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About Subjective Probability

Lorenzo Bastianello* 
Vassili Vergopoulos**

The main purpose of this note is to study Anscombe and Aumann’s [1963] 
definition of subjective probability and their contributions to decision theory. We 
emphasize their main ideas, and we revise the framework that they proposed and 
which became one of the most used in axiomatizations in decision theory. We also 
develop a new framework to derive subjective probabilities based on the Cartesian 
product of two sets. We show how two simple axioms allow us to define a subjec-
tive probability on a state space of primary interest, given an auxiliary set endowed 
with an objective probability.

À PROPOS DE LA PROBABILITÉ SUBJECTIVE

L’objectif principal de cette note est d’étudier la définition de la probabilité 
subjective d’Anscombe et Aumann [1963] et leurs contributions à la théorie de la 
décision. Nous mettons l’accent sur leurs idées principales et revisitons le cadre 
de travail qu’ils ont proposé et qui est devenu l’un des plus utilisés dans les axio-
matiques de théorie de la décision. Nous proposons également un nouveau cadre 
pour la dérivation de la probabilité subjective basé sur le produit cartésien de deux 
ensembles. Nous montrons que deux axiomes simples permettent de définir une 
probabilité subjective sur un ensemble d’états de la nature d’intérêt principal à 
partir d’un ensemble auxiliaire équipé d’une probabilité objective.
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INTRODUCTION

The two key ingredients of expected utility (EU) theory are, as the name 
itself suggests, probabilities and utilities. A utility function u: X→X  measures the 
happiness u(x) of a decision maker (DM) when she is given an outcome x in an 
outcome space X. A probability P is used to evaluate the likelihood of receiving 
the outcome x. Denoting p  the expectation operation, then EU suggests evalu-
ating “acts” using the criterion

	 p [u(·)].	 (1)

While this framework looks natural, there are two questions that arise. How 
do we construct the probability measure P in case of subjective uncertainty? And 
the second one is of course: What is an act?

In their classical paper “A Definition of Subjective Probability,” Anscombe 
and Aumann [1963] (AA henceforth) proposed a powerful methodological frame-
work to analyze decisions under uncertainty that answers both questions. This 
framework became one of the classical ones in axiomatizations in decision theory. 
In particular, it contributed to developing a rich literature on decisions under 
uncertainty starting with the classical contributions of Schmeidler [1989] and 
Gilboa and Schmeidler [1989].

The first section of this paper describes how AA answered the two questions 
above. In our opinion, these two answers form the main contributions of AA’s 
paper to decision theory. The first main idea of AA was to construct subjective 
probabilities using objective probabilities as a yardstick. Consider an event to 
which one cannot assign a probability using empirical frequencies, e.g., a horse 
race. AA proposed to calibrate the subjective probability attached to this event 
using an auxiliary event for which empirical frequencies can be calculated, e.g., 
a roulette lottery. The second contribution of AA’s paper consists of proposing 
a framework that easily allows the comparison of objective and subjective prob-
abilities. First, they defined an act as a function from a subjective state space 
(to which we want to associate a subjective probability) to a space of objective 
lotteries. Next, they postulated that agents have EU preferences over objective 
lotteries that give as prizes precisely those acts.

The second section of our paper proposes a construction of subjective prob-
abilities using a different framework. Inspired by the recent paper of Grabisch, 
Monet and Vergopoulos [2022], we consider a state space defined as the Cartesian 
product of two sets. The first set represents a subjective state space. Our aim is to 
associate a subjective probability to this space. The second one is used to model 
objective uncertainty and it is equipped with an objective probability measure. As 
in AA’s work, we use the objective probability measure to build the subjective 
one. This is achieved through two axioms. The first one is a standard dominance 
axiom. The second one is an independence axiom that exploits the notion of 
stochastic independence of events evaluated through the objective probability 
measure.
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ANSCOMBE AND AUMANN’S CONTRIBUTION  
TO DECISION THEORY

This section reviews Anscombe and Aumann [1963] and describes their main 
contributions.

Objective Lotteries as a Yardstick

“It is widely recognized that the word ‘probability’ has two very different 
main senses. In its original meaning . . . is roughly synonymous with  
plausibility. . . . this kind of probability belongs to logic. In its other meaning . . . 
belongs to physics. Physical probability can be determined empirically by noting 
the proportion of successes in some trials” (Anscombe and Aumann [1963], 199).

The very first paragraph of AA’s paper recognizes the double nature of the 
word probability. They note that probabilities can either be subjective or objec-
tive. While the definition of objective probability is straightforward, i.e., it is the 
“proportion of successes in some trials,” the one of subjective probability is not. 
AA proposed a definition of this concept. As they acknowledged, at the time of 
writing, several authors already gave a definition of subjective probabilities, for 
instance, Ramsey [1931], Finetti [1937], Savage [1954]. The new idea of AA 
was to construct subjective probabilities using objective ones as a yardstick. 
They made this construction by building a mathematical framework in which 
they could use the EU theorem of von Neumann and Morgenstern [1947]. Von 
Neumann and Morgenstern [1947] used (objective) lotteries to construct the 
utility function u: X→X  in Equation 1. As AA (p. 199) put it: “In this paper we 
are concerned with the personal or subjective concept of probability, as consid-
ered by Ramsey and Savage. Probabilities and utilities are defined in terms of 
a person’s preferences, in so far as these preferences satisfy certain consistency 
assumptions. The definition is constructive; that is, the probabilities and utilities 
can be calculated from observed preferences. . . . For such a person his utility 
can be defined in terms of [objective probabilities] as shown by von Neumann 
and Morgenstern. The purpose of this note is to define the person’s [subjective 
probabilities] in terms of [objective probabilities].”

In order to construct this subjective probability, AA built a mathematical 
framework that specifies over which “objects” preferences are defined. Their 
setting turned out to be so useful in order to build axiomatic models, that in deci-
sion theory it is known as AA framework and the “objects” are called AA acts. 
We revisit it in the next section.

The AA Framework and Theorem

The intuition of AA framework is the following. There is a state space S with 
s possible mutually exclusive states of the world. One of the states will realize, 
however, no probability is defined on S. When the state j ∈ S realizes, a lottery 
Rj with objective probabilities is selected. With a famous metaphor, AA called 
the process of selecting a state j ∈ S and its associated lottery Rj a “horse lottery.” 
The objective lottery Rj is called by AA a “roulette lottery.” Finally, the roulette 
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lottery Rj is played, and a prize in a set A is selected. The function associating 
states in S to roulette lotteries is known as AA act, for the moment we denote it 
[R1, …, Rs].

In order to define a subjective probability over the state space S, AA assumed 
twice EU: (i) over roulette lotteries giving prices in A; (ii) over roulette lotteries 
whose prices are horse lotteries. Moreover, they assumed two more axioms that 
connect the two systems of preferences. The first one is a monotonicity axiom, 
while the second one postulates indifference to the order in which roulette and 
horse lotteries are played.

Suppose that there is a most desired prize A1 which is strictly preferred to a 
least desired prize A0. Call u* the von Neumann-Morgenstern utility mentioned in 
point (ii) of the previous paragraph. Then AA defined the subjective probability 
of state i as

pi = u*[A0, …, A1, …, A0],

where prize A1 appears in position i. One can interpret pi as the unique number 
making an agent indifferent between the AA act [A0, …, A1, …, A0] and the 
roulette lotteries giving [A1, …, A1] with probability pi and [A0, …, A0] otherwise. 
This readily follows from a normalization of u* and using EU linearity properties.

Using pi as a definition of subjective probability, AA derived the EU representa-
tion in Equation 1, in which u is the von Neumann-Morgenstern utility over 
roulette lotteries and P = ( p1,  …, ps ) the subjective probability vector.

We conclude this section by presenting what is the standard AA framework 
as it appears now in almost all articles in decision theory. This framework is 
essentially due to Fishburn ([1970], chap. 13), and it has been fruitfully applied to 
decision theory under uncertainty at least since the seminal papers of Schmeidler 
[1989] and Gilboa and Schmeidler [1989]. Finally, we conclude this section by 
stating the AA-Fishburn theorem.

The main ingredients are the ones already there in AA’s article. There is a finite 
state space S, and an outcome space X that is a convex subset of a vector space. 
For instance, this is the case if X is the set of all finitely valued objective lotteries 
over an outcome set  . An (AA) act is a function f : S→X. Denote F is the set of 
all acts. Note that each lottery x ∈ X can be identified with the constant act f(s) = x 
for all s ∈ S. F is endowed with a mixture operation performed pointwise. For all 
f, g ∈ F, for all α ∈ [0, 1], the mixture act α f + (1 – α)g ∈ F is given ∀s ∈ S by

(α f + (1 – α)g)(s) = α f(s) + (1 – α)g(s).

Instead of directly postulating EU, Fishburn [1970] considered a preference 
relation ≿⊆ F × F. Consider now the following axioms.

AA1 (Rationality): ≿ is complete and transitive.
AA2 (Continuity): For all f, g, h ∈ F s.t. f g h   there exist α, β ∈ (0, 1) 

such that

f + (1– )h g f + (1– )h.α β βα

AA3 (Independence): For all f, g, h ∈ F and α ∈ (0, 1]

f ≿ g ⇔ α f + (1 – α)h ≿ α g + (1 – α)h.
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AA4 (Monotonicity): For every f, g ∈ F,

f (s) ≿ g(s) ∀s ∈ S ⇒ f ≿ g.

AA5 (Non-triviality): There all f, g ∈ F such that f g .

Theorem 1 (AA – Fishburn). ≿ satisfies AA1-AA5 if and only if there exist a 
probability measure P on S and a non-constant function u: X→X  such that, 
for every f, g ∈ F�  

	 f ≿ g  [u]dP(s) ≥ [u]dP(s). �  

Furthermore, in this case, P is unique, and u is unique up to positive affine 
transformations.

Still to this day, the AA theorem provides one of the simplest approaches to 
subjective probability and expected utility maximization. But it has also allowed 
Schmeidler [1989] to obtain an early axiomatization of ambiguity aversion. 
The original Ellsberg [1961] paradox illustrates ambiguity aversion in terms 
of a preference for betting on events of known probability rather than ones 
of unknown probability. But Schmeidler uses the AA framework to explain 
ambiguity aversion through a preference for randomizing uncertain decisions 
on objective probabilities and, in this way, smoothing outcomes on uncertain 
(ambiguous) events.

In greater detail, two acts f, g ∈ F are said to be comonotonic if there are no 
s, s′ ∈ S such that f(s) f(s′) and g(s′) g(s). Intuitively, two comonotonic acts 
vary in the same direction and hence cannot hedge each other. Schmeidler appeals 
to the following weak version of AA3:

AA3’ (Comonotonic independence): For all f, g, h ∈ F and α ∈ (0, 1], if f and 
h are comonotonic and likewise for g and h,

f ≿ g ⇔ α f + (1 – α)h ≿ α g + (1 – α)h.

Schmeidler’s theorem shows that replacing AA3 with AA3’ leads to a version 
of Theorem 1 where the probability P on S is replaced with a capacity v (that is, 
a set function v: 2S→[0, 1] such that v(S) = 1, v(∅) = 0 and v(E) ≥ v(F) for all 
E, F ⊆ S such that F ⊆ E) and the integral with a Choquet integral. The ambiguity 
that the agent perceives is reflected in the possible nonadditivity of v. Schmeidler’s 
approach allows for various attitudes towards ambiguity. In particular, ambiguity 
aversion is obtained through the following axiom:

AA3’’ (Ambiguity aversion): For all f, g∈ F and α∈ (0, 1],

f ∼ g ⇒ α f + (1 – α)g ≿ f .

The intuition here is that f and g might fail to be comonotonic and hence could 
hedge each other and reduce the exposure to ambiguity. Then, ambiguity aversion 
would explain a strict preference for randomizing f and g on some objective prob-
ability α over each of f and g. AA3” turns out to characterize convex capacities; 
that is capacities v on S satisfying

v(E ∪ F) + v(E ∩ F) ≥ v(E) + v(F),
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for all E, F ⊆ S. Finally, the Schmeidler approach is only one of the by now 
many approaches to ambiguity aversion, and they owe a major debt to the AA 
framework.

PRODUCT SPACE AND SUBJECTIVE PROBABILITY

This section presents a simple framework to axiomatically derive a subjec-
tive probability measure over a state space. This space is defined by a product 
of two sets as in Grabisch, Monet and Vergopoulos [2022]. In this paper, 
one of the two sets will be of primary interest, as our aim is to construct a 
subjective probability measure on it. The other one will be equipped with an 
objective probability measure. We follow AA’s lead: we will use the objective 
probability measure to calibrate the subjective one. Since we are only inter-
ested in the construction of a probability measure (and not a utility function), 
we only need to consider preferences over “bets,” i.e., our acts will simply 
be indicator functions of events. Therefore, our outcome space will consist 
only of two (non-indifferent) outcomes. We believe that this simple frame-
work can be used fruitfully by experimentalists who want to elicit subjective  
probabilities.

Formally, consider two state spaces (S1, Σ1) and (S2, Σ2) where Σi are  
σ-algebras for i = 1, 2. The couple (S1, Σ1) is the state space to which we want to 
assign a subjective probability, while (S2, Σ2) is an auxiliary source of uncertainty. 
This latter space comes equipped with an objective probability measure P2.

We consider an outcome space containing two objects, X = {x0, x1}. We 
denote by S = S1 × S2 and Σ = Σ1 × Σ2. Bets on events E ∈ Σ are functions 
from S to X and can be identified with indicator functions that pay x1 if E 
realizes and x0 otherwise. Consider a decision maker (DM) with a preference 
relation ≿ over bets. Suppose also that x1 x0,   where we identify x1 with the 
bet paying x1 on S. To simplify notation, we will write 1 instead of x1, and 0  
instead of x0.

Assumptions on (S2, Σ2, P2).
1. (S2, Σ2, P2) is infinitely rich in the sense that P2 is nonatomic and that each 

event E1 in Σ1 has an equivalent event E2 in Σ2. For example, one can consider 
S2 = [0, 1], Σ2 the Borel σ-algebra and P2 the Lebesgue measure.

2. Bets depending only on S2 are evaluated only by their likelihood 
given by P2. Formally, for all E2, E′2 ∈ S2, S1 × E2 ≿ S1 × E′2 if and only if  
P2(E2) ≥ P2(E′2).

Axioms on ≿.
Let us first introduce some notation. Given a set E ∈ Σ and s1 ∈ S1 we denote 

E(s1, ⋅) the restriction of E on s1, i.e., E(s1, ⋅) = {(x, y) ∈ S | x = s1, (x, y) ∈ E}. 
Note that E(s1, ⋅) may be empty. Moreover, we simply denote as E2 ∈ S2 a bet of 
the form S1 × E2 that only depends on E2.

Dominance. For all E, F ∈ Σ, if E(s1, ⋅) ∼ F(s1, ⋅) for all s1 ∈ S1,  
then E ∼ F.
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Independence. For all E1 ∈ Σ1, E2, H2 ∈ Σ2 such that E2 is stochastically 
independent from H2, 1 if E1 ∼ E2 then (E1 ∩ H2) ∪ E ∼ (E2 ∩ H2) ∪ E for all  
E ⊆ S1 × H2

c.
The two axioms Dominance and Independence express in different ways the 

common intuition that the two sources of uncertainty S1 and S2 are stochasti-
cally independent of each other. Indeed, Dominance requires that the agents have 
well-defined preferences on Σ2, which are independent from the state obtained 
in S1. For instance, it implies the following: For all E1 ∈ Σ1 and F2, F′2 ∈ S2,

F2 ∼ F′2 ⇒ E1 × F2 ∼ E1 × F′2.

Hence, observing that some event E1 ∈ Σ1 obtains, does not affect the initial 
ranking F2 ∼ F′2 between events in source S2.

As for Independence, the condition can be decomposed into two requirements. 
Consider E1 ∈ Σ1 and E2, H2 ∈ Σ2 such that E2 is stochastically independent 
from H2 and, for the moment, let E = ∅. The first part requires the following 
implication:

E1 ∼ E2 ⇒ E1 × H2 ∼ E2 ∩ H2.

In words, observing that some event H2 ∈ Σ2 from the second source S2 obtains 
does not affect the initial ranking E1 ∼ E2 whenever E2 and H2 are stochastically 
independent of each other. Implicit in this logic is the intuition that every event 
from S1 is stochastically independent from every event in S2. The second part 
of Independence has the flavor of a standard additivity condition that makes the 
indifference E1 × H2 ∼ E2 ∩ H2 result in this other indifference (E1 ∩ H2) ∪ E ∼ 
(E2 ∩ H2) ∪ E for all E ⊆ S1 × H2

c.
We now explain Independence with one example in which we use matrices to 

depict our framework. The same type of matrices will be used in the proof of our 
theorem. Suppose S1 = {a, b, c} and let E1 = {a, b} and E2 ∈ Σ2. Columns repre-
sent events in S1, while rows events in S2. The matrix on the left of the indifference 
represents a bet on E1, in fact, this bet is not affected by the realization of a state 
in S2. Likewise, the matrix on the right of the indifference relation represents a 
bet on E2. Suppose E1 ∼ E2.

E1 

 
E1

c  

 
 

a b c  
1 1 0 E2 
1 1 0 E2

c  
 

~  

E1 

 
E1

c  

 

 

a b c  
1 1 1 E2 
1 1 0 E2

c  

Before proceeding, let us reformulate the Independence axiom in an explicit 
way. Suppose that E2 is stochastically independent from H2. Then Independence 
says that E1 × S2 ∼ S1 × E2 implies (E1 × H2) ∪ (K1 × K2) ∼ (S1 × (E2 ∩ H2)) ∪ 
(K1 × K2) with K1 ⊆ S1 and K2 ⊆ H2

c.

1.  Stochastic independence is with respect to the objective probability P2.
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Let us turn back to the example above. Suppose there is H2 ∈ Σ2 such that E2 
and H2 are stochastically independent. As proved in Theorem 2 below, we can 
always suppose that such a set exists. Now take K1 = {b} and K2 = H2

c. A bet on 
K1 × K2 is represented by the last row of the two matrices below. Suppose that the 
DM knows that H2

c realized. Then by Dominance she will be indifferent between 
the two bets. Suppose now that she knows that H2 realized. Since H2 is inde-
pendent from E2, knowing H2 does not change the probability of E2. Therefore, 
given H2 we are back to the bets E1 vs E2. Since by hypothesis E1 ∼ E2, she should 
stay indifferent also knowing H2.

E1 

 
E1

c  

 
 

a b c  

1 1 0 E2 H2  

1 1 0 E2
c H2  

0 1 0 H2
c  

 

 

E1 

 
E1

c  

 

 

a b c  
1 1 1 E2 H2  

0 0 0 E2
c H2  

0 1 0 H2
c  

 

∩

∩

∩

∩

∼

Let ≿1 denote the restriction of ≿ to Σ1. That is, E1 ≿1 F1 if and only if 
E1 S2 F1 S2  × ×  for all E1, F1 ∈ Σ1. We say that a function P1: S1 → [0, 1] repre-
sents ≿1 if E1 ≿1 F1 holds if and only if P1(E1) ≥ P1(F1) for all E1, F1 ∈ Σ1. We 
can now state our main result.

Theorem 2. Suppose that ≿ satisfies Dominance and Independence. Then, 
there exists a unique probability measure P1 on (S1, Σ1) such that E1 ∼ E2 if 
and only if P1(E1) = P2(E2) for all E1 ∈ Σ1 and E2 ∈ Σ2. Moreover, P1 repre-
sents ≿1.

Proof. By Assumption 1, for all set E1 ∈ Σ1 there exists a set E2 ∈ Σ2 such 
that E1 ∼ E2. Define the function P1: S1 → [0, 1] for all E1 ∈ Σ1 as

P1(E1) = P2(E2),

where E2 ∈ Σ2 is such that E1 ∼ E2. The uniqueness claim follows from this 
definition. We will prove that P1 is a probability defined on (S1, S1). First of 
all, note that P1 is well defined. In fact suppose there are E2, E′2 ∈ Σ2 such 
that E1 ∼ E2 and also E1 ∼ E′2. By transitivity, E2 ∼ E′2 and by Assumption 2,  
P(E2) = P2(E′2).
It is easy to see that P1(S1) = 1. In fact by writing explicitly bets on events, bet 
S1 is actually S1 × S2, and therefore clearly S1 ∼ S2 and P1(E1) = P2(E2) = 1.
We will prove now that P1 is additive. Consider two disjoint events E1, F1 ∈ Σ1 
and let E2, F2 ∈ Σ2 be equivalent events. Let also G1 = E1 ∪ G1 and G2 be an 
equivalent event from Σ2. To show additivity of P1, it is sufficient to show  
P2(G2) = P2(E2) + P2(F2). In fact, suppose this is true then P1(G1) = P2(G2) = 
P2(E2) + P2(F2) = P1(E1) + P1(F1).

We first prove an auxiliary Lemma.
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Lemma 3. There exists H2 ∈ Σ2 such that P2(H2) = 1/2 and such that H2 is 
stochastically independent from each of E2, F2 and G2.

Proof. Let Π2 denote the finite partition of S2 generated by E2, F2 and G2. For 
each K2∈ Π2, we can find by nonatomicity H2

K2 2   such that H2
K2  K2   

and P2 (H2
K2 )  P2 (K2 ) / 2.   Then, define H2 as the union of all H2

K2   for K2 ∈ Π2.  
We have

P2 (H2 ) 
K22

 P2 (H2
K2 )  1

2 K22

 P2 (K2 ) 
1
2
.  

Furthermore, we have for all K2 ∈ Π2

P2 (H2 K2 )  P2 (H2
K2 )  1

2
P2 (K2 )  P2 (H2 )P2 (K2 ),  

which shows that H2 and K2 are independent. In particular, H2 is stochastical-
ly independent from each of E2, F2 and G2.� 

Let us go back to the additivity of P1. As explained above, bets on events 
are represented by matrices in which columns are events in Σ1 and rows 
are events in Σ2. In the following matrices, columns will always indi-
cate the same events in Σ1, therefore we will explicit them only in the first  
two matrices.
First note that by definition of G1 and G2 we have

	

G1 

 

E1 F1 G1
c  

1 1 0 G2 
1 1 0 G2

c  

 

G1 

 

E1 F1 G1
c  

1 1 1 G2 
0 0 0 G2

c  

∼ 	

By Independence, we can add a common third row of 0.

	

 

1 1 0 H2 
1 1 0 H2

c  
 

= 

1 1 0 G2 H2  

1 1 1 G2
c H2  

0 0 0 H2
c  

 

 

1 1 1 G2 H2  

0 0 0 G2
c H2  

0 0 0 H2
c  

 

 
 

∩

∩

∩

∩∼ 	(2)

Since P2 (H2 ) 
1
2
,   by Assumption 2 and Dominance we have

	
1 1 0 H2 
0 0 0 H2

c  
1 0 0 H2 
0 1 0 H2

c∼ 	 (3)

By definition of E1 and E2 one has
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1 0 0 E2 
1 0 0 E2

c   
1 1 1 E2 
0 0 0 E2

c  
∼

Then thanks to Independence, we can add a common third row with a bet on 
F1 × H2

c

1 0 0 H2 
0 1 0 H2

c = 

1 0 0 E2 H2  

1 0 0 E2
c H2  

0 1 0 H2
c

 

1 1 1 E2 H2  

0 0 0 E2
c H2  

0 1 0 H2
c

∼

∩

∩

∩

∩ 	 (4)

Similarly, by definition of F1 and F2 one has

0 1 0 F2 
0 1 0 F2

c   
1 1 1 F2 
0 0 0 F2

c  
∼

and using once again Independence we can add a bet on E2 ∩ H2

	

1 1 1 E2 H2  

0 0 0 E2
c H2

0 1 0 H2
c

= 

1 1 1 E2 H2  

0 0 0 E2
c H2  

0 1 0 F2 H2
c 

0 1 0 F2
c H2

c  

 

1 1 1 E2 H2  

0 0 0 E2
c H2

1 1 1 F2 H2
c 

0 0 0 F2
c H2

c

∼

∩

∩

∩

∩

∩

∩

∩

∩

∩

∩

	(5)

Summarizing all indifferences in Equations 2, 3, 4 and 5 we obtained

1 1 1 G2 H2  

0 0 0 G2
c H2  

0 0 0 H2
c

 

1 1 1 E2 H2  

0 0 0 E2
c H2  

1 1 1 F2 H2
c 

0 0 0 F2
c H2

c  

The chain of indifferences proves that a bet on G2 ∩ H2 is indifferent to a bet 
on (E2 ∩ H2) ∪ (F2 ∩ H2

c). Therefore, using Assumption 2, we have

P2(H2 ∩ G2) = P2(H2 ∩ E2) + P2(H2
c ∩ F2).

This proves the result as H2 is stochastically independent from each of 
E2, F2 and G2 by Lemma 3. Finally, consider E1, F1 ∈ Σ1 and let E2, 
F2 ∈ Σ2 be their equivalents in S2. Then, E1 ≿1 F1 is equivalent to E2 ≿ F2 
which is finally equivalent to P1(E1) ≥ P1(F1) by Assumption 2 and the  
definition of P1.� 
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Theorem 2 provides a simple variant of the main idea of AA of using objec-
tive probabilities on an auxiliary source of uncertainty for defining subjective 
probabilities on a source of uncertainty of primary interest. It is also interesting 
in that it models the auxiliary source explicitly in terms of a state space and, in 
doing so, uncovers the role of stochastic independence in the construction of 
subjective probabilities, a role that remains implicit in the AA original argument 
and, for instance, in AA3.

Moreover, the argument just presented in the proof of Theorem 2 can be used 
to illustrate the relevance of the AA framework to the modelling of ambiguity 
aversion. Indeed, suppose Independence is weakened into the following:

Comonotonic independence. For all E1 ∈ S1, E2, H2 ∈ Σ2 such that E2 is 
stochastically independent from H2, if E1 ∼ E2 then (E1 ∩ H2) ∪ (K1 ∩ K2) ∼  
(E2 ∩ H2) ∪ (K1 ∩ K2) for all K1 ⊆ S1 such that E1 ⊆ K1 or K1 ⊆ E1 and K1 ⊆ H2

c.
To see the connection to AA3’, note that two indicator functions 1E1   and 1K1   

of subsets E1, K1 ∈ Σ1 are comonotonic if and only if E1 ⊆ K1 or K1 ⊆ E1. Hence, 
following the logic of Schmeidler [1989], Comonotonic independence as just 
defined is indeed a version of Independence that is restricted by comonotonicity. 
Note also that Comonotonic independence remains strong enough to yield the 
indifferences obtained in Formulas 2 and 5, but possibly fails to yield Formula 4. 
In fact, consider the following axiom:

Ambiguity aversion. For all E1 ∈ Σ1, E2, H2 ∈ Σ2 such that E2 is stochas-
tically independent from H2, if E1 ∼ E2 then (E1 ∩ H2) ∪ (K1 ∩ K2) ≿   
(E2 ∩ H2) ∪ (K1 ∩ K2) for all K1 ⊆ S1, and K2 ⊆ H2

c.
The idea here is that, in those cases where we do not have E1 ⊆ K1 or  

K1 ⊆ E1, betting on (E1 ∩ H2) ∪ (K1 ∩ K2) allows one to reduce the expo-
sure to ambiguity and can therefore be strictly preferred to betting on 
(E2 ∩ H2) ∪ (K1 ∩ K2). To illustrate, consider again the matrices from Formula 4. 
Applying Ambiguity aversion yields the following preference:

	

1 0 0 E2 H2  

1 0 0 E2
c H2  

0 1 0 H2
c

≿ 

1 1 1 E2 H2  

0 0 0 E2
c H2  

0 1 0 H2
c

	 (6)

There is here a reduced exposure to uncertainty in the left matrix due to the fact 
that the rows (1, 0, 0) and (0, 1, 0) are not comonotonic. Finally, in the context of 
the proof of Theorem 2, Ambiguity aversion and Formula 6 deliver the subaddi-
tivity of P1 in the following sense: For all disjoint E1, F1 ∈ Σ1,

P1(E1 ∪ F1) ≥ P1(E1) + P1(F1).

Such subadditivity is a property implied by convexity and can be understood 
as a sign of ambiguity aversion.
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CONCLUSION

Anscombe and Aumann [1963] definition of subjective probability is a mile-
stone in the decision theory literature. In our paper, we first revised Anscombe and 
Aumann’s [1963] contribution. We underlined how subjective probabilities are 
constructed using objective ones as a “thermometer.” We also recalled Anscombe 
and Aumann’s framework (as given by Fishburn [1970]), which became the 
standard mathematical setting in most preference axiomatizations in decision 
theory under Knightian uncertainty. Second, we presented a new framework, 
given by the Cartesian product of an objective state space with a subjective one. 
This framework allowed us to propose a new construction of subjective prob-
ability. The probability is derived from preferences over simple bets satisfying 
the axioms of Dominance and Independence.
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