
The Journal of Systems and Software 216 (2024) 112141

A
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Flexible and reversible conversion between extensible records and
overloading constraints for ML✩

Alvise Spanò
Ca’ Foscari University of Venice, Italy

A R T I C L E I N F O

Keywords:
Functional languages
Extensible records
Overloading resolution
Ad-hoc polymorphism
Code reuse
Static dispatching

A B S T R A C T

Most ML-like functional languages provide records and overloading as unrelated features. Records not only
represent data structures, but are also used to implement dictionary passing, whereas overloading produces
type constraints that are basically dictionaries subject to compiler-driven dispatching. In this paper we explore
how records and overloading constraints can be converted one into the other, allowing the programmer to
switch between the two at a very reasonable cost in terms of syntactic overhead. To achieve this we introduce
two language constructs, namely inject and eject, performing a type-driven syntactic transformation. The
former literally injects constraints into the type and produces a function adding an extra record argument. The
latter does the opposite, ejecting a record argument from a function and turning fields into type constraints.
The conversion is reversible and can be restricted to a subset of symbols, granting additional control to the
programmer. Although what we call inject has already been proposed in literature, making it a language
operator and coupling it with its reverse counterpart represent a novel design. The goal is to allow the
programmer to switch from a dictionary-passing style to compiler-assisted constraint resolution, and vice versa,
enabling reuse between libraries that otherwise would not interoperate.
1. Introduction

In this paper we introduce a language design aimed at integrating
two programming practices that are typically considered orthogonal:
explicit dictionary passing and compiler-driven resolution of overload-
ing constraints. Dictionary passing in functional languages is typically
achieved through records. Records come in multiple flavors: ML-like
languages historically featured heavyweight records (Cardelli and Weg-
ner, 1985), i.e., product data types that must be explicitly defined
by the programmer, consisting of global label names and supporting
neither extensibility nor polymorphism. In the literature more power-
ful record systems have been proposed to overcome such limitations:
lightweight records require no annotations or declarations by the pro-
grammer, the shape of records is inferred from the program text and
labels can be reused across multiple record types. Extensible records
enhance this even further by adding extensibility and polymorphism,
either via subtyping (Cardelli and Mitchell, 1990; Cardelli, 1992; Jate-
gaonkar and Mitchell, 1993) or row types (Wand, 1987, 1991; Rémy,
1989). Language extensions implementing extensible records exist for
Haskell, OCaML and other MLs (Jones and Jones, 1999; Gaster and
Jones, 1996; Gaster, 1998).

Overloading, on the other hand, brings ad-hoc polymorphism to the
table (Kaes, 1988; Wadler and Blott, 1989). The most powerful form

✩ Editor: Lingxiao Jiang.
E-mail address: alvise.spano@unive.it.

of open-world context-dependent overloading is traditionally based on
type constraints, i.e. qualified types (Jones, 1992, 1995) representing
dictionaries of functions that are statically resolved and dispatched
by the compiler. Haskell and Scala provide notorious implementations
where overloadable symbols are grouped into global named collec-
tions called type classes (Hall et al., 1996; Jones et al., 1997) and
traits (Odersky et al., 2004; Odersky and Rompf, 2014) respectively.
Alternative overloading systems exist in the literature, such as System
CT (Camarão and Figueiredo, 1999; Camarão et al., 2004) and System
O (Odersky et al., 1995), where overloadable symbols are not grouped
into type classes, but are rather stand-alone names that can be indi-
vidually overloaded by the programmer. In such cases, type constraints
appear as a flat series of overloadable identifiers along with their types.
For our proposal, we favor this approach for a number of reasons that
will be motivated later in this paper. We refer to this form of type
constraint as fine-grained.

Extensible records and overloading rely on two distinct dispatching
mechanisms: dynamic dispatching is required to dispatch record fields
at runtime (Bruce et al., 1999), while static dispatching of overload
instances takes place at compile time (Wadler and Blott, 1989; Jones
et al., 1997). The two mechanisms are orthogonal, support different
forms of polymorphism and employ rather different coding styles. Such
vailable online 25 June 2024
164-1212/© 2024 The Author(s). Published by Elsevier Inc. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.jss.2024.112141
Received 20 February 2023; Received in revised form 22 March 2024; Accepted 16
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

June 2024

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:alvise.spano@unive.it
https://doi.org/10.1016/j.jss.2024.112141
https://doi.org/10.1016/j.jss.2024.112141
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112141&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

The Journal of Systems & Software 216 (2024) 112141A. Spanò

H
r

d
a

b
e
a
r
c

1

b
t
r
s

Fig. 1. Mixing manual dictionary-passing with constraint resolution can be problematic in Haskell. The snippet is hypothetical, as it shows a workaround that would require
askell to support local instances and local resolution. Notably, even if such language extensions were fully supported, a considerable amount of wrapper code would still be

equired.
a
c
i
𝑓
t

ifferences discourage reuse across the two, due to the significant
mount of code required for interoperation.

In this paper we propose a language design that enhances code reuse
etween these two styles, making records and overloading interoperate
asily from a programmer’s perspective. We achieve this by introducing

pair of language constructs that transform a function picking a
ecord argument into a constrained function that can be solved by the
ompiler, and the other way around.

.1. A problem of interoperation

Fig. 1 shows pseudo-Haskell code attempting to integrate two li-
raries using different styles. The code relies on language extensions
hat are not fully supported by the Haskell language and would be
equired for interoperation. The first library is based on records repre-
enting ring-like structures. It provides a function 𝚖𝚞𝚕𝚝𝚁 that multiplies

all elements in a list using the operators defined in the 𝚁𝚒𝚗𝚐 record
passed as argument. The second library is based on type classes repre-
senting additive semigroups. It provides a function 𝚜𝚞𝚖 that sums all
elements of a list using the overloadable symbols in the type class.

Function 𝚖𝚜𝚞𝚖𝚜 then attempts the integration of the two libraries.
It wants to multiply and then sum all elements in a list of lists using
a different 𝚁𝚒𝚗𝚐 each time. Library 1 can only multiply and Library
2 can only sum: co-operation is necessary across two different styles.
The problem is Library 1 uses a record-passing style, whereas Library 2
relies on the compile-time resolution of type constraints. In Haskell the
code in Fig. 1 cannot be written as it requires local instances and local
2

resolution of the type constraint produced by each 𝚜𝚞𝚖 call. Without
such extensions, the type constraint is propagated upwards, and that
leads to the constrained type 𝚖𝚜𝚞𝚖𝚜 ∶∶ 𝚂𝚎𝚖𝚒𝚐𝚛𝚘𝚞𝚙 𝑎 ⇒ [𝚁𝚒𝚗𝚐 𝑎] →
[[𝑎]] → [𝑎], meaning only one instance of 𝚂𝚎𝚖𝚒𝚐𝚛𝚘𝚞𝚙 is dispatched
statically for the whole function, rather than a different one for each
inner call to 𝚜𝚞𝚖 as originally intended.

It is interesting to point out, however, that even with the appro-
priate Haskell extensions, the problem of integrating records and type
classes would remain, due to the amount of wrapper code required to
make the two styles cooperate, as the snippet shows. Fig. 2 presents
the same scenario of Fig. 1 but it introduces our proposal for making
the two libraries interoperate, two language operators named 𝚒𝚗𝚓𝚎𝚌𝚝

and 𝚎𝚓𝚎𝚌𝚝. The former converts a constrained function into a function
picking an explicit record argument, and the latter does the opposite.
As it will turn out, in Haskell these conversions cause several complica-
tions that prevent 𝚒𝚗𝚓𝚎𝚌𝚝 and 𝚎𝚓𝚎𝚌𝚝 from being effectively added to the
language, hence the need to design a custom language that is tailored
to them.

1.2. Our proposal

We introduce a pair of unary operators, 𝚒𝚗𝚓𝚎𝚌𝚝 and 𝚎𝚓𝚎𝚌𝚝, that
re second-class citizens of the expression syntax. Intuitively, given a
onstrained value 𝑓 ∶ 𝜋 ⇒ 𝜏, where 𝜋 = { 𝑥1 ∶ 𝜏1; .. ; 𝑥𝑛 ∶ 𝜏𝑛 }
s a constraint set, then expression 𝚒𝚗𝚓𝚎𝚌𝚝 𝑓 ∶ 𝜋 → 𝜏 transforms

into an unconstrained function where 𝜋 is a new record argument
hat is isomorphic to the constraint set. This allows the programmer

The Journal of Systems & Software 216 (2024) 112141A. Spanò

w
𝚎

t
r

o
𝜏

t
d
c
m

Fig. 2. The snippet shows how to make two libraries based on different programming practices interoperate through a combined use of injection and ejection. Despite some
technical complications that arise in Haskell, mainly due to heavyweight records and monolithic type classes, the code gives an intuition of what the 𝚒𝚗𝚓𝚎𝚌𝚝 and 𝚎𝚓𝚎𝚌𝚝 operators
are capable of.
to perform explicit dictionary passing. We call this injection, because it
injects the constraint 𝜋 into the type by adding a new arrow. Existing
proposals in the literature call this operation instance arguments (De-
vriese and Piessens, 2011) and explicit dictionary application (Winant
and Devriese, 2018), as it somewhat reveals to the programmer the
underlying dictionary passing mechanism that was first introduced
by Kaes (1988), Wadler and Blott (1989) and implemented in Haskell
to pass instances to constrained functions.

We call ejection the reverse operation, as it ejects a record argument
out of an arrow type by consuming the domain and adding a new
constraint set. Let 𝑔 be the unconstrained function 𝚒𝚗𝚓𝚎𝚌𝚝 𝑓 ∶ 𝜋 → 𝜏,

ith 𝜋 = { 𝑥1 ∶ 𝜏1; .. ; 𝑥𝑛 ∶ 𝜏𝑛 } being a record type, then expression
𝚓𝚎𝚌𝚝 𝑔 ∶ 𝜋 ⇒ 𝜏 yields back to 𝑓 by erasing the record argument and
urning all fields into a new constraint set that is isomorphic to the
ecord argument.

Additionally, injection and ejection support restriction over a subset
f symbols, for example 𝚒𝚗𝚓𝚎𝚌𝚝 𝑥1 𝚒𝚗 𝑓 ∶ { 𝑥2 ∶ 𝜏2; .. ; 𝑥𝑛 ∶ 𝜏𝑛 } ⇒ { 𝑥1 ∶
1 } → 𝜏 and 𝚎𝚓𝚎𝚌𝚝 𝑥1 𝚒𝚗 𝑔 ∶ { 𝑥1 ∶ 𝜏1 } ⇒ { 𝑥2 ∶ 𝜏2; .. ; 𝑥𝑛 ∶ 𝜏𝑛 } → 𝜏.

This allows fine-grained manipulation of record fields and constraints.
Syntactically, 𝚒𝚗𝚓𝚎𝚌𝚝 and 𝚎𝚓𝚎𝚌𝚝 are first-class language operators,

thus supporting any form of expression as operands and are not limited
to operating on function names. Inject works on expressions of any type
as long as the constraint set is non-empty in the current context so
that it can be turned into a new record argument. Symmetrically, eject
requires the type of its expression operand to match an arrow type with
a record on the domain. This allows for mixed uses of the operators at
any nesting level within expressions, e.g. (fun x -> inject b in
(eject a b in (fun r -> r.a + r.b + x))) 3 { b = 4 } has type
{ 𝑎 ∶ 𝚒𝚗𝚝 } ⇒ 𝚒𝚗𝚝. Proposals in the literature including those men-
ioned above (Devriese and Piessens, 2011; Winant and Devriese, 2018)
o not support nesting at the syntactic level. Additionally, what we
all ejection represents a novelty on its own, introducing a reversible
echanism. To the best of our knowledge, this is unprecedented in
3

the literature, as it introduces a novel reversible constraint-to-record
conversion system that can be a valuable programming tool, enabling
new forms of code reuse by making the world of records and the world
of overloading communicate.

1.3. Contribution

Understanding the contribution of this paper requires an explicit
mention of where it collocates in such a crowded design space. Our
system relies on two underlying subsystems. The overloading subsys-
tem is a hybrid inspired by other overloading systems (Camarão and
Figueiredo, 1999; Jones et al., 1997), and integrates features that are
known in the literature with features that are novel to some extent,
such as local instances and local scoping of overloaded symbols. This
is not the focus of our contribution, though, and will be discussed in
Section 2.2.

The main contribution of this paper is the introduction of a flex-
ible way for converting records into overloading constraints (and the
other way around) through a pair of first-class language operators, the
already mentioned 𝚎𝚓𝚎𝚌𝚝 and 𝚒𝚗𝚓𝚎𝚌𝚝. Being novel language features,
this preliminary work is aimed at presenting a first formulation of
the system as an extension to the ML functional language. Section 3
explores some of its potential applications by examples, which include
(but are not limited to) enhancing the interoperability between libraries
or pre-existing code written in different styles. In Section 5 we provide
a formalization of our type system that wants to be as self-contained
as possible, covering all aspects of the proposed design, including the
details of the two underlying subsystems, namely records and overload-
ing. Injection and ejection are built on top of those and cannot live as
stand-alone features, since their purpose is to make the two subsystems
interoperate. The result is a layered and thick design for which we

provide a full type inference algorithm in Section 6, as a guidance for

The Journal of Systems & Software 216 (2024) 112141A. Spanò
potential implementations willing to introduce our operators in their
languages.

As a preliminary and introductory work, the paper presents a first
effort towards a full formalization of the system, sketching the most
relevant proofs in Section 6.2. A more comprehensive theoretical frame-
work including the proofs of soundness and coherence of the whole
system will be the target of a future publication further exploring the
injection and ejection and their implications.

1.4. Originality

With such a layered proposal, the originality of this work has to
be carefully outlined. Converting type constraints into explicit record
passing (which is what we call injection) has already been invented
and studied for Haskell (Winant and Devriese, 2018) and Adga (De-
vriese and Piessens, 2011), though with a rather different approach.
Our system reformulates that as a first-class language operator for an
extension of the ML functional language. A more in-depth comparison
is provided in the Related Works in Section 4.

Moreover, injection is only half of the picture. Its reverse counter-
part, ejection, is something novel in the literature and in programming
languages in general. The combined use of the 𝚒𝚗𝚓𝚎𝚌𝚝 and 𝚎𝚓𝚎𝚌𝚝

operators at any nesting level in the code provides the programmer
with a reversible conversion mechanism that enables new forms of
code reuse that have yet to be explored by the programming languages
community, as discussed in Section 3.

In addition, injection and ejection support restriction over a set
of identifiers. This allows the programmer to specify which over-
loaded identifiers or record fields shall be manipulated by 𝚒𝚗𝚓𝚎𝚌𝚝 or
𝚎𝚓𝚎𝚌𝚝. This is thoroughly novel and enhances code reuse even further.
Section 3.4 discusses such aspects in detail.

2. Preliminaries

The design proposed in this paper is an ML-like language extended
with a form of open-world context-dependent overloading based on
fine-grained constraints and extensible records, on top of which we
add 𝚒𝚗𝚓𝚎𝚌𝚝 and 𝚎𝚓𝚎𝚌𝚝. The reason behind this choice is mostly due to
complications arising from heavyweight record types and monolithic
type classes à la Haskell. The problem is that 𝚒𝚗𝚓𝚎𝚌𝚝 and 𝚎𝚓𝚎𝚌𝚝

must generate new record types and new type classes, respectively.
Name clashes would therefore arise among record fields and global
overloaded names, possibly producing unwanted shadowing and intro-
ducing the need to re-bind record fields to type class members.

Take into consideration the following example: a simple injection
takes place, converting the 𝚂𝚎𝚖𝚒𝚐𝚛𝚘𝚞𝚙 constraint into a homonymous
record type. Such record type must be already defined, though, or it
must be generated automatically.

class Semigroup a where
unit : a
plus : a -> a -> a

sum :: Semigroup a => [a] -> a
sum [] = unit
sum (x : xs) = plus x (sum xs)

-- cannot inject!
-- Semigroup is a type class, not a record type
rsum :: Semigroup a -> [a] -> a
rsum = inject sum

Generating a record type mimicking the type class might introduce
unwanted name clashes between label names.
4

type AnotherRecord = { add :: a -> a -> a;
sub : a -> a -> a }

-- this record type must be generated by inject
-- though, label ’add’ is already defined in the
record above
type Semigroup a = { zero :: a; add :: a ->
a -> a }

-- now injection is possible
-- but a name clash has occurred
rsum :: Semigroup a -> [a] -> a
rsum = inject sum

Even though injection is possible after generating the corresponding
record type, label 𝚊𝚍𝚍 clashes with a pre-existing record, meaning a
lot of care must be put when dealing with injection: record labels
require fully qualified access. Analogously, ejection would require the
generation of type classes mimicking record types, hence the risk of
name clashes between global overloadable symbols. To avoid these
complications we preferred a different approach: extensible records
allowing the reuse of field names and fine-grained overloading allowing
shadowing in case of duplicate definitions. Additionally, support for
local instances and local resolution is required in order to make 𝚒𝚗𝚓𝚎𝚌𝚝

and 𝚎𝚓𝚎𝚌𝚝 work as intended at any nesting level within expressions.
The introductory example in Fig. 1 already showed the need for such
features.

2.1. Overview of extensible records

Among the many systems for extensible records available in litera-
ture (Gaster and Jones, 1996; Rémy, 1989; Cardelli, 1992) we adopt
extensible records with scoped labels (Leijen, 2005) because of its
balance between simplicity and expressivity. It adds little complexity to
the classic Hindley–Milner type inference algorithm by only affecting
unification and introduces a basic kind system.

A sample function using this system for summing all elements of a
list using dictionary passing is:

let rec sum r l =
match l with
| [] -> r.zero
| x :: xs -> r.add x (sum r xs)

The inferred type 𝚜𝚞𝚖 ∶ { 𝚣𝚎𝚛𝚘 ∶ 𝛼; 𝚊𝚍𝚍 ∶ 𝛽 → 𝛼 → 𝛼 ∣ 𝛾𝚛𝚘𝚠 } →
𝛽 𝚕𝚒𝚜𝚝 → 𝛼 includes a row type 𝛾𝚛𝚘𝚠 that represents the unknown tail
of the record as a type variable 𝛾 of kind 𝚛𝚘𝚠. This is standard practice
in row type systems (Wand, 1987) and enables passing to the sum
function a record argument consisting of the two fields zero and add,
plus an arbitrary amount of extra fields. The row type variable 𝛾 unifies
with such extra fields, factually simulating subtyping without the need
to introduce an actual subtype relation among types.

2.2. Overview of the overloading subsystem

As anticipated, our take on overloading is not the focus of this
paper, although it is a necessary ingredient for exposing the main
contribution, i.e., injection and ejection. It integrates existing features
in the literature in a way that is novel to some extent, leaving the need
to provide a detailed overview. We adopt a fine-grained open-world
context-dependent overloading system requiring type signatures for
overloaded symbols like in Camarão and Figueiredo (1999) and Oder-
sky et al. (1995). This is equivalent to granular type classes consisting
of a single overloadable symbol, thus principal typability is preserved
in the same way as in any parametric overloading system (Kaes, 1988).

overload add : ’a -> ’a -> ’a

// add can be used even without instances
let twice x = add x x

The Journal of Systems & Software 216 (2024) 112141A. Spanò

t
a
W
e
i
u

,

t
a
r
o
t

a
n
i
m
r
o
m

i
q
s

r
M
p
o
t
d
a
t

3

e
m
t
a
a

Although there is no instance for add when twice is defined, the
inferred type is { 𝚊𝚍𝚍 ∶ 𝛼 → 𝛼 → 𝛼 } ⇒ 𝛼 → 𝛼.

Instances are introduced by means of a special letover-binding1:

let twice_one = twice 1 // unsolved
let over add a b = a + b // new instance
let four = twice twice_one // solved

The inferred types show that 𝚝𝚠𝚒𝚌𝚎_𝚘𝚗𝚎 is kept unsolved and ex-
hibits a monomorphic constraint, while four is solved and evaluates
to the ground value 4 because an instance for add exists at that point in
the program. Unsolved monomorphic constraints are not rejected and
produce constrained monomorphic values.

𝚝𝚠𝚒𝚌𝚎_𝚘𝚗𝚎 ∶ { 𝚊𝚍𝚍 ∶ 𝚒𝚗𝚝 → 𝚒𝚗𝚝 → 𝚒𝚗𝚝 } ⇒ 𝚒𝚗𝚝

𝚊𝚍𝚍 ∶ 𝚒𝚗𝚝 → 𝚒𝚗𝚝 → 𝚒𝚗𝚝

𝚏𝚘𝚞𝚛 ∶ 𝚒𝚗𝚝

We call resolution what Jones et al. (1997) defines as context re-
duction, though we refer to single constraints, not whole type classes.
A type constraint 𝑜1 ∶ 𝜏1 for an overloaded symbol 𝑜0 ∶ 𝜏0, where
𝜏1 = 𝜃(𝜏0) for some substitution 𝜃, gets solved when a best-fitting
instance is available among those available in the environment. That
is, some instance 𝑜 ∶ 𝜏 such that the type distance between 𝜏 and
he constraint type 𝜏0 is minimal compared to other instances. We
re giving a formal description of this mechanism later in Section 5.
hen multiple instances are a best fit, i.e., when there is not just one

xhibiting a minimum type distance, constraints are kept unsolved. An
mplementation may freely introduce custom strategies for dealing with
nsolvability, albeit that is beyond the scope of this paper.

Instances can have type constraints too:

overload (=) : ’a -> ’a -> ’a
overload (<) : ’a -> ’a -> ’a
overload (<=) : ’a -> ’a -> ’a

// constrained instance
let over (<=) x y = x < y || x = y

Assuming the logical or operator (∥) ∶ 𝚋𝚘𝚘𝚕 → 𝚋𝚘𝚘𝚕 → 𝚋𝚘𝚘𝚕

exists, the instance for (<=) assumes the constrained polymorphic type
{ (=) ∶ 𝛼 → 𝛼 → 𝛼; (<) ∶ 𝛼 → 𝛼 → 𝛼 } ⇒ 𝛼 → 𝛼 → 𝛼.
Generalization for letover-bindings works exactly as for ordinary let-
bindings, producing constraints in a natural way. Overload declarations
consist of unconstrained types, though, as in most overloading systems
including Haskell type classes. In general, an instance 𝑜1 ∶ 𝜋1 ⇒ 𝜏1 for
an overloaded symbol declared as 𝑜0 ∶ 𝜏0 is valid when a substitution
𝜃 exists such that 𝜏1 = 𝜃(𝜏0) without taking into account the instance
constraint set 𝜋1.

Local instances are allowed as in Camarão and Figueiredo (1999).
Unsolved constraints in conjunction with local instances lead to a form
of dynamic scoping:

let one =
let over add a b = a * b // local instance
in twice twice_one // solved locally

The local instance solves the monomorphic constraint of twice_one
computing 1 ∗ 1 = 1, as well as the constraint of twice, overall leading
to 1 again. Intuitively, a type constraint gets solved only if a best-fitting
instance is available without ambiguities, otherwise it is simply kept
unsolved, rather than producing an error.

1 Assume that the binary operator (+) ∶ 𝚒𝚗𝚝 → 𝚒𝚗𝚝 → 𝚒𝚗𝚝 is the
monomorphic addition for integers.
5

2.3. Implicit parameters and interactions with overloading

Implicits parameters, or simply implicits, are function parameters
hat do not appear as explicit parameters in the function signature,
nd are applied automatically by the compiler through a type-driven
esolution algorithm. Overloading and implicits rely on the same res-
lution mechanism and are therefore subject to the same dictionary
ranslation (Lewis et al., 2000).

The reason why implicits are needed by our system is that they serve
s a fallback mechanism for ejection when a record field name does
ot correspond to an overloadable symbol in the scope, as discussed
n Section 3.2. Our system supports implicits by prefixing a question
ark to a variable identifier. Implicits require no principal type decla-

ation, similarly to the Haskell extension for implicit parameters based
n (Lewis et al., 2000), and produce constraints that can be freely
ixed with overloading constraints.

let twice x = ?add x x // use of implicit

let nine =
let add = (*) // simple binding
in twice 3 // solved by binding

// from here add becomes overloaded
overload add : ’a -> ’a -> ’a

let over add = (+) // instance
let six = twice 3 // solved by instance

The type of twice is { ?𝚊𝚍𝚍 ∶ 𝛼 → 𝛼 → 𝛽 } ⇒ 𝛼 → 𝛽 and is not
exactly equivalent to the type of twice in Section 2.2, being it more
general. However, the point is that question-marked constraints can be
solved by plain let-bindings as well as overload instances. This is true
even if the overload declaration occurs below, as in the resolution of
six.

An implicit ?o occurring in a scope where the name o is overloaded
s treated independently of the principal type of o, producing a separate
uestion-marked constraint with a fresh type variable. The following
hows mixed use of implicits and overloads2:

overload pretty : ’a -> string

let rec pretty4 l =
match l with
| [] -> " "
| (x, y, z, w) :: ss ->

pretty x ^ ?pretty y ^ pretty z
^ ?pretty w ^ pretty4 ss

Type 𝚙𝚛𝚎𝚝𝚝𝚢𝟺 ∶ { 𝚙𝚛𝚎𝚝𝚝𝚢 ∶ 𝛼 → 𝚜𝚝𝚛𝚒𝚗𝚐; ?𝚙𝚛𝚎𝚝𝚝𝚢 ∶ 𝛽 →
𝚜𝚝𝚛𝚒𝚗𝚐; 𝚙𝚛𝚎𝚝𝚝𝚢 ∶ 𝛾 → 𝚜𝚝𝚛𝚒𝚗𝚐; } ⇒ (𝛼 ∗ 𝛽 ∗ 𝛾 ∗ 𝛽) 𝚕𝚒𝚜𝚝 → 𝚜𝚝𝚛𝚒𝚗𝚐

eveals that the type of the implicit ?pretty was inferred separately.
oreover, multiple occurrences of the same implicit ?pretty do not

roduce multiple constraints, whereas multiple occurrences of the same
verloaded identifier pretty do. Reusing an implicit parameter has
he same effect as reusing a lambda parameter. This is a deliberate
esign choice as it is less error-prone for the programmer, who may
ccidentally create undesired multiple implicit parameters by reusing
he same name. These behaviors are discussed in detail in Section 5.

. Injection and ejection in detail

As a foreword, it is interesting to point out that injection and
jection are not just a way to reveal the underlying dictionary-passing
echanism. Dictionary passing does not directly involve records,

hough, and is typically implemented via nested lambda abstractions
nd the consequent application of instances. As will turn out, injection
nd ejection fold and unfold such nested lambdas into records.

2 Assume that the binary operator ˆ is the string concatenation operator.

The Journal of Systems & Software 216 (2024) 112141A. Spanò
Fig. 3. Example of injection and typing-time translation. Dictionary passing relies on extra arguments zero and add in the translated function sum on the right. Below, injection
introduces a new record argument r and locally binds all overloaded names to the fields of r. This mimics the resolution of the constraints of sum by providing a local set of
symbols to be passed as a dictionary.
p
l
m
l
s
c
c
i
n

b

3.1. Injection

Consider the code in Fig. 3: the right-hand side shows the transla-
tion performed by our type rules formalized in Table 3 of Section 5.
Most type systems featuring constrained or qualified types implement
a compile-time code translation strategy embedded within the type
rules (Jones, 1995) for transforming the input program into a simpler
program while preserving types and other soundness properties (details
in Section 6.2). Principal type declarations of overloadable symbols
are erased at compile type and do not appear in the translated code.
Function sum in Fig. 3 gains two extra parameters when translated,
one for each overloaded symbol. Even though constraints are fine-
grained, as opposed to the more common approach of type classes, our
system implements the same dictionary-passing translation mechanism
invented by Kaes (1988), Wadler and Blott (1989).

Function 𝚌𝚘𝚗𝚌𝚊𝚝_𝚜𝚝𝚛𝚒𝚗𝚐𝚜 has type string list → 𝚜𝚝𝚛𝚒𝚗𝚐 due to
the explicit dictionary passing taking place in the body. The expression
inject sum on the left side of the application is translated into a
lambda abstraction over a record parameter r that contains all the
extra arguments to be passed to function sum. The basic idea behind
the translation is to let-bind record fields to overloaded symbol names;
dictionary passing will do the rest. Extensible records are necessary to
make this mechanism scale at any nesting level within programs.

3.2. Ejection

A basic example of 𝚎𝚓𝚎𝚌𝚝 translation is depicted in Fig. 4. Function
sum is just based on records, and translation does not change it. Ejec-
tion erases the record argument of function sum and converts its fields
into constraints, which are eventually converted by the translation into
additional arguments due to dictionary passing.

The type of 𝚘𝚜𝚞𝚖 is {𝚣𝚎𝚛𝚘 ∶ 𝛼; 𝚊𝚍𝚍 ∶ 𝛼 → 𝛼 → 𝛼 } ⇒ 𝛼 𝚕𝚒𝚜𝚝 →

𝛼. The trick is to rebind record fields to overloaded names being
passed as arguments: in such a way the translated function becomes
a regular constrained function implementing dictionary passing so that
the resolution system can deal with it.

One major problem with ejection is that record field names being
transformed into constraints must already be defined as overloadable
symbols in the scope. When no overload declaration exists for a given
field, an implicit is generated. Consider the following nested use of
eject, in which fields times and k of the lambda record parameter r
are undefined symbols in the outer scope, thus are turned into implicits:

let multy = map (eject fun r x -> r.times r.k x)
6

u

The type of 𝚖𝚞𝚕𝚝𝚢 is { ?𝚔 ∶ 𝛼; ?𝚝𝚒𝚖𝚎𝚜 ∶ 𝛼 → 𝛽 → 𝛾 } ⇒ 𝛽 𝚕𝚒𝚜𝚝 →

𝛾 𝚕𝚒𝚜𝚝. Ejection literally ejects a record argument, lifting all its fields to
the constraint set, which is eventually solved statically by the compiler.

3.3. Combining injection and ejection

In Fig. 5 we present a solution to the problem originally introduced
in Fig. 1 using our language design. The combined use of injection
and ejection has already been presented for Haskell in Fig. 2, but now
problems with name clashing do not arise thanks to extensible records
and fine-grained overloading.

The inferred types for global functions and relevant sub-expressions
are:

𝚜𝚞𝚖 ∶ { 𝚣𝚎𝚛𝚘 ∶ 𝛼; 𝚙𝚕𝚞𝚜 ∶ 𝛼 → 𝛼 → 𝛼 } ⇒ 𝛼 𝚕𝚒𝚜𝚝 → 𝛼

𝚖𝚞𝚕𝚝𝚁 ∶ { 𝚝𝚒𝚖𝚎𝚜 ∶ 𝛼 → 𝛽 → 𝛽; 𝚘𝚗𝚎 ∶ 𝛽 ∣ 𝛾𝚛𝚘𝚠 }
→ 𝛼 𝚕𝚒𝚜𝚝 → 𝛽

𝚎𝚓𝚎𝚌𝚝 𝚖𝚞𝚕𝚝𝚁 ∶ { ?𝚝𝚒𝚖𝚎𝚜 ∶ 𝛼 → 𝛽 → 𝛽; ?𝚘𝚗𝚎 ∶ 𝛽 }

⇒ 𝛼 𝚕𝚒𝚜𝚝 → 𝛽

𝚖𝚊𝚙 (𝚎𝚓𝚎𝚌𝚝 𝚖𝚞𝚕𝚝𝚁) ∶ 𝛼 𝚕𝚒𝚜𝚝 𝚕𝚒𝚜𝚝 → 𝛽 𝚕𝚒𝚜𝚝

𝚜𝚞𝚖 (𝚖𝚊𝚙 ...) ∶ { 𝚣𝚎𝚛𝚘 ∶ 𝛽; 𝚙𝚕𝚞𝚜 ∶ 𝛽 → 𝛽 → 𝛽 } ⇒ 𝛽

𝚏 ∶ { 𝚝𝚒𝚖𝚎𝚜 ∶ 𝛼 → 𝛽 → 𝛽; 𝚘𝚗𝚎 ∶ 𝛽; 𝚣𝚎𝚛𝚘 ∶ 𝛽;

𝚙𝚕𝚞𝚜 ∶ 𝛽 → 𝛽 → 𝛽 ∣ 𝛾𝚛𝚘𝚠 } → 𝛽

𝚖𝚜𝚞𝚖𝚜 ∶ { 𝚝𝚒𝚖𝚎𝚜 ∶ 𝛼 → 𝛽 → 𝛽; 𝚘𝚗𝚎 ∶ 𝛽; 𝚣𝚎𝚛𝚘 ∶ 𝛽;

𝚙𝚕𝚞𝚜 ∶ 𝛽 → 𝛽 → 𝛽 ∣ 𝛾𝚛𝚘𝚠 } 𝚕𝚒𝚜𝚝

→ 𝛼 𝚕𝚒𝚜𝚝 𝚕𝚒𝚜𝚝 → 𝛽

Sub-expression eject multR has constraints in the form of im-
licit parameters because record fields times and one are not over-
oadable symbols in this scope. Resolution is greedy in our system and
ay occur anytime, hence such constraints are immediately solved by

ocal let-bindings times and one, and the type inferred for subexpres-
ion map (eject multR) has the empty constraint set. Two more
onstraints (zero and plus) arise as soon as the function sum is
alled; these are solved immediately by the two homonymous local
nstances, hence the final type inferred for the whole f function does
ot contain constraints.

We can get rid of those inner bindings in function msums in Fig. 5
y exploiting what injection does — binding record fields to variables
nder the same name and introducing a new lambda over a record

The Journal of Systems & Software 216 (2024) 112141A. Spanò

i

e
r
a
b
e
f

Fig. 4. Example of ejection and translation performed by type rules. Ejection restores dictionary passing by adding lambda arguments zero and add, one for each field of the
record parameter r of function sum. This is then erased by passing a record value, where all fields are bound to overloaded names.
Fig. 5. Explicit rebindings can be used for solving the constraints arising from the use of sum and eject multR. Local resolution grants the expected behavior.
3

s
t
𝚒

𝛼

parameter. That is exactly what function f does manually. The function
msums could therefore be written as:

let msums rings list =
map (inject sum (map (eject multR) list)
rings

The types inferred for the most relevant sub-expressions, from the
nner-most to the outer-most, are:

𝚎𝚓𝚎𝚌𝚝 𝚖𝚞𝚕𝚝𝚁 ∶ { ?𝚝𝚒𝚖𝚎𝚜 ∶ 𝛼 → 𝛽 → 𝛽; ?𝚘𝚗𝚎 ∶ 𝛽 }
⇒ 𝛼 𝚕𝚒𝚜𝚝 → 𝛽

𝚖𝚊𝚙 (𝚎𝚓𝚎𝚌𝚝 𝚖𝚞𝚕𝚝𝚁) ∶ { ?𝚝𝚒𝚖𝚎𝚜 ∶ 𝛼 → 𝛽 → 𝛽;
?𝚘𝚗𝚎 ∶ 𝛽 } ⇒ 𝛼 𝚕𝚒𝚜𝚝 𝚕𝚒𝚜𝚝 → 𝛽 𝚕𝚒𝚜𝚝

𝚜𝚞𝚖 (𝚖𝚊𝚙 ...) ∶ { ?𝚝𝚒𝚖𝚎𝚜 ∶ 𝛼 → 𝛽 → 𝛽; ?𝚘𝚗𝚎 ∶ 𝛽;
𝚣𝚎𝚛𝚘 ∶ 𝛽; 𝚙𝚕𝚞𝚜 ∶ 𝛽 → 𝛽 → 𝛽 } ⇒ 𝛽

𝚒𝚗𝚓𝚎𝚌𝚝 𝚜𝚞𝚖 ... ∶ { ?𝚝𝚒𝚖𝚎𝚜 ∶ 𝛼 → 𝛽 → 𝛽; ?𝚘𝚗𝚎 ∶ 𝛽;
𝚣𝚎𝚛𝚘 ∶ 𝛽; 𝚙𝚕𝚞𝚜 ∶ 𝛽 → 𝛽 → 𝛽 ∣ 𝛾𝚛𝚘𝚠 } → 𝛽 𝚕𝚒𝚜𝚝

𝚖𝚜𝚞𝚖𝚜 ∶ { 𝚝𝚒𝚖𝚎𝚜 ∶ 𝛼 → 𝛽 → 𝛽; 𝚘𝚗𝚎 ∶ 𝛽; 𝚣𝚎𝚛𝚘 ∶ 𝛽;
𝚙𝚕𝚞𝚜 ∶ 𝛽 → 𝛽 → 𝛽 ∣ 𝛾𝚛𝚘𝚠 } 𝚕𝚒𝚜𝚝

→ 𝛼 𝚕𝚒𝚜𝚝 𝚕𝚒𝚜𝚝 → 𝛽

Since there are no local instances, constraints arising from sub-
xpression sum (map (eject multR) list) include the ejected
ecord fields times and one as well as the overloaded symbols zero
nd plus. Injecting all of them produces the record argument required
y the outer-most call to map. As it turns out, the combined use of
jection and injection at different levels of nesting allows for advanced
orms of constraint manipulation.
7

{

.4. Restricted injection and ejection

Injection and ejection can be restricted over a certain subset of
ymbols, allowing the programmer to inject a subset of constraints or
o eject part of a record. Restricted syntax is 𝚎𝚓𝚎𝚌𝚝 𝑥1 .. 𝑥𝑛 𝚒𝚗 𝑒 and
𝚗𝚓𝚎𝚌𝚝 𝑥1 .. 𝑥𝑛 𝚒𝚗 𝑒, where 𝑒 is an expression.

overload pretty : ’a -> string
(+) : ’a -> ’a -> ’a

let rec flatten r l =
match l with
| [] -> r.empty
| [x] -> r.sep + (pretty x)
| x :: xs -> (pretty x) + r.sep + (flatten
xs)

let over (+) = (^) // string append instance
let empty = " "
let s = (inject pretty in

eject empty in flatten)
{ pretty = sprintf " %d " }
{ sep = " , " }
[1; 2; 3] // s : string = "1 , 2, 3"

The nested ejection is 𝚎𝚓𝚎𝚌𝚝 𝚎𝚖𝚙𝚝𝚢 𝚒𝚗 𝚏𝚕𝚊𝚝𝚝𝚎𝚗 ∶ { ?𝚎𝚖𝚙𝚝𝚢 ∶
𝛼; 𝚙𝚛𝚎𝚝𝚝𝚢 ∶ 𝛽 → 𝛼; (+) ∶ 𝛼 → 𝛼 → 𝛼 } ⇒ { 𝚜𝚎𝚙 ∶ 𝛼 ∣ 𝛾𝚛𝚘𝚠 } → 𝛽 𝚕𝚒𝚜𝚝 →
. The enclosing restricted injection has type 𝚒𝚗𝚓𝚎𝚌𝚝 𝚙𝚛𝚎𝚝𝚝𝚢 𝚒𝚗 .. ∶
?𝚎𝚖𝚙𝚝𝚢 ∶ 𝛼; (+) ∶ 𝛼 → 𝛼 → 𝛼 } ⇒ { 𝚙𝚛𝚎𝚝𝚝𝚢 ∶ 𝛽 → 𝛼 ∣ 𝛿𝚛𝚘𝚠 } → { 𝚜𝚎𝚙 ∶

The Journal of Systems & Software 216 (2024) 112141A. Spanò

i
i
t
v

w
o
g
f
a
i
s

c

s
d

s
o
t

S
t
s
l

w
n
e

a
f
t
t

𝛼 ∣ 𝛾𝚛𝚘𝚠 } → 𝛽 𝚕𝚒𝚜𝚝 → 𝛼. The ejected symbol empty has become an
mplicit constraint ?empty because no overload declaration exists for
t in the scope. It is solved by the let-binding of empty, and (+) by
he overload instance for strings, eventually computing a string ground
alue s.

The restricted injection in the example above adds a new arrow
hose domain is the record type { 𝚙𝚛𝚎𝚝𝚝𝚢 ∶ 𝛽 → 𝛼 ∣ 𝛿𝚛𝚘𝚠 }, instead
f merging it into the existing record parameter { 𝚜𝚎𝚙 ∶ 𝛼 ∣ 𝛾𝚛𝚘𝚠 }. In
eneral, each 𝚒𝚗𝚓𝚎𝚌𝚝 adds a new record parameter, each with its own
resh row tail, thus multiple restricted injections are not equivalent to

single restricted injection with multiple identifiers. However, a full
njection is equivalent to a restricted injection with the whole identifier
et.

𝑒 ∶ { 𝑥 ∶ 𝜏1; 𝑦 ∶ 𝜏2 } ⇒ 𝜏3
𝚒𝚗𝚓𝚎𝚌𝚝 𝑒 ∶ { 𝑥 ∶ 𝜏1; 𝑦 ∶ 𝜏2 ∣ 𝛼𝚛𝚘𝚠 } → 𝜏3

𝚒𝚗𝚓𝚎𝚌𝚝 𝚡 𝚒𝚗 𝑒 ∶ { 𝑦 ∶ 𝜏2 } ⇒ { 𝑥 ∶ 𝜏1 ∣ 𝛼𝚛𝚘𝚠 } → 𝜏3
𝚒𝚗𝚓𝚎𝚌𝚝 𝚡 𝚢 𝚒𝚗 𝑒 ∶ { 𝑥 ∶ 𝜏1; 𝑦 ∶ 𝜏2 ∣ 𝛼𝚛𝚘𝚠 } → 𝜏3

𝚒𝚗𝚓𝚎𝚌𝚝 𝚡 𝚒𝚗 𝚒𝚗𝚓𝚎𝚌𝚝 𝚢 𝚒𝚗 𝑒 ∶ { 𝑥 ∶ 𝜏1 ∣ 𝛼𝚛𝚘𝚠 }
→ { 𝑦 ∶ 𝜏2 ∣ 𝛽𝚛𝚘𝚠 } → 𝜏3

Note that constraints can be empty after injection, though records
annot be empty after ejection.

As far as ejection is concerned, since type constraints behave like
et-like structures, ejecting a whole record or part of it multiple times
oes not change the result.

𝑒 ∶ { 𝑥 ∶ 𝜏1; 𝑦 ∶ 𝜏2 ∣ 𝛼𝚛𝚘𝚠 } → 𝜏3
𝚎𝚓𝚎𝚌𝚝 𝑒 ∶ { 𝑥 ∶ 𝜏1; 𝑦 ∶ 𝜏2 } ⇒ 𝜏3

𝚎𝚓𝚎𝚌𝚝 𝚡 𝚒𝚗 𝑒 ∶ { 𝑥 ∶ 𝜏1 } ⇒ { 𝑦 ∶ 𝜏2 ∣ 𝛼𝚛𝚘𝚠 } → 𝜏3
𝚎𝚓𝚎𝚌𝚝 𝚡 𝚢 𝚒𝚗 𝑒 ∶ { 𝑥 ∶ 𝜏1; 𝑦 ∶ 𝜏2 } ⇒ 𝜏3

𝚎𝚓𝚎𝚌𝚝 𝚡 𝚒𝚗 𝚎𝚓𝚎𝚌𝚝 𝚢 𝚒𝚗 𝑒 ∶ { 𝑥 ∶ 𝜏1; 𝑦 ∶ 𝜏2 } ⇒ 𝜏3
Restricted ejection does not consume whole record arguments, but

ubtyping in extensible records obviously does not allow application
f a record argument with fewer fields than required. This complicates
hings. Consider the following:

// sample restricted ejection
let g = eject x in fun a -> a.x + a.y

where 𝚐 ∶ { 𝑥 ∶ 𝚒𝚗𝚝 } ⇒ { 𝑦 ∶ 𝚒𝚗𝚝 ∣ 𝛼𝚛𝚘𝚠 } → 𝚒𝚗𝚝 is the inferred type.
caling down the translation pattern used in Fig. 4 to a single symbol,
hat would translate into an ill-formed record application, where a
upertype of the record type { 𝑥 ∶ 𝚒𝚗𝚝; 𝑦 ∶ 𝚒𝚗𝚝 ∣ 𝛼𝚛𝚘𝚠 } expected by the
ambda is passed:

// this translation is wrong!
let g = fun x -> (fun a -> a.x + a.y) { x = x }

Restricted ejection requires special treatment: in order to produce
ell-formed translated code, full records must always be passed, thus
on-ejected fields must be abstracted. This can be achieved through
jecting the whole record and re-injecting the unwanted symbols.

// restricted eject must eject all and then
// inject the rest
let g = inject y in eject fun a -> a.x + a.y

This has the same type 𝚐 ∶ { 𝑥 ∶ 𝚒𝚗𝚝 } ⇒ { 𝑦 ∶ 𝚒𝚗𝚝 ∣ 𝛼𝚛𝚘𝚠 } →
𝚒𝚗𝚝 mentioned above and expected by the restricted ejection; plus it
translates into a well-formed expression:

let g = fun x ->
fun r ->

let y = r.y
in (fun a -> a.x + a.y)
{ x = x; y = y }

The innermost record application is added by full ejection; the
bstraction of r and binding of y comes from the restricted injection;
inally, the outermost abstraction of symbol x is added at generalization
ime when the remaining constraint { 𝑥 ∶ 𝚒𝚗𝚝 } is translated according
o the ordinary dictionary passing.
8

4. Related work

The design space we are exploring is not novel. What we call
injection is referred to as explicit dictionary application in Winant and
Devriese (2018) and primarily serves as a manual resolution system
for Haskell type constraints. A similar system (Devriese and Piessens,
2011) has been proposed for the theorem prover Adga. First-class type
classes for Haskell (Sozeau and Oury, 2008) is an alternative take on
explicit dictionary passing and again equivalent to injection. The same
applies to Dijkstra et al. (2005) which adopts implicits rather than
type classes. Named instances for Haskell (Kahl and Scheffczyk, 2001)
again propose a solution to the manual disambiguation problem. The
goal of all these systems is to provide an explicit dictionary-passing
mechanism specifically for Haskell, which is based on type classes and
heavyweight record types. Our proposal is more general as it is based
on fine-grained overloading and extensible records. Moreover, what we
call ejection seems uncovered in the literature. The combined use of
injection and ejection, especially in the restricted form discussed in
Section 3.4, allows the programmer to reuse code across two orthogonal
dispatching mechanisms in unprecedented ways.

4.1. Local overloading, local instances and coherence

Local instances are crucial for our system and are worth a com-
parison, despite not being the main focus of the paper. The literature
on this topic is mostly dedicated to type classes à la Haskell, while
our fine-grained overloading system features scoped instances that
could be shadowed like in Camarão and Figueiredo (1999). Constraint
satisfiability is granted by Camarão et al. (2004) in this case. The prob-
lem of coherence (Jones, 1993) is known with local instances (Bottu
et al., 2019) and implicits (Schrijvers et al., 2019). Our approach can
probably be encoded in the more general framework by Stuckey and
Sulzmann (2005). Particular attention should be given to polymorphic
recursion and value-restriction à la ML. The goal of this paper is not
to present a full-fledged overloading system, though, but a simplified
ground for exploring injection and ejection.

Our system also features local overloading in order to let ejection
work in any scope. This is not a common feature due to its compli-
cations. Closed-scope type classes (Duggan and Ophel, 2002) address
this problem for Haskell, but its heavyweight approach makes things
complicated. Our idea is based on a simple trick: converting overloaded
symbols into implicit parameters when the symbol escapes the scope
of its principal type declaration. This produces dynamic scoping with
strong static types like in Lewis et al. (2000).

4.2. Scala

Scala traits and implicits are powerful enough to encode type classes
as a pattern (Oliveira et al., 2010). Such a pattern is based on named
instance objects acting as dictionaries that can be passed either auto-
matically by the type-driven resolution algorithm or explicitly by the
user. The automatic behavior corresponds to the automatic resolution
of overload or implicit constraints in our system, while the manual
behavior is basically equivalent to injection. Ejection is not supported
by Scala: there is no way to transform object parameters into implicits.
Also, Scala uses a heavyweight approach to declare implicits, while
our question-marked identifiers may occur anywhere in an expression
without prior declaration, as in Lewis et al. (2000). This allows supports
the escaping of overloadable identifiers in our system, as shown in
Section 2.3.

4.3. Adga and Coq

In the world of theorem provers, two major proposals resemble
injection: first-class type classes for Coq (Sozeau and Oury, 2008) and

instance arguments for Agda (Devriese and Piessens, 2011). With a

The Journal of Systems & Software 216 (2024) 112141A. Spanò

t
p
a
t
a

k

T
𝜃

o
w
c
e
𝚏

5

s
l

D
𝜎

difference though: in our system records are not heavyweight datatypes
and constraints are fine-grained, allowing the programmer to operate
on single constraints or record fields. Furthermore, ejection is novel
and the combination of injection and ejection as a reversible program-
ming pattern for general-purpose functional languages has never been
explored, to the best of our knowledge.

As far as Agda is concerned, it is interesting to point out that
instance arguments are exactly records because dictionary passing is
implemented with records. This is opposed to Haskell or even our own
system proposed in this paper, where dictionary passing is implemented
through nested lambdas and curried applications.

4.4. Implicit calculus

Injection and ejection may be formally encoded in implicit calcu-
lus (Oliveira et al., 2012), though due to space limitations, we provide
only a sketch of it. The bare constructs operating on whole constraint
sets or records could be described as follows.

𝚎𝚓𝚎𝚌𝚝 ∶ (𝛼 → 𝛽) → 𝛼 ⇒ 𝛽 = 𝜆𝑥 ∶ 𝛼 → 𝛽. 𝜆?𝛼. 𝑥 ?𝛼
𝚒𝚗𝚓𝚎𝚌𝚝 ∶ (𝛼 ⇒ 𝛽) → (𝛼 → 𝛽) = 𝜆𝑐 ∶ 𝛼 ⇒ 𝛽. 𝜆𝑥 ∶ 𝛼. 𝑐 𝚠𝚒𝚝𝚑 𝑥

Restricted ejection is harder to encode in implicit calculus as it ma-
nipulates parts of records, which are not directly supported. Adding a
row-type system to implicit calculus for expressing fine-grained record
field manipulation and encoding restricted injection and ejection may
be worth inspecting in a future paper.

5. Type system

In this section we delve into the formalization of our system, pro-
viding syntax-directed type rules, a type inference algorithm and a
unification algorithm as well as the relevant proofs of the correctness
of the translation performed by type rules.

Table 1 defines the syntax of terms. Expressions 𝑒∗ are a subset of
expressions 𝑒 and represent the target of the translation in type rules.
Constraints 𝜋 are possibly empty sets of bindings {𝑥1 ∶ 𝜏1 .. 𝑥𝑛 ∶ 𝜏𝑛} for
𝑛 ≥ 0, where each symbol 𝑥 can either be a overloaded symbol 𝑜 or an
implicit name ?𝑥 beginning with a question mark.

Kinds can be star, row and arrows. Types are kind-annotated and
the annotation in the type application 𝜏𝜅1→𝜅2

1 𝜏𝜅12 grants the correctness
of the application in a syntactic way. For example, let 𝚕𝚒𝚜𝚝⋆→⋆ be the
usual type constructor for lists, then the type application 𝚕𝚒𝚜𝚝⋆→⋆𝚒𝚗𝚝⋆

is kind-correct because the kind of the right-hand matches the domain
of the kind-arrow in the left hand. The kind of the whole type appli-
cation is ⋆, as appears in the codomain of the kind-arrow in the left
hand.3

Types are powerful enough to encode arrows and rows without
introducing additional terms in the syntax of 𝜏. We can define built-in
types, arrow types and row manipulators just as a plain series of type
constructors matching the form 𝑐𝜅 in the syntax of types.4

𝚒𝚗𝚝 ∶∶ ⋆ 𝗂𝗇𝗍𝖾𝗀𝖾𝗋𝗌
(→) ∶∶ ⋆ → ⋆ → ⋆ 𝖺𝗋𝗋𝗈𝗐
⦇ ⦈ ∶∶ 𝚛𝚘𝚠 𝖾𝗆𝗉𝗍𝗒 𝗋𝗈𝗐
𝚎𝚡𝚝𝑙 ∶∶ ⋆ → 𝚛𝚘𝚠 → 𝚛𝚘𝚠 𝖾𝗑𝗍𝖾𝗇𝖽 𝗋𝗈𝗐 𝗐𝗂𝗍𝗁 𝗅𝖺𝖻𝖾𝗅 𝑙
𝚛𝚎𝚌𝚘𝚛𝚍 ∶∶ 𝚛𝚘𝚠 → ⋆ 𝗋𝖾𝖼𝗈𝗋𝖽

3 Please note that in this section we adopt a right-handed notation for the
ype application, i.e. the type argument appears on the right. This is on a
ar with the Haskell syntax and most of the literature, as it allows curried
pplication of type arguments in a natural way. The sample code snippets in
he previous sections of this paper, though, adopt an ML style where the type
pplication is left-handed.

4 To ease readability, we sometimes replace the superscript annotation for
𝜅

9

inds as in 𝜏 with a double-colon notation 𝜏 ∶∶ 𝜅.
For writing rows as a sequence of bindings plus a tail, we use an
alias for 𝚎𝚡𝚝𝑙:

⦇ 𝑙 ∶ 𝜏 ∣ 𝑟 ⦈ ≡ 𝚎𝚡𝚝𝑙 𝜏⋆ 𝑟𝚛𝚘𝚠

Where 𝑟 is a syntactic placeholder for any type expression of kind
𝚛𝚘𝚠. This yields to the following shortcuts for open rows and records
for 𝑛 ≥ 1:

⦇ 𝑙1 ∶ 𝜏1 .. 𝑙𝑛 ∶ 𝜏𝑛 ∣ 𝛼 ⦈ ≡ 𝚎𝚡𝚝𝑙1 𝜏1 (.. (𝚎𝚡𝚝𝑙𝑛 𝜏𝑛 𝛼))
{ 𝑙1 ∶ 𝜏1 .. 𝑙𝑛 ∶ 𝜏𝑛 ∣ 𝛼 } ≡ 𝚛𝚎𝚌𝚘𝚛𝚍 ⦇ 𝑙1 ∶ 𝜏1 .. 𝑙𝑛 ∶ 𝜏𝑛 ∣ 𝛼 ⦈

Closed rows or records are just open rows or records with the empty
row ⦇ ⦈ as tail:

⦇ 𝑙1 ∶ 𝜏1 .. 𝑙𝑛 ∶ 𝜏𝑛 ⦈ ≡ ⦇ 𝑙1 ∶ 𝜏1 .. 𝑙𝑛 ∶ 𝜏𝑛 ∣ ⦇ ⦈ ⦈
{ 𝑙1 ∶ 𝜏1 .. 𝑙𝑛 ∶ 𝜏𝑛 } ≡ { 𝑙1 ∶ 𝜏1 .. 𝑙𝑛 ∶ 𝜏𝑛 ∣ ⦇ ⦈ }

With this representation, rows become lists of pairs (label, type)
constructed syntactically by nesting type applications, in the same way
as a list value in ML is a nesting of data constructors.

Substitutions are straightforward: a substitution 𝜃 can either be
empty or a series of mappings [𝛼 ↦ 𝜏] from type variables 𝛼 to
types 𝜏. The application 𝜃(𝜏) = 𝜏′ is a kind-preserving substitution.

he composition of two substitutions 𝜃1 and 𝜃2 is a third substitution
3 = 𝜃1 ⋅ 𝜃2 such that 𝜃3(𝜏) = 𝜃1(𝜃2(𝜏)).

We calculate free type variables through a family of functions 𝚏𝚝𝚟

perating over a variety of terms and producing a set of type variables
ithout kind annotation. Supported terms are: types 𝜏, constraints 𝜋,

onstrained types 𝜋 ⇒ 𝜏, schemes 𝜎 and environments 𝛤 . We give as
xample the calculation of the free type variables of a constrained type:
𝚝𝚟({𝑥1 ∶ 𝛽⋆; 𝑥2 ∶ 𝚒𝚗𝚝} ⇒ 𝛼⋆ → 𝛾⋆ → { 𝑦1 ∶ 𝚒𝚗𝚝 ∣ 𝛿𝚛𝚘𝚠 }) = {𝛼, 𝛽, 𝛾, 𝛿 }.

.1. Instances

Type signatures for overloaded symbols have form 𝜏, whereas in-
tances are bound to type schemes 𝜎 in the environment, like ordinary
et-bindings.

efinition 5.1.1 (Instance Relation). Given a type 𝜏0 and a type scheme
1 = ∀𝛼.𝜋1 ⇒ 𝜏1, we say that 𝜎1 is an instance of 𝜏0, written 𝜎1 ⪯ 𝜏0, iff

a substitution 𝜃 exists such that 𝜃(𝜏0) = 𝜏1, under the assumption that
{ 𝚏𝚝𝚟(𝜎1) } ∩ { 𝚏𝚝𝚟(𝜏0) } = ∅.

The latter assumption is satisfiable in practice by simply refreshing
the type signature 𝜏0 of an overloadable symbol. Moreover, an instance
relation between two types, namely 𝜏1 ⪯ 𝜏0, easily derives from the
definition above by considering a type 𝜏1 as a trivial form of type
scheme ∀∅. ∅ ⇒ 𝜏1.

Instances are bound to 𝛤 with unique names of form 𝑜𝑘, with 𝑘 ≥ 0,
whereas the original type signature for an overloadable symbol 𝑜 is
bound to the environment with the name 𝑜0. This makes instances
always distinct from the original overloadable symbols. The number
𝑘 in the superscript of instance names can be calculated through some
hashing function over the type scheme inferred for the instance.

Definition 5.1.2 (Hashing of Instance Suffixes). Let  ∶ 𝜎 → N∗ be a
deterministic hash function for type schemes 𝜎 ≡ ∀𝛼. 𝜋 ⇒ 𝜏.

We do not give an implementation for , but its result is granted
to be greater than 0. This produces scoped instances, where shadowing
may occur only when instances share the same name and the same type
scheme.

overload add : ’a -> ’a -> ’a
let twice x = add x x

let over add x y = x + y // int -> int -> int
let over add x y = x * y // shadows add above
let sixteen = twice 4 // solved by second

The Journal of Systems & Software 216 (2024) 112141A. Spanò

t

𝚍

w
k

𝚍

5

l
i
o

D
s
f
i
t
𝚍

l
s
e

D
s
b
I
b
i
𝚍

i
i
s
s

i

o

(
p

This implies there is no global uniqueness of instances in our system,
unlike in the presence of type classes à la Haskell.

Definition 5.1.3 (Type Distance). Given a type signature 𝜏 and an
instance whose type scheme is 𝜎 for which the instance relation 𝜎 ⪯ 𝜏
holds for some substitution 𝜃 = [𝛼1 ↦ 𝜏1 .. 𝛼𝑛 ↦ 𝜏𝑛], we define the
ype distance as:

𝚒𝚜𝚝(𝜎, 𝜏) =
𝑛
∑

𝑖=1
𝚁(𝜏𝑖)

here 𝚁 ∶ 𝜏 → N is a ranking function recursively defined over
ind-unannotated types:

𝚁(𝛼) = 0
𝚁(𝑐) = 1

𝚁(𝜏1 𝜏2) = 𝚁(𝜏1) + 𝚁(𝜏2)

The type ranking function 𝚁 basically considers variable-to-variable
substitutions as zero-distant, while substitutions from variables to
constructors produce a distance equal to 1. This makes for example
𝚍𝚒𝚜𝚝(𝚒𝚗𝚝, 𝛼) < 𝚍𝚒𝚜𝚝(𝚒𝚗𝚝 → 𝚒𝚗𝚝, 𝛼) or also 𝚍𝚒𝚜𝚝(𝚒𝚗𝚝 → 𝚒𝚗𝚝, 𝛼 → 𝛼) <
𝚒𝚜𝚝((𝚒𝚗𝚝 → 𝚒𝚗𝚝) → 𝚒𝚗𝚝, 𝛼 → 𝛼).

.2. Constraints resolution

Before proceeding with the formalization of the constraint reso-
ution subsystem, we introduce a few basic definitions. A best-fitting
nstance is the least type-distant among the candidate instances capable
f solving a constraint.

efinition 5.2.1 (Best Fitting Instance). Given an environment 𝛤 and a
olvable constraint for an overloaded symbol 𝑜 ∶ 𝜏0, we define as best
itting an instance 𝑜𝑘 ∶ 𝜎 ∈ 𝛤 , with 𝑘 ≥ 1, whose type distance from 𝜏0
s minimum compared to other candidates. That is, let 𝑑 = 𝚍𝚒𝚜𝚝(𝜎, 𝜏0),
hen we say that 𝑜𝑘 ∶ 𝜎 is a best fitting instance iff ∄ 𝑜𝑘′ ∶ 𝜎′ ∈ 𝛤 ∣
𝚒𝚜𝚝(𝜎′, 𝜏0) < 𝑑.

Implicits are treated differently: they can be solved both by over-
oaded instances and by plain let-bindings, depending on whether the
ymbol, i.e. the implicit identifier, is being overloaded or not in the
nvironment where resolution takes place.

efinition 5.2.2 (Fitting Binding). Given an environment 𝛤 and a
olvable constraint for an implicit parameter ?𝑥 ∶ 𝜏0, we define a fitting
inding depending on whether the identifier 𝑥 is overloaded in 𝛤 or not.
f 𝑥0 ∈ 𝛤 , a fitting binding is just the best fitting instance introduced
y Definition 5.2.1. Otherwise, if 𝑥 is not overloaded, a fitting binding
s any simple binding 𝑥 ∶ 𝜎 ∈ 𝛤 such that 𝜎 ⪯ 𝜏0, for any type distance
𝚒𝚜𝚝(𝜎, 𝜏0).

Notably, the behavior above depends on whether the identifier 𝑥
s overloaded in the context where resolution takes place, not where the
mplicit ?𝑥 is originally introduced. This implies that an implicit can be
olved lately by a symbol that is not yet overloadable in the original
cope. Consider an example similar to that introduced in Section 2.3:

// twice : { ?add : ’a -> ’a -> ’b } => ’a -> ’b
let twice x = ?add x x // contains implicit

// symbol add is overloaded afterwards
overload add : ’a -> ’a -> ’a
let over add = int_plus_int

// instance of add solves implicit
let four = twice 2

This mechanism has another subtle implication: when an implicit
s used in a context where that symbol is already overloaded, it can

virtually be solved immediately by an instance.
10
// symbol add is overloaded
overload add : ’a -> ’a -> ’a
let over add = int_plus_int

// instance solves implicit immediately
let four = ?add 2 2

If a best-fitting instance is not found, though, the constraint is kept
as an implicit, producing no interaction with the type of the overloaded
symbol. The type of four would therefore be { ?𝚊𝚍𝚍 ∶ 𝛼 → 𝛼 →
𝛽 } ⇒ 𝛽. In other words, implicit constraints are never converted into
verloading constraints and preserve their original nature until solved.

Our system performs constraint simplification as in Jones et al.
1997) and similar systems in the literature. Constraints can be sim-
lified in two ways: by compacting redundant constraints and by solving

remaining constraints.

Definition 5.2.3 (Constraints Compaction). Let 𝐂 ∶ 𝜋 × 𝑒∗ → 𝜋 × 𝑒∗ be
a function for compacting redundant constraints and performing the
proper translation. It is defined recursively by cases:

𝐂({ 𝑜1 ∶ 𝜏 } ∪ 𝜋; 𝑒∗) = 𝐂(𝜋; 𝚕𝚎𝚝 𝑜1 = 𝑜2 𝚒𝚗 𝑒∗) 𝚒𝚏𝚏 ∃(𝑜2 ∶ 𝜏) ∈ 𝜋
𝐂({ 𝑥1 ∶ 𝜏1 } ∪ 𝜋; 𝑒∗) = ({ 𝑥1 ∶ 𝜏1 } ∪ 𝜋1; 𝑒∗1) 𝚘𝚝𝚑𝚎𝚛𝚠𝚒𝚜𝚎

𝚠𝚑𝚎𝚛𝚎 (𝜋1, 𝑒∗1) = 𝐂(𝜋; 𝑒∗)
𝐂(∅; 𝑒∗) = (∅; 𝑒∗) 𝚏𝚒𝚡 𝚙𝚘𝚒𝚗𝚝

Compaction takes place only between constraints coming from over-
loadable symbols, not from implicits. When the same overloaded sym-
bol 𝑜 appears as prefix of two constraints 𝑜1 and 𝑜2 having the same type
𝜏, then 𝑜1 is removed from the constraint set 𝜋. The translation intro-
duces a let-binding so that previous occurrences of 𝑜1 in 𝑒∗ are aliased
to 𝑜2 from now on. The compaction algorithm always terminates, as it
consumes constraints within the constraint set 𝜋 until the empty set is
left.

Resolution, on the other hand, is performed by a function that
attempts to solve one single constraint at a time and properly discrimi-
nates between overloading constraints and implicit constraints, finding
out either a best-fitting instance, a fitting binding or nothing. We first
need to introduce the notion of solvability of a constraint, sometimes
referred to as satisfiability in the relevant literature. Simply put, a
constraint is considered unsolvable when a type variable appearing in it
does not appear in the type body.

Definition 5.2.4 (Unsolvable Constraint). Given a constrained type
𝜋 ⇒ 𝜏, a constraint 𝑥 ∶ 𝜏′ ∈ 𝜋 is unsolvable iff 𝚏𝚝𝚟(𝜏) ⊂ 𝚏𝚝𝚟(𝜏′).

Unsolvable constraints are left untouched by our solver:

Definition 5.2.5 (Constraint Solver). Let 𝐒 ∶ 𝛤 ×𝑋 × 𝜏 → {∅} ∪ (𝑋 × 𝜎)
be a function that, given an environment 𝛤 and a constraint 𝑥 ∶ 𝜏,
attempts at finding the best-fitting instance or the fitting binding in
𝛤 depending on whether 𝑥 is an overloaded identifier or an implicit.
In case 𝑥0 ∈ 𝚍𝚘𝚖(𝛤), then 𝑥 is an overloaded identifier 𝑜, therefore
𝐒(𝛤 ; 𝑜 ∶ 𝜏) = (𝑜𝑘 ∶ 𝜎) where 𝑜𝑘, with 𝑘 ∈ N∗, is the best-fitting
instance in 𝛤 as of Definition 5.2.1. Otherwise 𝑥 must be an implicit ?𝑦
prefixed by a question mark, then 𝐒(𝛤 ; ?𝑦 ∶ 𝜏) = (𝑦 ∶ 𝜎) where 𝑦 is the
fitting binding in 𝛤 as of Definition 5.2.2. When no best-fitting instance
or fitting binding is found, or when the constraint is unsolvable as of
Definition 5.2.4, then 𝐒(𝛤 ; 𝑥 ∶ 𝜏) = ∅.

If unsolvable constraints were processed normally by the solver, any
available instance would apply, which is undesirable in most cases.
Consider the following snippet, which reproduces the classic Haskell
example known as show (read s):

overload parse : string -> ’a
overload pretty : ’a -> string

// some instance for floats

The Journal of Systems & Software 216 (2024) 112141A. Spanò

p
𝚜

5

m

t
t
i

t
i
e

Table 1
Syntax of terms. Types 𝜏 are kind-annotated and kinds 𝜅 are checked syntactically. Judgments include
constraints 𝜋 and a translated expression 𝑒∗.

𝑒∗ ∶∶= 𝑥 | 𝑜 | ?𝑥 | 𝜆𝑥.𝑒 | 𝑒1 𝑒2 | 𝚕𝚎𝚝 𝑥 = 𝑒1 𝚒𝚗 𝑒2 | 𝑒.𝑙 | { 𝑙 = 𝑒 } 𝖻𝖺𝗌𝗂𝖼 𝖾𝗑𝗉𝗋𝖾𝗌𝗌𝗂𝗈𝗇𝗌

𝑒 ∶∶= 𝑒∗ | 𝚘𝚟𝚎𝚛𝚕𝚘𝚊𝚍 𝑜 ∶ 𝜏 𝚒𝚗 𝑒 | 𝚕𝚎𝚝 𝚘𝚟𝚎𝚛 𝑜 = 𝑒1 𝚒𝚗 𝑒2 𝖾𝗑𝗉𝗋𝖾𝗌𝗌𝗂𝗈𝗇𝗌

| 𝚎𝚓𝚎𝚌𝚝 𝑒 | 𝚒𝚗𝚓𝚎𝚌𝚝 𝑒 | 𝚎𝚓𝚎𝚌𝚝 𝑥 𝚒𝚗 𝑒 | 𝚒𝚗𝚓𝚎𝚌𝚝 𝑥 𝚒𝚗 𝑒
𝜅 ∶∶= ⋆ | 𝚛𝚘𝚠 | 𝜅1 → 𝜅2 𝗄𝗂𝗇𝖽𝗌

𝜏 ∶∶= 𝑐𝜅 | 𝛼𝜅
| 𝜏𝜅1→𝜅2

1 𝜏𝜅12 𝗍𝗒𝗉𝖾𝗌

𝜋 ∶∶= ∅ | 𝜋 ∪ { 𝑥 ∶ 𝜏 } 𝖼𝗈𝗇𝗌𝗍𝗋𝖺𝗂𝗇𝗍𝗌

𝜎 ∶∶= ∀𝛼.𝜋 ⇒ 𝜏 𝗍𝗒𝗉𝖾 𝗌𝖼𝗁𝖾𝗆𝖾𝗌

𝛤 ∶∶= ∅ | 𝛤 , 𝑥 ∶ 𝜎 𝖾𝗇𝗏𝗂𝗋𝗈𝗇𝗆𝖾𝗇𝗍𝗌

𝜃 ∶∶= ∅ | [𝛼 ↦ 𝜏] 𝗌𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌

𝐽 ∶∶= 𝛤 ⊢ 𝑒 ∶ 𝜋. 𝜏 ⇝ 𝑒∗ 𝗃𝗎𝖽𝗀𝗆𝖾𝗇𝗍𝗌

x, o, l 𝗂𝖽𝖾𝗇𝗍𝗂𝖿 𝗂𝖾𝗋𝗌
let over parse s = float_of_string

// parse should remain unsolved
let pp s = pretty (parse s)

The type inferred for function pp should be { 𝚙𝚛𝚎𝚝𝚝𝚢 ∶ 𝛼 →
𝚜𝚝𝚛𝚒𝚗𝚐; 𝚙𝚊𝚛𝚜𝚎 ∶ 𝚜𝚝𝚛𝚒𝚗𝚐 → 𝛼 } ⇒ 𝚜𝚝𝚛𝚒𝚗𝚐 → 𝚜𝚝𝚛𝚒𝚗𝚐, although the
parse constraint could be immediately solved by the only available
instance, as it represents a best-fit according to Definition 5.2.1. In
such case, the resulting type would therefore be { 𝚙𝚛𝚎𝚝𝚝𝚢 ∶ 𝚏𝚕𝚘𝚊𝚝 →
𝚜𝚝𝚛𝚒𝚗𝚐 } ⇒ 𝚜𝚝𝚛𝚒𝚗𝚐 → 𝚜𝚝𝚛𝚒𝚗𝚐, locking the float type in the constraint
of pretty and becoming monomorphic. This is most likely unwanted,
therefore the two constraints of pp must be ignored by the solver even
if some instances of parse or pretty exist.

In our system, unsolvable constraints are not treated as ambiguities
rejected by the compiler like in Jones et al. (1997), Jones (2000), but
are rather kept and propagated even though they will never be solved
automatically. Programmers may want to disambiguate later by using
injection, which is also a form of manual resolution. In the following
snippet, injection is effectively used for passing a record of functions
for parsing and pretty-printing integers.

let pp_int =
(inject pp) { pretty = string_of_int;

parse = int_of_string }

The type variable 𝛼 is unified to int thanks to the record ap-
lication, eventually yielding to the unconstrained type 𝚜𝚝𝚛𝚒𝚗𝚐 →
𝚝𝚛𝚒𝚗𝚐.

.3. Type rules

In Tables 2 and 3 syntax-directed type rules are presented. Judg-
ents are formulas 𝛤 ⊢ 𝑒 ∶ 𝜋.𝜏 ⇝ 𝑒∗ assigning a type 𝜏 and a translation

𝑒∗ to each input term 𝑒 in the typing context 𝛤 . Constraints 𝜋 represent
the current constraint set being collected during the type derivation.
Type rules deal with constrained type 𝜋 ⇒ 𝜏: when an unconstrained
type 𝜏 appears, it is a short form for ∅ ⇒ 𝜏. Polymorphism, generaliza-
ion and instantiation are not mentioned here and will be supported by
ype inference rules presented in Section 6. Environment 𝛤 , therefore,
ncludes constrained types 𝜋 ⇒ 𝜏 as dummy type schemes ∀∅.𝜋 ⇒ 𝜏.

Before proceeding with the description of type rules, an explana-
ion of all identifier formats used is necessary for understanding how
mplicits and overloaded symbols are transformed when bound to the
nvironment.

• Identifiers of form 𝑜 stand for overloadable symbols. When bound
in the environment 𝛤 a superscript 𝑘 ≥ 0 is added to discriminate
instances. An implementation can append such superscript as a
suffix separated from the base identifier by a special character
that never appears at the lexical level within identifier names.
For example, 𝑜7 could be encoded as o$7, assuming the dollar
symbol $ does not belong to variable names. Rule (Overload)
binds the principal type annotated by the programmer to the
environment and adds the 0 superscript: 𝑜0 is, therefore, a special
11
Table 2
Type rules I. Basic language terms, record construction, record field selection and
constraint resolution.

Var
𝛤 (𝑥) = { 𝑥 ∶ 𝜏 } ⇒ 𝜏

𝛤 ⊢ 𝑥 ∶ { 𝐱 ∶ 𝜏 }. 𝜏 ⇝ 𝑥 𝐱

Var-O
𝛤 (𝑜0) = 𝜏

𝛤 ⊢ 𝑜 ∶ { 𝐨 ∶ 𝜏 }. 𝜏 ⇝ 𝐨

Var-I

𝛤 ⊢?𝑥 ∶ { ?𝑥 ∶ 𝜏 }. 𝜏 ⇝?𝑥

Abs
𝛤 , (𝑥 ∶ 𝜏1) ⊢ 𝑒 ∶ 𝜋. 𝜏2 ⇝ 𝑒∗

𝛤 ⊢ 𝜆𝑥.𝑒 ∶ 𝜋. 𝜏1 → 𝜏2 ⇝ 𝜆𝑥.𝑒∗

App
𝛤 ⊢ 𝑒1 ∶ 𝜋1 . 𝜏2 → 𝜏 ⇝ 𝑒∗1
𝛤 ⊢ 𝑒2 ∶ 𝜋2 . 𝜏2 ⇝ 𝑒∗2

𝛤 ⊢ 𝑒1 𝑒2 ∶ 𝜋1 ∪ 𝜋2 . 𝜏 ⇝ 𝑒∗1 𝑒∗2

Sel
𝛤 ⊢ 𝑒 ∶ 𝜋. { 𝑙 ∶ 𝜏1 | 𝜏𝚛𝚘𝚠2 } ⇝ 𝑒∗

𝛤 ⊢ 𝑒.𝑙 ∶ 𝜋. 𝜏1 ⇝ 𝑒∗ .𝑙

Record
𝛤 ⊢ 𝑒𝑖 ∶ 𝜋. 𝜏𝑖 ⇝ 𝑒∗𝑖 (∀𝑖 ∈ [1, 𝑛])

𝛤 ⊢ { 𝑙1 = 𝑒1 .. 𝑙𝑛 = 𝑒𝑛 } ∶ 𝜋. { 𝑙1 ∶ 𝜏1 .. 𝑙𝑛 ∶ 𝜏𝑛 } ⇝ { 𝑙1 = 𝑒∗1 .. 𝑙𝑛 = 𝑒∗𝑛 }

Let
𝛤 ⊢ 𝑒1 ∶ 𝜋1 . 𝜏1 ⇝ 𝑒∗1
𝜋1 ≡ { 𝑥 ∶ 𝜏 } 𝛤 , (𝑥 ∶ 𝜋1 ⇒ 𝜏1) ⊢ 𝑒2 ∶ 𝜋2 . 𝜏2 ⇝ 𝑒∗2
𝛤 ⊢ 𝚕𝚎𝚝 𝑥 = 𝑒1 𝚒𝚗 𝑒2 ∶ 𝜋2 . 𝜏2 ⇝ 𝚕𝚎𝚝 𝑥 = 𝜆𝑥. 𝑒∗1 𝚒𝚗 𝑒∗2

Solve
𝛤 ⊢ 𝑒 ∶ 𝜋0 ∪ { 𝑥1 ∶ 𝜏1 }. 𝜏0 ⇝ 𝑒∗0 𝐂(𝜋0; 𝑒∗0) = (𝜋; 𝑒∗)
𝐒(𝛤 ; 𝑥1 ∶ 𝜏1) = (𝑦 ∶ 𝜎1) 𝜎1 ≡ ∀𝛼. 𝜋1 ⇒ 𝜏′1 𝜋1 ≡ { 𝑥 ∶ 𝜏 }

𝛤 ⊢ 𝑒 ∶ 𝜋 ∪ { 𝐱 ∶ 𝜏 }. 𝜏0 ⇝ 𝚕𝚎𝚝 𝑥1 = 𝑦 𝐱 𝚒𝚗 𝑒∗

name reserved for the original principal type and no instance ever
happens to have such name. Instances bound by rule (Let-Over)
add a unique superscript 𝑘 ≥ 1 calculated by a hashing function.
More on this in Definition 5.1.2. Specific instances are denoted
with 𝑜𝑘, e.g. those found by the constraint solver in rule (Solve).

• Identifiers of form ?𝑥 are implicits. When converted from an over-
loadable identifier 𝑜, like in rule (Overload-Esc), they appear as ?𝑜.
An implementation can just prefix the question mark character for
discriminating implicits from ordinary identifiers, assuming the ?
is not a legal character for identifiers at the lexical level.

• Identifiers of form 𝑥 stand for any identifier, including overload-
able identifiers 𝑜, instance identifiers 𝑜𝑘, implicits ?𝑥 and normal
variable names. This is a match-all notation for manipulating
identifiers of any form in the type rules.

• When an identifier 𝑜, 𝑥 or an implicit ?𝑥 appears in a constraint,
they are always implicitly suffixed with a number. Such suffix
is omitted in our formalization for the sake of simplicity. This
does not have to be confused with the 𝑘 superscript added for
discriminating instances. An implementation may treat this as
an integer suffix that is separated from the base identifier 𝑜 by
a different separator, e.g. the % rather than the $ used for in-
stances. This is a well-known practice in open-world overloading
systems (Wadler and Blott, 1989; Jones, 1992; Jones et al., 1997;
Odersky et al., 1995) that is necessary for allowing multiple

The Journal of Systems & Software 216 (2024) 112141A. Spanò

p
t
b
i
c
t
(
q
t
d
o
R
a
t
t

n
i
b

i

l
o
c
f
r
e
?
o
i
c
o
s

p

Table 3
Type rules II. Terms dealing with overloading, ejection and injection.

Overload
𝑜 ∉ dom(𝜋) 𝛤 , (𝑜0 ∶ 𝜏0) ⊢ 𝑒 ∶ 𝜋. 𝜏 ⇝ 𝑒∗

𝛤 ⊢ 𝚘𝚟𝚎𝚛𝚕𝚘𝚊𝚍 𝑜 ∶ 𝜏0 𝚒𝚗 𝑒 ∶ 𝜋. 𝜏 ⇝ 𝑒∗

Overload-Esc
𝑜 ∈ dom(𝜋)
𝛤 , (𝑜0 ∶ 𝜏0) ⊢ 𝑒 ∶ 𝜋 ∪ { 𝐨 ∶ 𝜏0 }. 𝜏 ⇝ 𝑒∗

𝛤 ⊢ 𝚘𝚟𝚎𝚛𝚕𝚘𝚊𝚍 𝑜 ∶ 𝜏0 𝚒𝚗 𝑒 ∶ 𝜋 ∪ { ?𝑜 ∶ 𝜏0 }. 𝜏 ⇝ 𝚕𝚎𝚝 𝐨 =?𝑜 𝚒𝚗 𝑒∗

Let-Over
𝛤 ⊢ 𝑒1 ∶ 𝜋1 . 𝜏1 ⇝ 𝑒∗1 𝛤 (𝑜0) = 𝜏0
𝜋1 ≡ { 𝑥 ∶ 𝜏 } 𝜏1 ⪯ 𝜏0 𝑘 = (𝜏1) 𝛤 , (𝑜𝑘 ∶ 𝜏1) ⊢ 𝑒2 ∶ 𝜋. 𝜏2 ⇝ 𝑒∗2

𝛤 ⊢ 𝚕𝚎𝚝 𝚘𝚟𝚎𝚛 𝑜 = 𝑒1 𝚒𝚗 𝑒2 ∶ 𝜋. 𝜏2 ⇝ 𝚕𝚎𝚝 𝑜𝑘 = 𝜆𝑥. 𝑒∗1 𝚒𝚗 𝑒∗2

Eject-All
𝛤 ⊢ 𝑒 ∶ 𝜋. { 𝑜 ∶ 𝜏; 𝑥 ∶ 𝜏′ | 𝛼𝚛𝚘𝚠 } → 𝜏0 ⇝ 𝑒∗

∀𝑜 ∈ 𝑜. 𝑜0 ∈ dom(𝛤)

𝛤 ⊢ 𝚎𝚓𝚎𝚌𝚝 𝑒 ∶ 𝜋 ∪ { 𝑜 ∶ 𝜏; 𝑥 ∶ 𝜏′ }. 𝜏0 ⇝ 𝑒∗ { 𝑜 = 𝑜; 𝑥 =?𝑥; }

Inject-All
𝛤 ⊢ 𝑒 ∶ { 𝑥 ∶ 𝜏 }. 𝜏1 ⇝ 𝑒∗1
𝛤 ⊢ 𝚒𝚗𝚓𝚎𝚌𝚝 𝑥 𝚒𝚗 𝑒 ∶ 𝜋2 . 𝜏2 ⇝ 𝑒∗2

𝛤 ⊢ 𝚒𝚗𝚓𝚎𝚌𝚝 𝑒 ∶ 𝜋2 . 𝜏2 ⇝ 𝑒∗2

Eject-R
𝛤 ⊢ 𝚎𝚓𝚎𝚌𝚝 𝑒 ∶ { 𝑥 ∶ 𝜏; 𝑦 ∶ 𝜏′ }. 𝜏1 ⇝ 𝑒∗1
𝛤 ⊢ 𝚒𝚗𝚓𝚎𝚌𝚝 𝑦 𝚒𝚗 𝚎𝚓𝚎𝚌𝚝 𝑒 ∶ 𝜋2 . 𝜏2 ⇝ 𝑒∗2

𝛤 ⊢ 𝚎𝚓𝚎𝚌𝚝 𝑥 𝚒𝚗 𝑒 ∶ 𝜋2 . 𝜏2 ⇝ 𝑒∗2

Inject-R
𝛤 ⊢ 𝑒 ∶ 𝜋 ∪ { 𝑥 ∶ 𝜏 }. 𝜏 ⇝ 𝑒∗

𝑦, 𝛼𝚛𝚘𝚠 fresh { 𝑥 ∶ 𝜏 } ≡ { 𝑥1 ∶ 𝜏1 .. 𝑥𝑛 ∶ 𝜏𝑛 } 𝑛 ≥ 1

𝛤 ⊢ 𝚒𝚗𝚓𝚎𝚌𝚝 𝑥 𝚒𝚗 𝑒 ∶ 𝜋. { 𝑥 ∶ 𝜏 | 𝛼 } → 𝜏
⇝ 𝜆𝑦. 𝚕𝚎𝚝 𝑥1 = 𝑦.𝑥1 𝚒𝚗𝚕𝚎𝚝 .. 𝑥𝑛 = 𝑦.𝑥𝑛 𝚒𝚗 𝑒∗

occurrences of the same overloaded identifier within the same
expression. Each occurrence must produce a distinct constraint
that could be solved by a different instance.

• Bolded identifiers of form 𝐨 represent overloaded identifiers
whose name is being refreshed by replacing the numerical suffix
with a new number. Dictionary passing is responsible for this, and
rule (Var) shows the mechanism in action.

• Bolded identifiers 𝐱 stand for identifiers of any form being re-
freshed due to dictionary passing.

• Identifiers of form 𝑙 are record labels appearing in rules (Sel)
and (Record). Injection and ejection treat record labels as iden-
tifiers either of form 𝑥 or 𝑜, depending on what is stored in the
environment, as rule (Eject-All) shows.

• Over-lined identifiers, such as 𝑥, 𝑜 or ?𝑥, represent sequences of
identifiers.

We now proceed with the description of the most relevant rules in
Table 2. Rule (Var) is responsible for dictionary passing. Constraints
retrieved from 𝛤 when looking up variable 𝑥 are inherited, and all
constraint names are refreshed with new suffixes and added to the
current constraint set. Refreshed names 𝐱 are applied in currying to 𝑥 to
ass the dictionary. Rule (Var-O) deals with overloadable variable iden-
ifiers of form 𝑜. These can be discriminated from ordinary variables 𝑥
y looking up a principal type bound to 𝑜0 in 𝛤 . If the lookup succeeds,
dentifier 𝑜 gets a unique numeric suffix and is inserted into the current
onstraint set. This suffix generation is treated as a refreshment of
he name and is represented by the bolded 𝐨. If the lookup fails, rule
Var) holds. Rule (Var-I) holds when an identifier prefixed with a
uestion mark is encountered. Implicits do not get a suffix: this implies
hat multiple occurrences of the same implicit within an expression
o not produce distinct constraints, as opposed to what happens with
verloaded identifiers. The two behaviors are explained in Section 2.3.
ules (Abs), (App) and (Let) are normal Hindley–Milner rules for lambda
bstraction, application and let-binding, respectively, extended with
ype constraints. Additionally, rule (Let) lambda abstracts constraints
o allow dictionary passing: 𝜆𝐱 stands for many nested lambdas. Rules
12
(Sel) and (Record) employ row types and deal with extensible records.
These are taken from the extensible record system with scoped labels
described in Leijen (2009) and adapted to work with type constraints.

Rule (Solve) deals with constraint resolution and may be used at any
time during a type derivation. It performs constraint compaction before
solving, simplifying the constraint set 𝜋0 and producing a 𝜋 that appears
in the rule output. The rule holds whenever some constraint 𝑥1 ∶ 𝜏1
is solvable, i.e. when the solver 𝐒 finds either a best-fitting instance
or a fitting binding 𝑦 ∶ 𝜎1 in the current context 𝛤 . The identifier 𝑥1
can either be an overloaded identifier or an implicit, thus the resolved
𝑦 can either be an instance of form 𝑜𝑘 or a plain binding. Since the
instance found by the solver may be a constrained function itself, its
constraint set 𝜋1 is inherited and refreshed, hence the bold notation 𝐱
standing for all identifiers 𝑥 being inherited from 𝜋1 with a fresh suffix.
The translation produces a let binding the constraint name 𝑥1 to the
ame 𝑦. Dictionary passing produces a curried application of refreshed
dentifiers 𝐱 due to constraint inheritance, which reproduces the same
ehavior as in the (Var) rule.

Table 3 contains type rules for terms dealing with overloading,
njection and ejection. Rule (Overload) binds the principal type 𝜏0 to

the reserved name 𝑜0. No occurrence of 𝑜 must remain in the constraint
set 𝜋 after expression 𝑒 has been derived. This means that the over-
oadable symbol 𝑜 must not escape its scope. Rule (Overload-Esc) holds
therwise: when the overloadable symbol 𝑜 escapes its scope, it gets
onverted into an implicit ?𝑜 on the fly. This happens when a constraint
or 𝑜 remains unsolved, i.e. when the suffixed overloadable identifier
epresented by the bold 𝐨 is left in the constraint set. The translation
nsures that such suffixed identifier 𝐨 is aliased with the implicit
𝑜. Note that the implicit is not suffixed: this implies that multiple
ccurrences of 𝑜 having distinct suffixes would not become multiple
mplicits, but would rather be aliased to the same ?𝑜, producing a single
onstraint. This comes naturally from constraints being a set: multiple
ccurrences of the same constraint identifier would require to have the
ame types, otherwise an error must occur.

An implementation featuring type inference would unify the type
arts of duplicated constraints. Take the following example:

let f x = // { ?id : ’a -> ’a } => ’a -> ’a
overload id : ’a -> ’b
in id (id x) // {id%1 : ’a -> ’b;

// id%2 : ’b -> ’c} => ’a -> ’c

The constraints collected for the expression id (id x) include two
occurrences of the locally overloadable function id (id x), namely the
suffixed names id%1 and id%2. They will both escape their scope
when typing reaches the overload construct, as no instances are
found. They would both be converted into one single implicit ?id
and their types unified, yielding to the final type of f shown in the
comment.

Rule (Let-Over) is very similar to rule (Let). Additionally, the type
of the instance is checked to be in relation to the original principal type
annotated by the programmer for the overloadable symbol.

Rule (Eject-All) expects expression 𝑒 to be an arrow type with a
record domain. It basically splits the record fields into two groups:
identifiers 𝑜 that are overloaded in 𝛤 and other labels of form 𝑥 that are
not overloaded. Whether a record label 𝑥 has a corresponding binding
with the same name in 𝛤 or not, it is stubbed to an implicit. The solver
can solve implicits with plain let-bindings anyway. Translation erases
the arrow type by introducing the application of a synthetic record that
stubs all fields into either overloaded symbols or implicit parameters.

Rule (Eject-R) actually implements a syntactic sugar of (Eject-All)
and (Inject-R), as discussed in Section 3.4. The same applies to rule
(Inject-All).

Rule (Inject-R) is native instead. It moves the injected identifiers
from the constraints to a new record that becomes the domain of the
resulting arrow type. Translation adds a synthetic lambda abstraction:
the lambda parameter 𝑦 is a record, and inside the lambda body all

The Journal of Systems & Software 216 (2024) 112141A. Spanò

c
t
o
s
H
i
p
e
t
p

5
t
t
e

c
f
i
s
o
i
t

t

F
e
s
a

Table 4
Type inference algorithm 𝑤 in form of syntax-directed rules I.

𝑤-Var
𝛤 (𝑥) = 𝜎 𝚒𝚗𝚜𝚝(𝜎) = { 𝑥 ∶ 𝜏 } ⇒ 𝜏0

𝛤 ⊢𝑤 𝑥 ∶ { 𝐱 ∶ 𝜏 }. 𝜏0 ⇝ 𝑥 𝐱 ⊳∅

𝑤-Var-O
𝛤 (𝑜0) = 𝜎 𝜎 ≡ ∀𝛼.∅ ⇒ 𝜏 𝚒𝚗𝚜𝚝(𝜎) = ∅ ⇒ 𝜏0

𝛤 ⊢𝑤 𝑜 ∶ { 𝐨 ∶ 𝜏0 }. 𝜏0 ⇝ 𝐨 ⊳∅

𝑤-Var-I
𝛼 fresh

𝛤 ⊢𝑤?𝑜 ∶ { ?𝑜 ∶ 𝛼 }. 𝛼 ⇝?𝑜 ⊳∅

𝑤-Solve
𝛤 ⊢𝑤 𝑒 ∶ 𝜋0 ∪ { 𝑥1 ∶ 𝜏1 }. 𝜏0 ⇝ 𝑒∗0 ⊳ 𝜃1
𝐂(𝜋0; 𝑒∗0) = (𝜋; 𝑒∗) 𝐒(𝛤 ; 𝑥1 ∶ 𝜏1) = (𝑦 ∶ 𝜎1)
𝚒𝚗𝚜𝚝(𝜎1) = { 𝑥 ∶ 𝜏 } ⇒ 𝜏′1 𝜏1 ∼ 𝜏′1 ⊳ 𝜃2 𝜃3 = 𝜃2 ⋅ 𝜃1
𝛤 ⊢𝑤∶ 𝑒 ∶ 𝜋 ∪ { 𝐱 ∶ 𝜏 }. 𝜏0 ⇝ 𝚕𝚎𝚝 𝑥1 = 𝑦 𝐱 𝚒𝚗 𝑒∗ ⊳ 𝜃3

𝑤-App
𝛤 ⊢𝑤 𝑒1 ∶ 𝜋1 . 𝜏1 ⇝ 𝑒∗1 ⊳ 𝜃1 𝜃1(𝛤) ⊢𝑤 𝑒2 ∶ 𝜃1(𝜋2). 𝜃1(𝜏2) ⇝ 𝑒∗2 ⊳ 𝜃2
𝜃2(𝜏1) ∼ 𝜏2 → 𝛼 ⊳ 𝜃3 𝜃4 = 𝜃3 ⋅ 𝜃2 ⋅ 𝜃1

𝛤 ⊢𝑤 𝑒1 𝑒2 ∶ 𝜃4(𝜋1 ∪ 𝜋2). 𝜃4(𝛼) ⇝ 𝑒∗1 𝑒∗2 ⊳ 𝜃4

𝑤-Sel
𝛤 ⊢𝑤 𝑒 ∶ 𝜋. 𝜏 ⇝ 𝑒∗ ⊳ 𝜃1
𝜏 ∼ { 𝑙 ∶ 𝛼 | 𝛽 } ⊳ 𝜃2 𝜃3 = 𝜃2 ⋅ 𝜃1 𝛼⋆ , 𝛽𝚛𝚘𝚠 fresh

𝛤 ⊢𝑤 𝑒.𝑙 ∶ 𝜃3(𝜋). 𝜃3(𝛼) ⇝ 𝑒∗ .𝑙 ⊳ 𝜃3

Table 5
Type inference algorithm 𝑤 in form of syntax-directed rules II.

𝑤-Let
𝛤 ⊢𝑤 𝑒1 ∶ 𝜋1 . 𝜏1 ⇝ 𝑒∗1 ⊳ 𝜃1
𝜋1 = { 𝑥 ∶ 𝜏} 𝛼 = (𝚏𝚝𝚟(𝜋1) ∪ 𝚏𝚝𝚟(𝜏1)) ⧵ 𝚏𝚝𝚟(𝛤)
𝜎1 = ∀𝛼. 𝜋1 ⇒ 𝜏1 𝜃1(𝛤), (𝑥 ∶ 𝜎1) ⊢𝑤 𝑒2 ∶ 𝜋2 . 𝜏2 ⇝ 𝑒∗2 ⊳ 𝜃2
𝛤 ⊢𝑤 𝚕𝚎𝚝 𝑥 = 𝑒1 𝚒𝚗 𝑒2 ∶ 𝜋2 . 𝜏2 ⇝ 𝚕𝚎𝚝 𝑥 = 𝜆𝑥. 𝑒∗1 𝚒𝚗 𝑒∗2 ⊳ 𝜃2

𝑤-Let-Over
𝛤 ⊢𝑤 𝑒1 ∶ 𝜋1 . 𝜏1 ⇝ 𝑒∗1 ⊳ 𝜃1
𝜋1 = { 𝑥 ∶ 𝜏} 𝛼 = (𝚏𝚝𝚟(𝜋1) ∪ 𝚏𝚝𝚟(𝜏1)) ⧵ 𝚏𝚝𝚟(𝛤) 𝜎1 = ∀𝛼. 𝜋1 ⇒ 𝜏1
𝜎1 ⪯ 𝛤 (𝑜0) 𝜃1(𝛤), (𝑥 ∶ 𝜎1) ⊢𝑤 𝑒2 ∶ 𝜋2 . 𝜏2 ⇝ 𝑒∗2 ⊳ 𝜃2 𝑘 ≥ 1 fresh

𝛤 ⊢𝑤 𝚕𝚎𝚝𝚘𝚟𝚎𝚛 𝑜 = 𝑒1 𝚒𝚗 𝑒2 ∶ 𝜋2 . 𝜏2 ⇝ 𝚕𝚎𝚝 𝑥 = 𝜆𝑥. 𝑒∗1 𝚒𝚗 𝑒∗2 ⊳ 𝜃2

𝑤-Eject-All
𝛤 ⊢𝑤 𝑒 ∶ 𝜋1 . 𝜏1 ⇝ 𝑒∗1 ⊳ 𝜃1
𝜏1 ∼ { 𝛽 } → 𝛼 ⊳ 𝜃2 𝜃2({ 𝛽 }) = { 𝑜 ∶ 𝜏; 𝑥 ∶ 𝜏′ | 𝛾𝚛𝚘𝚠 }
∀𝑜 ∈ 𝑜. 𝑜0 ∈ dom(𝛤) 𝜃3 = 𝜃2 ⋅ 𝜃1 𝛼⋆ , 𝛽𝚛𝚘𝚠 fresh

𝛤 ⊢𝑤 𝚎𝚓𝚎𝚌𝚝 𝑒 ∶ { 𝑜 ∶ 𝜏; 𝑥 ∶ 𝜏′ }. 𝜃3(𝛼) ⇝ 𝑒∗1 { 𝑜 = 𝑜; 𝑥 =?𝑥; } ⊳ 𝜃3

𝑤-Eject-R
𝛤 ⊢𝑤 𝚒𝚗𝚓𝚎𝚌𝚝 𝑥 𝚒𝚗𝚎𝚓𝚎𝚌𝚝 𝑒 ∶ 𝜋. 𝜏 ⇝ 𝑒∗ ⊳ 𝜃

𝛤 ⊢𝑤 𝚎𝚓𝚎𝚌𝚝 𝑥 𝚒𝚗 𝑒 ∶ 𝜋. 𝜏 ⇝ 𝑒∗ ⊳ 𝜃

𝑤-Inject-All
𝛤 ⊢𝑤 𝑒 ∶ 𝜋1 . 𝜏1 ⇝ 𝑒∗1 ⊳ 𝜃1
𝜋1 = { 𝑥 ∶ 𝜏 } 𝛤 ⊢𝑤 𝚒𝚗𝚓𝚎𝚌𝚝 𝑥 𝚒𝚗 𝑒 ∶ 𝜋2 . 𝜏2 ⇝ 𝑒∗2 ⊳ 𝜃2

𝛤 ⊢𝑤 𝚒𝚗𝚓𝚎𝚌𝚝 𝑒 ∶ 𝜋2 . 𝜏2 ⇝ 𝑒∗2 ⊳ 𝜃2

𝑤-Inject-R
𝛤 ⊢𝑤 𝑒 ∶ 𝜋. 𝜏 ⇝ 𝑒∗ ⊳ 𝜃1 𝑦, 𝛼𝚛𝚘𝚠 fresh

𝛤 ⊢𝑤 𝚒𝚗𝚓𝚎𝚌𝚝 𝑥 𝚒𝚗 𝑒 ∶ 𝜋∖{ 𝑥 ∶ 𝜏 }.{ 𝑥 ∶ 𝜏 | 𝛼 } → 𝜏
⇝ 𝜆𝑦. 𝚕𝚎𝚝 𝑥1 = 𝑦.𝑥1 𝚒𝚗𝚕𝚎𝚝 .. 𝑥𝑛 = 𝑦.𝑥𝑛 𝚒𝚗 𝑒∗ ⊳ 𝜃1

constraint identifiers 𝑥1..𝑥𝑛 are bound to the fields of the record with
the same names.

6. Type inference

Our type inference algorithm is a function 𝑤 ∶ 𝛤 × 𝑒 → 𝜋 × 𝜏 ×
𝑒∗ × 𝜃 formulated as a deduction system with syntax-directed inference
13
Table 6
Kind-preserving unification algorithm for simple types and row types.

U-Const

𝑐𝜅 ∼ 𝑐𝜅 ⊳∅

U-Var

𝛼𝜅 ∼ 𝛼𝜅 ⊳∅

U-Var-L
𝛼 ∉ 𝚏𝚝𝚟(𝜏)

𝛼𝜅 ∼ 𝜏𝜅 ⊳ [𝛼 ↦ 𝜏]

U-Var-R
𝛼 ∉ 𝚏𝚝𝚟(𝜏)

𝜏𝜅 ∼ 𝛼𝜅 ⊳ [𝛼 ↦ 𝜏]

U-App
𝜏1 ∼ 𝜏3 ⊳ 𝜃1 𝜃1(𝜏2) ∼ 𝜃1(𝜏4) ⊳ 𝜃2

𝜏𝜅2→𝜅
1 𝜏𝜅22 ∼ 𝜏𝜅2→𝜅

3 𝜏𝜅24 ⊳ 𝜃2 ⋅ 𝜃1

U-Row
𝑠1 ≃ ⦇ 𝑙 ∶ 𝜏2 | 𝑠2 ⦈ ⊳ 𝜃1 tail(𝑟1) ∉ dom(𝜃1)
𝜃1(𝜏1) ∼ 𝜃1(𝜏2) ⊳ 𝜃2 𝜃2(𝜃1(𝑟1)) ∼ 𝜃2(𝜃1(𝑠2)) ⊳ 𝜃3

⦇ 𝑙 ∶ 𝜏1 | 𝑟1 ⦈ ∼ 𝑠1 ⊳ 𝜃3 ⋅ 𝜃2 ⋅ 𝜃1

lauses of form 𝛤 ⊢𝑤 𝑒 ∶ 𝜋. 𝜏 ⇝ 𝑒∗ ⊳ 𝜃. The environment 𝛤 and
he expression 𝑒 can be considered the inputs of the rule, whereas the
utputs consist in the constraint set 𝜋, the type 𝜏, the translated expres-
ion 𝑒∗ and the substitution 𝜃. The formula can be read as a standard
indley–Milner type inference clause: in a context 𝛤 , an expression 𝑒 is

nferred to have type 𝜏 under the substitution 𝜃. Additionally, our rules
roduce the constraint set 𝜋, where overloadable symbols and implicits
ncountered during typing are collected, and perform translation of
he input expression 𝑒 into a simpler form 𝑒∗, revealing the dictionary
assing mechanism.

We present a description of all type inference rules in Tables 4 and
. In Table 4 rules 𝑤-(Var) and 𝑤-(Var)-O are equivalent to the rules of
he respective type in Table 2. The instantiation function 𝚒𝚗𝚜𝚝(𝜎) for a
ype scheme 𝜎 ≡ ∀𝛼.𝜋 ⇒ 𝜏 is the typical Hindley–Milner instantiation
xtended for constrained types, where each 𝛼 ∈ 𝛼 is substituted with a

new fresh type variable 𝛽 both in the constraint set 𝜋 and in the type
body 𝜏.

Rule 𝑤-(Var)-I introduces a fresh type variable when an implicit is
encountered.

Rule 𝑤-(Solve) behaves like type rule (Solve) in Table 2, performing
onstraints compaction and resolution at any time, as long as the solver
inds an instance for a given constraint 𝑥1. Additionally, it performs
nstantiation of the type scheme 𝜎1 of the instance 𝑜𝑘 found by the
olver, eventually unifying its refreshed type 𝜏′1 with the constraint
riginal type 𝜏1. Since the instance may be a constrained function itself,
ts constraint set is inherited and dictionary passing is performed in the
ranslation.

Rules 𝑤-(App) and 𝑤-(Sel) are straightforward and perform unifica-
ion, the latter being taken from (Leijen, 2005).

In Table 5 rules 𝑤-(Let) and 𝑤-(Let)-(Over) perform generalization.
unction 𝚏𝚝𝚟 calculates free type variables of constraints, types or
nvironments according to the usual definition for Hindley–Milner type
ystems. Also, abstraction is performed in translation, in the same way
s the respective type rules do.

Rule 𝑤-(Eject) forces unification of the type of expression 𝑒 with an
arrow type having a record type in the domain. Such record type is
represented by the row type variable 𝛽. Similarly to the respective type
rule in Table 3, we split the record labels to be ejected into two groups:
those which are overloaded and those which are not. Refer to Section 5
for more details on this behavior.

Rule 𝑤-(Eject)-R, 𝑤-(Inject) and 𝑤-(Inject)-R reproduce the same
behavior of the respective type rules.

6.1. Unification

In our system substitutions are kind-preserving, meaning that a
substitution always maps type variables of a particular kind to types

of the same kind. A substitution 𝜃 is called a unifier of two types 𝜏1

The Journal of Systems & Software 216 (2024) 112141A. Spanò

a

a
T
u

u
a
l
a
r
𝜏

𝑠
t
S
s
a
t
t
a

d

u
b
b
o

e

P
s
r

Table 7
Row-rewriting rules preserving type equality.

Row-Head

⦇ 𝑙 ∶ 𝜏 | 𝑟 ⦈ ≃ ⦇ 𝑙 ∶ 𝜏 | 𝑟 ⦈ ⊳∅

Row-Swap
𝑙1 ≠ 𝑙2 𝑟1 ≃ ⦇ 𝑙1 ∶ 𝜏1 | 𝑟2 ⦈ ⊳ 𝜃

⦇ 𝑙2 ∶ 𝜏2 | 𝑟1 ⦈ ≃ ⦇ 𝑙1 ∶ 𝜏1; 𝑙2 ∶ 𝜏2 | 𝑟2 ⦈ ⊳ 𝜃

Row-Var
𝛽𝚛𝚘𝚠 , 𝛾⋆ fresh

𝛼𝚛𝚘𝚠 ≃ ⦇ 𝑙 ∶ 𝛾 | 𝛽 ⦈ ⊳ [𝛼 ↦ ⦇ 𝑙 ∶ 𝛾 | 𝛽 ⦈]

nd 𝜏2 only if 𝜃(𝜏1) = 𝜃(𝜏2). If every other unifier can be written as
the composition 𝜃′ ⋅ 𝜃, for some substitution 𝜃′, then we call 𝜃 a most
general unifier. To compute the most general unifier 𝜃 for two types 𝜏1
nd 𝜏2 in the presence of rows, we use the rules provided in Table 6.
he notation 𝜏1 ∼ 𝜏2 ⊳ 𝜃 indicates the calculation of the most general
nifier 𝜃 for two types 𝜏1 and 𝜏2.

The first five rules in Table 6 deal with standard kind-preserving
nification for simple types, while rule (U-Row) deals with rows. When
ttempting to unify a row ⦇ 𝑙 ∶ 𝜏1 ∣ 𝑟1 ⦈ with some other row 𝑠1, the
atter is rewritten to match the form ⦇ 𝑙 ∶ 𝜏2 ∣ 𝑠2 ⦈, where 𝜏2 and 𝑠2
re respectively a new type and a new row synthesized by the row-
ewriting rules in Table 7. If the rewriting is successful, the field types
1 and 𝜏2 as well as the tails of the rows 𝑟1 and 𝑠2 are unified.

Rules for rewriting rows in Table 7 present clauses of form 𝑟 ≃ ⦇ 𝑙 ∶
𝜏 ∣ 𝑠 ⦈⊳𝜃, asserting that a row 𝑟 can be rewritten to the form ⦇ 𝑙 ∶ 𝜏 ∣ 𝑠 ⦈
under the substitution 𝜃, with 𝑟 and 𝑙 being input parameters while 𝜏,
, and 𝜃 are synthesized. Rule (Row-Head) simply states that two row
ypes having the same head and the same tail are equal. Rule (Row-
wap) states that it is possible to swap the first two fields of a row and
till consider it as the same row, as long as the labels of those fields
re distinct. Finally, rule (Row-Var) unifies a row tail that consists of a
ype variable 𝛼 of kind 𝚛𝚘𝚠. Please note that this rule introduces fresh
ype variables which might affect the termination of the unification
lgorithm. This is the reason for the side condition in rule (U)-(Row):

tail(𝑟1) ∉ dom(𝜃1), where the tail of a row type is intended as the row
without its head. For a detailed explanation of why this side condition
is necessary and for further details, please refer to the paper that first
introduced this unification system for extensible rows (Leijen, 2005).

6.2. Correctness of the translation of eject and inject

In this section, we sketch the proofs of correctness of the translation
performed by type rules involving 𝚒𝚗𝚓𝚎𝚌𝚝 and 𝚎𝚓𝚎𝚌𝚝 constructs. Due
to the introductory nature of the paper and the preliminary state of
the study of the proposed system, we leave a full formalization of
the type system to a future work. This would include a proof of the
preservation of the semantics, a proof of coherence for our overloading
subsystem (Jones, 1993; Bottu et al., 2019) also in the presence of
explicit dictionary passing (Winant and Devriese, 2018), declined for
our first-class operator 𝚒𝚗𝚓𝚎𝚌𝚝. As well as a proof of coherence for
ejection, which is something novel.

For the proofs of soundness of the extensible record subsystem and
unification of rows, please refer to the original paper (Leijen, 2005).

Lemma 6.2.1 (Correctness of Inject-R Translation). Given a type deriva-
tion 𝛤 ⊢ 𝑒0 ∶ {𝑥 ∶ 𝜏} ∪ 𝜋. 𝜏0 ⇝ 𝑒∗0 and the derivation of the restricted
injection 𝛤 ⊢ 𝚒𝚗𝚓𝚎𝚌𝚝𝑥 𝚒𝚗 𝑒0 ∶ 𝜋. {𝑥 ∶ 𝜏 ∣ 𝛼𝚛𝚘𝚠} → 𝜏0 ⇝ 𝑒∗, then a
erivation 𝛤 ⊢ 𝑒∗ ∶ ∅. {𝑥 ∶ 𝜏 ∣ 𝛼𝚛𝚘𝚠} → 𝜏 ⇝ 𝑒∗ exists.
14

0

Proof (Sketched). Translation 𝑒∗ = 𝜆𝑦. 𝚕𝚎𝚝 𝑥1 = 𝑟.𝑥1 .. 𝚕𝚎𝚝 𝑥𝑛 = 𝑟.𝑥𝑛 𝚒𝚗 𝑒∗0
comes from rule (Inject-R). The type of the new lambda argument 𝑦 is
nified to the record type {𝑥 ∶ 𝜏 ∣ 𝛼𝚛𝚘𝚠} because of the internal let-
indings and rule (Sel). Identifiers 𝑥1 .. 𝑥𝑛 must appear in 𝑒∗0, introduced
y dictionary passing as of rule (Var), because they belong to the
riginal constraint set {𝑥 ∶ 𝜏} ∪ 𝜋 of 𝑒0 by hypothesis. Therefore, rule
(Let) makes the derivation 𝛤 , 𝑥 ∶ 𝜏 ⊢ 𝑒∗0 ∶ ∅. 𝜏0 ⇝ 𝑒∗0 hold, which brings
to the arrow type in the thesis by rule (Abs). □

Lemma 6.2.2 (Correctness of Inject-All Translation). Given a type deriva-
tion 𝛤 ⊢ 𝑒0 ∶ {𝑥 ∶ 𝜏}. 𝜏0 ⇝ 𝑒∗0 and the derivation of the full injection
𝛤 ⊢ 𝚒𝚗𝚓𝚎𝚌𝚝 𝑒0 ∶ ∅. {𝑥 ∶ 𝜏 ∣ 𝛼𝚛𝚘𝚠} → 𝜏0 ⇝ 𝑒∗, then a derivation
𝛤 ⊢ 𝑒∗ ∶ ∅. {𝑥 ∶ 𝜏 ∣ 𝛼𝚛𝚘𝚠} → 𝜏0 ⇝ 𝑒∗ exists.

Proof (Sketched). Rule (Inject-All) treats full injection as syntactic sugar
for restricted injection of the whole constraint set. The thesis comes
directly from Lemma 6.2.1. □

Lemma 6.2.3 (Correctness of Eject-All Translation). Given the derivation
𝛤 ⊢ 𝑒0 ∶ 𝜋. {𝑥 ∶ 𝜏 ∣ 𝛼𝚛𝚘𝚠} → 𝜏0 ⇝ 𝑒∗0 and the derivation of the
full ejection 𝛤 ⊢ 𝚎𝚓𝚎𝚌𝚝 𝑒0 ∶ {𝑥 ∶ 𝜏} ∪ 𝜋. 𝜏0 ⇝ 𝑒∗, then a derivation
𝛤 ∪ 𝜋 ⊢ 𝑒∗ ∶ ∅. 𝜏0 ⇝ 𝑒∗ exists.

Proof (Sketched). From rule (Eject-All) comes the translation 𝑒∗ =
𝑒∗0 { 𝑥1 = 𝑥1; ..; 𝑥𝑛 = 𝑥𝑛 }. Also, the translated expression 𝑒∗0 has the
same type of 𝑒0, i.e. {𝑥 ∶ 𝜏 ∣ 𝛼𝚛𝚘𝚠} → 𝜏0, except for free overloaded
identifiers collected in 𝜋. This means that the derivation 𝛤 ∪ 𝜋 ⊢ 𝑒∗0 ∶
∅. {𝑥 ∶ 𝜏 ∣ 𝛼𝚛𝚘𝚠} → 𝜏0 ⇝ 𝑒∗0 holds. By rules (Record) and (App) the
record application erases the arrow type and 𝜏0 remains. □

Lemma 6.2.4 (Correctness of Eject-R Translation). Given the derivation
𝛤 ⊢ 𝑒0 ∶ 𝜋. {𝑥 ∶ 𝜏𝑥; 𝑦 ∶ 𝜏𝑦 ∣ 𝛼𝚛𝚘𝚠} → 𝜏0 ⇝ 𝑒∗0 and the derivation of the
restricted ejection 𝛤 ⊢ 𝚎𝚓𝚎𝚌𝚝 𝑒0 ∶ { 𝑥 ∶ 𝜏𝑥} ∪ 𝜋. {𝑦 ∶ 𝜏𝑦 ∣ 𝛼𝚛𝚘𝚠} → 𝜏0 ⇝ 𝑒∗,
then a derivation 𝛤 ∪ {𝑥 ∶ 𝜏𝑥} ∪ 𝜋 ⊢ 𝑒∗ ∶ ∅. {𝑦 ∶ 𝜏𝑦 ∣ 𝛼𝚛𝚘𝚠} → 𝜏0 ⇝ 𝑒∗

xists.

roof (Sketched). This comes directly from rule (Eject-R) which is a
yntactic sugar of a complete ejection and a restricted injection of
emaining identifiers 𝑦. From Lemma 6.2.3 comes that 𝛤∪{𝑥 ∶ 𝜏𝑥}∪{𝑦 ∶
𝜏𝑦} ∪ 𝜋 ⊢ 𝑒∗ ∶ ∅. 𝜏0 ⇝ 𝑒∗ due to full ejection. Then from Lemma 6.2.1
comes that 𝛤 ∪ {𝑥 ∶ 𝜏𝑥} ∪ 𝜋 ⊢ 𝑒∗ ∶ ∅. {𝑦 ∶ 𝜏𝑦 ∣ 𝛼𝚛𝚘𝚠} → 𝜏0 ⇝ 𝑒∗ due to
restricted re-injection of 𝑦. □

7. Conclusions

We presented a language design for the easy integration of two or-
thogonal programming styles: manual dictionary passing and compiler-
driven resolution of overloading constraints. Rather than operating
with heavyweight records and type classes, from which name clash-
ing and other inconveniences would arise, our proposal is based on
extensible records and fine-grained overloading constraints. On top
of those, we introduce two special language operators, 𝚒𝚗𝚓𝚎𝚌𝚝 and
𝚎𝚓𝚎𝚌𝚝, converting constraints into record arguments and vice versa,
allowing the programmer to switch between the two styles at no cost
in terms of code rewriting. Additionally, injection and ejection can also
be restricted to a set of identifiers, allowing manipulation of parts of
records or parts of the constraint set.

The design space explored here is not entirely novel, though the
full potential of the reversible mechanism provided by combining
injection and ejection remains to be discovered from a programmatic
perspective. The usefulness of code reuse across different programming
styles is something that remains to be inspected.

As far as the performance of the proposed system is concerned,
both injection and ejection revolve around dictionary passing, either
manual or automatic, which ultimately reduces to the same mechanism

The Journal of Systems & Software 216 (2024) 112141A. Spanò

i
L
a
l
s

f
i
p
a
w

w

7

s

i
A
f
a
f
b

c
t
w
u
i
c
q
a

p
H
a

7

i
t
i
q
p

a

𝚜

s
s
s
b

{
𝛽
h
w
a
t
s

u
t
s
i

c
i
f
c

C

S

D

c
i

D

R

B

B

C

C

C

C

Haskell and other languages supporting parametric ah-hoc polymor-
phism implement. The same performance is therefore expected. The
cost of a constrained function compared to the cost of a non-constrained
function is negligible, as it depends on the number of extra lambda pa-
rameters introduced by the constraints and the applications introduced
for passing dictionaries once the constraints are solved. In other words,
it is a cost in terms of argument passing that would take place anyway
in the presence of any overloading system, with or without injection
and ejection.

An experimental implementation of 𝚒𝚗𝚓𝚎𝚌𝚝 and 𝚎𝚓𝚎𝚌𝚝 exists and
s one of the central features of the functional programming language
w (short form for Lightweight), whose highlight is a full lightweight
pproach: every language feature does not require annotations of dec-
arations, unless explicitly desired by the programmer, while keeping a
trong type discipline, type inference and other advanced features.5

Injection and ejection require additional study and a more rigorous
ormalization into a theoretical framework to fully understand their
mplications. A full proof of soundness is necessary as well as the
reservation of semantics in the presence of injection/ejection, as well
s a proof of coherence for the underlying overloading subsystem upon
ithin our system relies.

As potential future work, we anticipate two enhancements that are
orth investigating.

.1. As first-class operators

Promoting 𝚒𝚗𝚓𝚎𝚌𝚝 and 𝚎𝚓𝚎𝚌𝚝 to first-class citizens of the expression
yntax would render their types polymorphic:

𝚒𝚗𝚓𝚎𝚌𝚝 ∶ ∀𝛼𝚛𝚘𝚠 𝛽𝚛𝚘𝚠 𝛾⋆. (𝛽 ⇒ 𝛾) → ({ 𝛽 ∣ 𝛼 } → 𝛾)
𝚎𝚓𝚎𝚌𝚝 ∶ ∀𝛼𝚛𝚘𝚠 𝛽𝚛𝚘𝚠 𝛾⋆. ({ 𝛽 ∣ 𝛼 } → 𝛾) → (𝛽 ⇒ 𝛾)

That would allow functional composition and additional expressiv-
ty. For instance, 𝚒𝚗𝚓𝚎𝚌𝚝 ⋅ 𝚎𝚓𝚎𝚌𝚝 would lead to the identity function.
lso, 𝚒𝚗𝚓𝚎𝚌𝚝 and 𝚎𝚓𝚎𝚌𝚝 could be passed as arguments to higher-order

unctions. For example, given a list of functions picking a record
rgument, say [f1; f2; f3], the expression map eject [f1; f2;
3] is capable of converting into constrained functions a whole library
ased on dictionary passing.

One major implication is that constrained types become first-class
itizens of the type syntax, which complicates the type system substan-
ially. First-class type classes (Sozeau and Oury, 2008) are not enough
ith our fine-grained constraint system. Also, row types should be
sed to represent extensible records as well as constraint sets, which
s something uncovered in the literature. Proposals for unifying type
onstraints and record types, such as (Gaster, 1998), are based on
ualified types à la Haskell, which consist of heavyweight type classes
nd constraint names, rather than fine-grained overloaded symbols.

Another major challenge would be combining all this with first-class
olymorphism systems such as MLF (Le Botlan and Rémy, 2014) and
ML (Leijen, 2009), allowing System-F types within constraints as well
s constraints within System-F types.

.2. Supporting extensible records with overloaded labels

One limitation of the system proposed in this paper, specifically of
njection, emerges when the same overloaded symbol appears multiple
imes within a constraint set. When injected, that would be converted
nto a record with multiple labels with the same name, which re-
uires extensible records with overloadable labels. Take a simple pretty
rinter for a record type.

5 Lw can be found on GitHub at the following URL: https://github.com/
lvisespano/Lw It is actively under development.
15
overload pretty : ’a -> string

let pretty_person p = (pretty p.name) ^ " , " ^
(pretty p.age)

let pp = inject pretty_person

Here the inferred type is 𝚙𝚛𝚎𝚝𝚝𝚢_𝚙𝚎𝚛𝚜𝚘𝚗 ∶ { 𝚙𝚛𝚎𝚝𝚝𝚢 ∶ 𝛼 →
𝚜𝚝𝚛𝚒𝚗𝚐; 𝚙𝚛𝚎𝚝𝚝𝚢 ∶ 𝛽 → 𝚜𝚝𝚛𝚒𝚗𝚐 } ⇒ { 𝚗𝚊𝚖𝚎 ∶ 𝛼; 𝚊𝚐𝚎 ∶ 𝛽 ∣ 𝛾𝚛𝚘𝚠 } →
𝚝𝚛𝚒𝚗𝚐 because there are two distinct occurrences of the overloaded
ymbol pretty. This is standard behavior in open-world overloading
ystems: each different occurrence is internally represented with a
uffix appended to the base identifier name in order to distinguish
etween them. We discussed this mechanism in Section 5.

Complications arise when injection comes into play. The type of 𝚙𝚙 ∶
𝚙𝚛𝚎𝚝𝚝𝚢 ∶ 𝛼 → 𝚜𝚝𝚛𝚒𝚗𝚐; 𝚙𝚛𝚎𝚝𝚝𝚢 ∶ 𝛽 → 𝚜𝚝𝚛𝚒𝚗𝚐 } → { 𝚗𝚊𝚖𝚎 ∶ 𝛼; 𝚊𝚐𝚎 ∶
∣ 𝛾𝚛𝚘𝚠 } → 𝚜𝚝𝚛𝚒𝚗𝚐 reveals that the two occurrences of pretty

ave now become two record fields with the same overloaded name,
hich is something not supported by the extensible record system we
dopted (Leijen, 2005) - or by any other extensible record system, for
hat matter. Scoped access to labels allows for multiple fields with the
ame name to co-exist, though that does not mean they are overloaded.

GHC supports overloaded record labels by means of a sophisticated
se of type classes, though that applies only to heavyweight record
ypes. Implementing overloading of labels for an extensible record
ystem is something uncovered in the literature, and the reason is that
t introduces a borderline design. Misuses may emerge easily:

let f r = if r.a then r.a + 1 else r.a r.b

Record parameter 𝚛 ∶ { 𝚊 ∶ 𝚋𝚘𝚘𝚕; 𝚊 ∶ 𝚒𝚗𝚝; 𝚊 ∶ 𝛼 → 𝚒𝚗𝚝; 𝚋 ∶ 𝛼 }
ontains a field 𝑎 appearing multiple times with different types, which
s pretty quirky. Such an improvement would however render injection
ully functional in conjunction with multiple occurrences of the same
onstraint name, hence ejection fully reversible in such extreme cases.

RediT authorship contribution statement

Alvise Spanò: Conceptualization, Formal analysis, Methodology,
oftware, Writing – original draft, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

No data was used for the research described in the article.

eferences

ottu, G.-J., Xie, N., Marntirosian, K., Schrijvers, T., 2019. Coherence of type class
resolution. In: Proceedings of the ACM on Programming Languages, vol. 3, (no.
ICFP), ACM, New York, NY, USA, pp. 1–28.

ruce, K.B., Cardelli, L., Pierce, B.C., 1999. Comparing object encodings. Inform. and
Comput. 155 (1-2), 108–133.

amarão, C., Figueiredo, L., 1999. Type inference for overloading without restrictions,
declarations or annotations. In: Proceedings of the 4th Fuji International Sympo-
sium on Functional and Logic Programming. FLOPS ’99, Springer-Verlag, London,
UK, pp. 37–52.

amarão, C., Figueiredo, L., Vasconcellos, C., 2004. Constraint-set satisfiability for
overloading. In: Proceedings of the 6th ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming. PPDP ’04, ACM New York,
NY, USA, pp. 67–77.

ardelli, L., 1992. Extensible Records in a Pure Calculus of Subtyping. Digital. Systems
Research Center.

ardelli, L., Mitchell, J.C., 1990. Operations on records. In: Mathematical Foundations
of Programming Semantics: 5th International Conference Tulane University, New
Orleans, Louisiana, USA March 29–April 1, 1989 Proceedings. Springer New York,
New York, NY, pp. 22–52.

https://github.com/alvisespano/Lw
https://github.com/alvisespano/Lw
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb1
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb1
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb1
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb1
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb1
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb2
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb2
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb2
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb3
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb3
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb3
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb3
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb3
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb3
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb3
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb4
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb4
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb4
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb4
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb4
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb4
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb4
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb5
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb5
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb5
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb6
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb6
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb6
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb6
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb6
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb6
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb6

The Journal of Systems & Software 216 (2024) 112141A. Spanò
Cardelli, L., Wegner, P., 1985. On understanding types, data abstraction, and
polymorphism. ACM Comput. Surv. 17 (4), 471–523.

Devriese, D., Piessens, F., 2011. On the bright side of type classes: Instance arguments
in agda. In: Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming. ICFP ’11, ACM New York, NY, USA, pp. 143–155.

Dijkstra, A., Swierstra, S.D., et al., 2005. Making Implicit Parameters Explicit. Technical
Report, Utrecht University.

Duggan, D., Ophel, J., 2002. Open and closed scopes for constrained genericity. Theoret.
Comput. Sci. 275 (1-2), 215–258.

Gaster, B.R., 1998. Records, variants and qualified types (Ph.D. thesis). Citeseer.
Gaster, B.R., Jones, M.P., 1996. A Polymorphic Type System for Extensible Records

and Variants. Technical Report, Technical Report NOTTCS-TR-96-3, Department of
Computer Science, University of Nottingham.

Hall, C.V., Hammond, K., Peyton Jones, S.L., Wadler, P.L., 1996. Type classes in Haskell.
ACM Trans. Programm. Lang. Syst. (TOPLAS) 18 (2), 109–138.

Jategaonkar, L.A., Mitchell, J.C., 1993. Type inference with extended pattern matching
and subtypes. Fund. Inform. 19 (1-2), 127–165.

Jones, M.P., 1992. A theory of qualified types. In: European Symposium on
Programming. Springer, pp. 287–306.

Jones, M.P., 1993. Coherence for Qualified Types. Technical Report YALEU/DCS/RR-
989, Yale University.

Jones, M.P., 1995. Simplifying and improving qualified types. In: Proceedings of
the Seventh International Conference on Functional Programming Languages and
Computer Architecture. FPCA ’95, ACM New York, NY, USA, pp. 160–169.

Jones, M.P., 2000. Type classes with functional dependencies. In: European Symposium
on Programming. Springer, pp. 230–244.

Jones, M.P., Jones, S.P., 1999. Lightweight extensible records for Haskell. In: Haskell
Workshop. Citeseer.

Jones, S.P., Jones, M., Meijer, E., 1997. Type classes: An exploration of the design
space. In: Haskell Workshop. pp. 1–16.

Kaes, S., 1988. Parametric overloading in polymorphic programming languages. In:
ESOP’88: 2nd European Symposium on Programming Nancy, France, March 21–24,
1988 Proceedings 2. Springer, pp. 131–144.

Kahl, W., Scheffczyk, J., 2001. Named instances for Haskell type classes. In: Proceedings
of the 2001 Haskell Workshop, Number UU-CS-2001-23 in Tech. Rep. pp. 71–99.

Le Botlan, D., Rémy, D., 2014. MLF: Raising ML to the power of system F. In: ACM
SIGPLAN Notices, vol. 49, (no. 4S), ACM, New York, NY, USA, pp. 52–63.

Leijen, D., 2005. Extensible records with scoped labels. In: Proceedings of the 2005
Symposium on Trends in Functional Programming. TFP’05, Tallin, Estonia.

Leijen, D., 2009. Flexible types: Robust type inference for first-class polymorphism. In:
Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’09, ACM, New York, NY, USA, pp. 66–77.

Lewis, J.R., Launchbury, J., Meijer, E., Shields, M.B., 2000. Implicit parameters:
Dynamic scoping with static types. In: Proceedings of the 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’00, ACM, New
York, NY, USA, pp. 108–118.

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mihaylov, N.,
Schinz, M., Stenman, E., Zenger, M., 2004. An overview of the scala programming
language.

Odersky, M., Rompf, T., 2014. Unifying functional and object-oriented programming
with scala. Commun. ACM 57 (4), 76–86.
16
Odersky, M., Wadler, P., Wehr, M., 1995. A second look at overloading. In: Proceedings
of the Seventh International Conference on Functional Programming Languages and
Computer Architecture. FPCA ’95, ACM New York, NY, USA, pp. 135–146.

Oliveira, B.C., Moors, A., Odersky, M., 2010. Type classes as objects and implicits. In:
ACM SIGPLAN Notices. vol. 45, (no 10), ACM, New York, NY, USA, pp. 341–360.

Oliveira, B.C., Schrijvers, T., Choi, W., Lee, W., Yi, K., 2012. The implicit calculus: A
new foundation for generic programming. In: ACM SIGPLAN Notices, vol. 47, (no.
6), ACM, New York, NY, USA, pp. 35–44.

Rémy, D., 1989. Type checking records and variants in a natural extension of ML.
In: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’89, ACM New York, NY, USA, pp. 77–88.

Schrijvers, T., Oliveira, B.C., Wadler, P., Marntirosian, K., 2019. COCHIS: Stable and
coherent implicits. J. Funct. Programming 29.

Sozeau, M., Oury, N., 2008. First-class type classes. In: Proceedings of the 21st
International Conference on Theorem Proving in Higher Order Logics. TPHOLs ’08,
Springer-Verlag, Berlin, Heidelberg, pp. 278–293.

Stuckey, P.J., Sulzmann, M., 2005. A theory of overloading. ACM Trans. Programm.
Lang. Syst. (TOPLAS) 27 (6), 1216–1269.

Wadler, P., Blott, S., 1989. How to make ad-hoc polymorphism less ad hoc. In:
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’89, ACM, New York, NY, USA, pp. 60–76.

Wand, M., 1987. Complete type inference for simple objects. In: LICS.
Wand, M., 1991. Type inference for record concatenation and multiple inheritance.

Inform. and Comput. 93 (1), 1–15.
Winant, T., Devriese, D., 2018. Coherent explicit dictionary application for Haskell. In:

ACM SIGPLAN Notices, vol. 53, (no. 7), ACM, New York, NY, USA, pp. 81–93.

Alvise Spanò got his Ph.D. in Computer Science in 2013 at the Ca’ Foscari University
of Venice, Italy, after nearly two decades spent in software development both as a
junior professional and a senior in the industry. His experience ranges from software
development to scientific research, with a strong emphasis on languages, compilers,
type systems, software validation and correctness.

Besides his research topics of interest he got experience in several other areas:
library design, code analyzers, code generators, concurrent client–server architectures,
desktop as well as mobile applications, realtime graphics and audio. Among his major
achievements in the open-source community we mention several award-winning Amiga
demos at world-wide Demoscene Party Competitions back in the 1990s (The Party 96,
Mekka-Symposium 97, Assembly 98); in 2002 the meta-programmable text generator
Polygen; in 2007 the UML-to-code BOM and DAL generator [MGen, NetTiers]; plus a
number of libraries freely released over the years, ranging from a tiny object broker
for C++ [Aamon], automatic interoperability between OCaml and C++ [C2ML] and
several standard library extensions for F# and OCaml.

He has now a researcher position at the Ca’ Foscari University of Venice, Italy and
lecturer of many courses. His academic interests brought to a number of publications
and software prototypes in the fields of functional languages, static analysis and type-
disciplined programming methodologies. In particular he is the author of Lw, a new
general-purpose functional-first language with advanced features.

http://refhub.elsevier.com/S0164-1212(24)00186-9/sb7
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb7
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb7
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb8
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb8
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb8
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb8
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb8
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb9
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb9
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb9
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb10
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb10
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb10
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb11
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb12
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb12
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb12
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb12
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb12
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb13
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb13
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb13
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb14
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb14
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb14
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb15
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb15
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb15
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb16
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb16
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb16
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb17
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb17
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb17
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb17
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb17
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb18
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb18
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb18
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb19
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb19
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb19
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb20
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb20
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb20
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb21
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb21
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb21
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb21
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb21
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb22
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb22
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb22
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb23
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb23
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb23
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb24
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb24
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb24
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb26
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb26
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb26
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb26
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb26
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb26
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb26
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb27
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb27
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb27
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb27
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb27
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb28
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb28
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb28
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb29
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb29
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb29
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb29
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb29
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb30
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb30
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb30
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb31
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb31
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb31
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb31
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb31
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb32
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb32
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb32
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb32
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb32
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb33
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb33
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb33
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb34
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb34
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb34
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb34
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb34
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb35
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb35
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb35
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb36
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb36
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb36
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb36
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb36
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb37
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb38
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb38
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb38
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb39
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb39
http://refhub.elsevier.com/S0164-1212(24)00186-9/sb39

	Flexible and reversible conversion between extensible records and overloading constraints for ML
	Introduction
	A problem of interoperation
	Our Proposal
	Contribution
	Originality

	Preliminaries
	Overview of extensible records
	Overview of the overloading subsystem
	Implicit parameters and interactions with overloading

	Injection and Ejection in Detail
	Injection
	Ejection
	Combining injection and ejection
	Restricted injection and ejection

	Related Work
	Local overloading, local instances and coherence
	Scala
	Adga and Coq
	Implicit Calculus

	Type System
	Instances
	Constraints Resolution
	Type Rules

	Type Inference
	Unification
	Correctness of the Translation of Eject and Inject

	Conclusions
	As first-class operators
	Supporting extensible records with overloaded labels

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

