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A B S T R A C T

Two acts are comonotonic if they co-vary in the same direction. The main purpose of this paper is to
derive a new characterization of Cumulative Prospect Theory (CPT) through simple properties involving
comonotonicity. The main novelty is a concept dubbed gain–loss hedging: mixing positive and negative acts
creates hedging possibilities even when acts are comonotonic. This allows us to clarify in which sense CPT
differs from Choquet expected utility. Our analysis is performed under the assumption that acts are real-valued
functions. This entails a simple (piece-wise) constant marginal utility representation of CPT, which allows us
to clearly separate the perception of uncertainty from the evaluation of outcomes.
1. Introduction

When making everyday decisions, economic agents are often con-
fronted with uncertainty. For instance, one can think of a decision
maker (DM) who needs to choose how to allocate her wealth between
two different portfolios of assets, or a firm that has to decide whether
to invest in an innovative technology or in a traditional one. The most
popular model used under risk and uncertainty is the expected utility
model. This model, proposed first by Bernoulli at the beginning of
the XVIII century, has been axiomatized by De Finetti (1931), Savage
(1972) and Von Neumann and Morgenstern (1944). However, empirical
evidence has shown that expected utility does not provide a good
description of DMs’ actual choices. Early examples are the famous
paradoxes of Allais (1953) and Ellsberg (1961).

One of the most prominent and most successful alternatives to
expected utility theory is cumulative prospect theory (CPT) of Tversky
and Kahneman (1992). The aim of this paper is twofold: (i) we provide
a new mathematical characterization of the CPT functional with (piece-
wise) constant marginal utility à la Yaari (1987); (ii) we use the
characterization of the previous point to obtain a novel preference
axiomatization of CPT. We believe that both points are important as
they parallel the work of David Schmeidler on the Choquet integral.
The first point corresponds to his mathematical characterization of the
Choquet integral in Schmeidler (1986). The second one corresponds
to the related behavioral characterization given in Schmeidler (1989).

✩ We thank Peter Wakker, two anonymous referees, and the AE of this journal for their valuable comments. First version: February 2020.
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E-mail addresses: lorenzo.bastianello@unive.it (L. Bastianello), chateaun@univ-paris1.fr (A. Chateauneuf), cornet@ku.edu (B. Cornet).

The rest of the introduction describes in more details the content of the
paper and comments on the relevant literature.

Consider acts as functions from a state space 𝑆 to the set of real
numbers. Thus, given an act 𝑓 ∶ 𝑆 → R, 𝑓 (𝑠) can be interpreted
as the amount of money or consumption good that a DM obtains if
the state turns out to be 𝑠. A central role is played by comonotonic
acts. Loosely speaking, two acts are comonotonic if they are positively
correlated. Mixing two comonotonic acts does not provide a possible
hedge against uncertainty. This idea was exploited in the seminal
papers of Schmeidler (1986) and Schmeidler (1989) to extend expected
utility to Choquet expected utility.

One advantage of CPT over the Choquet model is that it allows
to disentangle the behavior of DMs in the domain of gains from the
one in the domain of losses, i.e. when outcomes are respectively above
or below a certain reference point (in our case the reference point
is naturally taken equal to 0). This difference in behavior can be
decomposed into two components. The first one is called loss-aversion
and says that ‘‘losses loom larger than gains’’ ( Tversky and Kahneman
(1992)). Mathematically, it means that losses are multiplied by a con-
stant 𝜆 > 1. The second one is usually called sign dependence and says
that the attitude towards uncertainty (mathematically represented by a
capacity) is different for gains and for losses. We take this behavior as
a starting point for both the mathematical characterization of CPT and
its axiomatization.
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We describe here the two main properties that we use in Section 3.1
to characterize mathematically the CPT functional. The first property is
well-known and postulates comonotonic independence (separately) for
gains and for losses. Comonotonic acts do not provide a possible hedge
against uncertainty and therefore adding them should not change the
preferences of the DM. Take three acts 𝑓, 𝑔, and ℎ, all in the domain of
gains or all in the domain of losses, such that ℎ is comonotonic with 𝑓
and 𝑔. Then our condition requires that if 𝑓 and 𝑔 are indifferent, then
adding ℎ to both of them does not change a DM’s preferences since in
both situations ℎ does not increase nor reduce uncertainty.

The second property, that we call gain–loss hedging, represents the
main behavioral novelty of the paper. The key idea is that adding an
act above the reference point (exogenously fixed at 0) to an act below
the reference point may provide a hedge against possible losses unless
these acts have disjoint supports. To exemplify, suppose that there are
two states of the world 𝑆 = {𝑠1, 𝑠2} and that a DM with a linear utility
function over outcomes is indifferent between the assets 𝑓 = (20, 0) (𝑓
is the act that pays 20 if 𝑠1 is realized and 0 otherwise) and 𝑔 = (10, 10).
Consider now the act ℎ = (0,−10) which has disjoint support with 𝑓 but
not with 𝑔. When the DM evaluates 𝑓 +ℎ = (20,−10) and 𝑔+ℎ = (10, 0),
she may have a preference over 𝑔+ℎ rather than 𝑓 +ℎ, since the former
act guarantee no losses. Note that indifference between 𝑓 and 𝑔 and
then a strict preference for 𝑔 + ℎ is precluded by the expected utility
model (with the utility function being the identity). More interestingly,
this preference pattern would be a paradox even for the more general
Choquet expected utility model of Schmeidler (1989) (with the utility
function being the identity). The Choquet model excludes any possible
hedging through mixing of comonotonic acts. In this example however
act ℎ is comonotonic with both acts 𝑓 and 𝑔 and therefore no possible
hedging would be envisioned by the Choquet model. Therefore ℎ is
a possible hedge against losses when added to 𝑔 because gains and
losses balance out one another, and not because of comonotonicity. We
elaborate more on this idea in Example 1.

In Section 3.2, we give a preference axiomatization of the CPT
model with piece-wise linear utility. We do not assume the F.J. and
Aumann (1963) framework, and our axioms only appeal to simple
properties related to comonotonicity. Moreover, we propose a new and
simple axiom that can be used to elicit the coefficient of loss-aversion
𝜆. In order to derive a CPT representation of preferences, we use the
mathematical characterization of Section 3.1. in the context of prospect
theory, our paper parallels the work of Schmeidler (1986), Schmeidler
(1989) and Chateauneuf (1991) on the Choquet integral.

Empirical evidence not only supports sign-dependence, but it sug-
gests further that agents are uncertainty averse for gains and un-
certainty seeking for losses, see for instance Wakker (2010), Section
12.7 for a review. Section 3.3 provides testable axioms that character-
ize those opposite behaviors. Finally we investigate when uncertainty
aversion for gains is symmetric to uncertainty seeking for losses. Behav-
iorally, this happens if a DM who is indifferent between an act 𝑓 and
a monetary outcome 𝛼 is also indifferent between −𝑓 and −𝛼. In this
case we prove that weights for gains and losses are dual with respect to
each other and that CPT reduces to a Šipoš integral, see Šipoš (1979).
This result clarifies the relation of CPT with the Šipoš integral that was
first noticed by Starmer and Sugden (1989) (see also Wakker (2010)
and Kothiyal et al. (2014)).

Of course, there are several axiomatizations of CPT available in the
literature. The concept of comonotonicity and the fact that acts are
rank-ordered are crucial, see Diecidue and Wakker (2001). The very
first axiomatization is provided in the seminal paper of Tversky and
Kahneman (1992) and relies on comonotonic independence and a prop-
erty called double matching. See also Trautmann and Wakker (2018)
for a recent characterization using these axioms in a (reduced) F.J. and
Aumann (1963) framework. Wakker and Tversky (1993) pair comono-
tonicity with trade-off consistency (see also Chateauneuf and Wakker
(1999) for the case of risk). The conomotonic sure thing principle
41

approach (or a weakening of it called tail independence) is developed d
in Chew and Wakker (1996), Zank (2001) and Wakker and Zank
(2002). The paper closest to our is the one of Schmidt and Zank (2009).
The authors characterize CPT through an axiom called independence
of common increments for comonotonic acts. Interestingly, they obtain
a piecewise linear utility function (with a kink about the reference
point), as in our axiomatization. We refer the reader to the introductory
section of Schmidt and Zank (2009) for a detailed discussion about the
advantages of adopting piece-wise linear utility.

The rest of the paper is organized as follows. Section 2 introduces
the framework, the mathematical notations and the behavioral models
that we will consider. Section 3 is divided in three subsections and
it contains our main results. Section 3.1 presents the mathematical
characterization of the CPT and Šipoš functionals, Section 3.2 provides
a behavioral characterization of CPT and Section 3.3 discusses DM’s at-
titude towards uncertainty. Section 4 concludes. All proofs are gathered
in Appendix A.

2. Framework

Let 𝑆 be a set of states of the world endowed with a 𝜎-algebra .
lements of  are called events. We denote  the set of all bounded,
eal-valued, -measurable functions over 𝑆, i.e.  = {𝑓 ∶ 𝑆 →

|𝑓 is bounded and -measurable}. A function 𝑓 ∈  is called act. An
ct can be interpreted as an asset that pays a monetary outcome in R
hat depends on the realization of the state of the world. Note that we
o not work in the F.J. and Aumann (1963) (AA) framework, in which
cts are functions from 𝑆 to a space of objective lotteries. On the con-
rary, we choose the simpler setting introduced by Chateauneuf (1991)
nd Chateauneuf (1994), in which acts are real-valued functions. This
s a realistic alternative to the AA framework, as sometimes objective
otteries may not be available to the DM. Moreover this setting is still
ich for applications as it accommodates decisions in which acts deliver
onetary amounts (as for instance in most of lab experiments). For a

ecent paper axiomatizing CPT in the AA framework, see Trautmann
nd Wakker (2018).

We denote the positive part of an act 𝑓 ∈  by 𝑓+ = 𝑓 ∨ 0 and the
egative part by 𝑓− = (−𝑓 ) ∨ 0. Note that both positive and negative
arts are greater than 0.1 The set + = {𝑓 ∈  |𝑓 (𝑠) ≥ 0, ∀𝑠 ∈ 𝑆} is the
et of positive acts, the set of negative acts − is defined analogously.
wo acts 𝑓, 𝑔 ∈  have the same sign if either 𝑓, 𝑔 ∈ + or 𝑓, 𝑔 ∈ −.
e say that two acts are of opposite sign if one of them is positive

nd the other is negative. The support of an act of 𝑓 ∈  is the set
𝑢𝑝𝑝(𝑓 ) = {𝑠 ∈ 𝑆|𝑓 (𝑠) ≠ 0}. Two acts 𝑓, 𝑔 ∈  are comonotonic if for
ll 𝑠, 𝑡 ∈ 𝑆, (𝑓 (𝑠) − 𝑓 (𝑡))(𝑔(𝑠) − 𝑔(𝑡)) ≥ 0. Let 𝐴 ⊆ 𝑆, 1𝐴 is the indicator

unction of the set 𝐴, i.e. 1𝐴(𝑠) ∶=
{

1 if 𝑠 ∈ 𝐴
0 if 𝑠 ∈ 𝐴𝑐

. If 𝛼 ∈ R, then 𝛼1𝐴

enotes the constant act which pays 𝛼 in every state 𝑠 ∈ 𝐴.
A (normalized) capacity 𝑣 on the measurable space (𝑆,) is a set

unction 𝑣 ∶  ↦ R such that 𝑣(∅) = 0, 𝑣(𝑆) = 1 and for all 𝐴,𝐵 ∈
, 𝐴 ⊆ 𝐵 ⇒ 𝑣(𝐴) ≤ 𝑣(𝐵). If 𝑣 is a capacity, we define its conjugate

y �̂�(𝐴) = 1 − 𝑣(𝐴𝑐 ) for all 𝐴 ∈ . A capacity 𝑣 ∶  ↦ R is convex
concave) if, for all 𝐴,𝐵 ∈ , 𝑣(𝐴∪𝐵)+𝑣(𝐴∩𝐵) ≥ (≤)𝑣(𝐴)+𝑣(𝐵). Given
capacity 𝑣 on (𝑆,), the Choquet integral of 𝑓 ∈  with respect to 𝑣

s a functional 𝐶 ∶  → R defined by

(𝑓 ) = ∫𝑆
𝑓 𝑑𝑣 ∶= ∫

0

−∞
(𝑣({𝑓 ≥ 𝑡}) − 1) 𝑑𝑡 + ∫

+∞

0
𝑣({𝑓 ≥ 𝑡}) 𝑑𝑡.

simple function 𝑓0 ∈  is a function that takes finitely many values
1 ≤ ⋯ ≤ 𝑥𝑛 over a partition {𝐴1,… , 𝐴𝑛} of 𝑆. In this case the Choquet
ntegral of 𝑓0 takes the familiar form

(𝑓0) = 𝑥1 + (𝑥2 − 𝑥1)𝑣(∪𝑛
𝑖=2𝐴𝑖) +⋯ + (𝑥𝑛 − 𝑥𝑛−1)𝑣(𝐴𝑛).

1 Note that several papers studying prospect theory use the symbol 𝑓− to
enote 𝑓 ∧ 0.
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In the following we will remove the subscript 𝑆 from the integral sign
whenever the domain of integration is clear. Given a capacity 𝑣 on
(𝑆,), the Šipoš integral (see Šipoš (1979)) of 𝑓 ∈  with respect to
𝑣 is a functional �̌� ∶  → R defined as

�̌�(𝑓 ) = ∫ 𝑓+𝑑𝑣 − ∫ 𝑓−𝑑𝑣,

where the two integrals are Choquet integrals. Lemma 2 in the Ap-
pendix clarifies the relation between the Choquet and Šipoš integrals
using conjugate capacities.

The main object of this paper is the (piecewise linear) Cumulative
Prospect Theory (CPT) functional 𝐶𝑃𝑇 ∶  → R. It is a generalization
of both Choquet and Šipoš integrals. Consider two capacities 𝑣+, 𝑣−

nd a real number 𝜆 > 0, then the (piecewise linear) CPT functional
𝑃𝑇 ∶  → R is defined by

𝑃𝑇 (𝑓 ) = ∫ 𝑓+𝑑𝑣+ − ∫ 𝜆𝑓−𝑑𝑣−.

A preference relation ≿ over  is a complete and transitive binary
elation with non-empty strict part. As usual, 𝑓 ≿ 𝑔 means ‘‘𝑓 is
referred to 𝑔’’. We denote ≻ and ∼ the strict and weak part of ≿. A
unctional 𝐼 ∶  → R represents ≿ if for all 𝑓, 𝑔 ∈  , 𝑓 ≿ 𝑔 if and only
f 𝐼(𝑓 ) ≥ 𝐼(𝑔).

. Main results

This section contains our two main results. The first one, Theorem 2,
haracterizes mathematically the CPT functional. The second result,
heorem 5, studies which behavioral axioms a preference relation
hould satisfy in order to be represented by a CPT functional.

.1. The CPT functional

We start with a seminal theorem of Schmeidler (1986) who provided
characterization of the Choquet functional. Before presenting the

esult we recall that a functional 𝐼 ∶  → R is monotonic if 𝑓 ≥ 𝑔 ⇒
(𝑓 ) ≥ 𝐼(𝑔), where 𝑓 ≥ 𝑔 means 𝑓 (𝑠) ≥ 𝑔(𝑠) for all 𝑠 ∈ 𝑆. Moreover 𝐼
atisfies comonotonic additivity if, whenever 𝑓 and 𝑔 are comonotonic,
hen 𝐼(𝑓 + 𝑔) = 𝐼(𝑓 ) + 𝐼(𝑔).

heorem 1 (Schmeidler (1986)). Let 𝐼 ∶  → R be a given functional
ith 𝐼(1𝑆 ) = 1. Then the following are equivalent.

(i) (𝑎) 𝐼 is monotonic; (𝑏) 𝐼 satisfies comonotonic additivity.
(ii) 𝐼 is a Choquet integral.

The CPT functional generalizes the Choquet functional by relax-
ng comonotonic additivity. More specifically, comonotonic additivity
ill be retained only for comonotonic acts of the same sign and

or (comonotonic) acts of opposite sign with disjoint supports. The
ollowing is our first main result.

heorem 2. Let 𝐼 ∶  → R be a given functional satisfying 𝐼(1𝑆 ) = 1
nd 𝐼(−1𝑆 ) ≠ 0. Then the following are equivalent.

(i) (𝑎) 𝐼 is monotonic; (𝑏) 𝐼 satisfies comonotonic additivity on + and
− and for acts 𝑓, 𝑔 of opposite sign such that 𝑠𝑢𝑝𝑝(𝑓 ) ∩ 𝑠𝑢𝑝𝑝(𝑔) = ∅.

(ii) 𝐼 is a CPT functional.

Consider item (𝑖) of both Theorem 1 and Theorem 2. Note that part
(b) of Theorem 1 implies (b) of Theorem 2, as acts with opposite sign
and disjoint supports are comonotonic. This relaxation not only charac-
terizes a functional that is more general than the Choquet integral, but
it also gives some important insights from a behavioral point of view.

Recall that comonotonic additivity is a weakening of full-fledged
additivity, a property that would force the functional 𝐼 to be linear, and
hence an expectation. The behavioral intuition behind comonotonic
additivity is that adding two comonotonic acts does not permit possible
42

hedging against choices of nature.
Relaxing comonotonic additivity allows us to uncover more so-
histicated attitudes towards uncertainty and more subtle forms of
edging. The first remarkable property of the CPT functional is that it
ifferentiates agents’ behavior in the domain of gains (i.e. +) from the
ne in the domain of losses (i.e. −). The outcome for which behavior

changes, namely the monetary outcome 0, is called the reference point.2
Comonotonic additivity is preserved whenever acts under considera-
tions are both above or both below the reference point. Comonotonic
additivity over + and − weakens a condition already well known
in the literature called cosigned independence. Two acts 𝑓, 𝑔 ∈  are
sign-comonotonic or simply cosigned if they are comonotonic and there
exists no 𝑠 ∈ 𝑆 such that 𝑓 (𝑠) > 0 and 𝑔(𝑠) < 0, see Wakker and Tversky
(1993) and Trautmann and Wakker (2018).

One of the main contributions of the present paper lies in the
second comonotonic additivity requirement that characterizes the 𝐶𝑃𝑇
functional, namely 𝑓, 𝑔 of opposite sign such that 𝑠𝑢𝑝𝑝(𝑓 ) ∩ 𝑠𝑢𝑝𝑝(𝑔) = ∅
mplies 𝐶𝑃𝑇 (𝑓 + 𝑔) = 𝐶𝑃𝑇 (𝑓 ) +𝐶𝑃𝑇 (𝑔). This means that comonotonic
dditivity can fail for comonotonic acts 𝑓 and 𝑔 of opposite sign
uch that 𝑠𝑢𝑝𝑝(𝑓 ) ∩ 𝑠𝑢𝑝𝑝(𝑔) ≠ ∅. The behavioral intuition behind this
equirement is that adding the positive and negative parts of two acts
an provide a hedge against possible losses even when acts under
onsideration are comonotonic. We call this property gain–loss hedging.3
his hedging possibility is not considered, for instance, in the Choquet
odel, where the only way to hedge is to add two non-comonotonic

cts. The following example provides more details for the particular
ase in which CPT reduces to a Šipoš integral, i.e. 𝜆 = 1 and 𝑣+ = 𝑣−.

xample 1. Let 𝑆 = {𝑠1, 𝑠2, 𝑠3} and consider a CPT functional with
= 1 and 𝑣 = 𝑣+ = 𝑣− (i.e. a Šipoš integral). Let 𝑣 be defined as

𝐴 𝑆 ∅ 𝑠1 𝑠2 𝑠3 𝑠1 ∪ 𝑠2 𝑠2 ∪ 𝑠3 𝑠1 ∪ 𝑠3
𝑣 1 0 2

3
1
3 0 2

3
2
3 1

Consider now the following acts on 𝑆.

𝑠1 𝑠2 𝑠3
𝑓 3 4 4
𝑔 0 11 0
ℎ −3 0 −1
−ℎ 3 0 1
𝑓 + ℎ 0 4 3
𝑔 + ℎ −3 11 −1

Acts 𝑓, 𝑔, ℎ are comonotonic, but 𝑠𝑢𝑝𝑝(𝑔) ∩ 𝑠𝑢𝑝𝑝(ℎ) = ∅ while 𝑠𝑢𝑝𝑝(𝑓 ) ∩
𝑢𝑝𝑝(ℎ) ≠ ∅. Let ≿�̌� be the preference relation induced by the �̌�
unctional, i.e. 𝑓 ≿�̌� 𝑔 ⇔ �̌�(𝑓 ) ≥ �̌�(𝑔) and ≿𝐶 the one induced by
he 𝐶 functional (both functionals �̌� and 𝐶 are defined in Section 2).

e have
̌(𝑓 ) = 𝐶(𝑓 ) =3 + (4 − 3) 2

3
= 11

3
,

�̌�(𝑔) = 𝐶(𝑔) =0 + (11 − 0) 1
3
= 11

3
,

and therefore 𝑓 ∼�̌� 𝑔 and 𝑓 ∼𝐶 𝑔. Moreover since ℎ is comonotonic
ith 𝑓 and 𝑔, by comonotonic additivity 𝑓+ℎ ∼𝐶 𝑔+ℎ (one can actually
erify that 𝐶(𝑓 + ℎ) = 𝐶(𝑓 ) + 𝐶(ℎ) = 7

3 = 𝐶(𝑔) + 𝐶(ℎ) = 𝐶(𝑔 + ℎ)).
However, while 𝑔 + ℎ yields a negative amount of money in states 𝑠1
and 𝑠3, we can notice that 𝑓 + ℎ ≥ 0, as gains balance losses since
𝑢𝑝𝑝(𝑓 ) ∩ 𝑠𝑢𝑝𝑝(ℎ) ≠ ∅. This intuition is captured by the preference
elation induced by the Šipoš integral as

̌(𝑓 + ℎ) =0 + (3 − 0) 2
3
+ (4 − 3) 1

3
= 7

3
,

2 In this paper, the reference point is exogenously given and it is normalized
o 0 for convenience (we could have chosen any other reference point 𝑟 ∈
). Schmidt and Zank (2012) provide axioms to make the reference point
ndogenous.

3 We thank Peter Wakker for suggesting this terminology.
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�̌�(𝑔 + ℎ) =𝐶(𝑔) − 𝐶(−ℎ) = 11
3

− (0 + (1 − 0)1 + (3 − 1) 2
3
) = 4

3
,

nd therefore 𝑓 + ℎ ≻�̌� 𝑔 + ℎ.

Example 1 shows that gain–loss hedging is an interesting behavioral
eature of CPT and of Šipoš integrals. Adding positive and negative acts
ith supports that are not disjoint, can provide a hedge even when the
cts involved are comonotonic. This happens because gains compensate
osses. In the next section we provide a new behavioral foundation of
PT taking this observation as a starting point.

Example 1 shows that preferences represented by Šipoš integrals
re rich enough to entail gain–loss hedging behaviors. It is therefore
nteresting to mathematically characterize Sipoš integrals. Theorem 3
hows that a symmetric condition pins down a CPT functional as a Šipoš
ntegral.

heorem 3. A CPT functional is a Šipoš integral if and only if 𝐶𝑃𝑇 (−𝑓 ) =
−𝐶𝑃𝑇 (𝑓 ) for all 𝑓 ∈  .

Theorem 3 says that CPT reduces to a Šipoš integral if and only if
the condition 𝐶𝑃𝑇 (−𝑓 ) = −𝐶𝑃𝑇 (𝑓 ) for all 𝑓 ∈  is satisfied. This is an
interesting result as such condition is a strong one. As an example, if 𝐶
is a Choquet functional then 𝐶(−𝑓 ) = −𝐶(𝑓 ) for all 𝑓 ∈  if and only
if the capacity 𝑣 equals its conjugate �̂�, and therefore it is additive on
events {𝐴,𝐴𝑐}.

3.2. A behavioral characterization of CPT

In this section we provide a preference axiomatization of CPT. We
recall that a preference relation ≿ over  is a complete and transitive
binary relation with non-empty strict part.

The first axiom is a continuity axiom.

A.1 Continuity. The sets {𝛼 ∈ R|𝛼1𝑆 ≿ 𝑓} and {𝛼 ∈ R|𝑓 ≿ 𝛼1𝑆} are
closed for all 𝑓 ∈  .

Note that the axiom requires only to compare acts with constants.
This dispenses us to formulate topological assumptions on the set of
acts  .

The second axiom is a monotonicity property.

A.2 Monotonicity. Let 𝑓, 𝑔 ∈  be such that 𝑓 ≥ 𝑔. Then 𝑓 ≿ 𝑔.
Consider now the well known comonotonic independence axiom

( Chateauneuf (1994), Schmeidler (1989)). It says that if two acts 𝑓
and 𝑔 are indifferent to each other, then adding a comonotonic act ℎ to
both of them does not change the DM’s preferences. The idea behind
this condition is that adding comonotonic acts does not provide any
possible hedge against uncertainty.

A.C Comonotonic Independence. Let 𝑓, 𝑔, ℎ ∈  be such that ℎ is comono-
tonic with 𝑓 and with 𝑔. Then 𝑓 ∼ 𝑔 implies 𝑓 + ℎ ∼ 𝑔 + ℎ.

Preferences satisfying A.1, A.2 and A.C are represented by a Choquet
integral. We present this result in the next proposition.

Theorem 4 (Chateauneuf (1994), Schmeidler (1989)). Let ≿ be a prefer-
ence relation over  . Then the following are equivalent.

(i) ≿ satisfies A.1, A.2 and A.C.
(ii) There exists a (unique) capacity 𝑣 such that ≿ is represented by a

Choquet functional.

However, as Example 1 shows, Comonotonic Independence may
be too strong as it does not take into account (gain–loss) hedging
possibilities that arise adding positive and negative acts with non-
disjoint supports. The following two axioms are at the heart of our be-
havioral characterization, and generalize Comonotonic Independence
in two directions. First, Axiom A.3 allows for different attitudes to-
wards uncertainty in the domain of gains and in the domain of losses.
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Second, Axiom A.4(𝜆) takes into account possible gain–loss hedging
opportunities that arise in situations like the one of Example 1.

A.3 Comonotonic Independence for Gains and Losses. Let 𝑓, 𝑔, ℎ ∈ +(−)

be such that ℎ is comonotonic with 𝑓 and 𝑔. Then 𝑓 ∼ 𝑔 implies
+ ℎ ∼ 𝑔 + ℎ.

.4(𝜆) 𝜆-Disjoint Independence. There exists 𝜆 > 0 such that for all 𝑓 ∈ +

nd 𝑔 ∈ − such that 𝑠𝑢𝑝𝑝(𝑓 ) ∩ 𝑠𝑢𝑝𝑝(𝑔) = ∅ and such that 𝑓 ∼ 𝛼1𝑆 and
∼ 𝛽1𝑆

1. if 𝛼 + 𝜆𝛽 ≥ 0 then 𝑓 + 𝑔 ∼ (𝛼 + 𝜆𝛽)1𝑆 ;
2. if 𝛼 + 𝜆𝛽 < 0 then 𝑓 + 𝑔 ∼

(

𝛼+𝜆𝛽
𝜆

)

1𝑆 .

Axiom A.4(𝜆) represents the main behavioral novelty. To better
understand it, note that it is implied by the following (stronger) axiom.

A.4∗ Disjoint Independence. For all 𝑓 ∈ + and 𝑔 ∈ − such that
𝑠𝑢𝑝𝑝(𝑓 ) ∩ 𝑠𝑢𝑝𝑝(𝑔) = ∅ and such that 𝑓 ∼ 𝛼1𝑆 and 𝑔 ∼ 𝛽1𝑆 , one has
+ 𝑔 ∼ (𝛼 + 𝛽)1𝑆 .

It is easy to see that A.4∗ follows from A.4(𝜆) imposing 𝜆 = 1.
xiom A.4∗ is inspired by the gain–loss hedging property introduced

n Section 3.1. Take any two acts with disjoint supports 𝑓 and 𝑔 and
heir correspondent constant equivalents 𝛼, 𝛽 ∈ R. As explained in
xample 1, when acts have disjoint supports a DM cannot hedge gain
nd losses by adding them up. Therefore only in this case we let the sum
f the acts 𝑓+𝑔 to be evaluated as the sum of their constant equivalents.

In the general case, we can have 𝜆 ≠ 1 and in this case A.4(𝜆) says
hat the constant equivalent of 𝑓 + 𝑔 depends on the sign of 𝛼 + 𝜆𝛽.
he interpretation for the case of loss-aversion, 𝜆 > 1, is the following.
he DM outweighs losses by a factor of 𝜆 and considers 𝜆𝛽 instead of 𝛽
lone. If 𝛼 + 𝜆𝛽 > 0 then the DM feels ‘‘overall in the domain of gains’’
nd the certainty equivalent of 𝑓 + 𝑔 is positive and such that 𝛼 > 0
s balanced by 𝜆𝛽 < 𝛽 < 0, i.e. the certainty equivalent 𝛽 of losses is
utweighed by a factor of 𝜆. If 𝛼 + 𝜆𝛽 < 0 then the DM feels ‘‘overall in
he domain of losses’’ and in this case the certainty equivalent of 𝑓 + 𝑔
s negative and equal to 𝛽 < 0 plus 𝛼

𝜆 > 0, i.e. the certainty equivalent
𝛼 of the positive part decreased by a factor of 𝜆 (since 𝛼

𝜆 < 𝛼).4
The descriptive validity of Axiom A.4(𝜆) can be easily verified. First

take 𝑓 ∈ + and 𝑔 ∈ − such that 𝑠𝑢𝑝𝑝(𝑓 ) ∩ 𝑠𝑢𝑝𝑝(𝑔) = ∅, second ask
he certainty equivalents 𝛼, 𝛽 and 𝛾 of 𝑓 , 𝑔 and 𝑓 + 𝑔 respectively. If
= 𝛼+ 𝛽, there is no loss-aversion or seeking. If 𝛾 ≠ 𝛼+ 𝛽, then if 𝛾 > 0
e have 𝜆 = 𝛾−𝛼

𝛽 and if 𝛾 < 0 we have 𝜆 = 𝛼
𝛾−𝛽 . To give a concrete

example, suppose that 𝑆 = {𝑠1, 𝑠2}, 𝑓 = (10, 0) and 𝑔 = (0,−8) so that
+ 𝑔 = (10,−8) and suppose that a DM has the following certainty

quivalents 𝑓 ∼ 41𝑆 , 𝑔 ∼ −31𝑆 and 𝑓 + 𝑔 ∼ −1𝑆 . Since the certainty
quivalent of 𝑓 +𝑔 is negative, Axiom A.4(𝜆) implies that the coefficient
f loss aversion is 𝜆 = 4

−1+3 = 2.
Note that in A.4(𝜆), 𝜆 is unique and does not depend on the specific

cts 𝑓 , 𝑔. This can be used to falsify our axiom. In fact the coefficient 𝜆
licited for any two other acts 𝑓 ′ and 𝑔′ must coincide with 𝜆 = 2 found

with acts 𝑓 and 𝑔 above. If one is able to find a couple of acts, together
with their certainty equivalents, implying another 𝜆, then A.4(𝜆) does
not hold.

There is lively debate on whether loss-aversion is a real phe-
nomenon or not, with results on both sides. See for instance Gal and
Rucker (2018) and Gächter et al. (2021). We hope therefore that A.4(𝜆)

ould be helpful to elicit loss-aversion in a setting in which individuals’

4 Note that Axiom A.4(𝜆) could be interpreted as a cardinal restriction on
he strength of preferences for gains versus losses. In a recent paper, Hartmann
2023) provided an axiomatization of the 𝛼-Maxmin Expected Utility model

using axioms that serve the same purpose to A.4(𝜆). Since he works within
the F.J. and Aumann (1963) (AA) framework, it is challenging to formally
compare our axiom with those he proposed. However, his approach may be
combined with the concept of gain–loss hedging to give an axiomatization of

CPT within the AA framework.
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preferences are represented by the CPT functional with piece-wise
constant marginal utility.

When A.C is replaced by A.3 and A.4(𝜆), we obtain a characterization
f the CPT functional. The following is our second main result.

heorem 5. Let ≿ be a preference relation over  . Then the following are
equivalent.

(i) ≿ satisfies A.1, A.2, A.3 and A.4(𝜆).
(ii) There exist two (unique) capacities 𝑣+, 𝑣− and a real number 𝜆 > 0

such that ≿ is represented by a CPT functional.

Note that the coefficient 𝜆 appearing in item (𝑖) and (𝑖𝑖) is the
same. Moreover, it is easy to see that if we replace A.4(𝜆) with A.4∗ in
Theorem 5, we obtain a CPT functional with 𝜆 = 1, i.e. loss-neutrality.
Finally, note that the uniqueness of 𝜆 comes from the definition of
Axiom A.4(𝜆).

3.3. Attitude towards uncertainty

As we already said above, a remarkable property of CPT is that
(unlike the Choquet functional) it allows to disentangle DMs’ attitude
towards uncertainty in the domain of gains from the one in the domain
of losses. This is made possible since an act is evaluated through the
sum of two Choquet integrals with respect to a capacity 𝑣+ for gains,
and a different one 𝑣− for losses.

Experimental evidence shows that DMs are uncertainty averse for
ains and uncertainty seeking for losses. Loosely speaking, uncertainty
version (seeking) means that agents prefer situations in which ob-
ective probabilities of events are (not) available. In our framework,
bjective probabilities are not there at all. Therefore an act is not
ncertain only if it is a constant act. Intuitively, in our purely subjective
etting, an uncertainty averse (seeking) DM would prefer acts that are
‘as close (far) as possible’’ to constant acts. We capture this idea with
he two following axioms.

A.3’ Let 𝑓, 𝑔, ℎ ∈ + such that ℎ is comonotonic with 𝑔. Then
∼ 𝑔 ⇒ 𝑓 + ℎ ≿ 𝑔 + ℎ.
A.3’’ Let 𝑓, 𝑔, ℎ ∈ − such that ℎ is comonotonic with 𝑓 . Then

∼ 𝑔 ⇒ 𝑓 + ℎ ≿ 𝑔 + ℎ.
Axiom A.3’ captures the intuition that DMs are uncertainty averse

n the domain of gains +. Consider three acts 𝑓, 𝑔, ℎ ∈ + such that
∼ 𝑔 and ℎ is comonotonic with 𝑔. Then adding (the potentially non-

omonotone act) ℎ to 𝑓 increases the appreciation of 𝑓 since ℎ may by
hedge against 𝑓 , while at the same time it decreases the appreciation
f 𝑔 since it may increase uncertainty. To exemplify, let 𝐴 ∈  and
onsider 𝑓 = 10 ⋅1𝐴+5 ⋅1𝐴𝑐 , 𝑔 = 7 ⋅1𝑆 with 𝑓 ∼ 𝑔 and ℎ = 0 ⋅1𝐴+5 ⋅1𝐴𝑐 .
hen 𝑓 + ℎ = 10 ⋅ 1𝑆 is a constant act while 𝑔 + ℎ = 7 ⋅ 1𝐴 + 12 ⋅ 1𝐴𝑐

s now uncertain (while we started with a constant act 𝑔). A DM who
islikes uncertainty would clearly prefer 𝑓 +ℎ to 𝑔+ℎ. Axiom A.3’’ can
e interpreted similarly, but in this case the DM is willing to increase
he perceived uncertainty. Notice that similar conditions were proposed
y Chateauneuf (1994), see also Wakker (1990).

The following theorem shows that if a DM is uncertainty averse for
ains and uncertainty seeking for losses then the capacities appearing
n the CPT functional are both convex.

heorem 6. Let ≿ be a preference relation over  . Then the following are
equivalent.

(i) ≿ satisfies A.1, A.2, A.3’, A.3’’, and A.4(𝜆).
(ii) There exist two (unique) convex capacities 𝑣+, 𝑣− and 𝜆 > 0, such

that ≿ is represented by a CPT functional.

Note that the CPT functional can be rewritten (using Lemma 1 in
he Appendix) as follows

𝑃𝑇 (𝑓 ) = 𝑓+𝑑𝑣+ + −𝜆𝑓−𝑑�̂�−. (3.1)
44

∫ ∫
If this formulation is used, then Theorem 6 implies that the conjugate
capacity �̂�− is concave.

We conclude this section providing a testable axiom that charac-
terizes symmetric attitudes around the reference point with respect to
uncertainty. An interesting question is in fact to understand when one
has 𝑣− = 𝑣+ in the CPT functional.5 Note that if 𝜆 = 1 Theorem 3 applies
and one gets a Šipoš integral. Consider the following axiom.

A.5 Gain–Loss Symmetry. Let 𝑓 ∈  and 𝛼 ∈ R. Then 𝑓 ∼ 𝛼1𝑆 if and
nly if −𝑓 ∼ −𝛼1𝑆 .

Axiom A.5 says that if a DM is indifferent between an (uncertain)
ct 𝑓 and a sure amount 𝛼, then she should stay indifferent between −𝑓
nd −𝛼. The intuition is that the DM sees 𝑓 and −𝑓 as symmetric with
espect to the reference point 0, and therefore evaluates them through
he symmetric sure amounts 𝛼 and −𝛼. The following theorem provides
behavioral characterization of the Šipoš integral.

heorem 7. Let ≿ be a preference relation over  . Then the following are
quivalent.

(i) ≿ satisfies A.1, A.2, A.3, A.4(𝜆) and A.5.
(ii) There exists a (unique) capacity 𝑣 such that ≿ is represented by the

Šipoš integral.

. Conclusion

We conducted an axiomatic analysis of CPT with piece-wise lin-
ar utility. This allowed us to focus on (sign-dependent) attitudes
owards uncertainty. Initially, we mathematically characterized the
PT functional by weakening the comonotonic additivity property
f the Choquet integral. Additionally, we provided conditions under
hich CPT reduces to the Šipoš integral. Subsequently, we offered an
xiomatic characterization of CPT, with a primary innovation being
he introduction of a gain–loss hedging property. Furthermore, we
ntroduced an axiom that offers a way to easily elicit the coefficient
f loss-aversion, in case of piece-wise linear utility. Finally, we charac-
erized uncertainty aversion for losses and uncertainty loving for gains.
otably, we demonstrated that these attitudes exhibit symmetry with

espect to the reference point if and only if CPT is a Šipoš integral.
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ppendix A

We begin with two preparatory Lemmas. The proofs are given for
ake of completeness.

emma 1. Let �̂�(𝐴) = 1 − 𝑣(𝐴𝑐 ) and 𝑓 ∈ + or 𝑓 ∈ −. Then
∫ 𝑓𝑑𝑣 = ∫ −𝑓𝑑�̂�.

5 Or, equivalently if one is using formulation (3.1), when one gets 𝑣− = �̂�+.
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Proof. Let 𝑓 ∈ +, then one has

∫ 𝑓𝑑𝑣 = −∫

∞

0
𝑣(𝑠 ∈ 𝑆|𝑓 (𝑠) ≥ 𝑡)𝑑𝑡

= −∫

∞

0
[1 − �̂�(𝑠 ∈ 𝑆|𝑓 (𝑠) < 𝑡)]𝑑𝑡

= −∫

−∞

0
[1 − �̂�(𝑠 ∈ 𝑆| − 𝑓 (𝑠) > 𝑢)](−𝑑𝑢)

= ∫

0

−∞
[�̂�(𝑠 ∈ 𝑆| − 𝑓 (𝑠) > 𝑢) − 1]𝑑𝑢

= ∫ −𝑓𝑑�̂�.

Where the last equality follows from the fact that the Choquet integral
can be defined equivalently with strict or weak inequalities, see for
instance Proposition 4.8 in Marinacci and Montrucchio (2004). The
case 𝑓 ∈ − can be treated similarly. □

Lemma 2. Let 𝑣 be a capacity and �̂� its conjugate. Then the following
holds:

• �̌�(𝑓 ) = ∫ 𝑓+𝑑𝑣 + ∫ −𝑓−𝑑�̂�;
• 𝐶(𝑓 ) = ∫ 𝑓+𝑑𝑣 + ∫ −𝑓−𝑑𝑣 = ∫ 𝑓+𝑑𝑣 − ∫ 𝑓−𝑑�̂�.

Proof. To prove the first point we just need to apply Lemma 1. In
fact noticing that 𝑓− ∈ + we have �̌�(𝑓 ) = ∫ 𝑓+𝑑𝑣 − ∫ 𝑓−𝑑𝑣 =
∫ 𝑓+𝑑𝑣 + ∫ −𝑓−𝑑�̂�.

As for the second point, note that 𝑓 = 𝑓+ + (−𝑓−) and that 𝑓+

and −𝑓− are comonotonic. Then by the comonotonic additivity of the
Choquet integral proved in Theorem 1, we have

∫ 𝑓𝑑𝑣 = ∫ 𝑓+ + (−𝑓−)𝑑𝑣 = ∫ 𝑓+𝑑𝑣 + ∫ −𝑓−𝑑𝑣.

Note that by Lemma 1 one can also write ∫ 𝑓𝑑𝑣 = ∫ 𝑓+𝑑𝑣−∫ 𝑓−𝑑�̂�. □

Proof of Theorem 2. (𝑖) ⇒ (𝑖𝑖). We start with an auxiliary Lemma.

Lemma 3. For all 𝛼 > 0, for all 𝑓 ∈ + ∪ −, 𝐼(𝛼𝑓 ) = 𝛼𝐼(𝑓 ). Moreover
for 𝛼 > 0 and 𝑓 ∈ +, 𝐼(𝑓 + 𝛼1𝑆 ) = 𝐼(𝑓 ) + 𝛼.

Proof of Lemma 3. The proof is standard. □

Let 𝑣+(𝐴) = 𝐼(1𝐴), then doing the same proof as Schmeidler (1986)
one can show that for all 𝑓 ∈ +, 𝐼(𝑓 ) = ∫ 𝑓𝑑𝑣+. Now let 𝜆 ∶=
−𝐼(−1𝑆 ). By comonotonic additivity of 𝐼 , 𝐼(0) = 𝐼(0 + 0) = 𝐼(0) + 𝐼(0),
and therefore 𝐼(0) = 0. By monotonicity of 𝐼 , 𝐼(−1𝑆 ) ≤ 𝐼(0) = 0. Since
𝐼(−1𝑆 ) ≠ 0, we have that −𝐼(−1𝑆 ) = 𝜆 > 0. Define for all 𝐴 ∈ ,

𝑣−(𝐴) = −
𝐼(−1𝐴)

𝜆
.

We have 𝑣−(∅) = 0 and 𝑣−(𝑆) = 1. Take 𝐴 ⊆ 𝐵 so that −1𝐴 ≥ −1𝐵 .
Since 𝐼 is monotonic, 𝐼(−1𝐴) ≥ 𝐼(−1𝐵) and therefore 𝑣−(𝐴) ≤ 𝑣−(𝐵).
This show that 𝑣− is a capacity. We will show that for all 𝑓 ∈ −, 𝑓
simple, 𝐼(𝑓 ) = − ∫ 𝜆𝑓−𝑑𝑣−. Let 𝑓 ∈ − be defined as

𝑓 = 𝑥11𝐴1
+⋯ + 𝑥𝑛1𝐴𝑛

,

where {𝐴1,… , 𝐴𝑛} is a partition of 𝑆 and 𝑥1 ≤ ⋯ ≤ 𝑥𝑛 ≤ 0. Note that
we can rewrite 𝑓 as

𝑓 = (0 − 𝑥𝑛)(−1𝑆 ) + (𝑥𝑛 − 𝑥𝑛−1)(−1𝐴𝑛−1∪⋯∪𝐴1
) +…

+ (𝑥3 − 𝑥2)(−1𝐴2∪𝐴1
) + (𝑥2 − 𝑥1)(−1𝐴1

).

Define

ℎ𝑖 = (𝑥𝑖+1 − 𝑥𝑖)(−1𝐴𝑖∪⋯∪𝐴1
)

with the convention that 𝑥𝑛+1 = 0. We have that

𝑓 =
𝑛
∑

ℎ𝑖.
45

𝑖=1
We show now that ℎ𝑖 is comonotone with ∑𝑛
𝑘=𝑖+1 ℎ𝑘. Consider 𝑠, 𝑡 ∈

𝑆 such that 𝑠 ∈ 𝐴𝑖 ∪⋯ ∪ 𝐴1 and 𝑡 ∈ (𝐴𝑖 ∪⋯ ∪ 𝐴1)𝑐 , suppose 𝑡 ∈ 𝐴𝑙 for
𝑙 > 𝑖. Then ℎ𝑖(𝑠) − ℎ𝑖(𝑡) = 𝑥𝑖 − 𝑥𝑖+1 ≤ 0 and ∑𝑛

𝑘=𝑖+1 ℎ𝑘(𝑠) −
∑𝑛

𝑘=𝑖+1 ℎ𝑘(𝑡) =
𝑖 − 𝑥𝑙 ≤ 0, hence (ℎ𝑖(𝑠) − ℎ𝑖(𝑡))

(
∑𝑛

𝑘=𝑖+1 ℎ𝑘(𝑠) −
∑𝑛

𝑘=𝑖+1 ℎ𝑘(𝑡)
)

≥ 0. If
, 𝑡 ∈ 𝐴𝑖 ∪ ⋯ ∪ 𝐴1 or 𝑠, 𝑡 ∈ (𝐴𝑖 ∪ ⋯ ∪ 𝐴1)𝑐 the previous product is 0.
his shows that the functions ℎ𝑖 and ∑𝑛

𝑘=𝑖+1 ℎ𝑘 are conomotone.
Since ℎ𝑖 and ∑𝑛

𝑘=𝑖+1 ℎ𝑘 are negative, by comonotonic additivity on
− we have

(𝑓 ) = 𝐼(ℎ1 +
𝑛
∑

𝑖=2
ℎ𝑖) = 𝐼(ℎ1) + 𝐼(ℎ2 +

𝑛
∑

𝑖=3
ℎ𝑖) = ⋯ =

𝑛
∑

𝑖=1
𝐼(ℎ𝑖).

Note that by Lemma 3 and by definition of 𝑣− we have

(ℎ𝑖) = (𝑥𝑖+1 − 𝑥𝑖)𝐼(−1𝐴1∪⋯∪𝐴𝑖
) = −𝜆(𝑥𝑖+1 − 𝑥𝑖)𝑣−(𝐴1 ∪⋯ ∪ 𝐴𝑖).

herefore

(𝑓 ) =
𝑛−1
∑

𝑖=1
𝐼(ℎ𝑖) + 𝐼(ℎ𝑛)

= −𝜆
𝑛−1
∑

𝑖=1
(𝑥𝑖+1 − 𝑥𝑖)𝑣−(𝐴1 ∪⋯ ∪ 𝐴𝑖) − 𝜆(𝑥𝑛+1 − 𝑥𝑛)

= −𝜆

[𝑛−1
∑

𝑖=1
(𝑥𝑖+1 − 𝑥𝑖)𝑣−(𝐴1 ∪⋯ ∪ 𝐴𝑖) − 𝑥𝑛

]

= −𝜆

[

−𝑥𝑛 +
𝑛−1
∑

𝑖=1
(−𝑥𝑖 − (−𝑥𝑖+1))𝑣−(𝐴1 ∪⋯ ∪ 𝐴𝑖)

]

= −𝜆∫ −𝑓𝑑𝑣−

= −∫ 𝜆𝑓−𝑑𝑣−.

Notice that every bounded function can be approximated by a
equence of step functions as in Schmeidler (1986). This shows that
or all 𝑓 ∈ −, 𝐼(𝑓 ) = − ∫ 𝜆𝑓𝑑𝑣−. Let now 𝑓 ∈  and notice that
= 𝑓+ + (−𝑓−) and moreover 𝑠𝑢𝑝𝑝(𝑓+) ∩ 𝑠𝑢𝑝𝑝(𝑓−) = ∅. Hence

(𝑓 ) = 𝐼(𝑓+ + (−𝑓−)) = 𝐼(𝑓+) + 𝐼(−𝑓−) = ∫ 𝑓+𝑑𝑣+ − ∫ 𝜆𝑓−𝑣−.

his show that 𝐼 is a CPT functional and concludes the ‘‘⇒’’ part of the
roof.
(𝑖𝑖) ⇒ (𝑖). We prove (a). Suppose 𝑓 ≥ 𝑔. Then 𝑓+ ≥ 𝑔+ and

− ≥ 𝑓−. It is well known that the Choquet integral is monotonic. Hence
(𝑓 ) = ∫ 𝑓+𝑑𝑣+ − ∫ 𝜆𝑓−𝑑𝑣− ≥ 𝑔+𝑑𝑣+ − ∫ 𝜆𝑔−𝑑𝑣− = 𝐼(𝑔).

We prove (b). Let 𝑓, 𝑔 comonotonic and such that 𝑓, 𝑔 ≥ 0 (the
ase 𝑓, 𝑔 ≤ 0 is similar). Then (𝑓 + 𝑔)+ = 𝑓 + 𝑔 = 𝑓+ + 𝑔+ and
𝑓 + 𝑔)− = 0 = 𝑓− = 𝑔−. Therefore

(𝑓 + 𝑔) = ∫ (𝑓 + 𝑔)+𝑑𝑣+ = ∫ 𝑓+𝑑𝑣+ + ∫ 𝑔+𝑑𝑣+ =

∫ 𝑓+𝑑𝑣+ − ∫ 𝜆𝑓−𝑑𝑣− + ∫ 𝑔+𝑑𝑣+ − ∫ 𝜆𝑔−𝑑𝑣−

= 𝐼(𝑓 ) + 𝐼(𝑔).

e prove part (b) of (𝑖𝑖). Let 𝑓 , 𝑔 be of opposite sign (for instance
≥ 0 and 𝑔 ≤ 0) and such that 𝑠𝑢𝑝𝑝(𝑓 ) ∩ 𝑠𝑢𝑝𝑝(𝑔) = ∅. Notice that

𝑓 + 𝑔)+ = 𝑓 = 𝑓+, (𝑓 + 𝑔)− = −𝑔 = 𝑔−, and 𝑓− = 0, 𝑔+ = 0. Therefore

(𝑓 + 𝑔) = ∫ (𝑓 + 𝑔)+𝑑𝑣+ − ∫ 𝜆(𝑓 + 𝑔)−𝑑𝑣−

= ∫ 𝑓+𝑑𝑣+ − ∫ 𝜆𝑔−𝑑𝑣− =

∫ 𝑓+𝑑𝑣+ − ∫ 𝜆𝑓−𝑑𝑣− + ∫ 𝑔+𝑑𝑣+ − ∫ 𝜆𝑔−𝑑𝑣−

= 𝐼(𝑓 ) + 𝐼(𝑔),

hich complete the proof of part (b). □

roof of Theorem 3. (𝑖) ⇒ (𝑖𝑖). Let 𝐶𝑃𝑇 be a Šipoš integral. Then
= 1 and 𝑣+ = 𝑣− and hence

𝑃𝑇 (−𝑓 ) = (−𝑓 )+𝑑𝑣 − (−𝑓 )−𝑑𝑣
∫ ∫
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A
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−

−

= ∫ 𝑓−𝑑𝑣 − ∫ 𝑓+𝑑𝑣 = −𝐶𝑃𝑇 (𝑓 ).

(𝑖𝑖) ⇒ (𝑖) Note that 𝜆 = 1 since −𝜆 = 𝐶𝑃𝑇 (−1𝑆 ) = −𝐶𝑃𝑇 (1𝑆 ) = −1. Let
𝐴 ∈  and consider 𝑓 = 1𝐴. Then

𝐶𝑃𝑇 (−𝑓 ) = 0 − ∫ 1𝐴𝑑𝑣− = −𝑣−(𝐴) and − 𝐶𝑃𝑇 (𝑓 )

= −∫ 1𝐴𝑑𝑣+ = −𝑣+(𝐴).

Therefore

𝐶𝑃𝑇 (−𝑓 ) = −𝐶𝑃𝑇 (𝑓 ) ⇔ 𝑣−(𝐴) = 𝑣+(𝐴).

Since this must be true for all 𝐴 ∈ , 𝑣− = 𝑣+ and the CPT functional
is a Šipoš integral. □

Proof of Theorem 5. (𝑖𝑖) ⇒ (𝑖). We only prove necessity of A.4(𝜆). Take
𝜆 > 0 of the CPT functional. Fix 𝑓 and 𝑔 s.t. 𝑓 ∈ + and 𝑔 ∈ − and
s.t. 𝑠𝑢𝑝𝑝(𝑓 )∩𝑠𝑢𝑝𝑝(𝑔) = ∅. Suppose 𝑓 ∼ 𝛼1𝑆 and 𝑔 ∼ 𝛽1𝑆 . Note that 𝛼 ≥ 0
and 𝛽 ≤ 0. Therefore

𝐶𝑃𝑇 (𝑓 ) = 𝐶𝑃𝑇 (𝛼1𝑆 ) ⇔ 𝐶𝑃𝑇 (𝑓 ) = 𝛼

𝐶𝑃𝑇 (𝑔) = 𝐶𝑃𝑇 (𝛽1𝑆 ) ⇔ 𝐶𝑃𝑇 (𝑔) = −𝜆∫ 𝛽−𝑑𝑣− = −𝜆(−𝛽) = 𝜆𝛽.

Moreover since 𝑓 and 𝑔 have opposite signs and have disjoint supports
we have

𝐶𝑃𝑇 (𝑓 + 𝑔) = 𝐶𝑃𝑇 (𝑓 ) + 𝐶𝑃𝑇 (𝑔) = 𝛼 + 𝜆𝛽.

Now, if 𝛼+𝜆𝛽 > 0, 𝐶𝑃𝑇 ((𝛼+𝜆𝛽)1𝑆 ) = 𝛼+𝜆𝛽, and since CPT represents ≿,
𝑓 + 𝑔 ∼ (𝛼 + 𝜆𝛽)1𝑆 . If 𝛼 + 𝜆𝛽 < 0, 𝐶𝑃𝑇

(

𝛼+𝜆𝛽
𝜆 1𝑆

)

= −𝜆 ∫
(

𝛼+𝜆𝛽
𝜆

)−
𝑑𝑣− =

−𝜆−𝛼−𝜆𝛽
𝜆 = 𝛼 + 𝜆𝛽. Therefore 𝑓 + 𝑔 ∼ 𝛼+𝜆𝛽

𝜆 1𝑆 .
(𝑖) ⇒ (𝑖𝑖). First, note that for all 𝑓 ∈ +, 𝑓 = 𝑓+ and for all

∈ −, 𝑓 = −𝑓−. By A.1 and A.2, using standard continuity arguments
connectedness of R), one can prove that for all 𝑓 ∈ + there exists a
nique 𝛼𝑓+ ≥ 0 s.t.
+ ∼ 𝛼𝑓+1𝑆 .

et 𝜆 > 0 be the one of Axiom A.4(𝜆). Then again by A.1 and A.2 for all
∈ − there exists a unique 𝛼−𝑓− ≤ 0 s.t.

𝑓− ∼
(𝛼−𝑓−

𝜆

)

1𝑆 .

efine 𝐼 ∶  → R as

𝐼(𝑓 ) = 𝐼(𝑓+) + 𝐼(−𝑓−),

where 𝐼(𝑓+) = 𝛼𝑓+ and 𝐼(−𝑓−) = 𝛼−𝑓− . Note that 𝑓+ ∼ 𝐼(𝑓+)1𝑆
and −𝑓− ∼

(

𝐼(−𝑓−)
𝜆

)

1𝑆 . Moreover 𝐼(1𝑆 ) = 1 and 𝐼(−1𝑆 ) = −𝜆 by
Monotonicity.

We will prove that 𝐼 satisfies the conditions of Theorem 2 and it is
therefore a CPT functional.

Step 1. Fix 𝑓 ∈  , then 𝐼(𝑓 ) ≥ 0 implies 𝑓 ∼ 𝐼(𝑓 )1𝑆 and 𝐼(𝑓 ) < 0
implies 𝑓 ∼ 𝐼(𝑓 )

𝜆 1𝑆 .

Proof. Let 𝑓 ∈  .

• Case 1: 𝐼(𝑓 ) ≥ 0. Note that 𝑓 = 𝑓+ + (−𝑓−) and by definition
𝑓+ ∼ 𝐼(𝑓+)1𝑆 and −𝑓− ∼ 𝐼(−𝑓−)

𝜆 1𝑆 . Moreover 𝐼(𝑓+) + 𝜆 𝐼(−𝑓−)
𝜆 =

𝐼(𝑓 ) ≥ 0, hence by the first part of A.4(𝜆) and by the definition of
𝐼(𝑓 )

𝑓 = 𝑓+ + (−𝑓−) ∼
(

𝐼(𝑓+) + 𝜆
𝐼(−𝑓−)

𝜆

)

1𝑆 = 𝐼(𝑓 )1𝑆 .

• Case 2: 𝐼(𝑓 ) < 0. Then reasoning as before and applying the
second part of A.4(𝜆) we get

𝑓 = 𝑓+ + (−𝑓−) ∼
⎛

⎜

⎜

𝐼(𝑓+) + 𝜆 𝐼(−𝑓−)
𝜆

𝜆

⎞

⎟

⎟

1𝑆
46

⎝ ⎠
=
(

𝐼(𝑓+) + 𝐼(−𝑓−)
𝜆

)

1𝑆 =
𝐼(𝑓 )
𝜆

1𝑆 . □

Step 2. 𝐼 is monotone.

Proof. Let 𝑓, 𝑔 ∈  be such that 𝑓 ≥ 𝑔. Then 𝑓+ ≥ 𝑔+ and −𝑓− ≥ −𝑔−.
Then by Monotonicity 𝑓+ ≿ 𝑔+ and −𝑓− ≿ −𝑔−. Then by Step 1
𝐼(𝑓+)1𝑆 ∼ 𝑓+ ≿ 𝑔+ ∼ 𝐼(𝑔+)1𝑆 and 𝐼(−𝑓−)

𝜆 1𝑆 ∼ −𝑓− ≿ −𝑔− ∼ 𝐼(−𝑔−)
𝜆 1𝑆 .

Monotonicity implies 𝐼(𝑓+) ≥ 𝐼(𝑔+) and 𝐼(−𝑓−) ≥ 𝐼(−𝑔−). Summing up
e obtain 𝐼(𝑓 ) ≥ 𝐼(𝑔). □

tep 3. 𝐼 satisfies comonotonic additivity over + and −.

roof. We prove comonotonic additivity over −, the proof for +

an be done in a similar way. Take 𝑓, 𝑔 ∈ − s.t. 𝑓 and 𝑔 are
omonotone. By Step 1, 𝑓 ∼ 𝐼(𝑓 )

𝜆 1𝑆 and 𝑔 ∼ 𝐼(𝑔)
𝜆 1𝑆 . Since constant acts

are comonotone with all other acts and 𝐼(𝑓 )
𝜆 , 𝐼(𝑔)𝜆 ≤ 0, by A.3 one gets

𝑓 + 𝑔 ∼ 𝐼(𝑓 )
𝜆 1𝑆 + 𝑔 and 𝑔 + 𝐼(𝑓 )

𝜆 1𝑆 ∼ 𝐼(𝑔)
𝜆 1𝑆 + 𝐼(𝑓 )

𝜆 1𝑆 . Since 𝑓 + 𝑔 ∈ −,
by Step 1 𝑓 + 𝑔 ∼ 𝐼(𝑓+𝑔)

𝜆 1𝑆 . Therefore 𝐼(𝑓+𝑔)
𝜆 1𝑆 ∼

(

𝐼(𝑓 )
𝜆 + 𝐼(𝑔)

𝜆

)

1𝑆 , and
Monotonicity implies 𝐼(𝑓 + 𝑔) = 𝐼(𝑓 ) + 𝐼(𝑔). □

tep 4. For all 𝑓 ∈ +(−) and 𝑔 ∈ −(+) s.t. 𝑠𝑢𝑝𝑝(𝑓 ) ∩ 𝑠𝑢𝑝𝑝(𝑔) = ∅,
(𝑓 + 𝑔) = 𝐼(𝑓 ) + 𝐼(𝑔).

roof. Fix 𝑓 ∈ + and 𝑔 ∈ − s.t. 𝑠𝑢𝑝𝑝(𝑓 ) ∩ 𝑠𝑢𝑝𝑝(𝑔) = ∅. Define
= 𝑓 + 𝑔 and note that ℎ+ = 𝑓 and −ℎ− = 𝑔. Therefore by definition

f 𝐼 , 𝐼(𝑓 + 𝑔) = 𝐼(ℎ) = 𝐼(ℎ+) + 𝐼(−ℎ−) = 𝐼(𝑓 ) + 𝐼(𝑔). □

tep 5. 𝐼 represents ≿ over  (i.e. 𝑓 ≿ 𝑔 ⇔ 𝐼(𝑓 ) ≥ 𝐼(𝑔)).

roof. Fix 𝑓, 𝑔 ∈  . We have to consider 4 cases.

• Case 1: 𝐼(𝑓 ), 𝐼(𝑔) ≥ 0. Using Step 1 and Monotonicity 𝐼(𝑓 )1𝑆 ∼
𝑓 ≿ 𝑔 ∼ 𝐼(𝑔)1𝑆 ⇔ 𝐼(𝑓 ) ≥ 𝐼(𝑔).

• Case 2: 𝐼(𝑓 ), 𝐼(𝑔) ≤ 0. Using Step 1 and Monotonicity 𝐼(𝑓 )
𝜆 1𝑆 ∼

𝑓 ≿ 𝑔 ∼ 𝐼(𝑔)
𝜆 1𝑆 ⇔ 𝐼(𝑓 ) ≥ 𝐼(𝑔), since 𝜆 > 0.

• Case 3: 𝐼(𝑓 ) ≥ 0 > 𝐼(𝑔). Using Step 1 and Monotonicity 𝐼(𝑓 )1𝑆 ∼
𝑓 ≿ 𝑔 ∼ 𝐼(𝑔)

𝜆 1𝑆 ⇔ 𝐼(𝑓 ) ≥ 𝐼(𝑔). Note that in this case we cannot
have 𝑔 ≿ 𝑓 .

• Case 4: 𝐼(𝑔) ≥ 0 > 𝐼(𝑓 ). This is the same as Case 3. □

Since 𝐼(1𝑆 ) = 1 and 𝐼(−1𝑆 ) = −𝜆, Steps 2, 3 and 4 prove that 𝐼
atisfies condition (𝑖) of Theorem 2 and therefore 𝐼 is a CPT functional
note that the coefficient of loss-aversion/loss-seeking is equal to 𝜆
ecause 𝐼(−1𝑆 ) = −𝜆). Moreover Step 5 shows that 𝐼 represents ≿.
herefore the proof is complete. □

roof of Theorem 6. (𝑖) ⇒ (𝑖𝑖). Note that A.3’ and A.3’’ imply A.3.
ence Theorem 5 applies and 𝐼 is represented by a CPT functional. It

s left to show that 𝑣+ and 𝑣− are convex. We only show convexity of
−. Fix 𝐴,𝐵 ∈  and note that 𝐶𝑃𝑇 (−1𝐴) = −𝜆𝑣−(𝐴) = 𝐶𝑃𝑇 (−𝑣−(𝐴)1𝑆 )
nd a similar statement holds for 𝐵 ∈ . Therefore −1𝐴 ∼ −𝑣−(𝐴)1𝑆
nd −1𝐵 ∼ −𝑣−(𝐵)1𝑆 . Since −1𝐵 is comonotonic with −𝑣−(𝐴)1𝑆 , by
.3’’ −𝑣−(𝐴)1𝑆 − 1𝐵 ≿ −1𝐴 − 1𝐵 . Moreover since −𝑣−(𝐴)1𝑆 is comono-

onic with both −1𝐵 and −𝑣−(𝐵)1𝑆 by A.3’’ we get −1𝐵 − 𝑣−(𝐴)1𝑆 ∼
𝑣−(𝐵)1𝑆 − 𝑣−(𝐴)1𝑆 . Therefore

𝑣−(𝐵)1𝑆 − 𝑣−(𝐴)1𝑆 ∼ −1𝐵 − 𝑣−(𝐴)1𝑆 ≿ −1𝐴 − 1𝐵 .

Note that −1𝐴 − 1𝐵 = −1𝐴∪𝐵 − 1𝐴∩𝐵 and since 1𝐴∪𝐵 and 1𝐴∩𝐵 are
comonotonic,

𝐶𝑃𝑇 (−1𝐴∪𝐵 − 1𝐴∩𝐵) = −∫ 𝜆(−1𝐴∪𝐵 − 1𝐴∩𝐵)−𝑑𝑣−

= −𝜆
(

∫ 1𝐴∪𝐵𝑑𝑣− + ∫ 1𝐴∩𝐵𝑑𝑣−
)

= −𝜆[𝑣−(𝐴 ∪ 𝐵) + 𝑣−(𝐴 ∩ 𝐵)].
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Therefore −𝜆[𝑣−(𝐴)+𝑣−(𝐵)] = 𝐶𝑃𝑇 (−𝑣−(𝐴)1𝑆−𝑣−(𝐵)1𝑆 ) ≥ 𝐶𝑃𝑇 (−1𝐴∪𝐵−
1𝐴∩𝐵) = −𝜆[𝑣−(𝐴 ∪ 𝐵) + 𝑣−(𝐴 ∩ 𝐵)] which implies 𝑣−(𝐴) + 𝑣−(𝐵) ≤
𝑣−(𝐴∪𝐵)+𝑣−(𝐴∩𝐵), i.e. 𝑣− is convex. (𝑖𝑖) ⇒ (𝑖). Left to the reader. □

Proof of Theorem 7. (𝑖) ⇒ (𝑖𝑖). Since ≿ satisfies A.1, A.2, A.3 and
A.4(𝜆), it can be represented by a CPT functional 𝐼 by Theorem 5. Hence
for all 𝑓 ∈  , 𝑓 ∼ 𝐼(𝑓 )1𝑆 and −𝑓 ∼ 𝐼(−𝑓 )1𝑆 . Notice that by A.5
one has also −𝑓 ∼ −𝐼(𝑓 )1𝑆 and hence A.2 implies 𝐼(−𝑓 ) = −𝐼(𝑓 ). By
Theorem 3, 𝐼 is a Šipoš integral. (𝑖𝑖) ⇒ (𝑖). Left to the reader. □
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