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Abstract

We seek to understand the interplay between amino acid sequence and local

structure in proteins. Are some amino acids unique in their ability to fit har-

moniously into certain local structures? What is the role of sequence in

sculpting the putative native state folds from myriad possible conformations?

In order to address these questions, we represent the local structure of each Cα

atom of a protein by just two angles, θ and μ, and we analyze a set of more

than 4,000 protein structures from the PDB. We use a hierarchical clustering

scheme to divide the 20 amino acids into six distinct groups based on their sim-

ilarity to each other in fitting local structural space. We present the results of a

detailed analysis of patterns of amino acid specificity in adopting local struc-

tural conformations and show that the sequence-structure correlation is not

very strong compared with a random assignment of sequence to structure. Yet,

our analysis may be useful to determine an effective scoring rubric for quanti-

fying the match of an amino acid to its putative local structure.
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1 | INTRODUCTION

It is known that there are just a few important
principles1–6 that drive the folding process of a protein:
the requirement of avoiding steric overlaps in both the
folded and unfolded states, the lower conformational
entropy in the folded state than in the unfolded state, the
hydrophobic effect favoring a compact conformation that
is able to expel water from the core of the folded state
and the delicate balance of hydrogen bonds with the sol-
vent and within the protein backbone that can tip the
energetic balance between the unfolded and folded state.
The fundamental issue is how nature has effectively

explored the astronomically large sequence space
through evolution to make proteins the molecular target
of natural selection.

Here we characterize the native state folds within a
simple coarse-grained representation and elucidate the
role, if any, played by the repertoire of amino acids in
fitting into one of these local geometries. We model a
chain by just its Cα atoms and follow the coordinate rep-
resentation shown in Figure 1. With the knowledge of
the preceding Cα locations, we specify the position of a
given Cα atom by three coordinates,7 the bond length, b,
and two angles, θ, and μ. θ is the bending angle at the
given Cα location, whereas μ is the angle between
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successive binormals (Figure 1). The binormal associated
with a specific consecutive triplet of Cα atoms is the unit
vector perpendicular to the plane of the triplets. The tan-
gent, the normal, and the binormal, all at the middle Cα

atom, form a right-handed Cartesian coordinate system.
This coordinate system was introduced by Rubin and
Richardson in a paper describing the Byron bender that
allowed for a simple construction of protein Cα models.8,9

Our analysis is carried out with a set of more than
4,000 experimentally determined protein native state
structures. Starting from the Top 8,000 set proteins of the
Richardson laboratory10,11 with 70% homology level, we
excluded all structures with missing atoms in the protein
backbone, yielding a set of 4,416 protein native state
structures that we used for our analysis (the same set was
used in Reference 7) (see Table S1). We successfully vali-
dated our analysis using 478 proteins from the Dunbrack
data set,12 this time with a maximum sequence homology
level of 20%. There were 205 proteins in common
between the Richardson and Dunbrack sets that we used.
We carried out the (θ, μ) analysis for both the Richardson
and Dunbrack data sets and obtained virtually identical
results with the Dunbrack data being understandably
more sparse. We present here the detailed analysis for
just the much larger Richardson data set.

2 | RESULTS AND DISCUSSION

A simplification arises because the vast majority of bond
lengths are nearly constant (Figure 2). Figure 2a and a
blown-up version, Figure 2b, depict histograms of bond
lengths with two peaks centered around 3.81 and 2.95 Å.
The shorter bonds are associated with a Ramachandran
angle ω1 around 0�13 (Figure 2c). Because the fraction of
short bonds is relatively small (0.3%), our analysis here is
carried out with all Cα positions, each characterized by a
bond length, the θ and μ angles, and the amino acid iden-
tity. An analysis of the amino acids associated with just
the short bonds shows the preponderance of glycine in

FIGURE 1 Definition of coordinate system. The bond length b

at location i, bi, is the distance between the points i and (i + 1). The

angle θi is the angle subtended at i by points (i − 1) and (i + 1)

along the chain. The third coordinate μi is the dihedral angle
between the planes π1 and π2 formed by [(i − 2), (i − 1), i] and

[(i − 1),i,(i + 1)], respectively and is the angle between the

binormals at (i-1) and i. Knowledge of the coordinates of the

previous three points (i − 2,i − 1,i) and the three variables (bi, θi, μi)
are sufficient to uniquely specify the coordinates of the point (i + 1)

FIGURE 2 Distribution of bond

lengths. (a) Shows a histogram of bond

lengths in our data set. A blown up

version in b shows that the distribution

is bimodal with short bonds (centered

around 2.95 Å) and long bonds

(centered around 3.81 Å). The red arrow

is the length we use for partitioning the

bonds into the short and long categories.

(c) Shows the link between the

Ramachandran ω angle (1,13) and the

bond length
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the first position and proline in the second position
(because of the low barrier for transitioning between its
cis and trans conformations).

For a noninteracting phantom chain, one obtains a
uniform distribution of points in the (θ, μ) plane (not
shown as a figure). As a benchmark, we studied, using
Wang-Landau Monte Carlo simulations,14 a simple self-
avoiding polymer chain model composed of 40 unit diam-
eter tangent spheres (tethered hard spheres) subject to a
self-attraction between sphere centers located within a
distance of 2 units of each other. Figure 3a,b show a cross
plot in the (θ, μ) plane of 17 conformations in the coil
phase adopted by the chain at high temperatures and for
17 low energy conformations, respectively. The situation
is dramatically different for proteins compared with a
standard self-avoiding polymer model. Figure 3c is the
(θ, μ) cross plot for the protein data set with a highly
selective occupancy of (θ, μ) space (a version of this graph
was presented earlier in Reference 7).

We binned the data in Figure 3c into squares of width
5� along θ (24 bins in the range 60�–180�) and 5� along μ
(72 bins spanning the range from 0� to 360�) to determine
the three highest density regions. These density peaks are

shown in the figure as black X's along with three larger
squares of size 10� × 10� around them. They are identi-
fied as helices (the blue region with black X at θ = 92.5�

and μ = 47.5�), β-strands (the red region with black X at
θ = 122.5� and μ = 192.5�), and loops (the green region
with black X at θ = 92.5� and μ = 242.5�) with 184,382,
16,372, and 10,974 points, respectively. The density of
points in the α-helix peak is �20 times that of loops and
β-strands but the loop and β-strand regions are more
spread out than the helical region. The other populated
regions in the (θ, μ) plane correspond to variants of heli-
ces and β-strands and the loops that link them together
in the native state structure.

It is important to note that the angles θ and μ are dis-
tinct from the Ramachandran1 angles, which require the
knowledge of the locations of backbone atoms besides
those of the Cα atoms. The (θ, μ) pair is a coarse-grained
representation of the Ramachandran angles and can be
useful to describe a generic chain conformation and
employed in models of statistical mechanics.15 In fact,
knowing a sequence of Ramachandran angles, one can
derive the values of θ and μ. The inverse process of deter-
mining the Ramachandran angles from the (θ, μ) values

FIGURE 3 Local structure representation. (a) (θ, μ) cross plot for the high temperature coil phase of tethered hard spheres. The only

constraint here is the requirement of self-avoidance of the spheres. The points are scattered across the plane with no θ angle less than 60�

(a steric constraint) and few almost straight line triplets with a θ near 180�. (b) (θ, μ) cross plot for low energy states of tethered hard spheres.

Here again one observes no θ angles below 60� and favored θ angles of 60�, 90�, 120�, and 150� showing that the order favors a face-
centered-cubic packing locally, which would be appropriate for the close packing of untethered spheres. (c) (θ, μ) plot for the Richardson
data set comprising 4,416 proteins and 972,519 residues (purple points). The three highlighted regions correspond to density peaks related to

α-helices (blue region θ = 92.5� and μ = 47.5�), β-strands (red region θ = 122.5� and μ = 192.5�), and loops (green region θ = 92.5� and
μ = 242.5�) (d) Plot of the Ramachandran (φ, ψ) angles for the highlighted regions in Figure (c)
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do not have a unique solution. For the Cα atoms in the
interior of all 4,416 proteins, we measured the (θ, μ) as
well as the Ramachandran (φ, ψ) angles. We illustrate
the relationship between the two coordinate systems in
Figure 3d. We plot the three colored regions (blue, red,
and green) of dense points in Figure 3c, but this time
expressed as the (φ, ψ) Ramachandran angles color-
coded in the same manner as in the (θ, μ) plot. Note that
the closely packed points in the (θ, μ) plot are more dis-
persed in the Ramachandran plot sometimes occupying
noncontiguous regions. This is because θ and μ depend
on more than one set of Ramachandran angles and the
relationship is complicated and nonlinear.

There are four important earlier papers that our work
builds on. Rackovsky and Scheraga16 considered a
torsion-curvature plot (distinct from but related to the
plot we studied) for 22 protein structures for two different
structural groups (helices + bends and extended strands)
and the amino acids present therein. Levitt17 analyzed
13 proteins and considered a (θ, μ) plot similar to ours
except that the definition of μ was shifted by one Cα posi-
tion in the backward direction compared with our defini-
tion. Our own definition was motivated by defining θ and
μ at a given site i that would determine the coordinates of
the (i + 1)-th Cα coordinate. Importantly, Levitt deter-
mined an approximate empirical relationship between
his θ and μ to elucidate approximate potentials for folding
simulations.

Oldfield and Hubbard18 considered two successive θ
angles and one μ angle (defined for a bond joining the
two Cα atoms) for a set of 83 protein structures and car-
ried out a comprehensive study of local conformational
space (but not amino acid preferences) recognizing that

the two major building blocks of protein native state
structures, helices, and strands, are repetitive conforma-
tions. DeWitte and Shakhnovich19 considered 87 protein
structures with a goal of deducing the pairwise potentials,
in the spirit of Miyazawa and Jernigan, for the formation
of secondary structures in protein simulations based on a
cross-plot of two successive μ angles (this time again
defined as bond variables rather than at a site) and
employing Levitt's empirical relationship. Finally, the
approach of Bahar, Kaplan, and Jernigan20 is most simi-
lar to ours. They do have a (θ, μ) plot just like ours except
that their μ definition is shifted by one position compared
with ours. They used 302 protein structures for their
analysis, they carried out an amino acid propensity esti-
mate like we do, and they successfully developed short-
ranged (along the sequence) rotational potentials for sin-
gle amino acids.

In essence, our work here builds on these earlier
advances. The principal distinctions are the definition of
μ—our μ is defined at a site not at a bond, it is shifted
with respect to other definitions, and the number of pro-
tein structures we use, many decades after the earliest
work, is understandably larger and comprises over 4,000
experimentally determined and curated protein struc-
tures. Our goal in this paper is not to extract effective
potentials but rather analyze, more generally, sequence-
local structure relationships. Furthermore, we seek to
group the 20 amino acids into distinct groups in terms of
their similarity to substitute for each other in local con-
formational space.

Figure 4 shows histograms of θ and μ values and evi-
dence for a clear correlation between the average values
of θ and the average value of μ among all proteins.

FIGURE 4 (a) and (b) Histograms

of θ and μ values showing a multi-

peaked structure. (c) A plot of the

average value of θ versus the average

value of μ for all 4,416 proteins showing

a tight correlation with a Pearson

correlation coefficient of .97. This may

be readily understood by noting that a

protein structure is primarily composed

of helices and sheets with varying

fractions depending on the protein being

considered. The θ-μ values for an α-helix
are both smaller than those of a β-strand
leading to the correlation. Note that the

standard deviations (not shown) are

large because of the relatively large

width in angle space of the regions
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Table 1 presents data on the amino acid occurrence prob-
ability and the degree of localization in (θ, μ) space. For
each amino acid, we measured the inverse participation
ratio (IPR) defined as

IPR=

PN
i=1x

2
i

� �2

PN
i=1x

4
i

ð1Þ

where xi denotes the normalized density of occupancy of
the i-th bin in (θ, μ) space and the total number of bins
N = 1728. An IPR value of 1 indicates perfect localization
in just one bin whereas the largest possible value of the
IPR is N = 1728 for a uniform occupancy of all 1728 bins.
A perfect localization (IPR = 1) is indicative of an amino
acid that is always associated with the same local structure
leading to a perfect sequence-structure relationship. The
most localized amino acid is LEU (IPR = 2.70) while
the least localized is PRO (IPR = 83.28). Figure 5 shows
the occupancies of the (θ, μ) space of amino acids LEU and
PRO. Interestingly, even the most localized amino acid,
while being largely concentrated in just a few squares, is
yet spread out over many squares indicating that there
is no strong selection of local structure by amino acid
identity.

We carried out an analysis of triplet amino acids
identities of all the 324 tight bends with θ angles less
than 80�. The smallest θ angle in the data set has a value of
59.98� and the corresponding amino acid triplet is GLY-
GLN-ASP. These tight turns (i − 1,i,i + 1) have no selectivity

TABLE 1 Frequency of 20 amino acids in the set of 4,416

proteins (second column) and a measure of the localization of each

amino acid in (θ, μ) space (third column)

Amino
acid
type

Fraction
(%)

Inverse
participation
ratio (IPR)

ALA 8.53 3.28

ARG 4.84 3.24

ASN 4.42 4.53

ASP 5.96 4.60

CYS 1.36 3.69

GLU 6.48 3.25

GLN 3.61 3.30

GLY 7.90 11.61

HIS 2.32 4.31

ILE 5.62 2.93

LEU 8.79 2.70

LYS 5.70 3.43

MET 2.02 2.95

PHE 4.04 4.06

PRO 4.59 83.28

SER 5.88 5.14

THR 5.58 4.75

TRP 1.52 3.99

TYR 3.61 4.25

VAL 7.23 3.77

FIGURE 5 Occupancy pattern of

amino acids LEU and PRO in (θ, μ)
space. (a) and (b) depict the locations of

the two amino acids. LEU is the most

localized amino acid (IPR = 2.70)

whereas PRO has the largest

IPR = 83.28 value among the amino

acids and is spread out the most. A rank

ordered normalized occupancy fraction

of the two amino acids is shown in

(c) and (d). The number of bins needed

to account for 50% and 90% occupancy

for the two amino acids are LEU—33

and 356, and PRO—66 and

248, respectively
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in μ angles. However, there is indeed a sequence-structure
relationship with (GLY or SER) accounting for a total of 34%
occupancy in the i − 1 position, (PRO or SER) having 31%
residency in site i, and (ALA or SER) accounting for 21% in
the site (i +1).

We studied histograms of the θ and μ values associ-
ated with each of the 20 amino acids. The distributions
are roughly equally wide and substantially independent
of amino acid identity (Figures 6, 7).

Unlike the α-helix region associated with tight local
packing and hence a relatively small variation in the θ
angle, there is a range of θ values associated with the
β-strand region. We carried out sequence analyses of the
β-strands to understand whether there is an amino acid
selection principle for θ. We selected the (θ, μ) subspace
consisting of μ values in the range from 175� to 185� (±5�

degree interval around the ideal value of 180�) and of θ
angles in the range from 105� to 145�. We divided up the
relevant range of θ angles into 40 bins of width 1�. Again,
we measure the IPR defined in Equation (1) with N = 40
in this case. The extreme values of the IPR are 16.08 for
the most localized amino acid, PRO, and 31.46 for the
most spread out amino acid, ASP (Figure 8). The average
θ value and its standard deviation for all amino acids in
the β-region is 128.0� and 9.5�, respectively.

We also studied the identities of the 210 pairs of
amino acids (and their associated side-chain sizes)
located at sites i − 1 and i + 1 (these side chains stick
out in roughly the same direction with a possibility of
steric clashes) flanking site i in the β-region. We consid-
ered only those statistically significant pairs (i − 1,i + 1)
which occurred at least 162 times (estimated as the total
number of pairs divided by 210) with beads i − 1, i, i + 1
all lying in the β-strand region and divided the θ range
again into 40 equally spaced bins. The number of amino
acid pairs that met the 162 thresholds was 52 of the
210 pairs. We find that all pairs are spread out in θ
values. The most localized pair among these was ALA-
THR with an IPR of 10.51 and the most spread out pair
was PHE-PRO with an IPR of 22.77 (see Figure 9 for his-
tograms of θ values associated with these pairs). A cross
plot of the mean van der Waals diameter of a pair and
its average θ value (not shown) results in a weak corre-
lation and an overall negative trend. All these results
indicate that the sequence does not play a significant
role in determining the θ angle associated with a
β-strand.

We carried out simple sequence analyses of the loop
region as well, to understand whether there is a selection
principle for the value of the μ angle. We select the (θ, μ)

FIGURE 6 Histograms of the θ values for each of the 20 amino acids. While the shapes of the histograms vary from amino acid to

amino acid, the ranges are mostly independent of amino acid identity. PRO is a bit of an outlier with a somewhat lower upper cut-off value

of θ
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subspace consisting of θ angles in the range from 87.5� to
97.5� (±5� interval around the value 92.5�, identified as
the peak density green region in Figure 3c) and μ values
in the range from 90� to 360� to ensure that there is no
overlap with the α-helix region. We divided up the range

of μ angles into 54 bins of width 5�. We measured the
IPR value for the 20 amino acids and we find that the
most localized amino acid is GLY with a value of 8.49,
whereas the most delocalized amino acid is PHE with an
IPR equal to 28.42 (Figure 10). Note that μ = 180� and

FIGURE 7 Histograms of the μ values for each of the 20 amino acids. Even though the shapes of the histograms vary from amino acid

to amino acid, the ranges are mostly independent of amino acid identity

FIGURE 8 Distribution of θ angles in the

β-region for PRO (a) and ASP (b). PRO is the

most localized amino acid, yet exhibits some

spread of θ angles

FIGURE 9 Distribution of θ angles in the

β-region for (ALA-THR) and (PHE-PRO) amino

acid pairs in positions (i − 1,i + 1) respectively.

ALA-THR is the most localized pair in θ space,
yet is spread out. PHE-PRO is the most spread

out pair
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360� correspond to planar configurations of four consecu-
tive Cα atoms, with the former corresponding to zigzag-
ging and the latter to rotation in the same sense.

Based on the normalized density of occupancy of the
amino acids in (θ, μ) space, one can assess the mutual
similarity of the 20 amino acids by measuring the Carte-
sian distance between the 190 pairs of amino acids,
which serves as a proxy of similarity. We have employed
the Bhattacharyya coefficient21 in order to calculate the
degree of closeness of the (θ, μ) distributions of amino
acids. We carried out hierarchical clustering by rank-
ordering the closeness—the two closest amino acids were
placed into a single group thereby now having effectively
19 groups of amino acids. This procedure was repeated
recursively to reduce the effective groups of amino acids
by one each time. A natural stopping point for this hier-
archical clustering is when there is a relatively large jump
in the measure of closeness of the remaining groups. The
result of this analysis is shown in Figure 11 and yields six
different groups comprising 7, 7, 2, 2, 1, and 1 amino
acids each. Figure 12 shows the occupancy in (θ, μ) space
of the six amino acid groups.

We alert the reader that this grouping is distinct from
the more familiar groupings of amino acids based on

their nonlocal interactions.22–29 Here, instead, it is
entirely based on the similarity of their propensity to
adopt specific local conformations.

We defined three significantly occupied regions
of (θ, μ) space corresponding to α-helix (θ � [90�,95�],
μ � [45�,50�]), β-strand (θ � [105�,145�], μ � [175�,185�]),
and loop (θ � [87.5�,97.5�], μ � [90�,360�]). The amino
acid occupancies of the three regions are normalized by
their frequencies in the entire (θ, μ) space of all 4,416
proteins and they are shown in Table 2. Amino acids
having a normalized occupancy greater than 1 are over-
represented in a given region and vice versa compared
with the expectation from random considerations. The
over-represented amino acids in the α-helix region (sec-
ond column of Table 2) are all members of Groups A and
C of amino acids with the top four being LEU (1.56),
MET (1.46), and ALA/GLU both having 1.42 normalized
occupancy. The amino acids over-represented in the
β-strand region (third column of Table 2) are all members
of amino acid Groups B and C, the top three being VAL
(1.93), ILE (1.55), and TYR (1.51). Finally, the most over-
represented amino acids in the loop region correspond to
those that are the most under-represented in both the
α-helix and β-strand regions: PRO (2.49), GLY (1.76), ASP

FIGURE 10 Distribution of μ angles in the

loop region for GLY and PHE. GLY is the most

localized amino acid, yet exhibits a spread of

angles

FIGURE 11 Clustering of amino acids into groups. The six amino acid groups obtained based on their similarity in occupying the local

structural (θ, μ) space are shown. Six is a natural choice because the closeness for the next collapse into five groups is approximately twice as

large as the previous closeness measure. A five member group would result in the merger of the two largest groups, Group A and Group B. If

one were to retain seven groups, SER would detach from Group B and remain isolated as its own group. The sequences of hierarchical

clustering for the first four Groups A (blue), B (red), C (purple), and D (green) is shown with the link thickness quantitatively representing

the closeness measure
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FIGURE 12 Occupancy of the six amino acid groups in (θ, μ) space. Groups A and B are somewhat similar with the main difference

being the relative weights of the α-helix and β-strand regions. The most distinctive groups are E and F corresponding to GLY and PRO

respectively. We remind the reader (see Figure 3c) that the density peaks occur at (θ = 92.5� and μ = 47.5�) for α-helices, (θ = 122.5� and
μ = 192.5�) for β-strands, and (θ = 92.5� and μ = 242.5�) for loops

TABLE 2 Propensity of the 20

amino acids to occupy the α-helix,
β-strand, and loop regions in (θ, μ)
space

Amino
acid type

Normalized
occupancy
in the α-helix region

Normalized
occupancy
in the β-strand region

Normalized
occupancy
in the loop region

ALA 1.42 0.85 0.89

ARG 1.29 1.02 0.89

ASN 0.77 0.60 1.31

ASP 0.77 0.48 1.33

CYS 0.87 1.41 0.67

GLU 1.42 0.63 0.97

GLN 1.38 0.78 0.88

GLY 0.34 0.60 1.76

HIS 0.80 0.98 0.81

ILE 1.26 1.55 0.51

LEU 1.56 0.94 0.70

LYS 1.21 0.75 1.08

MET 1.46 1.21 0.69

PHE 0.88 1.38 0.64

PRO 0.14 0.40 2.49

SER 0.61 1.05 1.04

THR 0.67 1.43 0.76

TRP 0.89 1.23 0.89

TYR 0.80 1.51 0.63

VAL 1.00 1.93 0.50

Note: The numbers shown have been normalized by the amino acid occurrences in all the (θ, μ) space.
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(1.33), and ASN (1.31). These four amino acids are mem-
bers of the amino acid groups D (ASN and ASP), E (GLY),
and F (PRO)—see amino acid grouping analysis and
Figure 11. The strong correlation observed between the
values of normalized occupancies of amino acids in the
three regions and the results of the amino acid groupings
suggest that amino acid Group A can be interpreted as the
“α-helical” group, amino acid Group B as the “β-strand”
group, while Group C is over-represented in both α-helix
and β-strand regions. Finally, amino acid Groups D, E, and
F can be described as “loop” groups, since they are strongly
over-represented in loops and under-represented in both
α-helix and β-strand regions. These findings are in good
accord with the observed amino acid propensities in pro-
teins previously reported in the literature.3,5,30–33

With the identification of just six groups, we
proceeded to an analysis of correlating the local structure
(θ, μ) at bead i to the identity of the triplet of amino acid
groups at positions (i − 1,i,i + 1). The simplicity now is
that the total number of distinct triplets is 216 instead of
8,000. We considered each of these triplets and studied
the number of times these occurred. Obviously, one
would expect that triplets containing the amino acids in
groups C, D, E, and F would be fewer than those occur-
ring in Groups A and B. Indeed, the number of triplets
which occurred more than 4,461 times (deduced by divid-
ing the total number of triplets = 963,681 and the total
number of types of triplets = 216) was just 57 and we
used these for our analysis because of their statistical sig-
nificance. The results are summarized in Figure 13.

FIGURE 13 The six panels show the distributions of the six most localized triplets in the (θ, μ) plane. They all occupy the α-helix region
predominantly. But they are spread out considerably underscoring the weak role of the amino acid sequence in matching with the local

structure. We remind the reader (see Figure 3c) that the density peaks occur at (θ = 92.5� and μ = 47.5�) for α-helices, (θ = 122.5� and
μ = 192.5�) for β-strands, and (θ = 92.5� and μ = 242.5�) for loops

TABLE 3 Identities of three amino

acids with the highest propensities to

occupy the α-helix, β-strand, and loop

regions in (θ, μ) space (taken from

Table 2)

α-Helix propensity β-Sheet propensity Loop propensity

Our study Levitt38 Our study Levitt38 Our study Levitt38

LEU (1.56) MET (1.47) VAL (1.93) VAL (1.49) PRO (2.49) PRO (1.91)

MET (1.46) GLU (1.44) ILE (1.55) ILE (1.45) GLY (1.76) GLY (1.64)

GLU (1.42) LEU (1.30) TYR (1.51) PHE (1.32) ASP (1.33) ASP (1.41)

Note: The Table also shows the winning amino acids from Levitt's analysis of 1978.38 There is excellent
accord between our results and those of Levitt. The key difference is the identity of one of the top three

amino acids in the β-sheet propensity group. PHE scores third in Levitt's analysis with a normalized
probability of 1.32 whereas PHE scores fifth in our analysis with a similar probability score of 1.38. TYR
scores third in our study and fourth in Levitt's analysis.
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3 | CONCLUSION

We conclude with the lessons learned from our analysis.
Our goal here was to characterize the local structures
associated with protein native state folds using the simple
representation of just two angles (θ and μ) for each Cα

position (Figure 1). This simplification is made possible
because the vast majority of bond lengths is substantially
constant (Figure 2). The (θ, μ) variables are a coarse-
grained representation of successive Ramachandran
angles. The local structures adopted by proteins are cap-
tured by simple patterns of points in the (θ, μ) plane. This
reveals that protein native state structures (even at the
local level) are highly structured unlike the behavior of a
generic chain. Even though there is a great deal of spread
in the θ and μ values, there is a tight correlation in the
plot of the mean θ versus mean μ for the 4,416 proteins
(Figure 4).

Armed with insights on the local structural pattern,
we explored a potential sequence-structure relationship
in multiple ways. We considered the propensity of the
20 amino acids to occupy certain regions of local struc-
tural space. We also divided the 20 amino acids into six
groups based on their similarity to each other in being
associated with regions in the (θ, μ) space. We explored
singlets and triplets based on grouping. The basic result
of our analysis is that any sequence-local structure rela-
tionship is not very strong and there is flexibility in the
ability of the amino acids to adapt to the local structure.
This is consistent with the prevalence of neutral evolu-
tion where neither the native state fold nor the ability to
function changes under many amino acid substitutions.
It serves to underscore the pioneering results of Brian
Matthews34,35 and his team who “used the lysozyme from
bacteriophage T4 to define the contributions that differ-
ent types of interaction make to the stability of proteins.”
One of their key findings was that “the protein is, in gen-
eral, very tolerant of amino acid replacement.” Our find-
ings also are in accord with more recent experimental
studies on proteins36,37 which showed that, while protein
structures are highly tolerant of amino acid substitutions,
a few key alterations can yield distinct structure and
function. An interesting challenge is to be able to predict,
in a transparent and reliable manner, the identity of
these key amino acids.

We conclude by revisiting a seminal paper by Levitt38

more than four decades ago in which he very carefully
measured the Chou-Fasman propensity39 of the 20 amino
acids to be housed in three secondary structures. He
noted that, generally, the preferences of the individual
amino acids for secondary structure are rather weak. He
provided a physical interpretation of his results by noting
that “the chemical structure and sterochemistry of the

amino acid plays a major part in determining its prefer-
ence and dislike for secondary structure… Bulky amino
acids, namely, those that are branched at the β-carbon or
have a large aromatic side chain, prefer β-sheet. The
shorter polar side chains prefer reverse turns, as do Gly
and Pro, the special side chains. All other side chains pre-
fer α-helix, except Arg which has no preference.” Table 3
shows a side-by-side comparison of the results of Levitt
obtained with less than a 100 protein structures and our
findings with entirely different methods and more than
4,000 protein structures. Our results match those of Lev-
itt38 confirming the adage—old is gold.

4 | MATERIALS AND METHODS

The PDB codes of 4,416 proteins are presented in
Table S1 as Supporting Information.
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