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Abstract: This paper investigates the determinants of the European iTraxx corporate CDS index considering a

large set of explanatory variables within a Markov switching model framework. The influence of financial and

economic variables on CDS spreads are compared using linear, two, three, and four-regime models in a sample

post-subprime financial crisis up to the COVID-19 pandemic. Results indicate that four regimes are necessary to

model the CDS spreads. The fourth regime was activated during the COVID-19 pandemic and in high volatility

periods. Further, the effect of the covariates differs significantly across regimes. Brent and term structure factors

became relevant after the outbreak of the COVID-19 pandemic.
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1 Introduction

The credit default swap (CDS) is themost used derivative in credit risk hedging. According to Vogel, Bannier, and

Heidorn (2013), CDS spreads have become a valuable indicator of the creditworthiness of the reference entity,

as well as a barometer of health for the broad credit markets since this information is generated from banks’

trading and hedging activity. Indeed, an increase in CDS spreads can be interpreted as a higher demand for credit

protection, as financial institutions perceive a higher risk of these loans. Moreover, credit ratings tend to be slow

to change. Therefore, a deep understanding of the CDS spreads determinants is crucial for both policymakers

interested in preserving the stability of the financial system and for financial insiders interested in managing

credit and financial risks.

Although previous studies have analyzed the factors impacting CDS spreads under a constant and regime-

switching parameter framework, this paper extends the literature on the CDS spread determinants in four

directions and provides new evidence on the functioning of CDS markets. First, we update the (Alexander et al.

2008) analysis in a new time range, from the 2007–2009 crisis to the COVID-19 pandemic. Second, we extend the

(Collin-Dufresne, Goldstein, and Martin 2001) analysis by applying a Markov switching regression model and

allowing for non-linear behaviors in the CDS spreads. Third, we introduce a Bayesian Markov switching model,

which naturally accounts for parameter uncertainty and makes inference more tractable. Fourth, we extend

Yau and Holmes (2011) by applying different priors distributions that induce variable selection and parameter

shrinkage towards a common mean effect across regimes.
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Weprovide evidence of four volatility regimes in the CDS time series: low, normal, high, and extreme volatil-

ity regimes. The extreme volatility regime is mainly, but not only, associated with the economic impact of the

COVID-19 pandemic, extending evidence in (Gormsen andKoijen 2020) for European andUS stock and bondmar-

ket returns and in (Onali 2020) for VIX index, among others (Baker et al. 2020). compare the COVID-19 period to

past diseases (Spanish flu and Ebola), finding that the COVID-19 pandemic has caused a stock market impact

never seen before, with levels of volatility comparable to the ones of the 2007–2009 crisis. Our analysis confirms

it for CDS spreads and captures the COVID-19 dynamics with a separate regime. Finally, the impact of covariates

differs significantly across regimes, and a linear specification tends to over-select variables, causing possible

misinterpretation of the relevance of macroeconomic variables.

The remainder of this work is organized as follows. Section 2 reviews the main literature on CDS deter-

minants. Section 3 provides a description of the credit risk measures and of the CDS determinants used in the

empirical analysis. Section 4 introduces the Makov-Switching regression (MSR) framework for modeling credit

risk. Section 5 reports the estimation results. Section 7 concludes.

2 Literature on CDS Determinants

Multiple papers have studied the CDS market inefficiencies and the arbitrage opportunities employing statis-

tical models, i.e. statistical arbitrage. The main findings in the CDS literature are that several CDS markets

are not efficient and present significant autocorrelated dynamics and time-varying efficiency. Byström (2005)

analyzes separately seven Europe iTraxx sub-indexes (i.e. industrials, autos, energy, TMT, consumers, senior

financials, and sub-ordinated financials), finding positive autocorrelation and that some firm-specific informa-

tion is embedded first in stock prices respect to CDS prices. Byström (2006), considering the same sub-indexes,

tries to exploit this inefficiency by applying a simple trading strategy, which generates profits before consider-

ing transaction costs. In a similar way, Avino and Nneji (2014) consider the Financial Seniors and Non-Financials

indexes. They build a trading strategy based on linear and non-linear prediction models and generate results

similar to the ones in (Byström 2006). In addition, they find that return autocorrelation is significant only during

low volatility periods, while in volatile ones, it ceases to exist. Senso et al. (2017) analyzes several sovereign CDS

markets employing a permutation entropy approach in combination with an independence test, highlighting

the fact that they have different degrees of time-varying efficiency and that efficiency also changes depending

on the region to which the index refers.

The linkage between CDS and credit spreads has also been studied. Blanco, Brennan, and Marsh (2005)

discover the evidence of cointegration for all the U.S. firms where CDS and bonds market-priced risk equally on

average. Conversely, in Europe, there is little evidence of cointegration for the entities involved in the research.

Nevertheless, the cointegration test partially failed due to possibly different contract specifications between

Europe and the U.S. (i.e. cheapest-to-deliver option). In light of the reasons given above, a full understanding

of CDS spread determinants is of interest to financial actors and policymakers. The former are interested in

an efficient risk assessment, while the latter aim at the financial stability of the economic system. Moreover,

CDS spreads have become a powerful price discovery tool (Blanco, Brennan, and Marsh 2005; Lee, Naranjo, and

Velioglu 2018; Schreiber et al. 2012). Their findings are united by the fact that the CDS market leads stock and

bond markets and equity market volatility.

There is a large literature on credit risk pricing, divided into structural and reduced-form models. If firm-

specific information is used, themodel considered is structural. On the other hand, reduced formmodels assume

less detailed information about the firm, and the estimation of the model relies on market data (Jarrow and

Protter 2004).

The first structuralmodel, which has been extended in several different directions, is given byMerton (1974)

(see also Black and Scholes 1973). The model assumes that the dynamics of a firm’s value can be described using

stochastic differential equations andfinds that the risk premiumdepends on three variables: the firm’s volatility,

the present value of the financial leverage, and the risk-free rate (used in the calculus of the present value).
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The structural approach has been criticized by (Collin-Dufresne, Goldstein, andMartin 2001), among others.

The authors compare the explained variance by two multiple regression models, one estimated just consid-

ering firm-specific variables and the other adding macroeconomic factors. The result is that the second one

outperforms the first one in terms of credit spread explained. Nevertheless, most variation is due to a common

unknown systematic factor. Abid et al. (2006) estimate a multiple regression model finding that macroeconomic

variables have greater explanatory power than firm-specific ones. Similar results are achieved by Fu, Li, and

Molyneux (2020), Ericsson, Jacobs, and Oviedo (2009) and Blanco, Brennan, and Marsh (2005). In particular, this

latter finds that macroeconomic variables, such as interest rates, term structure, equity market returns, and

market volatility, have a larger and immediate impact on credit spreads. In contrast, CDS spreads are more sen-

sitive to firm-specific variables. However, considering the long-run arbitrage-based equivalence, they are equally

sensitive to macro and firm-specific factors. In any case, theoretical determinants, which are used in structural

models, must be considered to analyze credit risk.

Zhang, Zhou, and Zhu (2009) analyze changes in single-name CDS spreads considering both jump risk effects

and firm-specific variables, explaining an additional 14 %–18 % of spread variation. Kajurová (2014) analyzes

the CDS spread determinants by applying linear regression models in the periods before, during, and after the

subprime crisis. The explanatory power of the variables considered changes upon the economic conditions.

Similarly, Annaert et al. (2013) apply a rolling linear regression analysis of the bank CDS spreads and find that

the explanatory variables’ sign changes given the economic conditions. The authors suggest that for efficient

policy decisions, policymakers should not rely only on financial institutions’ spreads to monitor their credit risk

but also on liquidity and business cycle factors.

Extending the literature on the application of regime-switching models for macro-financial variables,

Alexander et al. (2008) introduce a regime-dependent framework to analyze daily corporate CDS spreaddetermi-

nants of different CDS indexes, see also Ang and Bekaert (2002a,b). They apply a two-state MSR and find that the

influence of theoretical determinants has a regime-dependent behavior and that the unknown systematic factor

found in Collin-Dufresne, Goldstein, and Martin (2001) is due to the regime-specific behavior of CDS spreads.

Building on this, Riedel, Thuraisamy, and Wagner (2013) apply a Markov switching model to estimate the

credit cycle and study the spread determinants in emerging sovereign debt markets daily. In their findings,

credit spreads are characterized by a varying influence of the spread determinants. Ma et al. (2018) examine

short-term sovereign CDS spreads considering country-specific and global variables, finding that the signifi-

cance of the considered variables changes according to a regime-switching dynamic. Sabkha, de Peretti, and

Hmaied (2019) analyze the non-linear relationship between oil shocks and sovereign CDS spreads. They find

that during the high volatility regime, sovereign debt is sensitive to these shocks. Avino and Nneji (2014) com-

pare Markov switching and linear models for predicting the CDS index changes. They found that linear models

have better predictive power than non-linear models. Chan et al. (2014) study CDS spreads determinants in a

Markov switching framework for investment-grade and high-yield companies. They use a large set of macroe-

conomic and firm-specific variables and find that the impact of monetary policy is significant in both tranquil

and turbulent regimes. Guidolin, Melloni, and Pedio (2019) estimate a Markov switching vector error correction

model and find evidence of non-linearities in the adjustment mechanism between corporate and CDS spreads.

Therefore, compared to the existing literature, this paper includes a larger set of determinants of the CDS

spread, which are discussed in detail in the following section, it includes an updated period that includes the

COVID-19 shock, and it allows for regime-dependent effects of the covariates in more than two regimes under

different shrinkage priors.

3 European CDS Markets

3.1 Credit Risk Measures

A single-name credit default swap (CDS) is a contract in which two parties are involved. On the one hand, the

protection buyer pays periodic fixed payments to the counterparty until the CDS expires due to a credit event

or maturity. On the other hand, the protection seller, who receives the fixed payments and, as the credit event
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occurs, must buy the bonds owned by the counterparty at their face value. The fixed spread represents the

compensation for the insurance in case of a credit event. Conversely, multi-name CDSs, which consider multi-

ple entities, are contracts that include CDS indexes, basket products, and CDS tranches. In this case, the credit

event of a single reference entity does not terminate the contract. So, a CDS is an insurance contract against the

risk of default of the underlying reference entity. The total value of the bonds that can be sold is known as the

notional principal, and the settlement can be physical if the protection buyer delivers the bonds to the protection

seller, or cash settlement in which just the difference between the face value and the value of the bonds at the

time of default is paid. A key aspect is the aforementioned credit event, usually defined as either bankruptcy or

restructuring of debt.

Its origin dates back to the mid-90s. In 1994, Morgan created CDSs to reduce credit risk exposure extending

its loan capability. The CDS was written with the European Bank of Reconstruction and Development (EBRD),

and the deal aimed to allow the bank to offer a line of credit of USD 5 billion to Exxon, maintaining balance

sheet flexibility (Vogel, Bannier, and Heidorn 2013). Over the years, CDSs have become more and more complex

instruments and saw a steady increase in volumes and notional outstanding, reaching the peak of USD 60 trillion

before the subprime crisis.

In 2008, the insurance giant AIG was one of the main CDS sellers. The use of those derivatives at that time

was to concentrate risk rather than disperse it, pushing AIG on the brink of collapse as the subprime bubble

burst (see for example Krishnamurthy 2010).

Given their primary role in the 2007–2009 crisis and the fact that they are traded only on over-the-counter

(OTC) markets, causing a lack of transparency, has forced the regulator to standardize the market, introducing

central counterparties (CCPs) to erase the counterparty risk (Aldasoro 2018). These changes were introduced for

European markets in 2009 with the small-bang protocol, including two main features: the standardized coupon

rates and the quoting conventions.

This paper focuses on the European iTraxx corporate index (labeledΔiTraxx in Equations and Tables). Each
considered index has a 5-year maturity because deemed as the most liquid in the market. The Markit iTraxx is

a family of Asian, European, and Emerging Market credit default swap indexes. The iTraxx group was formed

by the merger in 2004 of JP Morgan and Morgan Stanley Trac-X indexes and the ones created by Deutsche Bank,

ABN Amro, and IBoxx (i.e. iBoxx CDS indexes). In November 2007, Markit acquired both CDX and iTraxx, and

by 2011 Markit owned and managed most of the CDS indexes. They aim to transfer risk more efficiently rather

than using multiple single-name CDSs. The Markit iTraxx Europe Main index1 trades with maturities of 3, 5, 7,

and 10 years. It is an equally-weighted index composed of the 125 most liquid listed companies, with a weight

of 0.8 % for each constituent firm’s CDS (icmagroup.org). Every six months the index is updated, rolling out the

firms that either defaulted/merged or did not respect the liquidity parameter, and including new ones.2

3.2 Explanatory Variables

We review the explanatory variables to be used to predict the CDS spread. Several multi-factor analyses from

a firm-specific (microeconomic) and market-specific (macroeconomic) perspective have been used to study the

determinants of credit default swap (CDS) spreads. In this paper, we take amacro perspective sinceweworkwith

aggregate indices. Table 1 lists a short selection of studies following a macro approach and the market-specific

factors considered, skipping firm-specific variables.

In our analysis, the first three variables are derived from the theory related to structural models: the firm’s

debt-to-equity ratio, the firm’s operation volatility, and the risk-free interest rate (Merton 1974). The proxy for

the debt-to-equity component is represented by returns of three different equally-weighted portfolios com-

posed of the stocks of the firms included in the iTraxx indexes (iTraxx Main index, iTraxx Financial Seniors

index, and iTraxx Non-financials index). There are some cases in which stock price series are not available. To

1 Also known as “the Main”.

2 On 21st September and 21st March of each year.

http://icmagroup.org
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Table 1: List of relevant papers on CDS spread, including the type of econometric models and macroeconomic variables applied.

Paper Model Variables

Collin-Dufresne, Goldstein, and Martin (2001) Linear Interest rate level (10 y yield) and slope

(10 y–2 y yields), volatility index, implied

volatility jumps, bond market liquidity,

small-big and high-low equity market factors

Alexander and Kaeck (2008) 2-regimes Markov switching Equity market returns, volatility index, first

and second principal components of the term

structure of yields

Avramov, Jostova, and Philipov (2007) Linear Equity return momentum, volatility index,

price-to-book ratio, interest rate level (5 y

yield) and slope (5 y–3 m yields), financial

leverage, Fama and French factors: HML, SMB

and MKT

Zhang, Zhou, and Zhu (2009) Linear Equity market returns, volatility index, interest

rate level (3 m yield) and slope (10 y–3 m

yields)

Ericsson, Jacobs, and Oviedo (2009) Linear Default swap spreads, volatility index, firm

leverage, interest rate level (10 y yield)

Sabhka et al. (2019) FIAPARCH and SETAR Equity market returns, volatility index,

government bond yields, and debt, Inflation,

consumer confidence index, oil prices, oil

volatility

Galil et al. (2014) Linear Interest rate level (5 y yield) and slope

(10 y–2 y yields), equity market returns,

volatility index, Fama and French factors:

HML, SMB, and MKT, Pastor and Stambaugh

liquidity factor, industrial production,

unexpected inflation, corporate spread

(Baa-Aaa rates)

solve that problem, we drop them from the dataset, decreasing the number of stocks included in that portfolio

(ΔStockMain,ΔStockNon-financials,ΔStockFinancialSeniors). The single firm’s volatility is proxiedby aggregate
volatility. Hence, we include the VStoxx index, composed of the implied volatility of options with Euro Stoxx 50

as the underlying asset (ΔV). As a risk-free rate, we use the Euro swap rates with maturities from 1 to 30 years

and compute the first two factors – level and slope – from the principal component analysis (PCA) applied to

the different assets (PC1, PC2).

Following Byström (2006), Byströmet al. (2005) andAvino andNneji (2014), we also consider the lagged value

of the iTraxx spreads. As suggested by Annaert et al. (2013) and Collin-Dufresne, Goldstein, and Martin (2001),

we also include liquidity and macroeconomic indicators. As liquidity, we follow Collin-Dufresne, Goldstein, and

Martin (2001) and apply the difference between the 10-year Euro swap rate and the 10-year Bund yield (Δliq). The
first macroeconomic indicator is Brent oil returns (ΔBrent). Oil shocks are a commonmacroeconomic indicator
analysts use to assess the economy’s health. Sabkha, de Peretti, and Hmaied (2019) find that in high volatility

regimes, sovereign credit volatility becomes highly sensitive to these shocks. The second macroeconomic vari-

able is the Baltic Dry Index (ΔBDI), which is a measure of economic activity available at a daily frequency. The
index was created in 1985 and is measured by the intersection between the demand for shipping capacity and

the supply of dry bulk carriers. It refers mainly to the shipping of dry rawmaterials (steel, concrete, food, and so

on), so it does not consider oil across oceans. It is seen by financial analysts as an efficient indicator of economic

activity. Lin, Chang, and Hsiao (2019) analyze the BDI spillover effects, finding that the BDI drives movements of

equity, commodity, and currency markets.
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Table 2: Summary statistics. The second column reports the sample means; the third one the standard deviations; the fourth and fifth

skewness and kurtosis; the last two ones the minimum and maximum values of each series.

Variables Mean St dev Skew Kurt Min Max

ΔiTraxx main −0.015 2.505 0.801 21.81 −21.32 25.24

ΔiTraxx non-financials −0.011 2.103 2.676 46.89 −15.27 29.95

ΔiTraxx financial seniors −0.024 3.137 0.776 23.50 −32.07 31.05

ΔVstoxx 0.007 1.804 1.130 16.83 −11.90 17.76

ΔStock main (%) 0.021 1.161 −1.172 19.59 −13.19 9.020

ΔStock non-financials (%) 0.006 1.094 −1.604 22.93 −13.60 7.710

ΔStock financial seniors (%) 0.010 1.592 −0.881 17.08 −15.65 12.52

Δliq 0.000 0.016 −0.333 8.262 −0.100 0.090

ΔBrent (%) −0.018 2.587 −0.298 18.07 −24.40 21.02

ΔBDI −0.012 32.37 0.736 12.68 −194.0 281.0

ΔPC1 −0.070 0.164 0.430 5.664 −0.680 0.910

ΔPC2 0.000 0.030 0.531 9.862 −0.170 0.280

We use daily observations between the 22nd of November 2013 and the 1st of September 2020 for a total

of 1704 observations. The dependent and independent variables are considered in differential terms to obtain

stationary time series.3

Before the estimation results, some preliminary statistics are calculated and collected in Table 2. All vari-

ables, except interest rate ones, have high volatility, kurtosis, and skewness measures, which differ from the

Normal distribution references. Minimum and maximum values are also spread over large intervals. These

stylized facts call for the use of nonlinear and heteroscedastic models.

4 A Bayesian Markov-Switching Model for CDS

Wepropose aMarkov switchingmodel to deal with the European CDS.We extend the linear regression approach

in Alexander et al. (2008) by addingmore variables and assuming the relationship varies across regimes dynam-

ically over time.

4.1 A Markov-Switching Regression Model

Let yt, t = 1,… , T be a sequence of observations for a CDS measure (dependent variable) and

xt = (x1t, x2t,… , xnt)
′, the observations for the set of n covariates discussed in the previous section.We consider

the following time-varying regression model.

yt = 𝛽0(st)+ 𝛽1(st)x1t + · · · + 𝛽n(st)xnt + 𝜀t, 𝜀t
i.i.d.∼ (0, 𝜎2(st)) (1)

where 𝛽0 (st) is the time-varying intercept; 𝛽 j (st), l = 1,… , n, the time-varying coefficients and 𝜎2 (st) the time-

varying volatility. We assume the parameters are driven by a hiddenMarkov-chain process st, with K-states and

constant transition probabilities ℙ(st = j|st−1 = i) = pi j, with i, j ∈ {1,… ,K}.
Let us introduce the allocation variable 𝜉kt = 𝕀(st = k) indicating the regime to which the current observa-

tion yt belongs to, where 𝕀(x) is the indicator function that takes value 1 if x = 0, and 0 otherwise. We assume

the time-varying parameters are.

3 Data are downloaded from Bloomberg, investing.com, and stoxx.com.

http://investing.com
http://stoxx.com
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𝛽 j(st) =
K∑
k=1

𝜉kt𝛽 jk, j = 0,… , n, 𝜎2(st) =
K∑
k=1

𝜉kt𝜎
2
k
. (2)

Define z
′
t
= 𝝃′

t
⊗

(
1,x′

t

)
with 𝝃t = (𝜉1t,… , 𝜉Kt)

′, xt = (x1t,… , xnt)
′, and 𝛽 =

(
𝛽′
1
,… , 𝛽′

K

)′
with

𝛽k = (𝛽0k, 𝛽1k,… , 𝛽nk). The allocation variables are used to write the random-coefficient regression model

in equation (1) as a linear regression model.

yt = z
′
t
𝛽 + 𝜀t, 𝜀t

i.i.d.∼
(
0, 𝛾t

)
,

with heteroskedastic effects 𝛾t = 𝝃′
t
𝝈2 with 𝝈2 =

(
𝜎2
1
,… , 𝜎2

K

)′
(Frühwirth-Schnatter 2006).

The inference for latent variable models is a difficult task since the likelihood function is not tractable.

Thus, we choose a Bayesian inference approach that allows us to make more accessible the inference task

thanks to data augmentation (see Tanner et al. 1987) and Monte Carlo simulation methods. Another advan-

tage of the Bayesian approach is that it naturally accounts for parameter uncertainty in the analysis. In our

data-augmentation framework, the joint posterior distribution of parameters and latent variables given the

observations is

𝜋(𝜽, 𝝃1:T |y1:T ) ∝
T∏
t=1

(
2𝜋𝛾t

)− 1

2 exp

{
−
(
yt − z

′
t
𝛽
)2

2𝛾t

}
K∏
k=1

K∏
j=1

p
𝜉 jt−1𝜉kt
jk

𝜋(𝜽). (3)

4.2 Prior Specification

The description of the model is completed by specifying the prior distributions 𝜋(𝜽) for the parameters

𝜽 = (𝛽′,𝝈2′, p)′ where p = (p1⋅,… ,pK⋅)
′, pk⋅ = (pk1,… , pkK ). For all the regime-specific volatilities 𝜎

2
k
and

transition probabilities pk⋅ we assume Gamma and Dirichlet prior distributions, respectively, that are

𝜎2
k

i.i.d.∼ (a, b)𝕀
(
𝜎2
k

)
, k = 1,… ,K

pk⋅
i.i.d.∼ (𝛿1,… , 𝛿K ), k = 1,… ,K.

The set of regime-identification constrains  =
{
𝝈2 ∈ ℝK

+, s.t.𝜎
2
1
< 𝜎2

2
< … < 𝜎2

K

}
allows us to interpret

the first and Kth state of the chain as low and high volatility states, respectively.

In the case of the regression coefficients 𝛽k , the main model assumes a Normal distribution

𝛽 ∼ K(n+1)(𝝂𝛽 ,Υ𝛽 ), (4)

where the hyperparameters 𝝂𝛽 and 𝛶 𝛽 refer to the prior mean and variance–covariance matrix, respectively.

In this paper, we also consider alternative priors, Laplace and Horseshoe prior, to induce variable selection (1

level prior), and shrinkage toward a common mean (2 level priors).

The different priors are presented in Table 3. The Normal prior with only 1-level is equivalent to (4), where

the hyperparameters are assumed to be fixed. Under this prior structure, the same level of ridge shrinkage is

applied to all the coefficients in all states. On the other hand, different prior variances are allowed under the

Laplace (Bayesian LASSO) and the Horseshoe prior with 1-level, which induces a variable selection shrinkage

across explanatory variables and states. In other words, these two prior distributions are characterized by a

higher density close to zero and thicker tails, which a priori corresponds to the case of only a few relevant coef-

ficients (Carvalho, Polson, and Scott 2010; Park et al. 2008). The global shrinkage is governed by the parameter𝜆2,

whose prior is inverse gamma (Gamma distribution (r, 𝛿) with expected value r𝛿) for the Horseshoe (Laplace)

case.

In the third column of Table 7, the same prior distributions are considered, but with 2 levels extending

Yau and Holmes (2011) to Markov-switching models. In particular, the prior mean 𝝂 is not fixed anymore, but a

vector to be estimated, which can be interpreted as the average effect of the explanatory variables across states,
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Table 3: Alternative prior distributions for the regression coefficients.

Prior 1-Level prior 2-Level prior

Normal (ii) 𝝂𝛽 and 𝛶 𝛽 are fixed.

(ii) 𝝂𝛽 = .

(
i′
)
Υ𝛽 is fixed.(

ii′
)
𝝂𝛽 =

(
′
K
⊗ 𝜶′)′, where 𝜶 = (𝛼0, . . . , 𝛼n)

′.(
iii′

)
𝜶 ∼ n+1(, R), where R is fixed.

Laplace (i) 𝝂𝛽 is fixed. 𝝂𝛽 = 0.

(ii) Υ𝛽 = diag(𝜔01, 𝜔21,… , 𝜔n1, 𝜔02,… , 𝜔nK ).

(iii) 𝜔 pk ∣ 𝜆2
i.i.d.∼ (1, 2∕𝜆2).

(i𝑣) 𝜆2 ∼ (r, 𝛿).

(
i′
)
Υ𝛽 = diag(𝜔01, 𝜔21,… , 𝜔n1, 𝜔02,… , 𝜔nK ).(

ii′
)
𝜔 pk ∣ 𝜆2

i.i.d.∼ 

(
1, 2∕𝜆2

p

)
.

(
iii′

)
𝜆2
p

i.i.d.∼ (r, 𝛿).(
i𝑣′

)
𝝂𝛽 =

(
′
K
⊗ 𝜶′)′, where 𝜶 = (𝛼0, . . . , 𝛼n)

′.(
𝑣′
)
𝜶 ∼ n+1(, R), where R is fixed.

Horseshoe (i) 𝝂𝛽 is fixed. 𝝂𝛽 = 0.

(ii) Υ𝛽 = diag(𝜔01, 𝜔21,… , 𝜔n1, 𝜔02,… , 𝜔nK ).

(iii) 𝜔 pk = 𝜆2𝜏 pk .

(i𝑣) 𝜏 pk|𝜂qr i.i.d.∼ (1∕2, 1∕𝜂 pk ); 𝜂 pk

i.i.d.∼ (1∕2, 1).
(𝑣) 𝜆2 ∼ (1∕2, 1∕𝜉); 𝜉 ∼ (1∕2, 1).

(
i′
)
Υ𝛽 = diag(𝜔01, 𝜔21,… , 𝜔n1, 𝜔02,… , 𝜔nK ).(

ii′
)
𝜔 pk = 𝜆2𝜏 pk .(

iii′
)
𝜏 pk|𝜂qr i.i.d.∼ (1∕2, 1∕𝜂 pk ); 𝜂 pk

i.i.d.∼ (1∕2, 1).(
i𝑣′

)
𝜆2
p
∼ (1∕2, 1∕𝜉 p); 𝜉 p

i.i.d.∼ (1∕2, 1).(
𝑣′
)
𝝂𝛽 =

(
′
K
⊗ 𝜶′)′, where 𝜶 = (𝛼0, . . . , 𝛼n)

′.(
𝑣i′

)
𝜶 ∼ n+1(, R), where R is fixed.

The subscript p stands for the explanatory variable p∈ {0, . . . , n} and k the regime k in k ∈ {1, . . . , K}..

𝜶. The prior distribution on 𝜶 is assumed to be normal. As in 1-level, Laplace and Horseshoe prior allow for

different shrinkage levels, but in this case, towards the average effect across states. Therefore, while, in the first

column, the coefficients are shrunk toward zero identifying the most significant explanatory marginal effects,

the second columnprior structures aim at identifying coefficients deviatingmore from𝜶 and potentially leading

the heterogeneity between states. It is important to notice that in 2-level priors, there is no global shrinkage

parameter but a shrinkage by explanatory variable, 𝜆2
p
, p = 0,… , n.

4.3 Posterior Approximation

Samples from the joint posterior distribution of the parameters and the allocation variables are obtained by

sampling iteratively from the full conditional distributions of 𝛽 ,𝝈2, pk. and 𝝃1:T . The full conditional distribution

of 𝛽 is the following Gaussian distribution.

f (𝛽|y1:T , 𝝃1:T ,𝝈2,p) ∝ (n+1)K (�̄�𝛽 , Ῡ𝛽 ),

where �̄�𝛽 = Ῡ𝛽

(∑T

t=1zt𝛾
−1
t
yt +Υ−1

𝛽
𝝂𝛽

)
and Ῡ𝛽 =

(∑T

t=1zt𝛾
−1
t
z
′
t
+Υ−1

𝛽

)−1
. This also applies for the alternative

priors in Table 3, see Appendix A for the additional steps of these priors. The full conditional distribution of 𝝈2

is a product of gamma distribution truncated on the set of identifying restrictions

f (𝝈2|y1:T , 𝝃1:T , 𝛽,p) ∝
K∏
k=1

a(āk∕2, b̄k∕2)𝕀(𝝈2) (5)

where ut = yt − 𝛽0k − x
′
t
𝛽k , āk = ak + Tk∕2 and b̄k = bk +

∑
t∈k u

2
kt
∕2 with Tk = Card(k). The transition prob-

abilities pk⋅ has the following Dirichlet full conditional distribution,

f (pk⋅|y1:T , 𝝃1:T , 𝛽,𝝈2,p−k) ∝ (𝛿1 + Nk1,… , 𝛿K + NkK ),

where p−k = (p1⋅,… ,pk−1⋅,pk+1⋅,… ,pK⋅)
′ and Nk j =

∑T

t=1𝕀(st − j)𝕀(st−1 − k) counts the number of transitions

of the chain from the state k to the state j.
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The joint posterior distribution of the hidden Markov process is obtained by iterating the prediction and

updating steps for t = 1,… , T ,

p(𝝃t = 𝜾 j|y1:t−1, 𝝃1:t−1) =
K∑
i=1

p(𝝃t = 𝜾 j|𝝃t−1 = 𝜾i)p(𝝃t−1 = 𝜾i|y1:t−1) (6)

p(𝝃t|y1:t, 𝝃1:t) ∝ p(𝝃t|y1:t−1)p(yt|xt, 𝝃t), (7)

and evaluating the smoothing probabilities t = T, T − 1,… , 1,

p(𝝃t = 𝜾 j|y1:T ) ∝
K∑
i=1

p(𝝃t = 𝜾 j|𝝃t+1 = 𝜾i, y1:t)p(𝝃t+1 = 𝜾i|y1:T ), (8)

where p(𝝃t = 𝜾 j|𝝃t−1 = 𝜾i) = pij, with 𝜾m themth column of the identitymatrix and p (yt|xt, 𝝃t) is the density of
yt given st = k, that is the density

(
𝛽′
k
xt, 𝜎

2
k

)
evaluated at yt (see Hamilton 1994, ch. 22). The smoothing prob-

abilities are used in the forward-filtering backward sampling (FFBS) algorithm to sample jointly the allocation

variables (see Frühwirth-Schnatter 2006, ch. 11–13).

5 Empirical Analysis

5.1 Preliminary Analysis

As an initial step of our analysis, we update the linear regression model of Alexander et al. (2008) with the

enlarged set of variables described in the previous section and the updated sample from October 2011 to April

2020. We apply Bayesian inference with weak diffuse priors. We compute the marginal likelihood and compare

it to theMSRs. However, since we use weak diffuse priors, the results are qualitatively similar to OLS estimation.

The first row of Table 4 reports the estimates of the linear regression. Seven over eight regressors differ

significantly from zero, and only the Baltic index does not. Precisely, the VStoxx index has a positive sign, as

theory suggests: higher uncertainty increases CDS spreads. The equity index is also significantwith the predicted

sign as in Collin-Dufresne, Goldstein, andMartin (2001) andAlexander et al. (2008). Therefore, upsidemovements

in stock returns cause a downside movement in CDS spreads. Oil shocks have been studied only considering

sovereign CDS spreads, revealing their significance in explaining sovereign CDS changes during turmoil periods

(Sabkha, de Peretti, and Hmaied 2019). They can be seen as a world economic health indicator, and we find

that they also have a relevant explanatory power for corporate CDS spreads, affecting them negatively. Changes

in corporate bond liquidity are significant. During the time considered, several monetary policies have been

undertaken by the ECB to tackle both the impact of the sovereign debt crisis (i.e. APP) and the Coronavirus

impact. Such policies have pushed the interest rates below 0 %, and this may be influenced by the investors’

risk-aversion, reallocating their investments toward stock markets.

The first principal component extracted from the Euro swap curve impacts the corporate CDS spreads sig-

nificantly and with the expected sign, meaning that upward shifts of the term structure imply a decrease in CDS

spreads. The result is consistent with the evidence provided by Alexander et al. (2008). The second principal

component is also significant, as opposed to the original analysis of Alexander et al. (2008). Therefore, changes

in the yield curve’s slope positively affect CDS spreads. The sensitivity of CDS spreads to changes in interest rates

can also be seen empirically as in Figure 1 pagina §. In fact, after the announcement of each TLTRO, that is pol-

icy actions to invert the slope, it follows a decline in the iTraxx main index. Finally, the first lag has a negative

impact on CDS spreads.

To end this section, following Alexander et al. (2008), we apply a rolling Chow test to check the parameter’s

stability. Results indicate strong instability in the estimated parameters, and we interpret this as evidence of a

non-linear relationship. Therefore, in the next section, the regression model will be extended by considering

non-linearities and a regime-dependent behavior of CDS spreads.
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Table 4: Estimation results for iTraxx Main.

st 𝜷 𝚫iTraxxt− 𝚫Vt 𝚫Stockt 𝚫liqt 𝚫Brentt 𝚫BDIt PC1t PC2t 𝝈2 ML DIC

Panel A: Linear regression model

1 0.007 −. . −. . −. 0.007 −. . 2.614 −3236.5 6495.2

Panel B: Markov switching regression model: 2-regimes

1 −0.045 0.024 . −. 2.022 −0.006 0.006 −. 0.008 0.955 −2810.0 5640.2

2 0.225 −. −0.036 −. 0.077 −0.105 −0.015 −0.015 0.076 12.353

Panel C: Markov switching regression model: 3-regimes

1 −0.049 0.020 . −. 1.811 −0.008 0.006 −0.003 0.009 0.923 −2789.5 5593.7

2 1.819 −0.792 0.947 −0.104 0.021 0.101 . 0.075 −0.044 1.491

3 0.118 −0.073 −0.089 −. 0.494 −0.044 −0.084 −. 0.039 8.423

Panel D: Markov switching regression model: 4-regimes

1 −. 0.017 . −. 1.635 −0.009 −0.002 −0.002 0.013 0.830 −2761.9 5540.0

2 0.596 0.270 . −0.741 −0.015 −0.109 2.355 −0.032 −. 1.076

3 . −0.168 0.741 −0.671 −0.028 . 0.340 0.083 . 1.679

4 0.104 −0.063 −0.107 −. 0.824 −0.024 0.001 −. −0.005 4.429

Panel E: Markov switching regression model: 4-regimes, subsample 2013–2019

1 −. −0.026 0.163 −. 0.462 −0.006 −0.025 −0.033 0.002 0.424 −2379.0 4764.0

2 −0.032 0.008 . −. 1.425 −0.025 0.007 −0.003 0.004 1.074

3 1.309 1.294 1.026 −0.607 0.015 1.015 1.223 0.024 0.893 1.728

4 0.397 −0.104 0.086 −. 0.370 −0.047 0.004 −0.023 0.008 6.698

Estimation results for the linear regression model (st = 1); the MS k-regimes (st = k for the kth regime) applied to the iTraxx main. Bold

numbers indicate zero is not included in the 95 % credible interval. The column ML reports the (log) marginal likelihood for the different

specifications and the column DIC gives the Deviance information criterion. The last panel repeats the analysis for the sub-sample

2013–2019.

5.2 Markov-Switching Regression Analysis of the CDS Spreads Determinants

Table 4 reports the estimates of the Markov switching models with 2, 3, and 4 regimes. Compared to the linear

model, zero is included in the 95 % credible intervals in several parameter posteriors suggesting that only a few

covariates are relevant. In several cases, signs of the coefficients differ across regimes. VStoxx has a positive

sign in the first regime and a negative sign in the second regime in the model with two regimes or a negative in

the third regime of the 3-regime model and the fourth regime of the 4-regime model. Similar sign changes can

be observed for the Brent, BDI, and the two PC variables. In the case of liquidity, it is not significant in any of

the regimes or models. Therefore, the Markov-switching models reduce the explanatory variables’ contribution

drastically, and instability plays a more important role.

Before continuing the analysis of parameter values and regime outputs, we compare the four specifica-

tions to see which shall be preferred. The last two columns in Table 4 show that the 4-regimes specification has

the highest (log) marginal likelihood value and the lowest Deviance information criterion (DIC).4 The marginal

likelihood is based on a recursive approximation of the complete likelihood using the Hamilton filter as in Kad-

hem, Hewson, and Kaimi (2016)). The DIC penalizes complex models based on the estimation of the number of

parameters. Despite this, our larger model is preferred. The difference is sizeable with the linear model, and the

4 Considering the hierarchical priors, such as 2-level Laplace and Horseshoe, and the number of latent variables, such as the state

indicators and prior variances of the coefficients, Celeux et al. (2006), Kadhem, Hewson, and Kaimi (2016) suggest the DIC for model

selection.
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Figure 1: This figure represents the corporate iTraxx main index reaction to ECB announcements. In particular, from left to right, TLTRO

1, TLTRO 2, TLTRO 3, and the more recent announcement of policies to tackle the COVID-19 pandemic recession (ecb.europa.eu).

values of the 2 and 3-regimes models are also inferior. Therefore, we describe results for the Markov switching

4-regimes model and refer to Figures 6, 7, 8 and 9 in Appendix B.1 for results on the 2 and 3-regimes models.

Returning to parameter estimates, implied volatility and stock prices are significant with the expected

sign in regime 1, the regime with lower volatility (the mean posterior estimate of 𝜎2 is equal to 0.830 which

is lower than the value of 2.614 for the linear regression model). In the second regime, the one with moderate

volatility (the estimate of 𝜎2 is equal to 1.076), the implied volatility, and the term structure slope are significant.

Both posterior mean values are higher than in the linear regression model and the other two regimes. In the

third regime, the one with moderate-high volatility (the estimate of 𝜎2 is equal to 1.679), the Brent and the term

structure slope have a significant positive impact. In the fourth regime, stock and the level of the slope curve

are significant, both with a negative coefficient.

No covariate is consistently significant in all four regimes. The implied volatility is relevant only during

periods of low uncertainty (regimes 1 and 2) with a positive coefficient, while stock prices are significant in the

extreme scenarios of high and low volatility, in both cases having a negative effect on CDS spreads. The effect of

the slope of the term structure (PC2) is only significant in two of the four regimes (regimes 2 and 3), but also with

different signs (negative and positive, respectively). Hence, these results indicate that macroeconomic variables

can explain part of the CDS spread variations, as suggested by Annaert et al. (2013), Collin-Dufresne, Goldstein,

and Martin (2001), but more importantly, monitoring the changes in regimes is essential to have a better under-

standing of the role of each of these indicators, given that regime transitions can even imply a change in the

relationship with CDS spreads.

Volatility estimates in regimes 1, 2, and three are lower than the ones for the linear regression model,

whereas the estimate in the fourth regime is almost twice as large. See also Figure 2 for the full posterior

distribution.

Figure 3 shows the estimated hidden states (top) and the log-volatility process (bottom). The first regime

with lower volatility is themost probable over time, in particular in the years 2017–2018. The other three regimes

are less persistent, given that they capture exceptional events. In some cases, the second regime anticipates or

follows the third regime. The COVID-19 pandemic is mainly associated with the fourth regime, and also other

http://ecb.europa.eu
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Figure 2: Estimates of the regime-specific variance 𝜎2
k
(dashed lines) and their posterior distributions (solid lines) in the 4-regimes model

fitted toΔiTraxx. From top-left to bottom-right, the posterior distribution in regimes from 1 to 4.

periods, such as the beginning of 2016, Volatility estimates in regimes 1, 2, and three are lower than the ones for

the linear regressionmodel, whereas the estimate in the fourth regime is almost characterized by high volatility

in the series. So, the fourth regime is necessary to fit the extremely high volatility that few significant regressors

cannot capture alone. The red line in the bottom plot reports the estimated conditional volatility in the 4-regime

model, that is ̂V(yt|st,𝜽), which is constant within each regime. The Bayesian approach allows for incorporating
the parameter uncertainty and the explanatory variables in the volatility process. Comparing the conditional

volatility with the integrated volatility processes V̂(yt) (bottom, black line), we find that explanatory variables

have an important role in explaining the volatility changes within each regime.

Finally, we investigate the impact of the COVID-19 pandemic by ending the data in December 2019 and drop-

ping the pandemic period from the sample. Our results confirm the best model is the 4-regime MSR (see Panel E

of Table 4). The results confirm that stock returns and volatility are significant,whereas Brent and term structure

factors become relevant only when including the pandemic sample period.

5.3 Sensitivity to Alternative Prior Specifications

Alternative priors are applied to the regression coefficients to identify the most important determinants of the

CDS main index and those covariates effects that significantly differ across regimes. However, also the vari-

ance parameters have an essential role in the regime heterogeneity. This is evidenced by Table 5 where two

special cases of Model (1) are considered: (a) 𝛽 p1 = … = 𝛽pK for p = 0,… , n (MSR, only variance), and

(b) 𝜎2
1
= … = 𝜎2

K
(MSR, only coefficients). Both special cases perform better than the Linear Regression Model

(LRM), indicating that the two of them contribute to the regime heterogeneity, particularly the former. Indeed,

the constant coefficients under case (b), still differ from LRM (see Table 8).

The most important coefficients are identified using Laplace and Horseshoe prior with 1 and 2 levels in

Table 7. Under these twopriorswith 1-level, themost significant determinants are the positive effect of theVStoxx

index (ΔVt) during periods of low volatility (regimes 1 and 2) and the equity index (ΔStockt), which consistently
decrease CDS spreads in all regimes. Compared to Table 4, ΔBrentt, ΔBDIt and PC2t are not relevant anymore.
During periods of high volatility (regime 3), the proxy of risk-free rate, PC1, becomes relevant, having a negative
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Figure 3: Top: Time series of theΔiTraxx (black solid) and the estimated maximum a posteriori (MAP) hidden regime by date for the

4-regime model (red stepwise). Bottom: Unconditional (black line) and conditional (red line) log-volatility process.

Table 5: Comparison between MSR special cases.

Case ML DIC

LRM −3236.5 6495.2

MSR −2761.9 5540.0

MSR (only variance) −2768.6 5555.2

MSR (only coefficients) −2839.3 5702.0

The MSRs assume 4-regimes applied to the iTraxx main. The column ML reports the (log) marginal likelihood for the

different specifications and the column DIC gives the Deviance information criterion.
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effect. In the case of 2-level priors, the estimates of the prior variances of the coefficients 𝛶 𝛽 in Table 9 indicate

that the factors that differ the most between regimes are the liquidityΔliqt in regime three and equityΔStockt
in regime 1.

Table 6: Estimation results.

St 𝜷 𝚫iTraxxt− 𝚫Vt 𝚫Stockt 𝚫liqt 𝚫Brentt 𝚫BDIt PC1t PC2t 𝝈2 ML DIC

iTraxx non-financials

Panel A: Linear regression model

1 −0.019 . . −. . −. −0.008 −. . 2.610 −3235.2 6496.6

Panel B: Markov switching regression model: 2-regimes

1 −. . . −. . −. −0.009 −. 0.015 0.434 −2417.6 4855.7

2 0.102 0.062 . −. 0.312 −. −0.015 −. 0.102 10.666

Panel C: Markov switching regression model: 3-regimes

1 −. . . −. 1.868 −0.001 −0.004 −. 0.011 0.273 −2309.2 4651.6

2 −0.007 . . −0.082 1.793 −. 0.002 −. 0.043 1.502

3 0.253 0.051 0.237 −. 0.094 −0.183 −0.127 −. 0.112 23.498

Panel D: Markov switching regression model: 4-regims

1 −. . . −0.057 1.637 0.002 −0.004 −. 0.006 0.246 −2271.6 4586.1

2 −0.039 . . −. 1.927 −. −0.003 −0.003 . 0.965

3 −0.145 . 0.066 −. 0.143 0.089 −0.020 −. −0.025 1.466

4 0.270 0.038 . −. 0.067 −. −0.062 −0.035 −0.006 25.380

iTraxx non financial seniors

Panel A: Linear regression model

1 −0.023 . . −. 5.874 −. 0.004 −. . 4.606 −3719.1 7458.7

Panel B: Markov switching regression model: 2-Regimes

1 −. . . −. . 0.002 0.002 −0.003 0.001 1.645 −3264.9 6550.6

2 0.416 −. . −. −0.093 −. −0.003 −. 0.172 20.825

Panel C: Markov switching regression model: 3-Regimes

1 −. . . −. . 0.002 −0.002 −0.002 −0.004 1.461 −3237.7 6471.9

2 1.108 −0.161 . −0.181 0.151 −0.998 0.988 −0.116 0.190 2.293

3 0.371 0.007 0.154 −. 0.477 −0.096 0.005 −. 0.139 12.519

Panel D: Markov switching regression model: 4-Regimes

1 −0.062 . . −. 2.451 0.020 −0.028 −0.002 0.011 0.604 −3154.9 6342.0

2 −0.091 . . −. 2.365 −0.007 0.020 −0.003 0.005 2.320

3 1.817 −0.617 1.084 −0.170 −0.105 −0.821 2.090 −0.030 0.159 3.754

4 0.371 −0.023 0.158 −. 0.366 −0.134 −0.167 −. 0.117 16.256

Estimation results for the linear regression model (st = 1); the MS k-regimes (st = k for the kth regime) applied iTraxx Non-Financials (top

panel) and to the iTraxx Non-Financial Services (bottom panel). Bold numbers indicate zero is not included in the 95 % credible interval.

The column ML reports the (log) marginal likelihood for the different specifications and the column DIC gives the Deviance information

criterion.
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6 Non-financials and Financial Seniors Indexes

In this section, we consider two sub-indices of the iTraxx: iTraxx Non-Financials and iTraxx Financial Seniors.

The study of differences and similarities in the dynamics of the two indexes is relevant for achieving a better

understanding of credit risk contagion among different sectors of the economy. This topic is highly relevant for

investors interested in portfolio diversification and policymakers aiming at financial stability.

Table 6 reports a similar analysis to that of the iTraxxMain. In both cases, the 4-regimes model is preferred,

following the marginal likelihood and the DIC. We discuss the detailed results for the two series separately.

Several coefficients are significant when estimating the iTraxx Non-Financial: coefficients for volatility, stock

market returns, the first and second factors, and lag of the index, and their signs are all economically plausible.

Figure 4: Time series of theΔiTraxxNon-Financial (top, black solid) andΔiTraxxFinancialSeniors (bottom, black solid) and the estimated
hidden regimes for the 4-regime model (red stepwise).
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Figure 5: Concordance statistic (vertical axis) at various

lags given by the value k in (6) (horizontal axis) between

ΔiTraxxNon-Financial and ΔiTraxxFinancialSeniors estimated
regimes.

Their significance varies substantially across regimes, and no variable is significant in all four regimes. Other

variables keep the same level of significance.

Standard deviations vary across regimes, with the one in the fourth regime very large. The top panel of

Figure 4 shows the second regime is more often selected for the iTraxx Non-Financial than the main index. This

is associated with a lower frequency of the first regime. The fourth regime is again associated with the COVID-19

crisis and other high-volatility periods.

The results are qualitatively similar for iTraxx Financial Seniors: only implied volatility, stock market

returns, and the term structure level have a significant impact. For the third regime, no covariate has a signifi-

cant contribution, whereas, in the fourth regime, stock returns and the first factor are significant, with evidence

similar to the main iTraxx index. Residual volatility estimates are more significant for the second and third

regimes than those for the main iTraxx index, but not for the first one. Moreover, the value in the fourth regime

is smaller than that for the iTraxx Non-Financial. The bottom panel of Figure 4 shows a different regime pattern

for the iTraxx Financial Seniors than the other two indices: the second regime is more often selected; the fourth

regime is important in the COVID-19 crisis but also in 2016. The third regime is the one less often selected. The

dynamic of the Financial Seniors index is similar to the main index, since 60 % of the sample period they are in

the same regime. In contrast, the Non-Financial and Financial Seniors are in the same regime 43 % of the time.

The concordance statistics at lag k between the prevalent regime of the Financial and Non-Financial indexes is

defined as follows.

Ck =
1

T − 2𝜏

T−𝜏∑
t=𝜏+1

𝕀
(
sFIN
t−k − sNON−FIN

t

)
(9)

with k = −𝜏,−𝜏 + 1,… , 0,… , 𝜏 − 1, 𝜏 . The statistic is presented in Figure 5 and its asymmetry suggests

a leading-lagging relationship between the two sectors. Precisely, the Financial Seniors index seems to lead the

Non-Financial index considering the higher value of the concordance statistics for positive values of k (Financial

Seniors index leading) than for negative values of k (Financial Seniors index lagging). The higher value is when

the statistic is computed contemporaneously (k = 0).

7 Conclusions

This paper extends the line of research about the European corporate iTraxx spreads determinants. It extends

the macroeconomic variables previously applied to the literature on CDS spread determinants, and it works

with a four-state Markov switching framework, where the third and fourth regimes are novel in literature to

take into account the extreme levels of volatility.

The analysis supports the application of a four-regime specification with low volatility, normal volatility,

high volatility, and extreme volatility periods linked to economic and financial distress. The extreme volatility
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regime is mainly associated with the economic impact of the COVID-19 pandemic but also with some higher

volatility periods, confirming the high uncertainty of CDS spreads. The impact of covariates differs significantly

across regimes, and a linear specification tends to over-select variables, causing possible misinterpretation of

the relevance of macroeconomic variables. Brent and term structure factors become relevant for explaining

CDS dynamics after the outbreak of the COVID-19 pandemic. Alternative shrinkage priors suggest that the main

covariates are VStoxx index and equity index. At the same time, the heterogeneity between regimes is mainly

observed in the effect of liquidity and equity – apart from the differences in variance. Given the relationship

between risk aversion and CDS spread, time-varying transition probabilities driven by uncertainty measures

can be considered for future research following Kauf and mann (2015). Similarly, a comparison of the different

alternatives formeasuring the term structure of the interest rate, such as the Nelson–Siegel framework or latent

factor models, can be considered to study the robustness of the results.
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Appendix A: Full Conditional Posteriors for Alternative Priors

Apart from the main full conditional posteriors presented in Section 4.3, the alternative priors involve

extra update steps. In the case of Laplace prior with 1-level, the full conditional distributions of these steps are:

– 1∕𝜔 pk|y1:T ,… ∼ (c pk, d), where  refers to the inverse Gaussian distribution with parameters

c pk =
√
𝜆2∕𝛽2

pk
and d = 𝜆2;

– 𝜆2|y1:T ,… ∼ (r, 𝛿), where r = K(n+ 1)+ r and 𝛿 = 1∕(∑ p

∑
k𝜔 pk∕2+ 1∕𝛿).

Regarding the Horseshoe prior, the extra steps are:

– 𝜏 pk|y1:T ,… ∼ (1, 1∕𝜂 pk + 𝛽2
pk
∕(2𝜆2));

– 𝜆2|y1:T ,… ∼ ((K(n+ 1)+ 1)∕2, 1∕𝜉 + 1∕2∑ p

∑
k𝛽

2
pk
∕𝜏 pk);

– 𝜂 pk|y1:T ,… ∼ (1, 1+ 1∕𝜏 pk);
– 𝜉|y1:T ,… ∼ (1, 1+ 1∕𝜆2).

The 2-level priors have similar steps, but the shrinkage is applied to each covariate-effect towards themean-

effect across states. In the Laplace prior case, the following full conditional distributions are used:

– 1∕𝜔 pk|y1:T ,… ∼ (c pk, dp), where  refers to the inverse Gaussian distribution with parameters

c pk =
√
𝜆2∕(𝛽 pk − 𝛼 p)

2 and dp = 𝜆2
p
;

– 𝜆2
p
|y1:T ,… ∼ (r, 𝛿 p), where r = K + r and 𝛿 = 1∕(∑k𝜔 pk∕2+ 1∕𝛿).

– 𝜶|y1:T ,…n+1(g,H), where g = H
(
X′
𝛽
Υ−1

𝛽
𝛽
)
, H =

(
X′
𝛽
Υ−1

𝛽
X𝛽 + R−1

)−1
, X𝛽 =

(�̃�01,… , �̃�n1, �̃�02,… , �̃�n2,… , 𝝃0M ,… , �̃�nM )
′, �̃�sk = (𝜉0,sk, 𝜉1,sk,… , 𝜉n, pk)

′ and 𝜉 p,sk = 𝕀(s = p).

In the case of Horseshoe prior:

– 𝜏 pk|y1:T ,… ∼ (1, 1∕𝜂 pk + (𝛽 pk − 𝛼 p)
2∕
(
2𝜆2

p

)
);
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– 𝜆2
p
|y1:T ,… ∼ ((K + 1)∕2, 1∕𝜉 p + 1∕2∑k(𝛽 pk − 𝛼 p)

2∕𝜏 pk);
– 𝜂 pk|y1:T ,… ∼ (1, 1+ 1∕𝜏 pk);
– 𝜉 p|y1:T ,… ∼ 

(
1, 1+ 1∕𝜆2

p

)
.

– 𝜶|y1:T ,…n+1(g,H), where g = H
(
X′
𝛽
Υ−1

𝛽
𝛽
)
, H =

(
X′
𝛽
Υ−1

𝛽
X𝛽 + R−1

)−1
, X𝛽 =

(�̃�01,… , �̃�n1, �̃�02,… , �̃�n2,… , 𝝃0M ,… , �̃�nM )
′, �̃�sk = (𝜉0,sk, 𝜉1,sk,… , 𝜉n, pk)

′ and 𝜉 p,sk = 𝕀(s = p).

B Additional Results

B.1 2-Regimes Markov-Switching Model

Figure 6: Posterior distributions (solid lines) and estimate (dashed lines) of the regime-specific variance 𝜎2
k
in the 2-regimes model fitted

toΔiTraxx. The posterior distribution in regimes 1 and 2 in the columns from left to right.

Figure 7: Time series of theΔiTraxx (black solid) and the esti-
mated hidden regimes for the 2-regimemodel (red stepwise).
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B.2 3-Regimes Markov-Switching Model

Figure 8: Posterior distributions (solid lines) and estimate (dashed lines) of the regime-specific variance 𝜎2
k
in the 3-regimes model fitted

toΔiTraxx. The posterior distribution in regime 1, 2, and three in the columns from left to right.

Figure 9: Time series of theΔiTraxx (black solid) and the esti-
mated hidden regimes for the 3-regimemodel (red stepwise).
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B.3 Special Cases of the MSR and Sensitivity to Alternative Priors

See Tables 7, 8 and 9.

Table 7: Estimation results for iTraxx Main under different priors and levels

St 𝜷 𝚫iTraxxt− 𝚫Vt 𝚫Stockt 𝚫liqt 𝚫Brentt 𝚫BDIt PC1t PC2t 𝝈2 ML DIC

Panel A: Markov switching regression model (2 levels normal prior)

1 −. −0.0194 . −. 2.2459 0.0023 −0.0228 −0.005 0.0054 0.4369 −2711.3 5449.2

2 −0.0527 −0.0094 . −. 3.0125 −0.035 0.0058 -5e-04 0.0137 1.0543

3 0.2578 0.0606 −0.0637 −. 2.3716 −0.0359 0.0208 −. −0.0336 2.4517

4 0.3666 −. 0.4185 −. 2.0061 −0.0537 0.0732 0.0127 0.1496 21.1184

Ave. 0.0719 −0.0482 0.2027 −0.9624 1.934 −0.0139 0.0201 7e-04 0.0264

Panel B: Markov switching regression model (1 level LASSO prior)

1 −. −0.0253 . −. 0.2112 0.0021 −0.0227 −0.0053 0.005 0.43 −2712.8 5459.8

2 −0.0539 −0.0147 . −. 0.4198 −0.0353 8e-04 8e-04 0.0188 0.9957

3 0.1211 0.0903 −0.0149 −. 0.1477 0.0019 0.0244 −. −0.0636 2.2445

4 0.1856 −. 0.2697 −. 0.0264 −0.1921 0.0495 −0.0041 0.1583 20.2295

Panel C: Markov switching regression model (2 levels LASSO prior)

1 −. −0.0239 . −. 2.2202 0.0021 −0.023 −0.0051 0.005 0.4308 −2709.7 5451.8

2 −0.055 −0.0122 . −. 3.5468 −0.0359 0.0047 5e-04 0.0192 1.0132

3 0.157 0.0793 −0.0256 −. 5.7352 −0.0173 0.0239 −. −0.0701 2.1844

4 0.2829 −. 0.2719 −. 1.5823 −0.1342 0.0624 0.0014 0.1658 20.0481

Ave. 0.0463 −0.0363 0.2029 −. 1.5234 −0.0403 0.0248 0.0095 0.0326

Panel D: Markov switching regression model (1 level Horseshoe prior)

1 −. −0.0121 . −. 0.0793 -6e-04 −0.015 −0.0045 0.0014 0.4277 −2711.2 5448.6

2 −0.0262 −0.0023 . −. 0.3737 −0.0182 6e-04 -2e-04 0.0135 0.9709

3 0.0651 0.04 0.0089 −. 5.7974 −0.0286 0.0135 −. −0.036 2.2403

4 0.0431 −0.1563 0.0687 −. −0.0067 −0.0738 0.0184 3e-04 0.0497 19.5401

Panel E: Markov switching regression model (2 levels Horseshoe prior)

1 −. 0.0055 . −. 2.3411 −0.0098 −0.0044 −0.0015 0.0124 0.7072 −2758.8 5551.0

2 . 0.053 −0.0779 −. −8.6916 −0.0667 0.1156 0.045 0.0763 1.1788

3 −. 0.0505 . −. −13.9093 −0.0275 −0.7921 −0.0524 0.0426 1.6703

4 0.0145 0.0098 −0.0089 −. 8.9173 −0.0108 0.0175 −. −0.0025 3.0694

Ave. −0.019 0.0247 0.1487 −. 1.0802 −0.0185 0.0142 −0.0098 0.0206

The MS k-regimes (st = k for the kth regime) applied to the iTraxx main. Bold numbers indicate zero is not included in the 95 % credible

interval. The column ML reports the (log) marginal likelihood for the different specifications and the column DIC gives the Deviance

information criterion.

Table 8: Coefficients comparison between LRM and MSR (only variance).

𝜷 𝚫iTraxxt− 𝚫Vt 𝚫Stockt 𝚫liqt 𝚫Brentt 𝚫BDIt PC1t PC2t

Panel A:Linear regression model

0.007 −. . −. . −. 0.007 −. .

Panel B:Markov switching regression model: 4-regimes

−. . . −. . −. -e- −. .

Estimation results for the iTraxx main. The MSR assumes 4-regimes. The column ML reports the (log) marginal likelihood for the different

specifications and the column DIC gives the Deviance information criterion.
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Table 9: Prior variance by coefficients (𝛶 𝛽 ) under different priors and levels.

𝜷 𝚫iTraxxt− 𝚫Vt 𝚫Stockt 𝚫liqt 𝚫Brentt 𝚫BDIt PC1t PC2t

Panel A: Markov switching regression model (1 level LASSO prior)

0.28 0.22 0.30 0.52 0.45 0.23 0.23 0.22 0.23

0.26 0.23 0.46 0.70 0.54 0.24 0.23 0.23 0.22

0.30 0.28 0.27 0.95 0.47 0.25 0.24 0.25 0.28

0.38 0.32 0.38 0.86 0.45 0.33 0.30 0.23 0.30

Panel B: Markov switching regression model (2 levels LASSO prior)

1.60 1.50 1.60 2.04 18.41 1.44 1.40 1.52 1.66

1.52 1.49 1.74 1.98 18.18 1.46 1.53 1.53 1.68

1.73 1.46 1.65 2.18 35.40 1.43 1.49 1.41 1.56

1.79 1.63 1.75 2.20 19.98 1.47 1.42 1.44 1.72

Panel C: Markov switching regression model (1 level Horseshoe prior)

0.06 0.01 0.16 2.84 0.77 0.01 0.05 0.01 0.02

0.02 0.04 1.13 11.82 4.37 0.02 0.03 0.00 0.01

0.19 0.02 0.03 7.58 434.05 0.06 0.02 0.03 0.04

0.07 0.24 0.14 31.16 4.61 0.08 0.16 0.01 0.05

Panel D: Markov switching regression model (2 levels Horseshoe prior)

0.36 0.21 0.73 12.34 268.70 0.03 0.05 0.01 0.06

2.69 0.11 2.89 2.93 83.02 0.11 0.02 0.00 0.06

0.51 0.11 2.00 8.80 2647.47 0.07 0.10 0.01 0.12

0.43 0.30 0.69 7.61 635.04 1.09 0.09 0.01 0.45

Estimation results for the iTraxx main. The MSR assumes 4-regimes. The column ML reports the (log) marginal likelihood for the different

specifications and the column DIC gives the Deviance information criterion.
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