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Measuring daily tourism mobility spillover at the 
intra-metropolis level with mobile positioning data

Nicola Camatti a, Giulia Carallo a, Roberto Casarin a and 
Xiang Feng b

ABSTRACT
Although tourism mobility spillover continues to be a key indicator for tourism management, more 
innovative research must be conducted at the micro level and high sampling frequency. Against the 
backdrop of an increasing number of global cities, in this paper, we evaluate the daily tourism mobility 
spillover inside a worldwide city of China: Shanghai. Based on the Granger causal network model and 
an original mobile positioning dataset, we analyse the causal relationship between local tourism flows 
and the spillover effects of tourism mobility within Shanghai. By categorising tourists into ‘local tourists 
from Shanghai’ and ‘tourists from out of Shanghai’, we reveal a significant causal relationship between 
Shanghai districts and flows generated by ‘tourists from out of Shanghai’. The analysis of the causal 
network structure also reveals key districts and points of interest that significantly contribute to 
congestion in tourism mobility and Shanghai’s dynamics. This econometric approach offers 
policymakers a valuable tool to monitor mobility drivers and optimise flows within the city.
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1. INTRODUCTION

Visitor flow and individual visitors’ mobility have been examined from numerous angles and at 
multiple scales, mainly to consider inter-destination flows (Chung et al., 2020; Ferreira & 
Hunter, 2017; Hyde & Laesser, 2009; Park et al., 2023) but more recently, to focus on 
intra-destination flows and tourism micro-mobility (Huang et al., 2020; Kim et al., 2022; 
Stienmetz & Fesenmaier, 2019). This shift reflects a growing recognition of the need for 
detailed information on visitor movements within a destination (Vu et al., 2015) and an 
understanding of how tourists interact with various sites, which is crucial for the sustainable 
and competitive management of attractions (Zhou et al., 2019).
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Extending the analysis of what tourists do and how they behave while visiting a location to 
the micro-scale – a single district or attraction – can enable planners to organise local tourist 
offerings better and ensure high-quality tourism experiences while safeguarding local resources 
(Zhao et al., 2018). Likewise, the study of intra-destination tourist mobility is fundamental to 
specific fields, such as tourism product development (Park et al., 2021), transportation manage-
ment (Chen et al., 2021) and resolution of overcrowding problems (Vu et al., 2015), as well as 
the analysis of consumer preferences and the value generated by flows (Park et al., 2020).

The COVID-19 pandemic has also influenced tourist behaviour, with a preference for tra-
velling closer to home rather than long distances (Xu, Choi, et al., 2022). This behaviour shift 
will likely increase the supply or improve the quality of tourism offerings near tourists’ resi-
dences, significantly altering the tourism product structure of entire cities in the post-pandemic 
era (Jeon & Yang, 2021). Therefore, studying tourist flows at the intra-destination level, rather 
than only between destinations, during the epidemic period has significant implications for 
understanding urban tourism development in the post-epidemic era (Zenker & Kock, 2020).

In this context, it is essential to equip tourist destinations with tools to gain a deeper under-
standing of the dynamics influencing the formation of intra-destination tourist flows (Caldeira 
& Kastenholz, 2020). Particularly, it is important to examine the relationships between specific 
attractions of a destination and other unique aspects of a city’s tourism offerings in shaping these 
flows (Zhou & Chen, 2023).

In this study we apply Granger networks to investigate the co-movements of the intra-des-
tination tourist flows. To the best of our knowledge, Granger networks have been used in var-
ious fields such as neuroscience (see, e.g., Ding et al., 2006; Seth et al., 2015), finance (see, e.g., 
Ahelegbey et al., 2016a, 2016b, 2022, 2024; Casarin et al., 2020; Corsi et al., 2018) and knowl-
edge economy growth (Heidinger et al., 2024), to extract latent causal relationships among 
observable variables. Recently, they have been effectively utilised to enhance road traffic fore-
casts (see, e.g., Hasan & Kim, 2016; Kong et al., 2015; Lu et al., 2016), particularly in smart 
city studies (Fay et al., 2013). However, their application in tourism research remains relatively 
limited. Lyócsa et al. (2019) focused primarily on transnational flows, other studies have applied 
Granger causality to explore various facets of tourism without incorporating network analysis. 
Notably, Fonseca and Sánchez-Rivero (2020) examined the Granger causality between tourism 
and income, and Bilen et al. (2017) analysed the impact of tourism on economic growth using 
panel Granger causality analysis. This highlights a gap in the use of Granger networks to analyse 
the broader and more interconnected dynamics within the tourism sector, including at the local 
destination level.

Additionally, we propose integrating data from other sources into our network approach and 
studying the impact of air quality on tourism. This topic has garnered increasing interest, 
especially in highly congested destinations. The importance of air quality in tourism planning 
is well-documented (Rodrigues et al., 2021), with some empirical studies available (Eusébio 
et al., 2021; Wang et al., 2018). In this study, we apply our Granger network approach to intro-
duce a model that investigates how Shanghai’s air quality affects the co-movements of tourism 
flows and their spatial and temporal persistence.

Shanghai, as one of China’s major economic and population centres, has experienced signifi-
cant urban expansion and redevelopment in its downtown area. It has emerged as mainland 
China’s leading global city, with growing connectivity in global business networks (Derudder 
& Taylor, 2020), an influx of domestic and international tourists (Li, 2020) and the presence 
of multinational company headquarters (Cai & Sit, 2005). The city’s strategic location as a 
major gateway to the vast urban hinterland of the Yangtze River Delta, coupled with its status 
as China’s largest seaport, has led to rapid growth in the tourism industry and infrastructure 
development (Feng, 2011).
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In China, with the changes in municipalities’ roles from a complementary one that sup-
ported state projects to a more proactive one that prepares the local development strategy 
(Zhang, 2002), the urban administrative districts which are one hierarchical level lower than 
municipalities have gradually gained a whole array of administrative powers, including planning, 
public works maintenance, approval of local foreign trade, commercial administration and, more 
importantly, the organisation of urban development (Wu & Li, 2005). This means that the 
urban administrative districts have relatively independent power in governing tourism products, 
tourism investment, tourist services, etc., bringing intensive competition among local districts, 
even if they belong to the same urban matrix. Due to the annual evaluation pressure given by the 
upper-level administrative body (i.e., the Shanghai municipality), local districts often place 
greater emphasis on their competitiveness of tourism development (e.g., tourist numbers), 
while largely ignoring the complementarity and correlation between each district, especially 
neglecting the movement of visitors from one area of interest to another is one of the primary 
ways that a place creates value (Stienmetz & Fesenmaier, 2019). Therefore, studying the spil-
lover effects of tourist flow and revealing the spatial intra-destination relationships (not compe-
tition) across municipality districts (Kim et al., 2022) not only has certain academic value but 
also has significant practical application value. More importantly, from 2020 to the beginning 
of 2022, with its ‘precise dynamic controlling model’, Shanghai was one of the few metropolises 
in China that was least affected by the citywide ‘COVID-19’ lockdown policy (Meng et al., 
2023).

Therefore, with its real-time tourism mobile data, the case of Shanghai can, to some extent, 
better reflect how Chinese tourism, especially Chinese domestic tourism, was practised during 
the epidemic period compared to other major cities in China. Against this background, the 
major objective of this paper is to demonstrate the potential of using mobile data through 
the novel application of the Granger causal network to carefully specify the still understudied 
topic of spatial spillover effects in intra-destination tourism mobility (Bo et al., 2017; Kim 
et al., 2022). Granger network analysis has become the method of choice to determine whether 
and how time series exert causal influences on each other (Fay et al., 2013). In this paper, we 
apply this method to study the dependence of mobility flows between urban sub-areas and 
specific points in the Shanghai metropolis through the concept of spillover effects, measuring 
how the number of visits to a certain area in a given period affects the number of visits to 
other areas in subsequent periods. We try to identify the urban administrative districts and 
attractions that cause the most daily tourist movement in Shanghai metropolis, which has in 
turn practical implications for managing well-known issues in a metropolitan area: traffic man-
agement (Ning et al., 2019; Yu et al., 2016), safety (Wang et al., 2019; Zhang et al., 2016) and 
overcrowding (Bao et al., 2017).

2. BACKGROUND

2.1. Spatial and political spillovers of tourist flows
Different specifications of spillover effects caused by tourist flows have been used in the litera-
ture. In the literature, spillover effects are usually related to the variability in tourist flows (see, e. 
g., Hoti et al., 2007; Shareef & McAleer, 2008), whereas a few studies consider spillover effects 
among flow levels (Lyócsa et al., 2019). Also, spillover effects have been used to study flows at 
the macro level and low sampling frequency, e.g., monthly flows among countries (see, e.g., 
Hoti et al., 2007; Lyócsa et al., 2019; Shareef & McAleer, 2008), or at a very small scale and 
high frequency, e.g., intra-day traffic on road segments (e.g., see Cai et al., 2016; Zheng 
et al., 2019; Zhou et al., 2022).

In micro-scale tourism movements, spillover effects are the indirect, inadvertent effects that 
tourist demand for certain sub-regions or attractions can have on demand in other areas and the 
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attributes therein (Yang & Wong, 2012; Bo et al., 2017). Depending on whether these effects 
are positive or negative, the dependencies between places and tourist attractions are character-
ised as spatial complementarity or spatial competitiveness, respectively (Patuelli et al., 2016; 
Zhou et al., 2019). As an example, flow management (Li et al., 2021), destination marketing 
(Yang & Zhang, 2019), effects on pollution (Deng et al., 2017) and the identification of 
areas best for regional tourism cooperation (Zhu et al., 2022) are all immediately affected by 
the presence of these effects. The previous ‘overtourism’ studies further clarify that via analysing 
and predicting the overtourism or excessive numbers of tourists at a specific location in a definite 
period, the local municipality or districts could avoid, to the largest extent, some negative 
impacts being brought by tourism to the whole community such as opposition from residents, 
unwanted physical alterations, deterioration of natural and cultural resources or general conges-
tion (Dodds & Butler, 2019). Especially after the ‘revenge’ rapid return of the tourism industry, 
which was severely damaged by the outbreak of COVID-19, urban tourism will have a large 
possibility of the potential occurrence of overcrowding in tourism destinations once the lock-
down finished (Lim, 2021). In this sense, creating methods to assess these spillover effects at 
the micro-scale level is critical to successful destination management, especially if these methods 
can integrate scarce visitor prediction research at the level of specific attractions (Bo et al., 2017; 
Volchek et al., 2019).

In this paper, we introduce a spillover measure based on the predictability of flow dynamics 
across multiple locations. Our measure accounts for the significance of the relationships between 
flows without considering their sign. This approach highlights the relevance of specific locations 
in generating various effects (complementarity and competitiveness) on other locations. Since 
our notion of spillover is grounded in flow dynamics, it effectively distinguishes between receiv-
ing and diffusing locations. The flows of receivers can be predicted based on past flows of other 
locations. The flows of spreaders have an impact on future flows of different locations. This spil-
lover concept is particularly useful for managing tourist flows and organising services for tour-
ists. In situations of overtourism, it helps identify the locations that drive flow dynamics and 
those most affected by them.

2.2. Use of mobile data in the field of tourist flows
Only recently have we witnessed the development of concrete solutions that support the detec-
tion and analysis of intra-destination tourist movements and corresponding spillover effects. 
This is due to the broad use of information and communication technologies to manage tourism 
destinations and the strengthening of the smart destination paradigm (Raun et al., 2020; Shafiee 
et al., 2019; Volchek et al., 2019). A review of different approaches to tracking intra-destination 
movements is given in Hardy et al. (2017). In this paper we use mobile positioning data since 
they provide many advantages. Their use stands out as a fruitful solution capable of providing 
more practical operational benefits in terms of sensing tourism mobility on a micro-scale, as 
opposed to solutions based on location-sensing technologies (Park et al., 2020) such as GPS 
and other micro-sensors (Gray & Wikle, 2021; Liu et al., 2022) or solutions based on geo- 
coded web traces that exploit social webs, such as Fink or TripAdvisor (Confente et al., 
2024; Mirzaalian & Halpenny, 2021; Zhang et al., 2019). This benefit is due to mobile posi-
tioning data’s distinct characteristics and attributes, which correspond to those of big data 
(Park & Zhong, 2022; Wang et al., 2020) and to the methods used to collect mobile data, 
which are more accurate, timely and, to some extent, more cost-effective and easier to manage 
than other smart solutions for detecting tourist flows (Baldin et al., 2024; Raun et al., 2016). In 
terms of quantitative analyses, the same characteristics and properties that distinguish mobile 
big data, such as high frequency, massive sampling sizes and the extension of coverage periods 
(Zhao et al., 2018, Tang et al., 2022), also enable spatiotemporal and behavioural analyses of 
tourism mobility on a larger micro-scale (Qian et al., 2021), paving the way for the expansion 
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of econometric applications previously implemented primarily on a macro-scale (Balli et al., 
2015; Majewska, 2015; Pompili et al., 2019). As a result, the use of mobile positioning data 
is proving its potential to broaden research possibilities regarding tourism micro-mobility by 
covering insights that more closely match those that local planners and tourism businesses 
describe as underpinning their day-to-day work (Li et al., 2020; Wu et al., 2020).

To demonstrate this potential, our analysis uses high-frequency mobile positioning sampling 
data on tourism mobility for each administrative district in Shanghai and 35 major tourist inter-
est points.

3. METHODOLOGY

In this section, we introduce the econometric tools to analyse the spillover effects between tour-
ist flows. First, we introduce the notion of a network (graph) as a set of relationships (graph 
edges) between the districts or points of interest (graph nodes). Networks and graph represen-
tations are very useful for measuring, through connectivity measures, the effect of each district 
on the flows of all the other districts. Different notions of graph connectivity can also be used to 
measure a flow’s direct and indirect effects on the others. Second, we define the relationship 
between districts as co-movements among the number of visits in different districts or points 
of interest (POIs). Since they are not observable, we extract them through a vector autoregres-
sive model and a Granger causal test between pairs of time series of visits. The model accounts 
for the dynamic features of the flow, such as persistence and linear dependence at different dates, 
and the Granger causality is useful to study how much the flow in one district at a certain date is 
affected by flows in other districts at previous dates or affects the flows of other districts at future 
dates. Finally, a statistical graph model for networks is introduced, which allows for investi-
gating the determinants of the network effects and their features, such as formation and persist-
ence over time of the co-movement effects.

3.1. A Network Approach
A network can be defined as a set of vertices (or nodes) and arcs (or edges) between vertices. In 
our mobility networks, a node represents a statistical area of interest (e.g., points, districts, 
regions, countries), and an edge has the interpretation of spillover effect between two areas 
(or points) of interest. A graph G = (V ,E ) provides a representation of a network as a set 
of vertices (or nodes) V = {1, . . . , n} and a set of edges (or arc) E , V × V . The number 
of vertices in V returns the order of a graph (see Bollob´as, 1998). An edge between two nodes 
represents a statistical relationship between two series of visits for distinct areas and is defined as 
the (ordered) pair of nodes {u, v} with u, v [ V . If there is no direction in the statistical 
relationships between series, then the edges are not directed, the nodes in the pairs {u, v} are 
unordered, and the graph G is undirected. If there is a direction, each edge is directed, the 
nodes in the pairs {u, v} are ordered, and the graph G is directed. In this paper directed graphs 
will be considered.

A directed graph G = (V , E) of order n can be associated with a n-dimensional adjacency 
matrix A. If {u, v} [ E, with u = v, then the (u, v)-th element of A, au,v is equal to 1, other-
wise it is equal to 0. Undirected graphs have symmetric adjacency matrices, that is, au,v = av,u, 
whereas directed graphs have asymmetric adjacency matrices. Figure 1 includes two examples of 
directed graphs and their adjacency matrices.

The connectivity level in a directed graph can be measured by counting the number of edges 
directed from other nodes to a given node i (in-degree), from a node i to other nodes (out- 
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degree), and the total number of incident edges (total degree) that are:

dout
u =

n

v=1
avu, din

u =
n

v=1
auv, dtot

u = dout
u + din

u 

These connectivity measures, also known as in-degree, out-degree and total degree centrality, 
assess the importance of a node in the connectivity structure. Nodes with large in-degree are 
called receivers since they absorb spillover effects from the others, whereas nodes with large 
out-degree generate spillover effects and are called spreaders.

The in- and out-degree measures direct connectivity; nevertheless, some nodes can be cen-
tral because they are connected to other central nodes, a fact that can be captured by indirect 
connectivity measures. In this paper, we consider two popular measures, the Clustering Coeffi-
cient and the Eigenvector Centrality, which are based on the undirected graph G∗ = (V , E∗) 
obtained from the original directed graph G = (V , E) by removing the edge direction, that is 
by defining a new adjacency matrix A∗ with the (u, v)-th, a∗u,v equal to 1 if either au,v or av,u is in 
E, or to 0 otherwise.

The Clustering Coefficient of a node i denoted by CCi is a local indirect connectivity 
measure which counts the number of fully connected triplets of nodes that are in a neighbour-
hood of the node i and compares it with the potential number of connected triplets,

CCi =
2|{u′, v′} [ E∗; u′ = v′, u′ [ Ni(G∗), v′ [ Ni(G∗)|

ki(ki − 1) 

where Ni(G∗) = {u [ V ; eu,i [ E∗} is the set of neighbouring nodes of i and ki denotes its 
cardinality.

The Eigenvector Centrality of a node i denoted by ECi is a global indirect connectivity 
measure which accounts for both direct connections of i and indirect connections (paths) of i 

Figure 1. Typologies of graphs.
Note: Directed graphs G = (V, E) (top) with vertex set V = {v1, v2, v3, v4}, edge sets E = {e1, e2, e3, e4, 
e5, e6}, with e1 = {v1, v4}, e2 = {v2, v3}, e3 = {v2, v4}, e4 = {v3, v2}, e5 = {v3, v1}, e6 = {v4, v2} (top 
left), E = {e1, e2, e3, e4, e5, e6, e7}, with e1 = {v1, v4}, e2 = {v2, v3}, e3 = {v2, v4}, e4 = {v2, v1}, e5  

= {v3, v4}, e6 = {v3, v1}, e7 = {v4, v2} (top right) and their adjacency matrices (bottom). Edges (arcs) 
are clockwise directed (i.e., following the edge clockwise indicates the direction of the spillover 
effect).
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with all the nodes of the graph G∗, in formulae it is given by the quantity xi which satisfies:

lxi =


v[Ni(G∗)
a∗v,i xv 

where (x1, . . . , xn) is a score vector and l a constant which corresponds to the eigenvector and 
eigenvalue of the adjacency matrix A∗.

3.2. Granger Causal Network Extraction
Granger causality is used to extract the co-movements between visits at different districts and 
POIs. Assume the number of visits yit in the area i at time t is available with 
i = 1, . . . , n and t = 1, . . ., T . In the pairwise-Granger approach, a vector autoregres-
sive model (VAR) of the order p is estimated on the two series of visits yit and y jt at different 
locations:

yit = w10 +
p

l=1
w11,l yit− l +

p

l=1
w12,l y jt− l +

r

l=1
g1l xlt + 1it

y jt = w20 +
p

l=1
w21,l yit− l +

p

l=1
w22,l y jt− l +

r

l=1
g2l xlt + 1 jt

⎧
⎪⎪⎨

⎪⎪⎩

where (1it , 1 jt)′, i = j, t = 1, . . . , T are i.i.d. from a bivariate normal distribution N2(0, S) 
with null mean and variance-covariance matrix S and xlt l = 1, . . . , r is a set of exogenous vari-
ables that can be incorporated to account for possible spurious effects. In our analysis r = 1 and 
x1t is a dummy variable, which takes value one at holiday dates and zero otherwise. It is 
included to capture spurious sudden co-movements related to holidays. Regarding the VAR 
order in our application a Bayes information criterion (BIC) is used to select the best model, 
which is a VAR of the order p = 1.

To detect the temporal changes in the co-movements, the VAR is estimated on a rolling 
window basis with a window size of t observations. Regarding the estimation method, the stan-
dard generalised least squares (GLS) is applied, which accounts for the covariance, S, between 
error terms. In addition, a weighted GLS (WGLS) is used to give more importance to the most 
recent observations. The optimal weights wt of Pesaran et al. (2013) are used, that is 
wt = vt/(v1 + . . .+ v t) where vt = − log(1 − t/t)/(t − 1), t = 1, . . . , t − 1 and 
vt = log (t)/(t − 1).

For each window, the estimated VAR of order 1 is used to extract the graph’s adjacency 
matrix A by testing for a causal relationship between the visits of the two areas considered. 
The notion of Granger causality is used and the (i, j)-th element of the adjacency matrix A is 
defined as follows: 

. a j,i = 1 and ai,j = 0 if w12,1 = 0 and w21,1 = 0 (y jt Granger causes yit).

. a j,i = 0 and ai,j = 1 if w21,1 = 0 and w12,1 = 0 (yit Granger causes y jt).

. a j,i = 1 and ai,j = 1 if w12,1 = 0 and w21,1 = 0 (co-causal effects between yit and y jt).

The three hypotheses above are tested with an F-based Wald test, and a significance level of 
5% is used (see Lütkepohl (2007) for further details). The methodology mitigates potential het-
eroskedasticity due to the moving window properties.

3.3 . Network model
To study the impact of node-specific network statistics and covariates on network connectivity, 
we implemented the exponential random graph model (ERGM). ERGMs were introduced by 
Besag (1975) to overcome the limitations of statistically independent dyad models. Then, 
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ERGMs can capture links between nodes with a triangular configuration, edge attributes and pre-
dictive networks. They were extended to directed graphs by Frank (1991) and temporal ERGMs 
(TERGMs) by Robins and Pattison (2001) and further developed by Hanneke et al. (2010).

Exponential random graph models (ERGMs) are models based on the exponential family 
theory that specify the probability distribution of a set of networks. The main advantage of 
ERGMs is the possibility of defining a network including covariates that are both exogenously 
given or represent specific graph features, such as homophily or triad effects.

A standard formulation of the TERGM model is

Pr (At = a|At− K , . . . , At− 1) = exp (u′g(a, At− K , . . . , At− 1))
c(u, At− K , . . . , At− 1) , 

where As is the random variable for the adjacency matrix of the network at time s, with 
s = t − K , . . . , t − 1, a is a realisation of At , g(a, At− K , . . . , At− 1) is the vector of statistics 
for the network a, θ is the coefficient vector and c(u, At− K , . . . , At− 1) is a normalising constant. 
Hence, the probability attached to the network a depends on the network only through the vec-
tor g(a, At− K , . . . , At− 1) and maximum likelihood estimation might be carried out. See also 
Krivitsky and Handcock (2014) for further details.

To overcome the computational difficulty of TERGM parameter estimation, we applied 
Bayesian inference combined with Markov chain Monte Carlo (MCMC) methods to sample 
from the posterior distribution of the parameters. In our application, we used the tergm package 
from statnet, developed by Krivitsky et al. (2003–2024), which uses the conditional maximum 
likelihood estimator as the initial value for the MCMC algorithm.

4. EMPIRICAL APPLICATION

4.1. Data description
The dataset used in this study was provided by Shanghai Unicom, the second largest mobile 
phone provider in Shanghai, and includes real-time tourists’ positions in Shanghai metropolis 
from 1 December 2020 to 17 January 2022. This dataset encompasses users from diverse tele-
phone companies, offering a sample that accurately reflects the market shares of these operators. 
Notably, the Shanghai municipal government relies on this dataset for precise tourism flow pre-
dictions, establishing it as a significant, accurate and inclusive data repository. This dataset 
serves as an asset for conducting comprehensive analyses and gaining insights into the broader 
tourism landscape of Shanghai.

The number of tourists is computed daily for district and attraction. We designate a ‘tourist’ as 
a mobile user who has recorded an overnight stay in the days before or after the visit, not attribu-
table to other categories of mobile users. Consequently, our analysis concentrated exclusively on 
mobile users whose device activity indicated an overnight stay in a specific district (target area) of 
Shanghai either the night prior or the subsequent day of their visit. Other mobile user categories 
were excluded from consideration. China Unicom assisted in this process by providing pre-filtered 
mobile user data, ensuring that individuals not meeting our defined criteria were excluded. This 
filtering process eliminated hikers (those visiting a target area without an overnight stay), residents 
(mobile users detected frequently in a target area at night throughout the year), as well as workers, 
students and commuters (mobile users not residing in a target area but detected regularly in the 
weeks leading up to the examination period, without staying overnight). Additionally, our 
inclusion criteria required a minimum stay of six hours within a district or a minimum visit dur-
ation to an attraction, ranging from 10 to 25 minutes, depending on the type of attraction. 
According to the intra-destination flow concept used in this study, a tourist is counted only 
once per district or POI daily. However, a tourist may visit multiple POIs or districts daily.

708  Nicola Camatti et al.

REGIONAL STUDIES, REGIONAL SCIENCE



Based on SIM card activation records, we classify tourists into ‘Shanghai local tourists’ and 
‘tourists from outside Shanghai’. An initial processing of the dataset was conducted to calculate 
the number of daily visits to all 16 administrative districts (see Table 1) and several major tourist 
attractions (see Table A.1 in the Appendix in the online supplemental data) within the Shang-
hai metropolis.

The final dataset includes 409 daily observations for 16 districts and 35 attractions. The 
Phillips and Perron and augmented Dickey-Fuller tests for all series resulted in the rejection 
of the null hypothesis of unit root at the 5% level.

Table 1. Statistics of district tourist mobility in Shanghai from 1 December 2020–17 January 2022.

District 
name

District 
label

Average number 
of tourists (in 
thousands)

Average number of 
‘local tourists from 

Shanghai’ (in 
thousands)

Average number of 
‘tourists from out of 

Shanghai’ (in 
thousands)

Huangpu Huan 231.80 136.68 95.11
Xuhui Xuhu 155.70 96.30 59.40
Changning Chan 91.98 54.77 37.20
Jing’an Jing 196.21 127.74 68.46
Putuo Putu 124.16 84.97 39.19
Hongkou Hong 109.84 76.90 32.93
Yangpu Yang 118.30 78.28 40.01
Minhang Minh 203.30 121.80 81.50
Baoshan Baos 138.28 89.74 48.54
Jiading Jiad 138.48 78.88 59.59
Pudong Pudo 342.86 218.71 124.14
Jinshan Jins 62.55 40.31 22.23
Songjiang Song 164.07 95.37 68.70
Qingpu Qing 112.43 64.12 48.31
Fengxian Feng 84.54 55.57 28.97
Chongming Chon 49.81 39.45 10.36
Shanghai Shan 2159.75 1364.33 795.41

Figure 2. Mobility created by ‘local tourists from Shanghai’ (left) and mobility created by ‘tourists 
from out of Shanghai’ (right).
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Figure 2 shows the study area and the average daily number of visits per district (different 
colours) and origin (different panels). From the left plot in Figure 2, it identifies that the 
most concentrated mobility created by ‘local tourists from Shanghai’ is in the very centre of 
Shanghai (i.e., the Pudong District, Huangpu District and Jing’an District) where most of 
the municipal government organisations, busy shopping streets, and lively cultural and perform-
ance centres are located. In comparison, Chongming District and Jinshan District, the two far- 
remote suburbs of Shanghai, have relatively the lowest mobility created by ‘local tourists from 
Shanghai’. The right plot of Figure 2, showing the mobility created by ‘tourists from out of 
Shanghai’ illustrates a similar situation. Pudong and Huangpu districts have the highest mobi-
lity concentration, while Chongming and Jinshan districts have the lowest levels. An interesting 
phenomenon here is that a suburb of Shanghai, Songjiang District, also has concentrated mobi-
lity created by ‘tourists from out of Shanghai’. The Sheshan National Tourism Resort could play 
a key role in generating such larger mobility.

The left plot in Figure 3 shows the number of visits of ‘local tourists from Shanghai’ (solid 
line) and of ‘tourists from out of Shanghai’ (dashed line). The vertical dashed lines show the 
dates of two major peaks in the visits. The right plot in Figure 3 shows the total number of visits 
to the 35 major attractions of Shanghai Metropolis. The two plots both demonstrate that local 
tourists in Shanghai generated more overall mobility than tourists from out of Shanghai. Mean-
while, no matter visits to local districts or to major attractions, the mobility created by ‘tourists 
from Shanghai’ and ‘tourists from out of Shanghai’ share similar peak dates which are highly 
related to Chinese statutory holidays such as the traditional Chinese Spring Festival holiday, 
May holiday and National Celebration holiday.

4.2. Spillover effects
We extract two dynamic Granger networks, one for the district and the other for the attraction. 
This tool allows for extracting relationships among districts and POIs due to unobservable 
intra-destination flows or to other factors affecting the flows jointly. This section presents 
the main results obtained by a rolling window GLS estimation with a window size of 60 
daily observations. Further results are given in the online supplemental data, Appendices 

Figure 3. Millions of visits to the Districts (a) and Points of Interest (b) of Shanghai metropolis by 
‘local tourists from Shanghai’ (solid line) and ‘tourists from out of Shanghai’ (dashed line).
Note: period from 1 December 2020 to 17 January 2022. Vertical dashed lines: the two major peaks 
in the tourist flows. Figure on the right ‘Millions of visits to the Districts of Shanghai’; figure on the left 
‘Millions of visits to the Points of Interest of Shanghai’.
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A3–A10. Some robustness checks with WGLS estimation and WGLS with holiday dummy are 
reported in Appendices A9–A10.

The figures in Appendix A2 provide a graphical example of the in-degree and out-degree 
measures, and Figure 4 further illustrates the relationship between districts at given dates.

The plots in Figure 4 show two mobility networks within Shanghai extracted for 23 January 
–25 March (left) and 31 July –29 September (right) 2021. In each graph, the size of the nodes is 
proportional to the magnitude of the node spillover effect measured by the node in-degree. 
From a visual inspection, the graph in the right column exhibits a larger number of edges 
than the one in the left, reflecting a higher level of spillover effects. Following our results, 
the level of spillover effect (i.e., the number of connections among districts) can change substan-
tially over time (compare the two columns in the figure). Similar results are also given in Appen-
dix A3 and A4 in the online supplemental data. Another stylised fact emerging from the analysis 
is that the districts have different roles in generating mobility spillover effects. For instance, in 
Figure A3 on the 17th of January, Xuhui is the district most affected by the overall mobility 
together with Baoshan (large in-degree, middle-right plot). In contrast, in Figure A4 Changn-
ing and Baoshan are the districts driving the visits to the other districts (large out-degree, 
middle-right plot).

In the following, we disentangle the spillover effects of mobility from ‘local tourists from 
Shanghai’ and ‘tourists from out of Shanghai’. The figures in Appendix, materials from A5 
to A8, provide some examples of Granger networks for the different types of visits. The results 
confirm that the centrality of the nodes changes over time and visit types. We measure the spil-
lover effects with the average in-degree.

Figure 5 shows the spillover in the district (left) and attraction (right) networks for the mobi-
lity generated by ‘local tourists from Shanghai’ (solid black) and ‘tourists from out of Shanghai’ 
(solid blue) and Table A9 in the Appendix in the online supplemental data reports the network 
statistics for the whole sample. There are substantial spillover effects and some asymmetries in 
the effects. Regarding the visits to Shanghai districts (left plot), the spillover effects generated by 
the mobility of ‘local tourists from Shanghai’ among local administrative districts (black dashed) 
are usually larger than other spillover effects, with a larger impact on the flows generated by 
‘tourists from out of Shanghai’.

From January to March 2021, mobility generated by ‘local tourists from Shanghai’ is the 
leading variable for predicting the number of visits to Shanghai. The changes in the spillover 

Figure 4. Estimated networks (directed graphs) for mobility generated by ‘local tourists from Shang-
hai’.
Note: period 23 January –25 March (left) and 31 July –29 September 2021 (right). The size of the 
nodes is proportional to the node In-degree.
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effects start after the Spring Festival holiday in mid-January and continue during mid-February 
2021 with the Chinese New Year and the week after.

We notice that this spillover effect, extracted from mobile data, is associated with a period of 
large changes in traffic congestion detected by Xu, Li, et al. (2022) from GPS data. Our research 
provides a complementary tool for analysing mobility, which can be useful for mobility manage-
ment of the city in combination with other data sources.

During the year 2021, mobility generated by ‘local tourists from Shanghai’ has scarce pre-
dictive power on the flows generated by ‘tourists from out of Shanghai’ (black dashed) except 
in the period from October to December when tourist flow dynamics become more complex 
and incoming tourist flows co-evolve with the mobility generated by ‘local tourists from Shang-
hai’ (blue and black dashed). Starting in October 2021, traffic congestion increased rapidly due 
to events attracting many visitors, such as exhibitions and expos. In this period of the year, more 
accurate monitoring of all types of flows is needed to achieve better prediction and management 
of the visits.

We performed several robustness checks using WGLS and WGLS with holiday dummies. 
By comparing panels (a) to (c) in Figure A11 of the Appendix in the online supplemental data, 
we confirmed the presence of trends, persistence and asymmetries in the spillover effects. The 
WGLS model with holiday dummies provided the best fit, particularly improving the esti-
mation of spillover effects at the start of the sample period and during October to December 
2021. In the new estimates, the drop in spillover effects at the beginning of October is tempor-
ary, with clearer evidence of the significant spillovers originating from outside of Shanghai (rep-
resented by the blue dashed line). There are some changes in the district rankings based on the 
average centrality measures; however, the districts that ranked highly are confirmed (see Tables 
A9 and A10 compared to Tables A13 and A15).

From Figures 6 and 7 where the Shanghai districts represent the nodes of the network, and 
the number of visits generated by ‘local tourists from Shanghai’ or by ‘tourists from out of 
Shanghai’ is the observable variable used to extract the causal network, one can see the average 
in- and out-degree centrality of the districts over the period from 29 January 2021 to 17 January 
2022 (see also Table A9 in the online supplemental data).

The most central districts are centrally located Changning and far-suburb Qingpu for the 
mobility generated by ‘local tourists from Shanghai’ (column S) and both centrally located 

Figure 5. Average in-degree of the spillover network for the Shanghai Districts (left) and Points of 
Interest (right).
Note: The degree is estimated on a rolling window of 60 daily observations from 29 January 2021 to 
17 January 2022.
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Xuhui and Huangpu for the mobility generated by ‘tourists from out of Shanghai’ (column O). 
The most central district with mobility of ‘tourists from out of Shanghai’ generating spillover 
effects on mobility of ‘local tourists from Shanghai’ (O-to-S columns) are centrally located 
Changning and far suburb Songjiang. The most central district with mobility of ‘local tourists 
from Shanghai’ generating spillover on the mobility of ‘tourists from out of Shanghai’ (S-to-O 
columns) are both centrally located Changning and Jing’an.

Regarding the most affected district by mobility (in-degree centrality columns in Table A9 
in the online supplemental data), the overall performance of Shanghai shows a certain pattern. 
Changning, located in the city centre, has become the district most affected by mobility, 
whether it is the mobility generated by ‘local tourists from Shanghai’ (column S), the mobility 

Figure 6. Maps of the district spillover effects measured as the average in-degree centrality of the 
latent connectivity network.
Note: Spillover effects generated by ‘local tourists from Shanghai (S)’, by ‘tourists from out of Shang-
hai (O)’, spillover effects generated by flows of ‘local tourists from Shanghai (S)’ to flows of ‘tourists 
from out of Shanghai’ (S-to-O), spillover effects generated by flows of ‘tourists from out of Shanghai 
(O)’ to flows of ‘local tourists from Shanghai (S)’ (O-to-S).
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of ‘local tourists from Shanghai’ generating spillover on the mobility of ‘tourists from out of 
Shanghai’ (S-to-O columns) or the mobility of ‘tourists from out of Shanghai’ generating spil-
lover effects on mobility of ‘local tourists from Shanghai’ (O-to-S columns). This is an interest-
ing finding because Changning only has one major attraction, the Shanghai Zoo, but it also 
accommodates the transportation hub of Shanghai Hongqiao Airport. This indicates that the 
presence of transportation hubs could have a large impact on the mobility of ‘most affected dis-
trict’ instead of being largely affected by the mobility of other districts.

This ‘in-degree’ situation may also be related to a specific phenomenon that tourists tend to 
travel within the city during the pandemic. In addition, from the perspective of the mobility 
generated by ‘tourists from out of Shanghai’ (column O), Xuhui is the most important district, 
which may be related to its artistic and cultural destination identity and accommodating the 
most popular and concentrated city walk itineraries.

Concerning the mobility largely affecting mobility to other districts (out-degree centrality 
columns of Table A9 in the online supplemental data), the overall performance of Shanghai 
has not formed a certain pattern: different districts become representatives of different out- 
degrees. However, our study further reveals that these representative districts still share some 
common attributes. They can be divided into two categories. The first category is the most cen-
trally located districts, which own a remarkable number of traditional tourist attractions, such as 
Huangpu (the mobility generated by ‘tourists from out of Shanghai’) and Jing’an (the mobility of 
‘local tourists from Shanghai’ generating spillover on the mobility of ‘tourists from out of Shang-
hai’). The second type is suburban areas that can provide outdoor natural environments, such as 
Qingpu (the mobility generated by ‘local tourists from Shanghai’) and Songjiang (the mobility 
of ‘tourists from out of Shanghai’ generating spillover effects on mobility of ‘local tourists from 
Shanghai’).

In addition to the attraction of nature landscapes, these suburban areas also play a certain 
role in distinguishing themselves in this column by having large theme parks (such as the She-
shan National Tourism Resort in Songjiang) and large exhibition spaces (such as the National 

Figure 7. Maps of the district spillover effects measured as the average out-degree of the latent con-
nectivity network.
Note: Spillover effects generated by ‘local tourists from Shanghai (S)’, by ‘tourists from out of Shang-
hai (O)’, spillover effects generated by flows of ‘local tourists from Shanghai (S)’ to flows of ‘tourists 
from out of Shanghai’ (S-to-O), spillover effects generated by flows of ‘tourists from out of Shanghai 
(O)’ to flows of ‘local tourists from Shanghai (S)’ (O-to-S).
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Convention and Exhibition Center in Qingpu). These important tourist flows and economic 
agglomerations might explain the increase of the tourist flows in other districts of Shanghai 
to some degree, as those leisure and business tourists could spend more days visiting other 
parts of Shanghai, either for business intentions or just for leisure and sightseeing.

The indirect centrality measures can be used to identify districts most relevant for all direct 
and indirect spillover effects and to concentrate the monitoring effort on a few districts. Com-
paring the results in Table A10 and the robustness check in Table A15, at the intersection 
between the most central districts following the clustering coefficients (CC) and the ones fol-
lowing the Eigenvector centrality (EC), we find Huangpu, Xuhui, Hongkou and Qingpu. 
These districts are also among the most central following the degree measure.

The analysis of the POIs (right plot in Figure 5) shows that mobility generated by ‘local 
tourists from Shanghai’ is the main driver during the year (black solid) except in February– 
March (2021) when visits generated by ‘tourists from out of Shanghai’ play a major role in gen-
erating spillover effects. A comparison with the results for districts indicates that the flows to the 
POI generated by ‘local tourists from Shanghai’ and by ‘tourists from out of Shanghai’ can be 
monitored and predicted separately. In addition, there are cross-flow effects in the flows to dis-
tricts: mobility generated by ‘local tourists from Shanghai’ affects mobility generated by ‘tourists 
from out of Shanghai’, and mobility generated by ‘tourists from out of Shanghai’ affects mobility 
generated by ‘local tourists from Shanghai’. The rolling window analysis confirms the results for 
the whole sample analysis. For example, the left plot in Figure 8 shows the central role of 
Changning and Qingpu in the overall mobility generated by ‘local tourists from Shanghai’. 
The right plot in Figure 8 shows the major role of Huangpu and Yangpu in the overall mobility 
generated by ‘tourists from out of Shanghai’.

4.3. Spillover determinants
We consider different specifications of the TERGM model, each describing a specific type of tie 
dynamic through different terms. In each specification, we included the network density (edges), 
the network triangles (geometric weighted triangle term, gwesp), and some node covariates 
related to the air quality in the districts of Shanghai.

Figure 8. Spillover effect (total degree) of the mobility generated by ‘tourists from out of Shanghai’ 
(a) and by ‘local tourists from Shanghai’ (b) to each district.
Note: Spillover effect estimated on a rolling window of 60 daily observations from 29 January 2021 to 
17 January 2022. The black and red lines represent Huangpu and Yangpu in the left plot and Changn-
ing and Qingpu in the right plot. The grey lines indicate the other districts.
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The Form term of the specification tracks the formation of ties between time steps, and the 
term Persist tracks the tie’s persistence over time. The term Change captures the status change 
over time of the total number of dyads, and the term Cross captures the change over time of the 
average network structure. These terms are combined to obtain the following specifications: 

1. Cross and Change with edges, gwesp and air quality covariates.
2. Form and Persist with edges, gwesp and air quality covariates.

As covariates, we considered the values of the different pollutants used to evaluate the air 
quality index (see Wang et al., 2018) publicly available from the Shanghai Environment Moni-
toring Center through the China National Urban air quality platform. We included two 

Table 2. TERGM estimates for the mobility network generated by ‘local tourists from Shanghai’ with 
density (edges), triangles (gwesp) and air quality covariates (PM2.5, PM10, O3, NO2, SO2, CO).

Estimate Std. error z value Pr(Z>|z|)

Cross and Change model
u0Cr (edges) 0.009313 0.050111 0.186 0.852564
u1Cr (gwesp) −0.19441 0.017266 −11.26 <0.0001***
u2Cr (PM2.5) 0.000574 0.000222 2.589 0.009615**
u3Cr (PM10) −0.00259 0.000557 −4.646 <0.0001***
u4Cr (O3) −0.00132 0.000343 3.848 0.000119***
u5Cr (NO2) 0.001828 0.001197 1.527 0.126669
u6Cr (SO2) 0.017217 0.009075 1.897 0.057785
u7Cr (CO) 0.023304 0.004077 5.716 <0.0001***
u0Ch (edges) −2.86481 0.034391 −83.302 <0.0001***
u1Ch (gwesp) 1.015916 0.0211 48.147 <0.0001***
u2Ch (PM2.5) −0.00028 0.000156 −1.794 0.072859
u3Ch (PM10) −0.00257 0.000455 −5.648 <0.0001***
u4Ch (O3) 0.000694 0.000232 2.996 0.002737**
u5Ch (NO2) 7.48E-05 0.000892 0.084 0.93317
u6Ch (SO2) 0.012511 0.007027 1.78 0.075018
u7Ch (CO) 0.010804 0.003099 3.487 0.000489***
Form and Persist model
u0Cr (edges) −2.44E+00 7.00E-02 −34.945 <0.0001***
u1Cr (gwesp) −1.38E-01 1.97E-02 −6.995 <0.0001***
u2Cr (PM2.5) −1.06E-04 3.29E-04 −0.321 0.74846
u3Cr (PM10) −7.78E-03 8.44E-04 −9.216 <0.0001***
u4Cr (O3) 1.50E-06 5.40E-04 0.003 0.99778
u5Cr (NO2) 7.88E-04 1.81E-03 0.436 0.66267
u6Cr (SO2) 3.60E-02 1.28E-02 2.806 0.00502**
u7Cr (CO) 4.98E-02 6.10E-03 8.163 <0.0001***
u0Ch (edges) 2.30E+00 7.37E-02 31.257 <0.0001***
u1Ch (gwesp) −1.75E-01 2.17E-02 −8.083 <0.0001***
u2Ch (PM2.5) 1.47E-03 3.48E-04 4.233 <0.0001***
u3Ch (PM10) 2.33E-03 8.72E-04 2.676 0.00746**
u4Ch (O3) −3.22E-03 5.01E-04 −6.426 <0.0001***
u5Ch (NO2) 2.82E-03 1.88E-03 1.5 0.13351
u6Ch (SO2) −4.37E-03 1.39E-02 −0.315 0.75312
u7Ch (CO) −2.44E+00 7.00E-02 −34.945 <0.0001***

Note: In column Pr(Z >|z|), p-values: *< 0.05, **< 0.01 and ***< 0.001. All other values are not 
significant.
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measures of atmospheric particulate matter, PM2.5 and PM10, a measure for ground-level ozone 
or the ‘bad’ ozone, O3, the value of nitrogen dioxide, NO2, the value of sulphur dioxide, SO2, and 
the value of carbon monoxide, CO. PM2.5 includes emissions from gasoline and oil combustion. 
PM10 dust from wildfires and construction sites, industrial sources and others. O3 is emitted 
from cars, refineries, chemical plants and solvents. NO2 is a gaseous pollutant forming from 
the burning of fossil fuels, cars and other vehicles and industrial processes. SO2 is also a gas 
from combustion of fossil fuels and industrial facilities. Lastly, CO is a gas released from com-
bustion and the source of emissions are vehicles.

Table 2 presents the results for the spillover effects within Shanghai, and Tables A16–A18 
in the Appendix provide further results. The MCMC chains have a good mixing, and the 
Geweke diagnostics, with an average p-value across model specifications of about 20%, indicate 
that the MCMC achieved convergence. Note that the coefficients are on a log-odds scale, and 
negative and positive signs can be interpreted as increasing or decreasing the probability at the 
dyad level.

For almost all specifications, the network density and the triangle coefficients are significant 
in the formation of ties and their persistence, as well as in the rate of turnover in dyad status and 
the cross-sectional network statistics over the whole network.

Overall, there is strong evidence of a relationship between air quality variables, network top-
ology and network dynamics. Including the pollution indicators reducing, on average across 
model specifications, the Akaike information criterion (AIC) and BIC by 0.67% and 0.45%, 
respectively. In almost all specifications and terms, CO, together with one of the most impact-
ing factors on life expectancy in China, PM10 are significant at the 0.1% level (boldfaced rows in 
Table 2 and Tables A16–A18), whereas NO2 is not significant at any level (Table 2 and Tables 
A16–A18). In the spillover effects for visits from Shanghai and from out of Shanghai PM2.5 is 
not statistically significant in the majority of the models for the formation of the ties (Form in 
Table 2 and Table A16) and the changes over time of the average network structure (Cross term 
in Table 2 and Table A16). Nevertheless, PM2.5 is significant in the spillover between visits 
from Shanghai and out of Shanghai (Tables A17 and A18), which can be related to road traffic 
conditions in the connections between Shanghai and neighbouring regions. Ozone, O3, which is 
responsible for breathing problems, is significant at the 0.1% level in some specifications and 
terms for all spillover effects within Shanghai and from out of Shanghai.

5. CONCLUSION

Analysing tourist flows is crucial for defining policies promoting sustainable urban tourism. To 
this end, integrating diverse data sources helps to gain valuable insights to plan targeted and 
timely interventions in tourism, mobility and resource management.

This paper aims to demonstrate how mobile data, analysed through the innovative appli-
cation of Granger causal network analysis, can enhance our understanding and specification 
of spatial spillover effects in tourist mobility within a destination. Network models are used 
to integrate variables from additional data sources, such as environmental data, and to study 
the development and interaction of tourist flows over time, thus providing insights that tra-
ditional methods may not reveal.

We offer an introduction to graph theory as a backdrop for analysing spillover effects in tour-
ist visits. Since the spillover effects are not observable, a Granger network analysis enabled us to 
extract intra-destination tourism networks, utilising daily data on mobility flows in the Shang-
hai metropolis. Our analysis identified significant co-movements between the visits to a particu-
lar area or attraction in Shanghai during a specific period and subsequent visits to other places in 
the city. The spillover dynamics exhibit asymmetry in two ways: between flows generated by 
domestic Shanghai tourists and those from outside Shanghai, and in variations in flows to 

Measuring daily tourism mobility spillover at the intra-metropolis level with mobile positioning data  717

REGIONAL STUDIES, REGIONAL SCIENCE



different districts and hotspots. The evidence of the districts’ different roles in the network, 
asymmetric effects and time variations calls for separate and continuous monitoring throughout 
the year. A network model is employed to demonstrate how to integrate variables from other 
data sources to analyse the determinants of the tourism network, thus providing valuable 
insights tailored to the specific destination type under examination. The application of air qual-
ity data reveals a significant relationship between air pollution and the topology and dynamics of 
the tourism networks.

Our proposed network approach offers an effective tool for managing tourism dynamics 
within a destination and across various local spatial units, fostering the development of more 
sustainable tourism. The research highlights the intrinsic connections between tourism activities 
in different districts of Shanghai. These districts compete to attract tourists while sharing inter-
connected tourist flows, revealing the potential for cooperation among them.

These findings advocate for a shift from pure competition to a ‘cooperation and competition’ 
model, providing valuable insights to encourage and guide each district to collaborate while 
maintaining its competitive edge. As our research demonstrated, the nature of these intercon-
nections is influenced by each district’s unique characteristics and tourism attractions, as well as 
other environmental factors.

To leverage these insights, strategies should focus on creating coordinated tourism networks 
at the inter-district level and promoting collaboration in areas such as air quality management. 
This approach lays a strong foundation for planning and scaling up-targeted interventions 
related to Shanghai’s tourism, including organising and managing tourist facilities and services 
based on anticipated visitor flows, addressing overcrowding issues and developing targeted mar-
keting strategies that optimise local resources while enhancing the visitor experience.
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