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Abstract 
Predicting the future performance of young runners is an important research issue in experimental sports 
science and performance analysis. We analyse a dataset with annual seasonal best performances of male 
middle distance runners for a period of 14 years and provide a modelling framework that accounts for both 
the fact that each runner has typically run in 3 distance events (800, 1,500, and 5,000 m) and the presence 
of periods of no running activities. We propose a latent class matrix-variate state space model and we 
empirically demonstrate that accounting for missing data patterns in runners’ careers improves the out of 
sample prediction of their performances over time. In particular, we demonstrate that for this analysis, the 
missing data patterns provide valuable information for the prediction of runner’s performance.
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1 Introduction
Planning the future career of young runners is a relevant aspect of the work of coaches, whose role 
is to guide them during training so that they can perform at their best in competitions. Identifying 
runner’s capabilities and future possibilities is important for multiple reasons. It allows the train
ing load to be appropriately allocated over the years, for improving their performances and redu
cing their risk of injuries. Good planning, along with support during injuries, has been identified as 
one of the relevant factors that help avoiding drop-outs of runners (Bussmann, 1999). Moreover, 
good planning is important also from a psychological and emotional point of view, as it allows 
runners to strive for achievable goals and collect successes over the years. Pleasant emotions, in
cluding satisfaction, have been associated with positive outcomes in, e.g., mental health, perform
ance, and engagement (Cece et al., 2019). In this context, the identification of possible careers for a 
runner, in terms of observed personal performance trajectories over time, is of paramount import
ance. For example, identifying the period in which runners reach their peaks can help prepare them 
for the most important events in their career. Similarly, the knowledge of the expected progress of 
different runners over the years provides an indication of whether the training process has been 
carried out correctly. The analysis of athletes’ trajectory is carried out in various sports. Leroy 
et al. (2018) study young swimmers’ progression using a functional clustering approach, while 
Boccia et al. (2017) focus on individual careers of Italian long and high jumpers to figure out which 
characteristics of young jumpers are predictive of good-level results during their careers.

We focus on the analysis of performances of Italian male middle distance runners, born in 1988, 
in a period ranging from 2006 to 2019. Previous studies on middle distance runners are few or 
limited to samples with a small number of runners (see, e.g., Weippert et al., 2021). We use a 
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combination of latent class and matrix-variate state space models. Latent class models for time- 
dependent data have been extensively studied in clustering (see, among others, Bartolucci & 
Murphy, 2015; Frühwirth-Schnatter, 2011; Maharaj et al., 2019) and hidden Markov models 
(Bartolucci & Farcomeni, 2015; Cappé et al., 2005; Frühwirth-Schnatter, 2006). They allow to 
capture the heterogeneity in the careers of runners, thereby describing various possible observable 
scenarios. Combining them with state space models offers additional advantages, including the 
possibility of building models for multivariate time series in an intuitive manner as well as the pos
sibility of leveraging well-known tools for inference, including the treatment of missing data 
(Durbin & Koopman, 2012). Unlike other types of runners and sports, middle distance runners 
have the major feature of competing in different distances, i.e., in the 800, 1,500, and 5,000 m dis
tances, as well as in other spurious ones (i.e., the mile, 3,000 m, etc.). The choice of discipline in 
which to compete is subjective and typically associated with personal attitudes (Mooses et al., 
2013). A runner capable of developing higher speed and greater power typically competes in short
er distances, with respect to those with greater endurance who compete in longer distances. As a 
consequence, observations in different distances are available for each runner over time, but the 
absence of a particular discipline can be informative on the runner’s attitude. Beyond the variabil
ity among subjects related to the type of discipline performed, there is also variability in the devel
oping of runners’ careers related to both their abilities and histories. Runners that begin their 
career late in life are less likely to reach high levels; similarly, runners with unsatisfactory careers 
are likely to end their careers earlier, with respect to those satisfied with their performances 
(Hernandez et al., 2011). These aspects are related to drop-in and drop-out phenomena, defined 
as the events where runners enter and exit the observed sample, respectively.

A key interesting and important question that naturally emerges is whether the absence of data is 
really associated with observed performances. We attempt to shed light in this question by propos
ing a matrix state space model in which multivariate time series are clustered together on the basis 
of their observed trend. Matrix-variate state space models have found application in finance and 
engineering in past years (see, e.g., Choukroun et al., 2006; Wang & West, 2009), but have recent
ly gained additional interest in the statistical literature to analyse problems in which observations 
over time are matrices (see, e.g., Chen et al., 2020, 2021; Hsu et al., 2021). In this part of model 
specification, clustering is achieved via a latent selection matrix which is involved in the measure
ment equation. We propose to include temporal dynamics that aim to describe missing data pat
terns using two different processes. First, runner’s personal history is described by a three state 
process, which describes their entry (drop-in) and exit (drop-out) from the sample. Second, differ
ent propensities to compete in different distances are considered to describe runner’s personal at
titude. The probabilities of both the processes are assumed to be dependent on the latent classes 
stored in the selection matrix previously mentioned, allowing to consider the possible relation 
of missing data patterns with the observed performances. In this way, clustering is not only 
achieved on the basis of runners’ performances, but the presence and absence of data is considered 
informative as well. Works on latent class and clustering models for longitudinal data where the 
presence of missing values may be informative on the latent structure behind the data are few or 
limited to domain-specific works (see, e.g., Bartolucci & Murphy, 2015; Mikalsen et al., 2018).

Since the seminal work on missing values by Rubin (1976), researchers have wondered if and 
when it is possible to ignore the presence of missing values in their datasets. In this work, we con
sider this problem in a pure predictive framework, in which missing values will be considered as 
informative if having information on their presence and distribution over time helps in predicting 
runners performances over the years. If so, one could think to a causal relationship, in a Granger’s 
sense, between missing values and observed performances. Although coherent with our model 
construction, we avoid the use of definition of informativeness of missing data in a causal sense. 
Indeed, while correlation between missing data and performances is typically expected in sports 
performance analysis, direct cause-effect relationships between them and their directions are 
not clearly defined in the sports science literature.

The rest of the paper is organized as follows: Section 2 presents a new publicly available dataset 
on middle distance runners; Section 3 describes the proposed model; Section 4 discusses the like
lihood and the prior specification; Section 5 presents the evaluation strategy of the model; Section 
6 shows the results with the real data. Additional details on the data, the algorithms, and the re
sults are reported in the online supplementary material accompanying the paper.
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2 Data and exploratory analysis
Our data refer to annual seasonal best performances of male Italian runners, born in 1988, on 
5,000, 1,500, and 800 m distances in a period between 2006 and 2019. They were collected 
from the annual rankings accessible on the website of the Italian athletics federation (www. 
fidal.it), which stores results and rankings in competitions since 2005. All runners with at least 
two observations were selected and the data are illustrated in Figure 1 with the help of a local re
gression fit that allows us to perceive a U-shaped curve that describes the distribution of sample 
trajectories across ages. U-shapes are typically observed in the evolution of runners careers 
(Haugen et al., 2018). However, their shape can be biased by the presence of missing data, related 
for example to early exit or late entry in the sample.

Indeed, unlike other type of data, the presence of missing values is predominant in the careers of 
these runners. Out of 15,498 observable seasonal best performances of Q = 369 runners in P = 3 
distances and T = 14 years, only 2,411 seasonal best results are observed. A missing value is ob
served for one runner if the runner does not conclude (and, hence, record) any official competition 
in a specific discipline during one year. The reasons for not observing any performance can be mul
tiple. The runner can be not in career in a specific year, and hence no races are performed during 
that year. Alternatively, a runner in career can decide not to compete in a specific discipline for 
several reasons, such as lack of preparation, attitude, technical choices, etc. To understand how 
missing data patterns differ between runners, Figure 2 shows the observed patterns of missing 
data for nine distinct runners present in the sample. The patterns shown differ in various features. 
Some runners have few observations, such as runners 241 and 119. Other runners are character
ized by long careers, such as runners 129 and 256. These two runners are interesting because they 
differ in the type of discipline they run: while runner 129 competes only in the 1,500 m discipline, 
runner 256 competes in all the distances, recording a different number of observations for each 
distance. The observed differences are typically associated both with technical choices, but also 
with different attitudes of the runners, leading them to compete in races of different length, accord
ing for example to their endurance and speed abilities. We define the drop-in and drop-out as the 
runner age in which the first observation in at least one discipline is present and the age after the 
last performance is observed, respectively. Naturally, the careers of the runners differ both in 
length and the age they start racing. Based on this definition, runner 129 drops-in at age 19 and 
drops-out at age 31 and runner 233 drops-in at age 18 and has not dropped-out in the period under 
examination.

The empirical distribution of runners careers’ length, shown in panel (a) of Figure 3, is right 
skewed, with an average length of 5.04 years. The increased observation at year 14 is due to 
data censoring. Panel (b) illustrates that around 60% of runners in the sample competes when 
they are 18 years old, but about 20% of them have already left the competition at the age of 
20. A visual exploration that indicates whether these aspects are effectively associated with ob
served performances are presented in panel (c) that depicts that performance at drop-in seems 
to be worse (higher times) if the runners start competing late in life and in panel (d) that shows 

Figure 1. Seasonal best performances of 369 Italian male middle distance runners in 5,000, 1,500, and 800 m 
distances. Points represent the observed performances. Lines connect the performances in consecutive years of 
the same runner. The black lines are obtained using local regression.
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the distributions of the observed performances, distinguishing between runners with careers lon
ger or shorter than 7 years. In our data, runners with longer careers perform typically better than 
those with shorter careers. The reason for this behaviour can be either because runners with un
satisfactory career leave the competitions earlier or because competing (and, hence, training for it) 
for a long period is a prerequisite for improving. We refer to the online supplementary material for 
similar plots with other distances.

Figure 2. Missing data patterns for nine runners describing their actual participation in different distances across 
their ages, shown on top. Yellow squares indicate that the performance is present, blue squares the absence of the 
observations.

(a)

(d)

(b) (c)

Figure 3. Panel (a) shows the distribution of runners career length, panel (b) the percentage of runners that are in 
career (or not) in the different ages considered, and panel (c) the performances at drop-in in 1,500 m. Panel (d) shows 
the distributions of seasonal best performances over ages in 1,500 m discipline, grouped by the career length of the 
runners. Blue boxplots represent the performances of runners with a career shorter than 7 years (included), red 
boxplots the performances of runners with a career longer than 7 years.
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3 The model
3.1 Clustering longitudinal data with matrix state space model
Let the scalar element ypq,t denote the observation of the performance in discipline p for runner q 
during year t, for p = 1, …, P, q = 1, …, Q, and t = 1, …, T. To facilitate the exposition, in this sec
tion, we assume that the complete set of observations is available in the sense that runners partici
pate in all P distances during the years and that no drop-ins or drop-outs are observed. We assume 
that runners are divided into G different unobserved groups according to the evolutionary trajec
tories during their careers. Suppose that runner q belongs to group g, and that their observations 
over time are described by the following dynamic linear model:

y pq,t = z⊤
pα(g)

p,t + ε pq,t (1) 

α(g)
p,t+1 = Tpα(g)

p,t + ξ(g)
p,t (2) 

in which α(g)
p,1 ∼ NFp (􏽢α(g)

p,1|0, P(g)
p,1|0), for p = 1, …, P, t = 1, …, T, and 􏽢α(g)

p,1|0, P(g)
p,1|0 are fixed mean and 

variance for the initial state, respectively. The row vector z⊤
p, which has a known structure, links 

the observation ypq,t to the column vector α(g)
p,t, which describes the group-specific dynamics of the 

pth discipline for all the runners that belong to group g. These dynamics are determined by the 
state transition equation that describes a first-order autoregressive process with transition matrix 
Tp, which is discipline-specific, known, and shared across all the groups. In this way, for a generic 
discipline p, we require that the latent states of the different groups are different from each other, 
but are characterized by the same Markovian dependence induced by Tp. Moreover, this depend
ence is not required to be common across different distances, as Tp may differ from Tp′ for any 
p ≠ p′. The error terms εpq,1, . . . , εpq,T are assumed to be Gaussian with zero-mean and variances 
that can be discipline and subject-specific. They are assumed to be serially independent and inde
pendent of both the states α(g)

p,1, . . . , α(g)
p,T and the disturbances ξ(g)

p,1, . . . , ξ(g)
p,T, whose covariance is 

Ψpg, for p = 1, …, P and g = 1, …, G.
Let y·q,t = (y1q,t, . . . , yPq,t)

⊤, α(g)
t = (α(g)⊤

1,t , . . . , α(g)⊤
P,t )⊤, ε·q,t = (ε1q,t, . . . , εPq,t)

⊤, 
ξ(g)

t = (ξ(g)⊤
1,t , . . . , ξ(g)⊤

P,t )⊤, 􏽢α(g)
1|0 = (􏽢α(g)⊤

1,1|0, . . . ,􏽢α(g)⊤
P,1|0)⊤, and F =

􏽐P
p=1 Fp. Moreover, let T = 

blkdiag(T1, …, TP), P(g)
1|0 = blkdiag(P(g)

1,1|0, . . . , P(g)
P,1|0), as well as the covariance matrix P1|0 = 

blkdiag(P(1)
1|0, . . . , P(G)

1|0 ) where blkdiag(Xa, …, Xz) is the block-diagonal operator, creating a block- 
diagonal matrix with arguments Xa, …, Xz stacked in the main diagonal. Finally, let Z be the P × F 
matrix storing, in its pth row, the row vector z⊤

p starting from column 1 +
􏽐p−1

j=1 Fj, and zeros 
otherwise, and define also the following matrices:

Yt = y·1,t . . . y·Q,t
􏼂 􏼃

, At = α(1)
t . . . α(G)

t

􏼂 􏼃
, S⊤ = s⊤

1· . . . s⊤
Q·

􏽨 􏽩

Et = ε·1,t . . . ε·Q,t
􏼂 􏼃

, Ξt = ξ(1)
t . . . ξ(G)

t

􏼂 􏼃
, 􏽢A1|0 = 􏽢α(1)

1|0 . . . 􏽢α(G)
1|0

􏽨 􏽩

where s⊤
q· = (1(Sq = 1), . . . , 1(Sq = G))⊤ is an allocation vector such that 1(Sq = g) = 1 if runner q 

belongs to group g, and 0 otherwise. Leveraging the previous notation, the model admits a matrix- 
variate state space representation, in which

Yt = ZAtS⊤ + Et, Et ∼ MNP,Q(0, ΣC ⊗ ΣR) (3) 

At+1 = TAt + Ξt, Ξt ∼ MNF,G(0, ΨC ⊗ ΨR) (4) 

with A1 ∼ MNF,G(􏽢A1|0, P1|0). The matrix S in Equation (3) is a selection matrix, with the role of 
selecting, for each runner, the columns of states associated with the group the runner belongs to, 
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and silencing the others. The matrices of errors and disturbances are assumed to follow a matrix- 
variate normal distribution with covariance matrix decomposed by a Kronecker product (Gupta 
& Nagar, 2000), which is a typical assumption in models for matrix-variate time series (see, e.g., 
Chen et al., 2020; Wang & West, 2009). Here, ΣR and ΨR are row-covariance matrices with di
mensions P × P and F × F, and measure row-wise dependence of errors and disturbances, respect
ively. Conversely, the matrices ΣC and ΨC are column-covariance matrices with dimensions Q × Q 
and G × G that measure column-wise dependence of errors and disturbances, respectively. 
Dependent rows or columns are characterized by full covariance matrices, while independent 
row or columns are characterized by diagonal matrices (Gupta & Nagar, 2000). Thus, the model 
is general enough to encopass various forms of dependence, while keeping the number of param
eters low with respect to alternative full specifications of the covariance matrices.

Although the model is general enough to include a variety of standard state space models (see, 
e.g., Durbin & Koopman, 2012), in our application we deal with annual-based data describing the 
careers of different runners, so it seems reasonable to impose the following restrictions: Z = IP, 
T = IP, Σ= IQ ⊗ΣR, and Ψ= IG ⊗ΨR. These assumptions imply that the states of different groups 
describing runners’ performance across years are independent of each other and characterized by 
the same temporal dependence structures, which are those implied by local level models in which 
the trend of each discipline is a discrete random walk (Durbin & Koopman, 2012). Assuming a 
priori that performance on discipline p at time t + 1 is a deviation from that at year t seems reason
able, as a runner is not expected to progress or regress excessively from year to year. Furthermore, 
setting ΨC to be diagonal implies that groups are independent of each other, a typical assumption 
in clustering. In this framework, the role of the states (i.e., α(g)

p,t) is to describe various evolution of 
the performances of the runners. How these states evolve can be considered as the combination of 
many factors (e.g., individual traits, training, motivation, etc.) that lead to unpredictable prior be
haviours. Furthermore, conditional on the states and S, there is no reason to assume the runners to 
be dependent between each other. We note also that imposing ΣC = IQ and ΨC = IG are restrictions 
even stronger than required, but they help in stabilizing the estimation of the other components 
given the large number of missing observations present in the data. Removing these restrictions 
is a delicate aspect in the predictive context in which we fit our model (see Section 5). Indeed, 
the aim of increasing flexibility struggles with the goal of reducing the variability of the estimates 
and predictions, due to both the large dimensions of the state space we are considering, but also to 
the need of adopting a diffuse prior specification and a large number of groups for well capturing 
the variability of the considered phenomena (see Section 4).

3.2 Missing data inform on clustering structure
The previous section was developed conditional on all data being observed, i.e., when the runners 
run all P distances during the entire period of observation. However, this is not the case for data 
that describe the career trajectories of runners, since the lack of data is part of the career itself. To 
include these factors as informative aspect of runners’ careers, we consider two other variables in 
the model. As first, we consider

dpq,t = 1 if discipline pfor runner q is observed at time t
0 otherwise

􏼚

to describe the presence or absence of the observed discipline for the runners. Then we consider the 
variable d⋆

q,t that informs whether the runner q is in career during year t, which is

d⋆
q,t =

0 if runner q has not started the career before t (included)
1 if runner q is in career during t
2 if runner q has finished the career in t (included)

⎧
⎨

⎩

The variable d⋆
q,t is not decreasing in t and describes the three possible states of runner’s career. 

Moreover, if d⋆
q,t ∈ {0, 2}, then dpq,t = 0 with probability 1, for p = 1, …, P, meaning that no dis

tances are observed since the runner is not competing. On the contrary, there might be runners 
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with dpq,t = 0, for p = 1, …, P, even if d⋆
q,t = 1. This is typical of runners who, despite being in a 

career, decide not to compete during one specific year, but compete in the following years.
The division into three nonconcurrent states allows for the introduction of temporal dynamics 

within the model of missing data patterns in an easy way. In particular, let d⋆
q = (d⋆

q,1, . . . , d⋆
q,T), 

d·q,t = (d1q,t, . . . , dPq,t)
⊤, Dq = [d·q,1 · · · d·q,T], D = {D1, . . . , DQ}, and D⋆ = {d⋆

1 , . . . , d⋆
Q}. First, we 

make the following independence assumption among different subjects:

pθ(D, D⋆ | S) =
􏽙Q

q=1

pθ(Dq, d⋆
q |Sq) (5) 

As a second step, we let d⋆
q and Dq be dependent on the group Sq = g to which the runner q belongs, 

and make the following conditional independence assumption:

pθ(Dq, d⋆
q |Sq) = pθ(Dq|d

⋆
q , Sq)pθ(d⋆

q |Sq)

=
􏽙T

t=1

􏽙P

p=1

pθ(dpq,t|d⋆
q,t, Sq)

􏼨 􏼩

pθ(d⋆
q,t|d

⋆
q,t−1, Sq)

(6) 

where pθ(d⋆
q,1|d

⋆
q,0, Sq) = λ⋆

1g if d⋆
q,1 = 1, and pθ(d⋆

q,1|d
⋆
q,0, Sq) = 1 − λ⋆

1g if d⋆
q,1 = 0. Note that, in 

Equations (5) and (6), the subscript θ in pθ(A|B) denotes conditional dependence of the form 
p(A|B, θ), for slight abuse of notation, where θ denotes a set of unknown parameter with finite 
dimensions (specified later).

In Equation (6), we consider the following assumptions: for runner q, the conditional probabil
ity at time t of transition from state 0 to state 1 is pθ(d⋆

q,t = 1|d⋆
q,t−1 = 0, Sq = g) = λ⋆

1g and from state 
1 to state 2 is pθ(d⋆

q,t = 2|d⋆
q,t−1 = 1, Sq = g) = λ⋆

2g. Both the probabilities are group-dependent but 
constant over time. By construction, the transitions from state 1 to state 0 or from state 2 to states 0 
or 1 are impossible events. Furthermore, for runner q, the conditional probability at time t of ob
serving a value for the generic discipline p is pθ(dpq,t = 1|d⋆

q,t = 1, Sq = g) = δpg, which is group- 
dependent, but fixed over time. Although transitions in the prevalence of the type of discipline 
done in a long career are possible for some runners (e.g., from shorter to longer distances), these 
transitions are difficult to detect with annual-based data—which are summaries of the entire years 
—since it is enough to compete in only one race of the considered discipline to be included in the 
discipline-specific ranking lists. Similarly, the assumption of constant probabilities during years 
used to describe the presence of missing values does not contemplate the possibility that runners 
would get seriously injured, and, thus, they would not compete in any discipline for more than a 
year. Although there is no clear indication in the literature about the average duration and severity 
of an injury in middle distance runners (see, e.g., van Gent et al., 2007), we assume here that severe 
injuries (injuries that stop competitions for more than one year) are present only in low propor
tions, leaving open possible investigations on this aspect in the future.

4 Likelihood and posterior distributions
4.1 Likelihood and prior distributions for the proposed model
Let Y denote the set of observations as if they were fully observed, Y⋆ the set of variables which are 
effectively observed, and 􏽥Y the completion of Y⋆, i.e., such that Y = Y⋆ ∪ 􏽥Y and Y⋆ ∩ 􏽥Y = ⊘. 
Let also A = {A1, . . . , AT} be the set storing the latent states of the state space model. In order 
to derive the posterior distribution of the parameters, we present the likelihood of the observed 
process first, augmented for both the states A, the missing observations 􏽥Y, and S.

The augmented likelihood is characterized by the following conditional independence structure:

pθ(Y, D, D⋆, A, S) = pθ(Y|D, A, S)pθ(D|D⋆, S)pθ(D⋆|S)pθ(S)pθ(A) (7) 
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In Equation (7), pθ(Y|D, D⋆, A, S) = pθ(Y|D, A, S), and is determined by the measurement 
Equation (3), for which all observations are assumed to be available, and the prior on A is impli
citly determined by the form of the state equation of the state space in Equation (4). However, only 
Y⋆ = {Y⋆

1 , . . . , Y⋆
T} is observed, but pθ(Y|D, A, S) can be obtained by conditioning, noting that

pθ(Y|D, A, S) = pθ(Y⋆|D, A, S)pθ(􏽥E|Y⋆, D, S) 

where 􏽥E stores all those entries in E = {E1, . . . , ET} associated with the missing values. To charac
terize S, we make the following independence assumption

pθ(S) =
􏽙Q

q=1

pθ(sq·) =
􏽙Q

q=1

􏽙G

g=1

π1(Sq=g)
g (8) 

where π = (πg, …, πG) is such that πg ∈ (0, 1), for g = 1, …, G and 
􏽐G

g=1 πg = 1.
As concerns model parameters, we assume that the prior distribution of θ factorizes as follows:

p(θ) = p(􏽢A1|0)p(ΣR)p(ΨR)p(π)
􏽙G

g=1

p(λ⋆
g )
􏽙P

p=1

p(δpg)

􏼨 􏼩

(9) 

where λ⋆
g = (λ⋆

1g, λ⋆
2g). We further assume the prior distributions of the probabilities driving missing 

data patterns to be uninformative Beta distributions, such that λ⋆
1g ∼ Be(1, 1), λ⋆

2g ∼ Be(1, 1), and 
δpg ∼ Be(1, 1), for any p = 1, …, P and g = 1, …, G. Covariance matrices are assumed to be Inverse 
Wishart distributions, such that ΣR ∼ IWP(P + 1, IP) and ΨR ∼ IWP(P + 1, IP). For what concerns 

the state space model, 􏽢A1|0 is assumed to follow a matrix-variate Normal distributions of mean 
y̅11⊤

G and covariance P1|0 = IG ⊗ P0
1|0, with P0

1|0 = diag(p2
1, . . . , p2

P), where y̅1 is the vector storing 
sample average of observed distances at first time instant and p2

p is twice the sample variance of the 
pth observed discipline at the first time instant. It is interesting to observe, however, that the num
ber of parameters depends on the number of groups G, which is fixed. We consider an overfitting 
finite mixture specification of the model (see, e.g., Malsiner-Walli et al., 2016, 2017), in which G is 
set to be large, and π = (π1, …, πG) ∼ DirG(e1, …, eG) with hyper-parameters e1 = … = eG = 1/G. 
The prior on the mixture weights favours emptying the extra components, leaving complete sym
metry between the different components included in the model. This assumption implies that dur
ing the estimation procedure, the number of filled components may be lower than G, leading to the 
classical distinction between the number of clusters G+ (i.e., the number of filled components) and 
the number of components G included in the model, with G+ ≤ G (see, Frühwirth-Schnatter et al., 
2021; Malsiner-Walli et al., 2016, 2017, for an extensive discussion on the topic). Under this prior 
specification, it is possible to derive a Gibbs sampling algorithm that involves all full conditionals 
that are conditionally conjugate, see the online supplementary material for details. Note that the 
algorithm allows to explore the G! symmetric modes of the posterior distribution by including a 
step in which we randomly permute the labels of S (see, e.g., Fruhwirth-Schnatter, 2001; 
Malsiner-Walli et al., 2016). Draws of the states A are obtained using the simulation smoothing 
technique by Durbin and Koopman (2002), applied to a reduced form of the model derived using 
the reduction by transformation technique (see Jungbacker & Koopman, 2008).

4.2 Posterior distribution, alternative specifications, and interpretability
The goal of our inferential procedure is to derive quantities of interest (e.g., predictive distribu
tions) from a sample of the posterior distribution

pC(θ, A, S,􏽥E|Y⋆, D, D⋆) ∝ p(θ)pθ(Y|D, A, S)pθ(D|D⋆, S)pθ(D⋆|S)pθ(S)pθ(A) (10) 

A sample from the posterior distribution can be obtained using a Gibbs sampling scheme, as dis
cussed in the online supplementary material. In Equation (10), the superscript C indicates that the 
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considered posterior is referring to the complete model (or model 1), because it assumes that both 
attitudes and history matter. By restricting the complete model in Equation (10), it is possible to 
obtain a set of alternative reduced specifications, in which different missing data pattern schemes 
have different influence for clustering. More specifically, a set of alternative specifications can be 
derived by dropping the dependence on the selection matrix S in some parts of the model. We con
sider the following set of alternative specifications:

Model 2: Missing data do not matter:

pNM(θ, A, S,􏽥E|Y⋆, D, D⋆) ∝ p(θ)pθ(Y|D, A, S)pθ(S)pθ(A) (11) 

Model 3: Only attitude matters:

pA(θ, A, S,􏽥E|Y⋆, D, D⋆) ∝ p(θ)pθ(Y|D, A, S)pθ(D|D⋆, S)pθ(S)pθ(A) (12) 

Model 4: Only history matters:

pH(θ, A, S,􏽥E|Y⋆, D, D⋆) ∝ p(θ)pθ(Y|D, A, S)pθ(D⋆|S)pθ(S)pθ(A) (13) 

Alternative model specifications in Equations (11)–(13) have meaningful structural interpreta
tions, if compared with the complete model in Equation (10). In model 2, both pθ(D|D⋆, S) = 
p(D|D⋆) and pθ(D⋆|S) = p(D⋆), meaning that neither attitude nor history matter for clustering, 
and therefore are not correlated with the evolution of performances. In this case, missing data 
are still considered in the estimation procedure for obtaining 􏽥E and other elements related to 
the set of completed observations Y (e.g., ΣR), but the part of likelihood describing the evolution 
of D and D⋆ is no longer dependent on θ and S. Alternatively, in model 3, the attitude matters but 
history does not. This is obtained by requiring pθ(D⋆|S) = p(D⋆). Note that the dependence of 
pθ(D|D⋆, S) on D⋆ is preserved, an important aspect because it is involved in the estimation of 
the parameters δpg related to runners’ attitudes. Finally, in model 4 pθ(D|D⋆, S) = p(D|D⋆), lead
ing to a model in which runners’ attitudes do not matter for the evolution of the performances. For 
simplicity, we do not distinguish p(θ) in the different models letting the elements included in θ 
under different model specifications differ, based on the single case being considered (e.g., θ = 
{Â1|0, ΣR, ΨR, π} in model 2). We can provide an interpretation to our model construction from 
a two-step Bayesian learning perspective. First, different structured priors on S are obtained, 
which simply reflect different clustering structures that we believe to be relevant for clustering 
the performances. For example, for the complete model, this structured prior is

pC(θ, S|D, D⋆) ∝ p(θ)pθ(D|D⋆, S)pθ(D⋆|S)pθ(S) 

Second, the knowledge on the clustering structure is updated by considering the likelihood related 
to the performances, which is pθ(Y|D, A, S)pθ(A). Comparing different models allows to deter
mine which of the four alternative specifications is most credible in explaining the observed vari
ability in runners’ performances. Comparisons between models are obtained by assessing the 
models’ abilities to predict the performance of out-of-sample runners, as explained in Section 
5.2. We note here that, in our model construction, performances depend directly on missing 
data patterns, as the term pθ(Y|D, A, S) is considered in Equation (10), and that the opposite dir
ection, in which the performances have a direct influence on the fact that runners remain (or not) in 
the sample, is not considered. In general, it is easy to imagine that runners with unsatisfactory ca
reers are more likely to leave competitions. Then, the drop-out probability pθ(d⋆

q,t = 2|d⋆
q,t−1 = 

1, Sq) in Equation (6) should be performance dependent, e.g., pθ(d⋆
q,t = 2|d⋆

q,t−1 = 1, Sq, y·q,t−1). 
Our conjecture is that conditional on the latent allocation Sq, the decision of competing is the pre
dominant factor for improving the performances, independently of the previous ones, and this is 
motivated by both physiological and psychological considerations for which defining goals and 
training for achieving them can help in improving performances as well. Furthermore, although 
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the priors on clustering structure do not depend on the performances, both the posteriors and the 
posterior probabilities of drop-out do depend. The choice of considering a sufficiently large number 
of groups G allows to account also for variability present in the data that may be effectively caused 
by cases in which performances have a direct impact on the choice of leaving the competitions.

Finally, it is interesting to highlight that similar information can be obtained using any kind of 
regression model in which D and D⋆ are treated as covariates for explaining the evolution of the 
performance over time. We discuss these alternative linear models in Section 6 and Section S.4 of 
the online supplementary material. Our approach differs from these alternatives as it accounts for 
and quantifies the uncertainty related to dpq,t and d⋆

q,t and endogenizes the fact that ypq,t, dpq,t, and 
d⋆

q,t are measures (with errors) of runners abilities, attitudes, and histories, respectively, three as
pects of runners’ careers that are captured by the latent matrix S. The role of the latent matrix S is 
indeed to describe the heterogeneity present in the data and to account for the potential correlation 
between performances and missing data patterns. As a consequence, the latent cluster allocations 
could represent a meaningful information from a sports science point of view. Despite this, in this 
paper, we do not approach the analysis from the perspective of clustering of runners’ performan
ces, preferring a prediction-oriented focus that allows us to highlight if D and D⋆ provide valuable 
information in determining Y⋆. Indeed, when facing the clustering problem with these data, vari
ous issues arise, from both a technical and an interpretative point of view. First, it is well known 
that model-based clustering with symmetric priors suffers from the problem of label switching due 
to the unidentifiability of the components related to the perfect symmetry of the posterior distri
bution. Second, in our model, the clustering represents a combination of various aspects of Y, D, 
and D⋆, which are mixed together and whose contribution is hard to disentangle to recognize well 
separated and meaningful clusters. This aspect is even exacerbated by both the fact that we are 
considering a large number of G, of which G − G+ are empty, and by the large state space involving 
many parameters. Although significant works on relabelling techniques have been proposed in re
cent years (see, e.g., Egidi et al., 2018; Malsiner-Walli et al., 2017; Wade & Ghahramani, 2018), 
our high-dimensional model does not leave space for guarantees about interpretable clusters. 
Thus, our inferential procedure in the next section is solely based on predictive distributions.

5 Posterior predictive inference and out of sample predictions
5.1 Predictive inference
Let Y⋆

[n], D[n], and d⋆
[n] denote the random variables describing, respectively, the performances, the 

participation in the distances, and the history of a new runner n, not included in the sample. Let also 
Θ = (A, θ) be the unknown elements which are shared across different runners, characterized by a 
posterior distribution pj(Θ|Y⋆, D, D⋆) that can be obtained by means of an Markov chain Monte 
Carlo (MCMC) algorithm under model j. We consider the following predictive density:

pj(Y⋆
[n]|D[n], d⋆

[n], Y
⋆, D, D⋆) =

�

pj(Θ|Y⋆, D, D⋆)pj
Θ(Y⋆

[n]|D[n], d⋆
[n]) dΘ (14) 

for j ∈ {C, NM, A, H} which can be obtained using Monte Carlo estimation. In Equation (14), missing 
data patterns are supposed to be known and are treated as control variables that potentially have an 
influence on the predicted performances Y⋆

[n]. While the posterior distribution pj(Θ|Y⋆, D, D⋆) is an 
output of the MCMC algorithms (see online supplementary material), the likelihood 
pj
Θ(Y⋆

[n]|D[n], d⋆
[n]) for the new individual n can be obtained by marginalizing over groups as follows:

pj
Θ(Y⋆

[n]|D[n], d⋆
[n]) =

􏽘G

g=1

pj
Θ(S[n] = g|D[n], d⋆

[n])p
j
Θ(Y⋆

[n]|D[n], d⋆
[n], S[n] = g) 

In the equation, the cluster allocation follows a multinomial distribution characterized by weights

pj
Θ(S[n] = g|D[n], d⋆

[n]) ∝ pj
Θ(S[n] = g)pj

Θ(D[n], d⋆
[n]|S[n] = g) 
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that depend on the likelihood related to cluster allocation pΘ(S[n] = g) but also on the observed missing 
data patterns that weigh differently the cluster allocation by means of pΘ(D[n], d⋆

[n]|S[n] = g). We note 
here that the predictive distribution is invariant with respect to permutations of the labels, so that the 
label switching that usually represents a relevant issue in MCMC-based parameters estimation, in this 
context, guarantees the exploration of the multiple modes of the posterior distribution. The Monte 
Carlo procedure for obtaining the predictive distribution is reported in Section S.2 of the online 
supplementary material. Next section details the use of the predictive distribution developed here 
for evaluating informativeness of missing data patterns under different model specifications.

5.2 Informativeness of missing data: out of sample comparison  
of alternative specifications
Let Y[1 : N] be a test set, storing the performances in different distances and years of N runners not 
included in the training sample for model estimation. Let also yp[n],t be the generic scalar element 
denoting the performance of runner n in discipline p during year t. The quantity

Qj(yp[n],t) = pj(yp[n],t|D[n], d⋆
[n], Y

⋆, D, D⋆) 

represents the predictive distribution obtained under model j, conditional on missing data patterns 

(D[n], d⋆
[n]) and the set of available information (Y⋆, D, D⋆). Let also 􏽥Qj(yp[n],t) denote an approxi

mation of Qj(yp[n],t), given by a set of B particles {y1
p[n],t, . . . , yB

p[n],t}. It is possible to use the samples 
􏽥Qj(yp[n],t) to evaluate and compare the ability of our proposals in predicting the performances over 
different distances, for fixed missing data patterns described by D[n] and d⋆

[n]. We base our evalua
tions on the empirical counterpart of the continuous ranked probability score (CRPS) and the 
interval score  (IS) (see, Gneiting & Raftery, 2007; Krüger et al., 2021), preferring models that 
minimize these scoring rules and that provide adequate prediction interval estimates in term of 
coverage and interval width. The CRPS is defined as

S1(Qj(yp[n],t)) =
� ∞

−∞
{Qj(yp[n],t) − 1(yp[n],t ≤ z)}2 dz (15) 

and the interval score is defined as

S2(Qj(yp[n],t)) = (uj
α − ljα) +

2
α

{(ljα − yp[n],t)1(yp[n],t < ljα) + (yp[n],t − uj
α)1(yp[n],t > uj

α)} 

where ljα and uj
α are the α/2 and 1 − α/2 quantiles for the distribution Qj(yp[n],t), respectively, and α 

∈ (0, 1/2) is a fixed tolerance. The interval score rewards narrow prediction intervals, and penal
izes prediction intervals that do not include the observations. Details on these scores and their 
computation using sample from the predictive distribution are reported in Krüger et al. (2021)
(see, e.g., Equation (9) of their paper). It is relevant to highlight, however, that these scores are 
scale sensitive, and the scale of the predictions might depend on the discipline p, the age t, as 
well as on the specific missing data pattern of runner n we are considering. For this reason, we pro
pose to evaluate the predictions of a reference model j and the prediction of an alternative model j′ 

by means of the following score:

S jj′
s (Y[1 : N]) =

1
|Y[1 : N]|

􏽘N

n=1

􏽘

yp[n],t∈Y[n]

1(Ss(Q
j(yp[n],t) < Ss(Q

j′ (yp[n],t)) (16) 

for s ∈ {1, 2}. In Equation (16), |Y[1 : N]| denotes the number of distinct observations present in the 
test set Y[1 : N]. The scores S jj′

s (Y[1 : N]) range in (0, 1) and suggest that model j is overall better than 
model j′ if S jj′

s (Y[1 : N]) > 0.5.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/72/1/213/7045949 by U

niversita di Padova user on 26 N
ovem

ber 2024

http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad009#supplementary-data
http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad009#supplementary-data


224                                                                                                                                                   Stival et al.

6 Real data analysis
6.1 Informativeness of missing data
The models were estimated randomly splitting the runners into a training set, composed of 70% of 
runners and a test set with the remaining 30%. Samples from the posterior distributions were ob
tained on the training set, using the last 2,000 of 10,000 iterations of the Gibbs sampling for each 
model (see Section S.3 of the online supplementary material for details on chains convergence). 
The number of components G was fixed to 50. Samples from the predictive distributions in 
Equation (14) were obtained, conditional on knowing the missing data patterns of runners in 
the test set (i.e., D[n] and d⋆

[n], for n = 1, …, N).
The comparison over different models’ predictions was done both graphically and using the 

scores described in Section 5.2. Results are summarized in Figure 4 and Table 1. In the figures, 
the real data are represented by black solid lines, while the coloured lines delimit 95% quantile- 
based prediction bands. A model is preferred if: (a) the real data lie within the prediction bands 
and (b) the predictions bands are narrower. By looking at the results, we can claim that model 
1 (both attitude and history are considered as informative) and model 3 (only attitude is consid
ered as informative) provide better results in terms of band widths, while including within the 
bands the real data. As we note, different missing data patterns are represented in the figures. 
We note the tendency of model 1 and model 3 of yielding lower upper limits of the band, an aspect 
that is even more evident for runners that participated to many competitions in different years 
(e.g., runners 100, 63, and 56). Knowing that one runner has competed for many years reduces 
the uncertainty in the predictions by reducing the probability of observing bad performances. 
This highlights the effective presence of an association between the abilities of the runners in re
cording better performances with long histories and their participation in many competitions dur
ing the years. Furthermore, by comparing runner 89 with runner 56, for example, it is possible to 
grasp how entering later in competitions leads to more uncertainty in the performance predictions, 
increasing also the probability of observing worse performances. While the effect of knowing miss
ing data patterns is clear when we compare the upper limits of the predictions bands, the distances 
between the lower limits produced by the four models appear to be limited and less pronounced. 
This aspect is interesting because it points out that there are runners that, despite being character
ized by short histories, are still able to perform satisfactorily when compared with those with lon
ger histories. These reasonings are conditional on the graphs shown, which are, of course, a 
selection of the runners in the test set. The complete set of plots is reported in the online 
supplementary material, showing a large number of runners with different missing data patterns 
and, as a consequence, different behaviours of the bands.

The predictive scores computed with data of the test set suggest that the complete model is better 
than the others considering both the scores. However, the interval score suggests this aspect more 
markedly, highlighting the ability in outperforming the model that does not treat missing values as 
informative for around 80% of the observations present in the test set. For both the scores, the 
complete model is better than model 3 (only attitude), which is better than model 4 (only history), 
which is itself better than model 2 (uninformative missing data patterns). These results highlight 
how attitude and history (encopassed in the term missing data) seem to be effectively related to 
performances, giving support to the hypothesis that considering these aspects in the analysis of 
runners careers is definitely relevant and that, in this context, missing data have to be considered 
as informative. Note that both the estimates of predictive scores are based on 741 scalar observa
tions which are characterized by different levels of dependence, so that a proper evaluation of un
certainty of these estimates is difficult. In the online supplementary material (Sections S.4 and S.5), 
a three-fold cross-validation scheme shows that results seem to be stable. Moreover, we also show 
how our multivariate modelling approach outperforms simpler models (such as linear regression) 
and discuss the goodness of fit of the model. Among the limits of the complete model, we highlight 
the tendency of the model to over-estimate the left tail quantiles (<0.10) and underestimate the 
right tail quantiles (>0.90). In the practical context of interest, although this implies a slight low
ering of the marginal predictive coverage, we do not consider this to be an issue if the interest con
centrates on the ‘average’ runners, rather than the top performers and high level runners. Note also 
that our model comparison procedure based on the interval score already considers the width of 
the prediction bands in the calculation, penalizing lower coverage.
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6.2 Application
We illustrate how the complete model can be meaningful for sports scientists and coaches, answer
ing to two specific questions, based on samples of size 2,000 of the predictive distributions 

Figure 4. Quantile-based 95% prediction intervals for the observed distances obtained conditional on knowing the 
missing data patterns of runners included in the test set. The red-dotted lines represent the intervals for the model 
that treats missing data as informative, while the blue-dashed lines represent the respective intervals for the model 
that does not treat them as such. The black lines represent the observed performance of the runners.
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illustrated in Section 5 (see Section S.3 of the online supplementary material for details on using 
multiple chains). The first question is: how do late entry into competitions and early exit from 
competitions are related to performances? To answer this question, we consider the conditional 
predictive distribution in Equation (14), in which we vary the age at which the runner enters or 
exits from the sample, letting the runner participate in both 800 and 1,500 discipline for all the 
years of his career. Comparing the different distributions of the performance allows to catch 
how the uncertainty related to the predicted performance changes, according to the different his
tories considered. Figure 5 shows the results of our procedure for the 1,500 and 800 m distances. 

Table 1. Comparison between models given by S jj ′
s with the different scores

Model Complete (1) No missing (2) Attitude (3) History (4)

Complete (1) – 0.574 0.537 0.520

No missing (2) 0.178 – 0.402 0.395

Attitude (3) 0.364 0.757 – 0.511

History (4) 0.233 0.680 0.306 –

Note. In this table, model j (row) is compared to model j′ (column) with respect the two scores. Above the diagonal we 
report the scores for CRPS, below the diagonal we report the scores for IS, computed with α = 0.05. A value above 0.5 
indicates preference of model j with respect to model j′. Remember that S jj′

s = 1 − S j′ j
s , for any score considered. 

CRPS = continuous ranked probability score.

Figure 5. The association between drop-in and drop-out with performances in the 1,500 m discipline, for an ideal 
runner that competes regularly in 1,500 (top) and 800 m (bottom). On the left, the runner drops-in at ages 18, 22, 26, 
30, respectively. On the right, the runner drops-out at age 20, 24, 28 or after 32 years old. Central solid line indicates 
the median of the predictive distributions. External lines indicate the 95% confidence bands based on symmetric 
quantiles of the predictive distributions.
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Solid central lines represent the median of the predictive distributions over different ages. 
Quantile-based 95% prediction bands are on the contrary represented with different dashed lines 
that denote the respective lower and the upper limits. For what concerns drop-in, we note from the 
left panels that late entry into competition is associated with worse median performances over the 
years, with lower limits of the predictive confidence bands that worsen only for runners that entry 
into competition at ages 26 and 30. The upper limits, on the contrary, seem to rise with later drop- 
in. Based on these results, we can say that for the ideal runners we are considering, later entry in 
career can still permit to reach good levels, but it is much more likely that their performances will 
be worse with respect to runners with a longer career (earlier drop-in). A similar reasoning applies 
for drop-out, in the right panels. The median of the predictive distributions seems indeed to be 
worse for runners that drop-out earlier in their life, with the upper limits that seem to show 
more variation with respect to the lower ones. In this case, it is not unlikely to expect runners 
that drop-out earlier, although their performances seem good, but it is more unlikely that runners 
that compete for more years record worse results. Similar results for different scenarios can be ob
tained with an analogous approach and are reported in the online supplementary material.

The second question is: how does competing in different disciplines impact the performances? In 
this case, we consider runners with a complete observed career, and that compete, every year, in 
the distances with different strategy: the first runner competes only in the 1,500 m discipline; the 
second runner competes in 1,500 m and 5,000 m distances; the third one competes in 1,500 m and 
800 m distances; the fourth runner competes in all distances. Results are shown in Figure 6, in 
terms of their respective predictive distributions in 1,500 m discipline. By comparing the results, 
we see clearly how, in the training sample, worse performances appear to be associated with 
the choice of competing only in one discipline over the years. On the contrary, being a runner 
that competes in more than one discipline seems to be associated with better performances, 

Figure 6. Predictive distributions of performances in the 1,500 m discipline, obtained for four different runners with 
different ways of participation in other distances during the years.
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with differences between the respective predictive distributions which are less evident. More spe
cifically, the greater differences can be seen comparing runners that compete in two distances with 
the one that competes in all three. Indeed, both the limits of the bands and the median of the pre
dictive distribution appear to be shifted up for the runner that competes in all distances, implying a 
slightly worse performance for these kind of runners. Based on our results, competing in all dis
tances seems not to be an optimal choice to achieve better results in the 1,500 m discipline. On 
the contrary, runners that specialize in 1,500 and 5,000 m or in 1,500 and 800 m distances 
seem to have better performances overall, especially for the latter type of runners. While the an
swers to the first question can generally be obtained by considering only univariate models, the 
second one can be addressed only by fitting a multivariate model which allows to understand 
how competing in different disciplines interacts with performances. Further analyses with other 
distances are in the online supplementary material.

7 Conclusions
This paper investigates whether prediction of the runners’ performance is improved by an accurate 
assessment of the presence of missing data patterns. Our analysis has provided strong evidence 
that for our data, missing data patterns are informative in predicting performances and they con
stitute a structural part of the signal explaining the observed variability of the runners’ 
performances.

The statistical analysis took place via a matrix-variate state space model, in which the observed 
trends were clustered by employing a selection matrix involved in the measurement equation, and 
by storing the unknown cluster allocations of the runners. To include observed missing data pat
terns as informative on the clustering structure, two distinct processes were included in the model. 
The first included the runner’s history as potentially informative by considering when a runner 
starts or stops competing. The second aimed to include as potentially informative the runner’s at
titude by considering in which distances the runner mostly participates.

Our results based on out of sample comparisons suggest that it is important to consider both 
these processes when describing runners’ performances whereas considering only attitude is better 
than considering only history. There is evidence for a deterioration in performance when one run
ner starts competing later or finishes earlier and for improvement for runners that compete regu
larly in more distances compared to runners that compete only in one distance. Finally, competing 
in all three distances does not seem to be associated with better performances with respect to com
peting in two adjacent distances, such as 800 and 1,500 m or 1,500 and 5,000 m.

Our key message is to illustrate the usefulness of considering missing data when describing run
ners’ performances. Our modelling framework can be straightforwardly applied to other athletic 
disciplines, such as sprinting and hurdling, or even to multidisciplinary competitions such as hept
athlon and decathlon. It would be also interesting to investigate whether these findings differ in 
female runners or in countries with possibly different coaching methodologies.
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