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Abstract Additive Bayesian networks (ABNs) are types of graphical models that
extend the usual generalized linear model (GLM) to multiple dependent variables
through the representation of joint probability distribution. Thanks to their flexible
properties, ABNs have been widely used in epidemiological analyses. In this work
we present a veterinary case study where ABNs are used to explore multivariate
swine diseases data of medical relevance. We then compare the results with a clas-
sical methodology. Finally, we highlight the key difference between a multivariable
standard (GLM) and a multivariate (ABN) approach: the latter attempts not only to
identify statistically associated variables, but also to additionally separate these into
those directly and indirectly dependent with one or more outcome variables.
Abstract Le reti Bayesiane additive (ABNs) sono tipi di modelli grafici che esten-
dono l’usuale modello lineare generalizzato (GLM) a variabili multiple dipendenti
attraverso la rappresentazione della distribuzione di probabilità congiunta. Gra-
zie alle loro proprietà flessibili, le reti ABNs sono state ampiamente utilizzate nelle
analisi epidemiologiche. In questo lavoro presentiamo un caso di studio veterinario
in cui il metodo ABN viene utilizzato per esplorare dati multivariati su malattie
suine di rilevanza medica. In seguito confrontiamo i risultati con una metodologia
classica. Infine, evidenziamo la differenza chiave tra un approccio standard multi-
variabile (GLM) e uno multivariato (ABN): quest’ultimo tenta non solo di identifi-
care le variabili associate statisticamente, ma anche di separarle ulteriormente in
quelle direttamente e indirettamente dipendenti con una o più variabili d’esito.
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1 Introduction
A primary objective of many epidemiological studies is to investigate hypothesized
relationships between covariates of interest, and one and more outcome variables,
through analyses of appropriate data. From a data analysis perspective, this is often
far from being trivial. Diseases and health conditions, which are a priority for control
or eradication in humans and animals, are increasingly recognized to have highly
complex determinants. Typically, the unknown stochastic processes, which gener-
ated these data, are highly complex, resulting in multiple correlation/dependencies
between covariates and between outcome variables. Standard epidemiological and
statistical approaches cannot adequately describe such inter-dependent multifacto-
rial relationships. ABN modelling is a data mining/machine learning methodology,
which has demonstrated to be ideally suited for such analyses [1, 2].

2 Material and methods

2.1 The data

We present data on disease occurrence in pigs provided by the industry body ‘British
Pig Health Scheme’ (BPHS). The main objective of BPHS is to improve the produc-
tivity of pig in the UK, and reducing disease occurrence is a significant part of this
process. The data we consider here comprise of a randomly chosen batch of 50 pigs
from each of 500 randomly chosen pig producers in the UK. In total we deal with
25’000 observations, i.e. animals entering the human food chain at an abattoir: ‘fin-
ishing pigs’. Each animal is assessed for the presence of a range of different disease
conditions by a specialist swine veterinarian.

Then, the resulting variables are binary due to the presence or the absence of a
specific disease. We consider here the following ten disease conditions, all abbre-
viated to ease the notation and described in [3]: enzootic-pneumonia (EP); pleurisy
(PL); milk spots (MS); hepatic scarring (HS); pericarditis (PC); peritonitis (PT);
lung abscess (AB); tail damage (TD); pyaemia (PY) and papular dermatitis (PD).

The presence of any of these conditions results in an economic loss to the pro-
ducer. Either directly due to the relevant infected part of the animal being removed
from the food chain, or indirectly in cases such as enzootic pneumonia, which may
potentially indicate poor herd health and efficiency losses on the farm. An addi-
tional loss, though not directly monetary, is the presence of tail damage which may
be suggestive of welfare concerns and linked to sub-optimal production efficiency.
Milk spots and hepatic scarring result from infestation with Ascaris suum, which is
particularly important as this is a zoonotic helminth parasite.

2.2 Additive Bayesian networks

A Bayesian network for a set of random variables X = {X1, . . . ,Xn} consists of:

• A directed acyclic graph (DAG) structure S = (V,E), where V is a finite set of
vertices or nodes and E is a finite set of directed edges between the vertices. A
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DAG is acyclic; hence, the edges in E do not form directed cycles. A random
variable X j corresponds to each node j ∈ V = {1, . . . ,n} in the graph. We do not
distinguish between a variable X j and the corresponding node j.

• A set of parents for a node j is denoted by Pa j. A node j is said to be a parent
of a node k if the edge set E contains an edge from j to k. Pj indicates the total
number of parents for a node j : dim(Pa j) = Pj ≥ 0. Pj = /0 for orphan nodes.

• A set of local probability distributions for all variables in the network called
θθθB . Each node j, with parent set Pa j, is parametrized by a local probability
distribution: P(X j|Pa j).

Edges represent both marginal and conditional dependencies. The main role of the
network structure is to express the conditional independence relationships among
the variables in the model through graphical separation, thus specifying the factor-

ization of the global probability distribution: P(X) =
n

∏
j=1

P(X j|Pa j).

We denote a Bayesian network (BN) model B for a set of random variables X by
a pair B = (S ,θθθB). The DAG S defines the structure, and θθθB the parametriza-
tion of the model. In order to specify a B for X, we must therefore specify a DAG
structure and a set of local probability distributions.

An additive Bayesian network A consists of a Bayesian network B that general-
izes the multinomial logistic regression model M . The multinomial logistic regres-
sion model M can be integrated into a BN B by modelling each of its conditional
probability table P(X j = s | Pa j = c) = θ jcs with a multinomial logistic regression
model, where X j is progressively the outcome variable and the resulting regression
design matrix is constructed from Pa j, as showed in [4] and in detail in Figure 1.
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Fig. 1 A binary additive Bayesian network model A for five random variables.

X1 is independent: logit(θ1) = β1,0

X2 is independent: logit(θ2) = β2,0

X3 is jointly dependent upon X1, andX2: logit(θ3) = β3,0 +β3,1X1 +β3,2X2

X4 is conditionally dependent upon X3: logit(θ4) = β4,0 +β4,1X3

X5 is conditionally dependent upon X3: logit(θ5) = β5,0 +β5,1X3

2.3 Analysis with ABN

All analyses were conducted using the software R [5] and specifically the “abn”
R package [6] which is available from CRAN “cran.r-project.org” with additional
documentation and case studies at “http://www.r-bayesian-networks.org”.

Prior distributions were defined. All DAG structures were equally supported a
priori with a uniform, i.e., uninformative, prior. It is possible to construct informa-
tive structural priors, i.e. penalizing models with more structural complexity, but as
noted in [7] these are problematic to specify or lead to undesirable properties as in
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[9]. Uninformative Gaussian priors were applied for the additive parameters at each
node: specifically, independent Gaussian priors with mean zero and variance 1000.

As we are searching across DAGs - to identify optimally fitting structures - there
is also the need for a prior on structures. The default being that each structure is
equally supported a priori. It is possible to construct informative structural priors,
for example to penalize models with more structural complexity, e.g. more arcs, but
as noted in [6] these are problematic to specify in practice. In [8] an informative
structural prior on the number of parents within an individual node is used, where
this assumes that parent combinations with the same cardinality are equally likely.
This prior gives equal weighting to a parent combination with cardinality zero and
cardinality m1 which may not be entirely desirable. In the subsequent case study
analyses an uninformative - flat - structural prior is used.

A two-steps procedure was used to identify a robust model.
The first step was to find an optimal ABN model A1. The process of identifying

an optimal ABN is referred to in the literature as structure learning [8]. This was
found with an order based exact search method [9]. The best goodness of fit to
the available data was computed using the marginal likelihood (ML), equivalent
to Bayes factors for models with equal structural priors and the standard Bayesian
score function used in BN literature [7, 8]. The ML includes an implicit penalty for
model complexity and in a binary additive Bayesian network for a node j is:

P(D j|S ) =

∫
+∞

−∞

m

∏
i=1

(
ezT

i jβββ j

1+ ezT
i jβββ j

)xi j
(

1

1+ ezT
i jβββ j

)1−xi j

×
C j

∏
c=1

1√
2πσc

e
− (βc−µc)2

2σ2c dβββ j

where D j are the observed data at node j, and consist of tuples of [xi j,zT
i j]. The

parameter vector at node j is represented by βββ j, and has the same length as the
possible parents configuration, denoted by C j, then dim(βββ j) = C j. The marginal
likelihood was estimated using the Laplace approximation at each node. To find the
best model, the maximum number of parents allowed per node (number of covari-
ates in each regression model at each node) was increased until the goodness of
fit remained constant and thereby identified the same globally optimal ABN. The
model selection procedure started from one possible parent per node and then the
parent limit increased gradually until five possible parents per node [6].

In the second step, the model A1 was adjusted by checking it for overfitting
using Markov chain Monte Carlo (MCMC) simulation implemented in JAGS (just
another Gibbs sampler) [10]. A parametric bootstrapping approach was suggested
in [8] which uses simulation to assess whether a chosen model comprises more
complexity than could reasonably be justified given the observed data. Simulated
datasets were generated with MCMC as iterations of an identical size as the original
one, from the optimal model found in step one. An identical exact search for an
optimal model structure was then performed exactly as in the first step, but applied
to the bootstrapped data rather than original data. It was repeated 10240 times [6],
a large enough number to get robust results, using the same parent limit per node
as the one found in the initial search. Arcs present in less than 50% of the globally
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optimal ABNs - estimated from the bootstrapped data - were considered not to be
robust and removed from the DAG generated in the first step. A most robust ABN
model A2 fully adjusted for over-fitting was identified at the end of this second step,
equivalent to a multivariate GLM.

2.4 Analysis with GLM

Data were analysed using the software R [5] and the “glm” function, available in
the “stats” R package . As many different generalized linear models (GLMs), in
particular multivariable logistic regression following the data structure, as the dif-
ferent number of variables were performed. Only two models based on the most
significant variables and with the highest AIC score have been selected and shown.

3 Results with ABN and GLM
The resulting best fitting ABN comprised 12 arcs and a maximum number of three
parents (Fig. 8 in [6]), for the variable PD (papular dermatitis) and PL (pleurisy).
After the bootstrap analysis, four of the arcs in the globally optimal ABN were only
weakly supported. Therefore the number of arcs was reduced from 12 to 8 (Fig. 7 in
[6]). The final globally optimal additive Bayesian network model after adjustment
for over-fitting is shown in Fig. 2 on the left. Three different epidemiological path-
ways can be identified resulting in variables indirectly linked together. The goodness
of fit for this model is−44245.73. For example, forcing an additional arc connecting
PC and AB gives a poorer log marginal likelihood of −44249.58.

The two GLM models with the most significant variables and the highest AIC
score have PC (pericarditis) and AB (lung abscess) as response variables. Figure
2, in the middle and on the right, shows the two corresponding models. A GLM
is simply a DAG where arcs are only allowed directly between the covariates and
response variable. In each case we find that an arc is identified between PC and AB.
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Fig. 2 Final ABN model of swine diseases data with 8 arcs after bootstrapping adjustment (left).
Two globally optimal GLMs - one with PC as the dependent variable (middle), and a second with
Abscess as the dependent variable (right).
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4 Conclusion
In summary, we find that while the GLM analyses identifies a strongly supported
statistical association between presence of pericarditis (PC) and lung abscess (AB);
the ABN model does not support a direct statistical dependency between PC and
AB. In the ABN model there is no arc connecting these variables, this relationship
is via the intermediate variable pleurisy (PL).

This highlights the key difference between a multivariable GLM and a multivari-
ate GLM (ABN). The former identifies variables which may be associated with the
response (dependent) variable within a very restrictive model space: arcs are only
allowed from covariates direct to the response variable. When considering the same
data within a larger model space, which incorporates other relationships within the
underlying epidemiological system which generated the observed data, then such
variables may then only be supported as indirectly, rather than directly, related to
the response variable. In [2, 11] there are further similar GLM and ABN examples.

These results provides a conceptual justification of the Yule-Simpson paradox,
which states that an apparent relationship between variables may disappear or even
be reversed when others are taken into account.

In conclusion, data analyses using ABNs have the potential to offer new insights
into complex epidemiological systems.
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