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Abstract: Periods of financial turmoil are not only characterized by higher correlation across assets but also

by modifications in their overall clustering structure. In this work, we develop a dynamic Latent-Space mix-

ture model for capturing changes in the clustering structure of financial assets at a fine scale. Through this

model, we are able to project stocks onto a lower dimensional manifold and detect the presence of clusters. The

infinite-mixture assumption ensures tractability in inference and accommodates cases in which the number of

clusters is large. The Bayesian framework we rely on accounts for uncertainty in the parameters’ space and

allows for the inclusion of prior knowledge. After having tested our model’s effectiveness and inference on a

suitable synthetic dataset, we apply the model to the cross-correlation series of two reference stock indices. Our

model correctly captures the presence of time-varying asset clustering. Moreover, we notice how assets’ latent

coordinates may be related to relevant financial factors such as market capitalization and volatility. Finally, we

find further evidence that the number of clusters seems to soar in periods of financial distress.
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JEL Classification: C11; C32; G1

1 Introduction

That average correlation across stocks surges during periods of financial distress is something the finance lit-

erature is well aware of (e.g. see Corsetti et al. 2001; Corsetti, Pericoli, and Sbracia 2005; Forbes and Rigobon

2002). See also Corsetti, Pericoli, and Sbracia (2011) for a review of stylized facts on contagion and interdepen-

dence. Drawing on these seminal papers, a large body of literature has investigated contagion effects (e.g. see

Casarin, Sartore, and Tronzano 2018; Münnix et al. 2012; Preis et al. 2012; Zheng et al. 2012). However, there is

also evidence that not only cross-correlation increases on average but also that the clustering structure of the

correlationmatrix varies dynamically (Ahelegbey, Carvalho, and Kolaczyk 2020; Kocheturov, Batsyn, and Parda-

los 2014; Nie 2017). The German and the US stock markets make no exception in this respect. Figure 1 reports the

estimated densities of the yearly cross-correlation of DAX40 (Panel A) and S&P100 (Panel B) constituents through

time. We observe soaring average cross-correlation in periods of distress: i.e. the 2008–2009 financial crisis, the

European debt crisis in 2011, the stock-market sell-off in 2015, and the Covid-19 outbreak in 2020. Bi-modality,

which can be considered a symptom of clustering, emerged during some of the aforementioned years. This is

particularly evident from the DAX40 correlation structure.

We deem that the possibility of providing an in-depth analysis of assets correlation structure and its dynam-

ics is of major relevance and interest to researchers and investors. Many diversification strategies fail during
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Figure 1: Cross-correlation in DAX40 and S&P100. Panel A: densities of DAX40 constituents cross-correlation distribution through time.

Panel B: densities of S&P100 constituents cross-correlation distribution through time. We notice how average cross-correlation increases

during years of financial turmoil and how bi-modality – which can be considered a symptom of clustering – emerges, especially in

DAX40, in those same years.

periods of financial distress as portfolio components get more and more correlated. Thus, analyzing the collec-

tive behavior of assets is a crucial step in asset allocation and risk management. Some explanations regarding

assets’ collective behavior have been proposed by Onnela et al. (2003) and Khandani and Lo (2007). The appli-

cation of clustering methods to financial assets became popular after the early works of Farrell (1974), King

(1966), and Arnott (1980). Our model allows for analyzing assets’ proximity and clustering structure of assets’

correlation matrices.

The large dimension of assets’ correlation matrices calls for dimensionality reduction techniques, which

are growing in popularity due to the increased availability of large datasets. Within these techniques, those

based on low-rank representations and Bayesian inference procedures revealed quite effective inmany classical

econometric problems (Baştürk, Hoogerheide, and van Dijk 2017) and have been successfully extended to high-

dimensional models (e.g. see Billio, Casarin, and Iacopini 2022a; Billio et al. 2022b; Hoff 2021).

In this work, we apply a low-rank representation framework based on Latent Space (LS) models, which has

been introduced by Hoff, Raftery, and Handcock (2002). LS models allow for representing multiple-dimension

data, such as matrices, networks, and tensors, on a lower d-dimensional latent space. See Raftery (2017) for

a review. Several modifications to the basic logistic-link LS model have been implemented. Friel et al. (2016)

provide a dynamic LS model suitable for bipartite-network data. Sewell and Chen (2016) introduced a dynamic

LS model for weighted networks. Smith, Asta, and Calder (2019) explored the geometry of the latent space in

relation to the network structure. One of the first extensions byHandcock, Raftery, and Tantrum (2007) regarded

the introduction of a finite mixture on the set of latent coordinates. This model has been extended by D’Angelo

(2018) to account for an infinite number of clusters using Dirichlet Process priors.

In this work, we develop a dynamic extension of the infinite-mixture LS model. The model allows for clus-

tering in the correlation among asset log returns with an unknown number of clusters and for time variations

in the clustering effects. We follow a Bayesian nonparametric approach to inference, contributing to the litera-

ture on Bayesian nonparametrics based on Dirichlet process priors and their extensions. These techniques find

application in econometrics (e.g. see Bassetti, Casarin, and Leisen 2014; Bassetti, Casarin, and Ravazzolo 2018;

Billio, Casarin, and Rossini 2019; Fisher and Jensen 2022a; Griffin and Kalli 2018; Griffin and Steel 2011; Hirano

2002; Jensen and Maheu 2010; Nieto-Barajas and Quintana 2016; Taddy and Kottas 2009) and in many other

fields, such as biostatistics (Do, Müller, and Tang 2005), biology (Arbel, Mengersen, and Rousseau 2016), medicine

(Xu et al. 2016), and neuroimaging (Zhang et al. 2016). See Hjort et al. (2010) for an introduction to Bayesian non-

parametrics and (Müller and Mitra 2013) for a review of models and applications. Our model is well suited for
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analyzing the temporal evolution of the location of the assets in the latent space (latent positions), their clustering

effects, and the number of clusters.

Ahelegbey, Carvalho, andKolaczyk (2020) propose one of the fewapplications of LSmodels for financial data

analysis. The authors combine LS models and covariance-structure learning algorithms to extract asset latent

positions from a network adjacency matrix. They extract the networks sequentially by a rolling estimation of a

graphical VAR model and then estimate the LS clustering index on each network to measure contagion effects

during periods of financial distress. Our LS model differs from the one proposed by Ahelegbey, Carvalho, and

Kolaczyk (2020) as our model is dynamic, and our focus is on detecting the number of asset clusters over time.

Moreover, we investigate the dependence between the number of clusters and some relevant market features,

providing new empirical evidence.

The structure of the work now follows. Section 2 introduces the proposed model and describes some theo-

retical properties. Section 3 provides a Bayesian inference procedure andproves its efficiency through some sim-

ulation experiments. Section 4 presents the application to the constituents of DAX40 and S&P100 stock indices.

Section 5 concludes the work.

2 A Dynamic Latent-Space Infinite Mixture Model

2.1 A Latent-Space Model

Let Ct t = 1, 2,… , T be a sequence of N-dimensional correlation matrices. Each matrix is estimated in one of T

non-overlapping time intervals on a panel ofN log-return seriesYt = {Y 1t,Y 2t,… ,YNt}. Let𝑤ijt, for i = 1,… ,N

and j < i, be the collection ofM monotone transformations of the unique cross-correlations elements Cijt of Ct.

We assume𝑤i jt

ind∼
(
𝜈ijt, 𝛾

2
t

)
, where (𝜇, 𝜎2) denotes a univariate Normal distribution described by a location

parameter 𝜇 and scale parameter 𝜎2. We further assume that the location parameter for any pair of assets

is decreasing for higher values of the squared distance of the assets on the latent space. We model such a

relationship as follows:

𝜈ijt = 𝛼t − ||xit − x jt||2, (1)

where ‖ ⋅ ‖ denotes the Euclidean distance and xit ∈ ℝdx is a dx-dimensional vector of latent coordinates. We

assume a law of motion for the intercept parameter 𝛼t:

𝛼t = 𝛼t−1 + 𝜀t, 𝜀t
iid∼

(
0, 𝜎2

𝜀

)
, (2)

with 𝛼1 ∼ 
(
0, 𝜎2

𝛼0

)
and 𝜎2

𝛼0
∼ (a𝛼0 , b𝛼0 ), where (a, b) denotes an inverse-Gamma distributionwith shape

parameter a and scale parameter b.

We further assume that latent positions get drawn from an infinite mixture of normal distributions:

xit ∼
∞∑

kit=1
𝜆kit

dx

(
𝝁kit

, 𝜎
2
kit
Idx

)
, (3)

whered(𝝁,Σ) denotes a d-variate Normal distribution with location 𝝁 and scale Σ. Such a model allows not
only for the estimation of the latent coordinates of assets according to a cluster structure but also it allows for

an estimation of the number of clusters in which the latent positions can be partitioned.

2.2 Properties of Our Latent-Space Model

We present some relevant properties of a parametric LS model with an identity link function. In addition, we

relate these properties with some characteristic features of weighted networks, such as the first and second

moments of the nodal strengths.
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Assumption 1. Given an undirected weighted network, t = (V , Et), having vertex set V ⊂ ℕ and weighted

edge sets Et ⊂ V × V and with characteristic weights 𝑤ijt, we assume the existence of a sequence

of dx-dimensional latent variables {X1t,… ,XNt} with Xit ∈  ⊂ dx for each node i ∈ V . The set

𝒳t = {x1t,… ,xit,… ,xNt} consists of i.i.d. realizations of these latent random variables, where each xit is

distributed according to 𝜋(⋅), a given probability measure.

Assumption 2. We assume conditional independence between any two edges given the latent variables. Hence,

∀(j, i) ∈ Et, 𝑤ijt is a normal random variable with mean parameter 𝜈(xit,xjt) and variance 𝛾2
t
, that is 𝑤ijt ∼


(
𝜈(xit,x jt), 𝛾

2
t

)
.

Under Assumptions 1 and 2, our LS model is an LVM model, as defined in Rastelli, Friel, and Raftery (2016),

with an identity link. Moreover, we assume that our set of latent variables is jointly normally distributed. The

normal distribution assumption can be replaced by the assumption of an infinite mixture of normals. Some of

the properties presented later in this paper can be easily extended.

Assumption 3. The realized latent variables belonging to𝒳t are points in the Euclidean d-dimensional space,

for a fixed dx , and they are normally distributed:

p(𝒳t) =
N∏
i=1

fdx

(
xit; 0, 𝜎2t Idx

)
=

N∏
i=1

(
2𝜋𝜎2

t

)− dx
2 e

− 1

2𝜎2
t

x
′
it
xit
.

We specify in more detail the form of the intensity parameter 𝜈(xit,xjt).

Assumption 4. Given the intercept parameter 𝛼t, we assume:

𝜈(xit,x jt) = 𝛼t − ||xit − x jt||2.
Graph theory provides a useful approach to the analysis of the connectivity level in financial markets. See

Bollobás (1998) and Diestel (2017) for an introduction to graph theory. In a network representation framework

of correlations, the nodes of the network are the assets, the node labels are denoted by the index i = 1,… ,N ,

and the weights of the edges among nodes are the transformed correlations 𝑤ijt (see Bonanno et al. 2004;

Namaki et al. 2011). There are many measures available for network connectivity (e.g. see Boccaletti et al. 2006;

Newman 2018). The nodal strength is a local measure used as a first step in analyzing the connectivity of a

network (Barrat et al. 2004). Thus, deriving the properties of such a measure is crucial for understanding the

properties of a random graph model. In the following, we define the nodal strength sit.

Definition 1. (Nodal Strength). Given the set of weights𝑤ijt we define the nodal strength sit of i as the sum of all

the weights𝑤ijt of i, that is:

sit =
∑
j≠i

𝑤i jt. (4)

The expected strength of a node in the weighted network coveys information on the local connectivity of

such a network. A simple global connectivity measure can be obtained as the average of the local measures, as

in the following definition.

Definition 2. (Average Nodal Strength). The network’s average strength is the average of all individual strengths

sit:

st =
1

N

∑∑
j≠i

𝑤i jt. (5)
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Figure 2: Strength properties. Panel A reports the expected strength for different values of 𝛼t and 𝜎
2
t
. Panel B reports the variation in the

variance of the nodal strength for different values of 𝛾2
t
and 𝜎2

t
. For this sensitivity analysis, we assume N = 100 and dx = 2.

We can now provide some results characterizing the expected strength and the strength variance of a node

i under the assumptions implied by an LS model with an identity link function. The proofs of these propositions

can be found in Appendix A.

Proposition 1. Given Assumptions 1–4, the analytical expression of the expected value and variance of the node i

strength conditioning on the intercept 𝛼t and the latent coordinate variance 𝜎
2
t
are

(i) 𝔼
(
sit|𝛼t, 𝜎2t ) = ∑

j≠i

𝔼
(
𝑤i jt|𝛼t, 𝜎2t ) = (N − 1)

(
𝛼t − 2dx𝜎

2
t

)
;

(ii) 𝕍
(
sit|𝛼t, 𝜎2t ) = (N − 1)(𝛾2

t
+ 8𝜎4

t
dx)+ 2(N − 1)(N − 2)𝜎4

t
dx.

The expected strength linearly increases as the intercept 𝛼t increases, while it decreases as the variance of the

latent coordinates and the dimensions of the latent space increase. The variance of the nodal strength linearly

increases with 𝛾2
t
, while it increases exponentially as the variance of the latent coordinates 𝜎2

t
increases.

From Proposition 1, it is possible to derive the first twomoments of the average strength, which can be used

to obtain a normal approximation of the weighted degree distribution.

Proposition 2. The conditional mean and variance of the average strength s̄t are

(i) 𝔼
(
s̄t|𝛼t, 𝜎2t ) = 𝛼t(N − 1)− 2dx(N − 1)𝜎2

t
;

(ii) 𝕍
(
s̄t|𝛼t, 𝜎2t ) = 2(N−1)

N

(
𝛾2
t
+ 4N𝜎4

t
dx

)
.

Figure 2 shows how the expected strength and strength’s variance change as the latent coordinates’ variance 𝜎2
t

increases for different values of 𝛼t and 𝛾
2
t
. As the prior variance of the latent coordinates gets larger, the nodes

get further apart on the latent space, and the connections across nodes get more negative. Also, heterogeneity in

nodal strength increases with larger variance. Moreover, a larger intercept 𝛼t corresponds to a larger expected

strength while a larger 𝛾2
t
is associated with a larger strength’s variability. This effect can hardly be detected for

large values of 𝜎2
t
.

3 Bayesian Estimation

The complexity of the LS model naturally calls for a Bayesian estimation procedure. Sampling the latent coor-

dinates from an infinite mixture of normal distributions requires a specific prior choice for the parameters
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𝝓t =
{
𝝁t, 𝜎

2
t

}
. Following a non-parametric approach, we choose 𝝓t|Pt ∼ Pt(𝝓t), where Pt for t = 1,… , T is a

sequence of randomprobabilitymeasures drawn from aDirichlet Process with concentration parameter𝜓 t and

basemeasure P0 – that is Pt|𝜓 t ∼ DP(𝜓 t, P0). Such a Dirichlet Process prior admits the following representation:

Pt(d𝝓t) =
∞∑
k=1
𝜆t,k𝛿𝝓t,k

(d𝝓t), (6)

where 𝜆t,k are the random weights generated by the stick-breaking construction 𝜆t,k = 𝜂t,k
∏k−1

l=1 (1− 𝜂t,l) in
which each 𝜂t,l is randomly drawn from a beta distribution with parameters 1 and 𝜓 t – that is 𝜂t,l ∼ e(1, 𝜓t)

– while the base measure P0 is given by the product of dx

(
0, 𝜔2Idx

)
and (a𝜎, b𝜎). We endow the log-

concentration log 𝜓 t = ht with the following random-walk dynamics:

ht = ht−1 + 𝜉t, 𝜉t ∼ 
(
0, 𝜎2

𝜉

)
, (7)

t = 1,… , T , where h0 ∼ 
(
0, 𝜎2

h0

)
.

Finally, we propose an inverse-gamma prior for the variance parameter 𝛾2
t
, that is 𝛾2

t
∼ (a𝛾 , b𝛾 ). We

summarize the model through the Directed Acyclic Graph reported in Figure 3.

3.1 Posterior Approximation

Let𝚯 = (𝜽,𝝑) be the set of parameters. The likelihood of our model can be written as:

f (w|𝚯) =
T∏
t=1

∏∏
i< j


(
𝑤i jt|𝜈ijt, 𝛾2t ),

where𝜽 =
(
𝛼t, 𝛾

2
t
,xt,𝝁t,k, 𝜎

2
t,k
, 𝜓t

)T
t=1

denotes the collection of time-varying parameters,𝝑 =
(
𝜎2
𝛼0
, 𝜎2

𝜖

)
denotes

the set of time-invariant parameters and 
(
𝑤i jt|𝜈ijt, 𝛾2t ) denotes the density function of a normal distribution

Figure 3: Directed acyclic graph of the proposed dynamic LS model. It exhibits the hierarchical structure of the observations𝑤ijt (solid

white circle), the intercept 𝛼t , the latent positions xit and variances 𝛾
2
t
(gray circles), the parameters of the LS model 𝝁t,ki

and 𝜎2
t,ki
, the

Dirichlet process prior at time t, DP(𝜓 t , P0), denoted with Pt and its hyper-parameters (dashed white circle). The directed arrows show the

causal dependence structure of the model.
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with mean 𝜈ijt and variance 𝛾
2
t
. The joint posterior distribution stemming from the likelihood combined with

the priors described above is not analytically tractable. Thus we approximate the joint posterior distribution by

Markov-chainMonte Carlo (MCMC). Sampling for theBayesiannonparametric component of themodel is carried

out by using the slice-sampling procedure proposed in Walker (2007) and Kalli, Griffin, and Walker (2011).

Denote with Kt the total number of clusters, Nt,k the number of nodes (assets) assigned to cluster k, x̄t,k the

vector of centroids of the latent coordinates in cluster k, and 𝑣2
t,k

=
(∑Nt,k

i=1 (xit − 𝝁t,k)
T (xit − 𝝁t,k)

)
∕2. Then, for

each iteration, our MCMC algorithm accomplishes the following steps.

(a) For each time interval t from 1 to T:

1 Draw xit from 𝜋(xit|…) via Random-Walk Metropolis Hastings (RW-MH).

2 Draw 𝛼t from 𝜋(𝛼t|…) via RW-MH.

3 Draw 𝛾2
t
from 𝜋

(
𝛾2
t
|…)

via RW-MH.

4 Draw ht = log 𝜓 t from 𝜋(ht|…) via RW-MH.

5 Draw 𝜆t,k and Kt by means of the stick breaking procedure in Walker (2007).

6 Draw exactly

(𝝁t,k|…) ∼ dx

(
Nt,kx̄t,k

Nt,k + 𝜎2t,k∕𝜔
2
,

𝜎2
t,k

Nt,k + 𝜎2t,k∕𝜔
2
Idx

)
,

with k ∈ {1,… ,Kt|Nt,k ≠ 0}, otherwise sample from the prior.

7 Draw exactly (
𝜎
2
t,k
|…)

∼ 

(
a𝜎 +

Nt,kdx
2

, b𝜎 + 𝑣2t,k
)
,

with k ∈ {1,… ,Kt|Nt,k ≠ 0}, otherwise, sample from the prior.

8 Allocate latent coordinates to clusters as in Walker (2007).

(c) Draw exactly
(
𝜎2
𝜖
|…)

∼ 
(
a𝜖 + 1

2
(T − 1), b𝜖 + 1

2

∑T

t=2
(
𝛼t − 𝛼t−1

)2)
.

(d) Draw exactly
(
𝜎2
𝛼0
|…)

∼ 
(
a𝛼0 +

1

2
, b𝛼0 +

1

2
𝛼2
1

)
.

3.2 Likelihood Invariance and Post-Processing

TheMCMC outputwe obtain suffers from twomain issues. The first issue is due to the fact that latent coordinates

enter the parameter 𝜈ijt only through the squared distance. Thus, positions that differ just by means of reflec-

tion, translation, and rotation are equally likely. To overcome this identification issue, it is common to apply a

Procrustes transformation to the sampled positionswith respect to a set of reference positions. A full description

of such a procedure can be found in Hoff, Raftery, and Handcock (2002) and Friel et al. (2016). For example, one

may consider as reference positions those returning the highest value for the likelihood.

The second issue is a two-fold label-switching problem. On the one hand, the same cluster may fall under

a different label in different MCMC iterations. Moreover, the number of clusters may vary from one iteration to

another as a side-effect of the flexibility of our model. We address this issue by applying the Equivalence Classes

Representatives algorithm to the sampled allocations as suggested by Papastamoulis (2014).

3.3 Numerical Efficiency Study

We assess the efficiency and effectiveness of the proposed MCMC algorithm through simulation experiments.

To do so, we assume to observe the latent position of 15 assets in five epochs. The latent positions of the assets

are drawn from a normal distribution centered at (0, 0) in epoch 1 and epoch 3 (single cluster), while the assets

are split into groups of equal size and their latent positions are respectively centered at {(−1,−1), (0, 1), (1,−1)}
– thus forming three clusters on the plane – in epochs 2, 4 and 5. The intercept 𝛼t for t = 1,… , 5 is assumed to
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follow a random walk process starting at 𝛼0 = 5 with increments 𝜀t
iid∼ (0, 1). With the aforementioned param-

eter specification and the LS mode described in Section 2, we can generate a synthetic dataset on which we can

test our algorithm. Figure 4 summarizes the setup of the simulation exercise. Panel A reports the true and the

estimated intercept parameter 𝛼t. Panel B reports the position of our 15 assets on the latent plane in the five

epochs.

Figure 5 reports the 95 % credible region of the time-varying intercept 𝛼t (shaded-area) against the ground

truth (black line). The intercept is correctly estimated. Figure 6 summarises the results at epoch 1. Comparing

the true and the estimated values, one can see that the inference procedure provides satisfactory estima-

tion results for the latent coordinates (Panel A), the number of clusters (Panel B), as well as for the other

model parameters (Panel C). Trace plots depicting the converge results of our algorithm are reported in the

Appendix (see Figure 10).

Figure 4: Synthetic data. Time series of the true values of the intercept parameter 𝛼t (top) and of the positions of our 15 synthetic assets

over 5 periods (different plots).

Figure 5: Model simulation results. Sequence of the 95 % credible intervals (shaded area) of the intercept parameter 𝛼t (top) and

concentration parameter 𝜓 t (middle) over time (horizontal axis). Posterior distribution of the number of clusters (bottom) for the five

periods in simulation. Note that the posterior mode matches with the correct number of clusters in Figure 4.



R. Casarin and A. Peruzzi: Dynamic Latent Space Models — 9

Figure 6: Model simulation results – epoch 2 with a starting setup of 10,000 iterations, after discarding the first 5000 observations as

burn-in. Panel A: latent-position estimates with MCMC draws in black dots and reference positions in grey, while contour lines represent

the frequency of the draws for 𝝁2,1𝝁2,2, and 𝝁2,3. Panel B: bar plot representing the most frequently estimated number of clusters. C: box

plot depicting the marginal posterior distributions for the parameters 𝛼2, 𝛾
2
2
, x2,1,1, x2,1,6, x2,1,11. Circles represent the sample mean of the

marginal posterior, while crosses represent the true value of the parameter.

Table 1: Auto-correlation function (ACF) at lags 1, 10 and 20, the effective sample size (ESS) and the convergence diagnostic (CD) as

defined in Geweke (1992) for the MCMC sampling of 𝛼2, 𝛾
2
2
, h2, x2,1,1, x2,1,6, x2,1,11 respectively on the raw MCMC series after burn-in and

on the series after burn-in and thinning.

Parameter Raw series after burn-in in epoch 2 (5000 obs.)

𝜶 𝜸2
2

h x,, x,, x,,

ACF(1) 0.902 0.821 0.91 0.825 0.872 0.8

ACF(10) 0.417 0.178 0.498 0.217 0.324 0.201

ACF(20) 0.186 0.03 0.319 0.083 0.139 0.064

ESS 228 414 176 420 341 459

CD 1.953 (0.025) 0.206 (0.419) −3.079 (0.001) 1.457 (0.073) 1.186 (0.118) 1.066 (0.143)

Parameter Raw series after burn-in and -period thinning ( obs.)

𝜶2 𝜸2
2

h2 x2,1,1 x2,1,6 x2,1,11

ACF(1) 0.267 0.083 0.366 0.044 0.065 0.115

ACF(10) 0.014 −0.09 0.073 −0.025 −0.093 −0.133
ACF(20) −0.009 0.085 0.02 0.049 0.064 0.009

ESS 118 251 116 251 251 198

CD 1.09 (0.138) 0.634 (0.263) −1.042 (0.149) 1.901 (0.029) 1.191 (0.117) 1.235 (0.108)

Our MCMC algorithm is run for 10,000 iterations and the first 5000 iterations are discarded as burn-in sam-

ples. Table 1 reports the diagnostics concerning the series of MCMC draws at epoch 2. Applying burn-in and

thinning helps reduce auto-correlation and increase the effective sample size. On average, the effective sample

size and the p-values of the CD statistic, as defined in Geweke (1992), are satisfactory.

4 A Stock Market Application

4.1 Data Description

By means of the identity-link LS infinite-mixture model, we investigate the changes in the clustering structure

of the constituents of the DAX40 and the S&P100 as of December 2021. The US and German markets are selected
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as their assets are often reference assets for many investors aiming at a global asset allocation. The features

of these markets have been analyzed in many papers (e.g. see Chesnay and Jondeau 2001; Conlon, Ruskin, and

Crane 2009; Heiberger 2014). Our analysis contributes to this literature by providing a new econometric model

for the analysis of the asset connectivity structure.

Daily closing prices for theDAX40 and S&P100 components are obtained for the period ranging from January

2007 to December 2021. We drop from the dataset all the components with missing observations and obtain 29

price series for the DAX40 and 88 price series for the S&P100.We selected 2007 as the starting year of our analysis

as it allows for considering the 2008–2009 financial crisis while keeping the panel balanced across markets. For

each year t from 2007 to 2021, the correlation matrix Ĉt among log-return series is estimated. Figure 7 reports

two of these correlation matrices for the DAX40 (years 2019 and 2020). We can appreciate the change in average

cross-correlation in correspondence to the Covid-19 breakout (dark grey kicks in 2020).

4.2 Results for the DAX40

The elements of Ĉt belong to the interval [−1, 1] and are mapped into the set of the reals, ℝ, by a monotone
transformation. We apply here the Z-transformation (see Appendix C.1 for further details) to each entry and fit

our LS infinite-mixture model on the sequence of transformed correlations. As an illustrative example, Panel A

in Figure 8 reports the latent coordinates xit estimated in the year 2020 for the DAX40. The model detects the

presence of two main clusters in the latent positioning of the index components. The great majority of stocks

belong to a single cluster, while QIA and SRT3 belong to a second separated cluster. This result is coherent in light

of the Covid-19 outbreak. In fact, the stock price of QIA and SRT3 – two chemical companies – behaved counter-

cyclically w.r.t. the market, probably discounting their expertise in molecular testing. Panel B in Figure 8 reports

the estimated time series for the intercept 𝛼t while Panel C reports the time series representing the maximum-

a-posteriori number of clusters at each point in time. From these two charts, it emerges that as average network

connectivity increases (higher intercept), a higher number of clusters emerges. However, as higher correlation

network connectivity is often associated with periods of financial turmoil, we thus have that also the cluster-

ing structure varies in periods of financial distress. This seems to be true for the years of the financial crisis

(2008–2009), the European debt crisis (2011), the stock market selloff (2015), and the Covid-19 crisis (2020).

Figure 7: Correlation matrices. Panel A: yearly assets correlation matrix in 2019. Panel B: yearly assets correlation matrix in 2020.

Average cross-correlation increased in the year of the Covid-19 breakout.
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Figure 8: Application – DAX40. Panel A: latent positioning of DAX40 components in the year 2020. The algorithm detects the presence of

two clusters (dots and triangles). The majority of the stocks belong to a single cluster, while QIA and SRT3 – two chemicals companies

– belong to a second distinct cluster. Panel B: fan chart representing the estimated time series for the intercept 𝛼t and its 95 % credible

interval. Panel C: time series representing the MAP estimates of the number of clusters at each point in time.

4.3 Results for the S&P100

Panel A in Figure 9 reports the latent coordinates xit estimated in the year 2020 for the S&P100. Larger dots

correspond to assets with largermarket capitalization. Themodel detects the presence of twomain clusters, and

there are hints of the presence of a core-periphery structure.Moreover, the fact that larger dots are located at the

top of the plane suggests a positive correlation between the second latent coordinate and market capitalization.

Panel B in Figure 9 reports the credible intervals for the intercept 𝛼t through time, while Panel C in Figure 9

reports the time series representing the MAP estimates of the number of clusters at each point in time. Also, in

Figure 9: Application – S&P100. Panel A: latent positioning of S & P components in the year 2020. The algorithm detects the presence of

two clusters (dots and triangles). Symbols’ size is proportional to the market capitalization of the assets. We notice the presence of a

core-periphery structure. The core (dots) seems to be composed of financial and industrial assets, while the periphery (triangles) consists

of IT, health care, and other sectors. Panel B: fan chart representing the estimated time series for the intercept 𝛼t and its 95 % credible

interval. Panel C: time series representing the MAP estimates of the number of clusters at each point in time. Panel D: bar plot reporting

the number of assets per sector in cluster 1. Panel E: bar plot reporting the number of assets per sector in cluster 2. Cluster 1, the “core”,

is mostly populated by assets belonging to the financial and industrial sector, while cluster 2, the “periphery” is mostly populated by IT

and healthcare assets.
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this case, there are some hints suggesting an association between higher average network connectivity and a

change in the clustering structure. We also analyze the composition of nodes belonging to the two clusters. As

the bar plots in Panel D and E of Figure 9 suggest, the core (black dots) is mostly populated by Financial and

Industrial assets, while the periphery (black triangles) consists of IT, Healthcare and other sectors.

4.4 Number of Clusters and Latent Coordinates

We perform a correlation analysis associating the time-varying number of clusters (Panels C in Figures 8 and

9) with both market volatility and average cross-correlation. The results are reported in Table 2. We notice how

the number of clusters correlates positively with both time series, confirming the intuition according to which

the assets’ clustering structure changes, especially in periods of financial distress. This result remains valid even

when considering longer time spans (see Appendix C.2 for more details).

We perform a further correlation analysis on the relationship between the latent coordinates and two rel-

evant financial factors, namely market capitalization and volatility. Table 3 reports the Pearson correlation

between the latent coordinates and both Market Capitalization and Volatility in the year 2020 for the DAX40

and the S&P100. In the case of volatility, we notice how at least one of the two coordinates exhibits a sufficiently

strong negative correlation with such a factor. Results are mixed for what concerns the correlation between

latent coordinates andmarket capitalization. DAX40’s latent coordinates show aweak negative correlation with

market capitalization, while the opposite is true for the S&P100. Such correlation provides hints on the existence

of some relationship between the latent factors and assets’ features.

To summarise, we provided a new model to project the correlation between assets onto a latent space and

detect the asset clustering structure. The latent projection conveys information about cross-asset interdepen-

dence. The further apart a stock is located on the latent space, the lower its positive correlation with the others.

Clusters (groups of assets) identify stocks with similar interdependence features.We applied the novel LS frame-

work to two major reference markets for global investors and a time frame that includes several periods of

financial distress.

Cross-sectional clustering and time-varying clustering have been previously addressed in the literature.

Fisher and Jensen (2022b) apply the Bayesian Non-parametric (BNP) factor model to a panel of equity funds

and find the population has two clusters with different skills. Casarin, Costantini, and Osuntuyi (2023) apply

a BNP GARCH model to the S&P100 constituents and find clear-cut evidence of time-varying asset clustering,

with clusters having heterogeneous composition across sectors and style features. These results are in line with

our findings. Nonetheless, our dynamic LS model allows not only for the detection of clusters but also for a

Table 2: Correlation between the estimated number of clusters and both annualized volatility and average cross-correlation over time

for DAX40 and S&P100.

Volatility Average cross-correlation

DAX40 S&P100 DAX40 S&P100

Median number of clusters +54.4 % +48 % +24.5 % +51 %

Table 3: Correlation between the latent coordinates and both market capitalization and volatility in the year 2020 for the DAX40 and the

S&P100.

DAX40 S&P100

MarketCap Volatility MarketCap Volatility

Latet coordinate 1 −15.3 % −14.9 % +0.39 % −68.6 %
Latent coordinate 2 −10,5 % −47 % +36.1 % −34 %
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fine-grained analysis of assets’ interdependence, taking advantage of the planar representation of the assets.

Moreover, we were able to connect the cross-sectional clustering to a different dimension of risk, which is time-

varying interdependence measured as the average pairwise cross-correlation across the set of assets. In periods

of financial turmoils, the number of clusters increases and goes in pairs with average cross-correlation. This is in

line with what other works suggested (Ahelegbey, Carvalho, and Kolaczyk 2020; Christodoulakis 2007), although,

here, the focus is on the effective number of clusters rather than on a synthetic metric for clustering. We also

provide somehints concerning the relationship between latent coordinates,market capitalization, and volatility.

We hypothesize that this result has some connection with those studies analyzing the PCA decomposition of

Assets Correlation Matrices (e.g. see Kim and Jeong 2005).

Our results are consistent across markets and are robust to sample-period selection. Our findings shed light

on the market’s behavior and have relevant empirical implications. The study of similarities in large panels of

financial assets is central for investors aiming at risk diversification and portfolio protection and for policy-

makers monitoring financial stability and systemic risk. Further research should try to address more in-depth

the financial interpretation of latent coordinates and provide tools to effectively exploit such latent factors for

portfolio allocation purposes.

5 Conclusions

In this work, we proposed a new dynamic Latent-Space infinite-mixture model. The latent positions represent

financial assets on a latent space, using the information embedding in return cross-correlation. The mixture

model assumption accounts for clustering effects in the cross-section of assets, and the infinite components prior

assumption allows for estimating the number of clusters. We believe that our model can be considered a novel

and relevant tool for analyzing similarities across financial assets. An analysis of such sort seems appealing to

investors and policymakers. While the former may exploit our model for portfolio diversification purposes, the

latter may consider it an auxiliary tool for monitoring financial stability. We provided an illustrative application

of our model to the constituents of DAX40 and S&P100 and found evidence of time-varying asset clustering. In

particular, we provided further evidence corroborating the hypothesis according towhich asset clustering seems

to increase in periods of financial distress. Such evidence points toward a relationship between contagion effects

and market risk. We also provide hints on a possible interpretation of the latent coordinates in terms of mar-

ket capitalization and asset volatility. Nonetheless, we reckon that further research should tackle the financial

interpretation of latent coordinates. On the methodological side, we believe that the seamless integration of LS

models with portfolio allocation tools may be considered a promising development.
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Appendix A: Proofs of the Model Properties

A.1 Preliminary Results

In the following, we introduce some results, which are used in the proof of the main results of the paper. In

particular, we provide some useful properties of the latent position variables xit.

Proposition 3. The fourth-order mixed moments of the variables xit and xjt, i ≠ j are

(a) 𝔼
(
x
′
it
xitx

′
it
xit|𝛼t, 𝜎2t ) = 𝔼

(
x
′
jt
x jtx

′
jt
x jt|𝛼t, 𝜎2t

)
= 3𝜎4

t
dx + 𝜎4t dx(dx − 1)

(b) 𝔼
(
x
′
it
xitx

′
it
x jt|𝛼t, 𝜎2t ) = 𝔼

(
x
′
jt
x jtx

′
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)
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x
′
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′
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x
′
jt
xitx

′
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x jt|𝛼t, 𝜎2t

)
= 0
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(
x
′
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′
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x jt|𝛼t, 𝜎2t

)
= 𝔼

(
x
′
jt
x jtx

′
it
xit|𝛼t, 𝜎2t

)
= d2

x
𝜎4
t

(e) 𝔼
(
x
′
it
x jtx

′
it
x jt|𝛼t, 𝜎2t ) = 𝔼

(
x
′
jt
xitx

′
jt
xit|𝛼t, 𝜎2t

)
= dx𝜎

4
t
.

The fourth-order mixed moments of the variables xit, xjt, xi′t, and x j′t with distinct subscript indexes i, i
′
, j, j′

are:

(f) 𝔼
(
x
′
it
xitx

′
i′t
xi′t|𝛼t, 𝜎2t

)
= 𝔼

(
x
′
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′
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)
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(
x
′
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)
= d2

x
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(h) 𝔼
(
x
′
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xitx

′
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)
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(
x
′
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′
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= 0

(i) 𝔼
(
x
′
it
x jtx

′
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x
′
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(
x
′
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)
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Proof. Follows from the independee nce and normal assumptions (Assumptions 1 and 3) and the properties of

the multivariate normal distribution.

Some useful properties of the strength variables𝑤ijt are given in the following.

Proposition 4. The first and second order conditional moments of the strength variables𝑤ijt given 𝛼t and 𝜎
2
t
are:

(i) 𝔼
(
𝑤i jt|𝛼t, 𝜎2t ) = 𝛼t − 2dx𝜎

2
t

(ii) 𝕍
(
𝑤i jt|𝛼t, 𝜎2t ) = 𝛾2t + 8𝜎4

t
dx

(iii) ℂo𝑣
(
𝑤i jt,𝑤i′j ′t|𝛼t, 𝜎2t ) = 0

(iv) ℂo𝑣
(
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t
dx

Proof.

(i) By the law of iterated expectations and Assumptions 1 and 3 one gets:

𝔼
(
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(
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x
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x
′
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⎞⎟⎟⎟⎠
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= 𝛼t − 2dx𝜎
2
t

(ii) We can write the variance of the weight given 𝛼t and 𝜎
2
t
as:

𝕍
(
𝑤i jt|𝛼t, 𝜎2t ) = 𝔼

(
𝕍
(
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(
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t
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(
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t
+ 𝕍 ((xit − x jt)

′(xit − x jt)|𝛼t, 𝜎2t )
= 𝛾2

t
+ 𝔼(((xit − x jt)

′(xit − x jt))
2|𝛼t, 𝜎2t )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=A

−
[
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=B

Simple algebra allows us to decompose A as follows:
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Following the results in Proposition 3 and after some computations one obtains: A = 2(3𝜎4
t
dx +

𝜎4
t
dx(dx − 1))+ 2
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t
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t
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x
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ceed by solving
√
B:

√
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We thus find a closed-form solution for the variance: 𝕍
(
𝑤i jt|𝛼t, 𝜎2t ) = 𝛾2t + A− B = 𝛾2
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(iii) By the law of total covariance:
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We proceed by solving C. By expanding the quadratic form:
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which is a decomposition in five terms. Following the results in Proposition 3, and after some algebra, we

obtain: C = 4d2
x
𝜎4
t
. We proceed by solving D:

D =
[
𝔼((xit − x jt)

′(xit − x jt))|𝛼t, 𝜎2t )][𝔼((xi′t − xj ′t

)′(
xi′t − xj ′t

)
)|𝛼t, 𝜎2t )]

= 4d2
x
𝜎
4
t

and find that: ℂo𝑣
(
𝑤i jt,𝑤i′j ′t|𝛼t, 𝜎2t ) = C − D = 0.

(iv) By the law of total covariance:

ℂo𝑣
(
𝑤i jt,𝑤i′ jt|𝛼t, 𝜎2t ) = 𝔼

(
ℂo𝑣

(
𝑤i jt,𝑤i′ jt|𝛼t, 𝜎2t ,xt)|𝛼t, 𝜎2t )

+ ℂo𝑣(𝔼
(
𝑤ijt|𝛼t, 𝜎2t ,xt),𝔼(𝑤i′ jt|𝛼t, 𝜎2t ,xt)|𝛼t, 𝜎2t )

= 𝔼
(
0|𝛼t, 𝜎2t )+ ℂo𝑣(𝔼

(
𝑤ijt|𝛼t, 𝜎2t ,xt),𝔼(𝑤i′ jt|𝛼t, 𝜎2t ,xt)|𝛼t, 𝜎2t )

= ℂo𝑣((xit − x jt)
′(xit − x jt),

(
xi′t − x jt

)′(
xi′t − x jt

)|𝛼t, 𝜎2t )
= 𝔼((xit − x jt)

′(xit − x jt)(xi′t − x jt)
′(
xi′t − x jt

)|𝛼t, 𝜎2t )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=E

−
[
𝔼((xit − x jt)

′(xit − x jt))|𝛼t, 𝜎2t )][𝔼((xi′t − x jt

)′(
xi′t − x jt

)
)|𝛼t, 𝜎2t )]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=F

Following the same line as in the previous point, we proceed by decomposing F as follows:

F = 𝔼((xit − x jt)
′(xit − x jt)(xi′t − x jt)

′(
xi′t − x jt

)|𝛼t, 𝜎2t )
= 𝔼

(
x
′
it
xitx

′
i′t
xi′t + x

′
it
xitx

′
jt
x jt − 2x′

it
xitx

′
i′t
x jt

+ x
′
jt
x jtx

′
i′t
xi′t + x

′
jt
x jtx

′
jt
x jt − 2x′

jt
x jtx

′
i′t
x jt

− 2x′
it
x jtx

′
i′t
xi′t − 2x′

it
x jtx

′
jt
x jt + 4x′

it
x jtx

′
i′t
x jt|𝛼t, 𝜎2t

)

From the results in Proposition 3 and after some algebra one obtains E = 3𝜎4
t
d2
x
+ 3𝜎4

t
dx + 𝜎4t dx(dx − 1)

= 4𝜎4
t
d2
x
+ 2𝜎4

t
dx and F =

[
𝔼((xit − x jt)

′(xit − x jt))|𝛼t, 𝜎2t )][𝔼((xi′t − x jt

)′(
xi′t − x jt

)
)|𝛼t, 𝜎2t )] = 4d2

x
𝜎4
t
. We

thus find that ℂo𝑣
(
𝑤i jt,𝑤i′ jt|𝛼t, 𝜎2t ) = E − F = 4𝜎4

t
d2
x
+ 2𝜎4

t
dx − 4d2

x
𝜎4
t
= 2𝜎4

t
dx .

A.2 Proof of Proposition 1

From Definition 1 and the results in Proposition 4:

(i) the conditional expectation of the strength in our LS model is:

𝔼
(
sit|𝛼t, 𝜎2t ) =

∑
j≠i

𝔼
(
𝑤i jt|𝛼t, 𝜎2t ) = 𝛼t(N − 1)− 2dx(N − 1)𝜎2

t
;
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(ii) the conditional strength variance is

𝕍
(
sit|𝛼t, 𝜎2t ) = 𝕍

(∑
j≠i

𝑤i jt

||||||
𝛼t, 𝜎

2
t

)

=
∑
j≠i

𝕍
(
𝑤i jt|𝛼t, 𝜎2t )+

∑
j≠i

∑
j ′≠i′

ℂo𝑣
(
𝑤i j,𝑤i′j ′ |𝛼t, 𝜎2t )

= (N − 1)(𝛾2
t
+ 8𝜎4

t
dx)+ (N − 1)(N − 2)2𝜎4

t
dx.

A.3 Proof of Proposition 2

From Definition 2 and the results in Proposition 1, we obtain

(i) The expected value of the average strength estimator is

𝔼
(
st|𝛼t, 𝜎2t ) = 1

N

∑∑
j≠i

𝔼
(
𝑤i jt|𝛼t, 𝜎2t ) = 𝛼t(N − 1)− 2dx(N − 1)𝜎2

t

(ii) The variance of the average strength estimator is

𝕍
(
st|𝛼t, 𝜎2t ) = 1

N2
𝕍

(∑∑
j≠i

𝑤i jt

||||||
𝛼t, 𝜎

2
t

)
= 4

N2
𝕍

(∑∑
j>i

𝑤i jt

||||||
𝛼t, 𝜎

2
t

)

= 4

N2

⎡⎢⎢⎣
∑∑

j>i

𝕍
(
𝑤i jt|𝛼t, 𝜎2t )+

∑∑
j>i

∑∑
j ′>i′

ℂo𝑣
(
𝑤i j,𝑤i′j ′ |𝛼t, 𝜎2t )

⎤⎥⎥⎦
= 4

N2

[
N(N − 1)

2

(
𝛾
2
t
+ 8𝜎4

t
dx

)
+ N(N − 1)

2
(2N − 4)2𝜎4

t
dx)

]

= 2

N2

[
N(N − 1)(𝛾2

t
+ 8𝜎4

t
dx)+ 2N(N − 1)(2N − 4)𝜎4

t
dx)

]

= 2N(N − 1)

N2

[(
𝛾
2
t
+ 8𝜎4

t
dx

)
+ 2(2N − 4)𝜎4

t
dx)

]

= 2(N − 1)

N

[
𝛾
2
t
+ 8𝜎4

t
dx + 4N𝜎4

t
dx − 8𝜎4

t
dx

]

= 2(N − 1)

N

[
𝛾
2
t
+ 4N𝜎4

t
dx

]
.

Appendix B: Computational Details

B.1 Proof of the Full Conditional Distributions

In this appendix, we derive the full conditional distributions of the Gibbs Sampler for the infinite-mixture LS

model with the identity link function. The Gibbs sampler relies on the stick-breaking representation, and the

data augmentation step includes the slice and allocation variables as proposed inWalker (2007) andKalli, Griffin,

andWalker (2011). We handle the infinity mixture problem by introducing a set of auxiliary variables (Ut, St,Ht)
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in the full posterior so that 𝜽∗ =
(
𝛼t, 𝛾

2
t
,xt,𝝁t,k, 𝜎

2
t,k
, 𝜓t,Ut,Kt,Ht

)T
t=1
, 𝝑 =

(
𝜎2
𝛼0
, 𝜎2

𝜖

)
and𝚯∗ = {𝜽∗

,𝝑}. Intro-
ducing such a set of variables allows for a finite representation of the infinite mixture. Given the prior choice

described above, the full posterior can be written as:

𝜋(𝚯∗|w) ∝
T∏
t=1

∏∏
i< j


(
𝑤i jt|𝜈ijt, 𝛾2t )𝕀{ui,t<𝜆t,si,t } fdx

(
xt,si,t

|𝝁t,si,t
, 𝜎

2
t,si,t

Idx

)

⋅
∏
k>1

(
𝜋(𝝁t,k)𝜋

(
𝜎
2
t,k

)
(1− 𝜂t,k)𝜓t−1

)
𝜋(𝜓t)𝜋(𝛼t)𝜋

(
𝛾
2
t

)
𝜋(ht)𝜋(𝝑),

where Ut = (u1,t, u2,t,… , uN,t), Ht = (𝜂1,t, 𝜂2,t,…), St = {s1,t,… , sN,t} is a set of allocation variables. We further

define t,k = {i = 1,… ,N|si,t = k} as the set of indexes of the observations allocated to the kth component of
the mixture, t = {k|card(t,k

)
≠ 0} the set of indexes with non-empty mixture components, card(t) is the

cardinality of t and we think to S∗
t
= sup(t) as the number of used components. Moreover, we define the

maximumnumber of components to draw asKt = max{i = 1,… ,N|Ki,t}, whereKi,t is the smallest integer such

that
∑Ki,t

h=1𝜆h,t > 1− ui,t. Finally, we can sample from the joint posterior by splitting Ht =
(
H∗
t
,H∗∗

t

)
, for which

H∗
t
=

(
𝜂1,t,… , 𝜂S∗

t
,t

)
and H∗∗

t
=

(
𝜂S∗

t
+1,t,… , 𝜂K∗

t
,t

)
and sampling from 𝜋

(
H∗
t
|…)

, 𝜋(Ut|…) and 𝜋
(
H∗∗
t

|…)
in

order.

Full conditional distribution of H∗
t

From the data augmentation framework we obtain a beta distribution for the stick-breaking components:

𝜋(𝜂t,k|…) ∝ (1− 𝜂t,k)𝜓t+bk,t−1𝜂
ak,t

t,k

where ak,t = a+∑N

i=1𝕀(si,t = k) is the number coordinates in cluster k and bk,t = b+ N −∑N

i=1𝕀(si,t < k) is the

number of coordinates in clusters with label smaller or equal than k, with k = 1,… , S∗
t
.

Full conditional distribution of Ut

The conditional distribution of the slice variables is the uniform distribution:

𝜋(ui,t|…) ∝ 1

𝜆si,t

𝕀{ui,t<𝜆si,t }, i = 1,… ,N

Full conditional distribution of H∗∗
t

The conditional distribution of the slice variables is the beta distribution:

𝜋(𝜂t,k|…) ∝ (1− 𝜂t,k)𝜓t−1.

with k = S∗
t
+ 1,… ,Kt

Full conditional distribution of St

𝜋(si,t|…) = 𝕀{ui,t<𝜆si,t } fdx
(
xsi,t

|𝝁si,t
, 𝜎

2
si,t
Idx

)
.

Full conditional distribution of ht
The conditional distribution of the latent log-concentration process

𝜋(ht|…) ∝ exp(Ktht)
Γ
(
exp(ht)

)
Γ
(
exp(ht)+ N

)[ f(ht|0, 𝜎2h0
)]𝕀(t=1)[

f
(
ht|ht−1, 𝜎2𝜉

)]𝕀(t>1)

×
[
f
(
ht+1|ht, 𝜎2𝜉

)]𝕀(t<T)
,

where N is the number of nodes and Kt is the number of mixture components and f (⋅) denotes a Gaussian
pdf. The distribution is not tractable and samples can be obtained by a Metropolis-Hasting step with a Gaussian

proposal.
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Full conditional distribution of 𝜇t,k

𝜋(𝝁t,k|…) ∝ 𝜋(𝝁t,k)
∏
i∈Sk

fdx

(
xt,si,t

|𝝁t,si,t
, 𝜎

2
t,si,t

Idx

)

∝ fdx

(
𝝁t,k|0, 𝜔2Idx

)∏
i∈Sk

fdx

(
xt,si,t

|𝝁t,si,t
, 𝜎

2
t,si,t

Idx

)

∝ dx

(
Nt,kx̄k

Nt,k + 𝜎2t,k∕𝜔
2
,

𝜎2
t,k

Nt,k + 𝜎2t,k∕𝜔
2
Idx

)
,

for k = 1,… ,Kt as in Handcock, Raftery, and Tantrum (2007), where Nt,k the number of latent coordinates

assigned to cluster k and x̄t,k is the vector of average latent coordinates in cluster k.

Full conditional distribution of 𝜎2
t,k

𝜋

(
𝜎
2
t,k
|…)

∝ 𝜋
(
𝜎
2
t,k

)∏
i∈Sk

fdx

(
xt,si,t

|𝝁t,di,t
, 𝜎

2
t,si,t

Idx

)

∝ 

(
a𝜎 +

Nt,kdx
2

, b𝜎 + 𝑣2t,k
)
, k ∈ {1,… ,Kt|card(St,k)}

for k = 1,… ,Kt as in Handcock, Raftery, and Tantrum (2007), where Nt,k the number of latent coordinates

assigned to cluster k, x̄t,k the vector of average latent coordinates in cluster k, and 𝑣2
t,k

= (2)−1
∑Nt,k

i=1 (xi,t −
𝝁t,k)

T (xi,t − 𝝁t,k).

Full conditional distribution of 𝛼t
The full conditional of 𝛼t is sampled via a random walk Metropolis–Hastings.

𝜋(𝛼t|…) ∝
(∏∏

i< j


(
𝑤i jt|𝜈ijt, 𝛾2t )

)
( f

(
𝛼t|0, 𝜎2𝛼0

)
)𝕀(t=1)( f

(
𝛼t|𝛼t−1, 𝜎2𝜖))𝕀(t>1)( f (𝛼t+1|𝛼t, 𝜎2𝜖))𝕀(t<T).

Full conditional distribution of 𝛾2
t

The full conditional of 𝛾2
t
is sampled via a random walk Metropolis-Hastings.

𝜋
(
𝛾
2
t
|…)

∝
(∏∏

i< j


(
𝑤i jt|𝜈ijt, 𝛾2t )

)
𝜋
(
𝛾
2
t

)
.

Full conditional distribution of 𝜎2
𝜖

𝜋
(
𝜎
2
𝜖
|…)

∝ 

(
a𝜖 +

1

2
(T − 1), b𝜖 +

1

2

T∑
t=2

(
𝛼t − 𝛼t−1

)2)
.

Full conditional distribution of 𝜎2
𝛼0

𝜋

(
𝜎
2
𝛼0
|…)

∝ 
(
a𝛼0 +

1

2
, b𝛼0 +

1

2
𝛼
2
1

)
.
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B.2 Further Simulation Results

Figure 10: Simulation output. Trace plots for 𝛼2 (Panel A), 𝛾
2
2
(Panel B), h2 (Panel C) and 𝜓 2 (Panel D), coordinates x1,2 (Panels E and F),

coordinates x6,2 (Panels G and H), coordinates x11,2 (Panels I and J).
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Appendix C: Further Details for the Empirical Application

C.1 Z-Transformations

The Fisher Z-transformation of a Pearson correlation coefficient Cijt is defined as its inverse hyperbolic tangent

(arctanh):

𝑤ijt =
1

2
ln

(
1+ Cijt

1− Cijt

)
= arctanh(Cijt)

The transformationmakes correlation coefficients approximately normally distributedwith stable variance

(Figure 11).

Figure 11: Z-transformation function.

C.2 Robustness Check: Longer Time Span

We assess whether our results in Section 4 are subject to substantial changes when a longer time window is

considered. We increased the time span both for the DAX40 (from 2000 to 2022) and for the S&P100 (1990–2022).

As constituents enter and exit from the two indices, the choice of the starting date is a trade-off between the

number of constituents considered and the length of the time span. The number of constituents that were kept in

the two indices for thewhole length of the time spans is 25 for the DAX40 and 53 for the S&P100. Figure 12 displays

the time series of volatility, average cross-correlation, and the average number of clusters for the constituents of

both theDAX40 (left panel) and the S&P100 (right panel). The average number of clusters represents the Bayesian

estimate of the number of clusters estimated using a rolling version of our dynamic LS model. The correlation

of volatility and average cross-correlation with the average number of clusters is respectively 0.546 and 0.542

for DAX40 while 0.306 and 0.247 for the S&P100. Overall, these results seem to speak in favor of the existence of

a positive correlation between clustering and periods of financial turmoil.
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Figure 12: Robustness check: over-time volatility, average cross-correlation, and the average number of clusters for the constituents of

both the DAX40 (left panel) and the S&P100 (right panel). The time series span from 2000 to 2022 in the case of the DAX40 and from 1990

to 2022 in the case of the S&P100. The average number of clusters represents the Bayesian estimate of the number of clusters from a

rolling version of our dynamic latent-space model. The correlation of volatility and average cross-correlation with the average number of

clusters is respectively 0.546 and 0.542 for DAX40 while 0.306 and 0.247 for the S&P100.

Appendix D: Code and Datasets

The authors published code and data associatedwith this article on CodeOcean, a computational reproducibility

platform. We recommend Code Ocean to SNDE contributors who wish to share, discover, and run code in pub-

lished research articles (see: https://doi.org/10.24433/CO.1842159.v1). Code and data are also available on GitHub

(see: https://github.com/antonioperuzzi94/SNDE_LSM_AssetClustering).
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