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“I’m sure I’ll take you with pleasure!” the Queen said.
“Two pence a week, and jam every other day.”

Alice couldn’t help laughing, as she said,
“I don’t want you to hire ME — and I don’t care for jam.”

“It’s very good jam,” said the Queen.

“Well, I don’t want any TO-DAY, at any rate.”

“You couldn’t have it if you DID want it,” the Queen said.
“The rule is, jam to-morrow and jam yesterday — but never jam to-day.”

“It MUST come sometimes to ‘jam to-day’,” Alice objected.

“No, it can’t,” said the Queen.
“It’s jam every OTHER day: to-day isn’t any OTHER day, you know.”

“I don’t understand you,” said Alice. “It’s dreadfully confusing!”

Lewis Carroll
“Through the Looking Glass and What Alice Found There”





Abstract

In this thesis we want to investigate the compiling of the well-established language
Constraint Handling Rule (CHR) to a low level hardware description language
(HDL). The benefit introduced by a CHR-based hardware synthesis is twofold: it
increases the abstraction level of the common synthesis work-flow and it can give
significant speed up to the execution of a CHR program in terms of computational
time.

We want to propose a method that sets CHR as a starting point for a hardware
description. The developed hardware will be able to turn all the intrinsic concur-
rency of the language into parallelism. The rules application is mainly achieved by a
custom executor that handles constraints according to the best degree of parallelism
the implemented CHR specification can offer.

Afterwards we want to integrate the generated hardware code, deployed in a
Field Programmable Gate Array (FPGA), within the traditional software execution
model of CHR. The result will be a prototype system consisting of a CHR execution
engine composed of a general purpose processor coupled with a specialized hard-
ware accelerator. The former will execute a CHR specification while the latter will
unburden the processor by executing in parallel the most computational intensive
rules.

Finally the performance of the proposed system architecture will be validated by
time efficiency measures.
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1
Introduction

It is well known that, while high level languages (HLLs) simplify the live of the
programmers easing program encoding, low level implementations are more efficient.
Nevertheless in particular settings, thanks to powerful compilation techniques, HLLs
can produce code comparable in efficiency to their low level counterparts [22]. With
the work presented in this thesis we want to take a bigger leap, from declarative
programming to very low level language mapping high level algorithmic code directly
to a hardware representation.

We identify the HLL, that can fulfill the hardware description requirements, in
Constraint Handling Rules (CHR) [46]. CHR is a committed-choice constraint logic
programming language first developed for writing constraint solver, and nowadays
well-known as general-purpose language. Its plain and clear semantics makes it suit-
able for concurrent computation, since programs for standard operational semantics
can be easily interpreted in a parallel computation model [45]. Furthermore CHR
does not allow backtracking search but it rather employs guards that are used to
commit to a single possibility without trying the other ones. When a goal cannot be
rewritten, the process solving this goal does not fail but it is blocked until, possibly,
other processes will add the constraints that are necessary to entail the guard of an
applicable clause. Hardware description needs straightforward processes that cannot
be undone as well, and moreover it benefits from guards as they can be used for syn-
chronization among processes solving different goals. In our work we want to fully
exploit these features, highlighting the relations with the parallel characteristics of
the target gate-level hardware.

From the point of view of the hardware compilation the search of a shortcut
between HLLs and hardware description languages (HDLs) represents a significant
improvement in terms of abstraction level. Indeed, the ability of integrating an ever
greater number of transistors within a chip and the consequent complexity growth of
the features that can be implemented in hardware has demanded for new languages
and tools suitable for describing the different natures of the hardware devices. Inte-
grated devices may well contain several processors, memory blocks or accelerating
hardware units for dedicated functions that are more related to software architec-
tures than low level hardware representations. Hence design automation technology
is now seen as the major technical barrier to progress: tools adopted to describe
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complex systems rise an explicit demand for design representation languages at a
higher abstraction level than those currently adopted by hardware system engi-
neering. According to this research direction, one of the goals of this thesis is to
synthesize hardware starting from a language at a level higher than the ones of the
commonly used behavioral HDLs. Such enhancement should let programmers eas-
ily focus on system behavior rather than on low level implementation details. The
design procedure identified in [61] can be applied to a declarative paradigm rather
than traditional imperative languages, inheriting all the well-known benefits for the
programmer.

Moreover, we aim to investigate whether the same hardware synthesis methodol-
ogy can be exploited to statically generate a specialized hardware accelerator, which
couples a commodity CPU along with a modified run-time support for executing a
general purpose declarative program. In such a way we achieve a close synergy
between high level software and hardware because the former facilitates the syn-
thesis of the latter and the latter clears the way for a fast execution of the former.
Hardware/software co-design has nowadays a long tradition in system design and is
rightfully considered a practical design task [113]. Since early ’90s performance and
cost analysis have suggested to deploy some of the program’s functions in specialized
hardware, namely Application Specific Integrated Circuit (ASIC), while the remain-
ing part of the program is implemented in software and executed on the CPU [52].
In the following years co-design evolved and many research fields come to light, for
example: partitioning, co-simulation, co-synthesis or co-verification. Gradually the
proposed methodologies moved from addressing hardware and software as distinct
entities to consider them at a higher level of abstraction that encompasses both of
them [86].

Research contributions

In response to the aforementioned motivations we first develop a completely general
framework that allows one to synthesize reconfigurable hardware that can be easily
employed in a wide range of applications since a small modification to the high level
code affects a huge portion of low level HDL code (resulting in a remarkable time sav-
ing for the programmer). Moreover the generated hardware code is fully compliant
with the traditional standard ones, hence it can be easily integrated in the existing
hardware project. Once hardware can be directly compiled from a high level lan-
guage, we want to implement a coupled system constituted by a traditional general
purpose CPU and a hardware accelerator deployed on a Field Programmable Gate
Array (FPGA). Thus such unique system will be compiled from a single high level
language specification through a double compilation path resulting in an efficient
execution engine.

Specifically the thesis provides the following contributions:

• The development of a novel technique to synthesize behavioral hardware com-
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ponents starting from a subset of CHR;

• An implementation of an efficient and optimized parallel execution model of
CHR by means of hardware blocks; and

• The development of a custom reconfigurable hardware that significantly speeds
up the execution time of a CHR program

The proposed method for high level hardware synthesis and some partial re-
sults of such technique already appeared in [106]. While the general outline of the
hardware accelerator that aids the CHR computation was presented in [105].

Plan of the thesis

This thesis is organized as follows. The next two Chapters provide the needed
background regarding the software and hardware frameworks exploited for pursuing
the goals of the thesis. Chapter 2 starts with a brief introduction of the paradigms
related to CHR in order to introduce the reader to a better comprehension of the
rest of the Chapter that focuses on the CHR language and its property. In Chapter 3
we will give a review of the reconfigurable computing from the hardware to the high
level language commonly adopted for its programming.

The following Chapters deal with the hardware emulation of CHR: they span
the compilation from the hardware synthesis to the employment of the generated
hardware as a CHR accelerator. The central thread of this section is the performance
optimizations that will be achieved through the high degree of parallelization that
hardware can supply. In Chapter 4 we focus on the technique adopted for generating
hardware block from CHR rules. While in Chapter 5 we show how to efficiently
accommodate in hardware parallel rules execution. Finally Chapter 6 illustrates
how the reconfigurable hardware can fit into a complete computing architecture.
Here a detailed study of the trade-offs of such technique is presented. Beyond the
running example that drives the reader through the description of the parallelism
between CHR and hardware, a complete practical example of implementation is
provided within each Chapter. Classical algorithms usually adopted for showing the
expressiveness of CHR in multiset transformation or constraint solving, are chosen
as case studies.

Related works are mainly arranged across the thesis into three Sections concern-
ing: parallel execution models of CHR 2.2.3; high level languages adopted for the
hardware synthesis 3.3.2; and hardware accelerators 6.1.
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2
Constraint Handling Rules

Constraint handling rules (CHR) [46] is a logical concurrent committed-choice rule-
based language consisting of guarded rules that transforms constraints until a fixed
point is reached. CHR was originally designed for the specific purpose of adding user-
defined constraints solvers to a host language, and nowadays is evolved in a general-
purpose language with many application domains [47, 2, 6, 17, 114, 26, 104]. As we
will see later in the second part of this thesis the framework for hardware synthesis
we will propose is strongly related with CHR since it is based on its clear syntax and
semantics. An introduction to such programming language is therefore mandatory
for a proper comprehension of the synthesis mechanism reported in Chapter 4.

In the first Section of this Chapter the programming paradigms related to CHR
are informally introduced. In Section 2.2 we will focus on CHR and its operational
semantics, starting with some simple examples of CHR computation and then giving
a detailed description of the operational semantics. Finally we will discuss the
concurrency property of CHR, which will turn out to be essential during the process
of hardware execution of a CHR specification.

2.1 Declarative Programming

In contrast with imperative programming the declarative paradigm focuses on what
has to be computed rather than how to compute it [73]. In a declarative framework
the program is a theory and the computation is a deduction from the theory in some
defined logics. For example first order logics for the most of logic programming
languages or λ-calculus for functional ones. If the programs are just theory the
control part should be automatically supplied (at least in the ideal case) by the
system. In general we cannot say that this is totally desirable: even in the most
radical declarative programming environment the programmer should be left free to
ensure that the upper bounds of the time and space complexities are not exceeded.
The problem of the degree of control grows stronger in logic programming because
of the explicit non-determinism provided by logic languages, but in principle there
is no need to have a system fully bereft of control facilities although it is advisable
to reduce them to a minimum.
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The practical advantages of declarative languages over other formalisms can be
summarized as follows:

• Declarative program are usually more clean and succinct. Hence they appear
more readable, easy to reuse/adapt/maintain or in one word self-explanatory.

• Simple semantics compared with the semantics of the majority of imperative
languages. The benefits introduced by a plane semantics are not only related to
a more straightforward theoretical abstraction, since they can lead to an easier
program analysis and hence program optimization, verification and debugging.

• Leaving undefined how the program should behave in general entails more
room for parallelism in the declarative paradigm. Indeed implicit parallelism
is present in the most declarative implementations, thus reducing the need for
concurrent constructs and leaving more freedom to the compiler to match the
underlying hardware architecture.

• Finally all the above mentioned advantages can lead to a reduced development
time for software programmers letting them concentrate more on the algorithm
to be implemented.

Until now we defined declarative paradigm as a general concept, but to treat the
argument in a more detailed way we should define the formalism used to specify
programs. To categorize the wide variety of programming paradigms is not an easy
task, but we list the most well-known ones:

• Functional Programming

• Logic Programming

• Constraint Programming

• Rule-based Programming

Constraint Handling Rules (CHR), as we will discuss in Section 2.2, encompasses
the last three paradigms.

2.1.1 Functional Programming

Functional programming is a paradigm base on the mathematical framework of the
λ-calculus originated in the ’30s to formally describe functions and their application
and recursion [75]. Its key concept is the functions evaluation avoiding states and
mutable data: the mathematical functions expressed by functional programming are
supposed to be lacking in side effect. This means that, in order to avoid states mod-
ification, functions cannot modify either global variables or one of their arguments
or everything that should make the program’s behavior depending on the execution
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history. Hence in functional programming the result of a function depends only on
its inputs. There are several reasons to want to avoid side effect. For example when
a result of a function is not used the entire expression can be removed. Moreover
if two functions have no dependency their execution order can be swapped or even
parallelized. And finally since the result of a function depends only on its inputs it
is possible to use cache optimizations.

As examples of functional languages we can cite Haskell [78], Clean [20] or
Scheme [38]. The main difference among them is the evaluation strategy: it can
be strict (eager) or non-strict (lazy). In the first case function evaluation is done
only after the evaluation of all its arguments, while in the second one the argument
evaluation is not done unless strictly necessary to the final result. Another impor-
tant difference is represented by how they treat I/O without introducing side effects.
Indeed monads and uniqueness are example of technique to avoid side-effect in I/O
as well. Monads, employed in Haskell, are abstract data type constructors that en-
capsulate program logic, while uniqueness, used in Clean, is intended to guarantee
that an object is used with at most a single reference to it.

2.1.2 Logic Programming

The main idea behind logic programming is to use first order logic, or at least a
subset of it, as a programming language. The program is considered as a logical
statement while the execution becomes a form of theorem proving. A complete
introduction of logic programming can be found in [72] or in the survey [71]. Here
we just report some concepts that will ease the comprehension of the rest of the
Chapter.

The basic elements of logic programming are a set of variables, a set of functions
and a set of predicates. The former are indicated with capital letter words while for
the latter two the arity is defined as their number of arguments they have and it is
usually preceded by a / (e.g. f/n means that the function or predicate f has arity
n). Zero-arity denotes constants. Logical variables differ from the classical ones
used in imperative programming since they are really unknown elements: they do
not indicate any value, but they may be even used if they do not refer to any value.

A term is a variable or a compound term that is inductively defined as f(t1, ..., tn)
where f is a function of arity n and ti are terms. A ground term is a term without
any variables. An atom is a predicate applied to a sequence of terms. We call literals
the negation of an atom and expression both terms and atoms.

A substitution σ = (X1 = t1 ∧ . . . ∧ Xn = tn) is defined as the conjunctions of
the bindings Xi = ti with Xi 6= ti. Unification of two expressions E1 and E2 is the
substitution σ for which σ(E1) ≡ σ(E2) where ≡ is the syntactical equivalence.

A logic program consists of a collection of rules, called clauses, of the form:

H:-L1, . . . , Ln. (2.1)
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Where H is an atom, called head of the clause, and Li for i ∈ {1 . . . n} are literals
that form the body. The comma denotes the logical conjunction that depends on
the semantics of the program. If the body is empty the clause is called a fact.

The inference method used for evaluating a logic program is called Linear reso-
lution with a Selection function applied to Definite clauses (SLD resolution). The
abstract semantics introduced by SLD resolution adopts a backwards chaining in-
ference method that, starting from a conjunction of literals called goals or query,
proceeds until a fact or a built-in knowledge. Hence, in order to resolve the goal h,
we should check if it unifies with the head of a clause (for example the one in 2.1),
and then it is sufficient to resolve the literals Li. If the whole query can be re-
solved the program succeeds and the variables generated by all the bindings are the
solution.

The abstract semantics of SLD resolution is clearly non-deterministic since it
does not specify which should be the next ”active” goal in a conjunction of literals
nor in which order the clauses are evaluated. Indeed a goal can unify with many
heads giving rise to many alternative computations that correspond to the branch
of a search tree. If from the root node (the initial goal) we can reach a successful
leaf (a leaf in which the conjunction of goals is empty) we say that the goal succeeds
otherwise, if there are no possible paths to a successful leaf, the goal fails.

SLD resolution operational semantics want to prune the non-determinism intro-
duced by the abstract semantics and usually adopts a left-to-right selection methods
that chooses the next literal to evaluate. Moreover it tries to execute the clauses
in a top-down order which means that if a clause leads to a failure it rollbacks the
computation (unbinding all the unified variables until the previous node) and keeps
the computation going, trying the next clause. When a subtree exploration results
in a failure, the movement of coming back to the former node (choice-point) is called
backtracking.

Prolog

Prolog was the first practical implementation of logic programming: its born date
back to the 70’s but it remains the most widely used general purpose logic program-
ming language [28]. Prolog implements an extension of SLD resolution operational
semantics that provides negation called SLD-NF (negation-as-failure). In such logic
the negation of a goal G succeeds when G fails. Other features introduced by Prolog
are: disjunction, lists, arithmetics, built-in predicates. Disjunction in the body of a
clause simply adds an additional choice-point with two distinct branches for the two
disjoint literals. Lists are terms that are able to aggregate a (possibly empty) or-
dered collection of terms. Since Prolog supports integer and floating point data types
it provides for arithmetic operations. The built-in predicate is/2 is employed for
evaluating the arithmetic expression and unifying the result to a variable. Finally, in
addition to user defined predicates and unification, Prolog provides for a number of
predefined built-in predicates that can have a logical or non-logical meaning. Exam-
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ples of the first category are the predicates true/0 and false/0 that, respectively,
always and never succeeds, while input/output predicates, like writeln/1, belong
to the second category.

2.1.3 Constraint Programming

Constraint programming differs from the other paradigms in the sense that relations
among variables are described through constraints. Constraints solvers come usually
embedded in other programming languages or in separate libraries. In this Section
we are interested in constraints embedded in logic programming.

Constraint Solver

We define primitive constraints, c/n, as a predicate that for every argument position
has either a variable or a value from a value set Vi. Such definition recalls the one
of atom in logic programming.

A constraint has the form of c1 ∧ . . . ∧ cn where ci are primitive constraints. A
constraint domain D consists of a restriction in the set of possible predicates on
which the primitive constraints are defined. Given a logical theory T we can state
whether a constraint holds. The notation D |= c denotes that the constraint c holds
under T in domain D.

The variable substitution that maps the variables of a constraint C into values
belonging to a domain D is called valuation. A valuation φ is a solution for C if
Cφ holds in D (D |= Cφ). A constraint is called satisfiable if it has a solution and
two constraints are equivalent if and only if they have the same solution. Finally a
constraint solver is an algorithm that determines the satisfiability of a constraint.

Constraint Logic Programming

The combination of the efficiency of constraint solving and the declarativity of Logic
Programming results in Constraint Logic Programming. In such a context the body
of a clause may have a mix of traditional literals and constraints.

A new operational semantics rises from logic programming one with an extension
due to the integration of a constraint solver. We define the constraint store as the
conjunction of all the constraints encountered during computation that starts from
an empty constraint store S. Each time that a constraint c is added to the store
the new constraint store becomes S ′ = S ∧ c. After insertion the constraint solver is
charged to rewrite the store to a solved form (a constraint that appears clear whether
it is satisfiable). Here the logic programming resolution mechanism is influenced
since if the solved form is unsatisfiable it fails otherwise it resumes. Besides the
incrementation of the store another operation is provided. Given a constraint we
can also check if the whole constraint store entails it and in a similar manner we
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can state if this operation fails or resumes the resolution. The former operation is
called tell constraints while the second one is called ask constraints.

In [57] a wide variety of constraint programming languages is presented. Basically
they belong to two different category depending if they are standalone or embedded
in some host language like Prolog, Java or C. The first constraint programming
systems were difficult to modify (add new data types or constraints) but recent
systems are fully customizable while maintaining a good degree of efficiency [85].

Concurrent Constraint Logic Programming

Concurrent Constraint logic Programming (CCP) appears for the first time in the
’90s in [87] but the main idea was already introduced a few years before in [76]. As
the name suggests the aim of such programming paradigm is the evaluation of the
goals by means of concurrent processes. The most significant difference with CLP is
how the interpreter behaves in case of applicability of more than one clause: instead
of trying every possible clause until an answer is found it applies a series of clauses
until failure or success without backtracking. In order to condition the execution of
a clause CCP implements guards : a further check for the applicability of a clause
to be done after the head matching. Concurrent processes are generated by the
application of the clauses that can communicate via a shared global constraint store
and guards can be used for synchronization purposes. Indeed, besides conditions
among variables, ask and tell checks can be also implemented in the guards.

2.1.4 Rule-based Programming

Rule-based Programming commonly refers to a wide family of programming lan-
guages that derive from the production rule systems initially used for artificial intel-
ligence applications whereas nowadays they are usually adopted for business rules.

A production system basically consists of a working memory and several
condition-action rules. The first is a collection of facts that are runtime instance of
a template. The condition-action rules are formed by a left hand side (LHS) that is
a conjunction of condition elements used to specify the circumstances of application
of a rule, and by a right hand side (RHS) that is a conjunction of actions. The
condition elements are divided in positive and negative depending if the facts they
refer must belong to the WM or not. The possible actions that a rule can perform
are combinations of addition and removal of a fact to and from the WM.

One of the first production rule system is OPS that appears in the late ’70s [43].
The main field of application of such language was the expert systems : an artificial
intelligent system able to provide answers to questions that usually need an expert
intervention like the choice of a product from the requirement of the costumer. In
the following years production systems evolve from the more efficient CLIPS [50]
developed by NASA through the Java compliant Jess [58] and finally to the modern
business rule management systems like JBoss Enterprise or PegaRULES that are
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complete software platform integrating the rule engine with graphical user interface
for rule editing.

2.2 Constraint Handling Rules

Constraint Handling Rules is a multi-headed guarded constraint logic programming
language [46]. It employs two kinds of constraints: built-in constraints, which are
predefined by the host language, and CHR constraints, which are user-defined by
program rules. Each CHR constraint is taken by the predicate symbols and is
denoted by a functor (or name) and a arity (number of the arguments). Null-arity
built-in constraints are true (the empty constraint) and false (any inconsistent
constraint). A CHR program is composed of a finite set of rules reasoning on
constraints. We can distinguish two kinds of rules:

Simplification: Name @ H ⇔ G | B (2.2)

Propagation: Name @ H ⇒ G | B (2.3)

Where Name is an optional unique identifier of the rule, H (head) is a non-empty
conjunction of CHR constraints, G (guard) is an optional conjunction of built-in con-
straints, and B (body) is the goal, a conjunction of built-in and CHR constraints.
These rules logically relate head and body provided that the guard is true. Sim-
plification rules mean that the head is true if and only if the body is true and
propagation rules mean that the body is true if the head is true. Rules are applied
to an initial conjunction of constraints (query) until no more changes are possible.
The intermediate goals of a computation are stored in the so called constraint store.
During the computation if a simplification rule fires the head constraints are removed
from the store and they are replaced by the body constraints. If the firing rule is a
propagation rule the body constraints are added to the store keeping the head con-
straints. A third rule called simpagation permits to perform both a simplification
and propagation rule:

Simpagation: Name @ H1\H2 ⇔ G | B (2.4)

This rule means that the first part of the head (H1) is kept while the second (H2) is
removed from the constraint store. It is logically equivalent to the other two rules
depending on which part of the head is empty. One rule is in head normal form
when all the arguments in the head of the rule are variables and variables never
occur more than once (all equality guards implicitly present in the head are written
explicitly in the guard).

Example 2.2.1. The following CHR program computes the greatest common divi-
sor (gcd) between two integers using the Euclid’s algorithm.

R0 @ gcd(N) <=> N = 0 | true.

R1 @ gcd(N) \ gcd(M) <=> M>=N | Z is M-N, gcd(Z).
(2.5)
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Rule R0 is a simplification rule written in its normal form. It states that the con-
straints gcd with the argument equal to zero can be removed from the store. Rule
R1 is a simpagation rule since there is a kept and a removed part of the head. It is
written in its normal form as well and it states that if two constraints gcd(N) and
gcd(M) are present, the latter can be replaced with gcd(M-N) if M>=N.

An example of query for the gcd program can be for instance:
gcd(12), gcd(27), gcd(9), gcd(24), gcd(6).

It will result in gcd(3) since repeated applications of rule R1 to couple of constraints
followed by R0 exclude all the possible candidate gcd except the generated gcd(3).

Example 2.2.2. Another very simple example of CHR program is the family rela-
tionship property of being mother of somebody. With the constraint mother(X,Y)

we want to state that Y is the mother of X. By the next rules we want to express the
uniqueness of the mother and the how deduce the grandmother relationship from
the mother one.

dM @ mother(X,Y) \ mother(X,Z) <=> Y=Z.

GM @ mother(X,Y), mother(Y,Z) ==> grandmother(X,Z).
(2.6)

Rule dM uses the built-in syntactic equality = to make sure that both variables (Y
and Z) have the same value. That means that occurrences of one variable are re-
placed by the other. One mother constraint is discarded by the rule since, once the
variables are made equal, it represents a duplicate of the other. For instance a query
mother(tom,mary), mother(tom,mary). will just result in the removing of one du-
plicate constraint since the introduction of mary=mary will be simplified because lead
to true. On the contrary a query like mother(tom,mary), mother(tom,lisa). will
result in false since the equality mary=lisa fails. The rule GM instead propagates
the grandmother relationship from the mother one. A simple query:
mother(tom,mary), mother(mary,lisa).

will generate grandmother(tom,lisa) without removing any constraints.

2.2.1 Semantics

The CHR semantics comes in different flavors that can be divided into two main
families: the logical and the operational ones. The former represents the formal
basis of CHR while the latter states the behavior of actual implementations. We will
focus our attention on the operational semantics that comprises the very abstract,
the standard (or abstract or theoretical) and the refined semantics. The following
sections describe these three semantics denoted respectively as ωa, ωt and ωr.

Very Abstract Operational Semantics ωa

The very abstract operational semantics [48] is a non-deterministic state transition
system where the execution proceeds by exhaustively applying the transition rules.
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Figure 2.1: Very abstract operational semantics transition system

Apply : 〈H1 ∧H2 ∧G〉 7−→apply 〈H1 ∧ C ∧B ∧G〉 (2.7)

where it must exist in the program an instance

with new local variables of rule r of the form

r @H1\H2 ⇔ C |B
and Db |= G 7−→ ∃̄C,

The relation between an execution state and the following one is defined by only one
possible transition rule called Apply. The states are represented by just conjunction
of built-in and CHR constraints and the initial state is given by the goal.

The transition between states corresponds to the application of the rule presented
in Figure 2.1. H1, H2, C, B and G are, possibly empty, conjunction of constraints.
An instance with fresh variables of r is applicable if its head constraints are present
in the state and the guard C is logically implied by the built-in constraints in G, that
corresponds to state that the condition Db |= G 7−→ ∃̄C holds. As consequence of
the rule application the constraints in H1 are kept while the ones in H2 are removed
from the state. The guard and the body, C and G, are also added to the resulting
state.

The ωa transition system is definitely non-deterministic because it does not es-
tablish which rule should be applied to a given state. If more then one rule can
fires one is chosen in a non-deterministic way and the choice cannot be undone since
CHR is a committed choice language.

Example 2.2.3. Considering the CHR program introduced in Example 2.2.1 we
report in Table 2.1 the derivation under ωa for the query {gcd(6), gcd(9)}.

Table 2.1: Example of derivation in very abstract semantics

Initial state 〈gcd(6) ∧ gcd(9)〉

ApplyR1 〈gcd(6) ∧ gcd(3)〉

ApplyR1 〈gcd(3) ∧ gcd(3)〉

ApplyR1 〈gcd(0) ∧ gcd(3)〉

ApplyR0 〈gcd(3)〉
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Standard Operational Semantics ωt

The standard operational semantics [1] is a state transition system that, unlike the
very abstract semantics, takes more care about termination. Indeed in ωa the same
propagation rule can fire an unlimited number of time because additional built-in
constraint cannot invalidate a condition that holds (without resulting in a failure).
Moreover, since in a failed state any rule satisfies the applicability condition, a failed
state can only lead to an other failed state resulting in a not terminating execution.

To overcome these issues the standard semantics considers a three-rules-transition
system: Solve, Introduce and Apply. The first rule solves a built-in constraint from
the goal, the second inserts a goal constraint in the store and the third fires an in-
stance of a CHR rule. To prevent trivial non-termination, propagation rules cannot
be applied twice on the same constraints and the final state is reached when either
any transition rule is no more applicable or a built-in constraint is not satisfied.
To formally describe ωt we recall the version presented in [36] that is completely
equivalent to the previously formulated one.

An execution state σ is a tuple 〈G,S,B, T 〉n where G is the multiset of constraints
(called goal) that has to be rewritten, S and B are multisets of CHR and built-in
constraints respectively that form the constraint store, T is the propagation history
(used to ensure termination) and n is the next free identifier to be assigned to a
constraint. Each constraint c in the store S has an unique integer identifier i and
is denoted as c#i. The identifier is needed to distinguish among copies of the same
constraint. The propagation history is a sequence of the constraints that fired a
rule and the rule itself. Those data are recorded with the aim of avoid a trivial
non-termination in presence of propagation rules. Indeed a propagation rule must
not fire twice consecutively on the same set of constraints. If G is a multiset of
constraints the transition begins from the initial execution state 〈G, ∅, true, ∅〉n.

The three rules that allow moving among states are formally described in Ta-
ble 2.2. In the last rule we have used the notation ◦ for the operator of sequen-
tial concatenation and the function chr and id as projectors of the pair c#i (i.e.
chr(c#i) = c and id(c#i) = i). The application of the transition requires a match-
ing substitution θ and the validity of the guard g. Finally the propagation history
T is incremented by the identifier of the constraints H1, H2 and by the rule r.

The application order of the transitions is non-deterministic. Usually starting
from an initial state many different transitions are applicable and hence many differ-
ent states are reachable. A positive termination is achieved when we cannot apply
any other transition rule, instead when the constraint solver can prove Db |= ¬∃̄∅B
we are in presence of a failed derivation. Db denotes the constraint domain of the
built-in constraints.

Example 2.2.4. Like in Example 2.2.3, in Table 2.3 is reported abstract semantics
derivation of the gcd program for the query {gcd(6), gcd(9)}. The computation
successfully terminates when no more rule can be applied. The only chr constraint
remained in the store is the resulting constraint gcd(3).
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Table 2.2: Standard operational semantics transition system

Solve : 〈{b} ]G,S,B, T 〉n 7−→solve 〈G,S, b ∧B, T 〉n (2.8)

where b is a built-in constraint

Introduce : 〈{c} ]G,S,B, T 〉n 7−→introduce 〈G, {c#n} ] S,B, T 〉n+1 (2.9)

where c is a CHR constraint

Apply : 〈G,H1 ]H2 ] S,B, T 〉n 7−→apply 〈C ]G,H1 ] S, θ ∧B, T ′〉n (2.10)

where it must exist in the program a rule r of the form

r @H ′1\H ′2 ⇔ g | C
and a substitution θ such that chr(H1) = θ(H ′1),

chr(H2) = θ(H ′2), Db |= B 7−→ ∃̄B(θ ∧ g),

and T ′ = T ◦ {id(H1) ◦ id(H2) ◦ [r]}

Refined Operational Semantics ωr

The refined operational semantics [60] [36] removes much of the non-determinism
of the standard semantics. It uses a stack of constraints that is built up taking
one by one the goal constraints and the constraints introduced by the application
of a rule. The constraint at the top of the stack is called active and in turn each
active constraint attempts to match the head of a rule together with the constraints
present in the store. The main difference with respect to the standard operational
semantics relies on the fact that transition rules like Solve and Introduce cannot
be applied on any constraint in G. Thus CHR constraints are considered like a
sort of procedure calls because, when a new constraint is picked up from the stack,
it triggers the matching mechanism with all the program’s rules in order until the
execution or the deletion of such constraint from the stack. In refined semantics the
constraints insertion of the rule’s body is left-to-right and the rules are evaluates in a
top-to-bottom order. Such determinism makes the refined semantics an instance of
the standard one and hence any correct program for standard is correct for refined as
well. Unfortunately the opposite implication is valid only in presence of confluence.
With confluence we mean the property of producing the same results independently
of the rules application order (see Section 2.2.2 for further details).

The refined operational semantics can be formally described as a transition sys-
tem acting on states that have the form 〈A, S,B, T 〉n where A is the execution stack
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Table 2.3: Example of derivation in standard semantics

Initial state 〈{gcd(6), gcd(9)}, ∅, true, ∅〉0

Introduce 〈{gcd(9)}, {gcd(6)#0}, true, ∅〉1

Introduce 〈∅, {gcd(6)#0, gcd(9)#1}, true, ∅〉2

ApplyR1 〈{Z is 9− 6, gcd(Z)}, {gcd(6)#0},
gcd(M) = gcd(9) ∧ gcd(N) = gcd(6) ∧M ≥ N,

{0, 1, [R1]}〉2

Solve 〈{gcd(3)}, {gcd(6)#0}, true, {0, 1, [R1]}〉2

Introduce 〈∅, {gcd(6)#0, gcd(3)#2}, true, {0, 1, [R1]}〉3

ApplyR1 〈{Z is 6− 3, gcd(Z)}, {gcd(3)#2},
gcd(M) = gcd(6) ∧ gcd(N) = gcd(3) ∧M ≥ N,

{0, 1, [R1], 2, 0, [R1]}〉3

Solve 〈{gcd(3)}, {gcd(3)#2}, true, {0, 1, [R1], 2, 0, [R1]}〉3

Introduce 〈∅, {gcd(3)#2, gcd(3)#3}, true, {0, 1, [R1], 2, 0, [R1]}〉4

ApplyR1 〈{Z is 3− 3, gcd(Z)}, {gcd(3)#2},
gcd(M) = gcd(9) ∧ gcd(N) = gcd(6) ∧M ≥ N,

{0, 1, [R1], 2, 0, [R1], 2, 3, [R1]}〉4

Solve 〈{gcd(0)}, {gcd(3)#2}, true, {0, 1, [R1], 2, 0, [R1], 2, 3, [R1]}〉4

Introduce 〈∅, {gcd(3)#2, gcd(0)#4}, true, {0, 1, [R1], 2, 0, [R1], 2, 3, [R1]}〉5

ApplyR0 〈∅, {gcd(3)#2}, gcd(N) = gcd(0),
{0, 1, [R1], 2, 0, [R1], 2, 3, [R1], 4, [R2]}〉5

of constraints S and B are multisets of CHR and built-in constraints respectively, T
is the propagation history (used to ensure termination) and n is the next free iden-
tifier to be assigned to a constraint. Basically S,B and T , have the same meaning
than in the standard semantics while A is a sequence of identified constraints c#i
and occurrenced identified constraints. An occurrenced identified constraint c#i : j
is an identified constraint that can only match with occurrence j of the constraint
c. It is worth noting that in refined semantics the same identified constraint can be
present at the same time both in the execution stack A and in the store S.
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The initial state is 〈G, ∅,>, ∅〉1, where G is the goal, and the possible final states
can be either 〈G,S,⊥, T 〉n, if the computation has failed, or a given state in which
no more transition rules are applicable. The transition system is composed of seven
rules as reported in Table 2.4.

As in the standard semantics, transition Solve is used to increment the built-in
store: when it is applied a built-in constraint b is moved from the goal to the store.
Since the introduction of a new built-in can change the applicability of a guard, Solve

Table 2.4: Refined operational semantics transition system

Solve : 〈[b|A], S0 ] S1, B, T 〉n 7−→ 〈S1 + +A, S0 ] S1, b ∧B, T 〉n (2.11)

where b is a built-in constraint

Activate : 〈[c|A], S, B, T 〉n 7−→ 〈[c#n : 1|A], {c#n} ] S,B, T 〉n+1 (2.12)

where c is a CHR constraint which has never been activate

Reactivate : 〈[c#i|A], S, B, T 〉n 7−→ 〈[c#i : 1|A], S, B, T 〉n (2.13)

where c is a CHR constraint which is been added to A by Solve

Drop : 〈[c#i : j|A], S, B, T 〉n 7−→ 〈A, S,B, T 〉n (2.14)

where c#i : j has no occurrence j in the program

Simplify : 〈[c#i : j|A], {c#i} ]H1 ]H2 ]H3 ] S,B, T 〉n 7−→ (2.15)

〈θ(C) ++A,H1 ] S, θ ∧B, T ′〉n
where the jth occurrence of the CHR predicate of c in a (renamed

apart) rule in the program is r@H ′1\H ′2, d,H ′3 ⇔ g|C
and there exists a matching substitution θ such that

c = θ(d), chr(H1) = θ(H ′1), chr(H2) = θ(H ′2), chr(H3) = θ(H ′3),

and Db |= B 7−→ ∃̄B(θ ∧ g).

Let T ′ = T ∪ {id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r]}
and T ′ 6= T
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Propagate : 〈[c#i : j|A], {c#i} ]H1 ]H2 ]H3 ] S,B, T 〉n 7−→ (2.16)

〈θ(C) ++ [c#i : j|A, {c#i} ]H1 ]H2 ]H3 ] S, θ ∧B, T ′〉n
where the jth occurrence of the CHR predicate of c in a (renamed

apart) rule in the program is r@H ′1, d,H
′
2\H ′3 ⇔ g|C

and there exists a matching substitution θ such that

c = θ(d), chr(H1) = θ(H ′1), chr(H2) = θ(H ′2), chr(H3) = θ(H ′3),

and Db |= B 7−→ ∃̄B(θ ∧ g).

Le T ′ = T ∪ {id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r]}
andT ′ 6= T

Default : 〈[c#i : j|A], S, B, T 〉n 7−→ 〈[c#i : j + 1|A, S,B, T 〉n (2.17)

if in the current state no other transitions can fire

reinserts in the stack the constraints of the store that can be affected. Transition
Activate corresponds to Introduce because it makes active (it assigns an occurrence
to) the CHR constraint c at the top of the stack and inserts it in the store. Simplify
and Propagate instead correspond to Apply since they fire a rule in presence of the
matching constraints. If the active constraint does not match any rule then the
active constraint becomes the next constraint in the stack (the occurrence number
is incremented thanks to the Default transition). When the occurrence number of
an active constraint is not present in the program Drop applies and the constraint
is removed from the stack. FinallyReactivate is needed for activate again all the
constraints that are moved from the store to the stack by a Solve transition.

Example 2.2.5. We report in Table 2.5 the same derivation presented in Exam-
ple 2.2.4 but under ωr instead of ωt. For brevity the built-in store B and the
propagation history T are omitted. As for the standard semantics the computation
successfully terminates when no more transition rule can be applied. The only chr
constraint remained in the store is the resulting constraint gcd(3).

Even if the refined operational semantics reduces considerably the non-determi-
nism of the standard one, it still contains sources of indeterminacy. The first is
represented by the introduction of S1 in the stack during a Solve transition: the
introduction order of the constraints is indeed not specified. Furthermore when a
Simplify or Propagate rule is applied the choice of the partner constraint (H1, H2,
H3) is not determined if more possibilities exist. The issue of removing the non-
determinacy to realize practical CHR implementations is a source for optimizations
of the constraint store representation and of the CHR execution.
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Table 2.5: Example of derivation in refined semantics

Initial state 〈[gcd(6), gcd(9)], ∅〉0

Activate 〈[gcd(6)#0 : 0, gcd(9)], {gcd(6)#0}〉1

Default 〈[gcd(6)#0 : 1, gcd(9)], {gcd(6)#0}〉1

Default 〈[gcd(6)#0 : 2, gcd(9)], {gcd(6)#0}〉1

Default 〈[gcd(6)#0 : 3, gcd(9)], {gcd(6)#0}〉1

Drop 〈[gcd(9)], {gcd(6)#0}〉1

Activate 〈[gcd(9)#1 : 0], {gcd(9)#1, gcd(6)#0}〉2

Default 〈[gcd(9)#1 : 1], {gcd(9)#1, gcd(6)#0}〉2

Simplify 〈[gcd(3)], {gcd(6)#0}〉2

Activate 〈[gcd(3)#2 : 0], {gcd(3)#2, gcd(6)#0}〉3

Default 〈[gcd(3)#2 : 1], {gcd(3)#2, gcd(6)#0}〉3

Default 〈[gcd(3)#2 : 2], {gcd(3)#2, gcd(6)#0}〉3

Propagate 〈[gcd(3), gcd(3)#2 : 2], {gcd(3)#2}〉3

Activate 〈[gcd(3)#3 : 0, gcd(3)#2 : 2], {gcd(3)#3, gcd(3)#2}〉4

Default 〈[gcd(3)#3 : 1, gcd(3)#2 : 2], {gcd(3)#3, gcd(3)#2}〉4

Simplify 〈[gcd(0), gcd(3)#2 : 2], {gcd(3)#2}〉4

Activate 〈[gcd(0)#4 : 0, gcd(3)#2 : 2], {gcd(0)#4, gcd(3)#2}〉5

Simplify 〈[gcd(3)#2 : 2], {gcd(3)#2}〉5

Default 〈[gcd(3)#2 : 3], {gcd(3)#2}〉5

Drop 〈[], {gcd(3)#2}〉5
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2.2.2 Important CHR properties

In this section we will discuss the properties of confluence, anytime, online and
concurrency. As it will be shown confluence does not guaranty only the uniqueness
of the final state but it is a very important property that can help the parallelization
of CHR program. The latter three properties, instead, are automatically embedded
in any algorithm described by a CHR specification. They will be analyzed from the
point of view of the very abstract semantics and the limitations for the standard and
refined ones will be pointed out. The coverage of this subject follows what reported
in Chapter 4 and Chapter 5 of [46].

Confluence

Confluence means that if there is more than one way to rewrite constraints they
all must yield the same result. In other words confluence guarantees that, given a
goal, any possible computation must result in the same final state no matter the
order of the applicable rules. To formally define confluence we introduce the concept
of joinability. Denoting the reachability relation 7−→∗ as the reflexivity transitive
closure of 7−→, two states S1 and S2 are said to be joinable if there exist two states S ′1
and S ′2 such that S1 7−→∗ S ′1, S2 7−→∗ S ′2 and S ′1 ≡ S ′2. Basically this definition states
that two states are joinable if there are two computation that applied on these states
can lead to the same result. Now we are ready to formally define confluence [4]:

a CHR program is said to be confluent if, for all the states S, S1 and S2

of its computation, the following implication holds:
if S1 7−→∗ S1 and S2 7−→∗ S2 then S1 and S2 are joinable

As we have seen discussing the refined semantics, confluence is a very important
property for a CHR program, hence it is important to point out that a decidable,
sufficient and necessary confluence test for terminating programs exists. Indeed, if
the program is terminating, the search for joinability can be restricted to a finite
number of relevant states called overlaps. Overlaps are state where several rules
are applicable possibly leading to different states. Given a couple of rules for each
overlap we have two possible resulting states named critical pair. If a critical pair
cannot be joinable the program is not confluent. The sufficient and necessary con-
dition for a terminating program to be confluent is given by the condition that all
its critical pairs must be joinable [1].

Example 2.2.6. The running Exemple 2.2.1 is confluent when the arguments are
fully known (ground confluent) but it is not confluent in general. Indeed, for in-
stance, the simple overlap:

gcd(A) ∧ gcd(B) ∧ gcd(C) ∧ A ≤ B ∧ A ≤ C
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generates the critical pair:

gcd(A) ∧ gcd(B − A) ∧ gcd(C) ∧ A ≤ B ∧ A ≤ C and

gcd(A) ∧ gcd(B) ∧ gcd(C − A) ∧ A ≤ B ∧ A ≤ C

that cannot be joinable until the two numbers remain unknown or a further rela-
tionship between variables is not added.

Finally another good feature of confluence should be mentioned: in some case if
a CHR program is not confluent it can be incremented by the addition of new rules
in order to make it confluent. Such technique is called completion [3]. The new rules
are generated by each critical pairs (usually one propagation and one simplification
are needed) and in turn they may generate other non joinable critical pairs. Hence
the completion process may not be terminating.

Anytime

An algorithm is called an anytime algorithm when, interrupted at any time, it
can be resumed starting from the intermediate result without the need to restart
from scratch. If this property holds the result of the partial execution becomes an
approximation of the final result and further interrupts of the algorithm will lead to a
better approximation (closer to the final result). CHR embeds the anytime property
in its semantics since the interruption of the execution after any rule application
gives the current state of the computation. Any state of the transition system can
be resumed without the need of restarting from the initial state and any further
state approaches the final state since more built-in constraints are added and the
CHR constraints are even further rewritten.

Example 2.2.7. In Example 2.2.3 we have seen an execution of the gcd program
of Example 2.2.1. We can easily notice that, if we halt the computation in a given
state and then we use the resulted constraints as a query for a new execution of the
same program, the same final result will be obtained.

In the standard and refined semantics things are more tricky because, if we
retrieve the logical reading of a state after an interrupt of the execution, we loose the
propagation history and the distinction between goal constraints and their numbered
or active instance. However for the standard semantics, it is still possible to restart
the computation from the logical reading of a state after some executions of introduce
and solve that can lead to the state itself. While for the highly deterministic refined
semantics the property of confluence is required in order to restart the computation
from the logical reading of a state.

Online

In order to understand the online property we need to introduce the concept of
monotonicity. The monotonicity property of CHR states that if the application of a
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transition rule is allowed for a given state then it is allowed in a state that contains
additional constraints as well. The following implication resumes the property of
monotonicity over the conjunction of constraints A, B and E.

if A 7−→ B then A ∧ E 7−→ B ∧ E (2.18)

The validity of such property for ωa is evident: since the states are just goals, the
addition of a new conjunction of constraints can be seen as an increment of the
term G in the apply rule (Table 2.1). If the condition Db |= G 7−→ ∃̄C holds,
Db |= G ∧ E 7−→ ∃̄C will hold as well. In ωt monotonicity is still present if we
add to a non-failed state the suitable constraints to all its first three components
and we remove entries from the propagation history. In ωr the constraints can be
added only ”at the end” of the stack, and the restriction for numbered and active
constraints must be respected. Thus it is necessary to pay attention to the fact that
there are two possible ways for combining two states.

A direct consequence of monotonicity is the online property. An algorithm is
said to be online if it allows for the addition of new constraints during its execution
without the need of restart computation from the beginning. Indeed monotonicity
implies that constraints can be incrementally added to the states of the execution of
a program resulting in final state equivalent to the one originated by the execution
that has those constraints from the initial state.

Example 2.2.8. The online property can be observed comparing the two exe-
cution in Table 2.6 of the gcd program 2.2.1, in one case with the initial query
{gcd(6), gcd(9), gcd(2)} and in the other one with {gcd(9), gcd(6)} plus the addition
of constraint gcd(2) (highlighted in red) at an intermediate state.

Concurrency

Concurrency is defined as the ability of allowing logically independent computa-
tions that are capable of composing the final system in a modular fashion. This
does not necessary imply that the concurrent processes act simultaneously (in par-
allel). Hence concurrency can benefit by parallelism for improving performance, but
can also implemented in a sequential way. If a suitable parallel hardware is avail-
able concurrency can result in parallel semantics, otherwise, in presence of a single
computation engine, it leads to an interleaving semantics. Declarative programming
languages in general are more oriented towards concurrency than imperative because
different computations can be composed together without conflicts. In particular in
CHR concurrent processes are seen as atomic CHR constraints that communicate
asynchronously through a shared built-in constraint store. The built-in constraints
are the messages and the variables are the communication channels.

The monotonicity property 2.18, introduced in the previous paragraph, is at the
basis of the parallelism of CHR [45]. Indeed from monotonicity it is possible to
derive the notion on weak parallelism: separate parts of the problem can be tackled
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Table 2.6: Example of online property

〈gcd(6) ∧ gcd(9) ∧ gcd(2)〉 〈gcd(6) ∧ gcd(9)〉

〈gcd(6) ∧ gcd(3) ∧ gcd(2)〉 〈gcd(6) ∧ gcd(3)〉

〈gcd(4) ∧ gcd(3) ∧ gcd(2)〉 〈gcd(3) ∧ gcd(3)〉

〈gcd(1) ∧ gcd(3) ∧ gcd(2)〉 〈gcd(0) ∧ gcd(3)〉

〈gcd(1) ∧ gcd(1) ∧ gcd(2)〉 〈gcd(0) ∧ gcd(3) ∧ gcd(2)〉

〈gcd(0) ∧ gcd(1) ∧ gcd(2)〉 〈gcd(3) ∧ gcd(2)〉

〈gcd(0) ∧ gcd(1) ∧ gcd(1)〉 〈gcd(1) ∧ gcd(2)〉

〈gcd(1) ∧ gcd(1)〉 〈gcd(1) ∧ gcd(1)〉

〈gcd(0) ∧ gcd(1)〉 〈gcd(0) ∧ gcd(1)〉

〈gcd(1)〉 〈gcd(1)〉

in parallel. Formally weak parallelism is defined in Figure 2.2(a) where A, B, C and
D are conjunctions of constraints, 7−→7−→ denote a parallel transition and the upper
transitions imply the lower one.

Figure 2.2: Weak parallelism (a) and trivial confluence (b)

A 7−→ B
C 7−→ D

A ∧ C 7−→7−→ B ∧D
(a)

A 7−→ B
C 7−→ D

A ∧ C 7−→7−→ A ∧D or B ∧ C
(b)

To prove weak parallelism a direct consequence of monotonicity, called trivial
confluence, is needed. In Figure 2.2(b) we can see that an intermediate state of the
parallel computation of A ∧ C can be either A ∧ D or B ∧ C. Thus from each of
these states B ∧ D can be easily obtained. Weak parallelism is then proved in an
interleaving semantics composing two computations.

Example 2.2.9. Weak parallelism can be applied to the running Example 2.2.1 on
different part of the query. In Table 2.7 a derivation from the query gcd(2), gcd(4),
gcd(9), gcd(6) is reported. For instance in the first transition rule R1 is applied
concurrently to gcd(2) ∧ gcd(4) and to gcd(9) ∧ gcd(6)

Since weak parallelism is based on monotonicity when applied in ωt or ωr the
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Table 2.7: Example of computation that employs weak parallel transitions

〈gcd(2) ∧ gcd(4) ∧ gcd(9) ∧ gcd(6)〉 7−→7−→

〈gcd(2) ∧ gcd(2) ∧ gcd(3) ∧ gcd(6)〉 7−→7−→

〈gcd(0) ∧ gcd(2) ∧ gcd(3) ∧ gcd(3)〉 7−→7−→

〈gcd(2) ∧ gcd(0) ∧ gcd(3)〉 7−→

〈gcd(2) ∧ gcd(3)〉 7−→

〈gcd(2) ∧ gcd(1)〉 7−→

〈gcd(1) ∧ gcd(1)〉 7−→

〈gcd(0) ∧ gcd(1)〉 7−→

〈gcd(1)〉

same limitation imposed by such property should be applied. It is worth noting
that, in any case, weak parallelism cannot be applied on the same constraint: one
constraint can be used at most once in a simultaneous computation. Moreover
weak parallelism cannot be applied to rules that share built-in constraints for the
guard check. In order to overcome these limitation the notion of strong parallelism
is introduced. As it can be noticed from Figure 2.3(a) strong parallelism allows
rules to work also on overlapping constraints provided that they do not attempt to
modify them. If the overlapping parts E is kept by the two rules they can work

Figure 2.3: Strong parallelism (a) and trivial confluence with context (b)

A ∧ E 7−→ B ∧ E
C ∧ E 7−→ D ∧ E

A ∧ E ∧ C 7−→7−→ B ∧ E ∧D
(a)

A ∧ E 7−→ B ∧ E
C ∧ E 7−→ D ∧ E

A ∧ C ∧ E 7−→7−→ A ∧D ∧ E or B ∧ C ∧ E
(b)

concurrently. As in the case of weak parallelism the proof of strong parallelism
descend from monotonicity and trivial confluence, but, in this case, with context
(Figure 2.3(b)). The domain of application of strong parallelism consists of all the
propagation rule since they just add new constraints and some simpagation rules
because part of their head is kept. It is clear that simplification rules cannot take
advantage of strong parallelism since they remove all the constraints in their head.

Example 2.2.10. Continuing with the running Example 2.2.1, in Table 2.8 a strong
parallel derivation of the query gcd(2), gcd(4), gcd(9), gcd(6) is shown. In the first
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state the constraint gcd(2) matches the kept part of rule R1 while all the other
constraints match in turn the removed part. Thus the first strong parallel transition
corresponds to the concurrent application of three sequential transitions.

Table 2.8: Example of computation that employs strong parallel transitions

〈gcd(2) ∧ gcd(4) ∧ gcd(9) ∧ gcd(6)〉 7−→7−→

〈gcd(2) ∧ gcd(2) ∧ gcd(7) ∧ gcd(4)〉 7−→7−→

〈gcd(2) ∧ gcd(0) ∧ gcd(5) ∧ gcd(2)〉 7−→7−→

〈gcd(2) ∧ gcd(3) ∧ gcd(0)〉 7−→7−→

〈gcd(2) ∧ gcd(1)〉 7−→

〈gcd(1) ∧ gcd(1)〉 7−→

〈gcd(0) ∧ gcd(1)〉 7−→

〈gcd(1)〉

Parallelization under ωa or ωt is possible with the limitation that we have just
seen, but the adoption of ωr will lead to incorrect behaviors since it strongly relies on
the order of rules in the program and on the order of the goal constraints. However,
as in the case of anytime property, confluence helps the parallelization in ωr as well.
Indeed such property guarantees that the order of the rules and thus even the order
of the constraints in the goal does not matter. Hence, if the program is confluent,
it can be executed in parallel even if it is written for the refined semantics.

2.2.3 Parallel execution of CHR

As we have shown in the previous Section CHR is a highly concurrent language.
Likewise it is broadly accepted that a parallel computation model is still in fieri.
The first example of parallel implementation was due to Frühwirth [45] where it was
shown how to evaluate the degree of concurrency starting from the confluence analy-
sis of a sequential program execution. Further works by Sulzmann and Lam [100, 68]
focus on the formal specification and the development of a parallel implementation
of the CHR goal-based execution schema: multiple processor cores run multiple
threads following a single CHR goal. The novel semantics introduced in these latter
papers can be considered the direct extension of the refined operational semantics
towards parallelism and hence the most suitable for a concrete and efficient parallel
implementation.
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Other attempts to concurrency were pursued in the last years mainly driven by
the CHR set based operational semantics [88]. Although CHR programs usually
adopt a multiset based semantics it was shown how a large class of programs can
benefit from a tabled rule execution schema that eliminates the need of a propaga-
tion history and acquires a natural parallelism by the notion of set. The persistent
constraint semantics presented in [15], that exploits the idea of a mixed store where
the constraints can behave like a set or a multiset, achieves a higher degree of declar-
ativity keeping the potentiality of concurrency of the standard semantics. Finally
we should mention the parallel execution strategy, introduced in [84], that gives the
possibility of applying multiple removals to the same constraint. Such semantics
eliminates the conflicts in the constraint removals by different instances of the same
rule remaining sound wrt the sequential execution.



3
Reconfigurable Computing

Reconfigurable computing is a particular computer architecture able to merge the
flexibility of software with the performance of hardware using as processing element
a high speed configurable hardware fabric [56]. If compared with traditional micro-
processor architecture, the main difference is represented by the ability of modifying
not only the control flow but also the data path.

In this chapter we want to introduce the hardware component employed in all
the experimental setups described along this thesis: the Field-Programmable Gate
Array (FPGA) [25, 67]. FPGAs are a clear instance of reconfigurable computing:
the fist section of the chapter explains what makes them programmable. Then in
Section 3.2 we discuss the methodology for deploying hardware designs to FPGA,
the process called synthesis. In the last Section 3.3 our focus will be the state of the
art of the high-level languages employed in the hardware synthesis of reconfigurable
systems.

3.1 Field-Programmable Gate Arrays

FPGAs are considered by hardware engineers as one of the most useful compo-
nent/tool in digital electronics. The key factor that brought FPGAs to success was
its programmability. Indeed FPGAs are hardware devices that consist of arrays of
logic gates capable of being programmed by the customer in the field rather than in a
semiconductor fabrication plant. The drawbacks given by this flexibility are mainly
two: the grater amount of space occupied by a project in FPGAs and the maximum
speed achievable. Since our work is more concerned with the research of suitable
hardware configurations than an effective gain in hardware performance, the FPGA
is the most suitable hardware device to be used as circuits test bench. In the next
Sections we inspect the main components of an FPGA while in Section 3.1.5 the
main differences between an FPGA and a standard integrated hardware circuit are
pointed out.
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Figure 3.1: FPGA architecture (island style)

3.1.1 FPGAs Architecture

FPGAs are hardware devices consisting of arrays of logic gates capable of being
programmed by the customer in the field rather than by the manufacturer. They are
devices containing programmable interconnections between logic components, called
logic blocks, that can be programmed to perform complex combinational functions.
In most FPGAs the logic blocks contain memory elements like simple flip-flops
or complete blocks of memory. FPGAs can also host hardware components like
embedded hard microprocessors or IP (Intellectual Property) cores that use the
logic blocks themselves to make predefined structures like soft microprocessor cores,
real CPUs entirely implemented using logic synthesis.

The architecture of an FPGA is basically divided into three parts: the inter-
nal computational units called configuration logic blocks (CLBs), the Input/Output
(I/O) blocks that are responsible for the communication with all the other hard-
ware resources outside the chip, and the programmable interconnections among the
blocks. Besides these essential blocks in the modern FPGA we can find also more
rich and complex hardware blocks designed to perform higher-level functions (such
as adders and multipliers), or embedded memories, as well as logic blocks that im-
plement decoders or mathematical functions.

The FPGA architecture is model and vendor dependent, but in the most cases
it consists of a bi-dimensional array of CLB surrounded by the I/O blocks. In
the sketch of Fig. 3.1 it is shown this typical arrangement of the internal blocks
called island-style. It follows a detailed description of the CLB, I/O block and
interconnections.

3.1.2 Configuration Logic Block

CLBs are the flexible logic part of an FPGA, they can implement any logic function,
if the number of them is sufficient. CLBs are made by few logic cells commonly called
slices and a full crossbar for interconnection. Each of them consists of some n-bit
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lookup tables (LUT), full adders (FAs) and D-type flip-flops (see Fig. 3.2). The
n-bit LUT performs the combinatorial part of the circuit: it can encode any n-
input boolean function by a truth table model. The FA is used when there is the
need to perform arithmetic functions otherwise it can be bypassed by a multiplexer.
Likewise the final D flip-flop can be skipped if we wish an asynchronous output.
Instead the LUT can be bypassed for executing just the sequential part (the flip-
flop) by programming its output to simply reproduce its input. The crossbar is
responsible for the connection among the inputs of the CLB and any input of the
slices and for guaranteeing the feedback mechanism of the output of the slices. The
output of the slices instead is connected directly to one of the outputs of the CLB.

Beside this basic configuration, more complicate structures recently appear. For
example, many FPGAs can contain multiple LUTs. Increasing the number of in-
puts, n, the quantity of logic implementable in a CLB increases giving as result the
possibility of decrease the number of connection among them. However since the
complexity of a LUT increases exponentially with n as well, it is better to merge
multiple small LUT with a local routing [8][110]. In Fig. 3.2 it is shown how to
implement a 5-input LUT starting from two 4-input ones. Given a function that
requires 5 inputs, the first LUT implements the function assuming ’0’ as logic value
for the last input while the other LUT does the same assuming ’1’. The fifth input
is routed to the select input of a multiplexer that can choose the output of the two
LUTs.

3.1.3 Routing system and I/O blocks

In the island-style architecture the CLBs are separated by rows and columns of
routing channels [111]. Each of them spans the entire length of the array and their
portions around the blocks are called channel segments. The segment channel is
composed by many segment wires grouped together and connected by programmable
switch (see the expanded view of Fig. 3.1) that allows wires to turn corner or to
extend further down a channel. Usually such routing switches are implemented by
using multiplexer that chooses the driver of a segment wire.

I/O blocks can be programmed to be inputs, outputs or three-states and are
generally programmed to implement other features like low power consumption or
high speed connections. The blocks contain a pin that physically bridges the FPGA
with the outer routing. In order to match the I/O characteristics of the other devices
witch are interfaced with the FPGA, the I/O block can support a wide variety of
I/O programmable standards as well.

3.1.4 Embedded components

In an FPGA architecture the manufacture can choose to embed specialized hardware
blocks. These fixed structures typically implement common function used in the
majority of the digital design with an optimized layout that reduces the occupied
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Figure 3.2: (a) CLB architecture (b) Two 4-input LUT become a 5-input LUT

area and also the execution time with respect to the same function implemented in
CLBs [66]. Since the number and the size (in terms of inputs) of such specialized
blocks are not predictable in advance by the manufacture, the strategy usually
adopted is to split them in smaller sub-block. The hardware components that better
apply to fragmentation and hence can be frequently found in FPGAs are multipliers
and memory blocks. In particular in Chapter 6 we will show how we have employed
memory blocks for guaranteeing a safe decoupling interface between the central CPU
and the custom hardware running on FPGA.

A particular class of specialized hardware blocks deserves a special attention:
the embedded processor [41]. Indeed it is possible to embed both a soft or a hard
microprocessor in FPGAs. The former is implemented using CLBs while the latter
is built from dedicated silicon. Typical instances of hard physical processors that
can be found in FPGAs come from the PowerPC or ARM families. The most
evident advantage in adopting an embedded processor is the high degree of freedom
in customization. The designer can invent new and unique peripherals that are
easily positionable on the processor bus. Another benefit introduced by the coupling
of FPGAs and processors is the ability of making a trade off between hardware
and software and, as a consequence, the possibility of demanding some software
bottleneck to specialized hardware engine. In Chapter 6 the design of such coupled
system is fully discussed and a practical implementation is given. Here we focus on
pointing out the lack of suitable tools for embedded processor software design due
to the fact that studies on such field are relatively immature compared with the
ones of software or FPGAs design. Finally the sole advantage of the soft embedded
microprocessor is its non-obsolescence since its design is easily portable on other
reconfigurable hardware.
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3.1.5 FPGA vs. ASIC

What makes the real success of FPGAs over their counterparts ”the Application
Specific Integrated Circuits” (ASICs) is clearly identifiable in their reconfigurabil-
ity [66]. Since FPGAs guarantee a time to production extremely shorter, they can
be programmed and verified in few weeks. We can, thus, easily understand why
they quickly emerged as a way for generating effective and low cost hardware proto-
type. However nowadays FPGAs are not used only for prototyping, indeed, due to
the decreasing cost per gate, they are employed as a principal component in many
digital hardware designs. In the following list we summarize the differences between
an FPGA and a classical ASIC.

• Usually in FPGAs the primitive components available are more complete and
complex of the one provided by the ASIC manufacturing. Depending on the
situation this may or may not represent an advantage because in FPGAs a
not used resource is wasted space. The ASIC designer instead can choose to
implement or not the primitives at his disposal.

• FPGAs are able to work only at relatively slow speed compared to ASICs. The
maximum clock frequency is strongly affected by the non optimized structure
of the project layout in the FPGA. If the degree of parallelization achievable
in FPGAs is not enough for the time requirement of the hardware design the
only solution is to move the project on ASIC.

• FPGAs have a low density in terms of logical circuitry. The flexibility in
the interconnection and the general structure of a CLB makes the effective
capacity of an ASIC equal to the one of several FPGAs. This has also the
drawback of requiring more space in the silicon wafer for producing FPGAs.

• As we said prototyping costs and production time are more convenient for
FPGAs. Indeed FPGAs are usually employed in the emulation stage of the
ASICs production. Functional bugs can be quickly pointed out moving an
ASIC circuit on an FPGA and using it as an emulator.

3.2 Programming reconfigurable systems

FPGAs and reconfigurable architecture in general have the user programmability
typical of software, but also the spatial parallelism of hardware. To get full advan-
tage from them, a programming model including a complete framework, that allows
configuration changes, is needed. Such infrastructure has not only to guarantee the
temporal programmability but also to deal with spatial issues, like physical place-
ment or timing of functional units, that are usually considered hardware properties.

The next section provides an introduction to the design flow of a reconfigurable
hardware. We will cover the FPGAs synthesis from the programming phase through
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the compilation stages to the actual code deployment in hardware. In Section 3.2.3
a brief overview of a typical hardware programming language (namely VHDL) is
given. VHDL is for hardware what assembly is for software with the difference that
it can be called ”semi-portable” since the code is not completely FPGA dependent.
It let the programmer have a fine control of hardware and parallelism but it requires
to pay attention to many low-level details.

3.2.1 FPGA configuration

The FPGA programmer usually begins the design flow by a description of the de-
sired behavior of the targeting hardware in a hardware description language (HDL).
The most commonly adopted HDLs by the hardware engineers are Verilog [108]
and VHDL [109] (in particular we will use the latter in all the implementations pro-
posed in this thesis). HDL code can directly feed a vendor-specific design automation
tool (called synthesizer) that through different steps generates a technology-mapped
netlist used to configure each CLB. Since each FPGA differs from design architec-
ture a dedicated process, named place-and-route, takes care of choosing which CLBs
need to be employed and how to physically connect them. Before the actual imple-
mentation in hardware, the programmer can validate the map via timing analysis,
simulation, and other verification methodologies. The final result of the design flow
is then a bit-stream file that can be transfered via a serial interface to the FPGA or
to an external memory device charged to deploy it at every boot of the FPGA.

In the following Sections a deeper description of each synthesis step is given.
Here we report just a very simple example of the RTL and netlist level that could
be useful for having an idea of the different abstraction levels.

Example 3.2.1. The two schematics reported in Fig. 3.3 are the circuital drawings
of a 2-bit counter at the RTL level (a) and at the netlist level (b). We consider
as 2-bit counter a very simple hardware component with no input and two outputs
that perform in a loop the sequence 00, 01, 10, 11. The RTL structural description
deals with the elementary hardware block of the combinatorial logic (in the example
a NOT and a XOR gate) and of the sequential logic (two D-type flip-flops), while
the netlist level makes explicit all the interconnections among the gates.

3.2.2 Register transfer level

Register transfer level (RTL) usually is the first level of abstraction encountered
in the synthesis flow. RTL descriptions are then compiled to a gate-level by a
logic synthesis tool. As the name suggests, at this stage the design is described
in terms of transfer of data among hardware registers and through combinatorial
logic elements. The most common way to implement registers are the D flip-flops,
elementary memory blocks capable of storing the value of a signal. In a D flip-
flop every clock cycle the value of the output is replaced by the value of the input.
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Figure 3.3: 2-bit counter seen at the RTL level (a) and at the netlist level (b)

Such register elements have a twofold duty: they synchronize the operations of the
circuit to the clock edge and store the information of the previous clock cycle. The
combinatorial part of the circuit is, instead, performed by logic gates (i.e. AND,
OR, NOT, XOR, XNOR, etc.) that can implement any Boolean functions.

As we said the design of the RTLs is commonly done using a HDL: the designer
declares the register and describes the interconnections among combinatorial logic
using standard constructs like if-then-else and arithmetic operations.

Example 3.2.2. In Figure 3.4 the circuit described in Example 3.2.1 is specified
using VHDL in a structural way (see Section 3.2.3 for more details) that highlights
the registers and logic gates interconnections. For clarity reason the entity part of
the code has been omitted, and only the architecture is reported.

Using an electronic design automation (EDA) tool for synthesis, such specifica-
tion can be directly translated to an equivalent hardware implementation file for
FPGAs or ASICs. The right part of the figure presents a behavioral architecture
of an inverter and a xor gate, but their declaration is not necessary for the synthe-
sis process if the components are stored in one library or package defined by the
hardware vendor.

It is worth noting that at RTL some types of hardware circuits can be recognized.
For example if there is a cyclic path of logic from a set of outputs of some registers
to its inputs, the circuit is converted in a state machine. Otherwise if there are logic
paths from a register to another without a cycle the path is converted in a pipeline.
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Figure 3.4: 2-bit counter structural description

architecture STRUCTURE of COUNTER2 is

component DFF

port(CLK, RESET, DATA: in BIT;

Q: out BIT);

end component;

component INV

port(I: in BIT;

O: out BIT);

end component;

component XOR2

port(I1, I2: in BIT;

O: out BIT);

end component;

signal N0, N1, N2, N3: BIT;

begin

u1: DFF port map(CLK, N0, N1);

u2: DFF port map(CLK, N2, N3);

u3: INV port map(N1, N0);

u4: XOR2 port map(N1,B3, N2);

COUNT(0) <= N1;

COUNT(1) <= N3;

end STRUCTURE;

architecture BEHAVIORAL of DFF is

begin

process(CLK, RESET)

begin

if RESET=’1’ than

Q <= ’0’;

elsif CLK’event and CLK=’1’ then

Q <= DATA;

end if;

end process;

end BEHAVIORAL;

architecture BEHAVIORAL of INV is

begin

O <= not I;

end BEHAVIORAL;

architecture BEHAVIORAL of XOR2 is

begin

O <= I1 xor I2;

end BEHAVIORAL;

3.2.3 VHDL

VHDL stands for VHSIC (Very High Speed Integrated Circuits) Hardware Descrip-
tion Language. It was originally developed in 80s by the US Department of Defense
for describing ASICs, and nowadays, together with Verilog, is the most used pro-
gramming language for digital circuits.

Programming in VHDL has some analogy with object-oriented language like
encapsulation and interfaces but it differs from imperatives language like C++ or
Java because of its concurrent semantics [56]. Indeed VHDL is inherently parallel:
commands (that correspond to instantiation of logic gates) are computed in parallel
as soon as new inputs arrive.

There are two levels of abstraction that can be used in HDL for describing
hardware: the structural and the behavioral one. The first describes the system in
terms of interconnections between hardware components composed by elementary
hardware primitives, while the second works at a higher level of abstraction dealing
with the functionality of the hardware component, or, in other words, it describes
what the component actually do specifying the relation between the input and the
output signals.

Example 3.2.3. In Figure 3.5 is reported the behavioral description of the 2-bit
counter architecture presented in Example 3.2.2 in its structural version.
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Figure 3.5: 2-bit counter behavioral architecture

architecture BEHAVIORAL of COUNTER2 is

signal tmp : BIT_VECTOR(1 downto 0);

begin

process(clk, reset)

if reset=’1’ then

tmp <= "00"

elsif clk’event and clk=’1’ then

tmp <= tmp+1;

end if;

end process;

COUNT <= Tmp;

end BEHAVIORAL;

We have seen how signals can be used as wire for connecting component ports,
but in this example they are used for representing logic. The operator <= is used
for assigning a value to a signal or for defining the signal as a function of other
signals. The VHDL operator for assignment can seem similar to the C = but the
main difference is that the assignment is not ”instantaneous” and it takes effect only
at the next clock cycle. The VHDL operator most similar to the C equality is :=

but it cannot be used for signals (only for constants and variables). Instead nothing
changes for the relational equality operator represented in C with == and in VHDL
with =.

After an instantiation of the signals used in the architecture concurrent signal
assignments can be used inside the begin/end statement but outside the process
block. Instead the content of a process is executed in sequence and its execution is
triggered by the value changing of a signal inside the sensitivity list (the list between
brackets that follows the process statement). The process is suspended when all the
statements inside it are executed and signals are assigned only at this time marking
the begin of a new clock cycle. Indeed the signals retain the logical values of the
former clock cycle until the end of the process execution.

Besides the data types that we briefly introduce in the next example, a certain
number of attributes are defined. They are used in conjunction with signals or
variables and they return various types of information about them. In the present
example the event attribute is used for the clk signal. In Table 3.1 a complete list
of them is given.

It is worth pointing out that the signal assignments and the execution of a process
are concurrent statements. This implies that the statements are executed when one
or more of the signals on the right hand side or in the sensitivity list change their
value. There may be a propagation delay associated with this change. Digital
systems are basically data-driven and an event which occurs on one signal will lead
to an event on another signal, etc. The execution of the statements is determined
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Table 3.1: Defined attributes for signals and variables

Attribute Function

event returns the Boolean ”true” if any kind of event on the signal
occurred (like a value changing)

active returns the Boolean ”true” if there has been an assignment on that
signal

transaction returns a”bit” signal that toggles every time there is a
transaction on that signal

last event returns the time interval since the last event on that signal
last active returns the time interval since the last transaction on that

signal
last value gives the previous value of a signal
delayed(T) gives a T delayed version of a given signal
stable(T) returns the Boolean ”true” if no actions on that signal for an

interval T
quiet(T) returns the Boolean ”true” if no transactions on that signal for an

interval T

by the flow of signal values. As a result, the order in which these statements are
given does not matter. This is in contrast to conventional, software programs that
execute the statements in a sequential or procedural manner.

Besides the architecture that we have seen in the previous examples another
structure is mandatory for a complete VHDL code: the entity. The description of
an hardware module requires an entity declaration that indicates all the interfacing
signals to the outer word. It is a list of the I/O ports of the hardware block: it
specifies the direction, the type, the bit width and the endianness of the signals.

Example 3.2.4. The following Figure 3.6 reports the entity declaration of the
running Example 3.2.2.

Figure 3.6: 2-bit counter entity

entity counter is

port( clk, reset : in BIT;

COUNTER : out BIT_VECTOR(1 downto 0));

end counter;

Since VHDL is a strongly typed language the programmer has always to de-
clare the type of every signals, constants or variables. The type can be built-in or
user defined. Examples of them are: BIT that can assume the values ’0’ or ’1’;
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standard logic that can assume 9 values depending by the strength of the signal
(reported in Table 3.2.3; or boolean that can have the value ”true” or ”false”. Each
type can be also assigned to a group of signals using the extension vector.

In his example the entity is called counter and has two inputs of type BIT and
one output of type BIT VECTOR of width 2 and with the most significant bit as
the first bit.

Table 3.2: std logic type as defined in the std logic 1164 package

type STD LOGIC is (
’U’ uninitialized
’X’ forcing unknown
’0’ forcing ’0’ value
’1’ forcing ’1’ value
’Z’ high impedance
’W’ weak unknown
’L’ weak ’0’
’H’ weak ’1’
’-’ ); don’t care

3.2.4 FPGA physical synthesis

The synthesis of an FPGA is a multi-step process that begins with a logical synthesis,
translates the HDL code at the RTL to a netlist at the gate level, applies a place and
route algorithm, maps the generic netlist to a target device, and finally generates
and deploys the bitstream to the FPGA. The whole sequence is called physical
synthesis. It is a process entirely performed by a tool, provided by the FPGA
manufacturer, that brings the HDL to a placed and routed netlist without user
intervention. Besides the synthesizable HDL code, the fundamental inputs that the
user has to provide for the synthesizer can be summarized as follows:

• Model of the target family and device;

• The clock frequency (or frequencies for multiple clocks design) with respect to
an external clock;

• The required output timing;

• The output driver standard and signal strength;

• The output slew rate;

• The map between physical output pins and output signals;
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• The maximum acceptable time delay between groups of elements.

In the following paragraphs each step taken by the synthesizer is briefly described.

Logical synthesis

With the expression ”logical synthesis” we mean the process of translating the HDL
code to a gate level description, however it might include different design stages.
The following steps summarize a full logic synthesis process [27]:

• Write a RTL description of the desired hardware functionality;

• Write a testbench to test the design description (VHDL or Verilog are typical
languages for this task as well);

• Verify the functionality of the design with the testbench;

• Phisical synthesize the design to a gate level;

• Evaluate the gate level description with the testbench;

• Verify the post synthesis time requirements are met.

Most FPGA projects are standalone systems interconnected to the outer world.
Therefore a large part of debugging and test is concerned with simulating everything
will interact with the FPGA. Such process is called the testbench. It simulates
feeding signals for the FPGA and it observes the transformations and translations
of signals as they propagate through the FPGA from the input pins until they
eventually reach the output pins.

The synthesizer can gain information about the design to be implemented in two
ways called inference and instantiation. Inference is the ability of getting all the
required design functionalities from the HDL. Instantiation instead uses pre-defined
structures selected by the user. Clearly the first method is more portable since all
the information related to the targeting hardware are provided by the tool and are
not dependent by the FPGA fabric resources. Instead instantiation has the benefit
of being more optimized as placement, routing and performance are completely
predictable. An example of instantiation is the use of an Intellectual Property (IP)
core (a standalone configurable hardware block that is instantiated as a black box).

Place and route

In Section 3.1 we have seen that the basic building block of an FPGA is the CLB
that usually contains a small number of registers and LUTs. The first step during
the place and route compilation phase is the mapping of the obtained netlist to a
set of these basic logic blocks. If a primitive gate has more inputs than a single
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Figure 3.7: Place and route diagram flow

LUT its functionality must be spread across several of them. On the contrary if the
primitive gates have few inputs they can be clustered together in a single LUT.

In Fig. 3.7 the entire flow diagram of the place and route process is reported.
Once the mapping is complete, the place and route process is charged to decide where
to place the registers and gates within the FPGA fabric and to determine the best
path for connecting them. The process is based on a series of iterative selection of the
fabric cells, their location and the interconnect routing paths. Since randomization
is at the basis of the place and route algorithm, especially at the beginning of the
placing there is a not negligible probability that related logic is not placed together.
In order to overcome this problem the design should be implemented with hierarchy.
Indeed if the hardware blocks of the project are well structured and encapsulated one
inside the other the place and route process can gain useful information for starting
the placement from scratch. A static timing analysis phase comes immediately after
the conclusion of the routing. If some of the given constraints are not met the
algorithm re-starts the placing or routing phases.

The placing algorithms adopted by the majority of FPGA manufactures are
based on annealing [92]. Annealing algorithms for placement are characterized by
the their acceptance of a percentage of high-cost permutations of logic blocks rather
than of only small permutations that, if the starting point is not a already partially
arranged framework, may lead to a local minimum. For the routing phase the
most used algorithm is based on the the Dijkstra’s shortest path and is called maze-
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routing [70]. Such algorithm starts to route each net sequentially evaluating the cost
on the basis of the number of wire segment needed and with the aim of avoiding
congested resources.

Bitstream loading

The last phase of the compilation process of an FPGA is the loading of the config-
uration instructions to the hardware device. The collection of all the configuration
data (including LUTs, CLB, switches, etc.) is called bitstream. The term comes
from the most used technique for deploying this data on the FPGA a serial stream of
bits sent by an external flash memory chip, although modern FPGAs adopt parallel
methods in order to speed up the loading phase. Dedicated internal memories can
be also adopted to store the configuration data decreasing the configuration time
as well. The need of a speeding up in the deployment of a bitstream in FPGA is
mainly due to new technique of partial run-time reconfiguration [29]. Instead of
reconfiguring the whole FPGA, a partial bitstream can configure only a part of the
chip while the other part keeps running.

3.3 High level synthesis

The traditional hardware design flow usually begins with a high level application
description, goes through a Register Transfer Level (RTL) model and ends in a
gate-level netlist that can be directly mapped into hardware. While the second
translation (from the RTL model to the gate-level specification) is commonly taken
by a synthesizer there is still no standard practice for the first translation. HDLs,
such as VHDL [109] and Verilog [108], are a well proven and established standard
for hardware design, but force the designer of ASICs to think at the RTL level for
which HDLs are the perfect match. In other words, HDLs are characterized by a
low level of abstraction: HDL is for hardware what assembly is for software.

The silicon process of integration is evolving at an accelerated pace and the
consequently complexity growth of the circuits forces a transition from the usual
low-level HDLs to languages with a higher level of abstraction. In order to have a
good time to market, nowadays, the use of a HLL for hardware synthesis has became
mandatory. HLLs obviously ease the circuit design giving more flexibility, but on the
other hand they drift away from the best design synthesis quality achievable with a
low-level description [30]. We can count many attempts to give a fine grained level of
customization to a HLL that resulted in as many tools for hardware synthesis. For
example we mention the addition of hardware related constructs to the language
or compiler directives that can drive the synthesis process. The main issue that
concerns all these tools is the trade off between the use of hardware related structure
on one side and the loose of full control of the system being implemented on the
other. In this section we will present some of the most famous HLL and tools
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adopted for the hardware synthesis.

3.3.1 Early HLLs for hardware synthesis

The fist language we encounter moving higher from the RTL is the behavioral part of
VHDL. We have given a brief review of the language in Section 3.2.3. In particular
Example 3.2.2 and 3.2.3 highlight the difference between a structural and behavioral
design. The high-level constructs that can be used in behavioral description are
very useful for the hardware description, but they are not always synthesizable.
They can be used in a testbench for simulation and verification, but the synthesizer
cannot derive automatically a layout from them. Another disadvantage of behavioral
synthesis is that, even if it can lead to a synthesis, the quality of the result could
be rather poor and unpredictable due to the fact that the same code can represent
different hardware circuits.

Example 3.3.1. While structural VHDL is always fully synthesizable, a behavioral
description can contain some statements that cannot be translated in hardware
design. A typical example is the wait statement: it is used to hold a process
for a fixed number of clock cycle or until an event occurs. In Figure 3.8 a non-
synthesizable behavioral process is reported: it describes the D flip-flop presented
in a synthesizable version in Example 3.2.2.

Figure 3.8: Wait statement in a behavioral VHDL process

process(CLK, DATA)

begin

wait until CLK=’1’; // wait until condition

Q <= DATA;

end process;

The first attempts to move from an extended low-level HDL to a hardware gen-
eration based on an algorithmic description can be classified as domain-specific.
Cathedral [24], for instance, was a tool used for digital signal processing (DSP)
specifications. It employs a pure behavioral language without any structural con-
struct called Silage. The reason why this languages did not take off is that the
domain specialization was not appropriate for the majority of ASIC designs and
because of its weak results compared with the one obtained by a manual schematic
approach (still in use at the time of investigation).

3.3.2 Advances in HLLs for hardware synthesis

Many high level environments have been proposed to unify the hardware engineers
and the software developers through the use of a common language mainly based
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on imperative languages. Nevertheless the inherent lack of concurrency and tim-
ing (essential elements for the hardware synthesis) of such languages made none of
them a standard [39]. On the other hand extensions of commonly adopted hardware
description languages (HDLs), like SystemVerilog [103], still require to the program-
mers to own a strong hardware background and they are too specific to be used as
general purpose languages.

In this Section we will give a non-exhaustive overview of the most famous C-like
languages suitable for hardware synthesis. For more details we suggest [21] and [30].
Even if this thesis is more related with declarative programming such a review is
mandatory since we must admit that the most of the languages used by hardware
engineers are imperative and we can count only few attempts to ease the hardware
synthesis from a non-imperative point of view. We will discuss them later at the
end of this Section.

C-like languages

First language that rises the level of abstraction over the usual RTL is Cones [99]. It
made use of a very limited subset of C: only few constructs like if, switch or for are
supported. Macros are also used to represent array of signals or temporary variable,
while the memory elements should be controlled manually without the possibility of
employing controllers or schedulers. Even if the resulting design is very poor due to
a lack in synthesizing sequential circuits, the EDA tool based on Cones is the first
one to generate a gate-level design starting from a real behavioral description.

The main problem common to this language and to the majority of all the C-
like implementations is the uncertainty in the final hardware design obtained by
the synthesis [39]. Indeed the behavior of a high-level statement can correspond to
many different gate-level implementations. HardwareC [65], SpecC [34] and Handel-
C [55] are instances of HLLs that adopts low-level hardware constructs to aid the
compilation process. HardwareC addresses the problem of parallelism allowing the
programmer to use concurrent processes that exchange data through message pass-
ing. Furthermore it allows hardware constructs in the code like time and spatial
constraints and the possibility of designing with hierarchical structures. SpecC
adds to these features the constructs needed to specify finite state machines (FSMs)
and pipelining. It is developed specifically for the synthesis of integrated systems:
the typical architecture is a processor based system with addition of custom hard-
ware. SpecC can be considered an ancestor of the system level languages that will
be introduced in 6.1. Finally a HLL specifically designed for FPGAs and ASICs
is HandelC. It adds to C explicit parallelism by using keywords that point out in-
structions that has to be executed in parallel by the different parts of the hardware
circuits. Channel communication is responsible for exchanging data between par-
allel processes and for synchronizing them. Its semantics is, indeed, derived from
the former formalism Communicating Sequential Processor [59] with the limitation
that a variable cannot be written by different parallel processes, but can only be
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read. Moreover it lacks features typical of general purpose processor languages like
pointers or floating point arithmetics.

All the languages reported in the last paragraph have the advantage over Cone
to be able of synthesizing more complex and advanced sequential circuits, but each
of them has as drawback the need of low-level constructs to drive the synthesis
tool. Such hardware related parts of the code make these language oriented to
hardware engineers rather than software programmer. However the reason why these
tools never took off is to be searched in the overhead introduced by the hardware
constructs. Basically the C specification has to be rewritten, in term of hardware
constructs, in order to met the synthesis requirements, resulting in a double work
for the programmers. Moreover the re-usability of the code is very limited since the
added hardware constructs are device dependent.

Another way of integrating hardware directives in the high-level synthesis process
is the use of configuration files. Spark [54] is an instance of such HLLs. It accepts
as input behavioral C code, without pointers and function recursions, and produces
synthesizable structural VHDL that is standardly synthesized by commercial tools.
During a pre-synthesis phase it employs parameters taken from the configuration
files to tune heuristics through function inlining, loop unrolling, loop fusion, common
sub-expression elimination, loop-invariant code motion, induction variable analysis
and operation strength reduction. Following a scheduler phase performs compiler
transformations as percolation, speculative code motion and changing across con-
ditions. Also the resource allocation has to be done by the programmer via the
configuration file where it is possible to specify the available hardware resources
and the timing constraints. The final stage of Spark compilation is the control
generation: a FSM that implements the controller.

Analogue methodologies are used by HLLs as C2Verilog [98], Cyberg Work-
Bench [31] and AutoPilot [11]. They need a configuration file that contains general
requirements of the programmer compared to the low-level hardware constructs.
The main disadvantage of these languages is still the poor result due to the inad-
equate internal optimization framework. The communication to the tool is limited
to the tuning of the predefined heuristics and is not possible to perform fine-grained
actions like to specify which loop to parallelize. In order to address this issue an-
other class of HLLs is developed. Their synthesis flow is aided by compiler directives
(pragmas). In such a way a more fine-grained optimization is achievable, still main-
taining the re-usability of the code. Moreover writing a pragma instead of changing
the structure of the code is less error prone than to adopt a HLL based on hard-
ware constructs. The most well-known instance of HLLs with compiler directives
is ImpulseC [62]. Such a language lets the designer make use of pragmas for, as
example, informing the compiler that a particular loop can be pipelined or a given
array cannot be scalarized. ImpulseC is mainly used for the synthesis of hardware
accelerator based on FPGAs. The architecture is generated by the communicat-
ing sequential process described in C language and is completely dataflow oriented:
processes accept data via shared memory and send them back.



46 3. Reconfigurable Computing

Among the synthesizers that accept compiler directives, we can cite Catapult
C [23] by Mentor Graphics or the academic ClooGVHDL [33]. The compilers use
the pragmas to be driven during the synthesis that can be ignored in case of standard
compilation on a general purpose processor. However since the hardware compila-
tion require particular constructs the code should be rewritten if performances are
needed. Anyway the software compilation is useful in case of simulation or verifica-
tion of the hardware behavior.

A very important class of HLLs for hardware synthesis is the one that adopts
specific class libraries that extend standard C in order to meet the hardware descrip-
tion requirements. The most popular framework of such category is SystemC [102].
It is based on C++ adding important concepts as concurrency (of multiple pro-
cesses), time events and data types. Constructs that recall hardware concepts like
modules, ports and signals are provided as class library as well as concurrent pro-
cesses, statements for waiting a clock edge or hardware data types (bit or bit vector).
SystemC can be seen as a methodology for describing software algorithms and hard-
ware architecture but also system level design [83] (in Chapter 6 we will discuss
this later aspect). SystemC has semantic similarities to VHDL and Verilog, but it
has a syntactical overhead, compared with these languages, when used as a HDL
because it is intended mainly for specification, architectural analysis, testbenches,
and behavioral design. Furthermore skepticism about the usefulness of C++ design
flow is expressed in [51] where the concern about the rising gap between the models
and the synthesis is pointed out. Especially block-level designers claim that C++
is not the right direction for HDL development because synthesis and verification
impose much stronger requirements on the language.

Example 3.3.2. In this example we want to provide an example of SystemC code
used for modeling synchronous logic. In Figure 3.9 a basic model for a D flip-flop is
reported. Please refer to Example 3.2.2 and 3.2.4 for a comparison with VHDL.

Figure 3.9: SystemC specification of a D flip-flop

// File: D_ff.h

#include "systemc.h"

SC_MODULE (D_ff) {

sc_in<bool> data, clk;

sc_out<bool> q;

void prc_D_ff();

SC_CTOR (D_ff) {

SC_METHOD (prc_D_ff};

sensitive_pos << clk;

}

};

// File: D_ff.cpp

#include "D_ff.h"

void D_ff::prc_D_ff () {

q=data;

}
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The D flip-flop description consists of two files: the header file contains the
module description and the process declaration while the C++ program defines the
process. After the inclusion of the SystemC class the module is described by a port
declaration in a very similar way of an entity in VHDL. SC_CTOR declares the process
of type SC_METHOD that is sensitive to a list of signals (sensitivity list in VHDL). In
the current example the process is sensitive to the positive edge of the clock clk.
The C++ file specifies the action taken by the process when it is activated: actually
the copy of data to q.

Other paradigms

Among the functional languages we can count a large number of successful ap-
proaches to hardware description. Since the 80s one of the most popular domains
in which functional languages have been extensively used is hardware design [93].
General purpose functional languages, like Haskell, have been widely used as host
languages for embedding HDL [18, 69]. Other examples of declarative hardware
oriented languages are Pebble [74] or Ruby [63] that support structural descriptions
based on abstractions such as blocks and their interconnections. They allow the
user to focus on the essential structure of the system describing parameterised de-
sign concisely thanks to features such as iterative descriptions and static recursion in
the circuit design. These extensions provide simple meta-languages that helps pro-
grammers to deal with complex circuits rather than using a poor structural HDL.

Another remarkable approach to the introduction of a new level of abstraction,
developed in order to fulfill the gap between system specification and interface to
implementation, is constituted by property specification languages. In fact they al-
low hardware synthesis from a formal specification (very close to natural language)
that is given by mathematical operators. In such a way the functional verification
step is eliminated by the classical design flow because the generated HDL code is
correct by construction. The pioneer works on developing control-type sequential
circuits [42, 91] use respectively free and reduced-ordered Binary Decision Diagram
to support the synthesis process, but these kinds of algorithms lead to the state
explosion problem which compels the applications to a restrict class of simple de-
signs. More recent methods take as input specification standard assertion language.
Bloem [19], with an automata based approach, developed a polynomial algorithm
starting from a subset of the Property Specification Language (PSL) [44]. More re-
cently a tool proposed by Borrione in [81], using a modular construction, generates
in linear time circuits that comply with the PSL semantics.

Logic programming and especially Prolog [28] are used as formalisms for hard-
ware design specification and verification as well. In [107, 101] it was initially shown
how logic programming can be used as an efficient design tool respectively for sequen-
tial and concurrent system. Further work [35] illustrates how the essential require-
ments of a HDL are satisfied using fundamental features of Flat Concurrent Prolog
and how it can overcome known disadvantages of common HDL like overloading,
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verbosity or the lack of composite if statement. More recent approaches [13, 14]
present a Prolog-based hardware design environment based on a high-level struc-
tural language called HIDE. Such language was developed with the precise purpose
of filling the gap of the structural HDL languages that can only deal with small
circuits. Indeed the HDL description tends to be very complex due to the need of
making all the connections explicit. The language finally evolved in HIDE+ that is
more suited for describing parallel irregular architecture and provides a more robust
control mechanism that allows for complex clocking schemes.

HIDE uses the base notation of Prolog for composing the hardware design start-
ing from a simple and small set of elementary hardware blocks. Indeed HIDE is
a pure structural language: it assembles compound blocks from primitives. Each
block can be defined in a two or three dimensional plan and is specified by its
position in the array and by the connections with the neighboring blocks. Each
connection is composed of ports with directions (in or out) and controls that are a
special kind of ports used to broadcast signals to a large number of blocks. Circuits
can be combined by blocks to create higher level blocks hierarchically, using several
constructors that also help to replicate the blocks.

Example 3.3.3. To illustrate HIDE language we report in Figure 3.10 an example
of an implementation of an eight-bits adder. It is based on a vertical composition
in a two dimensional array of the elementary block two-bits full adder.

Figure 3.10: HIDE specification of eight-bits adder

is basic block( add2, 1, 1, [clk],

[ [(co,output)], [(ci,input)],

[(a1,input), (b1,input), (a2,input), (b2,input)],

[(s1,input), (s2,input)],

[],[] ])

Adder8 = v_seq(4, add2)

The first line introduces the Prolog fact that represents the two-bits full adder
named add2 and that occupies one block of the array in vertical and one in horizontal
and, finally, it has the clock signal as control input. The add2 component has two
two-bits signals as input on the west side (from the block of the array on its left)
a1,b1 and a2,b2 and one two-bits output as sum on the east side s1,s2. ci and co

are the input and output carries coming respectively from south and to the north
side. The last line states how construct the eight-bits adder from the sub-blocks
add2. The single two-bits full adder is replicated four times and they are disposed
in a vertical composition (the south ports of the top block are connected with the
north ports of the block immediately down).
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From CHR to hardware





4
Hardware Compilation

Here we want to face the problem of translating a high-level language as CHR to a
low-level hardware specification. Hence the main goal pursued in this Chapter is to
reach a RTL level hardware description in a single compilation step starting from a
constraint based specification.

At first we investigate in Section 4.1 the features of CHR that could hamper the
hardware synthesis, then we address the correspondences between CHR rules and
hardware. The main ideas behind our CHR-based hardware specification method
will be discussed in Section 4.2. A detailed description of each translation step is
given in order to fully specify the mapping between CHR and hardware blocks. In
the rest of the thesis we observe the guidelines reported in such Section to imple-
ment and execute any translation of CHR rules into VHDL behavioral models of
hardware modules, which directly manipulate constraints, and which can be synthe-
sized in a specific technology using existing logic-level synthesis tools. As depicted
in Figure 4.1 the complete compilation flow starts from a subset of CHR and goes
to implementation on FPGA passing through the low level VHDL language. The
second step of compilation is then performed by the synthesizer within the standard
compilation flow described in 3.2.1.

The Euclid’s algorithm for finding the greatest common divisor is used as a run-
ning example of hardware translation along all the Chapter. Section 4.3 is devoted
to show the fine-grained design achievable when CHR is used for a structural descrip-
tion. In Section 4.4 we report the outcomes of experimental hardware executions
of a CHR specification from the query to the result. Besides the running example,
here we present the result of a hardware translation of the Floyd-Warshall algo-
rithm. Finally, in Section 4.5, we analyze the hardware implementation of another
typical CHR case study: the merge sort algorithm. In such example we will make
use of a simple transformation in the CHR program to allow the source code to be
compliant with the CHR subset needed by the hardware compilation. Experimental
results of merge sort algorithm are postponed to Section 5.4 were different degrees
of parallelization are also discussed.
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ANNOTATED PROGRAM

Hardware 
Compilation

CHR subset

VHDL

Synthesizer

FPGA

Figure 4.1: CHR to hardware compilation diagram flow

4.1 The CHR subset

Since the hardware resources can be allocated only at compile time (dynamic alloca-
tion is not allowed in hardware due to physical bounds), we need to know the largest
number of constraints that should be kept in the constraint store. It is not trivial
to foresee the maximum number of constraints to be stored during computation.
Thus in order to establish a upper bound to the growth of constraints, we consider a
subset of CHR, which does not include propagation rules. Programs are composed
of simpagation rules of the form:

rule@ c1(X1), ..., cp(Xp)\cp+1(Xp+1), ..., cn(Xn)⇔ (4.1)

g(X1, ..., Xn) |Z1 is f1(X1, ..., Xn), ..., Zm is fm(X1, ..., Xn), ci1(Z1), ..., cim(Zm).

where Xi (i ∈ {1, . . . , n}) can be a set of variables and the number of body
constraints is less than or equal to the number of constraints removed from the
head (m ≤ n − p) and no new type of constraints is introduced: {i1, . . . , im} ⊆
{p + 1, ..., n}. In this way the number of constraints cannot increase and the con-
straint store can be bounded by the width of the initial query. In Section 4.5 a simple
technique used to rewrite simplification rules in order to avoid the introduction of
new type of constraints will be shown.

The proposed translation methods assume a ground CHR rule system. Con-
straints cannot contain free variables and any derivation starting from such con-
straints can only lead to other ground constraints. Hence the variables present in
the right hand side constraints are immediately bounded by the unification with the
goal constraints. All the CHR examples provided until now satisfy this condition,
but in Section 6.2.4 we will present a non-ground example in which our technique
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can still be applied because the free variables are never bounded during the full com-
putation and hence they can be substituted by constant values before compilation.

We defer the discussion on the limitations imposed by the adoption of such subset
of CHR to Chapter 6 where a hybrid software/hardware execution is proposed in
order to bypass these restrictions. In the remaining of the Chapter we consider
rules as typed in their head normal form (see 2.2): all the arguments in the head of
the rule are variables and variables never occur more than once (all equality guards
implicitly present in the head are written explicitly in the guard).

Example 4.1.1. Referring to the GCD algorithm reported in Example 2.2.1, it is
clear that for such program the number of constraints remains bounded during the
computation. Indeed the first rule, if applied, removes a constraint from the store,
instead the second removes a constraint and adds a new one, thus leaving the total
number of constraints unchanged.

4.2 Principles of the hardware blocks

The framework we propose is logically divided into two parts:

• Several hardware blocks representing the rewriting procedure expressed by the
program rules.

• An interconnection scheme among the blocks specific for a particular query.

The first one builds the hardware needed to compute the concurrent processes
expressed by the CHR rules of the program, while the second one is intended for
reproducing the query/solution mechanism typical of constraint programming.

As depicted in Fig. 4.2 we call Program Hardware Block (PHB) a collection of
Rule Hardware Blocks (RHBs), in turn generated by each rule of the CHR program.
The proposed approach considers the constraints as hardware signals and the ar-
guments as the values that signals can assume. The initial query can be directly
placed in the constraint store from which several instances of the PHB concurrently
retrieve the constraints working on separate parts of the store and after computation
they replace the input constraints with the new ones. A Combinatorial Switch (CS)
sorts and assigns the constraints to the PHBs taking care of mixing the constraints
in order to let the rules be executed on the entire store. The following paragraphs
explain in details the construction of the blocks.

4.2.1 Rule Hardware Blocks

The hardware corresponding to the CHR rule (Eq. 4.1) has as inputs n signals that
have the value of the variables X1...Xn (all the arguments of the head constraints).
If X1...Xn are sets of variables we use vectors of signals (records in VHDL). The
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Figure 4.2: Complete hardware design scheme

computational part of the RHB is given by the functions f1...fm that operate on
the inputs and the resulting output signals have the value of the variables X1...Xp

and Z1...Zm. Without loss of generality we have assumed that the constraints have
single arguments, but a straightforward generalization is possible using vectors of
signals (records in VHDL). The reason of reassigning a value as output also to the
arguments of the kept constraints comes from the need of retaining unchanged the
value of their variables. Indeed we do not use an addressable memory (even if it
should be possible) to store the constraints and hence the constraint store should
be refreshed every computational cycle with the values of the output constraints of
the RHBs.

We exploit processes, the basic VHDL concurrent statement, to translate the
computational part of a rule to a sequential execution. Each rule is mapped in a
single clocked process containing an if statement over the guard variables.

In order to take into account the possibility of a reduction of the number of
constraints during the computation, each output signal for a given constraint is
coupled with a valid signal that states to the following components whether to
ignore the signal related to such constraint or not.

Example 4.2.1. Figure 4.3 sketches the RHBs resulting from the two rules of the
gcd program introduced in Example 2.2.1 and reported here as reference:

R0 @ gcd(N) <=> N = 0 | true.

R1 @ gcd(N) \ gcd(M) <=> M>=N | Z is M-N, gcd(Z).

Notice that each constraint is associated with two signals: one contains the value of
the variable of the constraint (the solid line), and the other one models its validity
(dashed line).
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(a)
(b)

Figure 4.3: The Rule Hardware Blocks for the gcd rules.

The block in Fig. 4.3(a), that corresponds to R0, has as input, the value for
variable N together with its valid signal. It performs a check over the guard and if
the guard holds the valid signal is set to false whereas the value of the gcd signal
is left unchanged. This simulates at the hardware level the removal of a constraint
from the constraint store.

The block in Fig. 4.3(b) is the translation of the second rule of gcd. It consists
of four input signals, i.e. the values for the variables N and M with their valid signals.
In this case the valid signals remain unchanged. If the guard holds the signal value
of the second input constraint is replaced with Z = M-N while the value of the first
one is not modified. If the guard does not hold the outputs of the block coincide
with the inputs. The computational part is carried out by the subtraction operator.

4.2.2 Program Hardware Block

The PHB is the gluing hardware for the RHBs: it executes all the rules of the CHR
program and hence it contains all the associated RHBs. PHB takes as input the two
global input signals clk and reset used for synchronizing and initializing purposes.
It provides for the finish control signal used to denote when the outputs are ready
to be read by the following hardware blocks. The RHBs keep on applying the rule
they stand for until the output remains unchanged for two consecutive clock cycles.

Note that in the hardware each constraint is represented as a different signal.
If the head of a rule contains more than one constraint of the same type, the cor-
responding signals must be considered as input in any possible order by a RHB
encoding the rule. This is obtained by replicating RHB a number of times equal to
the possible permutations of the constraints of the same type. Finally we have to
guarantee that only one copy of the RHB can execute per clock cycle.

More precisely, taking into account the generic rule 4.1, we can assemble the head
constraint ci into different groups g1, ..., gq depending on the type of the constraint.
Calling k1, ..., kq the number of constraints belonging to a each group (

∑q
i=1 ki = n

is the total number of inputs of a RHB) we can compute the total number R of
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RHBs needed as:

R =
m∏
i=1

ki! (4.2)

Example 4.2.2. Let us consider rule R1 described in Example 2.2.1. Two instances
of gcd are present in the head of the rule and hence two signals are created respec-
tively with value N and M and they are the inputs of the RHB. Due to the guard of
R1 these inputs feed a comparator that checks if the value of the second signal is
greater than or equal to the first. If the condition is satisfied the value of the second
signal is replaced by the result of the subtractor that has as inputs the two signals.

According to what stated in Equation 4.2 the total number of RHB instances
needed in the PHB is two since it has as input only one group of constraints consti-
tuted by two constraints of the same type and hence the total number of permutation
of its input of the same type is 2!. Indeed let us consider the case in which N is greater
than M, the rule can fire as well because the head constraints are of the same type
and so they can be swapped. For this reason PHB has to contain another copy of
the RHB that executes such rule but with inputs in reverse order (see Figure 4.4).

The PHB level is also used to set the rules parallelization at the basis of the
computation. As we said each rule is executed by one or more concurrent processes
that fire synchronously every clock cycle. Therefore we exploit the notion of strong
parallelism of CHR, introduced in Section 2.2.2, assuming that rules can work on
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common constraints at the same time if they do not rewrite them. If two rules try
to change the same constraint then we cannot parallelize and we need to execute
them one after the other if the latter is still applicable. For instance in the PHB
of the running example, presented in Example 4.2.2, rule R0 cannot be executed in
parallel with R1 because they could rewrite the same constraint. The commit block
at the output stage is then used to give a priority to the rules execution. According
to the theoretical operational semantics [46], we can state that the provided rule
application is fair since every rule that could fire does it every clock cycle or in the
worst case in the subsequent cycle.

A more detailed description of the parallelism achievable in the PHB will be
given in Section 5.3.

4.2.3 Combinatorial Switch

A further level of parallelization is achieved replicating the PHBs into several copies
that operate on different parts of the global constraint store (weak parallelism, see
Section 2.2.2). PHBs can compute independently and concurrently because they
are attempting to rewrite different constraints. Although they process data syn-
chronously, since they share a common clock, it is not required that they terminate
computation at the same time. Indeed the CS acts as synchronization barrier letting
the faster PHBs wait for the slower ones. It is also in charge to manage communi-
cation among hardware blocks exchanging data: once all the PHBs have provided
their results, it reassigns the output signals as input for other PHBs guaranteeing
that all the combinations between them are covered. Exploiting the fact that the
number of constraints cannot increase, the CS works directly on the signals coming
from the PHB, but there are no impediments to retrieve the constraints from an
external memory if the space capacity of the FPGA is not sufficient.

In practice the implementation of this interconnection element relies on a signal
switch that sorts the n query constraints according to all the possible k-combination
on n (where k is the number of inputs to the single PHB) and connects them to all
the inputs of the PHBs. The maximum number of PHBs that can always work in
parallel on the constraint store is bn/kc, since its width is limited by the width of
the query n. Indeed we cannot feed the same signal (and hence the same constraint)
to different inputs of the PHBs (to match with more than one head constraint)
according to weak parallelism.

Implementing CS as a finite state machine leads to a total number of states S
equal to the number of possible combinations divided by the number of concurrent
PHBs:

S =

(
n
k

)
bn/kc

≈
∏k−1

i=1 n− i
(k − 1)!

(4.3)

Despite a good degree of parallelization achieved by the CS (it makes bn/kc
PHBs try to execute in parallel as many rules), it needs a number of states O(nk−1)
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in order to execute all the possible combinations on the input signals. Since the
time necessary for evaluating the query is proportional to the number of states, it is
important to limit the number of inputs for each PHB (k). This leak in performance
can be considered as the demonstration of the search for matching problem: a very
well know issue in CHR [97] and in general in multi-headed constraint languages. In
Chapter 5 we will discuss how to improve time complexities to space complexity’s
cost giving optimized structures for the CS.

Example 4.2.3. Now that the functionality of all the required hardware blocks has
been described we are ready to see an example of hardware computation of CHR.
Keeping on with the running example 2.2.1 in Table 4.1 the execution of the query:

gcd(6), gcd(12), gcd(45), gcd(15), gcd(9), gcd(33).

is reported. The full hardware design consists of a CS with six inputs and six outputs
and three PHBs (with two inputs) like the ones described in Example 4.2.2.

At reset all the query constraint are read by the CS, they are sorted and in pairs
they are passed to the three PHBs. For reference we assign the label 1 and 2 to the
outputs of PHB1, 3 and 4 to PHB2 and 5 and 6 to PHB3. To denote the operations
of the CS on the signals we use the following notation: CS{( , ), ( , ), ( , )} where
the three couplets ( , ) are the ordered inputs to the three PHBs (from the first
input to the sixth one) and the value inside parenthesis are the label of the output
of the PHBs. For instance CS{(1, 2), (3, 4), (5, 6)} means that the first output of
PHB1 is connected to the first input of PHB1 (since number one occupies the first
position of the set), the second to the second and so on and so forth for all the PHBs.
Between the swapping of the CS the computation inside each PHB is represented
by a tern of rules where each element can assume the value R0 or R1 depending on
which rule fires, ∅ if no rule can be applied or R0//R1 if they both fire in parallel.
Indeed, even if they work on the same constraint, actually R0 modifies only the valid
signal while R1 modifies only the value of the constraint argument. Thus we refer
to a parallel execution because the two rules can be applied in the same clock cycle
even if they logically fire one after the other (R0 after R1). Finally each signal is
represented as a pair of a constraint and a 1-bit value that returns its status: valid
(v) or not-valid (n).

In the first column of Table 4.1 is reported the action performed by the hardware
on the constraints that can be a permutation provided by the CS or the application
of one or more rules concurrently. In the other three columns the derivation of
each PHBs is presented. Their computation is completely independent and the only
way for exchanging the constraints is after a CS swapping. Each row of the Table
corresponds to a different computational phase triggered by the CS.
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Figure 4.5: VHDL translation of rule 4.4 in a D flip-flop

architecture DFF_arch of DFF is

begin

process(clk, d)

begin

if clk’event and clk=’1’ then

q <= d;

end if;

end process;

end DFF_arch;

4.3 A structural implementation

The gcd program presented in Example 2.2.1 shows that we can implement in hard-
ware the Euclid’s algorithm at the behavioral level, i.e., it describes a system in
terms of what it does rather than in terms of its components and interconnections.
Instead, here we illustrate an example of structural hardware design which shows
the hardware granularity achievable generating the VHDL code for the basic build-
ing block of sequential circuits directly implementable in FPGA. According to the
general scheme for rules representation described above, the following CHR rule im-
plements the D flip-flop, the elementary memory block capable of storing the value
of a signal:

d(X) \ q(_) <=> q(X). (4.4)

where d/1 and q/1 stand for the input and the output signals of the D flip-flop. The
q constraint is rewritten every time a d constraint is present, as in the D flip-flop,
every clock cycle, the value of the output is replaced by the value of the input.

Such kind of notation is intended for a design representation and not for an algo-
rithmic description. In order to obtain a D flip-flop we should apply just the trans-
formations described in Section 4.2.1, indeed there is no need of the query/result
mechanism. The corresponding VHDL code is reported in Figure 4.5 where a pos-
itive edge clock system is considered. It is worth noting that a CHR program
consisting only in rule 4.4 would have no termination. The removed constraint q

is then reintroduced by the rule and hence, since d is not removed, the rule can
be applied again. That is, basically, what hardware does: the flip-flop continuously
copy its input signal on the output at every clock cycle.

By using again the idea that the removal and the introduction of the same con-
straint corresponds to a memory refresh, we can implement more complex circuits.
The following table presents the two lines code that describes the hardware circuit
of a 2-bits counter represented in Fig. 3.3:

b0(X) <=> Z is (not X), b0(Z).

b0(X) \ b1(Y) <=> Z is (X xor Y), b1(Z).
(4.5)
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Figure 4.6: VHDL translation of rules 4.5 in a 2-bits counter circuit

architecture 2BITS_arch of 2BITS is

begin

process(clk, b0)

begin

if clk’event and clk=’1’ then

b0 <= not b0;

end if;

end process;

process(clk, b0, b1)

begin

if clk’event and clk=’1’ then

b1 <= b0 xor b1;

end if;

end process;

end 2BITS_arch;

where not and xor are operators predefined in HDL (built-in) that are used to
implement the combinatorial logic part of the circuit. In Figure 4.6 the VHDL code
corresponding to rules 4.5 is reported. Two parallel processes are used to build up
the 2-bits counter because each of them derive from a rule, even if the assignment of
b0 and b1 could be done in a single process. With respect to the code in Figure 3.4
and 3.5 we should notice that the level of abstraction used in such VHDL description
is not behavioral, but it does not look like the structural even if it is fully equivalent.
Indeed, for simplicity, we have loose the hierarchy block construction, but the code
still remains structural and the compilation of the two description will result in the
same hardware.

4.4 Experimental results

We use the automatically generated hardware blocks described in Section 4.2 to
implement in FPGA two CHR programs. Initially we resume with the running
example and afterwards we will show the outcome implementation of the Floyd-
Warshall algorithm for finding shortest paths in a weighted graph. Part of the
produced VHDL code is reported in Appendix A. It is worth noting the number of
code lines needed in VHDL with respect to CHR. The latter approach clearly results
to be time saving for the programmers.

4.4.1 Greatest common divisor

Here we describe the hardware implementation of the algorithm presented in Ex-
ample 2.2.1 for finding the greatest common divisor at most of 128 integers.The



62 4. Hardware Compilation

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

Ti
m
e 
(n
s)

CPU

FPGA (CHR)

1E+00

1E+01

1E+02

1E+03

0 20 40 60 80 100 120 140

N. Constraints

FPGA (CHR) Opt.

FPGA (VHDL)
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resulting hardware design relies on 64 PHBs deriving in parallel the gcd while the
CS pairs the constraints in a round robin tournament scheme where each constraint
is coupled once with each other. For comparison purposes we implement the same
algorithm directly in behavioral VHDL using a parallel reduction that exploits the
associative property of the gcd operation (basically a knockout system where we
compute the gcd in parallel of 64 pairs then of 32 and so on). Both hardware spec-
ifications are then synthesized and simulated with ISim the Xilinx ISE simulator at
100MHz reference clock frequency. Figure 4.7 reports the execution times for 16, 32,
64 and 128 1-byte integers. The two FPGA implementations are labeled respectively
as FPGA (CHR) and FPGA (VHDL). The curve labeled CPU refers to the computa-
tional time of the CHR gcd program running on Intel Xeon 3.60GHz processor with
3GB of memory. It is displayed just for an order of magnitude reference since we
cannot compare them due to the completely different hardware nature.

The plot clearly shows how the execution time can increase to more than an
order of magnitude with respect to the VHDL solution. This is primarily due to
the fact that the Combinatorial Switch does not take into account that the number
of constraints can decrease, and hence the number of possible combinations. In
Section 5.1 we address this issue suggesting an optimisation for rules that have the
property of strong parallelism like in the gcd case. The outcome of such optimisation
is also reported in Fig. 4.7 (labelled as FPGA (CHR) Opt.) and it exhibits a relevant
reduction of the execution time. Notice that the VHDL implementation leads to
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Figure 4.8: Floyd-Warshall execution time (log scale)

an execution time almost constant due to the complete parallelism achievable by
hardware. We do not observe a super-linear trend in our implementation like the
one noticed in [100] because the derivations of each pair of gcd constraints do not
interfere each other. Finally we should notice that the resulting highest frequencies
of operation are all above 250 MHz and up to 350 MHz, which is quite good for a
non pipelined architecture.

4.4.2 Floyd-Warshall algorithm

Similar results are obtained on a different example, namely the implementation of
Floyd-Warshall algorithm for finding the length of the shortest paths between all
pairs of vertices in a weighted graph. A procedural version of the algorithm follows:

1 for k=1 to N
2 for i=1 to N
3 for j=1 to N
4 di,j=min(di,j,di,k+dk,j)

where di,j are the elements of the matrix representing the graph. In CHR the algo-
rithm can be expressed as a simple rule with three constraints in the head standing
for three edges that should be taken into account for the minimum computation:

edge(I,K,D1), edge(K,J,D2) \ edge(I,J,D3) <=>

D3>D1+D2 | D4 is D1+D2, edge(I,J,D4).
(4.6)
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From such rule our method generates a simple PHB that has as inputs and outputs
three triples of signals that are respectively: the source, the destination and the
weight of the edges. Depending on the query dimension n a CS with 1

2
(n−1)(n−2)

states assigns the constraints to bn
3
c PHBs. In Fig. 4.8 we compare our implementa-

tion with the VHDL based one described in [77] derived by a logic-level specification.
As we can see from the plot, our implementation exceeds the best handcrafted de-
sign only by less than one order of magnitude and at the same time it delivers a
high degree of flexibility: you can manipulate a one-line code rather than rearrange
a fixed architecture of hundreds of lines.

4.5 Merge sort implementation

In this Section we want to trace and summarize all the translation steps applied
to the running example in this Chapter. As candidate for a complete hardware
implementation we choose a more interesting CHR program implementing the merge
sort algorithm in optimal complexity [46]. The upper part of Figure 4.9 reports the
rules that sort a sequence ofm numbersNm, wherem is a power of two. The numbers
Nm should be encoded in the query as constraints seq(1, Nx) with 1 ≤ x ≤ m, and
where 1 is the initial length of the sequence. Rule M1 initializes the arc/2 constraints
(arcs between numbers whose union constitute a sequence) for the actual merging
done by rule M0. M1 prepares arcs for M0 starting from sequences of the same length
and produces new sequences with the length increased by one.

In order to understand whether the two rules belong to the CHR subset im-
plementable in hardware, we should notice that M0 leaves unchanged the number
of arc/2 constraints while M1 reduces by one the number of seq/2 constraints but
introduces a new arc/2 constraint. Since the latter rule cannot be directly trans-
formed in hardware with the proposed method, a transformation that operates on
the constraints is needed. Indeed, since in rule M1 the total number of constraints
is left unchanged, there is no constraints propagation and hence the hardware im-
plementation is still possible if we adapt the two type of constraints to a single one.
Such constraints flattening is always possible using a new constraint with an arity
equal to the greatest arity of the present constraints plus one. The added argument
is intended for carrying a constant index associated with the former constraint type.
In the bottom part of Figure 4.9 the constraint c/3 is used for replacing seq/2 and
arc/2, and the constants 0 and 1 are adopted as the respective indexes.

Both RHBs associated with the two rules have two inputs and two outputs. The
first receives two signals, corresponding to two c/3 constraints, checks the guard
(including the constrain type equal to 0) and, eventually, rewrites one constraint.
The second takes two c/3 constraints as well and, if the guard holds, rewrites both
of them.

The PHB simply consists of a hardware block with two inputs and two outputs
as well. As in the case of the running example (see in particular Example 4.2.2)
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Figure 4.9: Merge sort algorithm

M0 @ arc(X,A) \ arc(X,B) <=> A<B | arc(A,B).

M1 @ seq(N,A), seq(N,B) <=> A<B | seq(N+1,A), arc(A,B).

⇓
M0 @ c(0,X,A) \ c(0,X,B) <=> A<B | c(0,A,B).

M1 @ c(1,N,A), c(1,N,B) <=> A<B | c(1,N+1,A), c(0,A,B).

both rules need to be duplicated since they have two constraints of the same type
in their head. Hence the PHB includes four RHBs whose outputs are committed
according to the validity of their guards. The results of the rules are committed
following the textual order since after the constraint flattening no parallelization is
possible between them. In Section 5.3 we will discuss in detail all the possible degree
of parallelization inside a PHB.

The actual parallelization is performed by the CS that pairs the query constraints
and assigns each couple to a different instance of the PHB. The CS waits the end of
the computation of all the PHBs before starting to scramble the couples of constraint
and to reassign them to the PHBs. Unlike the running example, there is no so
much difference among the computational times of each PHB because each rule
can be applied only once to the same set of constraints in a PHB. In other words
the feedback mechanism from the outputs to the inputs of a RHB is not exploited.
Indeed the constraints produced by each rule cannot satisfy the guard, when coupled
with one of the constraint that had generated it, even if it matches the head of
the rule. For instance in rule M1, the second argument of the body constraint
c(1,N+1,A) is, by definition, different from the one of the head constraints c(1,N,A)
and c(1,N,B). Hence the difference in the computational time is only due to the fact
that the rule can fire or not. In Section 5.4 we will show how to further parallelize
the rules execution adopting two separate frameworks for M0 and M1. Furthermore
the experimental results of such implementations will be showed.
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5
Improving Parallelization

In this Chapter we investigate alternative hardware architectures, that address the
possibility of increasing the degree of parallelization present in the generated hard-
ware blocks, thanks to the CHR properties reviewed in Section 2.2.3.

Besides the general framework described in Chapter 4 we want to propose opti-
mized frameworks in order to speed up the computation in presence of algorithms
that considerably reduce the number of constraints during computation. In such
cases it is worth noting that a CS, that simply combines all the constraints in all
the possible combinations, is highly inefficient. In fact many constraints that have
been removed by the PHBs still continue to be shuffled by the CS uselessly.

With the aim of facing the problem of time efficiency two optimizations are
proposed (in Section 5.1 and 5.2) relying on different degrees of parallelization.
In particular we will see how with simple changes in the hardware framework the
property of strong parallelism can be exploited. Furthermore the adoption of a
set based semantics for CHR can open the door to an even more wide parallelism.
In Section 5.3 we will discuss the rule parallelism at the PHB level pointing out
the possible rules dependency that can lead to a concurrent execution. Finally, in
Section 5.4, the online property of CHR is used for boosting the computation of
a merge sort algorithm. Experimental results of practical implementations will be
given along the Chapter.

5.1 Strong parallelism

The proposed approach to solve the issue derived from the fixed nature of CS relies
on the possibility of exploiting the strong parallelism property of CHR (introduced
in Section 2.2.2), that assumes that rules can work on common constraints at the
same time if they do not rewrite them.

We need a new hardware block charged to combine, in parallel on several PHBs,
the kept constraints with different sets of removed constraints. An example of such
device can be provided optimizing the CS obtained by the implementation of the
gcd rules. Figure 5.1 shows a possible implementation for a five constraints query
but the design can be easily increased linearly with the number of constraints. It
relies on a circular shift register preloaded with the query constraints and with one
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Figure 5.1: Hardware design scheme for strong parallelism

cell connected to all the first input (kept constraint) of the PHBs and all the others
connected to the second input (removed constraint) of each PHBs. Each time the
PHBs terminate their computation the new output constraints replace the old ones
in the shift register and they shift until a valid constraint fills the first position of the
register (we skip the steps with a not valid constraint in the first position). Using
this topology there is no need to implement multiple instances of the same rule at the
PHB level (see Section 4.2.2): indeed now the order of the inputs constraints matters
because one is the kept gcd and the other is the removed one. As consequence, apart
from the first PHB, the output carrying the kept constraint can be left disconnected
because it refers always to the same constraint.

An experimental result of the proposed strong parallel architecture was already
presented in Section 4.4. The reduction in execution time is relevant over all the
measurements we carried out with different number of constraints, reaching up to one
order of magnitude of speed up. The area needed in the FPGA for such optimization
is basically equivalent to the one needed by the general architecture. Despite an
increased number of PHBs (n − 1 instead of n/2, where n is the number of query
constraints) the occupied area in FPGA to implement such optimization remains
more or less constant. This is due to the more optimized structure of the shift register
with respect to the CS. Indeed the CS is implemented as a finite state machine with
a very large number of states S calculated in Eq. 4.3. Clearly a more optimized CS
(for instance with a look up table where all the permutations are stored) would lead
to an area saving, but the dependency of its dimension to S will remain unchanged.

Example 5.1.1. As we did in Example 4.2.3 for the CS, here we show an instance
of computation of the gcd algorithm employing the shift register architecture and
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starting from the same sample query:
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gcd(6), gcd(12), gcd(45), gcd(15), gcd(9), gcd(33).

In such case we need five PHBs working on a common constraint placed in the first
cell of a six cells shift register. We indicate as SR(a, b, c, d, e, f) the current status
of the shift register: each cell, denoted with a letter a . . . f , is occupied by one pair
(constraint, valid signal).

In Table 5.1 the full computation is reported: all the derivation is carried out in
just two steps of the shift register (one is skipped because the constraint in the first
cell is marked as not valid). When the second input of the PHBs becomes smaller
than the first input the partial computation halts (even if both constraints are valid)
because the first input cannot be modified since it represents the kept constraint.

It is worth noting that, to fully exploit strong parallelism, more complex hard-
ware blocks could be required, but it is always implementable in an hardware so-
lution (in the worst case using look up tables to perform constraints pairing like in
the case of the CS). For instance, the CHR rule implementing the Floyd-Warshall
algorithm 4.6 has three constraints in its head thus the design in Figure 5.1 can be
directly adopted, but it does not fully employ strong parallelism. Since two out of
three head constraints are kept, strong parallelism gives the possibility of applying
concurrently n− 2 rules where n is the number of query constraints. A straightfor-
ward application of the simple shift register for this rule allows for a parallelization
of just (n − 1)/2 rules. A circular shift register used in the configuration of Fig-
ure 5.2 can pairs the two kept constraints in order to gain the greatest degree of
parallelization. There are as many cells as the query constraints and one cell is kept
hold while the others shift following the arrows direction. At every step of the shift
register n/2 couples (denoted in figure by blue rectangles) are created. Every couple
of constraints can feed n−2 PHBs because the third input can be chosen among the
remaining constraints. Since the shift register has n − 1 cells the total number of
possible tern of input constraints for a PHB is then (n/2)(n−2)(n−1) =

(
n
2

)
(n−2),

the number of combination of n distinct query constraints matching the two kept
constraints combined with the remaining removed constraint.

Figure 5.2: Circular shift register for pairing two constraints
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Figure 5.3: Prime execution time (log scale)

5.2 Massive parallelism

The set-based semantics CHRmp formally expressed in [84] is based on the idea that
the constraints can be considered as multiplicity-independent objects and we can
have additional copies of them at our disposal. In such a context a duplicate removal
of one constraint can be replaced by the removal of two copies of the same constraint.
The degree of parallelism introduced by that change of perspective is extremely high
because it completely gets rid of the conflicts generated by the removal of the same
constraint by multiple copies of one rule. Moreover it preserves a constraint removed
by a rule that can be necessary for the application of another instance of the rule.
The main drawback of CHRmp relies on the fact that it loses the soundness with
respect to the sequential execution when the program is not deletion-acyclic that
means that two distinct constraints cannot be responsible for their mutual removal.

CHRmp can apply very well to the algorithms that considerably reduce the num-
ber of constraints. Indeed a typical class of programs that can benefit from set-based
semantics is shown to be the filter algorithms. We can consider as an example the
simple program that extracts the prime numbers from a set of integers:

Prime @ prime(X) \ prime(Y) <=> Y mod X = 0 | true. (5.1)

Prime rule belongs to the CHR subset defined by eq. 4.1 as the number of prime
constraints decreases every time the rule fires and there is no introduction of new
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Table 5.2: Derivation of the prime program in hardware with massive parallelism:
PHBs computation

PHB1 PHB2 PHB3

{prime(7), v}, {prime(3), v} {prime(7), v}, {prime(21), v} {prime(7), v}, {prime(15), v}

{prime(7), v}, {prime(21), n}

PHB4 PHB5 PHB6

{prime(3), v}, {prime(21), v} {prime(3), v}, {prime(15), v} {prime(21), v}, {prime(15), v}

{prime(3), v}, {prime(21), n} {prime(3), v}, {prime(15), n}

types of constraints. The prime program is also deletion-acyclic since there is no
couple of numbers where one is a multiple and a submultiple of the other one at
the same time. Finally the property of strong parallelism can apply as well because
multiple instances of the rule can work on the same prime constraint that is kept.

The proposed architecture in case of massive parallelization relies on a number(
n
k

)
of PHBs where n is the number of query constraints and k is the number of inputs

of each PHB that computes all the possible combinations of input constraints just
in one step. Then n AND gates with n− 1 input collect the valid signals of all the
instances of each constraint. With such connection scheme we can assure that only
the never removed constraints will be kept.

Example 5.2.1. As an example we want to explicitly show the simple massive
parallel execution of the prime program expressed by rule 5.1. Given the test query:

prime(7), prime(3), prime(21), prime(15).

the number of PHBs needed is
(
4
2

)
= 6 since the query constraints are four and the

inputs for each PHB are two. In Table 5.2 is reported the parallel execution of each
PHBs. PHB2, PHB4 and PHB5 mark one of two input constrains as not valid
while the other three PHBs leave the constraints unchanged. Table 5.3 reports the
result of the four 3-input AND gates that collect the valid signal related to all the
instance of each constraint. Only prime(7) and prime(3) are never marked as not
valid, thus they are the only valid constraints at the end of the computation.
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Table 5.3: AND table results for the derivation of prime program

valid from PHBs AND
prime(7) v v v v
prime(3) v v v v
prime(21) n n v n
prime(15) v n v n

5.2.1 Experimental results

As case study we generate all the hardware blocks needed by the proposed optimiza-
tion for the prime program 5.1. We should notice that the built-in constraint used in
the guard is not a built-in operator of standard VHDL. Indeed modulo like division
can have as second operand only integers that are power of two since it corresponds
in hardware just to a shift of one or more bits. Hence the modulo built-in has to
be replaced by a hardware block that computes the division and returns as outcome
the remainder. We used as part of the generated rule hardware block the Xilinx
divisor core that takes ten clock cycles to output the remainder.

In Figure 5.3 the execution time of the implementation with the shift register
(strong parallelism optimization) is tagged as FPGA SP while the one with the
architecture mentioned above is the FPGA MP one. The improvement obtained
corresponds about to an order on magnitude for queries with a low number of
constraints and decreases with the rising of the number of constraints. This trend
is due to the fast reaching of the physical bound of the hardware: indeed if we
request a complete parallelization the occupied area of the FPGA will increase as(
n
k

)
. Clearly even since k = 2 we obtain a quadratic growing that is not sustainable

and a partial serialization is needed.

5.3 PHB parallelism

Until now we have seen how to apply weak parallelism 2.2(a) on the whole query
through the CS, strong parallelism 2.3(a) through a circular shift register or massive
parallelism thanks to a set semantics. In this Section we want to discuss the possi-
bility of introducing parallelism at the PHB level. As we said in 4.2.2, the PHB is
responsible of the parallelization of the CHR rules and, committing its outputs, it
can perform different degrees of parallelization.

Example 5.3.1. Two RHBs can be weak or strong parallelized by its PHB de-
pending on the constraints they modify. For instance in Figure 5.4 we present two
programs consisting of a couple of rules that can be translated into the two cor-
responding PHB structures. For brevity the functions that bound the argument
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Figure 5.4: Examples of program that can benefit of weak (a) or strong (b) paral-
lelism at the PHB level

R0 @ alpha(X) \ beta(Y) <=> beta(X).

R1 @ gamma(X) <=> gamma(Z).

R0

R1

a

b

g

a

b

g

R0

R1

a

b

g

a

b

g

(a)

R0 @ alpha(X) \ beta(Y) <=> beta(Z).

R1 @ alpha(X) \ gamma(Y) <=> gamma(W).

R0

R1

a

b

g

a

b

g

R0

R1

a

b

g

a

b

g

(b)

variables of the constraints and the guards are omitted. The corresponding PHB of
the first program (a) relies on two separate RHBs that do not share any constraint,
while the second program (b) corresponds to two RHBs that share the input associ-
ated with constraint alpha. In the second case the output alpha of one of the two
RHBs can be left floating since both rules do not change its value.

Besides the two aforementioned parallelisms the PHB can implement another
kind of rule parallelization. Since it tries to execute the rules in a predefined order
(if no parallelization is possible) we can extend the domain of application of the
strong parallelism. By definition of strong parallelism two rules can run in parallel
if their heads overlap only in the kept part, but if we consider that the rules are
applied in a particular order (for instance textual order) we can parallelize also two
rules in which the kept part of the first is modified by the other. Adopting the
same notation used for the weak and strong parallelism we define in Figure 5.5 the
notion of priority parallelism. If the second rule modifies only the constraints kept
unchanged by the first rule we can apply the two rules concurrently (in a single
step). The proof is evident since it descends directly by the sequential application
of the two rules. The second rule can act on the result of the first rule (B ∧ E).
Clearly such parallelization cannot be done without assigning an execution order
to the rules, indeed the application of the second rules would inhibit the first one
leading to a different final state and to a not fair rules execution. The resulted
layout of the PHB will have shared input constraints for the RHBs like the one in
Figure 5.4(b), but, if the order of the rules does not allow priority parallelism, the
output committing will be slightly different because it has to ensure the application
of just one rule at a time.

Example 5.3.2. As an example of parallelism allowed by the ordered rule, we
generate the PHB corresponding to the program consisting in the two rules in Fig-
ure 5.6(a). The two rules can be executed concurrently since they correspond to the
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Figure 5.5: Priority parallelism in case of ordered rules

A ∧ E 7−→ B ∧ E
E 7−→ F

A ∧ E 7−→7−→ B ∧ F

priority parallelism in combination with monotonicity (Equation 2.18) expressed in
Figure 5.6(b). The reason why the two rules can be easily executed concurrently in
hardware relies on the fact that they are translated into two RHBs that drive just
one signal (beta in rule R0 and alpha in rule R1), thus no conflicts are generated
on the outputs. Hence in this case the corresponding PHB commits the output of
rule R1 for alpha and gamma, and the output of rule R0 only for beta.

Now let us suppose to want to generate the PHB for the program expressed by
the same rules but in reverse order (R0 after R1). In such case if rule R1 fires the
execution of rule R0 in the same clock cycle is prevented (through appropriate flags
in VHDL) and its application will be allowed again only in the next clock cycle if
R1 does not fire again.

Figure 5.6: Exemple of priority parallelism

R0 @ alpha(X) \ beta(Y) <=> beta(Z).

R1 @ gamma(X) \ alpha(Y) <=> alpha(W).

(a)

A ∧B 7−→ A ∧D
C ∧ A 7−→ C ∧ E

A ∧B ∧ C 7−→7−→ C ∧D ∧ E
(b)

5.4 Optimizing Merge sort

In Section 4.5 we have shown a straightforward implementation of the merge sort
program that exploits only weak parallelism, in this Section alternative parallel ar-
chitectures are presented. The merging operation of rule M0 is a sequential operation,
but the production of the arc/2 constraints can be carried out in parallel to their
merging. Trying to perform such parallelization at the PHB level would lead to a
failure since the constraints flattening (needed by the transformation that associates
a constraint to a hardware signal) would get a reduction of the number of rules that
can fires concurrently since the increased number of checks in their guards. The
matching between the constraints and the rule heads is treated as a strict and safe
bound during the hardware compilation. If we remove it in order to increase the
parallelism we produce as result just an increase of rules that cannot fire.

The proposed approach for parallelizing merge sort is, instead, based on the
online property of CHR (see 2.2.2). Indeed the program can be naturally split into
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Figure 5.7: Merge sort execution time (log scale) for a query of 16 and 32 constraints

two parts corresponding to the two rules and some of the resulting constraints of one
part can be used to populate runtime the constraint store of the second one. The
arc/2 constraints produced by rule M1 are consumed only by rule M0 while seq/2

constraints are produced and consumed only by rule M1. If we consider the two
rules as separate programs joined by the arc production and consumption, we can
design a hardware constituted by two executors linked by a one-way buffer. Each
rule corresponds to one full executor consisting of a CS and n/2 instances of a PHB
containing the duplicated RHB, where n is the number of query constraints. The
seq/2 query constraints are loaded in the CS of the first executor and as new arc/2

constraints are created (actually c/3 constraint with the first argument equal to 0),
they are inserted in a buffer that feeds the CS of the second executor. Such CS
at the beginning of the computation should be empty, hence it is preloaded with
all the constraints marked as not valid and when it receives a new constraint from
the buffer it replaces one of them. With this double architecture the two rules can
rewrite constraints independently and asynchronously since the two executors are
decoupled by the buffer.

5.4.1 Experimental results

With the same experimental setup adopted in Section 4.4 we implemented the merge
sort algorithm with three different hardware designs. In Figure 5.7 a comparison
between the execution times of such architectures is shown above the CPU execution
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reported as reference. With the label FPGA CS we refer to the execution time of a
single executor of the complete program. This architecture corresponds to the one
described in Section 4.5 that adopts only week parallelism. The execution times
of the double executors with two CS are, instead, labeled FPGA CS + CS. In this
configuration a FIFO is used to connect one cell of the first CS to one cell of the
second. The two CS and the FIFO should have the same dimension since, in a normal
execution, all the seq constraints (except the last that always remains unpaired) are
converted in arc constraints. Instead the FIFO depth as to take into account the
possibility that the second CS is not able to receive immediately the sent constraint
because the receiving cell is occupied by a valid constraint. The last architecture
tested (tagged FPGA CS + SR) replaces the second CS with a shift register like the
one used in presence of strong parallelism (see Section 5.1). Indeed multiple instance
of rule M0 can be strong parallelized because one constraint of the head is kept and
hence it can overlap on multiple rules.

The histogram clearly shows the speed up introduced by the adoption of the
online property that gives the possibility of dividing the problem into two parts
running in parallel. What can appear strange is the very good time agreements
between the results of the two designs that use a double structure. The reason for
a leak of speed up in case of strong parallelism in the second executor has to be
charged in the fact that when the last arc/2 constraint is generated, by the first
executor, the partial result of the second one approximates very well the final result
(or it is already that). Thus when the last constraint is retrieved by the second
executor it has to apply just one rule before the actual end of the execution, hence
the chosen parallelism for sorting the constraints does not matter.



6
Hybrid Compilation

In Chapter 4 we have seen how to implement a subset of CHR in hardware with
strict bounds on the constraints propagation. The nature of hardware circuits im-
poses such limitations since it relies on a static and fixed architecture. To overcome
the problem of dynamic allocation an addressable memory and a flexible controller
are certainly needed. Obviously this architecture can be custom developed in re-
configurable hardware, but it would be an extraordinary effort not sufficiently paid
off by the obtained performances with respect to the adoption of a general purpose
processor and a standard RAM. In Section 6.2 we want to show how to interface a
CPU with custom hardware implemented in FPGA in order to have the possibility
of using the full CHR language boosted by an hardware accelerator.

Indeed often in software applications a small fraction of the source code consumes
the most of the CPU resources while the remaining part focuses on initialization and
system execution control. Code profiling can help identify the functions that con-
sume the majority of the processor time and hardware co-processing is well suited
to address the heavy computational load caused by such sub-tasks of the code espe-
cially if they allow for concurrency. FPGA accelerators are blocks of hardware that
can be integrated into a processor-based system in order to offload some of the most
computationally intensive tasks.

The hardware generator described in Chapters 4 and 5 can be seen from a higher
perspective as a tool able to synthesize in hardware just few rules, belonging to a
complex CHR program, that are charged of the most of the computational tasks.
In such a context the limitation of using in hardware the CHR subset highlighted
by rule 4.1 is not a restrictive bound because the processor can fill the hardware
deficiency. In other words the processor produces constraints and the co-processor
consumes or rewrites them.

Section 6.1 briefly reviews the architecture of standard hardware accelerators
while in the introduction of HLLs in Section 3.3 we have already presented many
programming languages adopted for such systems. Before dealing with the soft-
ware/hardware partitioning we want to clarify which are the limitation encountered
using the CHR subset identified in Section 4.1. Since the CHR code expressed by
such subset can be deployed in hardware after a proper translation, in the rest of
the thesis, we will refer to it as the synthesizable CHR.
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The main restriction that we will address in this Chapter is the absence of prop-
agation at all. Indeed it was stated that a synthesizable rule cannot introduce new
constraints (not present in its head). Even if this limitation can appear very restric-
tive in Appendix B we will analyze the class of describable algorithms following the
method employed by Sneyers in [95] and we will show that, despite the preamble,
the outcome will be quite positive. Indeed in such paper it was shown that several
subclasses of CHR are Turing-complete, in particular CHR with only one kind of
rule.

Clearly, if our targets are performances, we cannot always afford a program
translation that with a rules overhead, and a consequent increase of complexity,
transforms the former program to a synthesizable one. Hence, even if the hardware
execution of any CHR program is always possible (after a proper transformation),
in Sections 6.2 we want to propose a method to overcome the language restrictions
imposed by the synthesizable subset.

6.1 Related hardware accelerators

Concerning the employment of specialized hardware to aid the main computation,
two mainstreams can be identified in the last decade, depending on the nature of
the processing element coupled to the CPU:

1. Co-processors with full or reduced instructions set (ASIP) can cooperate with a
general-purpose core. Clear instances of these computational platforms are the
graphical processing units (GPUs), that are widely used as highly parallel and
programmable co-processors [82], or the synergistic processing elements (SPEs)
of the Cell Broadband Engine that are specialized offload co-processors [64].

2. Hardware accelerators based on reconfigurable device like Field Programmable
Gate Arrays (FPGAs). Thanks to the versatility of such hardware component,
the accelerator can be designed to perform a specific task as required. The
CPU can easily talks to the accelerator through data and control registers or
shared memory since the FPGA can directly sit on the processor bus. Hard-
ware accelerator based on FPGA are widely exploited on different application
fields for example cryptography [16], data processing [80] or computer vision[9].
We refer the reader to Section 3.1 for an overview of FPGA’s architecture.

Actually, even if the majority of the systems relies on one of the above systems,
the distinction is not so strict. Indeed we should mention, for example, the cases in
which the FPGA can interact with the main processing core not only through the
programming model interface but it is independent of and tightly coupled with the
instructions set of the CPU [32].

Hardware designers have used FPGAs for many years as single-chip accelerated
application but recently, due to the increased devices density, FPGAs are being the
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focus of system designers attention as well. This change of perspective sparked the
debate on what could be the best language for describing a mixed hardware/software
system. The lack of a suitable standard gave rise to a plethora of high-level languages
(HLLs) oriented to increase the productivity in the description of reconfigurable
computing devices [40]. Examples of platforms that adopt a HLL as input are
the commercial Impulse-C [62] or the academic SPARK [53] or the more recent
Lime [10] (a review of many of these languages can be found also in Section 3.3
since thy can be used as high-level hardware syntheses languages). With automated
or semi-automated compilers and optimization tools the programmer is now assisted
through a quick hardware accelerator prototyping and implementation. In such a
way the need of a specific knowledge of hardware design methodology fades leaving
the system programmer the possibility to focus on the entire project at a glance.

6.2 A hardware accelerator for CHR

In Chapter 4 it was shown how to synthesize hardware starting from a subset of CHR
that does not take into account constraints propagation. Since dynamic allocation
is not allowed in hardware due to physical bounds, such subset restriction may
appear expected for a hardware designer but it sounds very restrictive for software
programmer. In order to overcome the limitation on constraints propagation we
studied a mixed (hardware/software) system where some rules, charged of the most
computational task, are executed by specialized hardware (synthesized through the
afore mentioned technique) while the remaining ones are executed by the main
processor that can fill the hardware deficiency. The processor can easily take care of
constraints production while the custom hardware can efficiently consume or rewrite
them.

The hardware/software partitioning task is left to the programmer who should
specify which rules have to be deployed in the hardware accelerator. A wrapper
function virtually encapsulates those rules and actually provides for the data move-
ment interface. It tailors the data to the hardware requirements and it enables
their retrieval by the main program. The wrapper is then used as a call: when it
is invoked some constraints are passed as arguments, then they are converted to a
query for the hardware rules. The resulting constraints of the hardware execution
are given back to the wrapper that introduces them in the main computation as
return arguments. The wrapper can be seen by the programmer as a function for
embedding low level instructions that speed up the program execution, even if it is
a more complex service since it is not consisting of low level code but it is actually a
call to a hardware driver. In Section 6.2.1 the details of the wrapper implementation
are given.

In literature two kinds of modularity for CHR were studied and adopted: flat
composition [5] and hierarchical composition. The former consists in a programs
union with a simple merging of all the rules, while the latter allows for the reuse of
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Figure 6.1: Hardware/software compilation diagram flow

CHR constraints turning them in built-in constraints for an other program. Hierar-
chical composition was applied in extending arbitrary solver [37] or CHR solver [90]
with other CHR solver. An example of hierarchical composition similar to the one
adopted by us is presented in [97], where an operation of minimum extraction is em-
bedded in guards as CHR constraint. We use custom built-in constraints as wrappers
in order to hold the execution of the main program, to run an other subprogram,
and finally to restart the stopped execution.

After the presentation, in Section 6.2.1, of the double compilation path needed
for compiling the software execution and the hardware synthesis, a detail description
of the implementation of the CHR hardware accelerator is given through a case study
in Section 6.2.2. Section 6.2.3 shows a worst case application of hardware/software
partitioning and finally Section 6.2.4 gives a positive example of hardware accelerator
applied to a typical problem of constraint solving.

6.2.1 Hardware/software compilation

The entire system compilation is split into two branches (see Figure 6.1) related
to the software and hardware parts. We start the compilation from an annotated
program in which the programmer highlights the rules that have to be executed by
the hardware accelerator. The hardware compilation consists of the application of
the method proposed in Section 4.2 that results in a bit stream directly deployable
in a FPGA. On the other hand the standard software compilation will be necessary
altered due to the removal of some rules from the full program specification. Since
our implementation relies on a CHR system that adopts Prolog as host language,
the execution of the removed rules will be embedded in a custom made built-in
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foreign Prolog predicate (the wrapper). When it is called all the constraints of a
specific type are sent to the hardware accelerator that, once it has terminated the
computation, will send the resulting constraints back to the constraint store. In
the following Section we will make explicit this rule substitution in a practical case
study implementation.

A foreign Prolog predicate is a C function that has the same number of arguments
as the former predicate represented. C functions can provide for analyzing the passed
terms, converting them to basic C types as well as instantiating arguments using
unification. In concrete terms a C-source file can be loaded via the foreign interface
including the special file SWI-prolog.h that defines various data types, macros
and functions that can be used to communicate with SWI-Prolog. The possible
actions from such interface to the Prolog environment are analysis of Prolog terms,
construction of new terms, their unification, returning control information to Prolog,
registering foreign predicates with Prolog, calling Prolog from C, recording database
interactions and performing global actions on Prolog like halt, break, abort, etc.
Foreign modules may be linked to Prolog using static or dynamic linking. In the
former case the extensions, a file defining main() which attaches the extensions calls
Prolog and the SWI-Prolog kernel distributed as a C library, are linked together to
form a new executable. In the latter, instead, the extensions are linked to a shared
library (.so file) and loaded into the running Prolog process.

A software architecture that handles the coprocessor is then embedded in such
foreign Prolog predicate. The application software queues up packets of data to be
sent to the coprocessor and provides a queue of buffers to be filled with return data.
The application software also provides call-back routines that will be called by the
driver whenever a packet of data is delivered to or received from the coprocessor.
Either interrupt or polling mechanisms can be used by the processor to check if it
needs to take any action. In such a way, the processor and coprocessor can both
be active simultaneously. An estimation of the overhead introduced by the whole
process of data handling is given in the next Section.

6.2.2 GCD matrix calculation

As case study we choose the calculation of the greatest common divisor (gcd) on
a set of integers, to this end we virtually build a bi-dimensional triangular upper
matrix whose elements will contain the gcd of pairs of integers belonging to the set.
The rules reported in the upper part of Figure 6.2 are the CHR implementation
of the matrix computation. We use the Euclid’s algorithm (as in Example 2.2.1),
expressed by rules GCD0 and GCD1, to calculate the gcd between two integers and
the propagation rules Matrix0 and Matrix1 to build the elements pairs from the
initial set of integers. The constraint set/2 has as first argument the order number
of the set and as second one the value of the element. The first two arguments of
gcd/3 are used to denote the position of the element in the gcd matrix and the
third is the respective value. Rule GCD0 states that the gcd/3 constraints with
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the value equal to zero can be removed from the store, while GCD1 states that if
two constraints gcd(X,Y,N) and gcd(X,Y,M) are present the latter can be replaced
with gcd(X,Y,M-N) if M>=N. We can apply our translation technique to this program
because the number of constraints remains bound during computation (exactly as
the case of Example 4.1.1). Rule Matrix0 produces only the upper half of the gcd
matrix (due to the guard X<Y) since it is symmetric while Matrix1 generates the
diagonal elements that are trivially equal to the corresponding set element since
the gcd of two equal numbers is the number itself. These two rules cannot be
implemented in hardware because they are propagation rules that generate new gcd

constraints.

In the hardware accelerator we deploy the functionality of rules GCD0 and GCD1

with the hardware blocks technique reported in Section 4.2. The remaining program
running on the main processor consists of the two rules Matrix0 and Matrix1 with
the addition of the rules reported in the bottom part of Figure 6.2. Rule Pack

is intended to append all the constraints of type gcd/3 to a list that has to be
delivered to the hardware accelerator. Call is used to trigger the invocation of the
custom Prolog predicate hw_gcd/2 that is the actual responsible of the data transfer
to and from the hardware accelerator. The constraint call/0 is at disposal of the
programmer to make the rule fire at the preferred time. For example we can add at
the end of the query call if we wish that the gcd constraints were processed after the
complete production of all of them. Finally the rule Unpack returns the constraints
that are sent back from the hardware accelerator. In this particular example the
application of such rule is not necessary because the output of the gcd computation

Figure 6.2: Gcd matrix program

GCD0 @ gcd(_,_,0) <=> true.

GCD1 @ gcd(X,Y,N) \ gcd(X,Y,M) <=> M>=N | gcd(X,Y,M-N).

Matrix0 @ set(X,N), set(Y,M) ==> X<Y | gcd(X,Y,N), gcd(X,Y,M).

Matrix1 @ set(X,N) ==> gcd(X,X,N).

⇓
Pack @ gcd(X,Y,N), list_in(L)#passive <=> list_in([(X,Y,N)|L]).

Call @ call, list_in(L1) <=> hw_gcd(L1,L2), list_out(L2).

Unpack @ list_out([(X,Y,N)|L]) <=> list_out(L), gcd(X,Y,N).

Matrix0 @ set(X,N), set(Y,M) ==> X<Y | gcd(X,Y,N), gcd(X,Y,M).

Matrix1 @ set(X,N) ==> gcd(X,X,N).
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Figure 6.3: Derivation of the gcd matrix program in a software/hardware execution

Matrix1 gcd(1,1,6)

Pack list_in([(1,1,6)])

Matrix0 gcd(1,2,6), gcd(1,2,12)

Pack list_in([(1,2,12),(1,2,6),(1,1,6)])

Matrix1 gcd(2,2,12)

Pack list_in([(2,2,12),(1,2,12),(1,2,6),(1,1,6)])

Matrix0 gcd(1,3,6), gcd(1,3,45)

Pack list_in([(1,3,45),(1,3,6),(2,2,12),(1,2,12),(1,2,6),

(1,1,6)])

Matrix0 gcd(2,3,12), gcd(2,3,45)

Pack list_in([(2,3,45),(2,3,12),(1,3,45),(1,3,6),(2,2,12),

(1,2,12),(1,2,6),(1,1,6)])

Matrix1 gcd(3,3,45)

Pack list_in([(3,3,45),(2,3,45),(2,3,12),(1,3,45),(1,3,6),

(2,2,12),(1,2,12),(1,2,6),(1,1,6)])

Call list_out([(3,3,45),(2,3,3),(1,3,3),(2,2,12),(1,2,6),

(1,1,6)])

Unpack x6 gcd(3,3,45), gcd(2,3,3), gcd(1,3,3), gcd(2,2,12),

gcd(1,2,6), gcd(1,1,6)

will be constituted of just one constraint, but it is reported for generality purpose.

Example 6.2.1. The derivation of an exemplifying query for the revised version of
the gcd matrix program in the lower part of Figure 6.2 is reported in Figure 6.3.
The two rules deployed in hardware are GCD0 and GCD1. We omit the hardware part
of the derivation since it is very similar to the one presented in Example 5.1.1, if a
strong parallel architecture is used. The sample query is:

list_in([]), set(1,6), set(2,12), set(3,45), call.

For clarity we do not show all the state transitions: in the first column the applied
rule is reported while in the second one the introduced constraints are present.
For a proper understanding of the derivation we should notice that the processor
executes rules according to the refined operational semantics 2.2.1. Placing the
call/0 constraint at the end of the query the hardware execution is deferred at the
end of the generation of all the gcd/3 constraints. An alternative execution could
fires the Call rule every time a Matrix1 is executed. Such execution could be easily
done adding call/0 and list([]) at the end of the body constraints of Matrix1,
but the time performance would be certainly worse because of the transfer overhead
introduced at every call.
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Figure 6.4: GCD matrix execution time (log scale)

Experimental Results

Co-processors and in general hardware accelerators typically need a data interface
and a control interface: the first one moves data to and from memory while the
second one is charged to set up the operations of the processing core. The overall
system performance is mainly limited by the efficiency of the data movement, thus
we paid attention to choose a proper hardware architecture of the data interface.
Since the amount of transfered data required by our testbench is quite small, a
single registers approach can easily fulfill our requirement. We exploit in the FPGA
a PCI Express IP core (PCI-E IP) with the aim of making the hardware accelerator
memory directly mapped in the main processor memory space. On the FPGA side
it is profitable to include a memory buffer (FIFO) to act as a local cache to the
accelerator core. In such a way, the processor is free to upload data to the FPGA
buffer without worrying of being synchronized with the accelerator. The FIFO
queue is implemented using an IP core that exploits the additional RAM blocks of
the FPGA.

The hardware setup of the test bench relies on a Xilinx Virtex4 FPGA (xc4vfx60)
running at 100MHz and connected to a PCI-E root complex of an ASUS P7P550
motherboard hosting an Intel Core i7 CPU running at 2.8GHz. On the software side
we use the CHR system [89] for SWI-Prolog that lets us easily integrate memory
mapping instructions thanks to the embedded interface to C [112] that we employ
for the wrapper implementation.
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Figure 6.5: Additional time introduced by the hardware accelerator measured at
different sizes of the query

We deploy in FPGA the firmware generated by the first two rules of Figure 6.2
bounding the number of constraints to 128 integers at most. The resulting hardware
design relies on 127 PHBs deriving in parallel the gcd while a circular shift register
pairs a constraint with all the others as described in Section 5.1.

In order to determine the total system execution time we used a single thread
implementation in which the CPU is kept idle until the FPGA has performed its
computation. Figure 6.4 compares the execution times of computation of the gcd
matrix running both on the plain CPU and with the help of the FPGA (labeled
CPU+FPGA in the plot). Even if the speed achieved is not comparable with the one
obtained by the execution of the gcd algorithm entirely in FPGA (see Section 4.4),
the execution time improvement is still in the range of one order of magnitude. This
partial loss of gain is rewarded by a more flexible system thanks to the presence of
the CPU.

A comparison of the extra time introduced with the addition of the hardware
accelerator is presented in Figure 6.5 for 16, 32, 64 and 128 1-byte constraints.
We measured the elapsed time as the sum of three different components: data
formatting, data transfer and FPGA computation. The first one consists of the
required time by a CHR rule for calling the foreign Prolog predicate that converts
terms in basic C-type, arranges the constraint values in data packets, decodes the
incoming packets and unifies the C-type values with terms. The remaining two
components are respectively the routing time to send data through the PCI-E bus
and the time needed by the FPGA for packing/unpacking and processing data. The
measures show that the most expensive phase is mainly due to the data handling at
the level of the CHR rule responsible of the built-in execution that sets up the FPGA
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Figure 6.6: Preflow push algorithm

Push @ h(U,UH), h(V,VH) \ e(U), res(U,V), phase(push) <=>

UH>VH | res(U,V), e(V), phase(push).

Trans @ phase(push) <=> phase(lift).

Lift1 @ e(U) \ h(U,HU), phase(lift) <=>

U\=source, U\=sink, gemin(U), phase(update).

Mcalc @ minimum(A) \ minimum(B) <=> A=<B | true.

Minit @ getmin(U), res(U,V), h(V,H) ==> minimum(H).

Lift2 @ getmin(U), minimum(M), phase(update) <=>

M1 is M+1, h(U,M1), phase(push).

computation. Clearly such burden of few microseconds per constraint is fully paid off
by the speed up gained in the further concurrent execution of CHR rules in FPGA.
The aforementioned results obtained implementing the Euclid’s algorithm for the
gcd calculation in hardware strengthen this thesis but with the following example
we want to show what happens when the FPGA computation is less preeminent or
even negligible wrt the CPU one.

6.2.3 Preflow push algorithm

Preflow push algorithm gives a solution of the maximum-flow problem: to find
a feasible flow through a single-source, single-sink flow network that is maximum.
The general algorithm works on a flow network defined as a direct graph G = (V,E)
of vertices V and edges E, where two vertices are called source and sink and at
each edge a non-negative capacity c is associated. A flow is defined as a mapping
f : E → R+ that assigns to an edge a value that cannot exceed its capacity and
obeys to the rule of conservation (the sum of the flows entering a vertex must equal
the sum of the flows exiting a vertex, except for the source and the sink). A valid
solution of the maximum-flow problem is given by a flow that maximizes the sum∑

v∈V f(v, sink) of the flow network.

We choose to implement the refined semantics version of the preflow push algo-
rithm presented in [79]. The general algorithm is restricted to work on flow net-
works with capacities, between two vertices u and v, of the form c(u, v) ∈ {0, 1} and
c(u, v) + c(v, u) ≤ 1. Positive excess of flow in a vertex is allowed during computa-
tion but it has to be zero (in order to make the flow compliant) by the termination.
The flow excess is encoded as multiple copies of the constraint e/1 that stands for
one unit. Unit capacities make possible to represent each edge as a residual edge
(constraint res/2) since if the flow is 1 the residual is 0 or vice versa. The con-
straint h/2 associates with each vertex (first argument) a height (second argument).
As reference, in Figure 6.6, the code of the algorithm is reported where we put in
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Figure 6.7: Preflow push algorithm execution time

evidence the rule that we deploy on FPGA. Constraint phase/1 is used as control
for executing one lift action when the Push rule is not applicable any more. In phase
update the minimum height of the residual neighbors is calculated for each node
by rules Mcalc and Minit. In particular Minit produces the minimum\1 constraints
that are filtered out by Mcalc.

Reducing rules, analyzed in Section 5.2, are efficiently implementable in FPGA
because of the high degree of parallelization achievable. We are considering the
deployment of rule Mcalc as a worst case for the advantages induced by the accel-
erator employment, because the rule maximizes the ratio between the number of
sent constraints and the number of times multiple instances of the same rule are
concurrently applied. If, for example, we use strong parallelism the ratio is always
greater than 1 since for N constraints we need M ≤ N shifts of the register before
getting the results. For the gcd example the ratio is less than 1 because the two
rules are applied many times sequentially (at lest two) before the next shift of the
register. This means that the denominator of the ratio is greater than N , except for
the case in which all the gcd constraints have the same value.

The execution time of the preflow push algorithm is reported in Figure 6.7. The
plot shows that, even in such worst case for the coupled system CPU and FPGA, the
execution time is comparable with the one of a single CPU. This means that a huge
number of function calls does not affect the performance of the program but rather
they are well integrated in the compilation process of the software specification.
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Figure 6.8: Interval domains solver execution time (log scale). The query was com-
posed of 20 interval constraints and one arithmetic relation for each variable

6.2.4 Interval domains solver

Besides the case study presented in the previous paragraph we choose to implement
a system that tackles a classical problem for constraint programming [12], a finite
domains system. In CHR literature we can find several programs working on interval
or enumeration constraints [49], we implemented a simple interval domains solver
for bound consistency. As reference, in Figure 6.9, the code of the algorithm is
reported where we put in evidence the first two rules that we deployed on FPGA.
The solver uses the CHR constraint ::/2 for stating that a given variable can take

Figure 6.9: Interval domains solver algorithm

Redundant @ X::A:B \ X::C:D <=> C=<A, B=<D | true.

Intersect @ X::A:B, X::C:D <=> X::max(A,C):min(B,D).

Inconsistent @ _::A:B <=> A>B | fail.

LessEqual @ X le Y, X::A:_, Y::_:D ==> Y::A:D, X::A:D.

Equal @ X eq Y, X::A:B, Y::C:D ==> Y::A:B, X::C:D.

NotEqual @ X ne Y, X::A:A, Y::A:A <=> fail.
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its value from a finite set notated with the custom operator :. For instance the
constraint X::a:b means that the variable X can assume whatever integer value
between a and b. le/2, eq/2 and ne/2 are CHR constraints as well and stand for
the less or equal, the equal and the not equal operators, while min and max are Prolog
built-in. Rule Redundant eliminates all the intervals that contain a subset interval
of the same variable. Intersect replaces two intervals with their intersection by
calculating the maximum of the lower bounds and the minimum of the upper bounds.
inconsistent is used for point out whether an interval is not correctly defined
(the lower bound is grater than the upper bound). Rules LessEqual, Equal and
NotEqual represent the correspondent arithmetic order relations.

It can be easily noticed the complete absence of constraints propagation in the
first two rules. Indeed Redundant removes one constraint without introducing any
new one while Intersect introduces one constraint, but in return removes two of
them. The only difference between these rules and all the previous implementations
presented in this paper is the use of free logical variables instead of integers as
arguments for the constraints. Clearly in hardware they cannot be treated as they
stand, but, since during the whole program execution they are never bound, a
substitution with indexes is possible during the step of packing and formatting
the constraints to be sent to the accelerator. When the output constraints from the
accelerator are received the indexes are replaced back with the corresponding logical
variable.

The execution time of the interval domains solver is reported in Fig. 6.8. As
in the case of the computation of the gcd matrix, the speed up obtained with the
support of the hardware accelerator is over one order of magnitude along all the
query range we had sampled.

It is worth noting that the hardware implementation of the two rules deployed
in FPGA can employ only weak parallelism at the level of constraints assignment to
the PHBs. Indeed the two rules cannot be strong parallelized since they do not share
a kept part of the head. However the rules can benefit of the priority parallelism
(see Section 5.3) at the PHB level. Indeed the two rules can be evaluated in a strict
top to bottom order: given an interval, the removal of a larger interval that contains
the former one, can always precede the evaluation of the intersection with a third
interval. For instance from the three intervals (referring to the same variable) 3:6,
2:8, 5:7, such parallelism lets evaluate the resulting interval 5:6 in just a single
computational step.
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Conclusions

We described the general outline of an efficient hardware implementation of a CHR
subset able to comply with the restricted bounds that hardware imposes. The level
of parallelization achieved provides a time efficiency comparable with that obtained
with a design directly implemented in HDL. At the same time, the proposed solution
offers a more general framework reusable for a wide range of tasks. Additionally,
it was shown that, applying the same hardware generation technique to CHR with
HDL built-in operators, we obtain elementary hardware blocks that can be easily
integrated with existing HDL code. Indeed a smooth integration is guaranteed by
the modularity of the HDL language (target of the source to source compilation) at
a twofold level: in the behavioral and structural representation of the hardware.

Clearly this thesis does not claim to be an answer to the problem of the high
level hardware synthesis, but it attempts to highlight how a declarative programming
language like CHR can contribute to ease the burden of hardware designers. Several
examples of simple CHR programs showed the generality of the proposed framework
and how, with simple changes in a few rules, we are able to compile a specific
specialized hardware able to execute the CHR code for solving completely different
tasks. Reconfigurable hardware made it possible to easily obtain in short time
the corresponding hardware circuits. The adoption of an FPGA as testing ground
resulted to be a versatile solution for achieving a significant speed up of the CHR
execution.

Different degrees of parallelization naturally embedded in CHR were pointed
out and fully exploited thanks to the development of custom hardware structure.
Even if the concurrency in CHR is well known, in the literature only few cases
are present where it was actually turned into parallelism. The reason for this is,
in our opinion, to be searched not only in the lack of parallel models, but in the
lack of proper hardware architectures. The proposed optimizations to the general
framework presented in this thesis deal also with properties that not necessarily
involve concurrency like the online property, or with particular set semantics that
revealed that for certain classes of algorithms the degree of parallelization achievable
in hardware is only limited by the available space resource.

The proposed hardware compilation was validated with several examples that
show how to produce the hardware needed to execute classical algorithms like merge
sort, Euclid’s algorithm, or an interval domains solver. In such case studies the
evident expressive power of CHR has been combined with the time efficiency peculiar
to simple low level hardware structures.

In several parts of the thesis it was shown how the fixed nature of the hardware is
a critical point for the hardware translation of a CHR program. Propagation is not
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strictly needed for the completeness of the language, but it is clearly a very important
feature for its complexity and expressive power. For this reason we proposed a
classical CHR executor coupled with a hardware accelerator dedicated to simple
tasks like the fast rewriting of some constraints. Such hardware based approach can
increase the performance of constraint programming trying to achieve a stronger
coupling between algorithms and platforms. A custom hardware based on FPGA
was used as accelerator for CHR code: the traditional program execution was then
interfaced with a custom accelerator engine.

We presented case studies in which the high level hardware compilation produced
the needed hardware code for the accelerator, and simple CHR rules, added to the
program, allowing the CPU to cooperate with the accelerator itself. The trade off
raised by the data transfer overhead (between processor and hardware accelerator)
and the speed up achieved in hardware was measured and later analyzed by means of
a worst case example of hardware/software partitioning. Finally we should remark
that the system integration was made smoother by the adoption of the same language
for the software and hardware description suggesting how CHR could be adopted as
a system level language.

Further work

Further improvements to the general framework, especially in terms of applicability
also to problems where the number of constraints does not necessarily decrease
during the computation, will be subject to future research. However an important
challenge will be the hardware implementation of complex programs as well. A
general treatment of rules dependency at the PHB level is still missing and only
appropriate considerations on rules interaction can lead to a hardware performing
parallel execution, pipelining and balancing out circular dependencies. We have
seen that the hardware parallelization can be efficiently done at different levels of
the design, the development of a theoretical model, able to clarify the most favorable
strategy, would be useful for developing a general parallelization paradigm. These
studies can eventually open the door to the production of a source-to-source compiler
that takes as input CHR and carries out a structural hardware description in HDL
ready for a synthesis tool.

Regarding the hardware accelerator for speeding up the CHR execution, we
should mention the possibility of automating the process of rule selection for the
hardware deployment. Results coming from a profiler could help a static analysis
on the CHR program to identify the rules that are the most expensive to be exe-
cuted. Moreover our preliminary tests carried out on simple CHR programs could
be extended to more complex application.

On the hardware side this extension can lead to the adoption of a different
approach in the data communication between the the processor and the accelerator.
Indeed the slave register schema we adopted can be improved in a master attachment
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one thanks to a DMA engine on the FPGA that offloads the data directly to the main
memory. Concurrent computations of the accelerator and the processor could then
be explored. Further works will also investigate the possibility of fully exploiting the
capability of reconfigurable hardware: the FPGA could then be totally or partially
reprogrammed run-time with different sets of rules. If the reconfiguration costs will
turn out to be sustainable for the entire program execution the issue of the space
required by the rules parallelization will be partly resolved.
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A
Program listings

This Appendix contains the program listings of some examples of implementations
presented in Chapters 4 and 5.

List A.1 reports the VHDL description of the hardware blocks needed to form
the PHB of the gcd program reported in Example 4.2.2. The first part of the code
shows the entity declaration of gcd (see Example 3.2.4) that contains the input and
output signals of the PHB. Besides the signals related to the RHBs gcdx, validx,
gcd_outx and valid_outx, the port listing contains the synchronization signals
provided by the PHB: clk, reset and finish. The architecture of gcd has four
processes executed in parallel, called r0_1, r0_2, r1_1 and r1_2, that correspond
to the four RHBs in Figure 4.4. In particular they correspond to the two instances
required by Equation 4.2 of rule R0 and R1 presented in Figure 4.3. The committing
part of the PHB is carried out by the variable flag that gives a priority to the PHB
outputs assignment. Finally the process finish_p is charged to rise the finish signal
when the output signals cannot be further modified by the other processes.

List A.1: PHB of the gcd program

entity gcd is

Port ( clk : in STD_LOGIC;

reset : in STD_LOGIC;

gcd1 : in STD_LOGIC_VECTOR (7 downto 0);

gcd2 : in STD_LOGIC_VECTOR (7 downto 0);

gcd_out1 : out STD_LOGIC_VECTOR (7 downto 0) :=X"00";

gcd_out2 : out STD_LOGIC_VECTOR (7 downto 0) :=X"00";

valid1 : out STD_LOGIC;

valid2 : out STD_LOGIC;

valid_out1 : out STD_LOGIC := ’1’;

valid_out2 : out STD_LOGIC := ’1’;

finish : out STD_LOGIC := ’0’);

end gcd;

architecture Behavioral of gcd is

signal gcd1_sig : std_logic_vector (7 downto 0) := X"00";

signal gcd2_sig : std_logic_vector (7 downto 0) := X"00";
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signal valid1_sig : std_logic := ’1’;

signal valid2_sig : std_logic := ’1’;

signal finish_sig : std_logic := ’0’;

signal finish_sig_reg : std_logic := ’0’;

signal gcd1_sig_reg : std_logic_vector (7 downto 0) := X"00";

signal gcd2_sig_reg : std_logic_vector (7 downto 0) := X"00";

shared variable flag : std_logic := ’0’;

shared variable finish_flag : boolean := false;

begin

r1_1: process (clk, reset, gcd1, gcd2, gcd1_sig, gcd2_sig, valid1_sig,

valid2_sig)

begin -- process r1_1

if reset = ’1’ then

gcd2_sig <= gcd2;

elsif (clk’event and clk=’1’) then

if (valid1_sig=’1’ and valid2_sig=’1’) then

if gcd2_sig>=gcd1_sig then

gcd2_sig <= gcd2_sig - gcd1_sig;

flag := ’1’;

else

flag := ’0’;

end if;

end if;

end if;

end process r1_1;

r1_2: process (clk, reset, gcd1, gcd2, gcd1_sig, gcd2_sig, valid1_sig,

valid2_sig)

begin -- process r1_2

if reset=’1’ then

gcd1_sig <= gcd1;

elsif (clk’event and clk=’1’) then

if (valid1_sig=’1’ and valid2_sig=’1’) then

if flag=’0’ then

if gcd1_sig>=gcd2_sig then

gcd1_sig <= gcd1_sig - gcd2_sig;

end if;

end if;

end if;

end if;

end process r1_2;

r0_1: process (clk, reset, gcd1, gcd2, gcd1_sig, gcd2_sig, valid1_sig,

valid2_sig)

begin -- process r0_1

if reset = ’1’ then

valid1_sig <= valid1;

elsif (clk’event and clk=’1’) then

if gcd1_sig=X"00" then
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valid1_sig <= ’0’;

else

valid1_sig <= ’1’;

end if;

end if;

end process r0_1;

r0_2: process (clk, reset, gcd1, gcd2, gcd1_sig, gcd2_sig, valid1_sig,

valid2_sig)

begin -- process r0_2

if reset=’1’ then

valid2_sig <= valid2;

elsif (clk’event and clk=’1’) then

if gcd2_sig=X"00" then

valid2_sig <= ’0’;

else

valid2_sig <= ’1’;

end if;

end if;

end process r0_2;

gcd_out1 <= gcd1_sig;

gcd_out2 <= gcd2_sig;

valid_out1 <= valid1_sig;

valid_out2 <= valid2_sig;

finish <= ’1’ when finish_sig=’1’ and finish_sig_reg=’0’ and

finish_flag else

’0’;

finish_p: process (clk, reset, gcd1_sig, gcd2_sig, finish_sig)

begin -- process finish_p

if reset=’1’ then

gcd1_sig_reg <= X"00";

gcd2_sig_reg <= X"00";

finish_sig_reg <= ’0’;

finish_flag := true;

finish_sig <= ’0’;

elsif (clk’event and clk=’1’) then

gcd1_sig_reg <= gcd1_sig;

gcd2_sig_reg <= gcd2_sig;

finish_sig_reg <= finish_sig;

if gcd1_sig=gcd1_sig_reg and gcd2_sig=gcd2_sig_reg then

finish_sig <= ’1’;

else

finish_sig <= ’0’;

end if;

end if;

if finish_sig=’1’ then

finish_flag := false;

end if;
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end process finish_p;

end Behavioral;

List A.2 reports the main processes constituting a possible implementation of the
CS described in Section 4.2.3. For brevity the entity and the rest of the architecture
are omitted. The two processes FSM_FF and FSM_LOGIC are used to describe the finite
state machine that controls the signals switch. Basically it first waits for the start

signals coming from all the PHBs and then it permutes the output signals enabling
the execution of process comb_p. This latter process is the actual responsible of
the switching between the input signals const_sig and the output ones query_sig.
It employs the circular shift register scheme of Figure 5.2 for pairing 128 signals
each other in order to result in 64 different couplets each step. The switching of
the input/output signals coincides also to the rising of the finish_sig signal that
triggers the rising of the reset signals for the PHBs.

List A.2: Processes of the CS for a query of 128 constraints

FSM_FF: process (clk, reset, next_state)

begin

if reset=’1’ then

state <= init;

elsif clk’event and clk=’1’ then

state <= next_state;

end if;

end process FSM_FF ;

comb_p: process (clk, reset)

begin

if reset=’1’ then

const_sig <= query_sig;

elsif clk’event and clk=’1’ then

if finish_sig = ’1’ then

const_sig(0) <= query_sig(0);

const_sig(1) <= query_sig(3);

const_sig(2) <= query_sig(1);

const_sig(3) <= query_sig(5);

for i in 1 to 61 loop

const_sig(2+i*2) <= query_sig(2*i);

const_sig(3+i*2) <= query_sig(5+2*i);

end loop; -- i

const_sig(126) <= query_sig(124);

const_sig(127) <= query_sig(126);

else

const_sig <= query_sig;
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end if;

end if;

end process comb_p ;

FSM_LOGIC: process (clk, reset, state, start, query_sig, valid_sig)

begin -- process FSM_LOGIC

next_state <= state;

case state is

when init => start_sig <= ’1’;

reg <= (others => ’0’);

next_state <= start;

when start => finish_sig <= ’0’;

start_sig <= ’0’;

for i in 0 to 63 loop

if start(i)=’1’ then

reg(i) <= ’1’;

end if;

end loop; -- i

if reg = (reg’Range => ’1’) then

next_state <= mux;

end if;

when mux =>

next_state <= stop;

when stop => finish_sig <= ’1’;

reg <= (others => ’0’);

next_state <= start;

when others => next_state <= start;

end case ;

end process FSM_LOGIC;

The code of List A.3 is the implementation of the architecture described in Sec-
tion 5.1 for 128 signals. As for the previous List only the main processes are reported.
FMS_p controls the finite state machine that handles the PHBs synchronization and
enables the circular shift register that follows the scheme of Figure 5.1. Such shift
register is implemented in process shift_p and is enabled by signal shiftreg_sig
each time the finite state machine receives all the start signals from the PHBs of
when it finds a not valid signal in the first cell (valid_reg(0) = ’0’). Finally,
when the signal in first cell is valid the reset signal is broadcast to all the PHBs with
the rising of finish_sig.

List A.3: Processes of the shift register for a query of 128 constraints

shift_p: process (clk, reset, query_sig, valid_sig, shiftreg_sig, valid_reg)

begin

if reset=’1’ then
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shiftreg_sig <= query_sig;

valid_reg <= valid_sig;

elsif clk’event and clk=’1’ then

if shift_sig = ’1’ then

for i in 0 to 126 loop

shiftreg_sig(i) <= shiftreg_sig(i+1);

valid_reg(i) <= valid_reg(i+1);

end loop; -- i

shiftreg_sig(127) <= shiftreg_sig(0);

valid_reg(127) <= valid_reg(0);

end if;

if update_sig = ’1’ then

shiftreg_sig <= query_sig;

valid_reg <= valid_sig;

end if;

end if;

end process shift_p ;

FSM_p: process (clk, reset, state, start, query_sig, valid_sig)

begin -- process FSM_p

if reset=’1’ then

state <= init;

elsif clk’event and clk=’1’ then

case state is

when init => start_sig <= ’1’;

shift_sig <= ’0’;

update_sig <= ’0’;

reg <= (others => ’0’);

state <= start_1;

when start_1 => finish_sig <= ’0’;

start_sig <= ’0’;

for i in 0 to 126 loop

if start(i)=’1’ then

reg(i) <= ’1’;

end if;

end loop; -- i

if reg = (reg’Range => ’1’) then

update_sig <= ’1’;

state <= mux;

end if;

when mux => update_sig <= ’0’;

shift_sig <= ’1’;

state <= mux2;

when mux2 => update_sig <= ’0’;

if valid_reg(0) = ’1’ then

shift_sig <= ’0’;

state <= stop;

else

shift_sig <= ’1’;

end if;

when stop => shift_sig <= ’0’;
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finish_sig <= ’1’;

reg <= (others => ’0’);

state <= start_1;

when others => state <= start_1;

end case ;

end if;

end process FSM_p;
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B
Completeness and time complexity of

the synthesizable CHR

For a demonstration of the Turing-completeness of the synthesizable CHR we refer
to the studies of the computational power and complexities of CHR [96] and in
particular [95]. The following resumes the most important passages. To ease the
comprehension in Figure B.1 it is reported the CHR code for simulating a RAM
machine. The RAM program is encoded as a sequence of prog/5 constraints: the
arguments are respectively the program line number, the next program line number,
the instruction and the optional operand for the instruction. For example the add

Figure B.1: CHR implementation of a RAM simulator

prog(L,L1,const,B,A) \ m(A,_), pc(L) <=> m(A,B), pc(L1).

prog(L,L1,add,B,A), m(B, Y) \ m(A,_), pc(L) <=>

Z is X+Y, m(A,Z), pc(L1).

prog(L,L1,sub,B,A), m(B, Y) \ m(A,_), pc(L) <=>

Z is X-Y, m(A,Z), pc(L1).

prog(L,L1,mult,B,A), m(B, Y) \ m(A,_), pc(L) <=>

Z is X*Y, m(A,Z), pc(L1).

prog(L,L1,div,B,A), m(B, Y) \ m(A,_), pc(L) <=>

Z is X//Y, m(A,Z), pc(L1).

prog(L,L1,move,B,A), m(B, X) \ m(A,_), pc(L) <=> m(A,X), pc(L1).

prog(L,L1,i_move,B,A), m(B, C), m(C, X) \ m(A,_), pc(L) <=>

m(A,X), pc(L1).

prog(L,L1,move_i,B,A), m(B, X), m(A,C) \ m(C,_), pc(L) <=>

m(C,X), pc(L1).

prog(L,L1,jump,A,_) \ pc(L) <=> pc(A).

prog(L,L1,cjump,R,A), m(R, 0) \ pc(L) <=> pc(A).

prog(L,L1,cjump,R,A), m(R, X) \ pc(L) <=> X=\=0 | pc(A).

prog(L,L1,halt,_,_) \ pc(L) <=> true.
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instruction has as operand the address of the memory cell that contains the value
to be added and the address of the memory cell that has to be incremented. The
memory cells are represented by m/2 constraints that specify the address and the
content of the cell. pc/1 is the program line counter that should be initialized with
the first line of the program. The performed instructions are: const that sets the
value of a memory cell to a certain value; add, sub, mult and div that perform
the corresponding arithmetic operation (using built-in) on a couple of cells; move,
i_move and move_i that set the value of a given cell to the value of another cell;
jump and cjump that set the program line counter value; and halt that stops the
program execution.

It is worth noting that all the rules present in Table B.1 are synthesizable since
they just introduce constraints that are previously removed. Hence a RAM ma-
chine can be simulated by the CHR synthesizable subset. The opposite direction is
clearly valid as well since it is demonstrated by the numerous existing CHR imple-
mentations. The Turing-completeness of a programming language is obtained if any
program can be simulated on a Turing machine and every Turing machine can be
simulated by that language. Since we know the Turing-completeness of a RAM ma-
chine [7] we can easily conclude the Turing-completeness of the CHR synthesizable
subset.

For an evaluation of the time complexities we refer again to [96]. The presented
RAM simulator introduces at most three constraints every time a rule fires, hence
the number of CHR steps is bounded by four times the number of RAM simulator
steps. It follows that the CHR synthesizable subset is enough to simulate a RAM
machine with the same time complexity. For the opposite direction the complexity
depends on the steps required to simulate an Introduce transition (linear) and an
Apply transition (Tm−1 where T is the CHR complexity andm the maximum number
of head constraints). The resulting complexity of a CHR program, with complexity
T , simulated by a RAM machine is O(Tm). From literature it is known that a RAM
machine can simulate a Turing machine with time complexity T in O(T ) time while
for the opposite direction O(T 8) time is needed. Considering these two steps of
simulation we can conclude that the CHR synthesizable subset can be simulated in
a Turing machine in O(T ) time while we already know that the full CHR and hence
the synthesizable subset can be simulated in a Turing machine in O(T 8m) time.

As final remarks we want to mention the restriction that imposes the use of
ground CHR. As pointed out in [94] the implementation of the RAM machine in
Table B.1 employs just ground CHR. Thus such the limitation does not affect the
Turing-completeness of the synthesizable CHR as well.
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Frühwirth. Automatic implication checking for chr constraints. Electron. Notes
Theor. Comput. Sci., 147:93–111, January 2006.

[91] A. Seawright and F. Brewer. Clairvoyant: A synthesis system for production-
based specification. IEEE Trans. on VLSI, pages 172–185, 1994.

[92] C. Sechen. VLSI Placement and Global Routing Using Simulated Annealing.
Springer, Boston, MA, USA, 1988.



114 Bibliography

[93] M. Sheeran. Hardware design and functional programming: a perfect match.
Journal of Universal Computer Science, 11(7):11351158, 2005.

[94] Jon Sneyers. Optimizing compilation and computational complexity of con-
straint handling rules. Technical report, 2008.

[95] Jon Sneyers. Turing-complete subclasses of chr. In Proceedings of the 24th
International Conference on Logic Programming, ICLP ’08, pages 759–763,
Berlin, Heidelberg, 2008. Springer-Verlag.

[96] Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and
complexity of constraint handling rules. In In Second Workshop on Constraint
Handling Rules, at ICLP05, pages 3–17, 2005.

[97] Jon Sneyers, Tom Schrijvers, and Bart Demoen. Dijkstra’s algorithm with
fibonacci heaps: An executable description in chr. In WLP’06, pages 182–191,
2006.

[98] D. Soderman and Y. Panchul. Implementing c algorithms in reconfigurable
hardware using c2verilog. Field-Programmable Custom Computing Machines,
Annual IEEE Symposium on, 0:339, 1998.

[99] Charles E. Stroud, Ronald R. Munoz, and David A. Pierce. Behavioral model
synthesis with cones. IEEE Des. Test, 5:22–30, May 1988.

[100] M. Sulzmann and E. S. L. Lam. Parallel Execution of Multi Set Constraint
Rewrite Rules. In Proc. of the 10th International ACM SIGPLAN Symposium
on Principles and Practice of Declarative Programming, pages 20–31. ACM
Press, 2008.

[101] N. Suzuki. Concurrent Prolog as an efficient VLSI design language. IEEE
Comput. Mag., 18(2):33–40, 1985.

[102] Open SystemC Initiative, SystemC version 2.0 Users’s Guide, 2001. Technical
report.

[103] SytemVerilog 3.1 - Accelleras Extensions to Verilog(R), 2003. Accellera Orga-
nization Inc.

[104] Michael Thielscher. Flux: A logic programming method for reasoning agents.
Theory Pract. Log. Program., 5:533–565, July 2005.

[105] A. Triossi. Boosting chr through hardware acceleration. In Proc. of 8th Work-
shop on Constraint Handling Rules, pages 1–3, 2011. Invited talk.

[106] A. Triossi, S. Orlando, A. Raffaetà, F. Raiser, and T. Frühwirth. Constraint-
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