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Abstract

During the COVID-19 pandemic, the scientific literature related to SARS-COV-2 has been

growing dramatically. These literary items encompass a varied set of topics, ranging from

vaccination to protective equipment efficacy as well as lockdown policy evaluations. As a

result, the development of automatic methods that allow an in-depth exploration of this

growing literature has become a relevant issue, both to identify the topical trends of COVID-

related research and to zoom-in on its sub-themes. This work proposes a novel methodol-

ogy, called LDA2Net, which combines topic modelling and network analysis, to investigate

topics under their surface. More specifically, LDA2Net exploits the frequencies of consecu-

tive words pairs (i.e. bigram) to build those network structures underlying the hidden topics

extracted from large volumes of text by Latent Dirichlet Allocation (LDA). Results are prom-

ising and suggest that the topic model efficacy is magnified by the network-based represen-

tation. In particular, such enrichment is noticeable when it comes to displaying and exploring

the topics at different levels of granularity.

Introduction

The massive response of the scientific community to the COVID-19 pandemic has produced

an unprecedented amount of research and related publications. For example, the Cord-19

open research dataset [1] currently includes over five hundred thousand published peer-

reviewed and pre peer-reviewed articles. This tremendous volume of COVID-related works

and the fast emergence of new research branches far exceeds the human capability to meaning-

fully organize and explore such material. This makes it impossible, even for a specialist, to

map, explore and summarise such a massive corpus of documents without the help of auto-

matic tools that can extract and classify useful semantic information from unstructured texts.

A key issue related to analyzing large sets of text, such as scientific corpora, consists of identify-

ing topics that may spread across several disciplines or different research branches. In this
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framework, topic models, i.e. text processing techniques belonging to the family of statistical

methods, are excellent tools to categorize documents and extract information from textual

data, developed precisely for capturing subject matters occurring in a collection of documents.

Many works, such as [2], have attempted to classify and summarize the vast COVID-related

literature collected in the Cord-19 dataset through topic modeling approaches. However,

despite offering a categorization of documents, these analyses often remain at the surface level,

particularly when exploring and understanding latent topics and their internal semantic struc-

ture. This drawback is mainly because most of these models are based on the so-called “bag-of-

words” approach, which is unsuitable for analyzing texts semantically as it ignores the order

and semantic relationship between words.

In this paper, we address the “bag-of-words” limit of the most popular topic modeling tech-

nique, the Latent Dirichlet Allocation (LDA), by complementing it with the relational infor-

mation (i.e. the network) provided by bigrams (i.e. pairs of two consecutive words) associated

to each topic. In other words, we attempt to exploit both the well-established feature extraction

ability of topic modeling algorithms and the relation encoding efficacy of network approaches.

The idea of associating topic models and network analysis is not new. [3] have suggested

encoding the relationship between words and documents in hypergraphs and extracting topics

as communities of the hypergraph. Yet, our approach is different, as we build a network for

each topic in the corpus starting from the LDA outputs and the bigram distribution containing

information about the word order in the text.

To better comprehend the ultimate goal of this project, it is essential to stress that the lead-

ing idea is not to study the topic modeling per se but to introduce a novel way to enhance topic

model results and facilitate the interpretation. That in turn means the goal has a methodologi-

cal character. Actually, the choice of the Cord-19 corpus was made strategically to serve such a

purpose. The richness, variety, and complexity of medical literature related to COVID-19,

made it an ideal (and very demanding) setting to apply the proposed method and see if the

results were meaningful from an expert’s perspective. However, it can be exploited for health-

care literature surveying tasks [4] or bibliometric review [5] ones.

The contribution of this paper is twofold; we provide (i) an intuitive method enhancing the

interpretation of topics based on networks of words exploiting bigram information and (ii) a

set of heuristics to extract and label subtopics automatically from highly modular topics. The

ultimate aim of our approach is to increase the interpretability of topics and, in turn, allow an

internal semantic structure analysis at a finer level. LDA2Net intends to be an effective and

convenient tool to summarise and make sense of topics in a more rapid and human-friendly

way, rather rather than relying on a mere list of words. This novel method permits a transpar-

ent and intuitive interpretation of single topics through a visual inspection of (topic-specific)

word networks. In addition to this, LDA2Net helps work on multiple levels of granularity,

enabling the exploration of the subtopics of interest. Indeed, “indications” provided by auto-

matic topic labels facilitate browsing the numerous topics and finding those of relevance for

specific interests. Finally, our approach also allowed us to 1) evaluate the specific relevance of

words and their associations per topic, by means of network metrics and 2) cluster topics

using aggregated statistical measures, to differentiate cross-cutting topics from specialized

ones.

The remainder of this paper is organised as follows. In the Related Work section, we give a

brief literature review useful to understand the context within which our work is framed. In

the section Materials and Methods, we describe our approach while in the Results section we

present the research results and findings. Finally, in the Discussion and Conclusions section,

we summarize and interpret the outcomes of the work and provide future line research direc-

tions. We would like to underline that, for conciseness, we opted to report all the concepts not
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strictly necessary to understand the method in the Appendix sections while being careful not

to sacrifice effectiveness for brevity.

Related work

Latent Dirichlet Allocation (LDA) [6] is indisputably the most frequently used topic modeling

approach, and, despite its simplicity, it has established itself as the state-of-the-art Probabilistic

Graphical Model in numerous applied research fields. Most criticism towards LDA has

addressed some of its statistical limitations, such as the lack of unambiguous criteria for choos-

ing the number of topics, the inability to capture correlations between topics, or its static

nature. Many solutions to these shortcomings have been proposed in further developments of

the basic probabilistic approach to topic modeling. For instance, research has focused on

extending or modifying LDA to account for syntax [7], correlations between topics [8], seman-

tic data [9], and metadata [10], mainly to overcome problems related to the simplifying

assumptions of the LDA model. However, less attention has been devoted to addressing the

limitations of LDA and related models, concerning their “bag-of-words” approach, which

neglect word order. These models return a (weighted) list of words for each topic, disregarding

the short-distanced semantic information in the word arrangement sequences.

Even when extended to consider n-grams, that is sequences of n consecutive words, rather

than words as basic units of analysis, it returns a weighted list of such entities, without consid-

ering their interrelations. Attempts to include and model syntagmatic information (i.e. infor-

mation concerning sequential relations between words) in topic models have already been

investigated in [11–15] as well. Moreover, using a Dirichlet distribution implicitly assumes

that few items overwhelmingly contribute to each topic. This leads to using a topic’s top-rank-

ing words to summarise its content. However, the interpretation of such short lists of words is

limited, as the weights offer no semantic information regarding the structure of the topic and

how words are related to each other.

The proposed topic model enrichment method, named LDA2Net, allows to incorporate in

LDA bigram information without any statistical assumption on the data generation process

for word sequences, being based on observed document-level bigram counts. Differently from

other works [16–19] that aim to improve the coherence and interpretability of inferred topics

by using domain knowledge, including Linked Open Data, Knowledge Graph Embeddings,

and ontologies from the the semantic web, the topic model enrichment method proposed in

this work does not rely on any information or data external to the corpus.

Even though the method is here applied only to the LDA model, it can be easily imple-

mented with other topic models, such as correlated topic models CTM [8], or structural topic

models STM [10]. That means our approach can be cast into any topic model framework

based on the bag-of-words paradigm to transform the topic’s distributions of unigrams into

topic graphs. It is worth noting the project’s primary focus is not on topic modelling per se but

enhancing the topic modelling. That is possible through our novel deterministic method,

based on bigrams, which takes place after the topic inference stage (i.e., unigrams-by-topic dis-

tributions). In other words, bigrams are used to enrich an already estimated topic model and

to summarize the syntagmatic structure of inferred topics. For the sake of demonstration, in

this work, we will be utilizing only LDA as a basic illustrative example, precisely chosen for its

simplicity and widespread use.

Concerning topic models estimated with bigrams [11–15], one of the advantages of

LDA2Net is that its results do not depend on any assumption on the distribution family and

data generation process of bigrams, being LDA2Net based on the observed frequencies of
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bigrams in documents, which are combined (a-posteriori) with LDA output matrices, as

shown in Fig 1.

Materials and methods

Dataset

The current work is based on article abstracts of the Cord-19 dataset (Version 93: 21-06-2021),

which is made available by Semantic Scholar and the Allen Institute for AI. For details on the

Cord-19 corpus please see [1].

The dataset contains coronavirus-related research papers. Papers in the Cord-19 corpus

were sourced from PubMed, bioRxiv, and medRxiv, plus articles from a repository of more

than two hundred thousand papers maintained by the World Health Organization. As this

work intends to focus on COVID-19, abstracts uploaded before December 31, 2019 (date in

which the WHO was first-informed of COVID-related cases of pneumonia in Wuhan) have

been filtered out. The resulting dataset contains 398818 abstracts. This conservative filtering

approach was adopted for ensuring that the articles selected were post-dating the outbreak’s

formal acknowledgment and to maintain the representativeness of the CORD-19 corpus in

our work.

Details about the preprocessing stage can be found in Appendix B while information about

the dataset in Table 1.

Fig 1. From LDA output to networks, a summary diagram.

https://doi.org/10.1371/journal.pone.0300194.g001

Table 1. Dataset summary information and LDA parameters.

# documents # topics # words (vocabulary) # bigrams (vocabulary)

value 398818 120 34563 4075820

notation ND K NW NB

https://doi.org/10.1371/journal.pone.0300194.t001

PLOS ONE LDA2Net

PLOS ONE | https://doi.org/10.1371/journal.pone.0300194 April 3, 2024 4 / 33

https://doi.org/10.1371/journal.pone.0300194.g001
https://doi.org/10.1371/journal.pone.0300194.t001
https://doi.org/10.1371/journal.pone.0300194


From LDA to topic networks

Latent Dirichlet Allocation. This section outlines the basic concepts about Latent Dirich-

let Allocation (LDA) needed for understanding our approach. As LDA analysis is not the crux

of this work, we refer the reader to [6] and Appendix A.1 for a thorough introduction to LDA,

and to Appendix A.2 for further details about the model estimation and parameters selection.

Additional supplementary materials are available online at the following link: https://github.

com/carlosantagiustina/underthesurfaceofCOVID19topics.

In layman’s terms, LDA is an algorithm that reads through some text documents and auto-

matically outputs the topics therein contained. In order to perform this process, LDA takes as

input a collection of documents D—where jDj ¼ ND—called corpus. Each document being

represented as a set of words belonging to a vocabulary W, namely the list of all unique words

in the corpus. Formally, W ¼ fw1; . . . ;wNW
g, where NW ¼ jWj. In this context, a topic is a set

of words that occur frequently together. The number of topics K to be found is instead an

input parameter. With a view to processing the documents, the corpus is transformed into a

matrix containing the counts of words by document, hereafter called U, of size ND � NW . Each

entry Ud,i represents the number of times the word wi appears in the document d, where i ¼
1; . . . ;NW and d ¼ 1; . . .ND.

LDA outputs are distributions namely:

• a distribution of words for each topic (i.e. a weighted list of words);

• a distribution of topics for each document.

In [20] a topic is formally defined as a distribution over a fixed vocabulary of words. These

results are usually delivered in matrix format. Notably, let M be the topic-word distribution

matrix of size K� NW and Q be the document-topic distribution matrix of size ND �K.

Then, the entry Mk,i, where k = 1, . . .K and i ¼ 1; . . .NW , is the weight of the word wi within

the topic k, whereas the entry Qd,k, where d ¼ 1; . . .ND, is the proportion of topic k in the doc-

ument d. For a visual interpretation of these matrices, we refer the reader to Fig 1.

Network construction. This section explains how to convert any topic obtained through

LDA into a network. Basically, we aim to convert a weighted list of words into a weighted and

directed network, a network where each edge has both a direction and weight, and every node

has a weight. For further definitions and notation about network theory, we refer the reader to

Appendix C.

The ultimate goal is thus finding a way to define the adjacency matrix of the network of a

chosen topic. In other words, we need a way to gauge the direction and the weight of the syntag-

matic relation between any pair of words represented by edges in the network. As first stage,

the LDA2Net method requires a data preparatory phase that involves collecting all bigrams

present in the corpus and arranging them in a fashion akin to the matrix U. That means, build-

ing a vocabulary for bigrams B ¼ fb1; . . . ; bNB
g, where NB ¼ jBj. Unlike W, this vocabulary

contains unique ordered pairs of words. Then, bigram frequencies by document are collected

into a matrix S of size NB � ND. Thus, each entry Sb,d represents the frequency of the bigram b
in the document d. The next stage involves computing one of the two components of the

weights associated with a bigram, conditioned by the topic under analysis. This component is

called counts − weight. Given a topic, a bigram will assume a counts − weight proportional to

both its occurrence (counts) in documents and the proportion of the given topic in documents.

This, in turn, means the same bigram may have a different counts − weight depending on the

topic under investigation. Formally, let C be the matrix of size NB � K collecting bigram counts
− weights by topic; then each entry of C is computed as Cb,k = ∑d Sb,d Qd,k. The same definition
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expressed for the whole matrix C is:

C ¼ SQ ð1Þ

However, the quantities in C do not take into account the topic-specific probabilities of

words composing the bigram, inferred through LDA. In fact, this information is given by M,

the topic-word distribution matrix. For this reason, in the computation of the network’s adja-

cency matrix, we combine the counts − weight with a second component, called probs − weight,
which embeds these very values. Specifically, let Ak be the adjacency matrix describing the

word network for the topic k, of size NW � NW . Regardless of the topic under consideration,

you may notice that every network has the same node-set. Nevertheless, topic networks are

not identical as the weights of edges between words and the node weights distinctively charac-

terize each topic.

In this regard, let eki;j be the weight of the bigram made by the ordered pair of words wi and

wj in the network representing topic k. Such a quantity exists if and only if the pair of words

(wi, wj) is a bigram belonging to the vocabulary of (observed) bigrams B.

Then, we define the adjacency matrix for the topic k as:

Ak
i;j ¼

0; if ðwi;wjÞ =2 B

eki;j; otherwise

8
<

:
ð2Þ

where eki;j is given by the product between the counts − weight of the bigram (wi, wj) for the

topic k, that is Cb,k, and its probs − weight, obtained by multiplying the LDA word probabilities

of wi and wj, which are respectively given by Mk,i and Mk,j. As a result, we have that LDA2Net-

weight of the bigram b = (wi, wj) is:

eki;j ¼ Cb;kMk;iMk;j ð3Þ

In this respect, we would like to point out that if the bigram composed by (wi, wj) does not

exist, it does not imply the bigram (wj, wi), in turn, does not exist, i.e. (wi, wj) 6¼ (wj, wi). In

fact, a bigram represents an oriented edge between two words. Finally, we normalize Ak entries

so that, for each k, the sum of all entries is equal to 1.

Automatic topic labelling

In this section, we present a heuristic for generating labels for topics and sub-topics by leverag-

ing the network structure and the edge and node metrics described in Appendix C. Broadly

speaking, node/edge metrics or centralities are indices over nodes calculated by accounting for

the topological characteristics of the network. The resulting labels are obtained through ran-

dom walks over the networks and are in the format of a sequence of words. A visual outline of

the this heuristic is shown in Fig 2 p. 6.

Let m be a community, which is a subset of nodes within a graph such that connections

between nodes are denser than connections with the rest of the network. Let Gk
m be the sub-

graph of the community m within the network representing topic k. A node is chosen to be the

starting vertex of a random-walk based on the out-degree centralities. This node is sampled

from a discrete distribution for which the probability of node i being extracted is proportional

to its weighted out-degree, that is degouti . In other words, given a community network Gk
m ¼ H,
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the probability PriH of a node i to be selected is:

PriH ¼
degouti

PjHj
z degoutz

ð4Þ

One of the advantages of this initialization step is that the random walks are more likely to

start from nodes that are hubs (i.e. nodes characterized by a high degree centrality) from the

point of view of outgoing edges, which is a good proxy for being a starting term in phrases

related to a given topic or subtopic (where a subtopic is actually a community).

Once the starting node has been sampled, the random walker begins to wander through the

network, basing its direction choices on a specific criterion: the edge betweenness centrality.

The edge betweenness centrality is the edge counterpart of the node betweenness centrality

and identifies edges in the network that are crucial for information flows. The betweenness

centrality of an edge between nodes i and j, btw(i, j), actually captures the overall relevance of a

bigram in the whole network, thus providing a global rather than local criterion for randomly

moving from word to word. Given the selected starting node (word) i, the probability of mov-

ing from i to j is computed as follows:

Prði;jÞH ¼
btwði;jÞ

PjHj
z btwði;zÞ

ð5Þ

In case none of the edges having i as tail have a positive betweenness centrality, edge

weights ei,j, are used instead of the betweenness centrality btw(i, j) as criterion for randomly

Fig 2. Visual summary of the heuristic employed for generating (sub)topic label proposals.

https://doi.org/10.1371/journal.pone.0300194.g002
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moving from node to node. The random walk is halted if the selected word i has no outgoing

edges.

Given a desired length l of the n-gram label, through our procedure, one can generate thou-

sands of random walks (i.e., n-grams) of the same targeted length, then order them by relative

frequency and use the most frequently sampled one(s) as label candidate(s) for a topic (whole

network) or a subtopic (i.e. community, a subgraph of the network). The proposed heuristic

does not incorporate information external to the corpus and is not based on semantics.

Instead, it leverages graph properties, like the interconnectedness of words within the subtopic

networks, to generate label candidates of varying lengths. It is important to note that our

method focuses on statistical associations and structural relationships, not meaning inference.

While the method does not engage in reasoning, it does provide an automated means of sug-

gesting labels based on the analyzed structural properties of word networks.

Results

In the following sections, we present a very-compact summary of relevant aspects of the pro-

posed methodology together with associated results and key findings. For an exhaustive visual

recap of each topic, we refer the reader to supplementary material available at this Link.

The following results are based on a LDA model with 120 topics estimated using a subset of

the abstracts of the Cord-19 corpus. It is worth stressing that, as LDA results depend on the

algorithm’s random initialization, the proposed method also inherits such a randomness

aspect. That means different initializations will provide different topics and, in turn by apply-

ing our approach different graphs. Yet, given the algorithm’s robustness, the results will tend

to be very similar. For further details about LDA implementation please see A.1. In order to

have a sort of ground-truth/baseline for our method, we asked an expert to assign a label to

each topic, only by considering its top 25 words (by LDA probabilities). Labels are reported in

Table 2. Specifically, given the peculiarity of this corpus and the strong presence of technical

terminology, we chose as person performing such a labelling a figure with a recognised biolog-

ical and medical background.

Topics as networks

The first contribution of this work concerns the readability of topics. LDA can be used to dis-

cover topics in an extensive collection of documents and provides a (weighted) list of words

for each topic. However, the interpretation of these word lists is often tricky and arbitrary as

LDA does not provide any information on word associations and sequences. Our approach

addresses this problem by transforming topics, i.e. weighted list of words obtained via LDA,

into (weighted and directed) networks capable of capturing (short-distance) word relations.

Basically, LDA2Net converts each LDA topic into a network where nodes represent words

and edges represent relations between them. Such a conversion is carried out by applying

Table 2. Most frequently sampled label candidate for the four subtopics of topic #88. In parenthesis frequency of the walk out of a sample of 1000 random walks of that

length.

subtopic# 2-gram label 3-gram label 4-gram label

1 drug!target (118) antiviral!activity!compounds (42) antiviral!targets!identified!compounds (29)

2 main!protease (220) main!protease!pro (66) binding!interactions!evidenced!AAs (34)

3 viral!RNA (346) viral!RNA!plus (21) viral!RNA!plus!nucleocapsid (14)

AAs is the acronym for Amino Acids and RNA is the abbreviation of Ribonucleic Acid.

https://doi.org/10.1371/journal.pone.0300194.t002
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weights to edges between words, representing the strength and direction of their sequential

arrangement in the corpus. These weights are based on the combination, through matrix mul-

tiplication, of observed frequencies of bigrams in documents and LDA’s output matrices (see

Fig 1). In essence, LDA2Net makes topics more transparent and readable by binding their

interpretation through observed word associations.

For the sake of brevity and illustrative purposes, for this section, we chose only a few topics

to show our results, in particular, topic #50 and topic #88 in Figs 3 and 4, respectively. Based

on the expert’s evaluation (that is, according to the label assignment by an expert to each topic

of our model by considering the LDA list of top 25 words only), topic 88 is about antiviral

drug molecules. In contrast, topic 50 has no explicit subject, and thus, the label is not defined.

In these two figures, we compare the list of the top 25 words obtained through LDA (Tables 3

and 4) sorted by topic-word probabilities and the graph of the top 25 bigrams by LDA2Net
weights. As regards graphs, edge widths are a function of topic-specific bigram weights

obtained through LDA2Net. In other words, the edge width is proportional to the edge

weight, the tie strength between those two words in that topic. The two figures highlight the

interpretive advantage offered by the proposed method. For instance, by observing the net-

work of topic #50 (Fig 3) we can immediately notice the marginal role played by the word CI,

which by contrast is the most important one by the topic-word distribution obtained through

LDA. Interestingly, the word risk, which is ninth in terms of probability, appears to play a

relevant role in the bigram network. A reader using only probabilities would probably focus

her attention on the confidence interval acronym (CI), possibly missing that the core issue of

the topic is the measurement of COVID-related risk factors. The network built over the

bigrams of topic #88 (Fig 4) contains many disconnected components, suggesting that this

topic is likely modular, that is to say there are many subtopics, each representing separable but

related aspects of topic #88. For example, while binding!affinity and

viral!replication are distinct issues they are often mentioned together in the corpus.

As both figures prove, the networks do actually ease the interpretation of the topic and allow

Fig 3. Topic #50: Network of top 25 bigrams by LDA2Net-weight.

https://doi.org/10.1371/journal.pone.0300194.g003
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Fig 4. Topic 88: Network of top 25 bigrams by LDA2Net-weight.

https://doi.org/10.1371/journal.pone.0300194.g004

Table 3. Topic #50: Table of first 25 words ranked by LDA probabilities.

rank unigram prob.

1 CI 0.2283

2 prevalence 0.0446

3 ratio 0.0380

4 among 0.0378

5 interval 0.0267

6 adjusted 0.0250

7 study 0.0227

8 association 0.0209

9 risk 0.0198

10 compared 0.0180

11 RR 0.0172

12 higher 0.0163

13 respectively 0.0158

14 included 0.0142

15 analysis 0.0113

16 aor 0.0110

17 analyses 0.0109

18 multivariable 0.0105

19 ratios 0.0105

20 conducted 0.0093

21 estimated 0.0087

22 age 0.0086

23 total 0.0083

24 overall 0.0082

25 cohort 0.0077

https://doi.org/10.1371/journal.pone.0300194.t003
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to unveil the word organization behind each topic—which would not be identified through

the use of mere word lists.

Word centralities

Here we explore the importance of words in each topic based on metrics derived from network

analysis. These peculiar measures are called centralities as they are indicators of a node’s cen-

trality (importance) within a graph. In practice, by accounting for the topological characteris-

tics of the network and each node position within it, centrality measures permit to rank

vertices by structural relevance within a network. In this work, we consider in particular the

following centralities: degree, in-degree, out-degree, page-rank and betweenness centrality.

Degree centrality counts the number of neighbors a node has. We have two further versions of

the measure if the network is directed: in-degree and out-degree. Intuitively, in-degree is the

number of links pointing inward at a node while out-degree is the number of connections

originating at a node and pointing outward to other vertices. The PageRank centrality defines

the importance of a node by considering the number of links it receives, the link propensity of

the linkers, and the relevance of the linkers. Finally, the betweenness centrality, one of the

most popular measures of the influence of a node, scores vertices based on their connectivity

by counting the paths connecting nodes to each other. This metric assumes that important ver-

tices are bridges over which information flows; then, if information spreads via shortest paths,

Table 4. Topic 88: Table of first 25 words ranked by LDA probabilities.

rank unigram prob.

1 compounds 0.0289

2 binding 0.0226

3 drug 0.0220

4 activity 0.0173

5 drugs 0.0163

6 inhibitors 0.0162

7 antiviral 0.0152

8 protease 0.0151

9 target 0.0145

10 main 0.0111

11 molecules 0.0108

12 viral 0.0101

13 targets 0.0090

14 replication 0.0089

15 mpro 0.0083

16 site 0.0076

17 inhibitor 0.0076

18 RNA 0.0070

19 inhibition 0.0066

20 affinity 0.0065

21 promising 0.0064

22 compound 0.0063

23 potent 0.0063

24 novel 0.0062

25 interactions 0.0060

https://doi.org/10.1371/journal.pone.0300194.t004
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important nodes are on those paths. That means by counting the number of these paths, we

get an estimation of the importance of a node. Further details about centralities can be found

in C.

Recall that via LDA2Net we generate a network where nodes represent words, and edges

represent directed relations between pairs of words (i.e. two nodes connected by a directed

link express a bigram). Like in network analysis, we can measure the importance of a node

employing specific measures; likewise, we can assess the influence of a word within the net-

work of a topic via the same approach. Basically, for each word in a network, where the net-

work typifies a topic, we derived a score specific to that given word and topic. That means we

might observe different values for the same word, depending on the topic network it belongs

to. By exploiting these relevance measures, we intend to capture different aspects of words

based on the underlying network structure. To help the reader, we provide a simplified visuali-

zation of these metrics by depicting words’ centralities through word clouds, as shown in Fig

5, p. 10—the bigger the word’s font size, the greater the word’s relevance. Except for the first

column, which refers to the plain LDA probabilities, each column shows a centrality measure,

while rows denote the topics. In particular, in Fig 5, we examine topics # 88, 50 and 36.

According to the expert’s evaluation, the last one, topic # 36, concerns the subject of economic

impact. In Fig 5 a clear trend stands out: different metrics sharply seize different relevance

aspects. For instance, by looking at topic #50, in the middle row, we notice that all network-

based metrics de-emphasize the role of the term CI, by contrast providing complementary

perspectives centered on associations to the word risk. One could say that the betweenness

centrality helps make sense of the topic’s relational context, the in-, and out-degree centralities

allow to single-out directional relations between words. The PageRank combines, by construc-

tion, both the local information provided by degree measures and the global influence of a

word within the network. Indeed, similarly, we can see, for topic #36 (bottom row), that the

betweenness centrality puts the focus on one of the main issues contextual to the economic

impact (that is, the impact on the tourism sector) while PageRank points out more than one

aspects. These observations about centralities make us believe that the structural representa-

tion of a topic has the potential to catch many shades of the subject matter. Thus it provides a

more meaningful view of the topic.

Fig 5. Top 25 words (i.e., nodes) by centrality measure, for topics #88 (upper row), #50 (middle row) and #36 (lower row).

https://doi.org/10.1371/journal.pone.0300194.g005
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Relations between measures

To assess the enrichment effect of the proposed method, we performed a correlation analysis

between word centralities. Here, the goal is to figure out which relations hold between the dif-

ferent measures and understand what happens to information when a list of words is being

transformed into a network (e.g. redundancy or loss of information). Specifically, we calcu-

lated both the Pearson and the Spearman’s rank correlation, as shown in Fig 6.

The Pearson correlations show that the centrality metrics preserve the information con-

tained in LDA probabilities. Indeed, the Pearson correlations between LDA probabilities

(probs) and the other measures (degree, in-degree, out-degree, betweenness and PageRank) are

quite significant, in particular with respect to PageRank and degree centrality. That means the

information obtained by both approaches is not so distant. Instead, the betweenness centrality

has the weakest correlation with LDA probabilities. That is likely because it offers a different

perspective on topic-specific, most relevant words, privileging words that have important

structural roles. The Pearson correlation behaviour slightly changes when we consider a

smaller set of words, i.e. only the top 30 words by LDA probabilities. On the contrary, the rank

correlation values are pretty low when all words are taken into account, whereas they increase

when the set of words is reduced. This is assumably due to the “tail” of the word ranking,

namely, the lowest positions in the word ranking are interchangeable because word scores are

minimal and close to each other. Indeed, when the rank correlation is computed over a smaller

set of words, results are more consistent and aligned with Pearson correlation ones. Again, we

observe that the betweenness centrality has the weakest correlation, confirming our assump-

tion that it provides a different interpretation of word importance.

Bigram metrics

One can gain additional insights into the corpus through LDA2Net by performing an analysis

not only at word level but also at the word association level, associations here captured by

bigrams. To this end, in Fig 7, we compare different bigram weighting strategies, that is the

counts − weight, the probs − weight and their combination, actually the weights adopted in our

approach, called LDA2Net − weight, as described in till exploiting the word cloud representa-

tion, in Fig 7, we show bigrams in the format [word1]>[word2], for instance

respiratory>syndrome. Again, the bigger the font size, the more significant the bigram;

each row refers to a topic, and each column identifies a given weighting strategy.

As the figure shows, both probs − weight and counts − weight seem to exhibit some weak-

nesses. On the one hand, probs − weight, which is based on the pairwise product of LDA word

probabilities, suffers from over-representing the combination of a few words with high proba-

bilities. On the other hand, counts − weight, which is based on document-bigram counts

assigned to a given topic, appears to over-represent associations between generic words that

are in most documents of the corpus, such as COVID-19>pandemic and

coronavirus>pandemic. Actually, the combination of both strategies into the proposed

LDA2Net − weight summarises well the distinctive word associations characterising each

topic. For instance, for the topic #88 (top row) we can note that LDA2Net − weight highlights

not only the bigram main>protease but also the bigram antiviral>drugs, which is

actually the label assigned to this topic by our medical expert. This investigation about edge

weighting strategies confirms that the use of networks to reproduce word associations is

indeed a practical approach akin to the human interpretation process.
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Fig 6. Correlation analysis: a) and b) Pearson—c) and d) Spearman’s rank correlation between word (node) centralities measures computed over networks

and word probabilities from LDA output. a) and c) report correlations computed over all words while b) and d) report correlations considering only the top 30

words by LDA probability.

https://doi.org/10.1371/journal.pone.0300194.g006
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Information gauging

Another way to measure the information added by the LDA2Net method is reasoning in

terms of divergence that measures the similarity between two distributions. We can determine

this measure by calculating the Jensen–Shannon Divergence (JSD) between the two compo-

nents employed to compute the LDA2Net − weights: i) the counts − weights, obtained using

bigram frequencies, and ii) the probs − weights, calculated as a pairwise product of LDA’s word

probabilities. The Jensen–Shannon Divergence is the symmetric and smoothed version of the

relative entropy. The relative entropy, also referred to as the Kullback-Leibler divergence (KL

divergence), measures how distant two distributions are from each other. However, the KL

divergence is not a distance metric as it is asymmetric and does not meet the triangle inequal-

ity. Conversely, the JSD is a distance metric since it extends the KL divergence by providing a

symmetrical score. For a more formal definition of JSD we refer the reader to Section Appen-

dix D. Usually, one of the two distributions, named P, represents actual observations; instead,

the other, called Q, is a model of P. In our case, probs − weights is the model, Q, and counts −
weights the data, P. Indeed, counts − weights are based on the actual count of bigrams while

probs − weights are based on the LDA model probabilities, so they are an approximation of

data. If the two distributions diverge, it means that their combination does not result in redun-

dant information, that is, the divergence captures the amount of extra information introduced

by LDA2Net weights. The information brought by the proposed method is highlighted by the

distribution of JSDs by topic, shown in Fig 8. In this histogram, we can clearly see that the dis-

tribution is heavily skewed towards the right of the JSD values range, that is [0, 1] (where 1

means completely divergent). It suggests our combined measure LDA2Net − weights does infer

supplemental knowledge.

Fig 7. Top 25 bigrams (i.e., edges) by measure, for topics #88 (first row), #50 (second row) and #36 (third row).

For details about edge weights see Section From LDA to Topic Networks.

https://doi.org/10.1371/journal.pone.0300194.g007
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Mapping topics

Thanks to the LDA2Net framework, networks representing topics obtained by LDA can be

summarized at a macro level by means of a set of topic-specific measures allowing to distin-

guish different classes of topics based on some key properties. The goal of this section is to

investigate such a grouping behavior.

We employed the following measures to characterize topics:

• Topic Mean and Variance: respectively the average value μk and its variance s2
k of the proba-

bility of a topic k to appear in the corpus, formally

mk ¼
X

d

Qd;k=ND

and

s2

k ¼
X

d

ðQd;k � mkÞ
2
=ND

• Jensen–Shannon Divergence: that is the divergence between the two parts composing the

LDA2Net − weights (counts − weights and probs − weights), already described in Information
Gauging section, and Appendix D.

• Barrat Clustering Coefficient (BCC): the weighted version of the clustering coefficient for

each (topic-specific) network [21].

The clustering coefficient is a primary descriptive statistic of networks that measures the

cohesion between nodes (not to be confused with the node tendency to form densely con-

nected groups, that is communities). An intuitive example of this descriptor is its application

Fig 8. Histogram of JSDs between the two normalized components used to compute bigram (i.e., edge) weights in

topic networks.

https://doi.org/10.1371/journal.pone.0300194.g008
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in the friendship network scope. In this case, the clustering coefficient reflects the extent to

which a person’s friends are also friends of each other. A more exhaustive explanation of the

clustering coefficient is given in Appendix C.2.3. The BCC summarises the network-level

properties of the topics, and the Topic Mean and Variance characterise topics by their distribu-

tion in the corpus, inferred through LDA. Finally, the JSD takes into consideration both

aspects. To cluster topics in an unsupervised way, we adopted the Gaussian finite mixture

model, a formal statistical framework on which to base the clustering procedure. In a nutshell,

the model assumes a finite mixture of probability distributions generates data, and each cluster

follows a different multivariate probability density distribution [22]. One of the main advan-

tages of this approach is that the number of groups (mixing components) and other parame-

ters, such as those about covariance, are selected automatically. All details about the model are

reported in Appendix E. As shown in Fig 9, three classes emerge, but one of them is composed

of a few elements though. We identified those outliers as linguistic topics, that is, topics con-

taining all words in a given idiom (e.g. topic # 54 contains only French words and #106 only

Spanish words). The other two classes seem to be mainly characterized by the relation between

JSD and mean and the BCC and variance. In particular, we observe a group where, regardless

of the mean, the JSD is above a certain threshold, and regardless of the BCC, the variance is

below a specific value. Topics belonging to this class are, for instance, # 119 and 49, 33, which

can be classified as cross-cutting topics (green triangles). On the other hand, specialized topics

(red squares), that is, topics on a particular subject matter, exhibit higher variance and lower

JSD, such as topic #99, 12 and 50 about cellular mechanisms, online education during the pan-

demic, and the inhibitors of SARS-CoV-2 main protease, respectively.

Results suggest that the documents of the Cord-19 corpus are based on two structurally dif-

ferent sets of topics: a set about more technical topics focused on field-specific terms and

another set on cross-cutting topics. In the former, the information provided by the networks is

relatively more in line with that provided by LDA’s topic-word distributions. For the latter,

networks provide further information that cannot be captured by basic topic modeling

approaches (e.g. “bag-of-words”).

These findings, even though germinal, are encouraging. Indeed, such a classification could

be convenient if an LDA user wanted to perform an initial investigation of topics in a fast but

still accurate way (for instance, by first considering the specialized topics and only then the

cross-cutting ones).

Detecting and labelling sub-topics

An additional advantage provided by LDA2Net consists in detecting and labeling subtopics.

While the labeling strategy has already been explained in Automatic Topic Labelling section,

here we introduce the detecting procedure. This approach aims to exploit the parallelism

between communities in networks and subtopics in topics. In network analysis, a community

is formally defined as a subset of nodes, densely connected and loosely connected to the nodes

in the other communities in the same graph. The procedure to find these groups of nodes

within networks is called community detection. A brief introduction to this argument can be

found in Appendix C.2.2. A way to measure the strength of division of a network into modules

(also called groups, clusters, or communities) is through modularity. Networks with high mod-

ularity have a dense set of connections between vertices within modules but only sparse con-

nections between vertices within different modules. Similarly, a network representing a topic

with high modularity will have strong relationships between words within subtopics and weak

relationships between words in different subtopics. Then, we can also assume that topics hav-

ing high network modularity are good candidates for containing subtopics (i.e. closely tied
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word communities). In Figs 10 and 11 and we show network modularity values by topic via

bar chart and the related distribution, respectively. In particular, in Fig 11 we can notice how

the distribution of modularity values is skewed and with a long right tail; about half of the top-

ics have modularity very close to zero, indicating that not all topics contain meaningful

Fig 9. Topic clustering with Gaussian finite mixture model.

https://doi.org/10.1371/journal.pone.0300194.g009

PLOS ONE LDA2Net

PLOS ONE | https://doi.org/10.1371/journal.pone.0300194 April 3, 2024 18 / 33

https://doi.org/10.1371/journal.pone.0300194.g009
https://doi.org/10.1371/journal.pone.0300194


subtopics. For this reason, in this section, we decided to show results concerning topic #88,

selected just because it has the highest modularity and then comprises subtopics. According to

our expert, we recall that topic #88 is about antiviral drug molecules. A filtered version of the

whole network for this topic is shown in Fig 12. The filtering stage of the networks is necessary

for visualization purposes, as the original networks are dense. Specifically, the filtered network

has been obtained by sorting words by LDA probabilities and keeping the top 1% percentile

words. Also, edges (representing bigrams) were filtered, again by keeping the top 1% percentile

based on their LDA2Net − weights. We can notice in Fig 12 that the topology of the network

clearly reveals a modular structure organized around few hubs, such as the words binding,

compounds and drug. To detect communities, we employed the weighted walk-trap

method proposed by [23] and described in Appendix C.2.2. We extracted a set of communities

through the community detection algorithm, which are essentially sub-graphs and subtopics.

An illustrative example of obtained outcomes is given by Fig 13 where three different subtopics

Fig 10. Bar plot of network modularity values, by topic.

https://doi.org/10.1371/journal.pone.0300194.g010

Fig 11. Histogram of the topic-network modularity values.

https://doi.org/10.1371/journal.pone.0300194.g011
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of topic #88 are presented (by using a hierarchical network layout). In particular, here, com-

munities are ordered by size. By visual inspection, we can assert that in (a) the community

focuses on chemical compounds and antiviral drug design, the subtopic (b) is about mpro
(abbreviation of main protease) and inhibitors and binding mechanisms and (c) concerns

viral RNA replication and transcription.

Fig 12. Filtered network of topic #88. Nodes are words and an (oriented) edge between two words occurs if they form a bigram. Node size is proportional to the word

probability provided by LDA while edge width is proportional to LDA2Net-weights. Node and edge color represent betweenness centrality, ranging from gray (min
observed value) to dark-red (max observed value).

https://doi.org/10.1371/journal.pone.0300194.g012
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However, in this work, we aim to create labels for subtopics without human intervention as

well. In other words, once partitioned the network into subtopics, we address to generate label

candidates for each subtopic (as well as for the whole topic) automatically. For this reason, we

devised an heuristic (described in Automatic Topic Labelling) able to generate short sentences

of a few words to be used as subtopic labels. These are sampled phrase fragments of a topic

that intend to help understand the type of content. The employed heuristic exploits node and

edge metrics to sample random walks of different lengths from topic communities.

Table 2 enumerates, for some subtopics of topic #88, the most frequently sampled n-gram

label of length 2, 3 and 4. The automatically generated labels seem to capture correctly the con-

tents of subtopics represented in Fig 13. For instance, in the first row, the 3 − gram label

antiviral!activity!compounds expresses the subject of the subtopic nicely, as

well as the other labels for the other subtopics. In fact, automatic labels are aligned with

human interpretation. This is a crucial point to be stressed: with our method, we can generate

subtopic summaries similar to what a human being would do. Even though such a heuristic

could be applied to generate label candidates at the topic level, we noticed that in such a case,

Fig 13. Top-50-edges graphs of the four largest subtopics for topic #88. Node size is proportional to the word

probability provided by LDA while edge width is proportional to LDA2Net − weights. Node and edge color represent

betweenness centrality, ranging from gray (min observed value) to dark-red (max observed value).

https://doi.org/10.1371/journal.pone.0300194.g013
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the method might produce a vast range of labels, each observed a few times and almost uni-

formly distributed, clearly an undesired output. Therefore, rather than directly sampling topic

labels from topic networks, we suggest using the label candidate of the largest subtopic of a

topic as the topic level label.

Discussion and conclusions

This paper presents a novel approach, called LDA2Net, aiming at enriching standard topic

modeling algorithms. Specifically, our method, built upon LDA, allows the construction of

word networks specific to each topic. By adding direct relations between the LDA topic-spe-

cific words, we intend to make the corpus investigation task less tedious and more efficient

work. By increasing the transparency and readability of identified topics, this novel framework

allows us to explore the architecture of topics in a more user-friendly way. Network visualiza-

tion and measures and subtopic labels better guide the user through the corpus exploration

and consequently improve the user interpretation experience through an effective joint usage

of LDA and bigrams information.

In place of simple weighted lists of words provided by LDA, the use of word networks

undoubtedly better fits the human interpretation and makes it less arbitrary. Interestingly, it

even encodes more knowledge. Indeed, through diverse metrics, some of them based on the

network concepts, we were able to assess the improvement brought by LDA2Net, in terms of

additional information.

Through measures over topic networks, we could identify two classes of topics, structurally

different, which likely distinguish cross-cutting topics from specialized ones. Such a distinction

can help when it comes to filtering out which topics to focus on first.

Further, the proposed framework favors a better interpretation of the corpus because it eas-

ily lets the identification of sub-themes. That is carried out through a community detection

approach, which partitions topics into subtopics and then extrapolates key issues at a finer

grain. In this regard, the framework offers a technical advantage compared to standard LDA,

being more robust to misspecification of the number of topics, thanks to the possibility of

identifying subtopics ex-post. In connection with the subtopic identification procedure, we

proposed a labeling algorithm based on random walks over the networks. The heuristic gener-

ates labels in the form of short sentences of a few words, really close to those a human user

would give. This is a promising outcome from the interpretive viewpoint, but it also translates

into time-saving. To get a sense of how demanding a labeling task can be, the expert took five

hours to give a label to each topic extracted from the Cord-19 dataset (see Table 7 in S1 File),

not to mention subtopics.

For the sake of completeness, we applied our approach to other topic modeling methods,

such as the Correlated Topic Model (CTM) and Sparse Additive Generative Model (SAGE),

(see Appendix F), to highlight the broad applicability of our enrichment technique. There are

currently no benchmark techniques for bigram-enriched topic models, so the comparison is

only qualitative. Yet, we intend to investigate comparability and benchmark aspects related to

the enriched models in future works.

From the point of view of the COVID-19 literature exploration, LDA2Net provides a

unique, in-depth perspective on critical issues discussed in the scientific literature. In particu-

lar, LDA2Net facilitates the Cord-19 corpus exploration and understanding process for both

specialist and non-specialist audiences, acting as a human-facilitation layer between the LDA

outputs and the topic model users. Besides, highly experienced and specialized researchers can

gain a broader map of contents outside their domain and thematic cross-connections with
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other areas of expertise. Furthermore, search by relevant sets of words can be significantly

facilitated by examining topic word networks.

There are numerous natural developments of the LDA2Net approach. One could use Part-

Of-Speech tags and/or word Dependency Relations as an alternative to bigrams to construct

topic-specific relations among words or lemmas and to typify the nodes and relations in topic

networks. One could also exploit document-level date-time to create dynamic networks for

each topic at the desired granularity or other document-level metadata to generate covariate-

value specific topic networks. Moreover, we envisage validating the advantages of LDA2Net
through a set of experiments with humans, both experts, and non-experts subjects, and using

different corpora.

Finally, we plan to publish an open-source R library (and possibly also a Python version) to

facilitate the deployment, usage and further extension of LDA2Net.

Appendices

A Topic models

In natural language processing, topic modeling is a widely used technique aiming to automati-

cally find themes (or topics) in text. Topic modeling can be performed by vector space models

or Probabilistic Graphical Models (PGMs). PGMs for topic modelling aim at discovering the

latent semantic structures of a corpus by relying on a document generation process. The idea

behind the document generation process comes from the human written articles. Indeed,

when a person writes an article, she or he has some thinking in mind, some topics, and then

she or he will extend these themes into some topic related words, which convey the desired

meaning. Eventually, these words will be written down to complete an article. Probability

topic models simulate the behavior of articles’ generating process.

A.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) as defined in [6], is a probabilistic generative model and

draws upon this very idea. We define a generative model a machine learning technique gener-

ating an output considering the prior distribution of some objects. LDA assigns a distribution

of topics to each document, and a distribution of words to each topic to provide low dimen-

sional, probabilistic descriptions of documents and words. In other words, LDA assumes that

documents are mixtures of multiple topics, typically not many, and each document is gener-

ated by a process. Dirichlet Distributions encode the intuition that documents are related to a

few topics. A topic, in turn, is a distribution over a fixed vocabulary and each topic is assumed

to be generated first, before the documents. Only the number of topics is specified in advance.

In plain language, the generative process of a document takes two steps. First, a distribution

over topics is chosen randomly (that implies a distribution over a distribution for this step).

Then, for each word in the document, a topic from the distribution over topics is chosen ran-

domly and next a word from the related topic (distribution over the vocabulary) is picked ran-

domly. Note that words are generated independently of other words (bag-of-words model).

Assuming this generative model for a collection of documents, LDA then tries to backtrack

from the documents to find a set of topics that are likely to have generated the collection. In

practical terms, given a set of documents, and the number of topics we would like to discover

out of this set, the output will be the topic model, that is the documents expressed as a combi-

nation of the topics. The algorithm provides the weight of connections between documents

and topics and between topics and words. Top word lists represent topics for facilitating

human interpretation. For a thorough description of LDA we refer the reader to [6].
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A.2 LDA parameters

To select the number of topics K for the LDA model, we employed the method proposed by

[24] and the R library LDATUNING. For each K 2 {30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130,

140} we estimated multiple LDA models with different seeds and 1300 iterations (with n.

burnin.iter = 300), using the Gibbs Sampling approach. Then, four criteria [25–28] were

employed to choose the optimal value of K. Based on the average values of the four considered

criteria (see Fig 14), K = 120 appeared to be the a good candidate number of topics. Finally, we

resumed the best run of the LDA estimation obtained for K = 120 running 3000 additional

iterations to ensure convergence. The LDA models, and their parameters, have been estimated

using the topicmodels R library, which interfaces with the C code developed by [6] and the C+

+ code for fitting LDA models through Gibbs sampling developed by Xuan-Hieu Phan et al.

(https://gibbslda.sourceforge.net/). No constraints were imposed on the values for the parame-

ters. For the LDA model with 120 topics, the estimated alpha parameter value is 0.4166667.

The beta parameters matrix, of size [34563 x 120], containing the logarithms of word

Fig 14. Average values of the four criteria identified in [24] used for selecting K.

https://doi.org/10.1371/journal.pone.0300194.g014
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probabilities for each topic, can be accessed through the following GitHub repository: https://

github.com/carlosantagiustina/underthesurfaceofCOVID19topics.

B Preprocessing

Only words that have more than two characters are considered in this work. Moreover, all

abstracts that don’t contain at least ten words that occur at least once every one million tokens

have been removed. The resulting filtered corpus contains 398, 818 documents (i.e., article

abstracts). The average number of terms per document is close to one hundred (98.21) tokens,

with a standard deviation of 45.65.

Before tokenizing the corpus, uppercase strings referring to the abstract sections (e.g.,

“KEY RESULTS”) have been removed using a RegEx, as well as arabic and latin numbers.

Also, English stopwords from the QUANTEDA [29] R library have been identified through RegEx

and removed from the documents’ strings. Excluding acronyms, all tokens have been lower-

cased. Terms that don’t appear at least once every million terms have been removed, and there-

fore do not belong to the words vocabulary W. Remark that, in LDA2Net, tokenization of

documents in bigrams takes place once the stopwords have been removed from the docu-

ments’ strings. Also, during this process, all punctuation characters (except apostrophes and

quotation marks) are considered string breaks, which means that two consecutive words that

are separated by one or more punctuation characters (different from the aforementioned

exceptions) will not be extracted and counted as a bigram. Only the bigrams that are composed

by two words (unigrams) contained in in the words vocabulary W are considered. By so

doing, bigrams made up by very rare words are also filtered out.

C Network theory background

C.1 Network notation

A network is a collection of vertices joined by edges. Vertices and edges are also called nodes

and links in computer science. In mathematics, a network is called a graph. A graph G = (V, E)

is defined as a set of vertices, V, which are connected by a set of edges, E 2 V × V, typically rep-

resented as a square matrix. Given a graph G with n nodes, the adjacency matrix A of G is a

square n × n matrix. The elements of the adjacency matrix A = (ai,j) assume values ai,j 2 {0, 1},

such that

Ai;j ¼
0; if ði; jÞ =2 E

1; otherwise

(

ð6Þ

that is ai,j = 1 if there exists an edge joining nodes i and j, and ai,j = 0 otherwise. A graph is

undirected if edges have no direction. If there is an edge from i to j in an undirected graph,

then there is also an edge from j to i. This means that the adjacency matrix of an undirected

graph is symmetric. A graph is directed if edges have a direction. If there is an edge from i to j
in an directed graph, then there is not necessarily an edge from j to i, but it might exist. This

means that the adjacency matrix of an directed graph is not necessarily symmetric. The adja-

cency matrix has 0s on the diagonal for simple graphs without self-loops. Many of the net-

works we study are unweighted, that is, they have edges that form simple on/off connections

between vertices. Either they are there or they are not. However, it is helpful to represent edges

as having a strength, weight, or value in some situations. The weights in a weighted network

are usually positive real numbers, but there is no reason in theory why they should not be neg-

ative. These weighted networks can be represented by giving the elements of the adjacency

matrix values equal to the weights of the corresponding connections.
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C.2 Network measures

In order to characterize the structure of a graph, it is crucial to study and quantify its proper-

ties. These properties can be organized into three levels of abstraction:

1. element-level: to identify the most important nodes/links of the network

2. group-level: to find cohesive groups of nodes in the network

3. network-level: to study topological properties of networks as a whole

C.2.1 Element-level analysis. In network analysis, element-level properties are used to

measure the level of importance of a single component of a graph with respect to the others.

Element-level descriptors, also called centrality measures, are a crucial tool for understanding

networks. These topological indicators, adopted to score both nodes and edges, are scalar val-

ues assigned to each node (edge) in the graph in order to quantify the node’s (edge’s) impor-

tance based on a certain assumption. In contrast, network-level measurements, calculated over

the whole network, provide overall indications about the network structure. For our analysis,

we take into account the following centralities:

Degree centrality (node). The degree centrality is the degree of a vertex, the number of

edges connected to it. In directed networks, vertices have both an in-degree and an out-degree,

and both may be useful as measures of centrality in the appropriate circumstances.

Betweenness centrality (node). The betweenness centrality [30] over nodes measures the

extent to which a vertex lies on paths between other vertices. This centrality detects the amount

of influence a node has over the flow of information in a graph and thus it identifies nodes that

serve as a bridge from one part of a graph to another. It is a measure based on shortest paths:

for each vertex it is equal to the number of shortest (geodesic) paths that pass through the

vertex.

PageRank (node). The PageRank centrality [31] is the trade name given it by the Google

web search corporation, which has adopted it as key part of the web ranking technology. It is

particularly suitable for directed network as it accounts for link direction. Each node in a net-

work is assigned a score based on its indegree. These links are also weighted based on the rela-

tive score of its originating vertex. In this way nodes with many incoming links are influential,

and nodes to which they are connected share some of that influence. PageRank can help

uncover influential nodes whose reach extends beyond just their direct connections.

Betweenness centrality (edge). The betweenness centrality over edges [32] is the sum of the

fraction of all-pairs shortest paths that pass through that edge. Usually, important bridge-like

connectors between two parts of a network have high betweenness centrality as they have a sig-

nificant influence on the transfer of information through the network.

C.2.2 Group-level analysis. In the social context, a community is a set of individuals

interacting with each other more frequently than with those outside the group. In this regard

community detection is discovering groups where individuals’ group memberships are not

explicitly given. Similarly, in network analysis, a community is a group of nodes, which are

highly connected to each other than to the rest of the nodes in the network [33]. In the last

years, community structure has increasingly become the most-studied structural feature of

complex networks. The approach consists in dividing a network into subgroups by grouping

nodes that are tightly coupled to each other and loosely coupled to the rest of the vertices in

the network [34]. However, gauging the intuitive concept of community structure is not trivial.

One of the most effective approaches to this issue has been defining a quality function able to

estimate the strength of division of a network into modules [34, 35]. This strength has been
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quantified by using the measure known as modularity [36], computed as the fraction of the

edges that fall within the given groups minus the expected value of the fraction if edges were

distributed at random (for more details we refer the reader to [37]). Although modularity opti-

mization is an NP-hard problem, many community detection algorithms are based on this

principle. The most famous one is probably the Louvain algorithm [38]. Yet, many other

approaches exist to identify communities, for instance, by simulating random walks inside the

network. The general idea is that, given a graph and a starting point, if we select a neighbour at

random and move to the selected neighbour and repeat the same process till a termination

condition, this walk, namely a random sequence of nodes, is more likely to stay within the

same community as there are only a few edges that lead outside a given community. In other

words, a random walker will tend to wander inside densely connected areas of the graph. This

concepts inspired the Walktrap algorithm [23] and the Infomap algorithm [39]. Walktrap uses

short random walks (of 3-4-5 steps) to compute distances between nodes. Nodes are assigned

to groups via bottom-up hierarchical clustering based on (small) intra and (larger) inter-com-

munity distances. In this respect, modularity score can be used to select where to cut the den-

drogram. It should be pointed out that this algorithm considers only one community per

node, which in some cases can be an incorrect hypothesis. For our experiments we use the

method in [23]. We employed IGRAPH’s weighted walktrap community algorithm implementa-

tion, using 4-steps random walks based on LDA2Net-weights.

C.2.3 Network-level analysis. A classic property shared by many real networks is cluster-

ing, also called transitivity. It measures the probability that the adjacent vertices of a vertex are

connected. In other words, the clustering coefficient (CC) measures the degree to which nodes

in a graph tend to cluster together. There exist two versions of it: a global version designed to

provide an overall indication of the clustering in the network and a local version that gives an

idea of the embeddedness of single nodes. In its global formulation, the clustering coefficient

considers triplets of nodes. By triplet we mean three nodes that are connected by either two

(open triplet) or three (closed triplet) undirected ties (see Fig 15); here, a triangle is three

closed triplets, one centered on each of the nodes. The global clustering coefficient is the num-

ber of closed triplets (or 3 × triangles) over the total number of triplets (both open and closed).

A generalization of the global clustering coefficient to weighted networks (networks with

weighted edges) was proposed by [21]. The authors first propose a novel definition of the local

clustering coefficient—measuring the local cohesiveness considering both the importance of

the clustered structure and the interaction intensity (e.g., weights) found on the local triplets—

and then the global version, the weighted clustering coefficient averaged over all vertices.

Fig 15. An example of closed and open triplets.

https://doi.org/10.1371/journal.pone.0300194.g015
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D Jensen-Shannon divergence

The Jensen-Shannon divergence (JSD) is a measure assessing the difference between probabil-

ity distributions, that is the ground truth and the simulation, by calculating the mutual infor-

mation between two probability distributions, quantified by gauging the difference between

entropies associated with those probability distributions. The JSD is a symmetrized and

smoothed version of the Kullback-Liebler divergence. In other words, it is a mutual informa-

tion measure for assessing the similarity between two probability distributions. It is defined as

DJSðP;QÞ ¼
1

2
DKLðPkMÞ þ

1

2
DKLðMkQÞ ð7Þ

where DKL is the classical Kullback-Leibler divergence and M ¼ PþQ
2

.

The generalization of the Jensen-Shannon divergence, in case of more than two probability

distributions, is based on the Shannon entropy as follows

DJSp1 ;...;pn
ðP1; P2; . . . ; PnÞ ¼

P
ipiDðPikMÞ

¼ H

 
Xn

i¼1

piPi

!

�
Xn

i¼1

piHðPiÞ

where π1, . . ., πn are the weights of the probability distributions, M ¼
Pn

i¼1
piPi and H(P) is

the Shannon entropy for distribution P.

When using the base 2 logarithm, the Jensen–Shannon divergence for two probability dis-

tributions ranges between 0 and 1 [40].

E Gaussian finite mixture model

Automatic model (VEV: ellipsoidal & equal volume) and number of clusters selection (3)

based on BIC criterion. See MCLUST R library [41].

All measures were standardised (to have zero means and unitary SEs) before the clustering

procedure. Inferred cluster-specific mean and SE are displayed in black.

F Comparison between models

We compared and applied our approach to three topic modeling methods: LDA, Correlated

Topic Model (CTM), and Sparse Additive Generative Models (SAGE). Model implementation

parameters are explained in the next section. We employed the same mechanism for both

methods, that is, we extracted the bigrams, we performed the topic modeling and then by

using the output matrices and the bigram weights we built the graphs for each topic.

In order to compare similar topics, we computed the Jaccard Similarity between the top 25

words of each topic. In particular, we selected for the CTM and SAGE models the topics that

are closer to topics #50 and #88 obtained with LDA. Results are reported in Table 5. The fact

that the LDA topic #50 is close to topic #95 for both SAGE and CTM is no error: it is due to

the Spectral initialization technique, which was used for both models. We computed the Jen-

sen-Shannon Divergence between edge weights as well (see Table 6). As expected, the

Table 5. Jaccard similarity between topics of different methods.

topic SAGE CTM

LDA #50 95 0.36 0.56

LDA #88 72 0.49 0.56

https://doi.org/10.1371/journal.pone.0300194.t005
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divergence values are very high. That will be confirmed later in the difference between the

graphs obtained by different methods. Once found the corresponding topic, to visually inspect

and compare topics (see Fig 16 for wordcloud comparison), we selected the top 30 edges for

each network. That means we plotted only those nodes (words) belonging to the edge set

(given by top 30 bigrams). Comparison are shown in Figs 17 and 18. Interestingly, even if they

have a very similar initial node set, the final networks are different as paths built by top edges

are not the same.

While the networks of enriched CTM and SAGE models are akin in some respects, an out-

come we anticipated due to their common initialization, LDA appears so different from the

other two that any qualitative comparison of the content becomes complex. We defer to future

work for the development of more advanced benchmarking and comparison techniques.

F.1 Estimation and convergence parameters

While the LDA model’s parameters have already been discussed in Appendix A.2, we here

report details about CTM and SAGE implementation.

The input matrices used for the CTM and SAGE models are identical to the ones used for

the LDA model presented in the sections above. As for the LDA model, for both CTM and

SAGE we set K = 120, to facilitate comparability between models. Also, to facilitate compara-

bility between models, we initialized both models using the Spectral initialization technique

from the STM R library, as proposed by Lee and [42]. Spectral initialization parameters are all

set to their default values. This technique allows model outcomes to be deterministic, and

hence more easily reproducible.

Table 6. Jensen-Shannon divergence (JS) between topics of different methods.

topic SAGE CTM

LDA #50 95 0.83137 0.83244

LDA #88 72 0.83216 0.83250

https://doi.org/10.1371/journal.pone.0300194.t006

Fig 16. Wordcloud comparison.

https://doi.org/10.1371/journal.pone.0300194.g016
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For both the CTM [8] and the SAGE [43] model we use the variational expectation-maxi-

mization (VEM) algorithm implemented with the STM library [10], we set all parameters to

their default values, except for the maximum number of expectation-maximization iterations

(max.em.its), that we set to 100. Since both models converge before reaching the aforemen-

tioned value, this parameter choice is irrelevant.

The CTM converged after 65 iterations (Lower Bound: -286094170). The SAGE model con-

verged after 5 iterations (Lower Bound: -291762273).

Using the methods proposed by [10] we checked the Beta matrix and the residuals of the

CTM and SAGE model and no anomalies / errors have been detected.

Since we are interested in visually comparing how different enriched models (LDA vs CTM

vs SAGE) compare to each other, we apply to the outputs of both newly estimated models

(CTM and SAGE) the bigrams-enrichment technique previously implemented with LDA. We

Fig 17. Topic comparison: LDA #88 and SAGE, CTM #72.

https://doi.org/10.1371/journal.pone.0300194.g017

Fig 18. Topic comparison: LDA #50 and SAGE, CTM #95.

https://doi.org/10.1371/journal.pone.0300194.g018
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recall that this enrichment technique is deterministic and independent from the model used

for estimating the words-by-topic (TxW) distributions contained in the M matrix.
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