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Abstract: Recently, liquidity issues in financial markets and portfolio asset management have attracted
much attention among investors and scholars, fuelling a stream of research devoted to exploring the
role of liquidity in investment decisions. In this paper, we aim to investigate the effects of introducing
liquidity in portfolio optimization problems. For this purpose, first we consider three volume-based
liquidity measures proposed in the literature and we build a new one particularly suited to portfolio
optimization. Secondly, we formulate an extended version of the Markowitz portfolio selection
problem, named mean–variance–liquidity, wherein the goal is to minimize the portfolio variance
subject to the usual constraint on the expected portfolio return and an additional constraint on the
portfolio liquidity. Thirdly, we consider a sensitivity analysis, with the aim to assess the trade-offs
between liquidity and return, on the one hand, and between liquidity and risk, on the other hand.
In the second part of the paper, the portfolio optimization framework is applied to a dataset of US
ETFs comprising both standard and alternative, often illiquid, investments. The analysis is carried
out with all the liquidity measures considered, allowing us to shed light on the relationships among
risk, return and liquidity. Finally, we study the effects of the introduction of a Bitcoin ETF, as an asset
with an extremely high expected return and risk.

Keywords: portfolio optimization; liquidity measures; return–liquidity opportunity cost; trading
volume; alternative investments

MSC: 91G10; 91-10

1. Introduction

The interest of economics and finance scholars in financial market liquidity has a long
tradition. In the 1980s, investors noted that selling a large number of shares of certain
stocks triggered a steep decline in their quoted prices, and this led to a greater focus on
liquidity-based investment strategies [1]. This attention to liquidity prompted a number
of scholars to commit to defining and estimating proper liquidity measures and studying
their relationship with stock returns [2–4], facing in this several challenges. In this regard,
Amihud [2] (p. 33) argues that “Liquidity is an elusive concept. It is not observed directly
but rather has a number of aspects that cannot be captured in a single measure”. As a
matter of fact, different liquidity measures have been proposed throughout the years to
account for many different aspects, such as the impact of trading volumes on market prices
and demand spread.

More recently, liquidity has gained importance also in quantitative finance, and es-
pecially in portfolio optimization (see for instance [5–7]). Although asset liquidity was
initially disregarded in the Modern Portfolio Theory, scholars have shown that, in fact,
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stocks vary in liquidity (however measured) and that returns and liquidity are not unre-
lated [2,8]. Hence, especially for institutional investors that trade in large volumes, it is
crucial to also consider liquidity in the construction of a portfolio, which requires addi-
tional considerations besides the standard preferences for risk and return. In this regard,
the seminal paper by Lo et al. [9] provides a starting and fundamental contribution to the
inclusion of liquidity in portfolio optimization; they build some liquidity measures based
on trading volumes, shares outstanding, and bid-ask spread, and they devise different
methods to include liquidity in the mean variance optimization model [10], using such
measures. In detail, Lo et al. [9] propose three alternative approaches to include liquidity:
(1) a preliminary liquidity filter, where stocks that do not meet a liquidity threshold are
excluded from the portfolio construction; (2) portfolio liquidity constraints, setting the
liquidity of the portfolio equal to a target value in the optimization model; (3) the explicit
inclusion of the liquidity level of the portfolio in the objective function. Lo et al. [9] argue
that these simple procedures allow investors to obtain portfolios that are significantly more
liquid than standard optimal mean variance portfolios.

Over time, the framework proposed by Lo et al. [9] has been often applied by scholars
to model preferences for liquidity in portfolio optimization. Thanks to its simplicity and
flexibility, it has allowed researchers to investigate the role of liquidity in portfolio selection
using further liquidity measures and asset classes (see for example [11]). On the other
hand, interestingly, a number of studies have shown that taking liquidity into consideration
considerably changes the risk–return profile of the optimal portfolios obtained [5,12].

Moreover, different models and approaches have also been proposed. Kinlaw et al. [13]
view liquidity as a shadow allocation and attach a shadow asset to the portfolio when
investors deploy liquidity to increase their expected utility. Ang et al. [14] devise a dynamic
model of consumption and investment with three types of assets: a risk-free bond, a risky
and liquid asset, and an illiquid risky asset that cannot be traded continuously, whose
trading opportunities are governed by a Poisson process. Al Janabi [15] designs a general-
ization of the mean variance model with the variance replaced by a liquidity-adjusted value
at risk and the dependence structure modeled through Kendall’s tau. Li and Zhang [16]
propose a mean–variance–entropy approach with liquidity and diversification constraints.
Vieira et al. [17] consider an index tracking optimization model with liquidity constraints
and evaluate the diversification effect using the Gini index.

In recent decades, there has also been a surge of interest in alternative assets. To hedge
severe turmoils in financial markets and avoid incurring large losses, investors have
started to allocate a significant portion of their portfolios to non-standard investment
vehicles, which are often thought to provide a diversification effect (see [18]). Alternative
asset markets have caught the attention of scholars as well; in particular, scholars have
explored several alternative investments, such as real estate (indeed, real estate is often,
even if not always, considered an alternative investment) [19,20], cryptocurrencies [21–24],
and art [25,26], highlighting the benefits that these asset classes have on a portfolio in terms
of diversification. However, notwithstanding the improvement brought to the risk of the
portfolio, such assets complicate the portfolio selection, due to their lower liquidity [25].

Research analyzing liquidity in the context of portfolio optimization and investigating
the optimal allocation of alternative assets in financial portfolios has begun to be widely
published in the empirical literature. In particular, several studies analyzed liquidity in
the context of portfolio optimization [27–29] and investigated the optimal allocation of
alternative assets in a financial portfolio [30,31]. More recently, some scholars applied
portfolio optimization models that incorporate the liquidity characteristics of standard and
alternative asset classes, generally focusing on only one, or a few, alternative investments,
mainly commodities [15] and cryptocurrencies [11,12,32]. However, to the best of our
knowledge, the liquidity effects on the portfolio allocation of a broadly diversified array of
alternative asset classes (comprising, e.g., gold, commodities, cryptocurrencies, and hedge
funds) jointly with traditional ones have not been investigated in depth. Nonetheless,
diversification strategies often comprise multiple asset classes, which display different



Mathematics 2024, 12, 2424 3 of 26

liquidity characteristics. Therefore, it may be interesting to explore the role of liquidity in
portfolio optimization models including multiple alternative assets simultaneously.

The goal of this paper is to study the effects of the introduction of a liquidity constraint
into a portfolio optimization model where multiple alternative assets are considered. In
particular, we pursue the following research objectives:

1. We analyze some volume-based liquidity measures already proposed in the literature;
in addition, we devise a novel measure of liquidity, based on the coefficient of variation
of the market volume;

2. Following one of Lo et al. [9]’s suggestions, we devise an extension of the classical
mean variance optimization problem which includes an additional constraint that
guarantees the portfolio a desired liquidity level; furthermore, we derive, through
an in-depth sensitivity analysis, the trade-offs among the target return, the target
liquidity, and the variance of the optimal portfolios;

3. Making use of the liquidity measures and the extended portfolio optimization problem
discussed in the first part of this paper, in the second part we analyze the effects of
the introduction of a liquidity constraint in portfolio selection problems including a
wide range of alternative investments, in the form of thematic ETFs. Moreover, we
undertake a back-testing procedure;

4. Finally, we investigate the effects of the introduction of an extremely high expected
return and risk asset class, represented by a Bitcoin ETF.

Research on portfolio allocation has revealed its contribution in several ways, starting
from the famous papers by Markowitz [10], Sharpe [33], and Lintner [34], which laid the
foundation for Modern Portfolio Theory and the Capital Asset Pricing Model (CAPM).
Over time, this foundational framework has been expanded to address various market
imperfections, such as liquidity constraints, resulting in the creation of advanced liquidity
and portfolio models, including the development of Lo et al. [9] discussed above. On the
other hand, besides the extension of the classical mean variance optimization problem that
includes additional constraints that guarantee the portfolio the desired level of liquidity,
another line of research that has been widely explored in the literature is the role of liquidity
in asset pricing, and portfolio models originating from the asset pricing theory. Along this
line, we find both mainly theoretical contributions—see for example [3,35–38]—and others
with extensive empirical analysis—among these, see [39–42]. For recent literature reviews
on methodologies, tools and solution approaches in portfolio optimization that can extend
the mean variance framework to include operational constraints, refer to [43,44].

In the present contribution, as a reference point for portfolio optimization, we consider
the classical mean variance model [10] that does not include liquidity in its original for-
mulation, and we extend it along this direction. The mean variance model is simple in its
original version, yet it represents an interesting starting point for further developments [45],
among which there is also the inclusion of liquidity (see for example the recent review on
portfolio optimization [46]). Moreover, although the mean variance model was developed
long ago, its principles continue to be a major reference in both the theory and practice
of finance, and the model is still widely used by researchers and practitioners. See for
instance [45,47–49].

In the empirical analysis, we consider a set of ETFs representing standard and alterna-
tive investment markets. In particular, 11 ETFs on equity and 2 ETFs on bonds represent
traditional investment opportunities, whereas 8 ETFs on gold, silver, rare earth metals,
commodities, luxury, hedge funds, forestry, and sustainability represent the alternative
investments that can add diversification opportunities to the portfolio composition. This
choice has major benefits: ETFs allow even average investors to access a market of alterna-
tives that would not be accessible otherwise; furthermore, ETFs are tradable and available
for a wide range of assets, also with data on volumes. This makes our portfolio model
more realistic. In our paper, ETFs are thus considered as assets to build optimal portfo-
lios, differently from other contributions that investigate the optimal composition of an
ETF [50,51]. A number of studies already focused on ETFs liquidity implications, e.g., [50],
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and portfolio optimization models applied to ETFs (for instance [52,53]), but investigations
specific to portfolio selection with liquidity constraints and ETFs on alternative investment
markets have not been fully considered.

This paper is organized as follows. Section 2 discusses the liquidity measures em-
ployed in this study and the framework to include them in the extended portfolio opti-
mization model, as well as the sensitivity analysis. Section 3 presents the data used in
the empirical analysis and provides some descriptive statistics to characterize the ETFs
considered. Section 4 illustrates the result of the portfolio optimization with liquidity
constraints for various liquidity measures and alternative asset classes. Finally, Section 5
presents some concluding remarks.

2. Methodology

Since alternative investments are often characterized by a lower liquidity, compared
to traditional investment assets, when we investigate the role of alternative investments in
optimal portfolios, we need to also consider liquidity constraints. Moreover, since, as is
well known, alternative investment markets are often thin in size, with a consequent lower
trading volume, we resort to volume-based liquidity measures in order to build a proper
portfolio liquidity constraint. In particular, since we base our analysis on daily data, we
rely on low-frequency data liquidity measures (see [54]).

As pointed out in Section 1, liquidity has many facets and definitions, and can be
measured with different indicators. For instance, a liquid asset should display a low quoted
spread, as the evaluation on the supply side should align with that on the demand side
in an efficient market [55]. Furthermore, a transaction on a liquid security should not
influence its quoted prices significantly when the order is inserted in the market. Indeed,
multiple liquidity proxies have been proposed in the literature on the financial markets
microstructure, in order to capture the various liquidity dimensions, such as the breadth
of the market and the time to transact. A comprehensive review of liquidity measures
falls outside the scope of the present paper; for an extensive discussion on several of these
measures, we refer the interested reader to [8,54,55].

Section 2.1, which is related to the research objective no. 1, focuses on the presentation
of some volume-based liquidity measures that will be used in our portfolio analysis;
Sections 2.2 and 2.3, which regard research objective no. 2, extend the classical mean
variance optimization problem and discuss the sensitivity analysis, respectively.

2.1. Liquidity Measures

Let us denote by pit and qit the price and the number of shares traded of security i in
period t (in our case, day t), respectively. The volume of security i in period t measured in
monetary value (usually indicated as dollar-volume) is defined as

Volit = pit · qit (1)

Let us consider a time series of daily dollar-volumes for asset i, Voli, with T obser-
vations. The first liquidity measure we present is the average dollar-volume, AveVol,
defined as

AveVoli = E(Voli) =
1
T

T

∑
t=1

Volit (2)

This measure has been employed, among others, by Brauneis et al. [56] and Moreno et al. [12].
Another widely used liquidity measure is Amihud [2], which measures the “daily price

response associated with one dollar of trading volume” and thus works as a price–impact
liquidity indicator. This measure is computed as follows:

Amihudi =
1
T

T

∑
t=1

|rit|

Volit
(3)
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where rit is the daily return on asset i in day t. Amihud is probably one of the most
widely employed liquidity measures and it has been adopted in several studies, for in-
stance [5,11,12,17]. Notice that Amihud is actually an illiquidity measure, since higher
values of this indicator are associated to a lower liquidity of the security market.

Kyle and Obizhaeva [57] argue that there is a relationship between the variance of
the asset returns and the dollar volume of its market. For this reason, they propose the
following liquidity index:

KOi =

[

Var(ri)

∑
T
t=1 Volit

]1/3

(4)

where Var(ri) is the variance of the returns on asset i. According to Kyle and Obizhaeva [57],
the intuition behind this liquidity measure is linked to the assumption—often made by
traders—that transaction costs (a source of illiquidity) are higher in markets with low dollar
volume and high volatility. As Amihud, KO is an illiquidity measure, too.

Besides the previous indicators presented in the literature for the liquidity/illiquidity
of a security market, we propose a new liquidity measure, or more precisely an illiquidity
one, CVVol, tailored on portfolio investments, and for this reason suitable for portfolio
optimization problems. The idea is to use, for this purpose, a measure of the relative
variability of the market volume.

More precisely, CVVol is defined as the coefficient of variation of the dollar volume:

CVVoli =

√

Var(Voli)

E(Voli)
(5)

where
√

Var(Voli) is the standard deviation of the volume of asset i.
In insurance, the coefficient of variation of a total random amount X, describing for

example a portfolio loss, is commonly used to measure its relative riskiness; for a discussion,
see for example [58]. Analogously, in statistics the coefficient of variation of a random
variable X is used to measure its relative variability.

In our context, CVVol can be interpreted as the variability of the dollar volume of an
asset relative to its average dollar volume, and indirectly it evaluates the relative riskiness
of an impact on prices, even if its computation is based solely on the volume. Indeed,
the volume may vary greatly from one time to another, and may therefore be linked to the
risk of being forced to accept to trade at an unfavorable price when investors decide to
buy or sell the shares. With regard to this, let us observe that this novel indicator may be
viewed as an indirect price–impact liquidity measure, although the calculation is based
solely on market volume data.

Clearly, CVVol depends both on the central tendency and the variability of the asset
volume, and it represents an illiquidity measure since larger values of CVVol imply a
higher relative variability level and, hence, a potentially lower liquidity when the security
is bought or sold.

2.2. Portfolio Optimization with Liquidity Constraints

Let us now discuss the inclusion of the liquidity dimension in portfolio optimiza-
tion problems. After choosing one of the liquidity measures (2)–(5) to assess the liquid-
ity/illiquidity of security markets, we turn our attention to the addition of liquidity in
the portfolio selection process. In this paper, we follow Lo et al. [9] and build a liquidity
constraint to be included in the portfolio optimization.

First of all, we deem more natural for an investor to reason in terms of a lower liquidity
level to be ensured for the portfolio, rather than in terms of an upper illiquidity level not
to be exceeded. For this reason, we transform the illiquidity measures Amihud, KO,
and CVVol into liquidity indicators by taking their reciprocal. For the sake of notation,
in the rest of the paper by Amihud, KO, and CVVol we actually denote the reciprocal of
Equations (3)–(5).
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Secondly, the liquidity measures presented in Section 2.1 refer to single assets, while
we need a liquidity measure referred to a portfolio of securities. Following a suggestion of
Lo et al. [9], we build a measure of portfolio liquidity defined as the following weighted
average of the liquidity measures of the individual assets held in the portfolio, with weights
given by the proportion of wealth invested in each security detained:

LP =
n

∑
i=1

xiℓi (6)

where xi, with i = 1, . . . , n, is the weight of asset i in the portfolio and ℓi is the value of the
chosen liquidity indicator for asset i, with ℓ ∈ {AveVol, Amihud, KO, CVVol}.

Let us consider the classical mean variance optimization model (MV) [10], that can be
formulated as follows:

min
x

1
2

x
′
Σx

s.t. x
′
µ ≥ M

x
′
e = 1

x ≥ 0

(7)

where x ∈ R
n is the vector of the asset weights, Σ ∈ R

n×n is the variance–covariance matrix
of the asset returns, µ ∈ R

n is the asset mean returns vector, M ∈ R
+ is the portfolio target

return chosen by the investor, e ∈ R
n is the vector of 1 s, and 0 ∈ R

n is the null vector.
The investor minimizes the risk, represented by half the variance, VP = (1/2) x

′
Σx, while

requiring a minimum level M for the expected return of the portfolio, MP = x
′
µ; the usual

budget and non-negativity constraints complete the formulation.
In this paper, we assume that investors, besides the classical preferences for a high

return and a low risk, wish to achieve at least a predetermined liquidity level L ∈ R
+.

This requirement can be translated into a lower-bound constraint for the liquidity of
the portfolio:

LP =
n

∑
i=1

xiℓi ≥ L (8)

The resulting mean–variance–liquidity (MV-L) portfolio optimization problem can be
formulated as follows:

min
x

1
2

x
′
Σx

s.t. x
′
µ ≥ M

x
′
ℓ ≥ L

x
′
e = 1

x ≥ 0

(9)

where ℓ ∈ R
n is the vector of asset liquidities. The quantities M and L depend on the

investors’ preferences for return and liquidity, respectively.

2.3. Sensitivity Analysis and Liquidity–Return Trade-Off

With reference to the portfolio optimization problem (9), it is interesting to analyze
and discuss the relationships among the three investors’ goals of controlling risk, return,
and liquidity. For this purpose, we consider a sensitivity analysis aimed to identify the
trade-offs between the desired expected return and liquidity, on the one hand, and between
the desired risk level and liquidity, on the other hand. Indeed, the usefulness of sensitivity
analysis in the context of optimization problems has long been recognized by the literature;
see for example, among others [59–62].

As for the trade-off between the desired expected return and liquidity goals, we
examine how much the investor has to lower the desired expected return after a small
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increase in the liquidity in order to keep the variance of the portfolio constant. We refer to
this as liquidity–return trade-off (ΘLM). Mathematically, we move along the level curve
associated to a specific value of the risk, representing the curve M = g(L) of all possible
liquidity–return pairs that provide the same optimal portfolio variance. As is often done, we
consider the first-order approximation provided by the tangent line to function g in a given
initial point (L0, M0). We focus on the slope of this line, which represents the marginal rate
of substitution between liquidity and return and provides the liquidity–return trade-off we
are interested in.

Let us first define the optimal value of the objective function V∗
P = f (L, M) as a

function of the target return M and the target liquidity L, which are the focus of this
sensitivity analysis; V∗

P is the solution to portfolio optimization problem (9) and measures
the portfolio risk. The liquidity–return trade-off is the first derivative of curve g and can be
computed as the ratio of the partial derivatives of V∗

P with respect to the target liquidity L
and expected return M:

ΘLM =
dM

dL
= −

∂V∗
P /∂L

∂V∗
P /∂M

(10)

Therefore, we can approximate the change in the target return, ∆M, consequent to a
change ∆L in the target liquidity as follows:

∆M ≈ ΘLM · ∆L (11)

Besides the absolute return change ∆M consequent to an absolute liquidity change ∆L,
it is interesting to also analyze the relative change ∆M/M consequent to a relative change
∆L/L. To this aim, we may define the elasticity ϵLM of the target return M with respect
to the target liquidity L. The notion of elasticity we propose in this context is analogous
to the notion of price elasticity of demand of a product, which is adopted in economics
to measure the sensitivity of the demand to a relative price change (analogously, we may
associate the liquidity–return trade-off, ΘLM, to the concept of marginal rate of substitution
between two goods, defined in economics with reference to the indifference curve in the
consumer’s utility maximization problem, or to the concept of marginal rate of technical
substitution between two production factors (usually capital and labor) with reference to
the isoquant curve in the firm’s profit maximization problem). In our case, we may define:

ϵLM = lim
∆L→0

∆M/M

∆L/L
=

L

M
lim

∆L→0

∆M

∆L
=

L

M
·

dM

dL
(12)

where the elasticity is defined taking the limit of the relative changes for ∆L → 0.
It is immediate to note that the elasticity ϵ can be expressed in terms of the liquidity–

return trade-off ΘLM as follows:

ϵLM =
L

M
· ΘLM (13)

Finally, using Equations (11) and (13), we may express the relative return change
∆M/M in terms of the elasticity ϵ in the following way:

∆M

M
≈ ϵLM ·

∆L

L
(14)

As far as the trade-off between the desired risk level and liquidity is concerned,
we may proceed analogously. The procedure is similar to the one followed for the
liquidity–return trade-off once we formulate the optimization problem in terms of the
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maximization of the expected portfolio return subject to constraints on the portfolio risk
and liquidity, as follows:

max
x

x
′
µ

s.t.
1
2

x
′
Σx ≤ V

x
′
ℓ ≥ L

x
′
e = 1

x ≥ 0

(15)

We define the liquidity–risk trade-off ΘLV :

ΘLV =
dV

dL
= −

∂M∗
P/∂L

∂M∗
P/∂V

(16)

We can approximate the change in the target risk, ∆V, consequent to a change ∆L in
the target liquidity as follows:

∆V ≈ ΘLV · ∆L (17)

By defining the elasticity ϵLV of the target variance V with respect to the target liquidity L:

ϵLV = lim
∆L→0

∆V/V

∆L/L
=

L

V
·

dV

dL
(18)

we may express the elasticity ϵLV in terms of the liquidity–variance trade-off ΘLV :

ϵLV =
L

V
· ΘLV (19)

and using the elasticity ϵLV we may approximate the relative variance change ∆V/V:

∆V

V
≈ ϵLV ·

∆L

L
(20)

Let us observe that, by focusing on the liquidity–return trade-off (liquidity–risk trade-
off), we wish to evaluate the effect of an increase in the target liquidity on the target return
(risk) by keeping constant the risk (return). On the other hand, we may wish to evaluate
the effect of an increase in the return (risk) on the target liquidity by keeping constant the
risk (return). This is equivalent to the computation of a return–liquidity trade-off ΘML

(variance–liquidity trade-off ΘVL) with a similar procedure.
In addition, we may also consider a version of the optimization problem wherein the

portfolio liquidity is maximized subject to the constraints on the portfolio return and risk.
Nevertheless, the aim of this paper is to extend the mean variance framework to include a
liquidity constraint.

3. Empirical Analysis: The Data

With the aim to verify the applicability of the optimization models proposed in
Section 2.2 to real data, and to compare the optimal portfolios obtained with different
liquidity measures, we carry out an empirical investigation on a set of ETFs representing
standard and alternative investment markets.

The empirical investigation concerns US data in the period from January 2016 to De-
cember 2023. The chosen ETFs are thematic assets representing two bond ETFs, eleven ETFs
representing the GICS sectors (although real estate is traditionally viewed as an alternative
investment, the widely used GICS classification explicitly considers the real estate among
the 11 industry macro-sectors [63], so real estate can be considered as a standard asset),
and eight ETFs representing as many alternative assets (Gold, Silver, Commodities, Rare
earth metals, Luxury, Hedge funds, Forestry, Sustainability). The complete list is reported
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in Table 1, where the first column indicates the sector which is represented by the ETF
chosen, and in the last column (Class) the standard sectors are indicated with “S” and the
alternative asset ETFs are indicated with “A”. The historical data on prices and volumes
have been downloaded from Bloomberg with a daily frequency.

Table 1. List of the ETFs considered in the portfolio optimization analysis. S = Standard; A = Alternative.

ETF Sector ETF Name Class

Energy iShares US Energy ETF S
Materials iShares US Basic Materials ETF S
Industrials iShares US Industrials ETF S
Consumer discretionary iShares US Consumer discretionary ETF S
Consumer staples iShares US Consumer staples ETF S
Healthcare iShares US Healthcare ETF S
Financials iShares US Financials ETF S
Information technology (IT) iShares US Technology ETF S
Communication services iShares US Telecommunications ETF S
Utilities iShares US Utilities ETF S
Real estate iShares US Real estate ETF S
Treasuries iShares US Treasury Bond ETF S
Corporate iShares iBoxx $ Investment Grade Corporate Bond ETF S
Gold SPDR Gold Shares A
Silver iShares Silver Trust A
Commodities iShares S&P GSCI Commodity-Indexed Trust A
Rare earth metals VanEck Rare Earth and Strategic Metals UCITS ETF A
Luxury Amundi S&P Global Luxury UCITS ETF A
Hedge funds IQ Hedge Multi-Strategy Tracker ETF A
Forestry iShares Global Timber & Forestry UCITS ETF A
Sustainability Invesco MSCI Sustainable future ETF A

The main descriptive statistics for the daily returns are computed as

rt =
pt − pt−1

pt−1
t = 1, . . . , T (21)

and reported in Table 2. In addition, the last two columns of Table 2 display the results
of the Jarque–Bera (J-B) normality test and the Augmented Dickey–Fuller stationarity test
(ADF), respectively.

We may notice that some alternative investments underperform standard equity ETFs,
while others offer fairly high average returns, at the cost of a high volatility. For instance,
rare earth metals display a 0.057% daily mean return and a standard deviation equal to
2.17%. Moreover, the results of the J-B and the ADF tests indicate, at a 5% significance level,
that the returns are not normally distributed and that their time series are stationary.

Figure 1 reports the correlation matrix of the returns. We may note that Treasury bonds
generally show a low correlation, often negative, with both standard and alternative ETFs.
As for the alternative assets, some of them exhibit low correlation values, not only with
standard investments but also with other alternative asset classes, while others (Hedge
funds, Forestry, Sustainability) present a more varied correlation behavior, low with some
assets and high with others.
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Table 2. Main descriptive statistics of the ETFs daily returns (columns 2–7), results of the Jarque–Bera
normality test (J-B, column 8) and of the Augmented Dickey–Fuller stationarity test (ADF, column 9).
The model of the ADF test includes no drift and the order of the model was selected using the Akaike
Information Criterion (AIC). ∗ indicates that the null hypothesis is rejected at a 5% significance level
(p-value lower than 0.05). Reference period: 2016–2023.

ETF Mean SD Maximum Minimum Skewness Kurtosis J-B ADF

Energy 0.00046 0.0195 0.161 −0.207 −0.464 16.580 16,096.41 * −15.64 *
Materials 0.00049 0.0140 0.112 −0.104 −0.357 10.663 5145.19 * −14.79 *
Industrials 0.00051 0.0127 0.123 −0.125 −0.385 17.279 17,764.13 * −13.79 *
Consumer discretionary 0.00046 0.0125 0.091 −0.112 −0.574 12.849 8542.52 * −14.30 *
Consumer staples 0.00041 0.0100 0.081 −0.101 −0.913 19.199 23,086.62 * −9.93 *
Healthcare 0.00042 0.0107 0.076 −0.099 −0.244 12.644 8100.82 * −14.15 *
Financials 0.00048 0.0135 0.117 −0.135 −0.407 18.365 20,568.62 * −13.88 *
Information technology (IT) 0.00088 0.0154 0.113 −0.136 −0.285 10.721 5206.65 * −11.98 *
Communication services 0.00006 0.0123 0.079 −0.088 −0.185 7.948 2139.10 * −13.96 *
Utilities 0.00037 0.0121 0.121 −0.109 −0.029 20.330 26,092.63 * −11.69 *
Real estate 0.00031 0.0132 0.085 −0.169 −1.124 23.647 37,472.71 * −9.18 *
Treasuries 0.00004 0.0032 0.023 −0.022 0.182 7.905 2101.56 * −14.81 *
Corporate 0.00012 0.0056 0.074 −0.050 0.639 34.751 87,724.23 * −10.81 *
Gold 0.00034 0.0087 0.049 −0.054 −0.065 6.560 1102.23 * −44.81 *
Silver 0.00038 0.0164 0.091 −0.136 −0.196 10.386 4752.76 * −43.72 *
Commodities 0.00027 0.0142 0.068 −0.121 −0.866 10.478 5119.24 * −44.13 *
Rare earth metals 0.00057 0.0217 0.147 −0.160 −0.018 6.716 1199.64 * −45.68 *
Luxury 0.00050 0.0142 0.116 −0.120 −0.128 10.409 4773.97 * −43.86 *
Hedge funds 0.00010 0.0037 0.028 −0.036 −1.041 17.260 18,043.36 * −16.83 *
Forestry 0.00042 0.0141 0.120 −0.136 −0.689 17.361 18,081.47 * −11.93 *
Sustainability 0.00043 0.0144 0.080 −0.109 −0.466 9.460 3700.85 * −10.93 *

Figure 1. Correlation matrix of the ETFs returns. Reference period: 2016–2023.

Table 3 reports the results of the unit root tests carried out on the ETFs’ volume time
series. For almost all the ETFs, the ADF test rejects the null hypothesis of unit roots at the 5%
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significance level, showing that, in general, volumes are stationary over time. These results
are confirmed by the outcomes of a further unit root test we carried out, the Phillips–Perron
(PP) test. The stationarity of the volumes allows us capture the liquidity dimension of
the ETFs in our portfolio by estimating the liquidity measures on the whole sample data,
namely over the entire time period considered.

Table 3. Results of the Augmented Dickey–Fuller (ADF) test and Phillips–Perron Zt test (PP) car-
ried out on volume of the ETFs analyzed. Both tests include a version with and without drift.
The order of the ADF model was selected using the Akaike Information Criterion (AIC); the num-
ber of Newey–West lags used to calculate the standard error in the Phillips–Perron test is equal to
12(T/100)1/4. ∗ indicates that the null hypothesis is rejected at a 5% significance level (p-value lower
than 0.05). Reference period: 2016–2023.

ETF ADF ADF Drift PP PP Drift

Energy −2.768 * −4.231 * −18.423 * −26.530 *
Materials −2.691 * −5.030 * −30.552 * −34.950 *
Industrials −2.223 * −6.011 * −33.764 * −40.174 *
Consumer discretionary −3.365 * −6.510 * −34.334 * −38.472 *
Consumer staples −2.043 * −3.336 * −28.680 * −35.055 *
Healthcare −2.308 * −8.405 * −28.078 * −38.799 *
Financials −2.541 * −5.332 * −17.127 * −31.347 *
Information technology (IT) −2.989 * −9.837 * −31.691 * −38.221 *
Communication services −2.225 * −8.505 * −26.680 * −35.788 *
Utilities −2.852 * −4.580 * −26.949 * −34.604 *
Real estate −1.268 −4.962 * −5.884 * −21.629 *
Treasuries −2.698 * −4.643 * −22.898 * −28.674 *
Corporate −0.749 −2.436 * −5.664 * −14.833 *
Gold −1.673 −6.647 * −7.596 * −22.766 *
Silver −2.173 * −3.595 * −10.423 * −16.799 *
Commodities −2.653 * −3.631 * −14.771 * −19.675 *
Rare earth metals −2.165 * −3.059 * −11.790 * −16.523 *
Luxury −4.711 * −5.976 * −38.189 * −39.154 *
Hedge funds −2.411 * −4.920 * −31.721 * −40.084 *
Forestry −3.297 * −4.926 * −24.574 * −31.888 *
Sustainability −3.095 * −4.463 * −35.441 * −39.048 *

Table 4 reports for each asset the values of the liquidity measures discussed in the
previous section, computed using volumes expressed in million USD (we observe that the
results are dependent on the choice of the specific ETF and different ETFs on the same
sector can have different values of liquidity). We may notice how different the order of
magnitude is for the different liquidity measures and this will be taken into account in the
portfolio liquidity constraint. It is interesting to observe that Corporate bonds are highly
liquid based on all the four measures, while the Luxury ETF is the least liquid investment
(average daily dollar-volume is USD 0.491 million). Overall, it appears that alternative
investments are less liquid than standard ones with reference to all the measures. However,
few exceptions are worth noting: the Real Estate ETF, the most liquid ETF according to
CVVol, differently from all the other measures, and the Hedge Funds ETF, which obtains a
low liquidity value only when the AveVol measure is used. Unexpectedly, Gold, which is
considered an alternative investment, is always among the most liquid assets.

To obtain further insights, we present in Figure 2 the correlations between the liquidity
measures, as well as the correlations of the liquidity measures with the average and
standard deviation of the asset returns. As expected, asset returns and standard deviation
are positively correlated (0.672), while, more interestingly and in accordance with the
existing previous literature (see [8]), we find that all the liquidity measures are negatively
correlated with the average returns, and even more negatively with the standard deviations.
In particular, the KO measure displays the lowest correlation with both mean (−0.494) and
standard deviation (−0.587) of the returns. This is partly due to the definition of KO, which
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is constructed with the variance of the returns. We recall that we consider the reciprocal of
KO, and for this reason we observe the negative correlation with the standard deviation of
the returns. In addition, we notice that all the liquidity measures are highly and positively
correlated. In particular, AveVol is almost perfectly correlated with Amihud (0.966) and KO
(0.905); KO is also highly correlated with Amihud, while CVVol has the lowest correlation
with all the other measures (ranging from 0.629 to 0.768).

Table 4. Values of the liquidity measures for the ETFs analyzed. By Amihud, KO and CVVol we
denote the reciprocal of the original illiquidity measures (3)–(5); all measures have been computed
using volumes expressed in million USD. Reference period: 2016–2023.

ETF AveVol Amihud KO CVVol

Energy 53.042 2804.286 662.593 0.788
Materials 13.982 649.869 530.547 0.567
Industrials 10.497 762.341 513.471 0.674
Consumer discretionary 8.822 608.777 488.460 0.540
Consumer staples 9.203 523.939 575.928 0.635
Healthcare 17.570 1667.368 682.307 0.888
Financials 36.115 3048.578 745.118 1.142
Information technology (IT) 47.320 3474.009 744.759 0.671
Communication services 17.662 1251.854 625.536 0.812
Utilities 13.303 987.124 575.319 0.723
Real estate 837.437 95,391.560 2158.982 2.161
Treasuries 150.716 20,344.820 3112.376 0.641
Corporate 1850.648 441,898.500 4974.119 1.485
Gold 1299.584 207,527.000 3304.449 1.696
Silver 351.183 23,266.910 1395.116 0.912
Commodities 15.531 564.065 543.929 0.666
Rare earth metals 10.035 89.438 354.054 0.716
Luxury 0.491 0.879 171.743 0.258
Hedge funds 5.005 1281.754 913.640 0.739
Forestry 2.239 97.895 286.287 0.684
Sustainability 1.088 28.508 221.752 0.464

Figure 2. Correlations between the liquidity measures, and correlations of the liquidity measures
with the average and standard deviation of the asset returns. By Amihud, KO and CVVol we denote
the reciprocal of the original illiquidity measures (3)–(5). Reference period: 2016–2023.
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4. Empirical Analysis: Portfolio Optimization Results

To examine both the applicability of the optimization models presented in Section 2.2
and investigate and compare the effects of the introduction of the different liquidity mea-
sures in portfolio optimization, we carry out an in-depth empirical investigation on the
ETFs considered in Section 3. The results obtained, which are related to the research ob-
jective no. 3, are presented and discussed in the next Sections 4.1–4.3. As it is usual in
portfolio optimization, the expected return and volatility of all assets are considered in the
optimization models on an yearly base.

In addition, in order to tackle the last research objective, in Section 4.4 we investigate
the effect of the introduction of an asset with an extremely high expected return and
volatility, namely a Bitcoin ETF.

4.1. Comparison of the Portfolio Optimization Results

We employ the portfolio optimization models presented in Section 2.2, namely the
classical MV model and the extended MV-L model obtained including an additional
liquidity constraint based on one of the four liquidity measures considered in Section 2.1,
AveVol, Amihud, KO, and CVVol, respectively.

Figures 3 and 4 show the efficient frontiers {(M, L, V)} obtained with the MV-L model
for the different liquidity measures employed; in detail, Figure 3 displays the 3D surfaces
as the target return M and the target liquidity L vary, and Figure 4 displays the level
curves. In both figures, the minimum level considered for the liquidity measures is set to
the liquidity value exhibited by the minimum variance optimal portfolio. For comparison,
Figure 3 also shows the mean variance frontier obtained with the MV model (7), indicated
with a red dashed line; the minimum variance portfolio exhibits a volatility σ = 3.93% and
a return equal to µ = 1.54%. As can be seen, the model proposed allows us to smoothly
compute the efficient frontiers with all the four liquidity measures considered.

The efficient frontiers obtained with the different liquidity measures display a some-
what similar behavior, with AveVol, Amihud and CVVol that enable the investor to reach
also high return–high volatility portfolios, while KO seems to exhibit a more “conservative”
behavior, since it excludes the possibility to obtain the highest return–volatility pairs. This
is likely due to the relationship between the asset volatility and the asset liquidity measured
with KO, made explicit by the KO definition (4). In order to obtain a high return portfolio,
high volatility assets need to be included, so that this portfolio necessarily exhibits also a
high KO illiquidity value (4), i.e., a low liquidity level.

(a) AveVol (b) Amihud

Figure 3. Cont.
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(c) KO (d) CVVol

Figure 3. Mean–variance–liquidity efficient frontiers {(M, L, V} obtained with the MV-L model (9)
using the liquidity measures AveVol (a), Amihud (b), KO (c), and CVVol (d) as the target return M

and the target liquidity L vary. The red dashed line represents the mean variance frontier obtained
with the MV model (7). Reference period: 2016–2023.

(a) AveVol (b) Amihud

(c) KO (d) CVVol

Figure 4. Level curves of the mean–variance–liquidity efficient frontiers obtained with the MV-L
model (9) using the liquidity measures AveVol (a), Amihud (b), KO (c), and CVVol (d) as the target
return M and the target liquidity L vary. Reference period: 2016–2023.
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We may note that the introduction of the liquidity constraint has the effect of leaving the
riskier portfolios out of the efficient frontier. This effect is more and more pronounced as the
liquidity constraint becomes tighter, and it is particularly evident for the KO liquidity measure.

To examine the effects of introducing a liquidity constraint on the optimal portfolio
composition and compare this effect for the different liquidity measures considered, we
first report in Figure 5 the composition of the MV portfolio as the target return level
changes. In Figures 6–8, we present the composition of the MV-L portfolios obtained
for three different levels of the target liquidity, denoted by low, medium, and high level,
respectively. These target levels are determined considering first the range between the
liquidity of the MV portfolio and that of the asset with the highest liquidity (Corporate
bonds for AveVol, Amihud and KO, and Real estate for CVVol), and then dividing it into
four sub-intervals of equal length; the low, medium, and high target liquidity levels are
chosen as the extremes of the sub-intervals and correspond to the 25%, 50%, and 75%
percentiles of the range, respectively.

Figure 5. Optimal portfolio weights of the MV optimization model (7). Reference period: 2016–2023.

In general, the composition of the optimal portfolios is sufficiently well diversified both
for the MV and the MV-L models, at least when the target return level is set to a “reasonable”
level. Indeed, as the target return increases, the number of assets in the optimal portfolio
tend to diminish. Moreover, as the target liquidity level becomes increasingly higher the
optimal portfolios become less diversified, especially with the KO and CVVol liquidity
measures. This outcome is in line with the results reported by [17], who find that a tighter
liquidity constraint entails a lower diversification in an index-tracking framework.

Overall, the optimal allocation results confirm the role played by liquidity. In particular,
with the MV-L model, we note that “new” ETFs enter portfolio allocations; that is, ETFs
characterized by the highest levels of liquidity—according to the measures considered—are
included in portfolio allocation, or their weight is increased, when compared with the
allocation obtained with the MV model. In particular, this is the case of the Corporate
bond ETF (for AveVol, Amihud, KO) and the Real estate ETF (for CVVol). This effect
becomes more pronounced when tightening the constraint from a low to a high liquidity
requirement, and produces more concentrated portfolios where the role of the most liquid
ETFs is predominant (see Figures 6–8). Although these results present some differences in
the allocation weights, they are consistent across all four liquidity measures considered.

As for the presence of alternative assets in the optimal portfolios, we may observe
that they are rather well represented for “reasonable” target return levels, both for the
MV and the MV-L models, while for higher return targets only the Gold ETF is included
in the portfolio. On the other hand, there are some ETFs that do not contribute to the
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allocation, regardless of the choice of the optimization model; for instance, the Energy,
Materials, Forestry, and Sustainability ETFs. Moreover, when we consider the medium
and higher liquidity targets, the differences in the optimal portfolios obtained with the
various liquidity measures become more marked, in particular AveVol and Amihud tend
to provide more diversified portfolios than KO and CVVol.

(a) AveVol (b) Amihud

(c) KO (d) CVVol

Figure 6. Optimal portfolio weights of the MV-L optimization model (9) for the different liquidity
measures considered, with a low target value for the liquidity constraint. Reference period: 2016–2023.

(a) AveVol (b) Amihud

Figure 7. Cont.
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(c) KO (d) CVVol

Figure 7. Optimal portfolio weights of the MV-L optimization model (9) for the different liquidity
measures considered, with a medium target value for the liquidity constraint. Reference period:
2016–2023.

(a) AveVol (b) Amihud

(c) KO (d) CVVol

Figure 8. Optimal portfolio weights of the MV-L optimization model (9) for the different liquid-
ity measures considered, with a high target value for the liquidity constraint. Reference period:
2016–2023.
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4.2. Liquidity–Return Trade-Off

In Section 2.3, we have presented a methodology that is useful for a sensitivity analysis.
Table 5 reports the partial derivatives of V∗

P with respect to the target levels M and L, that
enable us to compute the sensitivity analysis indicators, the liquidity–return trade-off ΘLM,
the elasticity of the target return with respect to the target liquidity ϵLM, and finally the
relative return change ∆M/M. The reported outcomes are computed in correspondence of
a target return level M = 0.07 and a target liquidity level L which depends on the liquidity
measure considered, equal to 1120.1 for AveVol, 238,790 for Amihud, 3542.8 for KO and
1.32 for CVVol. The partial derivatives ∂V∗

P /∂M and ∂V∗
P /∂L have been numerically

approximated as follows:

∂ f (x1, x2)

∂x1
=

f (x1 + ∆x+1 , x2)− f (x1, x2)

∆x+1
(22)

where f (x1, x2) is a generic function of the real variables x1 and x2 and the relative target
return change ∆M/M is consequent to a 1% relative target liquidity change.

Especially the elasticity and the relative return change indicators have an immediate
and helpful interpretation, since they are relative indicators, independent of the unit of
measure used in the computations. As is expected, they have a negative value, indicating
that to increase the target liquidity we need to diminish the target return, in order to
keep the volatility constant. As we may notice, in the chosen starting point the elasticity,
and consequently the relative change in the return, is in absolute value higher for CVVol
and KO, which exhibit a value that is approximately equal to twice the elasticity obtained
with AveVol and Amihud.

Table 5. Sensitivity analysis: partial derivatives of V∗
P with respect to the target levels M and L,

liquidity–return trade-off ΘLM, elasticity of the target return with respect to the target liquidity ϵLM,
and relative return change ∆M/M consequent to a 1% relative target liquidity change. The outcomes
reported have been computed in correspondence of a target return level M = 0.07 and a target
liquidity level L which depends on the liquidity measure considered, equal to 1120.1 for AveVol,
238,790 for Amihud, 3542.8 for KO and 1.32 for CVVol. Reference period: 2016–2023.

∂V
∗

P
/∂M ∂V

∗

P
/∂L ΘLM ϵLM ∆M/M

AveVol 0.5800 1.96 × 10−5 −3.39 × 10−5 −0.5420 −0.0054
Amihud 0.6104 8.06 × 10−8 −1.32 × 10−7 −0.4507 −0.0045
KO 0.7579 1.55 × 10−5 −2.05 × 10−5 −1.0364 −0.0104
CVVol 0.5192 0.0375 −0.0723 −1.3622 −0.0136

For the sake of brevity, we do not report the computations for the other trade-offs,
which can be obtained with a similar procedure.

4.3. Portfolio Backtesting

In this section, we give a hint of portfolio backtesting. To this purpose, we divide the
dataset into two periods, constituted by the first 7 years of data, from 2016 to 2022, and the
last year, 2023, respectively.

The first period, 2016–2022, is used to estimate the expected return of all ETFs,
the variance–covariance matrix of their returns and their liquidity, evaluated with the
CVVol measure (5). The estimated parameters are used to find the optimal portfolio com-
position for a target return M = 0.07 and a low, medium, and high target liquidity level L,
determined as described in Section 4.1.

Figure 9 shows the optimal portfolio weights computed with the MV-L optimization
model (9) and, for comparison, also those obtained with the MV model (7). We may observe
that, while the MV portfolio includes multiple alternative assets, the MV-L model mainly
focuses on one of them (Gold). Indeed, when a high liquidity is required, Gold turns out to
be predominant, due to the high liquidity value it exhibits.
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The second period, 2023, is then used for backtesting as an out-of-sample holding
period for the portfolios composed in the previous step, which are assumed to be held for
the whole year. At the end of the holding period, we assess and compare the portfolio
values and their liquidity.

Figure 10 displays the daily values of the optimal portfolios selected in the backtesting
investigation. Furthermore, Table 6 reports the main statistics of the returns of the optimal
portfolios selected in the backtesting investigation, computed out of sample in the holding
period. The last columns of Table 6 report the liquidity value of the portfolios computed
with Equation (2) and the reciprocal of Equations (3)–(5). By observing the equity lines
(Figure 10), it appears that the portfolio with a low liquidity requirement does not perform
much differently than the mean variance portfolio; however, its liquidity is much higher
(see liquidity measures in Table 6). On the other hand, the portfolios with a medium
and a high target liquidity are much more volatile, and less diversified (as already noted,
see Section 4.1). This result confirms the importance of striking a balance among the
risk–return–liquidity objectives according to the investor’s preferences.

As said, when we set a high liquidity target, the optimal portfolio shows a higher
variance. This is in accordance with the results of the sensitivity analysis carried out in
Sections 2.3 and 4.2, which showed that, in order to keep the variance constant, to increase
the liquidity target we have to accept a lower target return (see the liquidity–return trade-off
defined in Section 2.3). Here, the target return is kept constant; therefore, what changes is
the portfolio variance, and the relevant trade-off is the liquidity-risk trade-off (16).

To some extent, this seems unintuitive, as we may expect that a higher liquidity is
associated to a lower financial risk, but instead it seems that liquidity and return variability
go in tandem. This result is confirmed by the additional risk measures reported in Table 6,
namely the maximum drawdown and the Value at Risk (VaR). However, we point out that
this result may be due to the specificity of our data or the period considered.

Interestingly, and contrary to what one would expect, in the out-of-sample year
considered, the high target liquidity level portfolio turns out to exhibit a lower liquidity
value than the portfolio with the medium target liquidity, for all the four liquidity measures
considered. For instance, the CVVol of the high target liquidity level portfolio is 3.07, while
the CVVol of the medium one is 3.28.

Figure 9. Optimal portfolio weights for the backtesting investigation, computed with the MV-L
optimization model (9) using the CVVol liquidity measure for a low, medium, and high target
liquidity value; the weights are compared to those obtained with the MV model (7). Reference period:
2016–2022.
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Table 6. Main statistics of the returns of the optimal portfolios selected in the backtesting investigation,
computed out of sample in the holding period. The portfolios have been computed with the MV-L
optimization model (9) using the CVVol liquidity measure for a low, medium, and high target liquidity
value; for comparison, the MV portfolio (7) is also displayed. The last four columns report the liquidity
value of the portfolios computed with Equation (2) and the reciprocal of Equations (3)–(5). Reference
period: 2023.

Mean Return Maximum VaR AveVol Amihud KO CVVol
Return SD Drawdown

MV 0.00037 0.0041 0.0645 0.0060 439.68 135,810 1883.90 2.04
MV-L low 0.00042 0.0046 0.0652 0.0071 833.82 242,160 2162.20 2.83
MV-L medium 0.00047 0.0054 0.0768 0.0083 1624.30 406,190 2433.40 3.28
MV-L high 0.00049 0.0071 0.1121 0.0111 1299.70 255,040 1880.00 3.07

Figure 10. Dynamics of the values of the optimal portfolios selected in the backtesting investigation;
the portfolios have been computed with the MV-L optimization model (9) using the CVVol liquidity
measure for a low, medium, and high target liquidity value; for comparison, the MV portfolio (7) is
also displayed. Reference period: 2023.

4.4. Introducing an Asset with Extremely High Return and High Volatility: The Case of Bitcoin

To investigate how the optimization model with liquidity constraints behaves in
presence of an asset with an extremely high expected return and an extremely high
volatility—relative to those of the other assets—we also have carried out a set of investiga-
tions by extending the set of assets to include a Bitcoin ETF, namely the Grayscale Bitcoin
Trust ETF. These further analyses are conducted on the data for the whole period 2016–2023.

For the Bitcoin ETF considered, we report the main statistics of the returns:

ETF Mean SD Maximum Minimum Skewness Kurtosis

Bitcoin 0.0034 0.0035 0.412 −0.256 0.525 6.928

and the values of the liquidity measures, computed using volumes expressed in mil-
lion USD:
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ETF AveVol Amihud KO CVVol

Bitcoin 110.013 86.249 422.098 0.618

While return mean and standard deviation are high, the liquidity measures exhibited
by the Bitcoin ETF are comprised between the minimum and the maximum values, based
on all the four liquidity measures considered.

Figure 11 shows the mean–variance–liquidity efficient frontiers obtained with the MV-
L model (9), as the target return M and the target liquidity L vary, for the extended asset
set including the Bitcoin ETF. For comparison, Figure 11 also displays the mean variance
frontier obtained with the MV model (7). Furthermore, Figures 12 and 13 report the optimal
portfolio weights of the MV optimization model (7) and of the MV-L optimization model (9),
respectively, for the extended asset set including Bitcoin, and the medium level liquidity
constraint target (in the MV-L model).

(a) AveVol (b) Amihud

(c) KO (d) CVVol

Figure 11. Mean–variance–liquidity efficient frontiers {(M, L, V)} obtained with the MV-L model (9),
as the target return M and the target liquidity L vary, for the extended asset set including Bitcoin;
the liquidity measures used are AveVol (a), Amihud (b), KO (c), and CVVol (d). The red dashed line
represents the mean–variance frontier obtained with the MV model (7). Reference period: 2016–2023.
The red dashed line represents the mean–variance frontier obtained with the MV model.

As can be expected, it is now possible to build portfolios with an extremely high
target return, at the cost of a high risk and also a low liquidity, as seen in Figure 11.
However, the introduction of a liquidity constraint impedes obtaining portfolios with
the most extreme return values. In particular, the KO liquidity measure substantially
limits the return that can be obtained from the portfolio, much more than the other three
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liquidity measures. On the other hand, we may notice that the Bitcoin ETF enters all
the optimal portfolios for the highest target return levels, while the share allocated to
the Information Technology (IT) ETF is sensibly reduced (Figure 13) when the liquidity
dimension is taken into account. Similarly to the case without Bitcoin (see Section 4.1),
the MV-L model assigns a relevant weight to the most liquid ETFs—based on the liquidity
measure selected—to satisfy the liquidity goal. However, it is interesting to note that,
except for the KO, requiring a higher liquidity has the consequences of increasing the
portion allocated to the most liquid ETFs and, jointly, switching the position from the IT
ETF in favor of the more profitable Bitcoin ETF. Hence, overall, we observe that the logic
behind the MV-L optimization model—that is, balancing the liquidity goal with the risk
and return ones—has not changed. However, the specific risk–return characteristics of the
Bitcoin ETF lead to different portfolio compositions compared to the ones obtained when
this asset is excluded from the investable alternatives.

Figure 12. Optimal portfolio weights of the MV optimization model (7) for the extended asset set
including Bitcoin. Reference period: 2016–2023.

(a) AveVol (b) Amihud

Figure 13. Cont.
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(c) KO (d) CVVol

Figure 13. Optimal portfolio weights of the MV-L optimization model (9) for the extended asset set
including Bitcoin; the liquidity measures used are AveVol (a), Amihud (b), KO (c), and CVVol (d) and
the target value for the liquidity constraint is set to the medium level. Reference period: 2016–2023.

5. Conclusions

In this paper, we have investigated the effects of introducing liquidity constraints in
portfolio optimization problems, especially having in mind the fact that alternative assets
often exhibit a lower liquidity than traditional financial assets.

To this aim, in the first part of the paper we review three volume-based liquidity
measures considered in the literature; in addition, we propose an alternative liquidity
measure, namely the coefficient of variation of the volume (in monetary terms), particularly
suited for the inclusion in portfolio optimization problems. All four liquidity measures
considered can be easily computed when, as is usually the case, data on trading volumes
are available.

Starting from the definition of the liquidity measures considered, we extend the
classical mean variance optimization model with the inclusion of an additional constraint
that imposes a target liquidity level chosen by the investor to the resulting portfolio
allocation. Furthermore, an in-depth sensitivity analysis allows us to determine the trade-
off between the target expected return and the target liquidity levels set by the investor,
holding the portfolio risk, measured by the variance, constant.

In the second part of the paper, we present the results of a broad empirical analysis,
carried out on a set of ETFs which are representative of both traditional GICS sectors and
several alternative investment markets. The different assets refer to markets with quite
different liquidity levels and make a good test bench for the liquidity measures and the
optimization model adopted. The results of the analysis show that the liquidity measures
and the MV-L model can indeed be quite easily applied on real data and provide an optimal
portfolio allocation with the desired liquidity and expected return, with the efficient frontier
and the optimal portfolio allocation that depend also on the liquidity measures selected.

The analysis carried out also allows us to draw some conclusions on the liquidity
measures, though specific to our dataset. The optimal allocations obtained with AveVol
and Amihud are rather similar, while KO is more conservative and limits the exposure to
extremely risky portfolios. Finally, CVVol, which also considers the variability of the vol-
umes, provides the investor with a richer information and may thus usefully be considered
in conjunction with the other measures.

In the empirical investigation, we also employ a portfolio back-testing procedure to
investigate how the MV-L model performs out of sample and, finally, we explore the effect
of the introduction of an additional alternative asset with an extremely high risk and return,
that is a Bitcoin ETF. The results have shown that investors should strike a balance among
the risk–return–liquidity objectives, on the one hand, and that the inclusion of Bitcoin in
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the investment set requires additional considerations regarding these three goals, on the
other hand. We again point out that some of these results may be due to the specificity of
our data or of the period considered.

There are several interesting extensions of our analysis left for future research: the
inclusion of liquidity measures in portfolio algorithms more elaborate and refined than the
classical mean variance model; the adoption of different liquidity measures not based on
trading volume, in order to take into account also niche alternative investment markets,
such as the art market, for which volume data are not easily available; moreover, it can be
interesting to consider an extension of the MV-L to a dynamic portfolio allocation model.
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