when computing both Rand and Jaccard index we do not

consider time-gap sessions containing only one singleton task, i.e., time-gap sessions
containing only one single-query cluster. Anyway, we still took into account time-gap
sessions that are composed of a single task with more than one query.

4.8.2 Evaluation

In the following, we show the results we obtain using our two classes of task dis-
covery methods, i.e., Time-Splitting-t and QueryClustering-m, respectively, and we
compare them with a state-of-the-art approach based on the Query Flow Graph
model.

4.8. Experiments 91

4.8.2.1 TimeSplitting-t

This set of task discovery methods are exclusively based on the task-based query
similarity function described in Section 4.6.1, i.e., σtime. In particular, here we
compare three different time splitting techniques: TS-5, TS-15, and TS-26, which
use 5, 15, and 26 minutes thresholds t̄, respectively.

Table 4.5 shows the results we obtain using those techniques on the ground-
truth. The best result in terms of F-measure is found considering the whole time-gap
sessions identified with TS-26, without additionally splitting them into shorter time-
gap sessions. Hence, we consider TS-26 as the baseline approach for addressing the
TSDP. Roughly, according to Def. 4.4.1 and Def. 4.4.2, this is equivalent to identify
task-oriented sessions with time-gap sessions.

F-measure Rand Jaccard

TS-5 0.28 0.75 0.03

TS-15 0.28 0.71 0.08

TS-26 0.65 0.34 0.34

Table 4.5: TS-5, TS-15, and TS-26.

4.8.2.2 Query Flow Graph

In order to better evaluate our proposed approaches we decide to compare them to
the Query Flow Graph (QFG) presented by [28].

QFG is constructed over a training segment of the AOL top-500 user sessions.
This method uses chaining probabilities measured by means of a machine learning
method. First, we extract some features from the training Web search engine log
and we store them into a compressed graph representation. In particular, we extract
25 different features (i.e., time-related, session, and textual features) for each pair
of queries (q, q′) that are consecutive in at least one session of the query log.

The validity of QFG is tested on the ground-truth and the results we obtain are
showed in Table 4.6. We find the best values using a threshold η = 0.7. In fact,
results do not improve using a greater threshold value.

Moreover, QFG significantly improves the baseline TS-26. In particular, F-
measure gains≈ 16%, while Rand and Jaccard gains≈ 52% and≈ 15%, respectively.

4.8.2.3 QueryClustering-m

We now evaluate all the clustering-oriented task discovery methods described in
Section 4.7.2.1.

First, we present the results we obtain using the task-based query similarity
functions derived from the unsupervised approach described in Section 4.6.2 i.e.,

92 4. Search Task Discovery

η F-measure Rand Jaccard

QFG

0.1 0.68 0.47 0.36

0.2 0.68 0.49 0.36

0.3 0.69 0.51 0.37

0.4 0.70 0.55 0.38

0.5 0.71 0.59 0.38

0.6 0.74 0.65 0.39

0.7 0.77 0.71 0.40

0.8 0.77 0.71 0.40

0.9 0.77 0.71 0.40

Table 4.6: QFG varying the threshold η.

σ1 and σ2. Therefore, we also show the outcomes of two of these task discovery
methods, i.e., QC-wcc and QC-htc, when exploiting the supervised task-based
query similarity functions proposed in Section 4.6.3, i.e., σ4

dt, σ
1
nb (or, equivalently,

σ3
nb), and σ∗

lr, where ∗ ∈ {1, 2, 3, 4}.

Unsupervised Task-based Similarity. We start evaluating QC-Means clus-
tering algorithm using both the unsupervised task-based query similarity functions
σ1 and σ2. We empirically set the radius ρ of this centroid-based algorithm to 0.4
for both similarity functions, i.e., two queries could be part of the same cluster if
and only if their similarity is equal to or greater than 0.6. The overall results of this
method are showed in Table 4.7.

Concerning σ1, the best results are obtained by using only the content-based
similarity, i.e., with α = 1. However, the very best results for QC-Means are
found when using σ2. Here, we significantly improve the baseline TS-26 in terms of
F-measure (≈ 10%) and Rand (≈ 54%), while we lose ≈ 21% in terms of Jaccard.
Moreover, if we compare the best QC-Means with the best QFG we can notice
that QC-Means loses ≈ 6% for F-measure, ≈ 33% for Jaccard but it gains ≈ 4%
in terms of Rand.

Then, we analyze QC-Scan algorithm, again using both the similarity functions
σ1 and σ2. We use several combinations of the two density-based parameters, i.e.,
minPts and eps, and we find the best results with minPts = 2 and eps = 0.4.

Table 4.8 highlights that QC-Scan provides globally better results than QC-
Means for both σ1 and σ2. Still, for σ1 the best results are obtained by using
only content-based similarity, i.e., with α = 1. However, our proposed conditional
function σ2 reveals a significative improvement with respect to all measures.

4.8. Experiments 93

QC-Means σ1

F-measure Rand Jaccard

α (1− α)

1 0 0.71 0.73 0.26

0.5 0.5 0.68 0.70 0.14

0 1 0.68 0.70 0.13

QC-Means σ2

F-measure Rand Jaccard

t b

0.5 4 0.72 0.74 0.27

Table 4.7: QC-Means using unsupervised task-based query similarity functions σ1 and σ2.

Finally, it is worth noticing that QC-Scan behaves exactly as QFG, except for
the Jaccard where QC-Scan loses ≈ 53%.

QC-Scan σ1

F-measure Rand Jaccard

α (1− α)

1 0 0.77 0.71 0.17

0.5 0.5 0.74 0.68 0.06

0 1 0.75 0.68 0.07

QC-Scan σ2

F-measure Rand Jaccard

t b

0.5 4 0.77 0.71 0.19

Table 4.8: QC-Scan using unsupervised task-based query similarity functions σ1 and σ2.

The third algorithm we consider is QC-wcc. Table 4.9 shows the results we find
using this algorithm either with σ1 and σ2 and by varying the pruning threshold η.
In particular, concerning σ1 we only consider the best convex combination when
α = 0.5.

The best results with σ1 are obtained when η = 0.2, while even better results are
found with σ2 when η = 0.3. In this last case, the overall evaluation is significantly
higher than the baseline TS-26 but also than the state-of-the-art approach QFG.
Concerning TS-26, the best QC-wcc gains ≈ 20%, ≈ 56%, and ≈ 23% in terms
of F-measure, Rand, and Jaccard, respectively. Moreover, QC-wcc improves also
the results of QFG, gaining ≈ 5% for F-measure, ≈ 9% for Rand, and ≈ 10% for
Jaccard.

QC-htc is the last algorithm we introduce and represents one of the novel
contribution of our work. The results we get using this approach with both similarity
functions σ1 and σ2 and by varying the pruning threshold η are showed in Table 4.10.
As for QC-wcc, regarding σ1 we only consider the best convex combination when
α = 0.5. Again, the best results with σ1 are obtained when η = 0.2, while the global
best results are found with σ2 when η = 0.3. As the table shows, the overall results

94 4. Search Task Discovery

QC-wcc σ1 (α = 0.5)

η F-measure Rand Jaccard

0.1 0.78 0.71 0.42

0.2 0.81 0.78 0.43

0.3 0.79 0.77 0.37

0.4 0.75 0.73 0.27

0.5 0.72 0.71 0.20

0.6 0.75 0.70 0.14

0.7 0.74 0.69 0.11

0.8 0.74 0.68 0.07

0.9 0.72 0.67 0.04

QC-wcc σ2 (t = 0.5, b = 4)

η F-measure Rand Jaccard

0.1 0.67 0.45 0.33

0.2 0.78 0.71 0.42

0.3 0.81 0.78 0.44

0.4 0.81 0.78 0.41

0.5 0.80 0.77 0.37

0.6 0.78 0.75 0.32

0.7 0.75 0.73 0.23

0.8 0.71 0.70 0.15

0.9 0.69 0.68 0.08

Table 4.9: QC-wcc using unsupervised task-based query similarity functions σ1 and σ2.

are very close to the ones obtained with QC-wcc. In particular, QC-htc improves
TS-26 by gaining ≈ 19%, ≈ 56%, and ≈ 21% in terms of F-measure, Rand, and
Jaccard, respectively. Therefore, QC-htc provides better results than QFG and
gains ≈ 4% for F-measure, ≈ 9% for Rand, and ≈ 8% for Jaccard.

Supervised Task-based Similarity. Another valuable contribution of this work
concerns the supervised approach for computing the task-based query similarity
functions, as described in Section 4.6.3.

Roughly, a set of query similarity functions are learned by training a family of
classifiers on a set of both internal and external query log features. This contrasts
with the unsupervised approach, where query similarity functions are directly derived
from the query log data without any supervised learning step.

Thus, here we also evaluate how this new approach for measuring the task relat-
edness between query pairs impacts on the effectiveness of the two best-performing
clustering-oriented task discovery methods, i.e., QC-wcc and QC-htc.

As a reminder, supervised task-based similarity functions affect the way in which
we build the similarity graph either in QC-wcc and in QC-htc. Indeed, an edge
between a query pair (qi, qj) is created whenever the considered classifier assigns
the class attribute “same task = yes” to (qi, qj). Moreover, the weight assigned
to each created edge corresponds to the prediction accuracy value provided by the
classifier.

According to the performance evaluation of the classifiers we propose above in
Section 4.6.3.3, we run both the QC-wcc and QC-htc algorithms using the three
best task-based query similarity functions: σ4

dt, σ
1
nb (or, equivalently, σ

3
nb), and σ∗

lr,

4.8. Experiments 95

QC-htc σ1 (α = 0.5)

η F-measure Rand Jaccard

0.1 0.78 0.72 0.41

0.2 0.80 0.78 0.41

0.3 0.78 0.76 0.35

0.4 0.75 0.73 0.25

0.5 0.73 0.70 0.18

0.6 0.75 0.70 0.13

0.7 0.74 0.69 0.10

0.8 0.74 0.68 0.06

0.9 0.72 0.67 0.03

QC-htc σ2 (t = 0.5, b = 4)

η F-measure Rand Jaccard

0.1 0.68 0.56 0.32

0.2 0.78 0.73 0.41

0.3 0.80 0.78 0.43

0.4 0.80 0.77 0.38

0.5 0.78 0.76 0.34

0.6 0.77 0.74 0.30

0.7 0.74 0.72 0.21

0.8 0.71 0.70 0.14

0.9 0.68 0.67 0.07

Table 4.10: QC-htc using unsupervised task-based query similarity functions σ1 and σ2.

where ∗ ∈ {1, 2, 3, 4}. These similarity scores are used for computing the weighting
edge similarity function w of our graph-based algorithms.

Table 4.11 shows and compares the results obtained both with QC-wcc and
QC-htc using the supervised query similarity function σ4

dt. Concerning QC-wcc
the best results are provided when η = 0.8, while QC-htc gets its best outcomes
when η = 0.7.

Similarly, Table 4.12 shows and compares the results obtained both with QC-
wcc and QC-htc using the supervised query similarity function σ1

nb (or, equiv-
alently, σ3

nb). In both cases, best F-measure and Rand values are obtained when
η = 1.0 whereas best Jaccard results are obtained when 0.0 ≤ η ≤ 0.7. However,
all the validity measures lose significantly with respect to QC-wcc and QC-htc
using σ4

dt. Moreover, differently from using σ4
dt, in which best results in terms of all

the validity measures seem to focus around a unique value of the threshold η, i.e.,
η = 0.8 and η = 0.7, respectively, here it appears there is not a so strong relationship
between the overall best results and η.

Therefore, Table 4.13 shows and compares the results obtained both with QC-
wcc and QC-htc using the supervised query similarity function σ∗

lr. Either QC-
wcc and QC-htc reach their best outcomes when the threshold η = 0.7. However,
even in this case all the validity measures lose significantly with respect to QC-wcc
and QC-htc using σ4

dt. Anyway, as for σ
4
dt here is a clear relationship between the

best validity measures and the value of η.

Globally, the very best results for both QC-wcc and QC-htc when using a
supervised similarity function are provided by exploiting σ4

dt. In both cases, this
leads to similar results obtained when QC-wcc and QC-htc use the unsupervised

96 4. Search Task Discovery

QC-wcc using σ4
dt

η F-measure Rand Jaccard

0.0 0.76 0.69 0.43

0.1 0.76 0.69 0.43

0.2 0.76 0.69 0.43

0.3 0.76 0.69 0.43

0.4 0.76 0.69 0.43

0.5 0.76 0.69 0.43

0.6 0.78 0.77 0.46

0.7 0.79 0.78 0.45

0.8 0.80 0.79 0.45

0.9 0.80 0.79 0.42

1.0 0.71 0.70 0.13

QC-htc using σ4
dt

η F-measure Rand Jaccard

0.0 0.76 0.73 0.42

0.1 0.76 0.73 0.42

0.2 0.76 0.73 0.42

0.3 0.76 0.73 0.42

0.4 0.76 0.73 0.42

0.5 0.76 0.73 0.42

0.6 0.78 0.79 0.44

0.7 0.79 0.79 0.43

0.8 0.79 0.79 0.42

0.9 0.78 0.78 0.38

1.0 0.68 0.69 0.10

Table 4.11: QC-wcc vs. QC-htc using supervised task-based query similarity function σ4
dt.

QC-wcc using σ1
nb or σ

3
nb

η F-measure Rand Jaccard

0.0 0.65 0.36 0.33

0.1 0.65 0.36 0.33

0.2 0.65 0.36 0.33

0.3 0.65 0.36 0.33

0.4 0.65 0.36 0.33

0.5 0.65 0.36 0.33

0.6 0.65 0.36 0.33

0.7 0.65 0.37 0.33

0.8 0.64 0.40 0.32

0.9 0.65 0.48 0.30

1.0 0.75 0.73 0.24

QC-htc using σ1
nb or σ

3
nb

η F-measure Rand Jaccard

0.0 0.65 0.38 0.33

0.1 0.65 0.38 0.33

0.2 0.65 0.38 0.33

0.3 0.65 0.38 0.33

0.4 0.65 0.38 0.33

0.5 0.65 0.38 0.33

0.6 0.65 0.38 0.33

0.7 0.65 0.39 0.33

0.8 0.64 0.42 0.31

0.9 0.65 0.50 0.30

1.0 0.75 0.72 0.22

Table 4.12: QC-wcc vs. QC-htc using supervised task-based query similarity function σ1
nb or

σ3
nb.

4.8. Experiments 97

QC-wcc using σ∗
lr

η F-measure Rand Jaccard

0.0 0.65 0.50 0.30

0.1 0.65 0.50 0.30

0.2 0.65 0.50 0.30

0.3 0.65 0.50 0.30

0.4 0.65 0.50 0.30

0.5 0.65 0.50 0.30

0.6 0.70 0.64 0.30

0.7 0.77 0.75 0.31

0.8 0.76 0.73 0.24

0.9 0.74 0.70 0.15

1.0 0.73 0.66 0.00

QC-htc using σ∗
lr

η F-measure Rand Jaccard

0.0 0.65 0.51 0.30

0.1 0.65 0.51 0.30

0.2 0.65 0.51 0.30

0.3 0.65 0.51 0.30

0.4 0.65 0.51 0.30

0.5 0.65 0.51 0.30

0.6 0.68 0.65 0.28

0.7 0.76 0.75 0.30

0.8 0.75 0.73 0.24

0.9 0.74 0.70 0.14

1.0 0.73 0.66 0.00

Table 4.13: QC-wcc vs. QC-htc using supervised task-based query similarity function σ∗
lr (∗ ∈

{1, 2, 3, 4}).

similarity function σ2. Table 4.14, which gives an overview and compares the best
results found with each examined approach, highlights these similar behaviors.

On a side note, all the tables show that the clustering validity measures, i.e.,
F-measure, Rand, and Jaccard, are the same until the similarity threshold η reaches
the value 0.5. Since this threshold gives a lower-bound on the weights of the edges
to be considered during the clustering step, this means that there is no prediction
whose accuracy value is less than 0.5 for the class attribute “same task = yes”.

Finally, Table 4.15 clearly points out the benefit of exploiting collaborative
knowledge like Wikipedia. QC-htc was able to capture and group together two
queries that are completely different from a content-based perspective, but that are
strictly semantically-related, using the similarity function σ2. Indeed, “Cancun” is
one of the region where the “Hurricane Wilma” impacted during the 2005 season
(note the cross reference inside the corresponding Wikipedia article5). Moreover,
“Los Cabos” and “Cancun” are both in Mexico despite they are far away from each
other. It might be the case, of course with no absolute certainty, the user was look-
ing for the relative position of Los Cabos from Cancun just to understand if Los
Cabos was struck by the hurricane as well.

5http://en.wikipedia.org/wiki/Cancun

http://en.wikipedia.org/wiki/Cancun

98 4. Search Task Discovery

F-measure Rand Jaccard

TS-26 (baseline) 0.65 0.34 0.34

QFG best (state of the art) 0.77 0.71 0.40

unsupervised similarity σ2

QC-Means best 0.72 0.74 0.27

QC-Scan best 0.77 0.71 0.19

QC-wcc best 0.81 0.78 0.44

QC-htc best 0.80 0.78 0.43

supervised similarity σ4
dt

QC-wcc best 0.80 0.79 0.45

QC-htc best 0.79 0.79 0.43

Table 4.14: Best results obtained with each task discovery method using both unsupervised and
supervised similarity.

QC-htc σ1 (α = 1) QC-htc σ2 (0.5, 4)

Query ID Query String Query ID Query String

63 los cabos

64 cancun

65 hurricane wilma 65 hurricane wilma

68 hurricane wilma 68 hurricane wilma

Table 4.15: The impact of Wikipedia: σ1 vs. σ2.

4.9. Summary 99

4.9 Summary

In this Chapter, we have addressed some research challenges for making next-
generation Web search engines able to satisfy new and complex user needs. In
particular, we claimed that people increasingly formulate queries to Web search
engines for being helped in accomplishing their daily tasks, instead of simply re-
trieving Web pages. To this extent, Web search engines’ query logs represent the
most suitable source of information for verifying such belief because they record a
huge amount of user search activities by means of issued queries, the timestamp at
which a certain query has been submitted, the clicked results in response to a query,
the rank of a clicked result, etc.

Here, we have discussed how to discover user search sessions from a very large,
long-term Web search engine query log, whose final aim is to accomplish a task,
i.e., task-oriented sessions. Therefore, we have formally defined the Task-oriented
Session Discovery Problem (TSDP) as the problem of best partitioning a stream
of user queries into several subsets of queries which are all related to the same
search task. Roughly, this has dealt with two issues: (i) it has required a robust
measure for evaluating the task relatedness between any two queries, i.e., task-based
query similarity and (ii) it has needed an effective method for actually discovering
task-oriented sessions using the above measure of task relatedness. Concerning (i),
we have proposed and compared both unsupervised and supervised approaches for
devising several task-based query similarity functions. Moreover, we have tackled (ii)
by introducing a set of clustering-oriented approaches that exploit the above task-
based query similarity functions, i.e., query clustering methods specifically tuned
for actually discovering task-oriented sessions.

All the proposed solutions have been evaluated on a manually built ground-truth,
namely a task-oriented partitioning of the queries stored in a real Web search engine
log performed by human annotators. In particular, two of the clustering-oriented
methods we have proposed, i.e., QC-wcc and QC-htc, have shown to perform
better than state-of-the-art approaches.

The “take-away message” of this work is that to effectively and efficiently extract
tasks from long term sessions contained in query log one has to adopt the following
method that in our experiments produced the best results. For each user, firstly split
the sequence of queries into subsequences consisting of queries whose gap, in terms of
submission time, is less than 26 minutes. Then, for queries in each session we build a
graph consisting of queries connected by an edge if and only if the similarity between
these two queries is above a threshold η = 0.3. The similarity is a combination
of content-based and semantic-based metrics. The first is obtained by combining
two distinct metrics, i.e., the Jaccard’s score on query tri-grams and the classical
edit-distance between the two queries. These metrics are put together through a
convex combination with coefficient equal to 0.5. The semantic-based metric is
obtained by considering what we called the “wiki-based” similarity and consists in
evaluating the cosine distance between the two vectors obtained by “wikifying” the

100 4. Search Task Discovery

two queries. Instead of using a convex combination of the queries we resorted in
using the following strategy. If the content-based similarity is below a threshold t
= 0.5 then we resort to use the semantic-based metric and we take the maximum
of these two similarities as the weight of the edge in the graph. Finally, tasks are
represented by the connected components of the resulting graph.

5
Search Task Recommendation

“I find that a great part of the information I have was
acquired by looking up something and finding something
else on the way.”

Franklin Pierce Adams
Reader’s Digest (1960)

In this Chapter, we address the second research challenge already sketched in
Section 3.6.2, namely the design of a novel recommendation mechanism that goes
beyond traditional query suggestion schemes. In particular, the proposed work
leverages on the results described in Chapter 4 for building up a model of user search
tasks, which in turn is exploited for generating task recommendations. The contents
of this Chapter are based on a research paper, i.e., “Beyond Query Suggestion:
Recommending Tasks to Search Engine Users” [84], which has been submitted to
the 5th ACM International Conference on Web Search and Data Mining (WSDM
2012).

Today, most popular Web search engines provide query suggestions as a valuable
mechanism for supporting their users. Typically, this aims to help people in better
specifying their actual search goals, thus to quicker satisfy their information needs.
So far, recommendations generated for a certain query are strictly related to the
query itself, namely to the same search task that the query is likely to represent.
However, this often unfits the search behaviors of users, which instead are used to
issue streams of queries possibly related to distinct interleaved search tasks. More-
over, the “composition” of each single search task (e.g., “booking a flight”, “reserving
a hotel room”, “renting a car”, etc.) usually subsumes a complex task, namely a
mission, that the user aims to accomplish throughout the Web search engine (e.g.,
“planning a travel”). Therefore, we claim that recommendation mechanisms should
integrate the common “query-by-query” paradigm with a novel “task-by-task” sug-
gestion scheme. Indeed, once detected the “small task” behind a sequence of few
user queries, suggesting queries or Web pages that could be possibly part of another
yet related task might realize a better user search experience. For example, a user
searching for a suitable hotel in New York might be recommended with information
about Broadway shows that are planned to be played during the same dates, MTA

102 5. Search Task Recommendation

subway or Broadway shows, conjecturing that she is willing to organize her vacation,
i.e., a complex task. In this Chapter, we propose an innovative recommender appli-
cation, namely a task recommender system, which generates task suggestions on the
basis of a model of user search tasks learned from the historical activities recorded in
query logs. Experimental results show that our solution is able to suggest tasks that
are different from the ones that users are currently performing, but related to those
which users are going to look for in the next future. Moreover, even if generated
recommendations are not part of future and actually requested user tasks, we show
that they could anyway represent useful “surprising” hints.

5.1 Introduction

People heavily put their trust in Web search engines for satisfying everyday infor-
mation needs. A key factor for the popularity of today’s Web search engines is their
user-friendly interfaces [13], which allow users to formulate information needs by
means of simple lists of keywords. However, keyword-based queries are not always
an effective descriptor of actual user search intents. A first problem occurs because
the ability of each single user to phrase effective queries to a Web search engine
highly depends on her subjective skills. It might be the case that two users, looking
for exactly the same information need, formulate two completely different queries, on
the basis of their familiarity with the specific terminology of the knowledge domain.

Often queries are refined by adding or modifying keywords until the user satisfies
her search goal. In order to support users in the search process, Web search engines
have started to add mechanisms and features aimed to help people to quickly satisfy
their needs. In this regard, query suggestion plays a significative role by recom-
mending lists of alternative yet related queries that are likely to better specify user
search tasks. Indeed, query suggestion techniques focus specifically on driving users
towards their “immediate” goals, i.e., suggesting queries that could shorten the task
they are trying to perform. These techniques, in fact, neglects that people issue
streams of queries representing interleaved search tasks, which often are part of a
more complex task that they aim to accomplish throughout the Web search engine,
as we showed in Section 4.5.

In order to explain this concept, consider Alice who starts interacting with her
favorite Web search engine by submitting the query “new york hotel”. This clearly
represents a simple search task, i.e., Alice presumably needs to “reserve a hotel room
in New York”. Current query suggestion mechanisms provide alternative related
queries by only focusing on the task behind this original single query. According
to this approach, candidate suggested queries may be, for example, “cheap new

york hotels”, “times square hotel”, “waldorf astoria”, etc. Although these
recommended queries are all related to the original query, they still refer to the same
search task.

5.1. Introduction 103

Now, let us suppose we are able to discover what and how user search tasks are
composed together to accomplish even more complex tasks, which in the following
are referred to as missions [67]. If this is the case, we could use such inferred
knowledge for conjecturing the mission behind Alice’s queries. To some extent this
means that, besides recognizing that the current Alice’s task is related to “booking
a hotel in New York”, the Web search engine would also be able to predict that her
global mission is concerned with “planning a travel to New York”. On the basis of
this prediction, we could provide Alice with suggestions that are not only related
to her current task (as in traditional query recommendation), but that also refer
to other tasks being part of her mission as a whole (task recommendation). In our
example, this means recommending to Alice those tasks having underpinning queries
such as “mta subway”, “broadway shows”, “jfk airport shuttle”, etc.

In order to realize the scenario described above, three key research challenges
have to be addressed: (i) finding an effective method for discovering interleaved
search tasks from the stream of queries stored in Web search engine query logs, (ii)
exploiting the collective knowledge provided by Web search engine users in order to
build a synthesized representation of user search tasks, and (iii) devising how people
are used to compose each individual search task for realizing their bigger missions,
thus for generating novel task recommendations.

The first research issue has been exhaustively addressed and described in Chap-
ter 4, where several approaches and techniques have been proposed in order to
discover task-oriented sessions. To this end, in the following of this Chapter we
refer to the QC-htc query clustering approach for discovering user search tasks,
which has proven to outperform other state-of-the-art solutions yet keeping down
its computational cost [83].

5.1.1 Contribution

The main contribution of this Chapter refers to the second and third research chal-
lenges stated above, which somehow complete the roadmap we already sketched
in [132, 133]. In particular, we introduce a synthesized representation of search
tasks built by exploiting the large number of search tasks performed by several
users and extracted from the search sessions stored on a query log. Moreover, we
propose a graph-based model for describing how people link together search tasks in
order to satisfy more complex missions. Finally, we describe how this model might
be exploited for generating task recommendations to Web search engine users.

5.1.2 Organization

The rest of the Chapter is organized as follows. Section 5.2 describes related work
concerning two overlapping research fields that have been extensively approached,
i.e., recommender systems and query suggestion. However, to the best of our knowl-
edge, no past works have yet addressed the problem tackled in this Chapter. In

104 5. Search Task Recommendation

Section 5.3, we propose a theoretical model through which we outline the three key
steps for building our task recommender system. Section 5.4 presents our synthe-
sized representation of search tasks through the aggregation of similar search tasks
mined from the query log. Then, in Section 5.5 we propose some task recommenda-
tion solutions, which leverage on the user search task model introduced. Section 5.6
discusses the experimental evaluation of our task recommender system by showing
its effectiveness in suggesting tasks that are different yet related to the ones that
users are currently performing. Such recommended tasks predict the set of search
intents, which users are going to look for in the next future. Furthermore, even when
generated task recommendations are not actually part of future users’ searches, we
show that they could anyway represent “surprising” hints. Indeed, those suggestions
might be considered as the most “valuable” for the user, since they are composed of
tasks that are both useful and unexpected. Finally, Section 5.7 summarizes the main
contribution of this work and points out some possible future research directions.

5.2 Related Work

Although to the best of our knowledge the problem addressed in this Chapter has not
yet been investigated, it however concerns two overlapping research fields that have
been extensively approached from different perspectives, i.e., recommender systems
and query suggestion.

Recommender systems are widely used in several domains and they have been
revealed to be successful especially in electronic commerce. Roughly, they can be
divided in two broad classes on the basis of the approach which they rely on, i.e.,
content filtering and collaborative filtering. Content filtering approaches generate
their recommendations on the basis of the content of the items to be suggested.
They face serious limitations when dealing with multimedia content and, more im-
portantly, their suggestions are not influenced by the human-perceived quality of
contents. On the other side, collaborative filtering solutions are based on the pref-
erences expressed by other users.

Query suggestion techniques address specifically the problem of recommending
queries to Web search engine users and they propose solutions and evaluation metrics
specifically tailored to the Web search domain.

During last years, several different techniques have been proposed, yet they all
have in common the exploitation of usage information recorded in Web search engine
query logs [120]. Many approaches extract the information used from the plain set of
queries recorded in the log, although there are several works that take into account
the chains of queries that belong to the same search session [105]. The first category
contains techniques that employ clustering algorithms to determine groups of related
queries that lead users to similar documents [139, 10, 21]. The most “representative”
queries in the clusters are then returned as suggestions. Other solutions employ the

5.2. Related Work 105

reformulations of the queries issued by previous users [69], or propose as suggestions
the frequent queries that lead in the past users to retrieve similar results [15].

Baeza-Yates et al. [14] exploit click-through data as a way to provide recommen-
dations. The method proposed by the authors is based on the concept of Cover
Graph (CG). A CG is a bipartite graph of queries and URLs, where a query q and
an URL u are connected if a user issued q and clicked on u that was an answer
for the query. Suggestions for a query q are thus obtained by accessing the corre-
sponding node in the CG and by extracting the related queries sharing more URLs.
Experimental results show that the sharing of clicked URLs is effective for devising
alternative yet related queries.

Moreover, Fonseca et al. [47] use an association rule mining algorithm to devise
frequent query patterns. These patterns are inserted in a query relation graph which
allows “concepts” (e.g., queries that are synonyms, specializations, generalizations,
etc.) to be identified and suggested.

Boldi et al. introduce the concept of Query Flow Graph (QFG), an aggregated
representation of the information contained in a query log [28]. A QFG is a digraph
in which nodes are queries and the edge connecting node qi to qj is weighed by
the probability that users issue query qj after issuing qi. Authors highlight the
utility of their model in two applicative scenarios, i.e., logical sessioning and query
recommendation.

Baraglia et al. [17] propose a model for query recommendation, which address a
newly introduced problem, i.e., the Search Shortcut Problem (SSP), which basically
consists in recommending successful queries, namely those queries that in the past
allowed other users to satisfy similar information needs. Moreover, Baraglia et
al. [18, 19] present a study of the effects of time on recommendations generated by
using the QFG introduced by [28]. Indeed, user search interests change over time
and the knowledge extracted from query logs may suffer of aging effects, as new
interesting search topics appear. In order to overcome this issue, authors propose
a novel incremental algorithm for keeping up-to-date the QFG recommendation
model, without having to rebuild it from scratch every time freshest query log data
happen. On the basis of these results, Broccolo et al. [31] propose two novel query
recommendation algorithms that incrementally update the model on top of which
suggestions are generated, taking care of each new processed query.

Jones et al. discussed another approach based on query refinement/substitu-
tion [69]. Here, the goal is to generate a new query to replace a user’s original
ill-formed search query in order to enhance the relevance of retrieved results. Such
technique includes a number of tasks, like spelling error correction, word splitting,
word merging, word stemming, phrase segmentation, and acronym expansion.

Finally, the importance of rare query classification and suggestion recently at-
tracted a lot of attention from the information retrieval community [42, 34]. To this
end, Broccolo et al. [32] propose an efficient and effective recommendation algorithm
that “covers” rare queries, i.e., long-tail queries, by exploiting the Search Shortcut
model introduced in [17].

106 5. Search Task Recommendation

5.3 Anatomy of a Task Recommender System

In this Section, we show the overall process of generating task recommendations to
users of Web search engines. Our strategy is based on the historical search data
stored on query logs by operating the following three steps:

1. The first step, called Task Discovery, reveals the interleaved search tasks per-
formed by each user whose search sessions are recorded in the query log [83]
and it has been deeply described in Chapter 4.

2. The second step, called Task Synthesis, provides an aggregated representation
of the user tasks previously discovered by exploiting the knowledge coming
from the large number of user search tasks contained in all the identified task-
oriented sessions.

3. The last step, called Task Modeling, relies on the synthesized tasks obtained
by the second step to build a user task model, that is a graph-based model of
task pairs relatedness, which is finally used to generate task suggestions.

In the following, we explore these three aspects separately.

1) Task Discovery. This step starts from a Web search engine query log stor-
ing queries submitted by users in the past, along with other information, such
as userIDs, timestamps, clicked URLs, etc. We denote such log with QL, while
U = {u1, u2, . . . , uN} is the set of distinct users which submitted the queries. Fur-
thermore, let qi ∈ QL be a generic query issued by user ui and qi,j ∈ QL be the
j-th query issued by ui.

Moreover, let Si = 〈qi,1, qi,2, . . . , qi,|Si|〉 be the sequence of all the queries qi ∈ QL
issued by user ui ∈ U , chronologically ordered, so that QL =

N
i=1 Si. Although

each Si represents the “flat” sequence of queries issued by ui, we argue that Si might
contain several interleaved search tasks, each one referred to a specific information
need. As described in Chapter 4, in [83] we devised a technique that allows to detect,

for each user ui, the set of interleaved search tasks Θi, Θi = {θ1i , θ2i , . . . , θ
|Θi|
i }, which

ui performs within Si. Each Θi is a task-oriented session and it may be viewed as a
partitioning of Si, i.e., a division of Si into non-empty disjoint sets that completely
cover Si.

More formally, Θi ⊂ 2Si , such that:

– ∀θji ∈ Θi, θji 6= ∅;

– ∀θji , θki ∈ Θi, θji 6= θki =⇒ θji ∩ θki = ∅;

–
|Θi|

j=1 θji = Si.

5.3. Anatomy of a Task Recommender System 107

In order to build our recommender system, we need to consider each Θi as a sequence
of tasks rather than a simple set. To this end, we exploit the information about the
chronological order of tasks. However, sorting by time an interleaved task-oriented
session is not immediate, due to the presence of multi-tasking : a generic task θji ∈ Θi

might be chronologically overlapped with another task θki ∈ Θi. We address this
issue by adopting the straightforward solution of chronologically ordering the tasks
by looking at the timestamps of the first query occurring in each task.

Anyway, whether the temporal information on search task submission is taken
into account or not, we can define the union set of all the user tasks as follows:

Θ =
N

i=1

Θi.

In this Chapter, we only sketch the technique we adopted to obtain the task-oriented
“sessioning” Θi of each Si. Those readers who are interested in knowing further
details about such technique are invited to refer to Chapter 4. Roughly, we ex-
ploit a query clustering algorithm, which allows us to avoid any supervised learning
step. Each resulting cluster of queries, which univocally identifies a user search
task, contains queries that are not necessarily issued sequentially. Thus, a similar
clustering-based approach allows us to deal with the multi-tasking search behavior
of users.

Two core aspects are particularly crucial, namely how the similarity between any
two queries is measured and what suitable clustering algorithm we have to adopt.
Concerning the first issue, in [83] we defined a set of task-based query similarity
functions, which exploit temporal, content-based and semantic-based query features.
Moreover, in the same work we evaluated several clustering algorithms, which use
the above similarity functions.

In this work, we use the best solution devised in [83] to discover the global set Θ
of task-oriented sessions: the QC-htc query clustering method in combination with
a specific task-based similarity function. QC-htc relies on a graph-based heuristic
and it has proven to outperform other state-of-the-art solutions yet holding down
the overall computational cost.

2) Task Synthesis. In this step, starting from the user search tasks Θ ex-
tracted from query log QL, we resort to recognize similar tasks across different
users and eventually replace each θji ∈ Θi with a synthesized task Th ∈ T , where
T = {T1, T2, . . . , TK}. Each Th may be considered as a representative for an aggre-
gation composed of the similar tasks performed by several distinct users. It is worth
noting that this step reduces the overall space of tasks, because, in general, we can
state that |T | � |Θ|.

More formally, this step aims to define a surjective function f : Θ −→ T , so that
we can rewrite each task-oriented session Θi in terms of the tasks in T :

108 5. Search Task Recommendation

Θ′
i =

|Θi|

j=1

f(θji). (5.1)

If necessary, we can maintain the chronological order the tasks in Θi after the map-
ping to the synthesized tasks in T . In Section 5.4, we propose a specific task synthesis
function.

3) Task Modeling. In order to build the user task model, we create a weighted
directed graph GT = (T , E, w), where the set of synthesized tasks T corresponds
to the nodes of the graph and E is the set of edges of the graph connecting pairs of
tasks Ti, Tj ∈ T .

Roughly, there exists an edge between two tasks if and only if they are “related”
one to each other. To this end, we adopt a weighting function w : T × T −→ [0, 1]
for measuring the “task relatedness” between each pair of tasks. Therefore, the set
of edges in the graph is composed of all the pairs of nodes whose relatedness is
greater than 0, i.e., E = {(Ti, Tj) ∈ T | w(Ti, Tj) > 0}.

Note that the overall resulting graph depends on the choice of the weighting
function. Indeed, several measures may be used for computing the relatedness be-
tween any two search tasks. Section 5.5 discusses the functions we used to weight
the graph.

The primary goal of this graph-based model is to represent user search behaviors
on a “task-by-task” perspective instead of on a traditional “query-by-query” basis,
thus understanding how users possibly “compose” several different search tasks on
the basis of their task relatedness for achieving a mission.

Finally, this graph-based task model is used to generate suitable task recommen-
dations to Web search engine users. Given a user who is interested in (or has just
performed) a task Ti ∈ T , we can simply look at the graph GT and retrieve Rm(Ti),
i.e. the set of m nodes that are the most related to Ti. More formally, we define task
recommendations Rm for a given set of tasks as follows:

Definition 5.3.1 (Task Recommendations Rm)

Let GT = (T , E, w) be the graph-based model of user search tasks T = {T1, T2, . . . , TK},
where an edge e ∈ E is weighted with a relatedness function w of its incident nodes.
Given the set of tasks T ∗ ⊆ T already performed by a user, the top-m recommended
tasks are given by the sorted set Rm(T ∗) ⊆ T , such that:

– |Rm(T ∗)| = m;

– if Ti ∈ T ∗ and Tj ∈ Rm(T ∗) then w(Ti, Tj) ≥ w(Th, Tk) for all Th ∈ T ∗ and
Tk ∈ T \ Rm(T ∗) \ T ∗.

5.4. Task Synthesis 109

5.4 Task Synthesis

Each user task θji ∈ Θ, discovered as previously described in Section 5.3, is a set
of queries that have some similarities and are related to the same activity. In the
following, we describe how discovered search tasks might be represented.

5.4.1 Basic Task Representation

The immediate way of representing a search task is constituted by a “virtual docu-
ment”, i.e., a task document, corresponding to the union set of all the queries, which
the task itself is composed of. More formally, given the generic task θji ∈ Θ, its task
document representation is defined as follows:

tdji =


q∈θji

q.

Eventually, we come up with a global set of task documents T D =


θji∈Θ
tdji .

However, two users looking for exactly the same task might formulate two different
set of queries, depending on their familiarity with the specific terminology of a
knowledge domain. Thus, the representation of a task as a mere set of queries may
suffer of a sparsity issue, namely the probability of two users sharing the same search
task, i.e., exactly the same set of queries, is usually very small. In this regard, next
Section is devoted to describe how task sparseness may be alleviated.

5.4.2 Task Document Clustering

In order to overcome the sparsity issue of user search tasks, we exploit the knowledge
extracted from query logs to “collapse” the set of discovered tasks into another set
of synthesized tasks T . To this end, we propose to aggregate, namely cluster, the
task documents contained in T D.

In this way, the problem of finding a synthesized representation of search tasks
may be reduced to the problem of clustering similar (virtual) text documents, which
is a well-investigated research topic [128, 149, 150]. In general, we can resort to use
any one of the various clustering algorithms for textual documents proposed so far.
In Section 5.6, we shall describe our choice for the textual clustering methods we
have tested in the experiments we conducted.

More formally, let T = {T1, T2, . . . TK} be the identifiers associated with a set
of disjoint clusters of task documents. Therefore, let c : T D −→ T be a surjective
function defined as follows:

c(tdji) = Th if the cluster identified by Th contains tdji . (5.2)

110 5. Search Task Recommendation

From function c we can easily derive function f , discussed in Section 5.4, which
allows each task-oriented session Θi to be re-written in terms of the synthesized
tasks in T :

∀θji ∈ Θi, f(θji) = c(tdji), (5.3)

where tdji is obtained from the original search task θji , as specified in Section 5.4.1.

5.5 Task Modeling

The set of synthesized tasks T = {T1, T2, . . . , TK} can be in turn represented by
using the graph-based model proposed in Section 5.3, i.e., GT = (T , E, w).

A key point for building the weighted digraph GT deals with devising a suitable
function w for estimating how much any two tasks are likely to be related to each
other. The resulting graph can thus be exploited for understanding any possible
relationship among different search tasks.

Furthermore, according to Def. 5.3.1, edges between search tasks might be har-
nessed for providing task recommendations for each Ti ∈ T .

In this work, we propose four different edge weighting schemes, which result in
four distinct user task models.

5.5.1 Random-based (baseline)

The simplest weighting score associated with the graph-based model GT = (T , E, w)
is the one which equally assigns the same constant weight to all of its edges. More
formally, given |T | = K then any edge (Ti, Tj) is weighed as follows:

w(Ti, Tj) = wrandom(Ti, Tj) =
1

K − 1
. (5.4)

Using this edge weighting scheme for generating task recommendations is some-
how equivalent to provide random lists of suggestions. Indeed, according to Def. 5.3.1,
generating recommendations for a task Ti ∈ T involves retrieving the m neighbors
of Ti in the corresponding graph GT whose edges have the m highest weight values,
i.e., the top-m neighboring nodes. However, since all the edges (Ti, Tj) ∈ E are
equally-labeled with the constant value w = 1/(K−1), the resulting set of task rec-
ommendations Rm(Ti) corresponds to a random subset of all the neighbors Rm(Ti)
of Ti in GT .

In the following, we will consider this random-based recommendation strategy
as the baseline of our experiments.

5.5. Task Modeling 111

5.5.2 Sequence-based

An immediate way to enhance the weighting scheme described above is to consider
information about the frequency of tasks when computing their relatedness thus
giving somehow more “importance” to highly-frequent tasks. Moreover, up to now
we have not taken into account the chronological order of tasks as they were issued
by users. In other words, each task-oriented session Θi, as well as the same session Θ′

i

after the task synthesis phase, have been considered as simple sets of tasks, without
any information about their issuing time.

In order to consider each task-oriented session Θi as a sequence rather than a
set, we need to take care of the time ordering between tasks. This can be done by
considering the issuing time of the chronologically-first queries of every task θji ∈ Θi,

thus obtaining the sequence Θi = 〈θ1i , θ2i , . . . , θ
|Θi|
i 〉. This ordering is also maintained

after the task synthesis step that transforms each Θi into Θ′
i.

By considering sessions as “sequences” we can define another measure of task
relatedness, which in turn could be exploited as another weighting edge function.
We define the support of a sequence 〈Ti, Tj〉, namely seq-supp(〈Ti, Tj〉) ∈ [0, 1], as
the fraction of task-oriented session Θ′

i where Ti appears before Tj, which leads us
to the following task relatedness score:

w(Ti, Tj) = wseq-supp(Ti, Tj) = seq-supp(〈Ti, Tj〉). (5.5)

5.5.3 Association-Rule based

After the task synthesis step, the collection of all the task-oriented sessions may be
considered as a transactional database, whose items are exactly the synthesized task
identifiers. Analogously to the classical market basket analysis, where transactional
databases composed of sets of purchased products can be analyzed for devising
better and more fruitful marketing strategies, here we can analyze our transactional
database of task-oriented sessions to reveal interesting patterns and relatednesses
between user search intents.

We can thus derive a measure of task relatedness by following the original defi-
nition formulated by Agrawal et al. for the problem of association rule mining from
transactional databases [4]. According to this approach, let I = {i1, i2, . . . , iK} be a
set of K binary attributes, called items. Moreover, let D = {t1, t2, . . . , tN} be a set
of N transaction, called database. Each transaction ti ∈ D has a unique identifier
and contains a subset of the items in I.

A rule is defined as an implication of the form X ⇒ Y , where X, Y ⊆ I are two
sets of items, i.e., itemsets, occurring in the transactions of the database D. The
itemsets X and Y , where X ∩Y = ∅, are called antecedent (or LHS) and consequent
(or RHS) of the rule, respectively.

In order to select interesting rules, various measures of significance and interest
can be used. The best-known measures are support and confidence. The support of

112 5. Search Task Recommendation

a rule X ⇒ Y , namely supp(X∪Y) ∈ [0, 1], is defined as the fraction of transactions
that contain the itemset X∪Y . The confidence of a rule, i.e., conf(X ⇒ Y) ∈ [0, 1],
is defined as:

conf(X ⇒ Y) =
supp(X ∪ Y)

supp(X)
.

The confidence of a rule can be viewed as the conditional probability P (Y |X),
namely the probability of finding the RHS of the rule in those transactions that
already contain the LHS.

For our purposes, it is enough to mine association rules, where both the LHS and
RHS of each rule are singleton sets, i.e. rule of the form Ti ⇒ Tj, where Ti, Tj ∈ T
and Ti 6= Tj.

Finally, given the minimum support (min supp) and the minimum confidence
(min conf) thresholds used for learning a proper set of association rules, we are
able to derive the two following edge weighting functions:

w(Ti, Tj) = war-supp(Ti, Tj) = supp(Ti ⇒ Tj). (5.6)

w(Ti, Tj) = war-conf (Ti, Tj) = conf(Ti ⇒ Tj). (5.7)

5.6 Experiments

In the following, we describe how we actually generate task suggestions using our
graph-based user task model in combination with the four weighting schemes pro-
posed in Section 5.5. Moreover, we evaluate and compare the quality of task rec-
ommendations provided by our technique. Firstly, we measure the ability of our
task recommender to correctly foresee what tasks a user might want to do in future
search sessions (Section 5.6.1.3). Furthermore, we present a user study aimed at
evaluating the capability of our technique to provide “surprising” recommendations
(Section 5.6.3). Finally, we provide some anecdotal evidences showing, in practice,
what kind of recommendations are generated by our method (Section 5.6.4).

5.6.1 Experimental Setup

All the experiments are conducted on the 2006 AOL query log, which is our target
data set QL. This Web search engine query log is a very large and long-term col-
lection consisting of about 20 million worth of Web queries issued by about 657, 000
users over a period of 3 months (from 03/01/2006 to 05/31/2006)1.

We first pre-process the query log in order to clean it from empty and “nonsense”
queries as well as for removing stop-words.

1http://sifaka.cs.uiuc.edu/xshen/aol_querylog.html

http://sifaka.cs.uiuc.edu/xshen/aol_querylog.html

5.6. Experiments 113

Indeed, we consider the set QLtop−600 ⊂ QL, which contains the 600 user ses-
sions with the highest number of queries issued during the first week of logging.
This data set consists of 58, 037 queries, meaning about 97 queries per user over
a week on average, i.e., about 14 queries per user every day. Then, we randomly
partition QLtop−600 in two disjoint subsets A and B. A composed of 48, 257 queries
corresponding to 500 user sessions is used as training and B composed of 9, 780
queries corresponding to 100 user sessions is the test data set.

In A the longest user session, i.e., the session with the highest number of queries,
is composed of 1, 774 queries, while the shortest session contains only 2 queries. We
exploit this data set for building our graph-based user task model, following the
three steps described in Sections 5.3.

On the other hand, in the testing data set B the longest user session consists
of 454 queries, whereas the shortest user session is composed of 7 queries. This
data set is in turn used for evaluating the quality of our proposed recommendation
mechanisms.

5.6.1.1 Task Discovery

We extract the set of all the task-oriented sessions from A, i.e., ΘA, using our query
clustering method QC-htc presented in a previous work of ours [83], thus obtaining
a total amount of 8, 301 search tasks. The maximum number of discovered tasks for
a single user search session is 163, whereas the minimum is only 1. Therefore, on
average each user asks for about 17 tasks, meaning that every day a user performs
about 2.5 search tasks.

5.6.1.2 Task Synthesis

We build a set of task documents T DA from the original set of tasks ΘA discovered
before. In particular, each task is represented by a virtual text document that is
obtained throughout the union set of all its composing queries. We then implement
the task synthesis function c described in Section 5.4.2 as a traditional text document
clustering function. To this end, we use the CLUTO2 toolkit for clustering our
collection of task documents T DA. In particular, there are three different parameters
we have to deal with: (i) the cluster method, (ii) the objective function, and finally
(iii) the number K of output clusters.

Concerning the first parameter, we select the following three clustering meth-
ods: rb, rbr, and direct. The clustering method rb computes the desired K-way
clustering solution by performing a sequence of K − 1 repeated bisections. In this
approach, the original data set is first clustered into two groups, then one of these
groups is selected and bisected further. This process continues until the desired
number of clusters is found. During each step, the cluster is bisected so that the re-
sulting 2-way clustering solution optimizes the chosen clustering criterion function.

2http://glaros.dtc.umn.edu/gkhome/views/cluto

http://glaros.dtc.umn.edu/gkhome/views/cluto

114 5. Search Task Recommendation

The clustering method rbr works very similar to the above approach but, at the
end, the overall solution is globally optimized with respect to the selected objective
function. Finally, in the direct method the desired K-way clustering solution is
computed by simultaneously finding all K clusters. In general, computing a K-way
clustering directly is slower than clustering via repeated bisections. In terms of qual-
ity, for reasonably small values of K (usually less than 10−20), the direct approach
leads to better clusters than those obtained via repeated bisections. However, as K
increases, the repeated-bisecting approach tends to be better than direct clustering.

The second aspect to address involves the choice of a proper criterion function.
In particular, we restrict our selection to the following three objective functions: i2,
e1, and h2. The first function, i.e., i2, tends to maximize the intra-cluster similarity,
whereas e1 is designed to minimize the inter-cluster similarity (or, analogously, to
maximize the separation between distinct clusters), so that lower scores are better.
Lastly, the criterion function h2 mixes up both the two functions above, thereby
it measures the ratio of intra/inter cluster similarity, i.e., i2/e1. Such score has
to be maximized, namely it is arguable to have the most similar intra-cluster mea-
surement (i2) over the most separated inter-cluster measurement (e1). The various
criterion functions can sometimes lead to significantly different clustering solutions.
In general, the i2 and h2 criterion functions lead to very good clustering solutions,
whereas the e1 function leads to solutions that contain clusters that are of com-
parable size. However, the choice of the right criterion function depends on the
underlying application area and an experimental phase is mandatory before one can
select the appropriate for her needs.

Finally, concerning the last parameter, i.e., the number K of final clusters to be
produced, we start with K = 20 clusters growing up to K = 1500 by incrementing
K of 40 at each step.

In order to devise a suitable number K of final clusters to be produced, we
perform several clustering runs using different combinations of the above three pa-
rameters. Therefore, in the following Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, and
5.9, we show the curve progress of the selected objective functions by changing the
number K of clusters and the clustering approach.

Intuitively, by increasing the number of final clusters K to be produced, the i2
objective function monotonically increases as well. Each plot depicted in Figure 5.1,
Figure 5.4, and Figure 5.7 shows in fact that a blind use of intra-cluster similarity as a
stopping criterion will cause trouble. Indeed, the maximum intra-cluster similarity is
asymptotically obtained when the number of clusters K reaches the number of total
task documents to be clustered, i.e., when each cluster is a singleton set containing
only one task document since then the members of the cluster are as similar to each
other as possible (actually, they are self-similar).

Moreover, by increasing the number of final clusters K to be produced, the e1
objective function monotonically decreases (Figure 5.2, Figure 5.5, and Figure 5.8).
Again, this intuitively makes sense. When there is just one cluster, its centroid will
be essentially the same as the centroid of the whole collection, meaning that the

5.6. Experiments 115

Figure 5.1: Clustering using the rb method: curve progress of the i2 criterion function by varying
the number K of produced clusters.

Figure 5.2: Clustering using the rb method: curve progress of the e1 criterion function by
varying the number K of produced clusters.

116 5. Search Task Recommendation

Figure 5.3: Clustering using the rb method: curve progress of the h2 criterion function by
varying the number K of produced clusters.

Figure 5.4: Clustering using the rbr method: curve progress of the i2 criterion function by
varying the number K of produced clusters.

5.6. Experiments 117

Figure 5.5: Clustering using the rbr method: curve progress of the e1 criterion function by
varying the number K of produced clusters.

Figure 5.6: Clustering using the rbr method: curve progress of the h2 criterion function by
varying the number K of produced clusters.

118 5. Search Task Recommendation

Figure 5.7: Clustering using the direct method: curve progress of the i2 criterion function by
varying the number K of produced clusters.

Figure 5.8: Clustering using the direct method: curve progress of the e1 criterion function by
varying the number K of produced clusters.

5.6. Experiments 119

Figure 5.9: Clustering using the direct method: curve progress of the h2 criterion function by
varying the number K of produced clusters.

separation is low (i.e., the inter-cluster similarity is high). Conversely, when there
are more clusters, their centroids will generally be more different from the centroid
of the collection (i.e., the inter-cluster similarity falls down).

From the two considerations above, it follows also that the h2 objective func-
tion monotonically increases as the number of output clusters increase (Figure 5.3,
Figure 5.6, and Figure 5.9) because it is computed as the ratio of a monotonically-
increasing function (i.e., i2) and a monotonically-decreasing function (i.e., e1).

Of course, these results force us to devise a proper trade-off in order to select the
best combination of parameters. Indeed, no matter what the chosen objective func-
tion is, the optimal solution would always be the one that produces as many clusters
K as the total number of task documents to be clustered. Since this strategy appears
unfeasible, to this end we identify K = 1024 as a reasonable value for the number
of final clusters to be produced in combination with the rbr clustering method and
the i2 criterion function. In fact, for K > 1024 the curve progress of the crite-
rion function appears to increase slower enough than the quick growing noticed for
K < 1024. Eventually, we obtain a set of synthesized tasks T = {T1, T2, . . . , T1024}.

5.6.1.3 Task Modeling

According to the graph-based user task model, at least four different graphs can be
built over the resulting set of synthesized tasks T . These graphs differ from each

120 5. Search Task Recommendation

other on the basis of the chosen approach for computing their edge weighting scores,
as described in Section 5.5.

We build four graphs according to the edge weighting functions presented in
Eq. 5.4, Eq. 5.5, Eq. 5.6, and Eq. 5.7, respectively. Furthermore, concerning the last
two graphs obtained by using the association-rule weighting scheme, we compute the
frequent itemsets of the transaction database of tasks throughout the Apriori algo-
rithm [4] and varying the min supp threshold from 0.004% up to 100%. Therefore,
from the frequent itemsets discovered before, we extract the set of all association
rules by changing the min conf threshold from 5% up to 100%.

On the basis of these graph-based models built on top of the training data set
A, we generate task recommendations for the users of the testing data set B.

First, we extract the set of task-oriented sessions ΘB from B, which contains a
total amount of 1,762 search tasks. The maximum number of tasks discovered for
a single user search session is 97, whereas the minimum is 1. Therefore, on average
each user asked for about 17.6 tasks, meaning that every day a user accomplished
about 2.5 search tasks. Each discovered task θkb ∈ ΘB is in turn represented using
the union set of all its queries as described in Section 5.4.1, thus resulting in another
set of task documents T DB.

Eventually, each task-oriented session Θb ∈ ΘB is expressed as a sequence of
synthesized tasks Θ′

b:

Θb = 〈θ1b , θ2b , . . . , θ
|Θb|
b 〉 Θ′

b = 〈Tb1 , Tb2 , . . . , Tb|Θb|
〉 ⊆ T .

To this end, for each task θkb ∈ Θb we estimate which synthesized task Tbc ∈ T is the
most suitable candidate to contain it. Thus, we consider the task document associ-
ated with each original search task, i.e., tdkb ∈ T DB. Given that each synthesized
task is a cluster of task documents, we find the similarity between a task and the
generic synthesized task Th as follows:

sim(θkb , Th) = sim(tdkb , Th) = argmax
tdji∈Th

{cos sim(tdk
b, td

j
i)},

where cos sim(tdk
b, td

j
i) is the cosine similarity between the two weighted term

vectors tdk
b and tdj

i, which represent the corresponding task documents tdkb and tdji ,
respectively. Globally, the candidate synthesized task for containing θkb is computed
as follows:

Tbc = argmax
Th∈T

{sim(θkb , Th)}.

Finally, task recommendations are provided according to the suggestion scheme
described in Section 5.3. In particular, once we detect the candidate synthesized
task Tbc for each θkb , we are able to lookup the graph GT and suggest the top-m
neighboring tasks Rm(Tbc), i.e., the m neighboring tasks of the candidate Tbc whose
edges have the highest weighting values.

5.6. Experiments 121

5.6.2 Evaluating Recommendation Precision

Evaluating the quality of provided suggestions is a well-known issue in traditional
recommender systems. Indeed, the primary aim of recommender systems is to en-
hance users’ satisfaction. Therefore, measuring the overall quality of these systems
actually means estimating user’s fulfillment. A universally logical measure of user’s
satisfaction is really hard to devise and most approaches focus on measuring the
accuracy using offline evaluation methods. However, “when evaluating a recom-
mender algorithm, it may be inappropriate to use only offline evaluation. Since the
recommender algorithm is generating recommendations for items that the user does
not already know about, it is probable that the data set will not provide enough
information to evaluate the quality of the items being recommended. If an item was
truly unknown to the user, then it is probable that there is no rating for that user
in the database. If we perform a live user evaluation, ratings can be gained on the
spot for each item recommended.” [57]

We start evaluating the quality of our task recommender system by measuring
the precision of generated suggestions.

Each task-oriented session Θb can be expressed as a sequence Θ′
b of candidate

synthesized tasks as follows:

Θ′
b = 〈Tb1 , Tb2 , . . . , Tb|Θb|

〉 ⊆ T .

Therefore, we divide each Θ′
b in two disjoint subsequences, i.e., Θ′

b1 and Θ′
b2, such

that Θ′
b1 = 〈Tb1 , . . . , Tbd|Θb|/3e

〉, i.e., |Θ′
b1| = d1/3 · |Θ′

b|e and Θ′
b2 = Θ′

b−Θ′
b1. The first

subsequence is used to generate task-oriented recommendations, which in turn are
evaluated on the second subsequence as follows. For each search task Tbi ∈ Θ′

b1 we
are able to provide the set of top-m suggested synthesized tasks, i.e., Rm(Tbi). Thus,
we obtain the set of all the generated suggestions for the tasks in Θ′

b1 as follows.
According to Def. 5.3.1, the set of all the generated suggestions for the tasks in

Θ′
b1 isRm(Θ

′
b1). Generally, since not every task in Θ′

b1 is able to produce suggestions,
at most we have m unique recommended tasks, i.e., |Rm(Θ

′
b1)| ≤ m. Moreover, we

obtain the set of tasks T (Θ′
b2) contained in the remaining portion of the original

session as follows:

T (Θ′
b2) =



Tbj
∈Θ′

b2

Tbj .

Thus, for each task-oriented session Θ′
b we compute the precision p(Θ′

b):

p(Θ′
b) =

|Rm(Θ
′
b1) ∩ T (Θ′

b2)|
|Rm(Θ′

b1)|
. (5.8)

Of course, the intersection between the two sets of synthesized tasks, i.e., Sm(Θ
′
b1)

and T (Θ′
b2), takes only into account the task identifiers and does not care about

the actual lexical content of the tasks themselves. Moreover, a global value for the

122 5. Search Task Recommendation

precision is straightforwardly obtained by simply averaging the precision of all the
task-oriented sessions in the collection:

p(ΘB) =


Θ′

b∈ΘB
p(Θ′

b)
Θ′

b∈ΘB

. (5.9)

In order to take care of the number of generated suggestions, we also introduce a
measure for describing the proportion of tasks Tbi ∈ Θ′

b1 that are able to provide
at least one item to recommend. More formally, we define the coverage c(Θ′

b), as
follows:

c(Θ′
b1) =

|{Tbi ∈ Θ′
b1 | Rm(Tbi) > 0}|
|Θ′

b1|
. (5.10)

As for the precision, we compute a global coverage value by simply averaging the
coverage obtained in each task-oriented session:

c(ΘB) =


Θ′

b∈ΘB
c(Θ′

b1)
Θ′

b∈ΘB

. (5.11)

Finally, in our experiments we focus on evaluating the behavior of the task rec-
ommendation algorithms both on medium-size and large-size task-oriented sessions,
i.e., sessions whose size is between 9 and 19 tasks, and sessions containing more than
19 tasks, respectively. These sessions globally account for about 79% of the total.
We do not consider sessions shorter than 9 tasks as they do not contain enough in-
formation to fairly compute the precision as we have defined above (i.e., the second
third of a session shorter than 9 contains less then, or exactly, 5 tasks).

The set of following figures shows the results, in terms of precision and coverage,
obtained by the various graph-based models for both medium- and large-size ses-
sions. The various plots report results obtained by testing different model instances,
each built by using a given parameter setting, e.g., a specific minimum support or
confidence for a model based on the association rule weighting scheme. Note that
each model instance is characterized by a given coverage with respect to the test
dataset, and this coverage decreases when a model instance becomes stricter. For
example, when we increase the support parameter of the model based on the asso-
ciation rules we also obtain less rules, and, as a consequence, a reduced number of
edges in the graph model.

In order to easily compare the different models and their instances, we thus plot-
ted the precision obtained by each model instances as a function of the corresponding
coverage. More specifically, we generated the top-1, top-3, and top-5 suggestions,
respectively, for the tasks of the first thirds of these test sessions. In all these cases,
the random-based approach, which is considered as our baseline, provides the lowest
values of precision as expected. Moreover, it is worth saying that all the results
presented for this baseline approach have been selected as the best of 10 runs.

5.6. Experiments 123

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Pr
ec

is
io

n
(%

)

Coverage (%)

Top-1 suggestions in medium-size sessions

random (baseline)
seq-supp

ar-supp
ar-conf

Figure 5.10: Precision vs. Coverage for top-1 recommendations in medium-size sessions.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Pr
ec

is
io

n
(%

)

Coverage (%)

Top-1 suggestions in large-size sessions

random (baseline)
seq-supp

ar-supp
ar-conf

Figure 5.11: Precision vs. Coverage for top-1 recommendations in large-size sessions.

124 5. Search Task Recommendation

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Pr
ec

is
io

n
(%

)

Coverage (%)

Top-3 suggestions in medium-size sessions

random (baseline)
seq-supp

ar-supp
ar-conf

Figure 5.12: Precision vs. Coverage for top-3 recommendations in medium-size sessions.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Pr
ec

is
io

n
(%

)

Coverage (%)

Top-3 suggestions in large-size sessions

random (baseline)
seq-supp

ar-supp
ar-conf

Figure 5.13: Precision vs. Coverage for top-3 recommendations in large-size sessions.

5.6. Experiments 125

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Pr
ec

is
io

n
(%

)

Coverage (%)

Top-5 suggestions in medium-size sessions

random (baseline)
seq-supp

ar-supp
ar-conf

Figure 5.14: Precision vs. Coverage for top-5 recommendations in medium-size sessions.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Pr
ec

is
io

n
(%

)

Coverage (%)

Top-5 suggestions in large-size sessions

random (baseline)
seq-supp

ar-supp
ar-conf

Figure 5.15: Precision vs. Coverage for top-5 recommendations in large-size sessions.

126 5. Search Task Recommendation

Figure 5.10 and 5.11 depict the precision of top-1 recommendations for medium-
size and large-size sessions, respectively. Our proposed methods, and especially the
one based on the association-rule weighting scheme described in Eq. 5.6, highlight
remarkable values of precision. In medium-size sessions, we can observe a maximum
accuracy of about 41.2% when the coverage is around 13.0%. However, even when
the coverage reaches approximately 47.7%, precision still remains around 36.3%. In
large-size sessions, precision reaches about 50.0% when the coverage is only around
6.3%. Nevertheless, precision is still above the 20%, i.e., 23.2%, whenever coverage
reaches about 30.0%.

Figure 5.12 and 5.13 show the precision of top-3 recommendations for medium-
size and large-size sessions, respectively. Here, for smaller values of coverage, i.e.,
above 25% in medium-size sessions and above 15% in large-size sessions, the association-
rule weighting scheme described in Eq. 5.6 gains the highest values of precision, i.e.,
36.2% and 42.9%, respectively. However, by increasing the coverage, the other
association-rule weighting scheme proposed in Eq. 5.7 behaves better. Indeed, this
method obtains a precision of 26.7% even when the coverage reaches 58.9% for
medium-size sessions, while precision is around 17.5% when the coverage is 37.2%
for large-size sessions.

Finally, Figure 5.14 and 5.15 describe the precision of top-5 recommendations for
medium-size and large-size sessions, respectively. This last case is highly similar to
the top-3 recommendations described above. Roughly, for smaller values of coverage,
the most precise approach is the association-rule weighting scheme using Eq. 5.6,
whereas for greater values of coverage the weighting scheme described in Eq. 5.7
provides better results.

5.6.3 User Study

The major drawback of the precision metric used in the evaluation of suggestions
presented in the section above is that it is not able to measure the “surprise” factor.
Informally, when a recommended task is not going to be performed by the user in
the remainder of the session, the recommendation is deemed to be useless. Indeed,
recommended tasks that were not actually performed in the session might still be
interesting and useful for the user. Therefore, we resort to conduce a user study to
further investigate the usefulness, as well as the surprise, of the recommendations
generated.

We selected a pool of assessors made up of 10 people chosen amongst students
and researchers in our institute. Each assessor is, obviously, highly skilled in using
web search engines. We asked them to carefully evaluate suggestions looking not
only at the relevance of the suggestion itself, but also if they retain the suggestion,
somewhat, surprising. In other words, we wanted assessors to check wether recom-
mendations make users think of possibly new tasks to perform after the one they
were currently performing.

5.6. Experiments 127

For a randomly chosen subset of 50 task-oriented sessions in the test set B (see
Section 5.6.1), we generated the top-3 recommendations starting from 1/3 of the
tasks present in each session. The recommended tasks have then been presented
along with the actual head of the user session to at least three different assessors, who
were asked to rate each recommendation as: useless, useful, useful and surprising.

From this process we can draw the following figures. Firstly, an average of 72.9%
of recommendations have been marked either ‘useful’ or ‘useful and surprising’ by
at least two out of the three assessors (the 68.3% of the recommendations have been
marked at least useful by all the three assessors). Among the useful recommenda-
tions, more than a half of them (57.1%) have been marked useful and surprising by
at least two assessors.

Mixing results from the previous section and the user study, one could conclude
that: (i) our method is able to understand what possibly a user might want to do
in the future and suggest it, (ii) in more than 50% of the cases, recommendations
generated were also helpful to make users think of novel task related to the ones she
was performing.

This last result shows that evaluating the quality of our task recommender system
by only considering its ability of predicting tasks that actually users perform during
their search sessions could be a really conservative measure of the effectiveness of
our approach.

5.6.4 Anecdotal Evidences

It is worth noting that our recommendation mechanism lays at a higher level of
abstraction with respect to traditional query suggestion schemes. Therefore, in
order to highlight that our task recommender provides valuable suggestions, we also
show some examples derived from our testing data set, which aim to highlight the
two distinct abilities mentioned at the end of the previous Section.

First, the ability of our technique in “predicting” tasks that users are going to
search for in the next future, is highlighted in Table 5.1. The left column of this
table describes a search task performed by a user by means of a set of issued queries
(appearing below the task “label”). To this end, it is worth remarking that task
labels have been manually generated by authors. Automatic labeling of tasks is an
interesting and challenging problem but it is out of the scope of this work. We plan
to address the automatic task labeling problem in the near future. Instead, on the
right column is showed a suggested task that actually the same user asks for during
her next searches by issuing those queries that appear underlined. Moreover, since
each suggested task is a synthesized representation of tasks performed by several
users, there are other queries that are part of the suggested task and that could be
also recommended. Those suggested queries might be either classified as relevant
(indicated with italic typeface) or not relevant.

Another remarkable result that our technique is able to provide concerns with
its capability of generating so-called surprising suggestions. This second aspect is

128 5. Search Task Recommendation

described in Table 5.2. Here, the left column of the table still presents a performed
search task, whereas the right column contains some queries that are part of a task
which is suggested to the user but that she actually does not ask for during her
search session. In this case, it is clearly evident that suggesting tasks containing
queries such as “baby shower games” to a user interested in “baby fables” could
be somehow helpful or, at least, interesting. Similarly, tasks which contain queries
like “university tuition” is surely useful and appreciated by those users looking
for “duke university”.

In the tables below, the ∗ symbol refers to recommendation that is either not
relevant or relevant only for the current task.

Performed Task/Query Recommended Tasks

Home Furnitures Home Gardening
cottage garden

beach house cottage garden roses

· · · decor garden
· · · best garden blogs

beach house vanity vegetable garden ideas
open garden

antiques store∗

book stores∗

Kitchen Decor Kitchen Supplies
dining room stoves

· · · country stoves
· · · country cooking stoves

country music gossips∗

canyon country parkway∗

Table 5.1: Recommended and performed tasks.

5.7 Summary

So far, query suggestions provided by Web search engines aim to help users in better
formulating their immediate information need. In this Chapter, we presented the
first proposal for a novel task-oriented recommendation solution, which generates
task suggestions on the basis of the long-term mission that users are expected to
subsume with their queries. This ambitious goal was pursued by mining interleaved
search tasks from the stream of past queries recorded in query logs and by aggregat-

5.7. Summary 129

Performed Task/Query Recommended Tasks

Child Entertainment Child Games
baby shower games

fables baby horse
· · · Child Dressing
· · · baby gap

baby fables Child Health
baby emotional disease

cuddling couch picture∗

husband became parents boy∗

University University Sports
university university sports

· · · university basketball
· · · University Information

duke university university tuition

Table 5.2: Recommended and surprising tasks.

ing these tasks in similarity-based clusters. Somehow, those clusters represent the
collective knowledge provided by Web search engine users.

Several graph-based models for user task search behaviors were built from the
above clusters and used to provide task recommendations. The experiments, con-
ducted by exploiting a real large-scale query log, were aimed to measure the ability
of the different models devised in predicting and covering the actual long-term user
search intents stored in the log. We have shown that the solution proposed generates
task recommendations resulting in good precision and coverage figures, remarkably
higher than the baseline consisting in the random suggestion of tasks. Moreover,
even if generated task recommendations are not strictly part of actually occurring
future users’ requests, we have shown that they could anyway represent useful sur-
prising hints.

Many research directions need to be further investigated in the future. First,
different methods for aggregating user tasks have to be studied in order to address
the data sparsity problem. Moreover, new objective evaluation metrics have to be
studied for assessing the task recommendations provided. Finally, a rigorous user
study should be accurately designed and deployed in order to evaluate the real
impact of this new kind of “high-level” recommendations on the behavior of Web
search engine users.

130 5. Search Task Recommendation

Conclusions

In this dissertation we have presented two research challenges that we claim next-
generation Web search engines should deal with in order to enhance the overall user
search experience. The need for addressing such challenges derives from a shift in
what actually users nowadays expect from modern Web search engines whenever
they submit their requests.

At the beginning, people interacting with Web search engines were mostly inter-
ested in selecting a manageable set of Web pages that hopefully contain information,
which were relevant to their needs. Thereby, originally the main research issues on
this domain concerned how well-known Information Retrieval and Digital Libraries
approaches could be replicated on, and possibly adapted to, Web-scale retrieval
systems such as Web search engines.

Today, instead, users are increasingly asking Web search engines for accomplish-
ing their daily tasks in an easier way (e.g., “planning holidays”, “obtaining a visa”,
“organizing a birthday party”, etc.). Therefore, modern Web search engines are re-
quested to effectively “driving” users towards their everyday activities, thus moving
from Web documents retrieval tools to “run-time supports” of users’ Web lives.

Both the challenges we have devised in this dissertation require to understand
and extract meaningful patterns of interaction between users and Web search en-
gines. To this end, the most valuable source of information from which such knowl-
edge may be extracted is certainly represented by query logs, which roughly record
user search activities by means of streams of timestamped events (e.g., issued queries,
click actions, etc.).

First, we successfully applied query log mining techniques for discovering actual
user search sessions “hidden” inside the raw stream of queries stored in Web search
engine query logs, whose final aim is to perform a task, i.e., task-oriented sessions.
Furthermore, we have formally defined the Task-oriented Session Discovery Problem
(TSDP) as the problem of best partitioning a stream of user queries into several
subsets of queries which are all related to the same search task. Roughly, this has
dealt with two issues: (i) it has required a robust measure for evaluating the task
relatedness between any two queries, i.e., task-based query similarity and (ii) it has
needed an effective method for actually discovering task-oriented sessions using the
above measure of task relatedness.

Concerning (i), we have proposed and compared both unsupervised and super-
vised approaches for devising several task-based query similarity functions. More-
over, we have tackled (ii) by introducing a set of clustering-oriented approaches
that exploit the above task-based query similarity functions, i.e., query clustering
methods specifically tuned for actually discovering task-oriented sessions.

132 Conclusions

All the proposed solutions have been evaluated on a manually built ground-truth,
namely a task-oriented partitioning of the queries stored in a real Web search engine
log performed by human annotators.

Overall, the “take-away message” of this work is that long-term sessions stored
in query logs are really composed of several, sometimes interleaved, search tasks.
Moreover, such tasks may be effectively and efficiently discovered by adopting the
following strategy, which in our experiments produced the best results. For each
user, we firstly split the sequence of queries into subsequences consisting of queries
whose gap, in terms of submission time, is less than 26 minutes3. Then, for queries
in each shorter session, we build a graph consisting of queries connected by an edge
if and only if the similarity between these two queries is above a threshold η = 0.3.
The task-based query similarity results from a combination of content-based and
semantic-based metrics. The first is obtained by combining two distinct metrics,
i.e., the Jaccard’s score on query tri-grams and the classical edit-distance between
the two queries. These metrics are put together through a convex combination with
coefficient equal to 0.5. The semantic-based metric is obtained by considering what
we called the “wiki-based” distance and consists of evaluating the cosine distance
between the two vectors obtained by “wikifying” the two queries. Instead of using
a convex combination of the queries we resorted in using the following strategy. If
the content-based similarity is below a threshold t = 0.5 then we resort to use the
semantic-based metric and we take the maximum of these two similarities as the
weight of the edge in the graph. Finally, tasks are represented by the connected
components of the resulting graph.

This first contribution, fully described in Chapter 4, is based on three research pa-
pers, i.e., “Detecting Task-based Query Sessions Using Collaborative Knowledge” [81],
“Identifying Task-based Sessions in Search Engine Query Logs” [83], and “Discov-
ering User Tasks in Long-Term Web Search Engine Logs” [82], respectively.

The second research challenge we have devised was inspired by our first provided
contribution and concerned the design of a novel recommendation mechanism that
goes beyond traditional query suggestion schemes.

Undoubtedly, query suggestion represents a valuable mechanism that most pop-
ular Web search engines today adopt for supporting their users. Usually, this mech-
anism works by recommending queries to users in order to help them in better
specifying their actual search goals, thus for quicker satisfying their needs.

So far, the recommendations generated for a certain query are strictly related to
the query itself, namely to the same search task that the query is likely to represent.
Unfortunately, this often unfits the real search behaviors of users, which, as showed
in our first contribution, instead tend to issue streams of queries possibly related to
distinct interleaved search tasks. Moreover, the “composition” of each single search
task (e.g., “booking a flight”, “reserving a hotel room”, “renting a car”, etc.) usually
subsumes a more complex task, namely a mission, that the user aims to accomplish

3This value might be different depending on the data set used.

Conclusions 133

throughout the Web search engine (e.g., “planning a travel”). For example, a user
searching for a suitable hotel in New York, i.e., a simple task, might be recommended
with information about MTA subway or Broadway shows, conjecturing that she is
willing to organize her vacation, i.e., a complex task.

In order to achieve this ambitious goal, we first leveraged on the results described
in Chapter 4 for mining interleaved search tasks from query logs. Instead of consid-
ering user search process on a “query-by-query” perspective, we looked at it from a
higher level of abstraction, namely on a “task-by-task” perspective. To this end, we
proposed a model of user search tasks for representing more complex user behaviors,
while interacting with Web search engines. This model described what small tasks
are mostly searched for and how users typically “combined” them in order to achieve
bigger missions.

Furthermore, due to the sparseness of user search tasks, we decided to aggregate
discovered tasks in similarity-based clusters that represent the collective knowledge
provided by Web search engine users. Several graph-based models for user task
search behaviors were built from the above clusters and used to generate novel task
recommendations. In fact, given a portion of the query stream, the Web search
engine may first recognize the actual small task behind that subsequence of queries.
Eventually, it was able to generate lists of recommendations, which were not only
related to the subsequence of queries that originated the suggestions but also to a
complex mission, which the small task could be part of, according to our model of
users’ search tasks.

The experiments, conducted by exploiting a real large-scale query log, were aimed
to measure the ability of the different models devised in predicting and covering the
actual long-term user search intents stored in the log. We showed that the solutions
proposed were able to generates task recommendations resulting in good precision
and coverage figures, which were remarkably higher than the baseline consisting in
the random suggestion of tasks. Moreover, even if generated task recommendations
are not strictly part of actually occurring future users’ requests, we have shown that
they could anyway represent useful surprising hints.

This second contribution, fully described in Chapter 5, is based on the re-
search paper “Beyond Query Suggestion: Recommending Tasks to Search Engine
Users” [84].

134 Conclusions

Bibliography

[1] E. Adar. User 4xxxxx9: Anonymizing query logs. In Proceedings of the Work-
shop on Query Log Analysis at the 16th International World Wide Web Con-
ference, WWW ’07, New York City, NY, USA, 2007. ACM.

[2] E. Adar, D. Weld, B. Bershad, and S. Gribble. Why we search: Visualizing
and predicting user behavior. In Proceedings of the 16th International World
Wide Web Conference, WWW ’07, pages 161–170, New York City, NY, USA,
2007. ACM.

[3] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between
sets of items in large databases. ACM SIGMOD Record, 22(2):207–216, June
1993.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in
large databases. In Proceedings of the 20th International Conference on Very
Large Data Bases, VLDB ’94, pages 487–499, Waltham, MA, USA, 1994.
Morgan Kaufmann Publishers.

[5] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan. Searching
the web. ACM Transactions on Internet Technology (TOIT), 1:2–43, August
2001.

[6] V. Authors. About web analytics association, retrieved on December 2010.

[7] R. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras, and F. Silvestri.
Challenges on distributed web retrieval. In Proceedings of the 23rd IEEE
International Conference on Data Engineering, ICDE ’07, pages 6–20, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[8] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and
F. Silvestri. The impact of caching on search engines. In Proceedings of the
30th ACM SIGIR International Conference on Research and Development in
Information Retrieval, SIGIR ’07, pages 183–190, New York City, NY, USA,
2007. ACM.

[9] R. Baeza-Yates, A. Gionis, F. P. Junqueira, V. Murdock, V. Plachouras, and
F. Silvestri. Design trade-offs for search engine caching. ACM Transactions
on the Web (TWEB), 2(20):1–28, October 2008.

136 Bibliography

[10] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query recommendation using
query logs in search engines. In Proceedings of the International Workshop
on Clustering Information over the Web (in conjunction with EDBT 2004),
volume 3268 of Lecture Notes in Computer Science, pages 588–596, Berlin,
Heidelberg, 2004. Springer-Verlag.

[11] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Ranking boosting based in
query clustering. In Proceedings of the 2nd Atlantic Web Intelligence Con-
ference (AWIC 2004), volume 3034 of Lecture Notes in Computer Science,
Berlin, Heidelberg, 2004. Springer-Verlag.

[12] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Improving search engines by
query clustering. Journal of the American Society for Information Science
and Technology (JASIST), 58(12):1793–1804, October 2007.

[13] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[14] R. Baeza-Yates and A. Tiberi. Extracting semantic relations from query logs.
In Proceedings of the 13th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’07, pages 76–85, New York City, NY,
USA, 2007. ACM.

[15] E. Balfe and B. Smyth. Improving web search through collaborative query
recommendation. In Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI 2004), pages 268–272. IOS Press, 2004.

[16] J. Bar-Ilan. Access to query logs an academic researcher’s point of view. In
Proceedings of the Query Log Analysis: Social And Technological Challenges
Workshop at the 16th International World Wide Web Conference, WWW ’07,
New York City, NY, USA, 2007. ACM.

[17] R. Baraglia, F. Cacheda, V. Carneiro, D. Fernandez, V. Formoso, R. Perego,
and F. Silvestri. Search shortcuts: a new approach to the recommendation of
queries. In Proceedings of the 3rd ACM International Conference on Recom-
mender Systems, RecSys ’09, pages 77–84, New York City, NY, USA, 2009.
ACM.

[18] R. Baraglia, C. Castillo, D. Donato, F. M. Nardini, R. Perego, and F. Silvestri.
Aging effects on query flow graphs for query suggestion. In Proceedings of the
18th ACM International Conference on Information and Knowledge Manage-
ment, CIKM ’09, pages 1947–1950, New York City, NY, USA, 2009. ACM.

[19] R. Baraglia, F. M. Nardini, C. Castillo, R. Perego, D. Donato, and F. Silvestri.
The effects of time on query flow graph-based models for query suggestion. In
Adaptivity, Personalization, and Fusion of Heterogeneous Information, RIAO

Bibliography 137

’10, pages 182–189, Paris, France, 2010. Le Centre De Hautes Etudes Interna-
tionales d’Informatique Documentaire.

[20] L.A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The Google
cluster architecture. IEEE micro, 23(2):22–28, March/April 2003.

[21] D. Beeferman and A. Berger. Agglomerative clustering of a search engine
query log. In Proceedings of the 6th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’00, pages 407–416, New
York City, NY, USA, 2000. ACM.

[22] S. M. Beitzel, E. C. Jensen, A. Chowdhury, O. Frieder, and D. Grossman.
Temporal analysis of a very large topically categorized web query log. Journal
of the American Society for Information Science and Technology (JASIST),
58:166–178, January 2007.

[23] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman, and O. Frieder.
Hourly analysis of a very large topically categorized web query log. In Pro-
ceedings of the 27th ACM SIGIR International Conference on Research and
Development in Information Retrieval, SIGIR ’04, pages 321–328, New York
City, NY, USA, 2004. ACM.

[24] S. M. Beitzel, E. C. Jensen, O. Frieder, D. D. Lewis, A. Chowdhury, and
A. Kolcz. Improving automatic query classification via semi-supervised learn-
ing. In Proceedings of the 5th IEEE International Conference on Data Mining,
ICDM ’05, pages 42–49, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

[25] S. M. Beitzel, E. C. Jensen, D. D. Lewis, A. Chowdhury, and O. Frieder.
Automatic classification of web queries using very large unlabeled query logs.
ACM Transactions on Information Systems (TOIS), 25:1–30, April 2007.

[26] N. J. Belkin. Interaction with texts: Information retrieval as information-
seeking behavior. In Information Retrieval, Lecture Notes in Computer Sci-
ence, pages 55–66, Berlin, Heidelberg, 1993. Springer-Verlag.

[27] T. Berners-Lee. Information management: A proposal. Technical report,
CERN, Genf, 1989.

[28] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S. Vigna. The
query-flow graph: model and applications. In Proceedings of the 17th ACM
International Conference on Information and Knowledge Management, CIKM
’08, pages 609–618, New York City, NY, USA, 2008. ACM.

[29] P. Boldi, F. Bonchi, C. Castillo, D. Donato, and S. Vigna. Query suggestions
using query-flow graphs. In Proceedings of the Workshop on Web Search Click
Data, WSCD ’09, pages 56–63, New York City, NY, USA, 2009. ACM.

138 Bibliography

[30] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. Computer Networks and ISDN Systems, 30(1-7):107–117, April 1998.

[31] D. Broccolo, O. Frieder, F. M. Nardini, R. Perego, and F. Silvestri. Incremental
algorithms for effective and efficient query recommendation. In Proceedings
of the 17th International Conference on String Processing and Information
Retrieval, SPIRE ’10, pages 13–24, Berlin, Heidelberg, 2010. Springer-Verlag.

[32] D. Broccolo, L. Marcon, F.M. Nardini, R. Perego, and F. Silvestri. An efficient
algorithm to generate search shortcuts. Technical report, ISTI-CNR, Pisa,
Italy, May 2010.

[33] A. Broder. A taxonomy of web search. SIGIR Forum, 36:3–10, September
2002.

[34] A. Broder, P. Ciccolo, E. Gabrilovich, V. Josifovski, D. Metzler, L. Riedel, and
J. Yuan. Online expansion of rare queries for sponsored search. In Proceedings
of the 18th International World Wide Web Conference, WWW ’09, New York
City, NY, USA, 2009. ACM.

[35] A. Z. Broder, M. Fontoura, E. Gabrilovich, A. Joshi, V. Josifovski, and
T. Zhang. Robust classification of rare queries using web knowledge. In Pro-
ceedings of the 30th ACM SIGIR International Conference on Research and
Development in Information Retrieval, SIGIR ’07, pages 231–238, New York
City, NY, USA, 2007. ACM.

[36] D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In Pro-
ceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’06, pages 554–560, New York City, NY,
USA, 2006. ACM.

[37] S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan, D. Gibson, and
J. Kleinberg. Automatic resource compilation by analyzing hyperlink struc-
ture and associated text. In Proceedings of the 7th International World Wide
Web Conference, WWW7, pages 65–74, Amsterdam, The Netherlands, 1998.
Elsevier Science Publishers B. V.

[38] S. Chien and N. Immorlica. Semantic similarity between search engine queries
using temporal correlation. In Proceedings of the 14th International World
Wide Web Conference, WWW ’05, pages 2–11, New York City, NY, USA,
2005. ACM.

[39] A. Cooper. A survey of query log privacy-enhancing techniques from a policy
perspective. ACM Transactions on the Web (TWEB), 2(4):1–27, October
2008.

Bibliography 139

[40] S. Cucerzan and R. W. White. Query suggestion based on user landing pages.
In Proceedings of the 30th ACM SIGIR International Conference on Research
and Development in Information Retrieval, SIGIR ’07, pages 875–876, New
York City, NY, USA, 2007. ACM.

[41] H. Cui, J. R. Wen, J. Y. Nie, and W. Y. Ma. Probabilistic query expansion
using query logs. In Proceedings of the 11th International World Wide Web
Conference, WWW ’02, pages 325–332, New York City, NY, USA, 2002. ACM.

[42] D. Downey, S. Dumais, and E. Horvitz. Heads and tails: studies of web search
with common and rare queries. In Proceedings of the 30th ACM SIGIR Inter-
national Conference on Research and Development in Information Retrieval,
SIGIR ’07, pages 847–848, New York City, NY, USA, 2007. ACM.

[43] D. Eichmann. Ethical web agents. Computer Networks and ISDN Systems,
28(1-2):127–136, December 1995.

[44] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings
of the 2nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’96, pages 226–231, New York City, NY, USA, 1996.
ACM.

[45] T. Fagni, R. Perego, F. Silvestri, and S. Orlando. Boosting the performance
of web search engines: Caching and prefetching query results by exploiting
historical usage data. ACM Transactions on Information Systems (TOIS),
24:51–78, January 2006.

[46] C.H. Fenichel. Online searching: Measures that discriminate among users with
different types of experiences. Journal of the American Society for Information
Science (JASIS), 32(1):23–32, January 1981.

[47] B. M. Fonseca, P. Golgher, B. Pôssas, B. Ribeiro-Neto, and N. Ziviani.
Concept-based interactive query expansion. In Proceedings of the 14th ACM
International Conference on Information and Knowledge Management, CIKM
’05, pages 696–703, New York City, NY, USA, 2005. ACM.

[48] B. M. Fonseca, P. B. Golgher, E. S. de Moura, and N. Ziviani. Using associa-
tion rules to discover search engines related queries. In Proceedings of the 1st
Latin American Web Congress, LA-WEB ’03, Washington, DC, USA, 2003.
IEEE Computer Society.

[49] G.P.C. Fung, J.X. Yu, P.S. Yu, and H. Lu. Parameter free bursty events
detection in text streams. In Proceedings of the 31st International Conference
on Very Large Data Bases, VLDB ’05, pages 181–192, Waltham, MA, USA,
2005. Morgan Kaufmann Publishers.

140 Bibliography

[50] E. Gabrilovich and S. Markovitch. Computing semantic relatedness using
wikipedia-based explicit semantic analysis. In Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence, pages 6–12, 2007.

[51] D. Gayo-Avello. A survey on session detection methods in query logs and a
proposal for future evaluation. Information Sciences, 179(12):1822–1843, May
2009.

[52] N. S. Glance. Community search assistant. In Proceedings of the 6th ACM
International Conference on Intelligent User Interfaces, IUI ’01, pages 91–96,
New York City, NY, USA, 2001. ACM.

[53] S. Gordea and M. Zanker. Time filtering for better recommendations with
small and sparse rating matrices. In Proceedings of the 8th International
Conference on Web Information Systems Engineering (WISE 2007), Lecture
Notes in Computer Science, pages 171–183, Berlin, Heidelberg, 2007. Springer-
Verlag.

[54] L. Gravano, V. Hatzivassiloglou, and R. Lichtenstein. Categorizing web queries
according to geographical locality. In Proceedings of the 12th ACM Interna-
tional Conference on Information and Knowledge Management, CIKM ’03,
pages 325–333, New York City, NY, USA, 2003. ACM.

[55] D. He and A. Göker. Detecting session boundaries from web user logs. In Pro-
ceedings of the 22nd Annual Colloquium on Information Retrieval Research,
BCS-IRSG, pages 57–66, 2000.

[56] D. He, A. Göker, and D. J. Harper. Combining evidence for automatic web
session identification. Information Processing Management (IPM), 38:727–
742, September 2002.

[57] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating col-
laborative filtering recommender systems. ACM Transactions on Information
Systems (TOIS), 22:5–53, January 2004.

[58] L. Hsieh-yee. Effects of search experience and subject knowledge on the search
tactics of novice and experienced searchers. Journal of the American Society
for Information Science (JASIS), 44:161–174, April 1993.

[59] B. J. Jansen. Understanding User-Web Interactions via Web Analytics. Syn-
thesis Lectures on Information Concepts, Retrieval, and Services. Morgan &
Claypool Publishers, 2009.

[60] B. J. Jansen and A. Spink. An analysis of web searching by european
alltheweb.com users. Information Processing Management (IPM), 41:361–381,
March 2005.

Bibliography 141

[61] B. J. Jansen and A. Spink. How are we searching the world wide web?: a
comparison of nine search engine transaction logs. Information Processing
Management (IPM), 42:248–263, January 2006.

[62] B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic. Real life information
retrieval: a study of user queries on the web. SIGIR Forum, 32:5–17, April
1998.

[63] B. J. Jansen, A. Spink, C. Blakely, and S. Koshman. Defining a session on
web search engines: Research articles. Journal of the American Society for
Information Science and Technology (JASIST), 58(6):862–871, April 2007.

[64] B. J. Jansen, A. Spink, and S. Koshman. Web searcher interaction with the
dogpile.com metasearch engine. Journal of the American Society for Informa-
tion Science and Technology (JASIST), 58:744–755, March 2007.

[65] B. J. Jansen, A. Spink, and J. Pedersen. A temporal comparison of altavista
web searching: Research articles. Journal of the American Society for Infor-
mation Science and Technology (JASIST), 56:559–570, April 2005.

[66] A. Järvelin, A. Järvelin, and K. Järvelin. s-grams: Defining generalized n-
grams for information retrieval. Information Processing Management (IPM),
43(4):1005–1019, July 2007.

[67] R. Jones and K. L. Klinkner. Beyond the session timeout: automatic hierar-
chical segmentation of search topics in query logs. In Proceedings of the 17th
ACM International Conference on Information and Knowledge Management,
CIKM ’08, pages 699–708, New York City, NY, USA, 2008. ACM.

[68] R. Jones, R. Kumar, B. Pang, and A. Tomkins. I know what you did last
summer: query logs and user privacy. In Proceedings of the 16th ACM Inter-
national Conference on Information and Knowledge Management, CIKM ’07,
pages 909–914, New York City, NY, USA, 2007. ACM.

[69] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substitutions.
In Proceedings of the 15th International World Wide Web Conference, WWW
’06, pages 387–396, New York City, NY, USA, 2006. ACM.

[70] J.M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM (JACM), 46(5):604–632, 1999.

[71] S. Koshman, A. Spink, and B. J. Jansen. Web searching on the vivisimo
search engine. Journal of the American Society for Information Science and
Technology (JASIST), 57:1875–1887, December 2006.

[72] M. Koster. ALIWEB-Archie-like indexing in the Web. Computer Networks
and ISDN Systems, 27(2):175–182, November 1994.

142 Bibliography

[73] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of
Mathematical Statistics, 22(1):79–86, March 1951.

[74] R. Kumar, J. Novak, B. Pang, and A. Tomkins. On anonymizing query logs
via token-based hashing. In Proceedings of the 16th International World Wide
Web Conference, WWW ’07, pages 629–638, New York City, NY, USA, 2007.
ACM.

[75] T. Lau and E. Horvitz. Patterns of search: analyzing and modeling web
query refinement. In Proceedings of the 7th International Conference on User
Modeling, pages 119–128, Berlin, Heidelberg, 1999. Springer-Verlag.

[76] C. Leacock and M. Chodorow. Combining Local Context and WordNet Sim-
ilarity for Word Sense Identification, chapter 11, pages 265–283. The MIT
Press, Cambridge, MA, USA, May 1998.

[77] U. Lee, Z. Liu, and J. Cho. Automatic identification of user goals in web
search. In Proceedings of the 14th International World Wide Web Conference,
WWW ’05, pages 391–400, New York City, NY, USA, 2005. ACM.

[78] R. Lempel and S. Moran. Predictive caching and prefetching of query results
in search engines. In Proceedings of the 12th International World Wide Web
Conference, WWW ’03, pages 19–28, New York City, NY, USA, 2003. ACM.

[79] M. Lesk. Automatic sense disambiguation using machine readable dictionaries:
how to tell a pine cone from an ice cream cone. In Proceedings of the 5th ACM
International Conference on Systems Documentation, SIGDOC ’86, pages 24–
26, New York City, NY, USA, 1986. ACM.

[80] K. W. T. Leung, W. Ng, and D. L. Lee. Personalized concept-based clus-
tering of search engine queries. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 20(11):1505–1518, November 2008.

[81] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and G. Tolomei. De-
tecting task-based query sessions using collaborative knowledge. In Inter-
national Workshop on Intelligent Web Interaction in conjunction with the
IEEE/WIC/ACM International Conferences on Web Intelligence, IWI ’10,
pages 128–131, Washington, DC, USA, 2010. IEEE Computer Society.

[82] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and G. Tolomei. Discovering
User Tasks in Long-Term Web Search Engine Logs. ACM Transactions on
Information Systems (TOIS) (under review), 2011.

[83] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and G. Tolomei. Identifying
task-based sessions in search engine query logs. In Proceedings of the 4th ACM
International Conference on Web Search and Data Mining, WSDM ’11, pages
277–286, New York City, NY, USA, 2011. ACM.

Bibliography 143

[84] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and G. Tolomei. Beyond
query suggestion: Recommending tasks to search engine users. WSDM ’12
(under review), New York City, NY, USA, 2012.

[85] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In L. M. Le Cam and J. Neyman, editors, Proceedings of the 5th
Berkeley Symposium on Mathematical Statistics and Probability, volume 1,
pages 281–297. University of California Press, 1967.

[86] C.D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, New York City, NY, USA, 2008.

[87] C.D. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing, volume 59. The MIT Press, Cambridge, MA, USA, 1999.

[88] E. P. Markatos. On caching search engine query results. Computer Commu-
nications, 24(2):137–143, February 2001.

[89] M. Mat-Hassan and M. Levene. Associating search and navigation behavior
through log analysis: Research articles. Journal of the American Society for
Information Science and Technology (JASIST), 56:913–934, July 2005.

[90] O.A. McBryan. GENVL and WWWW: Tools for Taming the Web. In Pro-
ceedings of the 1st International World Wide Web Conference, volume 341 of
WWW1, pages 79–90, Amsterdam, The Netherlands, 1994. Elsevier Science
Publishers B. V.

[91] Q. Mei, D. Zhou, and K. Church. Query suggestion using hitting time. In Pro-
ceeding of the 17th Conference on Information and Knowledge Management,
CIKM ’08, pages 469–478, New York City, NY, USA, 2008. ACM.

[92] D. Milne and I. H. Witten. An effective, low-cost measure of semantic related-
ness obtained from wikipedia links. In Proceedings of the 22nd Conference on
Artificial Intelligence, AAAI ’08, pages 25–30, Menlo Park, CA, USA, 2008.
AAAI Press.

[93] H. C. Ozmutlu and F. Çavdur. Application of automatic topic identification
on excite web search engine data logs. Information Processing Management
(IPM), 41(5):1243–1262, September 2005.

[94] H. C. Ozmutlu, A. Spink, and S. Ozmutlu. Analysis of large data logs: an
application of poisson sampling on excite web queries. Information Processing
Management (IPM), 38:473–490, July 2002.

[95] S. Ozmutlu, A. Spink, and H. C. Ozmutlu. A day in the life of web searching:
an exploratory study. Information Processing Management (IPM), 40:319–
345, March 2004.

144 Bibliography

[96] G. Pant. Deriving link-context from html tag tree. In Proceedings of the 8th
ACM SIGMOD Workshop on Research issues in Data Mining and Knowledge
Discovery, DMKD ’03, pages 49–55, New York City, NY, USA, 2003. ACM.

[97] G. Pant and P. Srinivasan. Crawling the web. In Web Dynamics: Adapting
to Change in Content, Size, Topology and Use. Edited by M. Levene and A.
Poulovassilis, pages 153–178, Berlin, Heidelberg, 2004. Springer-Verlag.

[98] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In Proceedings
of the 1st International Conference on Scalable Information Systems, InfoScale
’06, New York City, NY, USA, 2006. ACM.

[99] K. A. R. L. Pearson. The problem of the random walk. Nature, 72(1867):342,
August 1905.

[100] R. Pemantle. A survey of random processes with reinforcement, February
2007.

[101] B. Poblete, M. Spiliopoulou, and R. Baeza-Yates. Privacy-preserving query
log mining for business confidentiality protection. ACM Transactions on the
Web (TWEB), 4(3):10:1–10:26, July 2010.

[102] M. F. Porter. An Algorithm for Suffix Stripping, pages 313–316. Morgan
Kaufmann Publishers, San Francisco, CA, USA, 1997.

[103] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, San Francisco, CA, USA, 1993.

[104] R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application
of a metric on semantic nets. IEEE Transactions on Systems, Man, and
Cybernetics (TSMC), 19(1):17–30, January/February 1989.

[105] F. Radlinski and T. Joachims. Query chains: learning to rank from im-
plicit feedback. In Proceedings of the KDD Cup Workshop at the 11th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’05, pages 239–248, New York City, NY, USA, 2005. ACM.

[106] V. V. Raghavan and H. Sever. On the reuse of past optimal queries. In
Proceedings of the 18th ACM SIGIR International Conference on Research
and Development in Information Retrieval, SIGIR ’95, pages 344–350, New
York City, NY, USA, 1995. ACM.

[107] W. Reed. The pareto, zipf and other power laws. Economics Letters, 74(1):15–
19, December 2001.

Bibliography 145

[108] P. Resnik. Using information content to evaluate semantic similarity in a tax-
onomy. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence, IJCAI, pages 448–453, 1995.

[109] M. Richardson. Learning about the world through long-term query logs. ACM
Transactions on the Web (TWEB), 2(4):1–27, October 2008.

[110] S. E. Robertson and S. Walker. Okapi/Keenbow at TREC-8. In TREC, 1999.

[111] D. E. Rose and D. Levinson. Understanding user goals in web search. In
Proceedings of the 13th International World Wide Web Conference, WWW
’04, pages 13–19, New York City, NY, USA, 2004. ACM.

[112] G. Salton and M. J. Mcgill. Introduction to Modern Information Retrieval.
McGraw-Hill, Inc., New York City, NY, USA, 1986.

[113] N. Seco and N. Cardoso. Detecting user sessions in the tumba! Web Log.
Technical report, Faculdade de Ciências da Universidade de Lisboa, March
2006.

[114] D. Shen, R. Pan, J. T. Sun, J. J. Pan, K. Wu, J. Yin, and Q. Yang. Q2C@UST:
our winning solution to query classification in KDDCUP 2005. SIGKDD Ex-
plorations Newsletter, 7:100–110, December 2005.

[115] X. Shen, B. Tan, and C. Zhai. Implicit user modeling for personalized search.
In Proceeding of the 14th Conference on Information and Knowledge Manage-
ment, CIKM ’05, pages 824–831, New York City, NY, USA, 2005. ACM.

[116] X. Shi and C. C. Yang. Mining related queries from search engine query logs.
In Proceedings of the 15th International World Wide Web Conference, WWW
’06, pages 943–944, New York City, NY, USA, 2006. ACM.

[117] S. Siegfried, M.J. Bates, and D.N. Wilde. A profile of end-user searching
behavior by humanities scholars: The Getty Online Searching Project Report
No. 2. Journal of the American Society for Information Science (JASIS),
44(5):273–291, June 1993.

[118] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of a very
large web search engine query log. SIGIR Forum, 33:6–12, September 1999.

[119] F. Silvestri, R. Baraglia, C. Lucchese, S. Orlando, and R. Perego. (Query)
History Teaches Everything, Including the Future. In Proceedings of the 6st
Latin American Web Congress, LA-WEB ’08, pages 12–22, Washington, DC,
USA, 2008. IEEE Computer Society.

[120] Fabrizio Silvestri. Mining query logs: Turning search usage data into knowl-
edge. Foundations and Trends in Information Retrieval, 1(1-2):1–174, 2010.

146 Bibliography

[121] Y. Song and L.W. He. Optimal rare query suggestion with implicit user feed-
back. In Proceedings of the 19th International World Wide Web Conference,
WWW ’10, pages 901–910, New York City, NY, USA, 2010. ACM.

[122] A. Spink, B. J. Jansen, D. Wolfram, and T. Saracevic. From e-sex to e-
commerce: Web search changes. IEEE Computer, 35:107–109, March 2002.

[123] A. Spink, H. C. Ozmutlu, and D. P. Lorence. Web searching for sexual in-
formation: an exploratory study. Information Processing and Management
(IPM), 40:113–123, January 2004.

[124] A. Spink, M. Park, B. J. Jansen, and J. Pedersen. Multitasking during web
search sessions. Information Processing and Management (IPM), 42(1):264–
275, January 2006.

[125] A. Spink and T. Saracevic. Interaction in information retrieval: selection and
effectiveness of search terms. Journal of the American Society for Information
Science (JASIS), 48(8):741–761, August 1997.

[126] A. Spink, D. Wolfram, M. B. J. Jansen, and T. Saracevic. Searching the web:
the public and their queries. Journal of the American Society for Information
Science and Technology (JASIST), 52:226–234, February 2001.

[127] J. Srivastava, R. Cooley, M. Deshpande, and P. N. Tan. Web usage min-
ing: discovery and applications of usage patterns from web data. SIGKDD
Explorations Newsletter, 1:12–23, January 2000.

[128] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clus-
tering techniques, 2000.

[129] J. Surowiecki. The Wisdom of Crowds. Anchor, New York City, NY, USA,
2005.

[130] L. Sweeney. k-ANONYMITY: a model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557–
570, October 2002.

[131] P.N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison-Wesley, Boston, MA, USA, May 2005.

[132] G. Tolomei. Search the web x.0: mining and recommending web-mediated
processes. In Proceedings of the 3rd Conference on Recommender Systems,
RecSys ’09, pages 417–420, New York City, NY, USA, 2009. ACM.

[133] G. Tolomei, S. Orlando, and F. Silvestri. Towards a task-based search and
recommender systems. In Proceedings of the 26th IEEE International Confer-
ence on Data Engineering, ICDE ’10 Workshops, pages 333–336, Washington,
DC, USA, 2010. IEEE Computer Society.

Bibliography 147

[134] V.S. Verykios, E. Bertino, I.N. Fovino, L.P. Provenza, Y. Saygin, and
Y. Theodoridis. State-of-the-art in privacy preserving data mining. ACM
SIGMOD Record, 33(1):50–57, March 2004.

[135] M. Vlachos, S. S. Kozat, and P. S. Yu. Optimal distance bounds for fast
search on compressed time-series query logs. ACM Transactions on the Web
(TWEB), 4:6:1–6:28, April 2010.

[136] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. Identifying similarities,
periodicities and bursts for online search queries. In Proceedings of the Inter-
national Conference on Management of Data, SIGMOD ’04, pages 131–142,
New York City, NY, USA, 2004. ACM.

[137] M. Vlachos, P.S. Yu, V. Castelli, and C. Meek. Structural periodic measures for
time-series data. Data Mining and Knowledge Discovery, 12(1):1–28, January
2006.

[138] D. Vogel, S. Bickel, P. Haider, R. Schimpfky, P. Siemen, S. Bridges, and
T. Scheffer. Classifying search engine queries using the web as background
knowledge. SIGKDD Explorations Newsletter, 7:117–122, December 2005.

[139] J. R. Wen, J. Y. Nie, and H. Zhang. Query clustering using user logs. ACM
Transactions on Information Systems (TOIS), 20(1):59–81, January 2002.

[140] R. W. White, M. Bilenko, and S. Cucerzan. Leveraging popular destinations
to enhance web search interaction. ACM Transactions on the Web (TWEB),
2(3):16:1–16:30, July 2008.

[141] L. Xiong and E. Agichtein. Towards privacy-preserving query log publishing.
In Query Log Analysis: Social And Technological Challenges. A workshop at
the 16th International World Wide Web Conference, WWW ’07, New York
City, NY, USA, 2007. ACM.

[142] J. L. Xu and A. Spink. Web research: The excite study. In Proceedings of the
World Conference on the WWW and Internet, WebNet ’00, pages 581–585.
AACE, 2000.

[143] S. Yizhou, X. Kunqing, L. Ning, Y. Shuicheng, Z. Benyu, and C. Zheng. Causal
relation of queries from temporal logs. In Proceedings of the 16th International
World Wide Web Conference, WWW ’07, pages 1141–1142, New York City,
NY, USA, 2007. ACM.

[144] O. Zäıane and A. Strilets. Finding similar queries to satisfy searches based
on query traces. Advances in Object-Oriented Information Systems, 2426:349–
359, September 2002.

148 Bibliography

[145] Y. Zhang, B. J. Jansen, and A. Spink. Time series analysis of a web search en-
gine transaction log. Information Processing and Management (IPM), 45:230–
245, March 2009.

[146] Y. Zhang and A. Moffat. Some observations on user search behavior. In Pro-
ceedings of the 11th Australian Document Computing Symposium. Brisbane,
Australia, 2006.

[147] Z. Zhang and O. Nasraoui. Mining search engine query logs for query rec-
ommendation. In Proceedings of the 15th International World Wide Web
Conference, WWW ’06, pages 1039–1040, New York City, NY, USA, 2006.
ACM.

[148] Q. Zhao, S.C.H. Hoi, T.Y. Liu, S.S. Bhowmick, M.R. Lyu, and W.Y. Ma.
Time-dependent semantic similarity measure of queries using historical click-
through data. In Proceedings of the 15th International World Wide Web Con-
ference, WWW ’06, pages 543–552, New York City, NY, USA, 2006. ACM.

[149] Y. Zhao and G. Karypis. Evaluation of hierarchical clustering algorithms for
document datasets. In Proceeding of the 11th Conference on Information and
Knowledge Management, CIKM ’02, pages 515–524, New York City, NY, USA,
2002. ACM.

[150] Y. Zhao and G. Karypis. Empirical and theoretical comparisons of selected
criterion functions for document clustering. Machine Learning, 55(3):311–331,
June 2004.

[151] George K. Zipf. Human Behavior and the Principle of Least Effort. Addison-
Wesley, Boston, MA, USA, 1949.

	Introduction
	Contribution
	Organization

	Web Search Engines
	The Big Picture
	Crawling
	The Crawling Algorithm
	The Crawl Frontier
	Web Page Fetching
	Web Page Parsing
	Web Page Storing

	Indexing
	Text-based Indexing
	Link-based Indexing

	Query Processing
	Text-based Ranking
	Link-based Ranking

	Query Log Mining
	What is a Query Log?
	A Characterization of Web Search Queries
	Time Analysis of Query Logs
	Time-series Analysis of Query Logs
	Privacy Issues in Query Logs
	Applications of Query Log Mining
	Search Session Discovery
	Query Suggestion

	Search Task Discovery
	Introduction
	Contribution
	Organization

	Related Work
	Query Log Analysis
	Session Size Distribution
	Query Time-Gap Distribution

	Task Discovery Problem
	Theoretical Model

	Ground-truth: Definition and Analysis
	Task-based Query Similarity
	Time-based Approach
	Unsupervised Approach
	Supervised Approach

	Task Discovery Methods
	TimeSplitting-t
	QueryClustering-m

	Experiments
	Validity Measures
	Evaluation

	Summary

	Search Task Recommendation
	Introduction
	Contribution
	Organization

	Related Work
	Anatomy of a Task Recommender System
	Task Synthesis
	Basic Task Representation
	Task Document Clustering

	Task Modeling
	Random-based (baseline)
	Sequence-based
	Association-Rule based

	Experiments
	Experimental Setup
	Evaluating Recommendation Precision
	User Study
	Anecdotal Evidences

	Summary

	Conclusions
	Bibliography

