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In this paper, we propose two new representation formulas for the conditional marginal probability den- 

sity of the multi-factor Heston model. The two formulas express the marginal density as a convolution 

with suitable Gaussian kernels whose variances are related to the conditional moments of price returns. 

Via asymptotic expansion of the non-Gaussian function in the convolutions, we derive explicit formu- 

las for European-style option prices and implied volatility. The European option prices can be expressed 

as Black–Scholes style terms plus corrections at higher orders in the volatilities of volatilities, given by 

the Black–Scholes Greeks. The explicit formula for the implied volatility clearly identifies the effect of 

the higher moments of the price on the implied volatility surface. Further, we derive the relationship 

between the VIX index and the variances of the two Gaussian kernels. As a byproduct, we provide an ex- 

planation of the bias between the VIX and the volatility of total returns, which offers support to recently 

proposed methods to compute the variance risk premium. Via a series of numerical exercises, we anal- 

yse the accuracy of our pricing formula under different parameter settings for the one- and two-factor 

models applied to index options on the S&P500 and show that our approximation substantially reduces 

the computational time compared to that of alternative closed-form solution methods. In addition, we 

propose a simple approach to calibrate the parameters of the multi-factor Heston model based on the 

VIX index, and we apply the approach to the double and triple Heston models. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Motivation 

The well-known Heston (1993) model provides a natural gen- 

ralization of the Black and Scholes approach to option pricing by 

ntroducing stochastic dynamics for the volatility of returns. With 

ts ability to reproduce several empirical features in the dynam- 

cs of asset prices, such as the leverage effect and the cluster- 

ng of volatility, the Heston model has become one of the most 

idely used stochastic volatility models in the derivatives market. 

hile the Heston model can generate smiles and smirks, it does 

ot provide sufficient flexibility to capture the shape of the im- 

lied volatility surfaces, in particular, the largely independent fluc- 

uations in slope and level over time. Another drawback of the He- 
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ton model is that it predicts a flattening of the curvature of the 

mplied volatility that is faster than that observed in the market 

hen time to maturity increases. To address these shortcomings, 

 multi-factor extension of the Heston model has been proposed. 

hristoffersen, Heston, and Jacobs (2009) were among the first to 

how that at least two factors are needed to realistically capture 

he implied volatility slope and level dynamics. Their results indi- 

ate that one factor is strongly mean reverting, whereas the other 

s slowly varying, providing more flexible modelling of the volatil- 

ty term structure. 

Exact analytical solutions for the price of vanilla European call 

ptions under the Heston and multi-factor Heston model are avail- 

ble in terms of integrals in the complex plane that must be com- 

uted by numerical integration over the characteristic functions 

 Christoffersen et al., 2009; Cui, del Bano Rollin, & Germano, 2017; 

uffie, Pan, & Singleton, 20 0 0; Fatone, Mariani, Recchioni, & Zir- 

lli, 2009; 2013; Heston, 1993; Lewis, 20 0 0; Recchioni & Sun, 2016; 

ecchioni & Tedeschi, 2017; Veng, Yoon, & Choi, 2019 ). 

https://doi.org/10.1016/j.ejor.2020.11.050
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.11.050&domain=pdf
mailto:m.c.recchioni@univpm.it
mailto:g.iori@city.ac.uk
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Here, we propose two new closed analytical solutions based on 

wo integral representation formulas for the conditional marginal 

ensity function, which we express as a convolution with suitable 

aussian kernels. These formulas provide a natural way to connect 

he margins of the multi-factor Heston model to the probability 

ensity function of the Black–Scholes model. Specifically, we ex- 

ract two Gaussian kernels ( Theorems 2.1 and 2.2 ). The first kernel, 

 �0 
, well known in the literature, has a variance �0 that is inde- 

endent of the volatilities of volatilities (vols of vols) and is given 

y the integrated conditional mean of the point-in-time variance. 

he other kernel, G �2 
, is hidden in the marginal probability density 

nd has therefore not been explored in the literature. The variance 

2 coincides with the conditional variance of continuously com- 

ounded returns. We show that G �2 
is the “complete” kernel of 

he Heston model and its multi-factor generalization. Our repre- 

entation formulas allow us to express the price of any derivative 

ontract, not just vanilla contracts, as the price in a Black–Scholes 

orld, with variance �0 or �2 , convolved with a suitable function 

hat does not depend on the specific payoff of the contract. 

The convolution formulas can be computed by solving the 

ntegrals numerically. While numerical integration methods are 

xtremely powerful in terms of accuracy, they do not provide an 

xplicit link between the structural properties of the model and 

he characteristics of the prices. In addition, while closed-form 

olutions are particularly useful for model calibration, common 

ractice is to calibrate the implied volatility observed in the 

arket, rather than the option prices, because implied volatility 

s a standardized measure of option prices that makes them 

omparable even when the underlying assets are not the same. 

nfortunately, exact closed-form solutions for implied volatilities 

re not available in the Heston and multi-factor Heston framework. 

herefore, easy-to-implement analytical approximations based on 

erturbation and asymptotic methods have become popular. Ap- 

roximations not only help to accelerate the calibration to market- 

bserved quantities but also enhance the understanding of the 

nalytical features of the model and the implied volatility surface. 

.2. Literature review 

The earliest and best known asymptotic results are from Lewis 

20 0 0) , who derived an asymptotic expansion for small values of 

he vols of vols. This result was followed by Lee (2001) , who obtain

imilar results assuming a slow mean reversion of volatility, and 

ouque and Lorig (2011) , who assume fast mean-reverting volatil- 

ty. Additionally, Antonelli and Scarlatti (2009) make an expan- 

ion around zero correlation. Friz, Gerhold, Gulisashvili, and Sturm 

2011) derive an asymptotic expansion for the implied volatility 

f the Heston model for a large strike price. Forde and Jacquier 

2009) obtain the small-time behavior of the implied volatility 

n the Heston model (with correlation), while Forde and Jacquier 

2011) use large deviation techniques to obtain the small-time 

ehavior of the implied volatility for general stochastic volatility 

odels with zero correlation. Kristensen and Mele (2011) do not 

pproximate the asset price directly but develop a power series ex- 

ansion of the expected bias that would arise if the Black–Scholes 

odel was used to price derivatives when the true market dy- 

amics obeyed the Heston model. Drimus (2011) follows a simi- 

ar approach using a different series expansion and shows how the 

onvexity in volatility, measured by the Black–Scholes Volga, and 

he sensitivity of delta with respect to volatility, measured by the 

lack–Scholes Vanna, impact option prices in the Heston model. 

ouque, Papanicolaou, Sircar, and Solna (2011) derive an asymp- 

otic expansion for general multiscale stochastic volatility models 

sing combined singular and regular perturbation theory. Bergomi 

nd Guyon (2011) also consider multi-factor stochastic volatility 

odels and derive an approximation for the volatility smile at the 
337 
econd order in the vols of vols. Their results coincide with those 

f Lewis (20 0 0) in the case of the Heston model. Lorig, Pagliarini,

nd Pascucci (2017) derive a family of asymptotic expansions for 

uropean-style option prices and implied volatilities for a general 

lass of local stochastic volatility models. 

Some authors have derived asymptotic expansions in a jump- 

iffusion stochastic volatility setting (see Berestycki, Busca, & Flo- 

ent, 2004; Medvedev & Scaillet, 2007 ). More recently, Jacquier and 

orig (2014) provide an explicit implied volatility approximation 

or any model with an analytically tractable characteristic func- 

ion, which includes both affine stochastic volatility and exponen- 

ial Lévy models. Nicolato and Sloth (2012) and Takahashi and 

amada (2012) develop asymptotic expansions around the Black–

choles model for stochastic volatility models with jump diffu- 

ion. Pagliarini and Pascucci (2013) add jumps to a local-stochastic 

olatility model. 

Benhamou, Gobet, and Miri (2009) employ Malliavin calculus 

o develop an approximation formula under the one-factor Hes- 

on model with time-dependent parameters. Their option prices 

re given by a Black–Scholes term plus corrections related to the 

reeks of the option. Nagashima, Chung, and Tanaka (2014) extend 

hese results to the general multi-factor Heston model with time- 

ependent parameters and find a similar expansion but with an 

xtra term that captures the interaction between the different vari- 

nce factors. Alós et al. (2012) use Malliavin calculus to study the 

hort-term behavior of implied volatility for jump-diffusion mod- 

ls with stochastic volatility. Veng et al. (2019) derive an asymp- 

otic expansion for put prices, extending the results of Benhamou 

t al. (2009) to the general multi-factor Heston model with time- 

ependent parameters. 

Considerable attention has also been devoted to approximat- 

ng the risk-neutral density, as proposed by Abadir and Rockinger 

20 03) , Aït-Sahalia (20 02) , Egorov, Li, and Xu (20 03) , and Yu

2007) . 

In line with this literature, we propose an asymptotic expan- 

ion of the conditional marginal density for small values of the 

ols of vols. The main difference with respect to the literature is 

hat the expansion is done after extracting the Gaussian kernels, 

.e., we expand only the function that is convolved with the Gaus- 

ian kernels. This approach yields particularly interesting results 

hen the G �2 
kernel is used, given that its dependence on the 

ols of vols is fully retained. With our approach, we naturally ob- 

ain option prices that can be expressed as the Black–Scholes price 

lus correction terms related to the Greeks of the options. Sim- 

larly, the implied volatility can be written as the square root of 

he integrated conditional variance plus corrections due to higher- 

rder risks. These decompositions provide a clear understanding of 

ow option prices and implied volatility respond to changes in the 

odel parameters and underlying quantities, which is very impor- 

ant in practice for hedging purposes. 

.3. Main contribution 

Our paper contributes to the existing literature in several 

espects. First, we provide two new exact formulas for the 

onditional marginal density of the multi-factor Heston model 

 Theorems 2.1 and 2.2 ). As mentioned above, each formula ex- 

resses the marginal probability density as a convolution of a 

aussian kernel whose variance is related to the price-return pro- 

ess. While we do not compute these formulas numerically, this 

pproach avoids some numerical challenges in computing the com- 

lex integrals involved in option pricing in the multi-factor Heston 

odel. 

Second, following the approach of Zhang, Shu, and M. (2010) ; 

hang, Zhen, Sun, and Zhao (2017) , we derive analytical formulas 

or the higher-order cumulants in the multi-factor Heston frame- 
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ork. These formulas show that the variance of the Gaussian ker- 

el, G �2 
, is given by the variance of the continuously compounded 

eturn. 

Third, we provide explicit approximation formulas for the 

arginal density function as a Gaussian kernel plus corrections us- 

ng an asymptotic expansion for the non-Gaussian term in the con- 

olution that defines the marginal probability. With this expansion, 

e obtain explicit formulas for European vanilla call and put op- 

ions prices that can be expressed as the Black–Scholes price plus 

orrections at higher orders of the vols of vols (see Proposition 3.1 ). 

hese formulas satisfy the put-call parity equation at any order 

f approximation. The formulas using the Gaussian kernel G �0 
, 

hile derived with a different approach, are equivalent to those of 

ergomi and Guyon (2011) for the Heston model and are similar 

o those of Veng et al. (2019) for the multi-factor Heston model. 

owever, these authors explicitly compute the first-order correc- 

ions in the slow and fast time scales, so they do not capture the 

ffect of price skewness on the convexity of the implied volatility. 

he formulas using the Gaussian kernel G �2 
are new and outper- 

orm those obtained using the Gaussian kernel G �0 
for out-of-the- 

oney options. 

Finally, we derive an approximation for the implied volatility 

rom a second-degree polynomial function of the forward money- 

ess. This formula allows the effect of price skewness on the asym- 

etry of the volatility smile to be clearly identified, in addition to 

he level, slope, and curvature of the implied volatility smirk. For 

he Heston model with zero drift, our formula is analogous to that 

f Bergomi and Guyon (2011) , and is in line with the approxima- 

ion formula in a non-parametric setting proposed by Zhao, Zhang, 

nd Chang (2013) . The key insight of our formula is explicit expres- 

ions for the level, slope and convexity in terms of the cumulative 

ncertainty of the asset price and the integrated volatility process. 

his is a new result that has not been reported in the literature. 

Our work also contributes to the growing literature that 

xplores the bias between the VIX index and the integrated 

onditional mean of the point-in-time variance, and it provides 

 possible interpretation of the variance risk premium. Defining 

he variance risk premium as the positive difference between the 

econd cumulants in the physical and risk-neutral measures (in 

ine with Zhao et al., 2013 ), we compute the premium explicitly 

n the multi-factor Heston model. In particular, we show that 

he risk-neutral second cumulant coincides with the square root 

f �2 /T , which is an implied volatility. Furthermore, we show 

hat the VIX index can be associated not only with �0 (i.e., the 

ntegrated conditional variance) but also with �2 (i.e., the variance 

f the compounded return in the risk-neutral measure) opening 

he opportunity to calibrate the parameters of the multi-factor 

eston model directly from the VIX. This result also provides 

upport to recently proposed methods to compute the variance 

isk premium from model-free option-implied volatility measures. 

e also propose an explanation for the bias usually observed 

etween the VIX index and the volatility of total returns. This 

opic is discussed further in Section 3.3 . 

Finally, we provide a one-dimensional integral representation 

ormula for European call and put options in the multi-factor He- 

ton model following the approach in Recchioni and Sun (2016) . 

hese formulas are used as an exact benchmark against which to 

est the accuracy of our option price approximations. 

The rest of this paper is organized as follows. In Section 2 , we

eview the multi-factor Heston model, derive the main results of 

he paper, i.e., the two representation formulas for the conditional 

arginal density function, and introduce the two Gaussian kernels 

 �0 
and G �2 

. In Section 3 , we derive approximation formulas, in 

owers of the vols of vols, for option prices and implied volatility, 

nd we provide an interpretation of the volatility smile. We then 

erive the relationship between the variances of the two kernels 
338 
nd the VIX index. In Section 4 , we present two simulation stud- 

es to assess the accuracy of our approximated formulas, and in 

ection 5 , we present empirical analyses to assess the effectiveness 

f our approach in terms of model calibration and forecasting op- 

ion prices one day ahead. In Section 6 , we show empirically that 

he squared VIX is better approximated by �2 than �0 , and we use 

he VIX index to calibrate the parameters of the double and triple 

eston models. Our results suggest that the dynamics of the third 

actor may be influenced by changes in macroeconomic conditions. 

ection 7 concludes. The proofs of the main results are given in 

ppendix A , while Appendices B and C report the derivation of the 

ormulas for the option pricing with the expansion based on the 

aussian kernel G �0 
( Appendix B ) and the true marginal density 

 Appendix B ). Supplementary material with detailed proofs and 

ome additional results is available online. 

. Multi-factor Heston model treatment 

In this section, we present the multi-factor Heston stochastic 

olatility model and the main theoretical results of the paper. The 

nal goal is to derive an explicit, approximate expression for the 

rice of European call and put options and for the implied volatil- 

ty in the multi-factor Heston framework. The key results are two 

epresentation formulas for the conditional marginal density func- 

ion (which is the starting point for the derivation of the option 

rices) associated with the multi-factor Heston model. The first 

epresentation formula shows that the conditional marginal den- 

ity can be expressed as the convolution of a Gaussian kernel, that 

oes not depend on the Heston vols of vols parameters, and a 

unction that includes all the effects of the vols of vols. The second 

ormula reveals the complete Gaussian kernel, i.e., the one that in- 

ludes all the effects of the vols of vols and is able to fully capture

he process dynamics. 

The multi-factor Heston model ( Christoffersen et al., 2009 ) as- 

umes the following stochastic volatility model: 

d x t = 

( 

r(t) − 1 

2 

n ∑ 

j=1 

v j,t 

) 

d t + 

n ∑ 

j=1 

√ 

v j,t dZ j,t , t > 0 , (1) 

d v j,t = χ j (v ∗j − v j,t ) d t + γ j 

√ 

v j,t d W j,t , t > 0 , (2) 

here x t denotes the log-price variable, v 1 ,t , . . . , v n,t is the cor- 

esponding variances, r(t) is the instantaneous risk-free rate (as- 

umed to be known in advance), χ j , v ∗j , and γ j are positive con- 

tants, and Z j,t , W j,t , j = 1 , 2 , . . . , n, are standard Wiener processes.

ll correlations among the Wiener processes are zero, except for 

(dZ j,t , dW j,t ) = ρ j dt, where ρ j ∈ (−1 , 1) , j = 1 , 2 , . . . , n are con-

tant correlation coefficients. Dividends are not included. The sys- 

em of Eqs. (1) –(2) is equipped with the following initial condi- 

ions: 

x 0 = log ̃  S 0 , (3) 

v j, 0 = ̃

 v j, 0 , (4) 

here ˜ S 0 and ̃

 v j, 0 , j = 1 , 2 , . . . , n, are the initial spot price and vari-

nce respectively, which are assumed to be random variables con- 

entrated at a point with probability one. 

As specified in Heston (1993) , the quantities χ j are the speeds 

f mean reversion, v ∗
j 

represents the long-term means, and γ j de- 

otes the local variances (or volatilities of volatility) of each volatil- 

ty process v j . These parameters are assumed to be positive, so the 

rocess is well defined. 

Notably, if the Feller condition is enforced, i.e., 2 χ j v ∗j /γ
2 
j 

> 1 , 

he variances v j,t are positive for any t > 0 with probability one 
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stationary volatility) and v j, 0 = ̃

 v j, 0 > 0 , j = 1 , 2 , . . . , n (see Revuz

nd Yor [25, Chapter XI] for the Bessel process). 

Furthermore, we use γ , v to denote the vectors contain- 

ng the vols of vols, γ = (γ1 , γ2 , . . . , γn ) , and the variances,

 = (v 1 , v 2 , . . . , v n ) , respectively. The transition probability density

unction (pdf) associated with the stochastic differential system 

1), (2) is denoted by p f (x, v , t, x ′ , v ′ , t ′ ) , (x, v ) , (x ′ , v ′ ) ∈ R × R 

n + ,
 , t ′ ≥ 0 , t ′ − t > 0 , where R denotes the set of real numbers, R 

n is

he n -dimensional Euclidean vector space, and R 

n + the positive or- 

hant. We also introduce the processes X t ′ and Y t ′ associated with 

he multi-factor Heston model (1) : 

 t ′ = 

∫ t ′ 

t 

n ∑ 

j=1 

√ 

v j,τ dZ j,τ , (5) 

 t ′ = 

∫ t ′ 

t 

n ∑ 

j=1 

[ v j,τ − E(v j,τ |F t )] dτ , (6) 

here F t is the information set, i.e., the continuous σ -algebra gen- 

rated by the point-in-time volatility processes, and E(v j,s |F t ) is 

he conditional mean of the point-in-time variance given by 

(v j,t ′ |F t ) = v j,t e −χ j (t ′ −t) + v ∗j (1 − e −χ j (t ′ −t) ) , t < t ′ . (7)

ccording to Zhang et al. (2017) , X t ′ measures the cumulative un- 

ertainty of the asset return and Y t ′ 1 is the uncertainty of the in- 

egrated variance process over the time interval [ t , t ′ ] . R t 
′ 

t is the

ontinuously compounded return defined as 

 

t ′ 
t = x t ′ − x t = 

∫ t ′ 

t 

[ ( 

r(τ ) − 1 

2 

n ∑ 

j=1 

v j,τ

) 

dτ + 

n ∑ 

j=1 

√ 

v j,τ dZ j,τ

] 

(8) 

ith 

(R 

t ′ 
t | F t ) = 

∫ t ′ 

t 

[ 

r(τ ) − 1 

2 

n ∑ 

j=1 

E(v j,τ | F t ) 

] 

dτ

hich is related to processes X t ′ and Y t ′ as follows 

 

t ′ 
t − E(R 

t ′ 
t | F t ) = X t ′ −

1 

2 

Y t ′ . (9) 

In the following, we provide a representation formula for the 

onditional marginal density function, which enables extraction 

f the Gaussian kernel underlying the multi-factor Heston model 

 Theorems 2.1 and 2.2 ). Specifically, we use G � to denote the Gaus-

ian kernel with variance �(t , t ′ ) , t < t ′ , that is: 

G �(y, t, t ′ ) = 

1 √ 

2 π�(t, t ′ ) 
e 

− 1 
2�(t ,t ′ ) 

(
y −∫ t ′ t r(s ) ds + 1 2 �(t ,t ′ ) 

)2 

= 

1 

2 π

∫ + ∞ 

−∞ 

e 
ık 

[ 
y −∫ t ′ t r(s ) ds + 1 2 �(t ,t ′ ) 

] 
− 1 

2 �(t ,t ′ ) k 2 
dk . (10) 

e extract two Gaussian kernels 2 , identified in Theorems 2.1 and 

.2 , that we denote as the zero-order kernel G �0 
and the second- 

rder kernel G �2 
. As we show later, the terms “zero-order” and 

second-order” reflect the fact that they contain, respectively, no 

owers of γ and all terms of second degree in γ . 

Theorem 2.1 shows that the marginal probability density of the 

og-price variable can be written (see Eq. (18) ) as the convolution 

f the Gaussian kernel G �0 
(independent of the vols of vols) and 

he function L γ , which accounts for the vols of vols effect. 
1 The conditional moments of the process Y t ′ are also known as risk-neutral cu- 

ulants (see, Zhao et al., 2013 ). 
2 We refer the reader to the supplementary material for a discussion of an addi- 

ional Gaussian kernel G �1 
. 

339 
heorem 2.1. The marginal probability density of the log-price vari- 

ble conditioned on v t = v is given by 

M(x, v , t, x ′ , t ′ ) = 

∫ 
R n 

+ 
p f (x, v , t, x ′ , v ′ , t ′ ) d v ′ 

= 

1 

2 π

∫ + ∞ 

−∞ 

e 
ık 

[ 
(x ′ −x ) −∫ t ′ t r(s ) ds + 1 2 �0 (t ,t ′ ) 

] 
− 1 

2 �0 (t ,t ′ ) k 2 ︸ ︷︷ ︸ 
F ourier trans f orm of Gaussian kernel 

× e 

∑ n 
j=1 

∫ t ′ 
t E(v j,s |F t ) 

[
γ 2 

j 
2 B 2 

j 
(k,s,t ′ )+ ı kρ j γ j B j (k,s,t ′ ) 

]
ds ︸ ︷︷ ︸ 

cont ribut ion f rom v ols of v ols 

dk, 

x, x ′ ∈ R , v ∈ R 

n + , t , t ′ ≥ 0 , t ′ − t > 0 , (11) 

here ı is an imaginary unit and E(v j,s | F t ) is the conditional mean

7) . Here, B j is given by 

 j (k, t, t ′ ) = 

1 

2 

(k 2 − ı k ) 
1 − e −2 ζ j (t ′ −t) 

(ζ j + ν j ) + (ζ j − ν j ) e 
−2 ζ j (t ′ −t) 

, (12) 

here ζ j and ν j are the following quantities: 

j (k ) = 

1 

2 

(
4 ν2 

j + γ 2 
j (k 2 − ı k ) 

)1 / 2 
, (13) 

j (k ) = 

1 

2 

(ı kρ j γ j + χ j ) . (14) 

urthermore, M can be written as: 

M(x, v , t, x ′ , t ′ ) = 

∫ + ∞ 

−∞ 

G �0 
(x ′ − x − y, t, t ′ ) L γ (y, t, t ′ ) dy, (15) 

here �0 (t , t ′ ) is given by: 

0 (t , t ′ ) = 

n ∑ 

j=1 

∫ t ′ 

t 

E(v j,s | F t ) ds, (16) 

here G �0 
is the Gaussian kernel in (10) , computed for �(t , t ′ ) =

0 (t , t ′ ) , and L γ is a function that accounts in full for the effects

f the vols of vols: 

 γ (y, t, t ′ ) = 

1 

2 π

∫ ∞ 

−∞ 

e ı k y e 

∑ n 
j=1 

∫ t ′ 
t E(v j,s |F t ) 

[
γ 2 

j 
2 B 2 

j 
(k,s,t ′ )+ ı kρ j γ j B j (k,s,t ′ ) 

]
ds 

dk . (17) 

roof. See Appendix A . �

Building from the previous result, we derive Theorem 2.2 , 

hich provides an alternative representation of the marginal den- 

ity function expressed as the convolution of the Gaussian kernel 

 �2 
and the function L 

∗
γ . 

heorem 2.2. The marginal probability density of the log-price vari- 

ble conditioned on v t = v is given by 

(x, v , t, x ′ , t ′ ) 

= 

1 

2 π

∫ + ∞ 

−∞ 

e 
ık 

[ 
(x ′ −x ) −∫ t ′ t r(s ) ds + 1 2 �2 (t ,t ′ ) 

] 
− 1 

2 �2 (t ,t ′ ) k 2 
e 
∑ n 

j=1 

∫ t ′ 
t E(v j,s |F t ) H j (k,s,t ′ ) ds dk 

= 

∫ + ∞ 

−∞ 

G �2 
(x ′ − x − y, t, t ′ ) L ∗γ (y, t, t ′ ) dy, (18) 

here L 

∗
γ is: 

 

∗
γ (y, t, t ′ ) = 

1 

2 π

∫ ∞ 

−∞ 

e ı k y e 
∑ n 

j=1 

∫ t ′ 
t E(v j,s |F t ) H j (k,s,t ′ ) ds dk . (19) 

ere, �2 is defined by 

2 (t , t ′ ) = �0 (t , t ′ ) − 2 S 1 (t , t ′ ) + 2 S 2 (t , t ′ ) 

= 

n ∑ 

j=1 

∫ t ′ 

t 

E(v j,s | F t ) 

×
[ 

(1 − ρ2 
j ) + 

(
γ j 

2 χ j 

(
1 − e −χ j (t ′ −s ) 

)
− ρ j 

)2 
] 

ds, (20) 
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nd S 1 and S 2 are given by: 

 1 (t , t ′ ) = 

1 

2 

n ∑ 

j=1 

ρ j γ j 

χ j 

∫ t ′ 

t 

E(v j,s | F t ) 
(
1 − e −χ j (t ′ −s ) 

)
ds, (21) 

 2 (t , t ′ ) = 

n ∑ 

j=1 

γ 2 
j 

8 χ2 
j 

∫ t ′ 

t 

E(v j,s | F t ) 
(
1 − e −χ j (t ′ −s ) 

)2 
ds, (22) 

hile H j is given by: 

 j (k, t, t ′ ) = 

γ 2 
j 

2 
B 2 j (k, t, t ′ ) + ı kρ j γ j B j (k, t , t ′ ) 

+ 

1 

2 
(k 2 − ık ) 

[
−ρ j γ j 

χ j 

(1 − e 
−χ j (t ′ −t) 

) + 

1 

4 

γ 2 
j 

χ2 
j 

(
1 − e 

−χ j (t ′ −t) 
)2 
]
. 

(23) 

urthermore, the following expansion holds: 

 

∗
γ (y, t, t ′ ) = 

1 

2 π

∫ ∞ 

−∞ 

e ı k y e S 1 (t ,t ′ )(ı k 3 + ı k )+ S 2 (t ,t ′ )(k 4 −2 ık 3 −ık )+ S 2 c (t ,t ′ )(k 4 −ı

‖ γ ‖ → 0 

+ , 

where S 1 and S 2 are given in Eqs. (21) and (22) , while S 2 c , S 3 c and

 3 d are: 

S 2 c (t , t ′ ) = 

n ∑ 

j=1 

γ 2 
j 
ρ2 

j 

2 χ j 

∫ t ′ 

t 

E(v j,s | F t ) e 
−χ j (t ′ −s ) 

∫ t ′ 

s 

(
e χ j (t ′ −τ ) − 1 

)
d τd s, 

(25) 

 3 c (t , t ′ ) = 

n ∑ 

j=1 

γ 3 
j 
ρ j 

χ j 

∫ t ′ 

t 

E(v j,s | F t ) 

×
{

1 

8 
ψ 

2 
j (s, t ′ ) + 

(t ′ − s ) 

4 χ j 

(
e −2 χ j (t ′ −s ) − 2 e −χ j (t ′ −t) 

)
+ 

ψ j (s, t ′ ) 
4 χ j 

}
ds,

(26

 3 d (t , t ′ ) = 

n ∑ 

j=1 

γ 3 
j 
ρ3 

j 

2 χ j 

∫ t ′ 

t 

E(v j,s | F t ) 

×
[
ψ j (s, t ′ ) 

χ j 

− (t ′ − s ) 

χ j 

e −χ j (t ′ −s ) − (t ′ − s ) 2 

2 

e −χ j (t ′ −s ) 

]
, 

(27)

here ψ j is given by: 

 j (t , t ′ ) = 

(1 − e −χ j (t ′ −t) ) 

χ j 

, t < t ′ . (28) 

roof. See Appendix A . �

We note that the expansion of H j in powers of γ j , as γ j → 0 + ,
ith degree greater than two involves polynomial functions of k 

ith degree greater or equal to three (see Appendix A ). Thus, the 

unction L 

∗
γ contains only terms of order k or k n with n ≥ 3 . All

erms of order k 2 are absorbed in G �2 
. Therefore, we call G �2 

the

omplete kernel of the multi-factor Heston model, and formula 

18) is used to derive the option prices and implied volatility ap- 

roximations in the next section of this paper 3 . 

Te functions L γ in (17) and L 

∗
γ in (24) satisfy the following 

quation: ̂ 

 γ = e −(k 2 −ık )(S 2 (t ,t ′ ) −S 1 (t ,t ′ )) ̂ L 

∗
γ , (29) 
3 Higher-order Gaussian kernels have been discussed in Wand and Schucany 

1990) . 

p

t

340 
 (k 2 −ık ) 2 S 3 c (t ,t ′ ) −ı k (k 4 −ı k 3 ) S 3 d (t ,t ′ ) + o( ‖ γ ‖ 3 ) dk , 

(24) 

here ̂ L γ and 

̂ L 

∗
γ are the Fourier transforms of the functions L γ

nd L 

∗
γ with respect to the log-price, respectively. 

To provide intuition for the two Gaussian kernels, we derive the 

elationship between their variances, �0 and �2 , and the processes 

 t , Y t and R t 
′ 

t , defined by Eq. (5) , Eq. (6) and Eq. (8) . 

roposition 2.3. Let t < t ′ and X t ′ , Y t ′ , and R t 
′ 

t be the processes in

5) , (6) and (8) . We have the following expressions for the conditional 

oments of X t ′ and Y t ′ : 

E(X 

2 
t ′ | F t ) = �0 (t, T ) , E(X 

3 
t ′ | F t ) = 6 S 1 (t , t ′ ) , 

E(Y 2 t ′ | F t ) = 8 S 2 (t , t ′ ) , E(X t ′ Y t ′ | F t ) = 2 S 1 (t , t ′ ) , (30) 

(X 

2 
t ′ Y t ′ | F t ) = 4 S 2 c (t , t ′ ) + 8 S 2 (t , t ′ ) , E(X t ′ Y 

2 
t ′ ) = 8 S 3 c (t , t ′ ) . 

(31) 

here �0 , S 1 , S 2 , S 2 c , and S 3 c are given in (16) , (21) , (22) , (25) and

26) 4 . Finally, in the multi-factor Heston model (1) , the conditional 

ariance of the continuously compounded return R t 
′ 

t and the price 

kewness formula, as defined in Das and Sundaram (1999) , are: 

 ar(R 

t ′ 
t | F t ) = E 

(
(R 

t ′ 
t − E t (R 

t ′ 
t )) 

2 | F t 

)
= �2 (t , t ′ ) , (32)

nd 

kewness DS = 

E(X 

3 
t ′ | F t ) [

E(X 

2 
t ′ | F t ) 

]3 / 2 = 6 

S 1 (t , t ′ ) 
�0 (t , t ′ ) 3 / 2 . (33) 

here �2 is given in (20) . 

roof. The proof follows using the approach proposed in Zhang 

t al. (2017) . A detailed proof is given in the supplementary ma- 

erial online. �

Notably, the proposed formulas hold for the expectation both 

n the risk-neutral and physical probability measures. This distinc- 

ion is necessary in the discussion of the variance risk premium (in 

ection 3.3 ). 

Interestingly, the variance of the Gaussian kernel G �0 
is given by 

he second-order conditional moment of the process X t in (5) and 

s independent of the vols of vols, while the variance of the Gaus- 

ian kernel G �2 
coincides with the conditional variance of the con- 

inuously compounded return R t 
′ 

t and, through its dependence on 

he vols of vols, γ j , fully captures the dynamics of the multi-factor 

eston model. This makes G �2 
the most natural kernel representa- 

ion of the conditional marginal M. 

Furthermore, Eq. (33) shows that the function S 1 is responsi- 

le for the price skewness and the mixed moment between the 

umulative uncertainty of the asset return and the uncertainty of 

he integrated variance process over the time interval [ t , t ′ ] . In the

ext section, we show that the price skewness, Skewness DS , given 

n (33) , appears in the coefficient of the second-order term of the 

mplied volatility in Eq. (63) and may cause the “volatility smile”

onvexity to change. 

As a corollary of Theorem 2.2 , we provide expansions of the 

onditional marginal density M in powers of the vols-of-vols vector 

up to the third order. 
4 The explicit formula for the conditional moment E t (Y 3 t ′ ) is derived in the sup- 

lementary material. Notably, E t (Y t ′ ) is a homogeneous function of degree four in 

he vols of vols. 
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orollary 2.4. The following expansion of the conditional marginal M

n (11) in powers of γ as ‖ γ ‖ → 0 holds: 

M(x, v , t, x ′ , t ′ ) = G �2 
(x ′ − x, t, t ′ ) + M 1 (x, v , t, x ′ , t ′ ) 

+ M 2 (x, v , t, x ′ , t ′ ) + M 3 (x, v , t, x ′ , t ′ ) + o 
(‖ γ ‖ 

3 
)
, 

‖ γ ‖ → 0 , (34) 

here G �2 
is the Gaussian kernel defined in (10) , M 1 is given by 

M 1 (x, v , t, x ′ , t ′ ) 

= S 1 (t , t ′ ) 
[
−d 3 G �2 

dx ′ 3 (x ′ − x, t , t ′ ) + 

dG �2 

dx ′ (x ′ − x, t , t ′ ) 
]
, (35) 

M 2 is given by 

 2 (x, v , t, x ′ , t ′ ) = S 2 (t, t ′ ) 

×
[

d 4 G �2 

dx ′ 4 (x ′ − x, t, t ′ ) + 2 
d 3 G �2 

dx ′ 3 (x ′ − x, t, t ′ ) − dG �2 

dx ′ (x ′ − x, t, t ′ ) 
]

+ S 2 c (t , t ′ ) 
[

d 4 G �2 

dx ′ 4 (x ′ − x, t , t ′ ) + 

d 3 G �2 

dx ′ 3 (x ′ − x, t , t ′ ) 
]

+ 

1 

2 
S 2 1 (t , t ′ ) 

[
d 6 G �2 

dx ′ 6 (x ′ − x, t , t ′ ) − 2 
d 4 G �2 

dx ′ 4 (x ′ − x, t , t ′ ) + 

d 2 G �2 

dx ′ 2 (x ′ − x, t , t ′ ) 
]
, 

(36) 

nd M 3 is given by 

 3 (x, v , t, x ′ , t ′ ) 

= S 3 c 

[
− d 3 

dx ′ 3 G �2 
− 2 

d 4 

dx ′ 4 G �2 
− d 5 

dx ′ 5 G �2 

]
+ S 3 d 

[
− d 4 

d x ′ 4 
G �2 

− d 5 

d x ′ 5 
G �2 

]
+ 

1 

6 
S 3 1 

[
− d 9 

dx ′ 9 G �2 
+ 3 

d 7 

dx ′ 7 G �2 
− 3 

d 5 

dx ′ 5 G �2 
+ 

d 3 

dx ′ 3 G �2 

]
+ S 1 S 2 

[
− d 7 

dx ′ 7 G �2 
− 2 

d 6 

dx ′ 6 G �2 
+ 

d 5 

dx ′ 5 G �2 
+ 3 

d 4 

dx ′ 4 G �2 
− d 2 

dx ′ 2 G �2 

]
+ S 1 S 2 c 

[
− d 7 

dx ′ 7 G �2 
− d 6 

dx ′ 6 G �2 
+ 

d 5 

dx ′ 5 G �2 
+ 

d 4 

dx ′ 4 G �2 

]
. (37) 

n Eq. (37) , we have dropped the arguments on the right side to keep

he notation simple. Here, �2 , S 1 , S 2 , S 2 c , S 3 c and S 3 d are given in

20) , (21) , (22) , (25) , (26) and (27) , respectively. 

roof. The proof is based on the expansion in powers of the vols 

f vols of the function L γ , and it is available in the Supplementary

aterial online. �

We denote the approximations of the marginal density up to 

he third order as 

M 0 (x, v , t, x ′ , t ′ ) = G �2 
(x ′ − x, t, t ′ ) , 

M 1 (x, v , t, x ′ , t ′ ) = G �2 
(x ′ − x, t, t ′ ) + M 1 (x, v , t, x ′ , t ′ ) , 

M 2 (x, v , t, x ′ , t ′ ) = G �2 
(x ′ − x, t, t ′ ) 

+ M 1 (x, v , t, x ′ , t ′ ) + M 2 (x, v , t, x ′ , t ′ ) , 
M 3 (x, v , t, x ′ , t ′ ) = G �2 

(x ′ − x, t, t ′ ) + M 1 (x, v , t, x ′ , t ′ ) 
+ M 2 (x, v , t, x ′ , t ′ ) + M 3 (x, v , t, x ′ , t ′ ) . (38) 

roposition 2.5 below shows that the approximations of the 

arginal density in Eq. (38) satisfy the conditions that guarantee 

ass conservation, the martingale property (i.e., the asset price 

hould be a martingale in the multi-factor Heston model) and 

he so-called symmetry condition. These conditions avoid norm- 

efecting and martingale-defecting pdfs, as discussed in Lewis 

20 0 0) Chapter 2. 
341 
roposition 2.5. Let M 0 , M 1 , M 2 and M 3 be given in (38) . The fol-

owing equations then hold 
 + ∞ 

−∞ 

M l (x, v , t, x ′ , t ′ ) dx ′ = 1 , l = 0 , 1 , 2 , 3 , (39)

 + ∞ 

−∞ 

e x 
′ 
M l (x, v , t, x ′ , t ′ ) dx ′ = e x e 

∫ t ′ 
t r(s ) ds , l = 0 , 1 , 2 , 3 , (40)

nd ∫ + ∞ 

−∞ 

(
x ′ −x −

∫ t ′ 

t 

r(s ) ds + 

1 

2 

�2 (t , t ′ ) 
)

M l (x, v , t, x ′ , t ′ ) dx ′ = 0 , 

l = 0 , 1 , 2 , 3 , (41) 

hich represent mass conservation (39) , the martingale property 

40) and the symmetry condition (41) . These properties also hold for 

he marginal density M in (11) . 

roof. See the supplementary material online. �

We conclude this section by emphasizing that Corollary 

.4 shows that the third-order expansion of the marginal density 

ontinues to involve only the Gaussian kernel G �2 
, confirming that 

 �2 
is the complete Gaussian kernel of the multi-factor Heston 

odel. 

In the next section, we use Corollary 2.4 to derive closed-form 

ormulas for the option prices and implied volatility. 

. Applications of the multi-factor Heston kernel 

pproximations 

.1. Option pricing 

In this section, we derive explicit formulas for European vanilla 

all and put options starting from the representation of the multi- 

actor Heston conditional marginal M provided in Theorem 2.2 and 

ts approximations up to the third order in the vols of vols, given 

y Eq. (38) . The equivalent derivation starting from the representa- 

ion of the conditional marginal M in terms of the Gaussian kernel 

 �0 
, Eq. (15) is provided in Appendix B . 

We use C(S 0 , T , E) and P (S 0 , T , E) to denote the price of Euro-

ean vanilla call and put options in the multi-factor Heston model, 

ith spot price S 0 , maturity T , strike price E, and discount factor 

 (T ) , which is given by 

 (T ) = e −
∫ T 

0 r(s ) ds . (42) 

pecifically, C and P are defined as: 

C(S 0 , T , E) = B (T ) 

∫ + ∞ 

log E 

(e x 
′ − E) M( log S 0 , v 0 , 0 , x ′ , T ) dx ′ , (43) 

nd 

P (S 0 , T , E) = B (T ) 

∫ log E 

−∞ 

(E − e x 
′ 
) M( log S 0 , v 0 , 0 , x ′ , T ) dx ′ , (44) 

here v 0 is a vector of the variances at time t = 0 . 

Furthermore, we use C BS (S 0 , T , E, 

√ 

�
T ) and P BS (S 0 , T , E, 

√ 

�
T ) to

enote the classic Black–Scholes formulas for vanilla call and put 

ptions, where � = �(0 , T ) > 0 is the integrated variance over the

ime interval [0 , T ] , that is, 

C BS 

( 

S 0 , T , E, 

√ 

�

T 

) 

= S 0 N(d 1 (�)) − Ee −
∫ T 

0 r(s ) ds N(d 2 (�)) , (45) 

nd 

P BS 

( 

S 0 , T , E, 

√ 

�

T 

) 

= −S 0 N(−d 1 (�)) + Ee −
∫ T 

0 r(s ) ds N(−d 2 (�)) , (46) 
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here N(x ) is given by 

(x ) = 

1 √ 

2 π

∫ x 

−∞ 

e −y 2 / 2 dy, (47) 

nd d 1 (�) and d 2 (�) are given by 

d 1 (�) = 

log 
(

S 0 
E 

)
+ 

∫ T 
0 r(s ) ds + 

1 
2 
�

√ 

�
, (48) 

d 2 (�) = d 1 (�) −
√ 

� = 

log 
(

S 0 
E 

)
+ 

∫ T 
0 r(s ) ds − 1 

2 
�

√ 

�
. (49) 

roposition 3.1. Let C(S 0 , T , E) and P (S 0 , T , E) be the prices of Eu-

opean call and put options, respectively, with spot price S 0 , maturity 

 , strike price E and discount factor B (T ) , as given in Eqs. (43) –(44) .

e have 

(S 0 , T , E) = C BS 

( 

S 0 , T , E, 

√ 

�2 

T 

) 

+ R 1 (S 0 , T , E) + R 2 (S 0 , T , E) 

+ R 3 (S 0 , T , E) + o 
(‖ γ ‖ 

3 
)
, 

‖ γ ‖ → 0 , (50) 

nd 

 (S 0 , T , E) = P BS 

( 

S 0 , T , E, 

√ 

�2 

T 

) 

+ R 1 (S 0 , T , E) + R 2 (S 0 , T , E) 

+ R 3 (S 0 , T , E) + o 
(‖ γ ‖ 

3 
)
, 

‖ γ ‖ → 0 . (51) 

ere, �2 (0 , T ) is given by (20) , C BS and P BS denote the classic Black–

choles formulas in (45) and (46) , and R 1 , R 2 and R 3 are corrections

o the standard Black–Scholes formula due to the contribution of the 

rst-, second-, and third-order correction terms of the expansion in 

owers of the vols of vols of the function L 

∗
γ (see, Eq. (19) ): 

 1 (S 0 , T , E) = S 1 (0 , T ) B (T ) E 

[
−dG �2 

dx ′ + G �2 

]
( log (E/S 0 ) , 0 , T ) 

(52) 

 2 (S 0 , T , E) 

= S 2 (0 , T ) B (T ) E 

[
d 2 G �2 

dx ′ 2 + 

dG �2 

dx ′ − G �2 

]
× ( log (E/S 0 ) , 0 , T ) + S 2 c (0 , T ) B (T ) E 

d 2 G �2 

dx ′ 2 ( log (E/S 0 ) , 0 , T ) 

+ 

1 

2 
S 2 1 (0 , T ) B (T ) E 

[
d 4 G �2 

dx ′ 4 − d 3 G �2 

dx ′ 3 − d 2 G �2 

dx ′ 2 + 

dG �2 

dx ′ 

]
( log (E/S 0 ) , 0 , T ) ,

(53)

nd 

 3 (S 0 , T , E) = S 3 c (0 , T ) B (T ) E 

[
− d 3 G �2 

dx ′ 3 
− d 2 G �2 

dx ′ 2 

]
( log (E/S 0 ) , 0 , T ) 

− S 3 d (0 , T ) B (T ) E 
d 3 G �2 

dx ′ 3 
( log (E/S 0 ) , 0 , T ) + S 1 (0 , T ) S 2 c (0 , T ) B (T ) E 

×
[
− d 5 G �2 

dx ′ 5 
+ 

d 3 G �2 

dx ′ 3 

]
( log (E/S 0 ) , 0 , T ) 

+ 

1 

6 
S 3 1 (0 , T ) B (T ) E 

×
[
− d 7 G �2 

dx ′ 7 
+ 

d 6 G �2 

dx ′ 6 
+ 2 

d 5 G �2 

dx ′ 5 
− 2 

d 4 G �2 

dx ′ 4 
− d 3 G �2 

dx ′ 3 
+ 

d 2 G �2 

dx ′ 2 

]
× ( log (E/S 0 ) , 0 , T ) 
342 
+ S 1 (0 , T ) S 2 (0 , T ) B (T ) E 

×
[
− d 5 G �2 

dx ′ 5 
− d 4 G �2 

dx ′ 4 
+ 2 

d 3 G �2 

dx ′ 3 
+ 

d 2 G �2 

dx ′ 2 
− dG �2 

dx ′ 

]
( log (E/S 0 ) , 0 , T ) , 

(54) 

here S 1 , S 2 , S 2 c , S 3 c and S 3 d are given in (21) , (22) , (25) , (26) and

27) , respectively. The notation [ ·] (·, ·, ·) in Eq. (53) and Eq. 

54) means that the function in the square brackets is evaluated at 

he argument (·, ·, ·) , 
Note that for γ = 0 , G �2 

coincides with G �0 
, the correction terms 

 1 , R 2 and R 3 become zero, and the option prices become the classic 

lack and Scholes prices for options with time-dependent but deter- 

inistic volatilities. 

Dropping the arguments of �2 , S 1 , S 2 and S 2 c , Eqs. (52) , (53) can

e rewritten as 

R 1 (S 0 , T , E) = 

V ega (�2 ) √ 

T �3 / 2 
2 

S 1 

(
m E + 

3 

2 

�2 

)
, (55) 

 2 (S 0 , T , E) 

= + S 2 c 
V ega (�2 ) √ 

T �3 / 2 
2 

[
(m E + 

1 
2 
�2 ) 

2 

�2 

− 1 

]
+ S 2 

V ega (�2 ) √ 

T �3 / 2 
2 

[
(m E + 

1 
2 
�2 ) 

2 

�2 

− (m E + 

1 

2 

�2 ) − 1 − �2 

]
+ 

1 

2 

S 2 1 

V ega (�2 ) √ 

T �3 / 2 
2 

[
(m E + 

1 
2 
�2 ) 

4 

�3 
2 

+ 

(m E + 

1 
2 
�2 ) 

3 

�2 
2 

− (m E + 

1 
2 
�2 ) 

2 

�2 

(
1 + 

6 

�2 

)]
+ 

1 

2 

S 2 1 

V ega (�2 ) √ 

T �3 / 2 
2 

[ 
−(m E + 

1 

2 

�2 ) 
(

1 + 

3 

�2 

)
+ 

(
1 + 

3 

�2 

)] 
, (56) 

here m E is the log-moneyness associated with the forward price de- 

ned as 

 E = log 

(
E 

S 0 e 
∫ T 

0 r(s ) ds 

)
, (57) 

nd the Black–Scholes Vega is V ega (�2 ) = 

√ 

T Ee −
∫ T 

0 r(s ) ds N 

′ (d 2 (�2 )) 

ith d 2 (�2 ) = −
(
m E + 

1 
2 �2 

)
/ 
√ 

�2 . 

roof. See Appendix A . �

We denote the approximated European vanilla option prices up 

o the the first-, second- and third-order approximations as 

 m 

(S 0 , T , E) = C BS 

( 

S 0 , T , E, 

√ 

�2 

T 

) 

+ 

m ∑ 

i =1 

R i (S 0 , T , E) , m = 1 , 2 , 3 , (58) 

 m 

(S 0 , T , E) = P BS 

( 

S 0 , T , E, 

√ 

�2 

T 

) 

+ 

m ∑ 

i =1 

R i (S 0 , T , E) , m = 1 , 2 , 3 . (59) 

Notably: 

(i) Proceeding further with the expansion of the function L 

∗
γ

in the powers of the vols of vols, we can only add higher- 

order corrections to the option price approximations with- 

out affecting the zero-order contribution. The Black–Scholes- 

type term is, in fact, determined by the Gaussian kernel G �2 
, 

which is not affected by higher-order expansions in γ of L 

∗
γ . 
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(ii) When the vols of vols go to zero, the option prices converge 

to the Black–Scholes-like term with volatility 
√ 

�0 (0 , T ) /T . 

(iii) The Black–Scholes-type formulas for the European vanilla 

options (that is, the zero-order approximations) overprice 

at-the-money options. The first-order correction term R 1 , 

which affects the call and put options in the same way, can 

correct for this overpricing. In fact, R 1 is negative when the 

options are at-the-money (i.e., E/ (S 0 e 
∫ T 

0 r(s ) ds ) ≈ 1 ) and the 

correlations are negative. This finding indicates that in the 

case of the Heston model, where negative correlation val- 

ues are usually observed, the prices of call and put options 

are smaller than those calculated using the standard Black–

Scholes formulas for at-the-money options, thereby reducing 

the overpricing of the Black–Scholes formulas. 

(iv) The correction term, R 1 , shows why S 1 may be deemed re- 

sponsible for the smile asymmetry. We observe zero price 

skewness (33) when ρ j = 0 , j = 1 , 2 , . . . , n . Indeed, zero cor-

relation implies a null third-order correction to option pric- 

ing, indicating the crucial effect of non-null correlations. 

(v) The correction terms R m 

, m = 1 , 2 , 3 are the same for the

call and put options. As a consequence, the pairs C m 

, P m 

, 

m = 1 , 2 , 3 , satisfy the put-call parity. In fact, C m 

− P m 

=
C BS (S 0 , T , E, 

√ 

�2 √ 

T 
) − P BS (S 0 , T , E, 

√ 

�2 √ 

T 
) = S 0 − Ee 

∫ t 
0 r(s ) ds , 

m = 1 , 2 , 3 . The fact that the put-call parity holds is implied

by the fact that the Fourier transforms of M 1 , M 2 and M 3 

with respect to the log-price are equal to zero when the 

conjugate variable is equal to zero and to the imaginary 

unit (see Section 8 of the online supplementary material.) 

(vi) The correction terms R m 

, m = 1 , 2 , 3 , are linear in the Vega

of the Black–Scholes formulas (see Eqs. (55) and (131) ). 

Thus, small values of Vega imply small corrections. Note 

that for large values of γ j , the Vega goes to zero as e −�2 / 8 .

Thus, for large values of γ j , the second- and third-order ap- 

proximations of the option prices move toward the Black–

Scholes-like term with volatility 
√ 

�2 (0 , T ) /T . A higher- 

order approximation is needed in this case to capture non- 

zero correction terms. In Section 4.1 , we numerically deter- 

mine the range of values of γ that are coherent with expan- 

sion to the third order. 

(vi) Theorem 2.2 implies that any contract with maturity T and 

payoff P that allows for a closed or semi-closed form in the 

Black–Scholes framework can be written as a convolution 

of the Black–Scholes price with integrated variance �2 (0 , T ) 

and the function L 

∗. Using the expansion in powers of the 

vols of vols of the Fourier transform of L 

∗, which implies a 

representation of L 

∗ as a weighted sum of the derivatives 

of the Dirac delta function of the log-price, we obtain an 

expansion of the contract price given by the Black–Scholes 

price at zero order plus corrections at higher orders given 

by the Black–Scholes Greeks 5 . Moreover, the current repre- 

sentation shows that the corrections to the Black–Scholes 

term are equal for the put and call options, at any order of 

approximation, implying that the put-call parity equation is 

satisfied at any order of approximation. 

.2. Implied volatility 

The implied volatility � in the multi-factor Heston model is de- 

ned as the quantity such that the following equality holds: 

C BS 

( 

S 0 , T , E, 

√ 

�2 

T 

) 

= C(S 0 , T , E) . (60) 
5 The expansion of L ∗ and call option prices as the Black–Scholes prices plus 

reeks are found in Section 8 of the online Supplementary material. 

a

343 
We derive the first- and second-order approximations of � as 

 function of the vols of vols (i.e., � = �( γ )) by solving 

C BS 

( 

S 0 , T , E, 

√ 

�2 
m 

( γ ) 

T 

) 

= C BS 

( 

S 0 , T , E, 

√ 

�2 

T 

) 

+ R m 

(S 0 , T , E) , m = 1 , 2 . (61) 

roposition 3.2. The first-order, �1 ( γ ) , and second-order, �2 ( γ ) , 

pproximations are given by 

�1 ( γ ) 

= 

√ 

�0 + 

S 1 

�0 

√ 

�0 

(
m E + 

1 

2 

�0 

)
, (62) 

�2 ( γ ) = 

√ 

�0 + 

√ 

�0 

×
[

a 0 (T , γ ) + a 1 (T , γ ) 
(

m E + 

1 

2 
�0 

)
+ a 2 (T , γ ) 

(
m E + 

1 

2 
�0 

)2 
]
. 

(63) 

ere, m E is the log-moneyness associated with the forward price (see 

q. (57) ), �0 and S 1 are defined in (16) and a 0 (T , γ ) , a 1 (T , γ ) and

 2 (T , γ ) are given by 

 0 (T , γ ) = 

[
3 

2 

1 

�3 
0 

S 2 1 −
(S 2 + S 2 c ) 

�2 
0 

]
, (64) 

 1 (T , γ ) = 

[
(S 1 − S 2 ) 

�2 
0 

+ 

3 

2 

1 

�3 
0 

S 2 1 

]
, (65) 

nd 

 2 (T , γ ) = 

1 

�0 

[
(S 2 + S 2 c ) 

�2 
0 

− 3 

�3 
0 

S 2 1 

]
. (66) 

ith S 2 and S 2 c given in (22) , (25) , respectively. Here, we have 

ropped the arguments (0 , T ) of the functions �0 , S 1 , S 2 and S 2 c . 

roof. See Appendix A . �

The fact that the implied volatility expansion depends only on 

0 and not on �2 is a consequence of the choice of γ = 0 as a 

ase point of the Taylor expansion of the implied volatility. In fact, 

he same formula for the implied volatility can be derived using 

he second-order approximation to the call option price based on 

he Gaussian kernel G �0 
. A suitable double expansion would allow 

 similar formula to be obtained for the implied volatility, with 

0 replaced by �2 . This approach, however, is not reported in this 

aper, as it deserves further investigation. 

Notably, the implied volatility resulting from the second-order 

pproximation to the option price is a quadratic function of the 

orward moneyness and reduces to the approximation of Bergomi 

nd Guyon (2011) in the case of the Heston model. The coefficients 

 0 (T , γ ) and a 2 (T , γ ) are second-degree homogeneous functions of 

, while a 1 (T , γ ) is a homogeneous function of degree one. 

Interestingly, by considering formula (63) as a function of m E + 

0 / 2 = log (E/S 0 e 
rT −�0 / 2 ) , we can derive an explicit dependence of 

he level, a 0 (T , γ ) , and convexity, a 2 (T , γ ) , on the price skewness

given in Eq. (33) ), that is: 

a 0 (T , γ ) = −a 2 (T , γ )�0 − 1 

24 

Skewness 
2 
DS , (67) 

nd 

a 2 (T , γ ) = 

1 

�0 

[
(S 2 + S 2 c ) 

�2 
0 

− 1 

12 

Skewness 
2 
DS 

]
. (68) 
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The expression of a 2 reveals that the convexity of the volatility 

mile depends on the function S 2 1 . This finding confirms that the 

uantity S 1 is responsible for the asymmetry in the smile since 

t allows for a concave smile. Bearing in mind that �0 , S 2 and 

 2 c are non-negative for any time horizon and model parameters, 

q. (68) clearly shows the effect of price skewness on the volatil- 

ty smile, i.e., large values of price skewness can destroy the U 

hape of implied volatility. Indeed, concave volatility smiles are al- 

owed in mean-reverting underlying assets, where the option tenor 

s comparable to the characteristic reversion time of the asset 6 . 

The second-order approximation of the implied volatility leads 

o the following approximation for the implied volatility skew: 

V skew 

(T ) = 

∣∣∣∣ ∂ 

∂m E 

�2 

∣∣∣∣
m E =0 

= 

√ 

�0 

(
a 1 (T , γ ) + �0 a 2 (T , γ ) 

)
= 

√ 

�0 

∣∣∣∣ (S 1 + S 2 c ) 

�2 
0 

− 1 

24 

Skewness 
2 
DS 

∣∣∣∣
= 

√ 

�0 

∣∣∣∣ 1 

�2 
0 

(
1 

2 

E t (X T Y T ) + 

1 

4 

E t (X 

2 
T Y T ) −

1 

4 

E t (Y 
2 

T ) 
)

− 1 

24 

Skewness 
2 
DS 

∣∣∣. (69) 

For null correlation coefficients S 1 = 0 , S 2 c = 0 , and IV skew 

= 0 ,

he second-order approximation, �2 , of the volatility surface is a 

trictly convex function with vertex at m E = 0 (i.e., when the op- 

ion is at the money): 

�2 ( γ ) = 

√ 

�0 + 

S 2 

�0 

√ 

�0 

[
1 

�0 

(
m E + 

1 

2 
�0 

)2 

−
(

m E + 

1 

2 
�0 

)
− 1 

]
. 

(70) 

inally, a simple calculation proves that the implied volatility skew 

ecays according to 1 / 
√ 

T as T → + ∞ since we have 

lim 

T → + ∞ 

�0 (0 , T ) 

T 
= 

n ∑ 

j=1 

v ∗j , lim 

T → + ∞ 

S 1 (0 , T ) 

T 
= 

n ∑ 

j=1 

ρ j γ j 

2 χ j 

v ∗j , 

lim 

T → + ∞ 

S 2 c (0 , T ) 

T 
= 

n ∑ 

j=1 

γ 2 
j 
ρ2 

j 

2 χ j 

v ∗
j 

χ j 

. 

herefore, we obtain 

lim 

 → + ∞ 

IV skew (T ) 

= 

1 √ 

T 
(∑ n 

j=1 v ∗j 
)
⎡ ⎣ 

n ∑ 

j=1 ̂

 v ∗j 

(
ρ j γ j 

2 χ j 

+ 

ρ2 
j 
γ 2 

j 

2 χ2 
j 

)
− 1 

24 

( 

n ∑ 

j=1 ̂

 v ∗j 
ρ j γ j 

2 χ j 

) 2 
⎤ ⎦ , 

(71) 

here ̂ v ∗
j 
= v ∗

j 
/ 
∑ n 

i =1 v ∗i is the weight of the jth long-term variance 

ean. The limit for large maturity shows that, in the multi-factor 

eston model, the interaction between the variances plays a cru- 

ial role in the implied volatility skew (see the squared term on 

he right-hand side of Eq. (71) ), as previously observed in Veng 

t al. (2019) . 

.3. The VIX index 

The VIX volatility index, disseminated by the Chicago Board Op- 

ions Exchange (CBOE), is built to provide a model-free, option- 

mplied, return volatility measure for the S&P 500 index. The 
6 Some empirical evidence can be found at http://faculty.baruch.cuny.edu/ 

gatheral/Bachelier2008.pdf (see pages 53–56). 
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BOE 7 computes the VIX from non-zero bid prices of European call 

nd put options on the S&P 500 index using the formula 

V IX 

100 

)2 

= 

2 

T 

∑ 

i 

�E i 

E 2 
i 

e rT Q(E i ) −
1 

T 

[ 
F 0 ,T 
E 0 

− 1 

] 2 
, (72) 

here T is 30-day maturity, E i is the strike of the i th out-of-the- 

oney option, F t ,t + τ = S t e 
rτ is the forward index quotation with 

onstant interest rate, S t = e x t is the price at t, and E 0 is the first

trike below the forward index level. The quantity Q(E i ) is the 

idpoint of the bid-ask spread of each option with strike E i . 

This definition is based on the following representation of the 

xpected value of the future realized variance, given by Demeterfi, 

erman, Kamal, and Zou (1999) : 

 0 

[∫ T 

0 

v t dt 

]
= 2 

[ 
rT −

(
F 0 ,T 
E 0 

− 1 

)
− ln 

(
E 0 
S 0 

)
+ e rT 

∫ E 0 

0 

P 0 (S 0 , T , E) 

E 2 
d E + e rT 

∫ ∞ 

E 0 

C 0 (S 0 , T , E) 

E 2 
d E 

]
, 

(73) 

here P and C are put and call prices. Eq. (73) can then be rewrit-

en (see Zhang et al., 2010 ) via a second-order Taylor approxima- 

ion of the log function for E 0 ∼ F 0 ,T as: 

V IX 0 ,T 

100 

)2 

= 

2 e rT 

T 

[∫ E 0 

0 

1 

E 2 
P (S 0 , T , E) dE 

+ 

∫ + ∞ 

E 0 

1 

E 2 
C(S 0 , T , E ) dE 

]
− 1 

T 

[ 
F 0 ,T 
E 0 

− 1 

] 2 
. (74) 

iang and Tian (20 05, 20 07) discuss the potential biases that can 

rise from approximating (74) with (72) such as (i) truncation er- 

ors (the minimum and maximum strikes are far from zero and in- 

nity in practice); (ii) discretization errors (piecewise linear func- 

ions approximate the integrals in equation); (iii) expansion errors 

the Taylor series expansion is truncated to the second order); and 

iv) interpolation errors (linear interpolation of the maturities). In 

act, a number of empirical studies indicate that the VIX overes- 

imates the future volatility of the underlying assets. To improve 

he fit between the VIX index and the volatility of the underlying 

ssets, Pacati, Renó, and Pompa (2018) proposed a new specifica- 

ion in the double Heston model that leads to a deterministic non- 

egative shift, or displacement φt , of the stochastic volatility level 

uch that: 

V IX 0 ,T 

100 

)2 

= 

�0 (0 , T ) 

T 
+ 

∫ T 
0 φs ds 

T 
. (75) 

ere, we take a different approach and show that the squared VIX 

an be associated with both �0 and �2 , which in our framework, 

re both candidates for the implied volatility. In fact, by taking the 

ero-order approximation in Eq. (60) , i.e., only the Black–Scholes 

erm, it is trivial to derive �0 ( γ ) = 

√ 

�2 . Similarly, if we expand 

he option price formulas around the Gaussian kernel G �0 
, we find 

0 ( γ ) = 

√ 

�0 at the zero order. 

To derive the link between the VIX, �0 and �2 , we use different 

pproximations of Eq. (74) . The starting point in both cases is to 

eplace the following identities: 

 E 0 

0 

1 

E 2 
P (S 0 , T , E) dE = e −rT 

∫ E 0 

0 

f (S) 
[ 

log (E 0 /S) + 

S 

E 0 
− 1 

] 
dS, 

(76) 
7 See the CBOE white paper at http://www.cboe.com/micro/vix/vixwhite.pdf 

http://faculty.baruch.cuny.edu/jgatheral/Bachelier2008.pdf
http://www.cboe.com/micro/vix/vixwhite.pdf
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∫ + ∞ 

E 0 

1 

E 2 
C(S 0 , T , E) dE = e −rT 

∫ + ∞ 

E 0 

f (S) 
[ 

log (E 0 /S) + 

S 

E 0 
− 1 

] 
dS. 

(77) 

ere, to maintain simple notation, f (S) denotes the price density. 

sing (76) and (77) in Eq. (74) , we obtain: 

V IX 0 ,T 

100 

)2 

= 

2 

T 

[ 
−E ( log (S T /E 0 ) | F 0 ) + E 

(
S T 
E 0 

− 1 | F 0 

)] 
+ 

1 

T 

[ 
F 0 ,T 
E 0 

− 1 

] 2 
. (78) 

emark 3.3. V IX 2 ∝ �0 (0 , T ) 

To derive the relationship between the VIX and �0 , we use the 

ollowing expansion (see Zhang et al., 2010 ): 

log 

(
F 0 ,T 
E 0 

)
= 

(
F 0 ,T 
E 0 

− 1 

)
− 1 

2 

(
F 0 ,T 
E 0 

− 1 

)2 

+ O 

[(
F 0 ,T 
E 0 

− 1 

)3 
]
. (79) 

n fact, neglecting the third- and higher-order terms in Eq. (79) and 

eplacing the expansion of the second term of the right-hand side 

f Eq. (78) , we obtain 

V IX 0 ,T 

100 

)2 

= 

2 

T 

[ 
−E ( log (S T /E 0 ) | F 0 ) + E 

(
S T 
E 0 

− 1 | F 0 

)] 
+ 

2 

T 

[ 
log 

(
F 0 ,T 
E 0 

)
−
(

F 0 ,T 
E 0 

− 1 

)] 
. (80) 

ssuming a constant risk-free interest rate, we have F 0 ,T = 

(S T | F 0 ) = S 0 e 
rT , while considering that E 

(
log 

(
S T 
S 0 

)
| F 0 

)
= rT −

1 
2 

∑ n 
j=1 

∫ T 
0 E 
(
v j,s | F 0 

)
ds, we obtain: 

V IX 0 ,T 

100 

)2 

= 

2 

T 

[ 
−E 

(
log 

(
S T 
E 0 

)
| F 0 

)
+ log 

(
F 0 ,T 
E 0 

)] 
= 

2 

T 

[ 
−E 

(
log 

(
S T 
S 0 

)
| F 0 

)
+ rT 

] 
= 

�0 (0 , T ) 

T 
. (81) 

Note that the recent paper by Huang, Schlag, Shaliastovich, and 

himme (2020) , which proposes a stochastic volatility model with 

tochastic vols of vols, reports a similar result. The squared VIX, in 

act, is shown by the authors to be equal to the conditional mean 

f the integrated variance, which, as in our model, coincides with 

0 . 

emark 3.4. V IX 2 ∝ �2 (0 , T ) 

To derive the relationship between the VIX and �2 , we first use 

he following Taylor expansion 

og 

(
S 

E 0 

)
= 

(
S 

E 0 
− 1 

)
− 1 

2 

(
S 

E 0 
− 1 

)2 

+ O 

[(
S 

E 0 
− 1 

)3 
]
, S → E 0 , 

n the right-hand side of Eqs. (76) –(77) , then the expansion 

f S T /E 0 around the conditional mean, denoted by E(S T /E 0 ) = 

 ( S T /E 0 | F 0 ) for simplicity: 

log 

(
S T 
E 0 

)
≈ log 

(
E 

(
S T 
E 0 

))
+ 

1 

E 
(

S T 
E 0 

)[ S T 
E 0 

− E 

(
S T 
E 0 

)] 
. (82) 

herefore, we first have 

V IX 0 ,T 

100 

)2 

= 

1 

T 

∫ + ∞ 

0 

f (S) 
(

S 

E 0 
− 1 

)2 

dS − 1 

T 

[ 
E 

(
S T 
E 0 

− 1 | F 0 

)] 2 
= 

1 

T 
Var 

(
S T 
E 0 

| F 0 

)
, (83) 

here Var is the variance. Taking the variance of Eq. (82) , we ob- 

ain: 
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Var 
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)
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)
= 
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(
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Var 

(
log 

(
S T 
S 0 

)
| F 0 

)
= 

�2 (0 , T ) 

T 

(
F 0 ,T 
E 0 

)2 

. (84) 

hus, when E 0 is very close to F 0 ,T , as in the CBOE computation,

2 (0 , T ) /T is a proxy for V IX 2 / 100 . This formula is in line with

heorem 1 from Chow, Jiang, and Li (2020) . Note that the variance 

s computed in the risk-neutral measure. 

This finding suggests that the VIX index typically overestimates 

he conditional mean of the integrated spot volatility (given that 

ormally �2 > �0 , as the correlation ρ j between prices and volatil- 

ty is typically negative), and our analysis is in line with the results 

f Pacati et al. (2018) . In fact, our derivation provides an interpreta- 

ion of the displacement parameter in Pacati et al. (2018) implying 

hat 
∫ T 

0 φs 

T = 2(S 2 (0 , T ) − S 1 (0 , T )) . 

Our analysis, not only provides an explanation for the bias be- 

ween the VIX and the conditional mean of the integrated spot 

olatility but also offers a theoretical foundation for recently pro- 

osed methods to compute the variance risk premium (VRP). Zhao 

t al. (2013) provide a natural definition of the variance risk pre- 

ium, expressing it as the difference between the variances of 

he continuously compounded returns evaluated in the risk-neutral 

cenario and in the physical probability measures. In our frame- 

ork, the variance risk premium for the multi-factor Heston model 

an be expressed as 

 RP = �Q 
2 

− �P 
2 , (85) 

here Q and P denote, respectively, the risk-neutral and physical 

robability measures (here �Q 
2 

is the same quantity denoted 

arlier as �2 ). In fact, as discussed above, �Q 
2 

and �P 
2 , which 

re the variances of the Gaussian kernel underlying the price 

rocess in the risk-neutral and physical measures, coincide with 

he variances of the continuously compounded returns under the 

ame two measures. Bon Bondarenko (2014) , Bollerslev, Tauchen, 

nd Zhou (2009) , and Carr and Wu (2009) have proposed con- 

tructing the volatility risk premium based on the assumption 

hat model-free option-implied volatility measures can provide a 

atural empirical analog to the market’s risk-neutral expectation 

f the conditional total variation of returns. These authors had the 

orrect intuition to use the VIX index as a proxy of the risk-neutral 

ariance of returns, and by deriving this link explicitly, via �2 , we 

rovide a theoretical justification for this approach. 

Finally, we note that our results imply a nonlinear effect of the 

ols-of-vols risk on the VIX index, given that �2 is a quadratic 

unction of the vols-of-vols parameters. Huang et al. (2020) also 

ncovered a nonlinear effect of the vols-of-vols risk on VIX op- 

ions. 

. Accuracy of the option price approximations: simulation 

tudy 

In this section, we study the accuracy of the approximation for- 

ulas derived in Sections 2 and 3 in reproducing European option 

rices and their performance in terms of computational time. As a 

enchmark, we compute the “true” European option prices by fol- 

owing the approach proposed in Recchioni and Sun (2016) (deriva- 

ions are reported in Appendix C ). 

In the following, we use the subscripts “H”, “DH” and “TH” to 

enote option prices and their approximations in the Heston, dou- 

le Heston and triple Heston frameworks. 
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Table 1 

Descriptive statistics for the exact call and put option prices evaluated on grid M of the Heston model. 

γ Average call price min call max call Average put price min put max put 

0.01 32.292 14.337 56.822 31.101 10.081 64.549 

0.05 31.846 14.294 56.847 30.655 10.091 64.567 

0.1 31.908 14.193 57.206 30.717 10.166 64.997 

0.25 32.116 14.102 57.970 30.925 10.242 65.958 

0.5 33.211 13.925 61.368 32.020 10.338 70.310 

0.8 35.390 13.807 67.253 34.199 10.526 77.262 

2.0 47.997 14.392 89.417 46.806 12.010 107.451 

Table 2 

Descriptive statistics for the relative errors of second- and third-order option price approximations evaluated on grid M in the case of the Heston model. 

Second-order approximations in vols of vols ( C 2 ,H , P 2 ,H ) 

γ mean C median C std C mean P median P std P 

0.01 2.7090e −9 0.000 8.7598e −8 2.3767e −9 0.000 7.1053e −8 

0.05 3.3058e −7 0.000 9.9919e −7 2.9665e −7 0.000 9.1210e −7 

0.15 8.6177e −6 2.9231e −6 1.9097e −5 8.0870e −6 2.8545e −6 1.6523e −5 

0.25 3.9080e −5 8.7593e −6 8.5551e −5 3.6756e −6 9.2254e −6 7.4764e −5 

0.5 2.8757e −4 6.0871e −5 6.1026e −4 2.7410e −4 6.5693e −5 5.5215e −4 

0.8 1.0428e −3 2.3942e −4 2.1199e −3 1.0099e −3 2.4380e −4 1.9904e −3 

2.0 1.0785e-2 3.4351e-3 1.8412e-2 1.0854e-2 3.3176e-3 1.8488e-2 

Third-order approximations in vols of vols ( C 3 ,H , P 3 ,H ) 

γ mean C median C std C mean P median P std P 

0.01 4.5346e −10 0.000 3.3345e −8 9.2518e −10 0.000 4.7762e −8 

0.05 1.1567e −7 0.000 6.1056e −7 1.0622e −7 0.000 5.5577e −7 

0.15 3.0780e −6 0.000 5.3205e −6 2.8741e −6 0.000 4.9957e −6 

0.25 1.2798e −5 4.5284e −6 2.0294e −5 1.2180e −5 5.3118e −6 1.9446e −5 

0.5 8.0037e −5 3.4110e −5 1.0768e −4 7.8271e −5 3.6047e −5 1.0436e −4 

0.8 2.8491e −4 1.1447e −4 4.0639e −4 2.8161e −4 1.2737e −4 3.6937e −4 

2.0 4.0807e −3 7.8427e −4 8.8272e −3 4.1534e −3 8.4030e −4 8.7858e −3 
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8 These values permit numerical integration with a simple rectangular rule for 

high values of the vols of vols. Numerical integration of the integral formulas in 

Appendix C for very large values of vols of vols deserves further investigation. 
.1. Simulation study 1: Heston and double Heston on “reasonable”

rid of parameters 

We being this section by assessing the performance of the 

econd- and third-order approximations, Eqs. (58) –(59) , of the call 

nd put option prices, C m,H , P m,H , with m = 2 , 3 , in the Heston

ramework. 

The Heston exact formula is obtained by imposing n = 1 in 

q. (134) in Appendix C . Eqs. (132) and (133) in Appendix C are

qual except for the values of q, which are valid over different in- 

ervals. In the following, we choose q = 1 . 05 for a call option and

 = −0 . 05 for a put option 

8 . Eqs. (132) and (133) are defined via

onvergent integrals that can be computed accurately using a sim- 

le composite rectangular rule. 

We evaluate the exact formulas C H and P H and the approxi- 

ated formulas C m,H and P m,H for the points in the following set: 

M = { (S 0 , E, T , γ , v 0 , χ, v ∗, ρ, r) | S 0 = 100 , E = 80 + 10( j − 1) ,

T = 2 j/ 5 , j = 1 , 2 , . . . , 5 , 

γ = 0 . 01 , 0 . 05 , 0 . 15 , 0 . 25 , 0 . 5 , 0 . 8 , 2 , v 0 = 2 + j/ 5 , 

j = 1 , 2 , . . . , 5 , χ = 1 . 5 + 1 . 5( j − 1) , j = 1 , 2 , . . . , 5 , 

v ∗ = j γ 2 / (2 χ) , ρ = − j/ 6 , j = 1 , 2 , . . . , 5 , r = 0 . 01 

}
. (86

hese values of model parameters in grid M include those esti- 

ated by Christoffersen et al. (2009) in Section 4.2 (see, also the 

nline supplementary material). 

Some descriptive statistics for the call and put option prices, 

omputed with the exact formulas C H and P H , are shown in 

able 1 . 
346 
Table 2 compares the exact option prices with their second- and 

hird-order approximations. From left to right we report the vols 

f vols ( γ ), mean (mean C ), median (median C ), and standard devi- 

tion (std C ) of the relative call option errors, e C,m 

, and the mean

mean P ), median (median P ), and standard deviation (std P ) of the 

elative put option errors, e P,m 

, associated with the second-order 

pproximation, m = 2 (in the top panel), and the third-order ap- 

roximations, m = 3 (in the bottom panel). 

The results in Table 2 show that while the quality of the ap- 

roximations decreases as γ increases, the second-order approxi- 

ation guarantees four correct significant digits up to a volatility 

f 50%. The average error of the second-order approximation is at 

ost of the order of a percent for larger values of γ . The third- 

rder approximation improves the estimation by less than one or- 

er of magnitude for the values of γ considered. Given that only 

arginal improvements are obtained with the third-order approx- 

mation, we focus on the second-order approximations when pre- 

enting numerical and empirical results in the following sections. 

In the remainder of this section, we illustrate the computa- 

ional advantages of using the second-order approximation formu- 

as (58) and (59) in the Heston and double Heston models. To 

his end, we consider the same grid M as in Eq. (86) and com-

ute 3125 call and put option prices for each value of γ , aver- 

ging over the other parameters on the grid, using the second- 

rder approximations C 2 ,H and P 2 ,H . In the case of the double 

eston model, we have chosen (S 0 , E, T , γ1 , v 1 , 0 , χ1 , v ∗1 , ρ1 , r) ∈ M
nd (γ2 , v 2 , 0 , χ2 , v ∗2 , ρ2 ) = (γ1 , v 1 , 0 , χ1 , v ∗1 , ρ1 ) , where γ2 = γ1 = γ .

his choice is made to limit the number of call and put op- 

ions to be evaluated to 31250 for each value of γ , as in the 

eston model. We then evaluate the number of points to be 
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Table 3 

From left to right: average, min and max number of points, avg N p , min N p , and max N p , required by the rectangular rule to achieve the same accuracy as that of the 

second-order approximation formulas in the Heston (upper panel) and double Heston (lower panel) models; the total time Time H (Time DH ) and Time 2 ,H (Time 2 ,DH ) required 

to compute the European options with integral formulas (132) and (133) with N p points and the second-order approximations C 2 ,H , P 2 ,H ( C 2 ,DH , P 2 ,DH ); Avg. rel. err. are the 

average relative errors of the put and call option approximations with integral formulas C H , P H ( P DH , C DH ) and second-order approximations P 2 ,H , C 2 ,H ( P 2 ,DH , C 2 ,DH ). For a fixed 

vol of vol (or pair of vols of vols), the relative errors are computed by averaging over the remaining parameters in the set M for a total of 31250 option prices. The time is 

expressed in seconds. The computation was conducted on an Intel CORE i7 (8th generation) processor. The true values are obtained from integral formulas (132) and (133) 

using 2 16 quadrature points. 

Heston model 

γ Avg N p min N p max N p Time H Time 2 ,H Avg. rel. Avg. rel. Avg. rel. Avg. rel. 

(seconds) (seconds) err. P H err. C H err. P 2 ,H err. C 2 ,H 

0.01 57,487 49,182 64,287 1000.53 5.6703e −3 2.1214e −9 1.9918e −9 2.4319e −9 2.6084e −9 

0.05 45,065 38,204 51,445 786.37 5.5438e −3 2.3726e −7 2.2266e −7 3.0146e −7 3.2296e −7 

0.15 36,241 27,982 42,899 636.62 5.6344e −3 7.5595e −6 7.1100e −6 8.0736e −6 8.6186e −6 

0.25 32,372 24,001 39,441 568.72 5.4188e −3 3.4802e −5 3.2779e −5 3.6758e −5 3.9068e −5 

0.50 27,219 18,728 34,661 489.77 5.4844e −3 2.6347e −4 2.4914e −4 2.7410e −4 2.8760e −4 

0.80 25,146 16,029 33,311 430.12 5.4781e −3 8.6383e −4 8.2078e −4 1.0099e −3 1.0428e −3 

2.00 17,287 9376 27,407 311.37 5.4531e −3 9.7082e −3 9.3358e −3 1.0854e −2 1.0785e −2 

Double Heston model 

γ1 (= γ2 ) avg N p min N p max N p Time DH Time 2 ,DH Avg. rel. Avg. rel. Avg. rel. Avg. rel. 

(secs) (secs) err. P DH err. C DH err. P 2 ,DH err. C 2 ,DH 

0.01 57,729 48,699 63,986 1697.921 6.9875e −3 2.0766e −9 1.9851e −9 2.6669e −9 2.7042e −9 

0.05 43,997 35,194 50,835 1318.594 6.8625e −3 3.0610e −7 2.9264e −7 3.3035e −7 3.3479e −7 

0.15 35,510 26,646 42,507 1059.156 7.0593e −3 8.3366e −6 7.9724e −6 8.8086e −6 8.9091e −6 

0.25 31,331 22,505 38,302 1000.29 7.3562e −3 3.9098e −5 3.7409e −5 4.0008e −5 4.0365e −5 

0.50 26,043 17,388 33,159 792.57 6.8687e −3 2.9259e −4 2.8042e −4 2.9844e −4 2.9902e −4 

0.80 22,437 16,392 29,641 709.57 7.1750e −3 8.2388e −4 7.9060e −4 1.1009e −3 1.0947e −3 

2.00 15,222 8232 22,594 490.907 6.8609e −3 1.0089e −2 9.7601e −3 1.0252e −2 1.0060e −2 
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sed in the quadrature rule to achieve the same level of accu- 

acy when pricing the options with integral formulas Eq. (134) . In 

he top panel of Table 3 , we report, from left to right (and for

= 0 . 01 , 0 . 05 , 0 . 15 , 0 . 25 , 0 . 5 , 0 . 8 , 2 ), the average, mean and max

umber of points (truncated to the closest integer) required by the 

ectangular rule to achieve the same level of accuracy (i.e., rela- 

ive error) in option prices as the second-order approximation for- 

ulas; the total times, Time H and Time 2 ,H , required to compute 

1,250 European call and put options, respectively, with the in- 

egral formula and with formulas C 2 ,H and P 2 ,H ; and the average 

elative errors (i.e, Err. P H , Err. C H , Err. P 2 ,H and Err. C 2 ,H ) of the

ut and call options with the integral formulas P H and C H and 

ith the second-order approximations P 2 ,H and C 2 ,H . The columns 

n the bottom panel of Table 3 are the same as those in the top

anel, but the results correspond to the double Heston model. The 

omputations were conducted on an Intel CORE i7 (8th generation) 

rocessor. The true values are obtained with the integral formulas 

132) and (133) using 2 16 quadrature points. 

Table 3 shows that using formulas (58) and (59) allows con- 

iderable savings in computation time with respect to using the 

ntegral formulas for both the Heston model (top panel) and dou- 

le Heston model (bottom panel). This computation time reduction 

s important because, for the same level of accuracy, the time re- 

uired to evaluate option prices with the integral formulas in the 

ouble Heston model is, in the best case, approximately twice that 

eeded for the Heston model. 

.2. Simulation study 2: Heston and double Heston with empirical 

arameters 

In this subsection, we repeat the previous exercise using model 

arameters calibrated to real data. Specifically, we use the param- 

ters estimated by Christoffersen et al. (2009) 9 for the Heston and 
9 We report the values of these parameters in the online supplementary mate- 

ial. We also present the Feller condition corresponding to each set of parameters 

stimated by Christoffersen et al. (2009) . The Feller condition is violated in sev- 

ral cases; therefore, the square root process of the variance can reach zero with 

p

s

n

b
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ouble Heston models for the years 1990 to 2004. The spot vari- 

nce of the Heston model is chosen to be 0.9, while the spot vari- 

nces of the double Heston model are v 1 = 0 . 13 and v 2 = 0 . 75 .

hese choices are supported by the results of the empirical anal- 

sis discussed in Christoffersen et al. (2009) p. 1926. In fact, in 

hristoffersen et al. (2009) , the sum of the factor estimates v 1 , 0 
nd v 2 , 0 is 88% in the two-factor model, and the difference is ap- 

roximately 62%, while it is 90% in the one-factor model. Finally, 

he risk-free interest rate is chosen to be 0.15. 

As the first step, we compute the prices of 25 European vanilla 

all and put options with spot price S 0 = 100 , strike prices E =
0 + j/ 5 , j = 1 , 2 , . . . , 5 and time to maturity T = j/ 12 years, j =
 , 2 , . . . , 5 using the exact integral formulas with 2 16 nodes. As in

ection 4.1 , these values are denoted the “true values”. Then, we 

ompute the average relative errors, over the twenty-five options, 

or the put and call options second-order approximations in the 

eston and double Heston frameworks. Finally, we determine the 

umber of nodes necessary to achieve, with the integral formulas, 

he same average accuracy of the second-order approximation for- 

ulas and compare the computational times of the two methods. 

ables 4 and 5 show the results of this experiment, respectively, for 

he Heston and double Heston frameworks. The columns in these 

ables are the same as those in Table 3 , with the only difference

eing that the time and accuracy are computed for a specific set 

f model parameters, average across the strike and time to matu- 

ity. 

We observe that, on average, the relative error of the second- 

rder approximations is 0.02% for both put and call options in the 

eston framework and 6.1% and 5.4%, respectively, in the double 

eston model. These relative errors guarantee four correct signifi- 

ant digits for the Heston model and two correct significant digits 

or the double Heston model. The discrepancy in the accuracy be- 

ween the two tables is due to the different magnitude of the vols 
ositive probability unless, as remarked in Christoffersen et al. (2009) , the process 

atisfies a standard reflecting barrier at the origin. Interestingly, the Feller condition 

ever holds in the case of process v 1 ,t . Violation of the Feller condition has also 

een noted in Pacati et al. (2018) . 



M.C. Recchioni, G. Iori, G. Tedeschi et al. European Journal of Operational Research 293 (2021) 336–360 

Table 4 

From left to right: year, vol of vol γ1 , number of points N p required by the rectangular rule to achieve the same accuracy as that of the second-order approximation formulas 

in the Heston model; Time H , Time 2 ,H time required to compute the fifty put and call options with the integral formulas and the BS-second-order approximations; Avg. rel. 

err P, · and Avg. rel. err. C, ·: average relative errors on put and call options of the integral formulas with N p points and the second-order approximations. For each set of 

model parameters estimated by Christoffersen et al. (2009) (see Table 3 Panel A) over the years 1990–2004, we compute European put and call options with spot price 

S 0 = 100 , time to maturity T = j/ 12 years, and strike prices E j = 80 + 10( j − 1) , j = 1 , 2 , 3 , 4 , 5 . The risk-free interest rate is r = 0 . 15 . The computation was conducted on an 

Intel CORE i7 (8th generation) processor. The true values are obtained with the integral formulas (132) and (133) using 2 16 points. 

Heston model 

Year γ1 N p Time H Time 2 ,H Avg. rel. Avg. rel. Avg. rel. Avg. rel. 

(seconds) (seconds) err. P H err. C H err. P 2 ,H err. C 2 ,H 

1990 0.85 25,104 0.984 9.375e −6 5.197e −4 3.959e −4 5.290e −4 5.547e −4 

1991 0.58 28,143 1.078 1.094e −5 1.642e −4 1.223e −4 1.720e −4 1.690e −4 

1992 0.55 28,566 1.078 1.094e −5 1.406e −4 1.042e −4 1.425e −4 1.405e −4 

1993 0.51 29,284 1.125 9.375e −6 1.076e −4 7.920e −5 1.098e −4 1.088e −4 

1994 0.46 29,724 1.328 1.094e −5 1.014e −4 7.280e −5 1.058e −4 9.277e −5 

1995 0.56 29,284 1.125 1.094e −5 1.068e −4 7.837e −5 1.128e −4 1.216e −4 

1996 0.58 29,139 1.109 1.094e −5 1.177e −4 8.579e −5 1.232e −4 1.339e −4 

1997 0.60 28,283 1.078 9.375e −6 1.530e −4 1.138e −4 1.571e −4 1.665e −4 

1998 0.81 25,229 0.984 1.094e −5 4.871e −4 3.733e −4 5.025e −4 4.944e −4 

1999 0.76 25,993 1.797 9.375e −6 3.677e −4 2.795e −4 3.858e −4 3.808e −4 

2000 0.66 27,316 1.051 1.319e −5 2.275e −4 1.700e −4 2.319e −4 2.331e −4 

2001 0.65 27,864 1.141 1.187e −5 1.986e −4 1.459e −4 2.087e −4 2.123e −4 

2002 0.60 27,864 1.141 1.406e −5 1.936e −4 1.429e −4 1.969e −4 1.862e −4 

2003 0.68 27,046 1.106 1.187e −5 2.402e −4 1.810e −4 2.518e −4 2.655e −4 

2004 0.38 30,472 1.219 1.344e −5 6.277e −5 4.686e −5 6.432e −5 5.516e −5 

Avg. 0.62 27,954 1.533 1.344e −5 2.126e −4 1.595e −4 2.196e −4 2.210e −4 

Table 5 

From left to right: year, vols of vols γ1 , γ2 , number of points N p required by the rectangular rule to achieve the same accuracy as that of the second-order approximation 

formulas in the double Heston model; Time DH and Time 2 ,DH time required to compute the fifty put and call options with the integral formulas and the second-order approx- 

imations; Avg. rel. err P, · and Avg. rel. err. C, ·: average relative errors on put and call options of the integral formulas with N p points and the second-order approximations. 

For each set of model parameters estimated by Christoffersen et al. (2009) (see Table 3 , Panel B) over the years 1990–2004, we compute European put and call options 

with spot price S 0 = 100 , time to maturity T = j/ 12 years, and strike prices E j = 80 + 10( j − 1) , j = 1 , 2 , 3 , 4 , 5 . The risk-free interest rate is r = 0 . 15 . The computation was 

conducted on an Intel CORE i7 (8th generation) processor. The true values are obtained with the integral formulas (132) and (133) using 2 16 points. 

Double Heston model 

Year γ1 γ2 N p Time DH Time 2 ,DH Avg. rel. Avg. rel. Avg. rel. Avg. rel. 

(seconds) (seconds) err. P DH err. C DH err. P 2 ,DH err. C 2 ,DH 

1990 1.05 0.68 25,413 1.250 1.094e −5 9.909e −4 7.086e −4 1.109e −3 9.213e −4 

1991 1.82 0.34 19,914 0.968 1.094e −5 6.647e −3 4.796e −3 7.391e −3 8.293e −3 

1992 6.28 0.27 12,099 0.578 1.094e −5 1.056e −1 7.999e −2 1.236e −1 1.103e −1 

1993 5.25 0.21 13,338 0.641 1.094e −5 6.533e −2 4.941e −2 8.140e −2 7.451e −2 

1994 9.43 0.17 9956 0.484 1.250e −5 2.243e −1 1.691e −1 2.646e −1 2.266e −1 

1995 6.89 0.24 11,523 0.562 1.094e −5 1.387e −1 1.033e −1 1.702e −1 1.491e −1 

1996 2.01 0.19 19,914 0.969 1.094e −5 5.380e −3 4.058e −3 5.590e −3 5.985e −3 

1997 1.54 0.12 23,051 1.141 1.094e −5 1.623e −3 1.224e −3 2.356e −3 2.582e −3 

1998 2.12 0.40 19,914 1.016 1.094e −5 5.331e −3 4.101e −3 5.388e −3 5.646e −3 

1999 1.99 0.38 20,909 1.031 1.094e −5 3.691e −3 2.831e −3 4.490e −3 4.748e −3 

2000 1.94 0.23 20,909 1.031 1.094e −5 3.642e −3 2.770e −3 4.531e −3 4.849e −3 

2001 1.91 0.20 20,909 1.016 1.094e −5 3.623e −3 2.753e −3 4.340e −3 4.651e −3 

2002 1.98 0.17 20,909 1.016 1.250e −5 3.621e −3 2.746e −3 4.978e −3 5.307e −3 

2003 8.81 0.40 9956 0.484 1.250e −5 2.263e −1 1.720e −1 2.366e −1 2.041e −1 

2004 1.98 0.20 20,909 1.016 1.094e −5 3.627e −3 2.755e −3 4.940e −3 5.267e −3 

Avg. 3.67 0.28 17,975 0.880 1.125e −5 5.323e −2 4.017e −2 6.143e −2 5.419e −2 
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f vols. In fact, in the years 1992–1995 and 2003, the vol of vol γ1 

s larger than 520%, with peaks of 943% in 1994 and 880% in 2003. 

n these years, we observe the largest relative errors for the double 

eston model. In contrast to that of the double Heston model, the 

stimated vol of vol of the Heston model is always less than 80% 

nd larger than 37% (see Tables 4 and 5 ). 

We conclude this section by comparing the relative errors of 

he call option prices given by the zero-order Black–Scholes-type 

erm (with Gaussian kernel G �2 
) and by the first-, second- and 

hird-order approximations as a function of vol of vol in the case of 

he Heston model and as a functions of the largest of the two vols 

f vols (i.e., γ1 ) in the case of the double Heston model. In the left

anel of Fig. 1 , the model parameters are the same as those used 

or Tables 4 and 5 . In this case, the prices for different levels of

ols of vols are not perfectly comparable, as they also depend on 

he remaining model parameters. To isolate the effect of the vols 
348 
f vols and expand the range of values considered for this param- 

ter, in the central panel, we plot the approximated option prices 

hen fixing the model parameters to the values estimated for the 

ear 1990 (see Table 8 Year 1990), while the vol of vol γ1 is cho-

en to be γ m 

1 
= e −3+ m/ 2 , m = 1 , 2 , . . . , 30 , and γ2 = 0 . 007 . The grid

f strike prices and times to maturity, over which the average is 

aken, is the same for both panels. In the right panel, we show for 

he same parameters as the central panel, the correction terms R i , 

or i = 1 , 2 , 3 . 

The curves log-error vs log vol-of-vol (left and central panels) 

epicted in Fig. 1 show that the errors grow linearly with the vols 

f vols for values of γ up to approximately 200%. The figures also 

rovide empirical evidence that while the third-order expansion 

lightly improves the approximation for volatilities up to approx- 

mately 200%, beyond this value, the second- and third-order ap- 

roximations become indistinguishable from each other and con- 
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Fig. 1. Left and middle panels: relative errors of zero-, second-, and third-order approximations to the call options obtained in a log-log scale. Zero order: dash–dot line; 

first order: dashed line; second order: solid line; third order: dotted line. (Right) panel: correction terms R 1 (dashed line), R 2 (solid line), and R 3 (dotted line) as a function 

of the log of the vols of vols. 
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erge to the Black and Scholes price, in line with the discussion 

n Section 3.1 . Interestingly, for larger values of the vols of vols, 

nd in line with the theory of asymptotic series (as further ex- 

lained in Section 7 of the supplementary material), the first-order 

pproximation provides better estimates than higher-order approx- 

mations. This is a consequence of the fact that for large values 

f the vols of vols, the asymptotic expansion of L 

∗
γ may diverge. 

his is also signalled by the correction terms R 2 and R 3 becom- 

ng larger than R 1 . However, despite the non-convergence, the 

symptotic expansion may still provide a satisfactory approxima- 

ion when truncated to a finite number of terms. 

. Accuracy of the option price approximations: empirical 

alibration study 

In this section, we assess the performance of the Heston 

econd-order approximation formula (58) –(59) to reproduce and to 

orecast traded European call and put option prices on the US S&P 

00 index. In this exercise, the U.S. three-month government bond 

ndex is used as a proxy for the interest rate r. 

The availability of an explicit and elementary formula for the 

mplied volatility provides an advantage in terms of calibrating the 

odel rather than estimating the parameters directly from the op- 

ion prices. This is because it avoids biases caused by different 

agnitudes of option prices that are typically corrected by intro- 

ucing appropriate weights in the optimization algorithm (i.e., the 

nverse of option Vegas, see Christoffersen et al., 2009 , or the bid- 

sk spread, see Date & Islyaev, 2015 ). Additionally, the simple link 

etween implied volatility and model parameters allows for reli- 

ble estimates while accelerating the solution of the optimization 

roblem. We note that, while formulas similar to ours for the im- 

lied volatility (i.e., Eq. (63) ) were derived by Bergomi and Guyon 

2011) , their effectiveness for calibration purposes has not been 

ested in the literature. 

Here, we provide empirical evidence that by using the second- 

rder approximations for the implied volatility �2 ,H , we can ob- 

ain “consistent” estimates of the Heston model parameters from 

oth the call and put options. Typically, option prices are filtered 

o avoid inconsistency resulting from the simultaneous use of call 

nd put option prices (see Pacati et al., 2018 ). We do not filter any

bservations that do not satisfy standard no-arbitrage conditions 

hile investigating how this affects the model calibration. 

Our dataset consists of 1200 European vanilla call and put op- 

ions with four strike prices (i.e., n E = 4 ) and n T = 150 maturities.

tarting from the traded call option prices C o (S i , T i , E j ) with spot

rice S i , time to maturity T i and strike price E j , and using the U.S.

hree-month government bond yield as the risk-free interest rate, 

, we compute the observed implied volatility, σ o 
C 
(S i , T i , E j ) , for

 = 1 , 2 , . . . , n T , j = 1 , 2 , . . . , N E . This computation is performed us-

ng the Matlab function calcBSImpVol , which uses Li’s rational func- 

ion approximator for the initial estimate (see, Li, 2006; Li, 2008 ), 
349 
ollowed by Householder’s root finder of the third order to improve 

he convergence rate of the Newton–Raphson method. 

For any time i = 1 , 2 , . . . , n T , we then estimate the Heston

odel parameters �i = (χi , v ∗i , γi , ρi , v i 0 ) ∈ R 

5 , i = 1 , 2 , . . . , n T , to

olve the optimization problem: 

in 

C ∈V 

n E ∑ 

j=1 

[ 

σ o 
C (S i , T i , E j ) −

�2 ,H (S i , T i , E j ) √ 

T i 

] 2 

, (87) 

here �2 ,H is given in formula (63) with n = 1 and V is the follow- 

ng set of constraints: 

V = 

{
�= (χ, v ∗, γ , ρ, v 0 ) ∈ R 

5 | γ , v ∗, χ, v 0 > 0 , −1 < ρ < 1 

}
;

(88) 

o solve problem (87) , we use a metric variable steepest descent 

lgorithm (see, for example, Recchioni & Scoccia, 20 0 0 ; Fatone, 

ariani, Recchioni, & Zirilli, 2013 ). This is an iterative algorithm 

hat generates a sequence of points, �k 
, k = 0 , 1 , . . . , belonging to

he interior of the feasible region and moving opposite to the gra- 

ient vectors of the objective function computed in a suitable met- 

ic. 

We then repeat the calibration procedure starting from the ob- 

erved put prices P o (S i , T i , E j ) , where P o is the observed value of

he put option, i = 1 , 2 , . . . , n T , and j = 1 , 2 , . . . , n E , and solve the

roblem 

in 

P ∈V 

n E ∑ 

j=1 

[ 

σ o 
P (S i , T i , E j ) −

�2 ,H (S i , T i , E j ) √ 

T i 

] 2 

. (89) 

In this way, we obtain two optimal sets of model parameters, 

ne starting from the call options, �C 
, and the other starting from 

he put options, �P . 

Some descriptive statistics for the estimated model parameters, 

nitial variance, Feller ratio, objective function and observed im- 

lied volatility are given for the two sets in Table 6 . The values of

he objective function compare favourably with those in Table 1 of 

eng et al. (2019) . The two sets of parameters are almost identical, 

ith the exception of the estimate of the long-term mean param- 

ter. We argue that the difference in the v ∗ parameter estimate 

rom the call and put prices is due to market imperfections that 

ead to a spread between the implied volatility σ o of call and put 

ptions. In fact, the absolute value of the implied volatility spread, 

 σ o 
C 
(S i , T i , E j ) − σ o 

P 
(S i , T i , E j ) | derived from the call and put options

s 0.04 on average, while the relative absolute spread (i.e., the ratio 

f the spread to implied volatility from the call) is 0.24. Interest- 

ngly, the absolute difference between the square root of the two 

ong-term variance parameters is 0.05, and the ratio of this differ- 

nce to the square root of the call variances is 0.29, thus mirroring 

he implied volatility spread. 

To evaluate the model consistency, we compute the Euro- 

ean call and put option prices using formulas C 2 ,H and P 2 ,H in 

qs. (58) –(59) with both sets of estimated parameters. Fig. 2 shows 
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Table 6 

Descriptive statistics for estimated values of the model parameters and observed implied volatility σ o . 

Call set 

χ v ∗ γ ρ v 0 2 χv ∗
γ 2 Obj. func. σ o 

Mean 5.7999 0.014663 0.50098 −0.8502 0.08060 0.677512 8.35e −5 0.1581 

Median 5.7999 0.012726 0.50100 −0.8502 0.08200 0.588756 2.28e −5 0.1546 

Std 0.00057 0.007032 0.000303 0.000220 0.004912 0.324606 1.46e −4 0.020 

Put set 

χ v ∗ γ ρ v 0 2 χv ∗
γ 2 obj. func. σ o 

Mean 5.7999 0.029102 0.5009 −0.8502 0.08384 1.34530 7.84e −5 0.1931 

Median 5.7999 0.029114 0.5009 −0.8502 0.08489 1.29907 2.02e −5 0.1923 

Std 0.000020 0.006205 0.00026 0.00018 0.004243 0.28708 2.87e −4 0.0168 

Fig. 2. Left panel: Observed call option prices (solid line) and second-order approximations C 2 ,H (dotted line) for four different strike prices E 1 = 1900 , E 2 = 1975 , E 3 = 20 0 0 , 

and E 4 = 2025 and expiry date T = December 19, 2015, versus time (September 1, 2014–March 30, 2015) obtained with the optimal parameters from the observed implied 

volatility of call options (i.e., call set). Right panel: Observed put option prices (solid line) and Black–Scholes second-order approximations P 2 ,H (dotted line) for four different 

strike prices E 1 = 1900 , E 2 = 1975 , E 3 = 20 0 0 , and E 4 = 2025 and expiry date T = December 19, 2015, versus time (September 1, 2014–March 30, 2015) obtained with the 

optimal parameters from the observed implied volatility of call options (i.e., call set). 
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10 The VIX level was downloaded from http://www.cboe.com/products/ 

vix- index- volatility/vix- options- and- futures/vix- index/vix- historical- data . 
11 website https://realized.oxford-man.ox.ac.uk/data . 
he observed and second-order (solid line and dotted line, respec- 

ively) call option prices. The approximations in Fig. 2 are obtained 

sing the model parameters estimated by the observed implied 

olatility from call options (i.e., call set). The corresponding figures 

or the put prices, obtained using the model parameters estimated 

y the observed implied volatility from put options (i.e., put set) 

re available in the supplementary material. For each set, we com- 

ute the mean and standard deviation of the relative errors for the 

all options as: 

 

C, �L 

i, j 
= | C o (S i , T i , E j ) − C 2 ,H (S i , T i , E j ;�L ) | /C o (S i , T i , E j ) , with L = C, P, 

nd we also compute the equivalent errors for the put options. The 

verage relative errors E C, �C 
and E P, �P 

(i.e., when parameters are 

stimated starting from the corresponding option prices) are, re- 

pectively, 0.027 (i.e., 2.7%) and 0.031 (i.e., 3.1%). These errors are 

n line with those in Pacati et al. (2018) , where a double Heston

odel with jumps is used. By contrast, when using the model pa- 

ameters of the put set to estimate the call prices, and vice versa, 

he relative errors E C, �P 
and E P, �C 

are, on average, 0.21 (i.e., 21%) 

or the call and 0.22 (i.e., 22%) for the put options. Thus, while the 

ross estimates produce a clear bias, the error is of the same order 

s the relative error in the implied volatility (i.e., 24%), suggesting 

hat the bias is driven by market imperfections rather than an in- 

onsistency with the methodology. 

We conclude this section by testing the potential of the cali- 

rated parameters to forecast option prices one day ahead. Fig. 3 

hows the one-day-ahead estimates for call (left panel) and put 

right panel) option prices. Specifically, the option estimates at 
350 
ime t + 1 are calculated using the optimal parameter values at 

ime t . The one-day-ahead estimated call prices are obtained using 

he model parameters �C 
t , while the one-day-ahead estimated put 

rices are obtained from �P 
t . The relative errors of the one-day- 

head estimates are, on average, 4.67% for call options and 4.72% 

or put options. 

. Variance of the Gaussian kernels and the VIX index 

In this section, we focus on the relationship between the VIX 

nd the variances �0 and �2 in the Heston, double Heston, and 

riple Heston models. We use the VIX time series for the years 

0 0 0, 20 01, 20 02 and 2003 provided by the CBOE 10 and two time

eries for the realized variance, the median truncated realized vari- 

nce and the 5-minute realized variance, both available from the 

xford-Man Institute 11 . For the Heston model, we assume that the 

ealized variance from the Oxford-Man Institute database plays the 

ole of the spot variance; thus, v t = RV t . The use of the realized

ariance as a proxy for the short-term volatility factor is sup- 

orted by the results illustrated in Corsi, Fusari, and La Vecchia 

2013) . In the double Heston model, each factor variance is eval- 

ated as a fraction of the total realized variance; thus, v 1 ,t = α1 RV t 
nd v 2 ,t = (1 − α1 ) RV t . In the triple Heston model, the stochastic 

ariances v j,t , j = 1 , 2 , 3 are chosen to be a fraction of the total

http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-data
https://realized.oxford-man.ox.ac.uk/data
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Fig. 3. Observed option prices (solid line) and one-day-ahead estimates computed using second-order approximation (dotted line) for four different strike prices E 1 = 1900 , 

E 2 = 1975 , E 3 = 20 0 0 , and E 4 = 2025 and with expiry date T = December 19, 2015, versus time (September 1, 2014–March 30, 2015). Call price one-day-ahead estimates 

using the call set (left panel); Put price one-day-ahead estimates using the put set (on the right). The average relative errors of call and put options are 7.9% and 6.2%, 

respectively. 

Table 7 

Estimated parameters for the Heston model from Christoffersen et al. (2009) . 

Heston model parameters 

Year χ v ∗ γ ρ 2 χ v ∗
γ 2 

2000 2.5751 0.0678 0.6561 −0.6975 0.8111 

2001 3.8191 0.0564 0.6489 −0.7410 1.0231 

2002 3.3760 0.0532 0.5973 −0.7725 1.0068 

2003 1.7201 0.0691 0.6837 −0.5939 0.5085 
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ealized variance, as v j,t = α j RV t , j = 1 , 2 , 3 , α j ≥ 0 , α j ≤ 1 . We

se ˜ �n,model (t) to denote the quantity 

˜ 
n,model (t) = 

√ 

�n,model (t, t + T ) 

T 
, model = H, DH, T H n = 0 , 2 .

(90) 

.1. Gaussian kernels and the VIX index in the Heston and double 

eston frameworks 

We now empirically test the relationship between the VIX, �0 

nd �2 in the Heston and double Heston frameworks. For each 

xed year, we use the model parameters in Christoffersen et al. 

2009) , provided in Table 7 and Table 8 , to compute the kernel

ariance �0 and �2 , while the α1 parameter is obtained by mini- 

izing the squared residuals (sum of squared errors): 

SE = 

∑ 

t 

[
˜ �2 ,T H (t;α1 ) − V IX t 

]2 
. (91) 

cross the four years (thus, α1 is imposed to be the same for the 

our years). We find that the optimal value of α1 is α1 = 0 . 15 when

e use the median truncated realized variance and α1 = 0 . 06 in 

he case of 5-minute realized variance. 

We start by comparing, in Figs. 4 and 5 , the VIX time series

solid line) and 

˜ �2 ,model (dotted line) in the Heston ( Fig. 4 ) and 

ouble Heston ( Fig. 5 ) models as a function of the day index for

ach year considered. The figures show that ˜ �2 ,DH (t) (see Eq. (90) ) 

ore closely follows the VIX behavior for all years and both time 

eries. This result is confirmed in Table 9 , which shows that the 

ouble Heston model outperforms the Heston model in terms of 

he sup-norm. The RMSE shown in Table 9 compares favourably 

ith the results obtained by Corsi et al. (2013) (see Section 4.3, 

able 4 ). 
351 
We then compare, in Fig. 6 , the fit between the VIX and 

˜ 
2 ,model versus ˜ �0 ,model . The figures clearly show, as discussed in 

ection 3.3 , that the VIX overestimates �0 ,model . 

To provide further evidence of this point, we test for linear de- 

endence between the VIX index and 

˜ �0 ,model and 

˜ �2 ,model with 

odel = H and DH . This is done by regressing the daily VIX ob- 

ervations on the daily estimates of ˜ �0 ,model (t) and 

˜ �2 ,model (t) 

hen using, respectively, the median truncated realized variance 

see, Table 10 , left panel) and the 5-minute realized variance (see 

able 10 , right panel) as proxies of the spot variance process 

 t = 

∑ n 
j=1 v j,t . The results of these zero-intercept regressions show 

hat both 

˜ �0 ,model (t) and 

˜ �2 ,model (t) perform better than the naive 

inear model V IX t = β1 RV t + noise . The coefficients are statistically 

ignificant at the 5% level. These results are in line with the find- 

ngs of Huang et al. (2020) . These results also confirm our hypoth- 

sis that ˜ �2 ,model (t) in the Heston and double Heston models cap- 

ures the VIX dynamics better than 

˜ �0 ,model (t) . In fact, in both the 

eston and double Heston models, the coefficient β1 is, on av- 

rage, closer to one when we regress on 

˜ �2 ,model (t) rather than 

˜ 
0 ,model (t) . 

We further investigate the quality of the VIX approximation by 

nalysing the bias, i.e., E( ̃  �m,model − V IX ) , for m = 0 , 2 , for the He-

ton and double Heston models. Table 11 shows that ˜ �0 ,model has a 

ore pronounced bias than 

˜ �2 ,model and that, particularly for the 

ears characterized by large vols of vols, the use of ˜ �2 ,model sub- 

tantially improves the fit. 

To provide further intuition about the above results, we com- 

are the accuracy of the double Heston call option pricing formu- 

as when the expansion in the vols of vols is performed starting 

rom the representation in Eq. (15) , after extracting the Gaussian 

ernel �0 , and from the representation in Eq. (18) , after extract- 

ng the Gaussian kernel �2 . We focus on out-of-the-money call op- 

ions, which are the ones used to compute the VIX index. A better 

erformance of the approximation formulas, written in terms of 

2 , in pricing out-of-the-money options, would provide justifica- 

ion for the better performance of �2 itself in approximating the 

IX. 

As an illustration, we use the double Heston parameters esti- 

ated by Christoffersen et al. (2009) for European call options on 

he S&P500 in the year 2003 (see the last row of Table 8 ). The

rst factor of the double Heston model in 2003 is characterized 

y a high vols of vols (881%), a very small long-term mean (i.e., 

.33%) and a slow mean reverting speed (i.e., 0.1638), so the pa- 
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Fig. 4. Each panel contains the VIX time series and the model implied volatility ˜ �2 ,H (i.e., Eq. (90) – Heston model) as a function of day. The model parameters in 

Table 7 were used with the spot variance of the price log-return corresponding to the daily time series of the median truncated realized variance (left panels) and the 

5-minute realized variance (right panels) from the Oxford-Man Institute. 

Fig. 5. Each panel contains the VIX time series and the model implied volatility ˜ �2 ,DH (i.e., Eq. (90) – Double Heston model) as a function of day. The model parameters in 

Table 8 were used with the spot variance of the price log-return corresponding to the daily time series of the median truncated realized variance (left panels, α = 0 . 15 ) and 

the 5-minute realized variance (right panels, α = 0 . 06 ) from the Oxford-Man Institute. 

Table 8 

Estimated parameters for the double Heston model from Christoffersen et al. (2009) . 

Double Heston model parameters 

Year χ1 v ∗1 γ1 ρ1 χ2 v ∗2 γ2 ρ2 
2 χ1 v ∗1 
γ 2 

1 

2 χ2 v ∗2 
γ 2 

2 

2000 0.1404 0.0052 1.9382 −0.9915 0.3542 0.1690 0.2292 −0.9024 0.0004 2.2789 

2001 0.1433 0.0054 1.9115 −0.9911 0.2347 0.1655 0.2047 −0.8983 0.0004 1.8539 

2002 0.1491 0.0058 1.9754 −0.9902 0.1855 0.1607 0.1715 −0.8896 0.0004 2.0270 

2003 0.1638 0.0032 8.8078 −0.9838 0.4625 0.1198 0.3976 −0.6569 0.0000 0.7009 
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ameters do not satisfy the Feller condition. The second factor is 

haracterized by less volatile dynamics, with a vols of vols of 39%, 

 long-term mean equal to 11% and a faster mean reverting speed 

i.e., 0.4625). This suggests that the volatility remains closer to its 

ong-term mean, with parameters satisfying the Feller condition. 

he initial value of each factor variance is evaluated as a fraction 

f the total variance, so v 1 , 0 = α and v 2 , 0 = (1 − α) . The risk-free

nterest rate is chosen to be 0.15. 

We analyse the accuracy of the approximations as a function 

f α (which is the only parameter we estimated in the VIX exer- 

ise) to assess the sensitivity of the option price approximations to 

he choice of spot volatility. The comparison is presented in Fig. 7 , 

here the relative errors of the second-order call option approx- 
352 
mations in the double Heston framework are shown in a loga- 

ithmic scale. The solid lines are the approximations obtained with 

he Gaussian kernel G �0 
, while the dashed lines are those obtained 

ith G �2 
. In all panels, a logarithmic scale with logarithm-base 10 

s used. The x -axis shows the values of the spot variance v 1 ,t = α.

ig. 7 shows that the approximations obtained with the complete 

ernel G �2 
are more accurate than those obtained with G �0 

for the 

onsidered parameter values. Interestingly, some values of the spot 

ariance v 1 , 0 (i.e., v 2 , 0 ) reduce the relative pricing errors. We note 

hat as we move from v 1 , 0 = 0 to v 1 , 0 = 1 , we start closer to or

urther from the long-term means of the two factors. This move- 

ent has the effect of changing the relative contribution of each 

actor to the overall dynamics, which, as the process transitions 



M.C. Recchioni, G. Iori, G. Tedeschi et al. European Journal of Operational Research 293 (2021) 336–360 

Table 9 

Root mean square error (RMSE) obtained using ˜ �2 ,model to approximate the VIX index. 

Model Median truncated RV 5-minute RV 

RMSE min err max err RMSE min err max err 

Heston 0.0276 0.0131 0.0453 0.0253 0.0168 0.0380 

Double Heston 0.0239 0.0152 0.0341 0.0301 0.0233 0.0347 

Fig. 6. Comparison of V IX, 
√ 

�0 /T and 
√ 

�2 /T (double Heston model) when the spot variance is computed with the RV median truncated realized variance. 

Fig. 7. Relative errors of the second-order approximations of call options in the double Heston framework obtained using the Gaussian kernels G �0 
(solid-line) and G �2 

(dashed line) as a function of the initial spot variance v 1 , 0 = α, v 2 , 0 = (1 − α) . The double Heston parameters used to compute the call option prices are those estimated in 

the year 2003 and shown in Table 8 . A logarithmic scale is used for the y -axis (logarithm base = 10). 
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rom smooth mean reverting dynamics with a small vol of vol to 

ynamics with abrupt fluctuations, could make the option more 

ifficult to price, explaining the observed changes in pricing errors. 

While we restrict the analysis to out-of-the-money options for 

 specific set of parameters, the comparison of the accuracy of the 

wo approximations when expressed in terms of �0 or �2 deserves 

 full investigation, which will be the subject of future work. 

.2. Calibration of the double and triple Heston models from the VIX 

ndex 

Given the encouraging results in the previous subsection, we 

xplore the possibility of calibrating the parameters of the double 

nd triple Heston models directly from the VIX daily data. 

For this exercise, we use only the median truncated realized 

ariance as a proxy of the spot variance v t . In this case, both the

odel parameters and αi are obtained by minimizing the squared 

esiduals (SSE) separately for each year (thus, αi differs by year). 

e use the Matlab lsqnonlin function to minimize the SSE. As a 

tarting point, we the Heston and double Heston parameters from 

he previous section. 

We first calibrate the double Heston model. The results re- 

orted in Table 12 are similar to those of Christoffersen et al. 

2009) for a large basket of options. The estimated parameters for 

he triple Heston model are reported in Table 13 , and the relative 

alues of the coefficients α j , j = 1 , 2 , 3 are shown in Table 14 . 
353 
Fig. 8 presents the VIX time series (solid line) and 

˜ �2 ,T H (dotted 

ine) in the triple Heston model as a function of the day index for 

ach year considered. The fit with 

˜ �2 ,T H (t) appears to better cap- 

ure the VIX behavior than the Heston and double Heston mod- 

ls presented in the previous subsection. The visual inspection is 

upported by the lower values of the average, minimum and maxi- 

um RMSE, which are 0.0187, 0.0126 and 0.0258, respectively, and 

f the bias, reported in the last column of Table 14 , which is two

rders of magnitude lower than the values in Table 11 . The coeffi- 

ient β1 is also closer to one. 

Notably, the estimation performed using the VIX provides 

odel parameter values for the first two factors that are similar 

o those obtained by Christoffersen et al. (2009) . In particular, the 

econd factor, which is dominant, is consistently slowly mean re- 

erting around its long-run mean, while the first factor has more 

olatile dynamics around its very small long-term mean across the 

hole period. By contrast, the temporal dynamics of the parame- 

ers characterizing the third factor appear to switch between these 

wo types of behavior. Specifically, the vol of vol, γ3 , and the speed 

f mean reversion, χ3 , are lower in the years 20 01 and 20 02, while

he long-term mean, v ∗3 , is higher in the same years. The correla- 

ion coefficient, ρ3 , changes sign, going from positive in 20 0 0 to 

egative in 2001 and 2002 and positive again in 2003. This behav- 

or may be driven by the 2001 crisis, which was triggered by the 

ollapse of the dot-com bubble and the 9/11 attacks. The long-term 

ean, in particular, is anti-correlated with the dynamics of the real 
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Table 10 

Zero-intercept regression models with two proxies for spot variance. The model parameters of the Heston and double Heston models are taken from Table 3 in Christoffersen 

et al. (2009) . 

Proxy: median truncated realized variance 

V IX t = β1 RV t + noise 

Year β1 S.E. t -stat R 2 

20 0 0 0.589 0.0089 65.94 0.271 

2001 0.490 0.0075 64.54 0.352 

2002 0.574 0.0081 68.20 0.532 

2003 0.524 0.0063 82.66 0.597 

V IX t = β1 ̃
 �0 ,H (t) + noise 

Year β1 S.E. t -stat R 2 

20 0 0 0.93603 0.0069 134.65 0.609 

2001 0.8142 0.0087 93.718 0.5583 

2002 0.745 0.0095 78.416 0.6095 

2003 0.8846 0.0107 82.43 0.6042 

V IX t = β1 ̃
 �2 ,H (t) + noise 

Year β1 S.E. t -stat R 2 

20 0 0 1.002 0.0075 132.2 0.600 

2001 0.860 0.0092 92.67 0.553 

2002 0.786 0.0102 76.65 0.599 

2003 0.962 0.0120 80.17 0.591 

V IX t = β1 ̃
 �0 ,DH (t) + noise 

Year β1 S.E. t -stat R 2 

20 0 0 0.8677 0.0063 138.28 0.6192 

2001 0.6979 0.0063 109.85 0.6300 

2002 0.6995 0.0067 104.7 0.7288 

2003 0.8096 0.0079 101.75 0.6961 

V IX t = β1 ̃
 �2 ,DH (t) + noise 

Year β1 S.E. t -stat R 2 

20 0 0 0.964 0.0072 132.60 0.599 

2001 0.879 0.0079 110.74 0.635 

2002 0.699 0.0068 104.73 0.7328 

2003 0.8071 0.0079 101.33 0.6944 

Proxy: 5-minute realized variance 

V IX t = β1 RV t + noise 

˜ �2 ,DH Year β1 S.E. t -stat R 2 

20 0 0 0.807 0.0156 51.68 0.186 

2001 0.706 0.0138 50.86 0.253 

2002 0.784 0.0140 55.73 0.431 

2003 0.671 0.0101 66.40 0.489 

V IX t = β1 �0 ,H (t) + noise 

Year β1 S.E. t -stat R 2 

20 0 0 1.004 0.0076 132.1 0.5981 

2001 0.8594 0.0082 103.57 0.6048 

2002 0.8044 0.0092 76.65 0.6554 

2003 0.9371 0.01095 85.53 0.6204 

V IX t = β1 ̃
 �2 ,H (t) + noise 

Year β1 S.E. t -stat R 2 

20 0 0 1.068 0.0080 132.2 0.602 

2001 0.904 0.0088 102.3 0.599 

2002 0.843 0.0098 85.254 0.646 

2003 1.013 0.0121 83.488 0.609 

V IX t = β1 ̃
 �0 ,DH (t) + noise 

Year β1 S.E. t -stat R 2 

20 0 0 1.013 0.0111 91.21 0.414 

2001 0.8518 0.0110 77.58 0.4578 

2002 0.8698 0.0116 75.24 0.5806 

2003 0.8957 0.0094 94.66 0.664 

V IX t = β1 ̃
 �2 ,DH (t) + noise 

Year β1 S.E. t -stat R 2 

20 0 0 1.087 0.0120 90.56 0.410 

2001 1.008 0.0106 94.51 0.557 

2002 0.992 0.0112 88.14 0.655 

2003 1.107 0.0114 94.23 0.660 

354 
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Table 11 

Comparison of the bias in the estimates obtained with ˜ �0 ,H , ˜ �2 ,H , ˜ �0 ,DH and ˜ �2 ,DH using the two proxies for the spot variance. 

Proxy: Median truncated realized variance Proxy: 5-minute realized variance 

Heston Double Heston Heston Double Heston 

Year Bias ̃  �0 ,H Bias ̃  �2 ,H Bias ̃  �0 ,DH Bias ̃  �2 ,DH Bias ̃  �0 ,H Bias ̃  �2 ,H Bias ˜ �0 ,DH Bias ˜ �2 ,DH 

2000 −0.0114 0.0045 −0.0294 −0.0070 0.0037 0.0192 0.0033 0.0207 

2001 −0.0414 −0.0290 −0.0748 −0.0260 −0.0306 −0.0187 −0.0373 0.0050 

2002 −0.0596 −0.0473 −0.0797 −0.0357 −0.0446 −0.0329 −0.0354 0.0018 

2003 −0.0166 0.0016 −0.0359 0.0284 −0.0054 0.0125 −0.0172 0.0220 

Avg −0.0322 −0.0175 −0.0549 −0.0101 −0.0192 −0.0049 −0.0216 0.0123 

Table 12 

Estimated parameters for the double Heston model from VIX data. 

Double Heston model parameters 

year χ1 v ∗1 γ1 ρ1 χ2 v ∗2 γ2 ρ2 α1 α2 Bias 

2000 0.4128 0.0001 1.8897 −0.9664 1.0737 0.0937 0.2225 −0.8773 0.1439 0.8560 −1.064e −4 

2001 0.1462 0.0204 3.5930 −0.9623 0.2534 0.3103 0.2077 −0.8762 0.1914 0.8085 −1.187e −4 

2002 0.1463 0.0960 3.198 −0.9922 0.1979 0.1994 0.2073 −0.9149 0.2533 0.7466 −3.869e −4 

2003 0.0367 0.0027 8.0235 −0.8953 0.3951 0.1030 0.3501 −0.5771 0.1372 0.8627 2.6097e −5 

Table 13 

Triple Heston model parameters estimated from the VIX and the median truncated realized variance data by minimizing the SSE in Eq. (91) . 

Triple Heston model parameters 

Year χ1 v ∗1 γ1 ρ1 χ2 v ∗2 γ2 ρ2 χ3 v ∗3 γ3 ρ3 

2000 0.4840 0.0046 1.6951 −0.8672 0.3231 0.1516 0.2023 −0.8027 4.3913 0.0170 2.529 0.1009 

2001 0.1286 0.0056 4.5488 −0.9988 0.2271 0.1607 0.2024 −0.8916 0.4429 0.1197 0.0123 −0.5101 

2002 0.1317 0.0069 4.1944 −0.9873 0.1623 0.1490 0.1624 −0.7542 0.3289 0.1435 0.10931 −0.5354 

2003 0.1128 0.0016 8.9596 −0.9752 0.4326 0.0920 0.3884 −0.6436 5.2722 0.0001 7.2568 0.4272 

Table 14 

(Left) Parameters α j , j = 1 , 2 , . . . , with v 1 ,t = α1 RV t , v 2 ,t = α2 RV t , v 3 ,t = α3 RV t estimated from the VIX and the median truncated realized variance data by minimizing the 

SSE in Eq. (91) . (Right) Results of zero-intercept linear regression V IX t = β1 ̃
 �2 ,TH (t) + noise, that is, β1 , SE, t -stat, R 2 and Bias. 

Year α1 α2 α3 β1 SE t -stat R 2 Bias 

2000 0.1120 0.6499 0.2379 0.9883 0.0069 143.165 0.6362 −1.088e −4 

2001 0.1340 0.7598 0.1061 0.9987 0.0077 129.88 0.7029 −1.186e −4 

2002 0.1789 0.7458 0.0752 0.9816 0.0089 109.21 0.7455 −3.837e −4 

2003 0.1283 0.7451 0.1265 1.0038 0.0074 134.91 0.7980 3.353e −5 

Fig. 8. Each panel contains the VIX time series and the model implied volatility ˜ �2 ,TH (i.e., Eq. (90) – Triple Heston model) as a function of day. The model parameters are 

in Table 13 . 
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.S. GDP growth, which registered 4.1% in 20 0 0, 1.1% in 2001, 1.7% 

n 2002 and 2.9% in 2003, i.e., the long-term volatility is higher 

n 2001 and 2002 when the GDP experiences a decline. The third 

actor may thus have macro-economic significance. 

This result is not surprising since other studies have shown a 

orrelation between GDP growth and stock market returns (see, 

itter, 2005 and the references therein; Cournéde & Denk, 2015 ) 12 . 
12 Real U.S. GDP growth data have been downloaded from https://www. 

tatista.com/statistics/188165/annual- gdp- growth- of- the- united- states- since- 1990 

 S&P 500 annual returns are from https://www.macrotrends.net/2526/ 

p- 500- historical- annual- returns . 
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. Conclusions 

This paper introduces an approach to extract the Gaussian ker- 

el behind the multi-factor Heston model, which allows a clear 

onnection of the prices of European option contracts in the multi- 

actor Heston framework to the corresponding prices in the Black–

choles model. Our simple formulas illustrate how the option 

rices and implied volatility respond to changes in model pa- 

ameters. A series of numerical exercises shows that our formu- 

as are accurate, computationally efficient, and easy to calibrate. 

e numerically demonstrate that our approximations compare 

avourably with other pricing formulas available in the literature, 

uch as those of Pacati et al. (2018) and Veng et al. (2019) , when

e use them to calibrate the model parameters to the implied 

olatility and forecast the option prices one day ahead. 

https://www.statista.com/statistics/188165/annual-gdp-growth-of-the-united-states-since-1990
https://www.macrotrends.net/2526/sp-500-historical-annual-returns
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The approach proposed in this paper, while applied only to 

he multi-factor Heston framework and implemented for vanilla 

ontracts, is more generally valid. Extensions to exotic derivatives 

hose payoff allows for a closed or semi-closed form in the Black–

choles framework would be straightforward. More importantly, 

he representation of the marginal density function as a convo- 

ution with an appropriate Gaussian kernel applies to any model 

or which an analytically tractable characteristic function exists, in- 

luding affine stochastic volatility, exponential Lévy models, and 

ump diffusion models. We plan to explore the implications of our 

epresentation formulas, and related asymptotic expansions, more 

enerally for this broader class of models and contracts in future 

ork. We also defer to future work a detailed study of the poten- 

ial advantages of the convolution formulas in terms of computing 

ption prices exactly via numerical integration. In fact, the convo- 

ution formula allows us to price any derivative as the convolu- 

ion of the corresponding price in a time-dependent Black–Scholes 

ramework and the function L γ (in the case of the Gaussian kernel 

 �0 
) or L 

∗
γ (in the case of the Gaussian kernel G �2 

), which do not

epend on the payoff of the contract. A comparison of the perfor- 

ance of these formulas for option pricing and those derived from 

ecchioni and Sun (2016) deserves further investigation. Addition- 

lly, the use of �2 to estimate the variance risk premium from the 

IX and S&P 500 indices and to price VIX options is worthy of fur- 

her rigorous analysis. 

The results of this work, and in particular the decomposition of 

he option prices and implied volatility in terms of the Greeks of 

he options and higher-order risks, may have applications in other 

reas, such as portfolio management and asset allocation. 

ppendix A. Proofs 

Detailed proofs of all the results are provided in the Supple- 

entary material. Here, we provide the most relevant points of 

ach proof. 

.1. Proof of Theorem 2.1 

We recall the backward Kolmogorov equation satisfied by the 

unction M given in (11) as a function of the past log-price x and 

ime t: 

∂M 

∂t 
= 

1 

2 

n ∑ 

j=1 

v j 
∂ 2 M 

∂x 2 
+ 

1 

2 

n ∑ 

j=1 

γ 2 
j v j 

∂ 2 M 

∂v 2 
j 

+ 

n ∑ 

j=1 

γ j ρ j v j 
∂ 2 M 

∂ x∂v j 

+ 

n ∑ 

j=1 

χ j (v ∗j − v j ) 
∂M 

∂v j 
+ 

( 

r(t) − 1 

2 

n ∑ 

j=1 

v j 

) 

∂M 

∂x 
(92) 

ith final condition 

(x, v , t ′ , x ′ , t ′ ) = δ(x − x ′ ) , (93) 

here δ(·) is the Dirac delta function. We look for M in the form 

(x, v , t, x ′ , t ′ ) 

= 

1 

2 π

∫ + ∞ 

−∞ 

e ık (x ′ −x )) −ı k 
∫ t ′ 

t r(s ) ds + Q(k,t ,t ′ , v ;�v ) dk, x, x ′ ∈ R , v ∈ R 

n + , 

t , t ′ ≥ 0 , t ′ − t > 0 , (94) 

here Q is defined as 

Q(t ′ − t, v , k ;�v ) = A (k, t, t ′ ) −
n ∑ 

j=1 

v j B j (k, t, t ′ ) . (95) 

ubstituting Eq. (95) into Eq. (92) , we obtain the Riccati equation 

atisfied by A and B j (see Duffie et al., 20 0 0 ; Fatone et al., 20 09 ): 

d 

dt 
A = 

n ∑ 

j=1 

χ j v ∗j B j , (96) 
356 
nd for j = 1 , 2 , . . . , n, 

d 

dt 
B j = χ j B j + 

1 

2 

γ 2 
j B 

2 
j + ı k ρ j γ j B j −

k 2 

2 

+ 

ı k 

2 

, (97) 

ith final conditions 

 (k, t ′ , t ′ ) = 0 , B j (k, t ′ , t ′ ) = 0 , j = 1 , 2 , . . . , n. (98) 

e now rewrite Q in Eq. (95) . Eqs. (96) and (98) yield 

 (k, t, t ′ ) = 

n ∑ 

j=1 

A j (k, t, t ′ ) = −
n ∑ 

j=1 

χ j v ∗j 
∫ t ′ 

t 

B j (k, τ, t ′ ) dτ , (99)

here 

 j (k, t, t ′ ) = −χ j v ∗j 
∫ t ′ 

t 

B j (k, τ, t ′ ) dτ , (100)

hile Eqs. (97) and (98) yield 

d 

dt 

(
e −χ j t B j (k, t, t ′ ) 

)
= e −χ j t 

(
ı kρ j γ j B j (k, t , t ′ ) + 

1 

2 

γ 2 
j B 

2 
j (k, t , t ′ ) 

)
− e −χ j t 

(
k 2 

2 

− ı 
k 

2 

)
. (101) 

ince B j (k, t ′ , t ′ ) = 0 , integration yields: 

 j (k, t, t ′ ) = −
∫ t ′ 

t 

e −χ j (s −t) 
[ 

ıkρ j γ j B j (k, s, t ′ ) + 

1 

2 

γ 2 
j B 

2 
j (k, s, t ′ ) 

] 
ds 

−
(

−k 2 

2 

+ ı 
k 

2 

)∫ t ′ 

t 

e −χ j (s −t) ds. (102) 

rom Eqs. (99) and (102) , we obtain: 

 j (k, t, t ′ ) = −χ j v ∗j 
∫ t ′ 

t 

B j (k, τ, t ′ ) dτ

= χ j v ∗j 
∫ t ′ 

t 

[∫ t ′ 

τ

[ 
e −χ j (s −τ ) 

(
ı kρ j γ j B j (k, s, t ′ ) + 

1 

2 
γ 2 

j B 
2 
j (k, s, t ′ ) 

)
+ e −χ j (s −τ ) 

(
− k 2 

2 
+ ı 

k 

2 

)]
ds 

]
dτ . (103) 

o by inverting the integration order and using Eqs. (102) and 

103) , we obtain 

 j (k, t, t ′ ) − v j B j (k, t, t ′ ) 

= −
(

k 2 

2 

− ı 
k 

2 

)∫ t ′ 

t 

[
v ∗j 
(
1 − e −χ j (s −t) 

)
+ v j e −χ j (s −t) 

]
ds 

+ 

∫ t ′ 

t 

[ 
ı kρ j γ j B j (k, s, t ′ ) + 

1 

2 

γ 2 
j B 

2 
j (k, s, t ′ ) 

] 
×
[
v ∗j 
(
1 − e −χ j (s −t) 

)
+ v j e −χ j (s −t) 

]
ds (104) 

oting that v j is the variance at time t and the conditional mean 

f the point-in-time volatility given in (7) , Eq. (104) becomes 
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 j (k, t, t ′ ) − v j B j (k, t, t ′ ) 

= 

∫ t ′ 

t 

[
ı kρ j γ j B j (k, s, t ′ ) + 

1 

2 

γ 2 
j B 

2 
j (k, s, t ′ ) + 

(
−k 2 

2 

+ ı 
k 

2 

)]
× E(v j,s | F t ) ds. (105) 

q. (105) implies 

n ∑ 

j=1 

(
A j (k, t, t ′ ) − v j B j (k, t, t ′ ) 

)
= − (k 2 − ık ) 

2 

�0 (t , t ′ ) + 

n ∑ 

j=1 

∫ t ′ 

t 

E(v j,s | F t ) 

×
[ 

1 

2 

γ 2 
j B 

2 
j (k, s, t ′ ) + ı kρ j γ j B j (k, s, t ′ ) 

] 
ds, (106) 

here �0 is given in formula (16) . This proves formula (11) . 

Formula (15) follows if we apply the convolution theorem for 

he inverse Fourier transform to formula (11) . 

The proof of Eq. (12) follows using a standard approach for the 

iccati equations. This concludes the proof. �

.2. Proof of Theorem 2.2 

Eqs. (18) and (23) follow from Eq. (11) by adding and subtract- 

ng the quantity 
(
k 2 − ık 

)
(−S 1 (t , t ′ ) + S 2 (t , t ′ )) , where S 1 and S 2 

re given in Eqs. (21) and (22) , and applying the convolution the- 

rem for the inverse Fourier transform. We now prove the expan- 

ion of L 

∗
γ in Eq. (24) . To this end, we prove the following expan-

ion for B j (12) : 

 j (k, t, t ′ ) = B j, 0 (k, t, t ′ ) + γ j B j, 1 (k, t, t ′ ) 
+ O (γ 2 

j ) , γ j → 0 

+ , t < t ′ . (107) 

ubstituting Eq. (107) into (97) and equating the coefficients of the 

ame powers of γ j , we obtain that the zero- and first-order terms 

 j, 0 and B j, 1 solve the following equations: 

dB j, 0 

dt 
(k, t, t ′ ) − χ j B j, 0 (k, t, t ′ ) = −k 2 

2 

+ 

ı k 

2 

(108) 

dB j, 1 

dt 
(k, t, t ′ ) − χ j B j, 1 (k, t, t ′ ) = ı k ρ j B j, 0 (k, t, t ′ ) , (109) 

ith final conditions 

 j, 0 (k, t ′ , t ′ ) = 0 , B 1 , 1 (k, t, t ′ ) = 0 . (110)

he solution B j, 0 is 

B j, 0 (k, t, t ′ ) = 

1 

2 

(
k 2 − ı k 

) (1 − e −χ j (t ′ −t) ) 

χ j 

= 

1 

2 

(
k 2 − ı k 

)
ψ j (t, t ′ ) , 

(111) 

here ψ j is given in (28) , while B j, 1 is 

 j, 1 (k, t, t ′ ) = − ı k ρ j 

2 χ j 

(
k 2 − ı k 

)
f j (t , t ′ ) , (112) 

here f j is defined as 

f j (t , t ′ ) = 

(
ψ j (t ′ − t) − (t ′ − t) e −χ j (t ′ −t) 

)
= e −χ j (t ′ −t) 

∫ t ′ 

(e χ j (t ′ −s ) − 1) ds t < t ′ . (113) 

M 2 (x, v , t, x ′ , t ′ ) 

= 

1 

2 π

∫ + ∞ 

−∞ 

e 
ık 

[ 
(x ′ −x ) −∫ t ′ t r(s ) ds + 1 2 �2 (t ,t ′ )
t 

357 
sing Eq. (107) in Eq. (23) , we obtain 

 j (k, s, t ′ ) = 

γ 2 
j 

2 

(
ψ 

2 
j 
(s, t ′ ) 
4 

(k 2 − ık ) 2 + 

(k 2 − ı k ) 

4 
ψ 

2 
j (s, t ′ ) 

)
+ ı kρ j γ j 

(
ψ j (s, t ′ ) 

2 
(k 2 − ı k ) + 

γ j ρ j 

2 χ j 

f j (s, t ′ )(−ık 3 − k 2 ) 

+ 

(ık + 1) 

2 
ψ j (s, t ′ ) 

)
+ o(γ 2 

j ) , γ j → 0 + . (114) 

roceeding similarly (see online supplementary material), we ob- 

ain Eq. (24) . This concludes the proof. �

.3. Proof of Corollary 2.4 

We sketch the proof for the first three-order terms, G �2 
, M 1 

nd M 2 . From Theorem 2.2 and using the expansion in formula 

24) up to the second order, we have: 

2 (t ,t ′ ) k 2 
e S 1 (t ,t ′ )(ı k 3 + ı k )+ S 2 (t ,t ′ )(k 4 −2 ık 3 −ık )+ S 2 c (t ,t ′ )(k 4 −ı k 3 ) dk, (115) 

here S 1 is a linearly homogeneous function of the vols of vols, 

hile S 2 and S 2 c are homogeneous functions of degree two. We 

ompute the first three terms of the expansion in powers of the 

ols of vols of the function 

( γ ) = e S 1 (t ,t ′ )(ı k 3 + ı k )+ S 2 (t ,t ′ )(k 4 −2 ık 3 −ık )+ S 2 c (t ,t ′ )(k 4 −ı k 3 ) . (116) 

he proof follows based on: 

E | γ = 0 = 1 , 
∂E 
∂γ j 

∣∣∣∣
γ = 0 

= (ı k 3 + ı k ) 
∂S 1 
∂γ j 

, 

∂ 2 E 
∂γ j γi 

∣∣∣∣
γ = 0 

= (ı k 3 + ı k ) 2 
∂S 1 
∂γi 

∂S 1 
∂γ j 

, i � = j, (117) 

nd 

∂ 2 E 
∂γ 2 

j 

∣∣∣∣
γ = 0 

= (ı k 3 + ı k ) 2 
(

∂S 1 
∂γ j 

)2 

+ 

∂ 2 S 2 
∂γ 2 

j 

(k 4 − 2 ık 3 − ık ) + 

∂ 2 S 2 c 
∂γ 2 

j 

(k 4 − ı k 3 ) . (118) 

his concludes the proof. �

.4. Proof of Proposition 3.1 

The proof follows by substituting M with its third-order ap- 

roximation and integrating by parts. Details on why we obtain 

n explicit formula for the corrections terms are given in the on- 

ine supplementary material. As mentioned above, the correction 

 m,MH , m = 1 , 2 , 3 for the call option is the same as the put cor-

ection since there are two changes of sign: one due to the payoff

unction and the other due to integration by parts over the interval 

 −∞ , log E) rather than ( log E, + ∞ ). This concludes the proof. �

.5. Proof of Proposition 3.2 

Let us now prove formula (62) . When γ = 0 (i.e., all vols of vols 

re equal to zero), we have �2 (0 , T ) equal to �0 (0 , T ) and the cor-

ection terms R 1 , R 2 equal to zero, which implies 

�1 ( 0 ) = 

√ 

�0 (0 , T ) . (119) 

e compute the first- and second-order partial derivatives of both 

ides of Eq. (61) with respect to γ j , j = 1 , 2 , . . . , n, and we eval-

ate the derivatives at γ = 0 . Using the Black–Scholes Vega (i.e., 
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∂C BS 
∂σ

| γ = 0 = S 0 N 

′ (d 1 (�0 )) 
√ 

T ) and the derivatives of �2 , S 1 and S 2 

ith respect to γ j , we obtain 

∂ 

∂γ j 

�1 

∣∣∣∣
γ = 0 

= 

ρ j T j (0 , T ) 

2 χ j 

1 √ 

�0 (0 , T ) 

(
+ 

1 

2 

− ( ln (S 0 /E) + 

∫ T 
0 r(s ) ds ) 

�0 (0 , T ) 

)
, 

(120) 

hus implying 

1 ( γ ) = 

√ 

�0 (0 , T ) − 1 √ 

�0 (0 , T ) 

(
( ln (S 0 /E) + 

∫ T 
0 r(s ) ds ) 

�0 (0 , T ) 
− 1 

2 

)
×

n ∑ 

j=1 

γ j ρ j 

2 χ j 

T j (0 , T ) . (121)

o prove Eq. (63) , we proceed by computing the second-order 

erivatives, which are given by: (
∂�2 

∂γ j 

)∣∣∣∣
γ = 0 

= 

1 √ 

�0 

(
∂S 1 
∂γ j 

)
(m E + 

1 
2 
�0 ) 

�0 

. (122) 

n easy, but involved, computation illustrated in the online sup- 

lementary material shows that the addenda containing powers of 

m E + 

1 
2 �0 ) higher than two are cancelled by the addenda involv- 

ng the Black–Scholes Vomma. In fact, we have: 

∂ 2 

∂γ 2 
j 

�2 ( 0 ) = 

1 √ 

�0 

(
∂S 1 
∂γ j 

)2 

×
[
− 6 

�0 

(m E + 

1 
2 
�0 ) 

2 

�2 
0 

+ 

3 

�0 

(m E + 

1 
2 
�0 ) 

�0 

+ 

3 

�2 
0 

]
+ 

∂ 2 S 2 
∂γ 2 

j 

1 √ 

�0 

[
(m E + 

1 
2 
�0 ) 

2 

�2 
0 

− (m E + 

1 
2 
�0 ) 

�0 

− 1 

�0 

]
+ 

∂ 2 S 2 c 
∂γ 2 

j 

1 √ 

�0 

[
(m E + 

1 
2 
�0 ) 

2 

�2 
0 

− 1 

�0 

]
. (123) 

roceeding in a similar manner, we obtain mixed-order mixed 

erivatives: 

∂ 2 

∂ γ j ∂ γk 

�2 ( 0 ) = 

1 √ 

�0 

(
∂S 1 
∂γ j 

)(
∂S 1 
∂γk 

)
×
[
− 6 

�0 

(m E + 

1 
2 
�0 ) 

2 

�2 
0 

+ 

3 

�0 

(m E + 

1 
2 
�0 ) 

�0 

+ 

3 

�2 
0 

]
. 

(124) 

he thesis follows since we have S 2 = 

1 
2 

∑ n 
j=1 γ

2 
j 

∂ 2 S 2 
∂γ 2 

j 

, S 2 c = 

1 
2 

∑ n 
j=1 γ

2 
j 

∂ 2 S 2 c 
∂γ 2 

j 

and S 2 1 = 

∑ n 
j=1 

∑ n 
k =1 γ j γk 

∂S 1 
∂γ j 

∂S 1 
∂γk 

. This concludes 

he proof. A more detailed proof is provided in the supplementary 

aterial section available online. �

ppendix B. Formulas in terms of the Gaussian kernel G �0 

In this section, we provide the second-order approximations of 

he option prices starting from the representation of the marginal 

ensity function given by formula (11) . 

orollary B.1. The following expansion of the conditional marginal M

n powers of γ as ‖ γ ‖ → 0 holds: 
358 
(x, v , t, x ′ , t ′ ) 
= G �0 

(x ′ − x, t, t ′ ) + M 1 , 0 (x, v , t, x ′ , t ′ ) + M 2 , 0 (x, v , t, x ′ , t ′ ) 
+ o 
(‖ γ ‖ 

2 
)
, ‖ γ ‖ → 0 , (125) 

here M 1 , 0 and M 2 , 0 are given by 

 1 , 0 (x, v , t, x ′ , t ′ ) 

= S 1 (t , t ′ ) 
[
−d 3 G �0 

dx ′ 3 (x ′ − x, t , t ′ ) − d 2 G �0 

dx ′ 2 (x ′ − x, t , t ′ ) 
]
, (126) 

 2 , 0 (x, v , t, x ′ , t ′ ) = + S 2 (t, t ′ ) 

×
[

d 4 G �0 

dx ′ 4 (x ′ − x, t, t ′ ) + 2 
d 3 G �0 

dx ′ 3 (x ′ − x, t, t ′ ) + 

d 2 G �0 

dx ′ 2 (x ′ − x, t, t ′ ) 
]

+ S 2 c (t , t ′ ) 
[

d 4 G �0 

dx ′ 4 (x ′ − x, t , t ′ ) + 

d 3 G �0 

dx ′ 3 (x ′ − x, t , t ′ ) 
]

+ 

1 

2 
S 2 1 (t , t ′ ) 

[
d 6 G �0 

dx ′ 6 (x ′ − x, t , t ′ ) + 2 
d 5 G �0 

dx ′ 5 (x ′ − x, t , t ′ ) 

+ 

d 4 G �0 

dx ′ 4 (x ′ − x, t, t ′ ) 
]
. (127) 

ere, S 1 is given by (21) , G �0 
is the Gaussian kernel defined in (10) ,

nd S 2 and S 2 c are given in (22) and (25) , respectively. The following

xpansion holds for the European vanilla call and put option prices, 

 MH and P MH , with spot price S 0 , maturity T , strike price E and dis-

ount factor B (T ) : 

 MH (S 0 , T , E) = C BS 

( 

S 0 , T , E, 

√ 

�0 √ 

T 

) 

+ R 1 , 0 (S 0 , T , E) 

+ R 2 , 0 (S 0 , T , E) + o 
(‖ γ ‖ 

2 
)
, ‖ γ ‖ → 0 , (128) 

nd 

 MH (S 0 , T , E) = P BS 

( 

S 0 , T , E, 

√ 

�0 √ 

T 

) 

+ R 1 , 0 (S 0 , T , E) + R 2 , 0 (S 0 , T , E + o 
(‖ γ ‖ 2 ), ‖ γ ‖ → 0 . 

(129) 

ere, �0 (0 , T ) is given by (16) , C BS and P BS denote the classic Black–

choles formulas, as in (45) and (46) , and R 1 , 0 and R 2 , 0 are the cor-

ections to the standard Black–Scholes formula due to the contribution 

f the first- and second-order terms of the expansion in powers of the 

ols of vols of the marginal density function: 

 1 , 0 (S 0 , T , E) = B (T ) E 
S 1 (0 , T ) 

�0 (0 , T ) 

×
(

+ log 

(
E 

S 0 e 
∫ T 

0 r(s ) ds 

)
+ 

1 

2 

�0 (0 , T ) 

)
G �0 

× ( log (E/S 0 ) , 0 , T ) , (130) 

nd 

R 2 , 0 (S 0 , T , E) = S 2 (0 , T ) B (T ) E 

[
d 2 G �0 

dx ′ 2 + 

dG �0 

dx ′ 

]
( log (E/S 0 ) , 0 , T ) 

+ S 2 c (0 , T ) B (T ) E 
d 2 G �0 

dx ′ 2 ( log (E/S 0 ) , 0 , T ) + 

1 

2 

S 2 1 (0 , T ) B (T ) E 

×
[

d 4 G �0 

dx ′ 4 + 

d 3 G �0 

dx ′ 3 

]
( log (E/S 0 ) , 0 , T ) . (131) 

roof. The proof is based on the proof of Corollary 2.4 and 

roposition 3.2 for the expansion in powers the vols of vols 

onsidering that the Fourier transform of L γ is equal to 

he product of the Fourier transform of L 

∗
γ multiplied by 

(k 2 −ık )(S 1 (t ,t ′ ) −S 2 (t ,t ′ )) 
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ppendix C. Formulas derived from Recchioni and Sun (2016) 

Starting from the approach of Recchioni and Sun (2016) , with 

 straightforward computation, the following explicit formulas for 

he option prices in the multi-factor Heston model are derived (see 

he online Supplementary material): 

 MH (S 0 , T , E) = e (q −1) 
∫ T 

0 r(s ) ds S 0 
2 π

×
∫ + ∞ 

−∞ 

(
S 0 
E 

)(q −1 −ık ) 
e −ı k 

∫ T 
0 r(s ) ds e Q v ,q (T, v 0 ,k ;�v ) 

−k 2 − (2 q − 1) ık + q (q − 1) 
dk, 

(132) 

nd 

 MH (S 0 , T , E) = e (q −1) 
∫ T 

0 r(s ) ds S 0 
2 π

×
∫ + ∞ 

−∞ 

(
S 0 
E 

)(q −1 −ık ) 
e −ı k 

∫ T 
0 r(s ) ds e Q v ,q (T, v 0 ,k ;�v ) 

−k 2 − (2 q − 1) ık + q (q − 1) 
dk, 

(133) 

here, in the case of the Heston/double Heston models, Q v ,q is the 

lementary function given by 

Q v ,q (t ′ − t, v , k ;�v ) = 

n ∑ 

j=1 

−(2 χ j v ∗j /γ
2 
j ) ln (s q, v j ,b, / (2 ζq, v j )) 

− (2 χv ∗j /γ
2 
j )(ζq, v j + μq, v j )(t ′ − t) 

− (2 v j /γ 2 
j )(ζ

2 
q, v j − μ2 

q, v j ) s q, v j ,g /s q, v j ,b , 

ith μq, v j , ζq, v j , s q, v j ,g , and s q, v j ,b defined as follows: 

q, v j = −1 

2 

(χ j + (ı k − q ) γ j ρ j ) , 

ζq, v j = 

1 

2 

[
4 μ2 

q, v j + 2 γ 2 
j ϕ q (k ) 

]1 / 2 
, (134) 

 q, v j ,g = 1 − e 
−2 ζq, v j (t ′ −t) 

, 

 q, v j ,b = (ζq, v j + μq, v j ) e 
−2 ζq, v j (t ′ −t) + (ζq, v j − μq, v j ) . (135) 

he quantity ϕ q in Eq. (134) is given by ϕ q (k ) = 

k 2 

2 + ı k 2 (2 q − 1) −
1 
2 (q 2 − q ) , k ∈ R . Formulas (132) and (133) differ in the calcula-

ions of call and put prices only in the choice of the real parameter

, which should be larger than one to compute a call option and 

maller than 0 to compute a put option. These formulas are in line 

ith the Lewis regularization technique (i.e., Lewis, 20 0 0 , Chap 2), 

hose integrand functions are smooth functions. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2020.11.050 . 
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