SciencesPo

About Subjective Probability

Lorenzo Bastianello, Vassili Vergopoulos
Dans Revue économique 2023/4 (VoL. 74), PAGES 601 À 612
Éditions Presses de Sciences Po

ISSN 0035-2764
DOI 10.3917/reco.744.0601

Article disponible en ligne à l'adresse
https://www.cairn.info/revue-economique-2023-4-page-601.htm

CAIRN.INFO
matières À réflexion

Découvrir le sommaire de ce numéro, suivre la revue par email, s'abonner...
Flashez ce QR Code pour accéder à la page de ce numéro sur Cairn.info.

Distribution électronique Cairn.info pour Presses de Sciences Po.
La reproduction ou représentation de cet article, notamment par photocopie, n'est autorisée que dans les limites des conditions générales d'utilisation du site ou, le cas échéant, des conditions générales de la licence souscrite par votre établissement. Toute autre reproduction ou représentation, en tout ou partie, sous quelque forme et de quelque manière que ce soit, est interdite sauf accord préalable et écrit de l'éditeur, en dehors des cas prévus par la législation en vigueur en France. Il est précisé que son stockage dans une base de données est également interdit.

About Subjective Probability

Lorenzo Bastianello*
Vassili Vergopoulos**

The main purpose of this note is to study Anscombe and Aumann's [1963] definition of subjective probability and their contributions to decision theory. We emphasize their main ideas, and we revise the framework that they proposed and which became one of the most used in axiomatizations in decision theory. We also develop a new framework to derive subjective probabilities based on the Cartesian product of two sets. We show how two simple axioms allow us to define a subjective probability on a state space of primary interest, given an auxiliary set endowed with an objective probability.

À PROPOS DE LA PROBABILITÉ SUBJECTIVE

L'objectif principal de cette note est d'étudier la définition de la probabilité subjective d'Anscombe et Aumann [1963] et leurs contributions à la théorie de la décision. Nous mettons l'accent sur leurs idées principales et revisitons le cadre de travail qu'ils ont proposé et qui est devenu l'un des plus utilisés dans les axiomatiques de théorie de la décision. Nous proposons également un nouveau cadre pour la dérivation de la probabilité subjective basé sur le produit cartésien de deux ensembles. Nous montrons que deux axiomes simples permettent de définir une probabilité subjective sur un ensemble d'états de la nature d'intérêt principal à partir d'un ensemble auxiliaire équipé d'une probabilité objective.

Keywords: subjective probability, objective probability, Anscombe and Aumann framework, independence.

Mots clés: probabilité subjective, probabilité objective, cadre d'Anscombe et Aumann, indépendance.

JEL Codes: D81.

[^0]
INTRODUCTION

The two key ingredients of expected utility (EU) theory are, as the name itself suggests, probabilities and utilities. A utility function $u: X \rightarrow \mathbb{R}$ measures the happiness $u(x)$ of a decision maker (DM) when she is given an outcome x in an outcome space X. A probability P is used to evaluate the likelihood of receiving the outcome x. Denoting \mathbb{E}_{p} the expectation operation, then EU suggests evaluating "acts" using the criterion

$$
\begin{equation*}
\mathbb{E}_{p}[\mathrm{u}(\cdot)] . \tag{1}
\end{equation*}
$$

While this framework looks natural, there are two questions that arise. How do we construct the probability measure P in case of subjective uncertainty? And the second one is of course: What is an act?

In their classical paper "A Definition of Subjective Probability," Anscombe and Aumann [1963] (AA henceforth) proposed a powerful methodological framework to analyze decisions under uncertainty that answers both questions. This framework became one of the classical ones in axiomatizations in decision theory. In particular, it contributed to developing a rich literature on decisions under uncertainty starting with the classical contributions of Schmeidler [1989] and Gilboa and Schmeidler [1989].

The first section of this paper describes how AA answered the two questions above. In our opinion, these two answers form the main contributions of AA's paper to decision theory. The first main idea of AA was to construct subjective probabilities using objective probabilities as a yardstick. Consider an event to which one cannot assign a probability using empirical frequencies, e.g., a horse race. AA proposed to calibrate the subjective probability attached to this event using an auxiliary event for which empirical frequencies can be calculated, e.g., a roulette lottery. The second contribution of AA's paper consists of proposing a framework that easily allows the comparison of objective and subjective probabilities. First, they defined an act as a function from a subjective state space (to which we want to associate a subjective probability) to a space of objective lotteries. Next, they postulated that agents have EU preferences over objective lotteries that give as prizes precisely those acts.

The second section of our paper proposes a construction of subjective probabilities using a different framework. Inspired by the recent paper of Grabisch, Monet and Vergopoulos [2022], we consider a state space defined as the Cartesian product of two sets. The first set represents a subjective state space. Our aim is to associate a subjective probability to this space. The second one is used to model objective uncertainty and it is equipped with an objective probability measure. As in AA's work, we use the objective probability measure to build the subjective one. This is achieved through two axioms. The first one is a standard dominance axiom. The second one is an independence axiom that exploits the notion of stochastic independence of events evaluated through the objective probability measure.

ANSCOMBE AND AUMANN'S CONTRIBUTION TO DECISION THEORY

This section reviews Anscombe and Aumann [1963] and describes their main contributions.

Objective Lotteries as a Yardstick

Abstract

"It is widely recognized that the word 'probability' has two very different main senses. In its original meaning . . . is roughly synonymous with plausibility. . . . this kind of probability belongs to logic. In its other meaning . . . belongs to physics. Physical probability can be determined empirically by noting the proportion of successes in some trials" (Anscombe and Aumann [1963], 199).

The very first paragraph of AA's paper recognizes the double nature of the word probability. They note that probabilities can either be subjective or objective. While the definition of objective probability is straightforward, i.e., it is the "proportion of successes in some trials," the one of subjective probability is not. AA proposed a definition of this concept. As they acknowledged, at the time of writing, several authors already gave a definition of subjective probabilities, for instance, Ramsey [1931], Finetti [1937], Savage [1954]. The new idea of AA was to construct subjective probabilities using objective ones as a yardstick. They made this construction by building a mathematical framework in which they could use the EU theorem of von Neumann and Morgenstern [1947]. Von Neumann and Morgenstern [1947] used (objective) lotteries to construct the utility function $u: X \rightarrow \mathbb{R}$ in Equation 1. As AA (p. 199) put it: "In this paper we are concerned with the personal or subjective concept of probability, as considered by Ramsey and Savage. Probabilities and utilities are defined in terms of a person's preferences, in so far as these preferences satisfy certain consistency assumptions. The definition is constructive; that is, the probabilities and utilities can be calculated from observed preferences. . . . For such a person his utility can be defined in terms of [objective probabilities] as shown by von Neumann and Morgenstern. The purpose of this note is to define the person's [subjective probabilities] in terms of [objective probabilities]."

In order to construct this subjective probability, AA built a mathematical framework that specifies over which "objects" preferences are defined. Their setting turned out to be so useful in order to build axiomatic models, that in decision theory it is known as $A A$ framework and the "objects" are called $A A$ acts. We revisit it in the next section.

The AA Framework and Theorem

The intuition of AA framework is the following. There is a state space S with s possible mutually exclusive states of the world. One of the states will realize, however, no probability is defined on S. When the state $j \in S$ realizes, a lottery R_{j} with objective probabilities is selected. With a famous metaphor, AA called the process of selecting a state $j \in S$ and its associated lottery R_{j} a "horse lottery." The objective lottery R_{j} is called by AA a "roulette lottery." Finally, the roulette
lottery R_{j} is played, and a prize in a set A is selected. The function associating states in S to roulette lotteries is known as $A A$ act, for the moment we denote it [R_{1}, \ldots, R_{s}].

In order to define a subjective probability over the state space S, AA assumed twice EU: (i) over roulette lotteries giving prices in A; (ii) over roulette lotteries whose prices are horse lotteries. Moreover, they assumed two more axioms that connect the two systems of preferences. The first one is a monotonicity axiom, while the second one postulates indifference to the order in which roulette and horse lotteries are played.

Suppose that there is a most desired prize A_{1} which is strictly preferred to a least desired prize A_{0}. Call u^{*} the von Neumann-Morgenstern utility mentioned in point (ii) of the previous paragraph. Then AA defined the subjective probability of state i as

$$
p_{i}=u^{*}\left[A_{0}, \ldots, A_{1}, \ldots, A_{0}\right],
$$

where prize A_{1} appears in position i. One can interpret p_{i} as the unique number making an agent indifferent between the AA act $\left[A_{0}, \ldots, A_{1}, \ldots, A_{0}\right]$ and the roulette lotteries giving $\left[A_{1}, \ldots, A_{1}\right]$ with probability p_{i} and $\left[A_{0}, \ldots, A_{0}\right]$ otherwise. This readily follows from a normalization of u^{*} and using EU linearity properties.

Using p_{i} as a definition of subjective probability, AA derived the EU representation in Equation 1, in which u is the von Neumann-Morgenstern utility over roulette lotteries and $P=\left(p_{1}, \ldots, p_{s}\right)$ the subjective probability vector.

We conclude this section by presenting what is the standard AA framework as it appears now in almost all articles in decision theory. This framework is essentially due to Fishburn ([1970], chap. 13), and it has been fruitfully applied to decision theory under uncertainty at least since the seminal papers of Schmeidler [1989] and Gilboa and Schmeidler [1989]. Finally, we conclude this section by stating the AA-Fishburn theorem.

The main ingredients are the ones already there in AA's article. There is a finite state space S, and an outcome space X that is a convex subset of a vector space. For instance, this is the case if X is the set of all finitely valued objective lotteries over an outcome set \mathcal{A}. An (AA) act is a function $f: S \rightarrow X$. Denote F is the set of all acts. Note that each lottery $x \in X$ can be identified with the constant act $f(s)=x$ for all $s \in S . F$ is endowed with a mixture operation performed pointwise. For all $f, g \in F$, for all $\alpha \in[0,1]$, the mixture act $\alpha f+(1-\alpha) g \in F$ is given $\forall s \in S$ by

$$
(\alpha f+(1-\alpha) g)(s)=\alpha f(\mathrm{~s})+(1-\alpha) g(\mathrm{~s}) .
$$

Instead of directly postulating EU, Fishburn [1970] considered a preference relation $\succsim \subseteq F \times F$. Consider now the following axioms.

AA1 (Rationality): \gtrsim is complete and transitive.
AA2 (Continuity): For all $f, g, h \in F$ s.t. $f \succ g \succ h$ there exist $\alpha, \beta \in(0,1)$ such that

$$
\alpha f+(1-\alpha) h \succ g \succ \beta f+(1-\beta) h .
$$

AA3 (Independence): For all $f, g, h \in F$ and $\alpha \in(0,1]$

$$
f \gtrsim g \Leftrightarrow \alpha f+(1-\alpha) h \succsim \alpha g+(1-\alpha) h .
$$

AA4 (Monotonicity): For every $f, g \in F$,

$$
f(s) \succsim g(s) \forall s \in S \Rightarrow f \gtrsim g .
$$

AA5 (Non-triviality): There all $f, g \in F$ such that $f \succ g$.
Theorem 1 (AA - Fishburn). \gtrsim satisfies AA1-AA5 if and only if there exist a probability measure P on S and a non-constant function $u: X \rightarrow \mathbb{R}$ such that, for every f, $g \in F$

$$
f \succsim g \Leftrightarrow \int_{S} \mathbb{E}_{f(s)}[u] \mathrm{d} P(s) \geq \int_{S} \mathbb{E}_{g(s)}[u] \mathrm{d} P(s) .
$$

Furthermore, in this case, P is unique, and u is unique up to positive affine transformations.

Still to this day, the AA theorem provides one of the simplest approaches to subjective probability and expected utility maximization. But it has also allowed Schmeidler [1989] to obtain an early axiomatization of ambiguity aversion. The original Ellsberg [1961] paradox illustrates ambiguity aversion in terms of a preference for betting on events of known probability rather than ones of unknown probability. But Schmeidler uses the AA framework to explain ambiguity aversion through a preference for randomizing uncertain decisions on objective probabilities and, in this way, smoothing outcomes on uncertain (ambiguous) events.

In greater detail, two acts $f, g \in F$ are said to be comonotonic if there are no $s, s^{\prime} \in S$ such that $f(s) \succ f\left(s^{\prime}\right)$ and $g\left(s^{\prime}\right) \succ g(s)$. Intuitively, two comonotonic acts vary in the same direction and hence cannot hedge each other. Schmeidler appeals to the following weak version of AA3:

AA3' (Comonotonic independence): For all $f, g, h \in F$ and $\alpha \in(0,1]$, if f and h are comonotonic and likewise for g and h,

$$
f \succsim g \Leftrightarrow \alpha f+(1-\alpha) h \succsim \alpha g+(1-\alpha) h .
$$

Schmeidler's theorem shows that replacing AA3 with AA3' leads to a version of Theorem 1 where the probability P on S is replaced with a capacity v (that is, a set function $v: 2^{S} \rightarrow[0,1]$ such that $v(S)=1, v(\varnothing)=0$ and $v(E) \geq v(F)$ for all $E, F \subseteq S$ such that $F \subseteq E$) and the integral with a Choquet integral. The ambiguity that the agent perceives is reflected in the possible nonadditivity of v. Schmeidler's approach allows for various attitudes towards ambiguity. In particular, ambiguity aversion is obtained through the following axiom:

AA3'" (Ambiguity aversion): For all $f, g \in F$ and $\alpha \in(0,1]$,

$$
f \sim g \Rightarrow \alpha f+(1-\alpha) g \succsim f .
$$

The intuition here is that f and g might fail to be comonotonic and hence could hedge each other and reduce the exposure to ambiguity. Then, ambiguity aversion would explain a strict preference for randomizing f and g on some objective probability α over each of f and g. AA3" turns out to characterize convex capacities; that is capacities v on S satisfying

$$
v(E \cup F)+v(E \cap F) \geq v(E)+v(F),
$$

for all $E, F \subseteq S$. Finally, the Schmeidler approach is only one of the by now many approaches to ambiguity aversion, and they owe a major debt to the AA framework.

PRODUCT SPACE AND SUBJECTIVE PROBABILITY

This section presents a simple framework to axiomatically derive a subjective probability measure over a state space. This space is defined by a product of two sets as in Grabisch, Monet and Vergopoulos [2022]. In this paper, one of the two sets will be of primary interest, as our aim is to construct a subjective probability measure on it. The other one will be equipped with an objective probability measure. We follow AA's lead: we will use the objective probability measure to calibrate the subjective one. Since we are only interested in the construction of a probability measure (and not a utility function), we only need to consider preferences over "bets," i.e., our acts will simply be indicator functions of events. Therefore, our outcome space will consist only of two (non-indifferent) outcomes. We believe that this simple framework can be used fruitfully by experimentalists who want to elicit subjective probabilities.

Formally, consider two state spaces $\left(S_{1}, \Sigma_{1}\right)$ and $\left(S_{2}, \Sigma_{2}\right)$ where Σ_{i} are σ-algebras for $i=1,2$. The couple $\left(S_{1}, \Sigma_{1}\right)$ is the state space to which we want to assign a subjective probability, while $\left(S_{2}, \Sigma_{2}\right)$ is an auxiliary source of uncertainty. This latter space comes equipped with an objective probability measure P_{2}.

We consider an outcome space containing two objects, $X=\left\{x_{0}, x_{1}\right\}$. We denote by $S=S_{1} \times S_{2}$ and $\Sigma=\Sigma_{1} \times \Sigma_{2}$. Bets on events $E \in \Sigma$ are functions from S to X and can be identified with indicator functions that pay x_{1} if E realizes and x_{0} otherwise. Consider a decision maker (DM) with a preference relation \gtrsim over bets. Suppose also that $x_{1} \succ x_{0}$, where we identify x_{1} with the bet paying x_{1} on S. To simplify notation, we will write 1 instead of x_{1}, and 0 instead of x_{0}.

Assumptions on (S_{2}, Σ_{2}, P_{2}).

1. $\left(S_{2}, \Sigma_{2}, P_{2}\right)$ is infinitely rich in the sense that P_{2} is nonatomic and that each event E_{1} in Σ_{1} has an equivalent event E_{2} in Σ_{2}. For example, one can consider $S_{2}=[0,1], \Sigma_{2}$ the Borel σ-algebra and P_{2} the Lebesgue measure.
2. Bets depending only on S_{2} are evaluated only by their likelihood given by P_{2}. Formally, for all $E_{2}, E_{2}^{\prime} \in \Sigma_{2}, S_{1} \times E_{2} \gtrsim S_{1} \times E_{2}^{\prime}$ if and only if $P_{2}\left(E_{2}\right) \geq P_{2}\left(E_{2}^{\prime}\right)$.

Axioms on \gtrsim.

Let us first introduce some notation. Given a set $E \in \Sigma$ and $s_{1} \in S_{1}$ we denote $E\left(s_{1}, \cdot\right)$ the restriction of E on s_{1}, i.e., $E\left(s_{1}, \cdot\right)=\left\{(x, y) \in S \mid x=s_{1},(x, y) \in E\right\}$. Note that $E\left(s_{1}, \cdot\right)$ may be empty. Moreover, we simply denote as $E_{2} \in S_{2}$ a bet of the form $S_{1} \times E_{2}$ that only depends on E_{2}.

Dominance. For all $E, F \in \Sigma$, if $E\left(s_{1}, \cdot\right) \sim F\left(s_{1}, \cdot\right)$ for all $s_{1} \in S_{1}$, then $E \sim F$.

Independence. For all $E_{1} \in \Sigma_{1}, E_{2}, H_{2} \in \Sigma_{2}$ such that E_{2} is stochastically independent from $H_{2},{ }^{1}$ if $E_{1} \sim E_{2}$ then $\left(E_{1} \cap H_{2}\right) \cup E \sim\left(E_{2} \cap H_{2}\right) \cup E$ for all $E \subseteq S_{1} \times H_{2}{ }^{c}$.

The two axioms Dominance and Independence express in different ways the common intuition that the two sources of uncertainty S_{1} and S_{2} are stochastically independent of each other. Indeed, Dominance requires that the agents have well-defined preferences on Σ_{2}, which are independent from the state obtained in S_{1}. For instance, it implies the following: For all $E_{1} \in \Sigma_{1}$ and $F_{2}, F_{2}^{\prime} \in \Sigma_{2}$,

$$
F_{2} \sim F_{2}^{\prime} \Rightarrow E_{1} \times F_{2} \sim E_{1} \times F_{2}^{\prime} .
$$

Hence, observing that some event $E_{1} \in \Sigma_{1}$ obtains, does not affect the initial ranking $F_{2} \sim F_{2}^{\prime}$ between events in source S_{2}.

As for Independence, the condition can be decomposed into two requirements. Consider $E_{1} \in \Sigma_{1}$ and $E_{2}, H_{2} \in \Sigma_{2}$ such that E_{2} is stochastically independent from H_{2} and, for the moment, let $E=\varnothing$. The first part requires the following implication:

$$
E_{1} \sim E_{2} \Rightarrow E_{1} \times H_{2} \sim E_{2} \cap H_{2} .
$$

In words, observing that some event $H_{2} \in \Sigma_{2}$ from the second source S_{2} obtains does not affect the initial ranking $E_{1} \sim E_{2}$ whenever E_{2} and H_{2} are stochastically independent of each other. Implicit in this logic is the intuition that every event from S_{1} is stochastically independent from every event in S_{2}. The second part of Independence has the flavor of a standard additivity condition that makes the indifference $E_{1} \times H_{2} \sim E_{2} \cap H_{2}$ result in this other indifference $\left(E_{1} \cap H_{2}\right) \cup E \sim$ $\left(E_{2} \cap H_{2}\right) \cup E$ for all $E \subseteq S_{1} \times H_{2}{ }^{c}$.

We now explain Independence with one example in which we use matrices to depict our framework. The same type of matrices will be used in the proof of our theorem. Suppose $S_{1}=\{a, b, c\}$ and let $E_{1}=\{a, b\}$ and $E_{2} \in \Sigma_{2}$. Columns represent events in S_{1}, while rows events in S_{2}. The matrix on the left of the indifference represents a bet on E_{1}, in fact, this bet is not affected by the realization of a state in S_{2}. Likewise, the matrix on the right of the indifference relation represents a bet on E_{2}. Suppose $E_{1} \sim E_{2}$.

Before proceeding, let us reformulate the Independence axiom in an explicit way. Suppose that E_{2} is stochastically independent from H_{2}. Then Independence says that $E_{1} \times S_{2} \sim S_{1} \times E_{2}$ implies $\left(E_{1} \times H_{2}\right) \cup\left(K_{1} \times K_{2}\right) \sim\left(S_{1} \times\left(E_{2} \cap H_{2}\right)\right) \cup$ ($K_{1} \times K_{2}$) with $K_{1} \subseteq S_{1}$ and $K_{2} \subseteq H_{2}{ }^{c}$.

[^1]Let us turn back to the example above. Suppose there is $H_{2} \in \Sigma_{2}$ such that E_{2} and H_{2} are stochastically independent. As proved in Theorem 2 below, we can always suppose that such a set exists. Now take $K_{1}=\{b\}$ and $K_{2}=H_{2}{ }^{c}$. A bet on $K_{1} \times K_{2}$ is represented by the last row of the two matrices below. Suppose that the DM knows that $H_{2}{ }^{c}$ realized. Then by Dominance she will be indifferent between the two bets. Suppose now that she knows that H_{2} realized. Since H_{2} is independent from E_{2}, knowing H_{2} does not change the probability of E_{2}. Therefore, given H_{2} we are back to the bets E_{1} vs E_{2}. Since by hypothesis $E_{1} \sim E_{2}$, she should stay indifferent also knowing H_{2}.

Let \gtrsim_{1} denote the restriction of \gtrsim to Σ_{1}. That is, $E_{1} \gtrsim_{1} F_{1}$ if and only if $E_{1} \times S_{2} \succ F_{1} \times S_{2}$ for all $E_{1}, F_{1} \in \Sigma_{1}$. We say that a function $P_{1}: \Sigma_{1} \rightarrow[0,1]$ represents \gtrsim_{1} if $E_{1} \gtrsim_{1} F_{1}$ holds if and only if $P_{1}\left(E_{1}\right) \geq P_{1}\left(F_{1}\right)$ for all $E_{1}, F_{1} \in \Sigma_{1}$. We can now state our main result.

Theorem 2. Suppose that \gtrsim satisfies Dominance and Independence. Then, there exists a unique probability measure P_{1} on $\left(S_{1}, \Sigma_{1}\right)$ such that $E_{1} \sim E_{2}$ if and only if $P_{1}\left(E_{1}\right)=P_{2}\left(E_{2}\right)$ for all $E_{1} \in \Sigma_{1}$ and $E_{2} \in \Sigma_{2}$. Moreover, P_{1} represents \gtrsim_{1}.

Proof. By Assumption 1, for all set $E_{1} \in \Sigma_{1}$ there exists a set $E_{2} \in \Sigma_{2}$ such that $E_{1} \sim E_{2}$. Define the function $P_{1}: \Sigma_{1} \rightarrow[0,1]$ for all $E_{1} \in \Sigma_{1}$ as

$$
P_{1}\left(E_{1}\right)=P_{2}\left(E_{2}\right),
$$

where $E_{2} \in \Sigma_{2}$ is such that $E_{1} \sim E_{2}$. The uniqueness claim follows from this definition. We will prove that P_{1} is a probability defined on $\left(S_{1}, \Sigma_{1}\right)$. First of all, note that P_{1} is well defined. In fact suppose there are $E_{2}, E_{2}^{\prime} \in \Sigma_{2}$ such that $E_{1} \sim E_{2}$ and also $E_{1} \sim E_{2}^{\prime}$. By transitivity, $E_{2} \sim E_{2}^{\prime}$ and by Assumption 2, $P\left(E_{2}\right)=P_{2}\left(E_{2}^{\prime}\right)$.
It is easy to see that $P_{1}\left(S_{1}\right)=1$. In fact by writing explicitly bets on events, bet S_{1} is actually $S_{1} \times S_{2}$, and therefore clearly $S_{1} \sim S_{2}$ and $P_{1}\left(E_{1}\right)=P_{2}\left(E_{2}\right)=1$.
We will prove now that P_{1} is additive. Consider two disjoint events $E_{1}, F_{1} \in \Sigma_{1}$ and let $E_{2}, F_{2} \in \Sigma_{2}$ be equivalent events. Let also $G_{1}=E_{1} \cup G_{1}$ and G_{2} be an equivalent event from Σ_{2}. To show additivity of P_{1}, it is sufficient to show $P_{2}\left(G_{2}\right)=P_{2}\left(E_{2}\right)+P_{2}\left(F_{2}\right)$. In fact, suppose this is true then $P_{1}\left(G_{1}\right)=P_{2}\left(G_{2}\right)=$ $P_{2}\left(E_{2}\right)+P_{2}\left(F_{2}\right)=P_{1}\left(E_{1}\right)+P_{1}\left(F_{1}\right)$.

We first prove an auxiliary Lemma.

Lemma 3. There exists $H_{2} \in \Sigma_{2}$ such that $P_{2}\left(H_{2}\right)=1 / 2$ and such that H_{2} is stochastically independent from each of E_{2}, F_{2} and G_{2}.

Proof. Let Π_{2} denote the finite partition of S_{2} generated by E_{2}, F_{2} and G_{2}. For each $K_{2} \in \Pi_{2}$, we can find by nonatomicity $H_{2}^{K_{2}} \in \Sigma_{2}$ such that $H_{2}^{K_{2}} \subseteq K_{2}$ and $P_{2}\left(H_{2}^{K_{2}}\right)=P_{2}\left(K_{2}\right) / 2$. Then, define H_{2} as the union of all $H_{2}^{K_{2}}$ for $K_{2} \in \Pi_{2}$. We have

$$
P_{2}\left(H_{2}\right)=\sum_{K_{2} \in \Pi_{2}} P_{2}\left(H_{2}^{K_{2}}\right)=\frac{1}{2} \sum_{K_{2} \in \Pi_{2}} P_{2}\left(K_{2}\right)=\frac{1}{2} .
$$

Furthermore, we have for all $K_{2} \in \Pi_{2}$

$$
P_{2}\left(H_{2} \cap K_{2}\right)=P_{2}\left(H_{2}^{K_{2}}\right)=\frac{1}{2} P_{2}\left(K_{2}\right)=P_{2}\left(H_{2}\right) P_{2}\left(K_{2}\right),
$$

which shows that H_{2} and K_{2} are independent. In particular, H_{2} is stochastically independent from each of E_{2}, F_{2} and G_{2}.

Let us go back to the additivity of P_{1}. As explained above, bets on events are represented by matrices in which columns are events in Σ_{1} and rows are events in Σ_{2}. In the following matrices, columns will always indicate the same events in Σ_{1}, therefore we will explicit them only in the first two matrices.
First note that by definition of G_{1} and G_{2} we have

By Independence, we can add a common third row of 0 .

$\left.$| 1 | 1 | 0 | H_{2} |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | H_{2}^{c} |\(=\begin{array}{lll}1 \& 1 \& 0

1 \& 1 \& 1

G_{2} \cap H_{2} \& G_{2}^{c} \cap H_{2} \& \sim

0 \& 0 \& 0\end{array} \right\rvert\, $$
\begin{array}{llll}1 & 1 & 1 & G_{2} \cap H_{2} \\
0 & 0 & 0 & G_{2}^{c} \cap H_{2}(2) \\
0 & 0 & 0 & H_{2}^{c}\end{array}
$$\)
Since $P_{2}\left(H_{2}\right)=\frac{1}{2}$, by Assumption 2 and Dominance we have

$$
\begin{array}{lll|llllll}
1 & 1 & 0 & H_{2} \tag{3}\\
0 & 0 & 0 & H_{2}^{c} & \sim & \begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array} & H_{2}^{c} \\
H_{2}^{c}
\end{array}
$$

By definition of E_{1} and E_{2} one has

$$
\begin{array}{lll|lllll}
1 & 0 & 0 & E_{2} \\
1 & 0 & 0 & E_{2}^{c}
\end{array} \quad \sim \quad \begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array} E_{2} E_{2}^{c}
$$

Then thanks to Independence, we can add a common third row with a bet on $F_{1} \times H_{2}{ }^{c}$

Similarly, by definition of F_{1} and F_{2} one has

$$
\left.\begin{array}{lll|lllll|l}
0 & 1 & 0 & F_{2} \\
0 & 1 & 0 & F_{2}^{c}
\end{array} \quad \sim \quad \begin{array}{lll}
1 & 1 & 1
\end{array} F_{2} \begin{array}{lll}
0 & 0 & 0
\end{array} \right\rvert\, F_{2}^{c}
$$

and using once again Independence we can add a bet on $E_{2} \cap \mathrm{H}_{2}$

$$
\begin{array}{lll|cccc|cccc|l}
1 & 1 & 1 & E_{2} \cap H_{2} & 1 & 1 & 1 & E_{2} \cap H_{2} & \begin{array}{lllll}
1 & 1 & 1 & E_{2} \cap H_{2} \\
0 & 0 & 0 & 0 & 0
\end{array} E_{2}^{c} \cap H_{2} & E_{2}^{c} \cap H_{2}= & 0 & 0 \tag{5}\\
0 & 0 & E_{2}^{c} \cap H_{2} \\
0 & 1 & 0 & H_{2}^{c} & 0 & 0 & F_{2} \cap H_{2}^{c} & \sim & 1 & 1 & F_{2} \cap H_{2}^{c} \\
0 & 1 & 0 & F_{2}^{c} \cap H_{2}^{c} & 0 & 0 & 0 & F_{2}^{c} \cap H_{2}^{c}
\end{array}
$$

Summarizing all indifferences in Equations 2, 3, 4 and 5 we obtained

$$
\begin{array}{lll|cc|lll}
1 & 1 & 1 & G_{2} \cap H_{2} \\
0 & 0 & 0 & G_{2}^{c} \cap H_{2} \\
0 & 0 & 0 & H_{2}^{c} & \sim & \left.\begin{array}{lll}
1 & 1 & 1
\end{array} \right\rvert\, \begin{array}{l}
0 \\
0
\end{array} & 0 & 0 \\
H_{2} \\
1 & 1 & 1 & E_{2}^{c} \cap H_{2} \\
F_{2} \cap H_{2}^{c} \\
0 & 0 & 0 & F_{2}^{c} \cap H_{2}^{c}
\end{array}
$$

The chain of indifferences proves that a bet on $G_{2} \cap H_{2}$ is indifferent to a bet on $\left(E_{2} \cap H_{2}\right) \cup\left(F_{2} \cap H_{2}{ }^{c}\right)$. Therefore, using Assumption 2, we have

$$
P_{2}\left(H_{2} \cap G_{2}\right)=P_{2}\left(H_{2} \cap E_{2}\right)+P_{2}\left(H_{2}{ }^{c} \cap F_{2}\right) .
$$

This proves the result as H_{2} is stochastically independent from each of E_{2}, F_{2} and G_{2} by Lemma 3. Finally, consider $E_{1}, F_{1} \in \Sigma_{1}$ and let E_{2}, $F_{2} \in \Sigma_{2}$ be their equivalents in S_{2}. Then, $E_{1} \succsim_{1} F_{1}$ is equivalent to $E_{2} \gtrsim F_{2}$ which is finally equivalent to $P_{1}\left(E_{1}\right) \geq P_{1}\left(F_{1}\right)$ by Assumption 2 and the definition of P_{1}.

Theorem 2 provides a simple variant of the main idea of AA of using objective probabilities on an auxiliary source of uncertainty for defining subjective probabilities on a source of uncertainty of primary interest. It is also interesting in that it models the auxiliary source explicitly in terms of a state space and, in doing so, uncovers the role of stochastic independence in the construction of subjective probabilities, a role that remains implicit in the AA original argument and, for instance, in AA3.

Moreover, the argument just presented in the proof of Theorem 2 can be used to illustrate the relevance of the AA framework to the modelling of ambiguity aversion. Indeed, suppose Independence is weakened into the following:

Comonotonic independence. For all $E_{1} \in \Sigma_{1}, E_{2}, H_{2} \in \Sigma_{2}$ such that E_{2} is stochastically independent from H_{2}, if $E_{1} \sim E_{2}$ then $\left(E_{1} \cap H_{2}\right) \cup\left(K_{1} \cap K_{2}\right) \sim$ $\left(E_{2} \cap H_{2}\right) \cup\left(K_{1} \cap K_{2}\right)$ for all $K_{1} \subseteq S_{1}$ such that $E_{1} \subseteq K_{1}$ or $K_{1} \subseteq E_{1}$ and $K_{1} \subseteq H_{2}{ }^{c}$.

To see the connection to AA3', note that two indicator functions $1_{E_{1}}$ and $1_{K_{1}}$ of subsets $E_{1}, K_{1} \in \Sigma_{1}$ are comonotonic if and only if $E_{1} \subseteq K_{1}$ or $K_{1} \subseteq E_{1}$. Hence, following the logic of Schmeidler [1989], Comonotonic independence as just defined is indeed a version of Independence that is restricted by comonotonicity. Note also that Comonotonic independence remains strong enough to yield the indifferences obtained in Formulas 2 and 5, but possibly fails to yield Formula 4. In fact, consider the following axiom:

Ambiguity aversion. For all $E_{1} \in \Sigma_{1}, E_{2}, H_{2} \in \Sigma_{2}$ such that E_{2} is stochastically independent from H_{2}, if $E_{1} \sim E_{2}$ then $\left(E_{1} \cap H_{2}\right) \cup\left(K_{1} \cap K_{2}\right) \gtrsim$ $\left(E_{2} \cap H_{2}\right) \cup\left(K_{1} \cap K_{2}\right)$ for all $K_{1} \subseteq S_{1}$, and $K_{2} \subseteq H_{2}{ }^{c}$.

The idea here is that, in those cases where we do not have $E_{1} \subseteq K_{1}$ or $K_{1} \subseteq E_{1}$, betting on $\left(E_{1} \cap H_{2}\right) \cup\left(K_{1} \cap K_{2}\right)$ allows one to reduce the exposure to ambiguity and can therefore be strictly preferred to betting on $\left(E_{2} \cap H_{2}\right) \cup\left(K_{1} \cap K_{2}\right)$. To illustrate, consider again the matrices from Formula 4. Applying Ambiguity aversion yields the following preference:

| 1 | 0 | 0 | $E_{2} \cap H_{2}$ | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | $E_{2}^{c} \cap H_{2}$ | | | |
| 0 | 1 | 0 | H_{2}^{c} | \gtrsim | 1 1 1
 0 $E_{2} \cap H_{2}$
 0 0 0 | $E_{2}^{c} \cap H_{2}$ |
| 0 | 1 | 0 | H_{2}^{c} | | | |

There is here a reduced exposure to uncertainty in the left matrix due to the fact that the rows $(1,0,0)$ and $(0,1,0)$ are not comonotonic. Finally, in the context of the proof of Theorem 2, Ambiguity aversion and Formula 6 deliver the subadditivity of P_{1} in the following sense: For all disjoint $E_{1}, F_{1} \in \Sigma_{1}$,

$$
P_{1}\left(E_{1} \cup F_{1}\right) \geq P_{1}\left(E_{1}\right)+P_{1}\left(F_{1}\right)
$$

Such subadditivity is a property implied by convexity and can be understood as a sign of ambiguity aversion.

CONCLUSION

Anscombe and Aumann [1963] definition of subjective probability is a milestone in the decision theory literature. In our paper, we first revised Anscombe and Aumann's [1963] contribution. We underlined how subjective probabilities are constructed using objective ones as a "thermometer." We also recalled Anscombe and Aumann's framework (as given by Fishburn [1970]), which became the standard mathematical setting in most preference axiomatizations in decision theory under Knightian uncertainty. Second, we presented a new framework, given by the Cartesian product of an objective state space with a subjective one. This framework allowed us to propose a new construction of subjective probability. The probability is derived from preferences over simple bets satisfying the axioms of Dominance and Independence.

REFERENCES

Anscombe, F. J. and Aumann, R. J. [1963]. "A Definition of Subjective Probability," Annals of Mathematical Statistics, 34 (1): 199-205.
Ellsberg, D. [1961]. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, 75 (4): 643-669.
Finetti, B. de [1937]. "La Prévision: Ses Lois Logiques, Ses Sources Subjectives," Annales de l'Institut Poincaré, 7: 1-68.
Fishburn, P. C. [1970]. Utility Theory for Decision Making. New York: John Wiley
Gilboa, I. and Schmeidler, D. [1989]. "Maxmin Expected Utility with a Non-Unique Prior," Journal of Mathematical Economics, 18 (2): 141-153.
Grabisch, M., Monet, B. and Vergopoulos, V. [2022]. "Subjective Expected Utility Through Stochastic Independence," Economic Theory, 1-35.
Neumann, J. von and Morgenstern, O. [1947]. Theory of Games and Economic Behavior. Princeton: Princeton University Press.
Ramsey, F. P. [1931]. "Truth and Probability." In The Foundation of Mathematics and Other Logical Essays. New York: Harcourt Brace and Co., p. 156-198
Savage, L. [1954]. The Foundations of Statistics. New York: John Wiley.
SCHMEIDLER, D. [1989]. "Subjective Probability and Expected Utility without Additivity," Econometrica, 57 (3): 571-587.

[^0]: * Università Ca’ Foscari Venezia. Correspondence: Cannaregio 873, 30100 Venezia, Italy. Email: lorenzo.bastianello@unive.it
 ** Université Paris 2 Panthéon-Assas. Correspondence: 4 rue Blaise Desgoffe, 75006 Paris, France. Email: vassili.vergopoulos@u-paris2.fr

[^1]: 1. Stochastic independence is with respect to the objective probability P_{2}.
