
Contents lists available at ScienceDirect

Journal of Archaeological Science

journal homepage: www.elsevier.com/locate/jas

Theory and practice for an object-based approach in archaeological remote
sensing

Luigi Magnini, Cinzia Bettineschi∗

Department of Cultural Heritage: Archaeology and History of Art, Cinema and Music – University of Padova, Italy

A R T I C L E I N F O

Keywords:
OBIA
Archaeology
Landscape evolution
Knowledge integration
Image interpretation
Diachronic semantic models
Archaeo-objects

A B S T R A C T

Object-based image analysis (OBIA) is rapidly emerging as a valuable method for integrating the data processing
techniques and GIS approaches classically employed in archaeology. OBIA is intended to replicate human per-
ception by using a protocol of (semi)automated image segmentation and classification. However, the lack of a
theoretical background adapted to the specificities of the archaeological discipline is still preventing researchers
from finding a shared language and a common protocol of investigation necessary to allow the comparability of
the results.

This article discusses a series of crucial theoretical issues linked to the incompleteness and the equi-/multi-
finality of the archaeological record and introduces the core concept of Diachronic Semantic Models (DhSM) as a
means to integrate the long-term evolution of the archaeological landscape in the conceptual, digital and real-
world frameworks of the object-based approach.

We also present an assessment of the limits and potential of this method, built from a set of case studies from
published and unpublished research. Finally, we propose a general workflow of an Archaeological Object-Based
Image Analysis (ArchaeOBIA) project, designed for stimulating the development of an operational routine for
object-based applications in archaeology.

1. Introduction

In recent years, archeological research has seen an increasing
number of remote sensing (RS) applications with the use of new sensors
and data types, such as multi/hyper-spectral imagery (Traviglia, 2011;
Lasaponara, Masini, 2012; Doneus et al., 2014; Agapiou et al., 2014; De
Guio, 2015; Moriarty et al., 2019), radar (Wiseman, El-Baz, 2007;
Lasaponara, Masini, 2013; Chen et al., 2016; Tapete, Cigna, 2017;
Burigana, Magnini, 2018) and LiDAR data (Bewley et al., 2005;
Devereux et al., 2005; Doneus et al., 2008; Challis et al., 2011; Opitz,
Cowley, 2013), that have joined the classic aerial photographs. How-
ever, these innovations had only little impact on the traditional pho-
tointerpretation, which remains essentially a work for the human op-
erator via visual inspection (Brophy, Cowley, 2005; Cowley, 2015;
Crutchley, 2015; Wilgocka et al., 2016; Quintus et al., 2017).

The reduction of the instrumental costs and the exponential increase
in the volume of datasets of the last few years prompts for an overall
revision of the methods traditionally used in archaeology (Bennett
et al., 2014). In this context, the automation or semi-automation of
image analysis seems to offer an opportunity to speed up and grant
better reproducibility for the classification and the subsequent

interpretation of the remotely sensed imagery, even in the archae-
ological field. This approach has a long history in the domains of en-
vironmental, material and biomedical sciences (Heidrich et al., 2013;
Caie et al., 2016; Feuchtinger et al., 2016; Hawkins et al., 2016), but its
potential is yet to be fully exploited for systematic research on cultural
heritage.

As previously pointed out, the number of papers dealing with ob-
ject, pattern and scenery recognition (OPSR) of archaeological contexts
is still very limited and includes applications of template matching,
machine learning, convolutional neural network (CNN), custom algo-
rithms and object-based methods (see Traviglia, Torsello, 2017 and
Davis, 2018 for a general overview on the topic). In this paper, we will
focus our discussion on object-based image analysis (OBIA or GeOBIA,
with a geographic connotation) which was described as “an evolving
paradigm with specific tools, software, methods, rules, and language
(that) is increasingly being used in studies which need to conceptualize
and formalize knowledge representing location based reality” (Blashke
et al., 2014).

In order to promote the interoperability of the rule-sets, it is ne-
cessary to make explicit what it is implicit in the classification and
interpretation process. For this purpose, we propose a theoretical
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framework aimed at formalizing expert archaeological knowledge using
ontologies (i.e. formal, explicit specifications of a shared con-
ceptualization, according to Gruber, 1993). Moreover, we introduce the
concept of Diachronic Semantic Models (DhSM), developed to better
explain the long-term evolution of the landscape in machine-readable
language (§ 4.1).

As object-based applications make their way into archaeological
practice, it becomes increasingly important to find a shared language
and a common protocol of investigation, ideally passing from opera-
tional practice to operational routine. In this paper, we suggest a gen-
eral workflow for OBIA applications in archaeology built from a wide
range of published and unpublished case-studies to ease the compar-
ability of data. Finally, we argue that there is a growing urgency to find
a common way for publishing rule-sets and rule-set libraries to be semi-
automatically or automatically implemented for archaeological in-
vestigations. This topic is of general interest for the OBIA community,
but it should be stressed with a particular emphasis in view of further
increasing the role of object-based applications in archaeology, as most
of the operators have a humanistic background and, consequently,
longer learning times in the development of customized rule-sets.

2. Overview of the method

2.1. The OBIA approach

RS imagery are composed of pixels (or voxels, in a 3D coordinate
system), whose dimension is a function of the sensor used and of the
parameters employed for the acquisition (Gonzalez et al., 2008). While
pixel-based classifications rely only on the information contained in
each single pixel (Lillesand et al., 2004), the basic entity of OBIA is
represented by image-objects (sometimes also called image-segments)
(Hay et al., 2001; Blaschke et al., 2004). An image-object is “a discrete
region of a digital image that is internally coherent and different from
its surroundings” (Castilla, Hay, 2008); each image-object is char-
acterized by a set of additional spectral, textural, morphometric and
relational parameters that can be used to fine-tune the results of the
image classification if compared to the per-pixel approach (Baatz et al.,
2008; Gamanya et al., 2009; Wuest, Zang, 2009; Blaschke et al., 2014).
Moreover, image-objects can represent geographic objects (sensu
Castilla and Hay, 2008) more accurately than single pixels and, thus,
they offer an improved basis for classification.

Image analysis using object-based methods can be essentially di-
vided in two main sequential steps: segmentation and classification.
Segmentation is used to partition the image into homogeneous regions,
called primitive-objects. However, primitive image-objects are not al-
ways meaningful, i.e. they do not always readily correspond to the real-
world entities (Castilla, Hay, 2008). This is the reason why numerous
cycles of segmentation and classification are sometimes employed for
further refining.

The typology of segmentation algorithms is wide (Pal, Pal, 1993)
and in constant increase, starting from the simplest (such as the
chessboard and the quad-tree algorithms) to the most complex proce-
dures (as the multi-threshold or the multiresolution segmentation). The
multiresolution segmentation (MRS) is generally recognized as one of
the best performing solutions both in the fields of biomedical sciences
and RS. MRS is a bottom-up technique designed to emulate human
perception. Basically, it maximizes intra-object homogeneity while
maximizing inter-object heterogeneity (Baatz, Shape, 2000). The algo-
rithm starts from generator-pixels called seeds and groups adjacent
pixels in numerous subsequent steps. When the computed heterogeneity
surpasses the threshold value defined by the scale parameter, the pro-
cess interrupts and image-objects are generated (Benz et al., 2004).
Simplifying, the higher is the scale parameter, the bigger will be the
resulting image-objects (Drăguţ, Blaschke, 2006). The homogeneity
criterion can also be manually adjusted by operating on the shape and
compactness of desired values. It has been stated that omitting the

influence of the shape parameter during the segmentation can offer
better results in the task of landform classification (Eisank et al., 2011).

As previously noted, image-objects produced via image segmenta-
tion possess a series of intrinsic (object features) and extrinsic (class-
related features) descriptors which can be used to direct the classifi-
cation process. In fact, the classification phase is intended to distinguish
image-objects into meaningful classes based on their attributes and
relationships and according to the specific aims of the research
(Castilla, Hay, 2008). The selection of the classification parameters and
their threshold values can be both derived from selected training areas
and a set of derived statistics (standard nearest neighbor classification,
NN) or directly evaluated by the operators according to their expert
knowledge (rule-based classification). It was demonstrated that rule-
based classification outperforms pixel-based and object-based NN
classifications in the accuracy of the results (Gibril et al., 2017). It
should, however, be noted that the expert knowledge is subjective and
cannot be used as such for the creation of exportable rule-sets, if not in
very limited cases (Andres et al., 2012) as it will be better discussed
later.

The most common software for object-based image analysis is
eCognition Developer, owned by Trimble Inc.; however, in recent years
the interest for Free and Open-Source Software (FOSS) for GeOBIA is
progressively increasing as testified by numerous papers employing
combined solutions using Orfeo ToolBox, R, GRASS GISS, QGIS or
Doker (Van De Kerchove et al., 2014; Böck et al., 2016; Grippa et al.,
2016; Knoth, Nüst, 2017) but also by the development of specific tools
such as GeoDMA (Körting et al., 2013) and InterIMAGE (Costa et al.,
2010).

2.2. OBIA in archaeology: a general outline of the literature

Automation is still a controversial issue in archaeological photo-
interpretation (Hanson, 2008, 2010) as clearly highlighted by the quote
“Why does there even need to be an automated process for satellite
archaeology?” (Parcak, 2009). The answer is strictly entangled with the
potential of OPSR to speed-up the examination of large amounts of data
and to grant a better reproducibility to the task of image analysis,
contributing at the same time to the management and protection of the
archaeological record (see, among others: Magnini et al., 2017; Davis,
2018; Lasaponara, Masini, 2018).

Despite the challenges and misunderstandings between the tradi-
tional archaeologists and the RS experts, the scientific literature on the
subject is rapidly growing (Traviglia et al., 2016). Among the papers
dealing with (semi)automated OPSR in archaeology, however, only a
minority employ object-based image analysis (Lambers, Traviglia,
2016; Davis, 2018).

The earliest employ of OBIA in archaeology dates back to 2007,
when Jahjah et al. (2007) applied this approach for change detection
analysis around the area of the ancient Babylon (Iraq). In the same year,
De Laet et al. (2007) tested a procedure for the extraction of archae-
ological structures from multispectral satellite images comparing a set
of different automated methods and visual inspection. The outcomes of
this last case study were discouraging and contributed to a contraction
in the archaeological applications of OBIA stricto sensu. However,
starting from the same period, there was a progressive growth of OPSR
applications (such as Bescoby, 2006; Menze et al., 2006; De Boer, 2007;
Trier et al., 2009; Menze, Ur, 2012; Trier, Pilø, 2012; Schuetter et al.,
2013; Caspari et al., 2014; Schneider et al., 2015; Sanger, 2015;
Toumazet et al., 2017; Guyot et al., 2018; Trier et al., 2018; Matos-
Machado et al., 2019), which are well worth mentioning here as they
provided the foundation for a combined use of OBIA and OPSR, which
is one of the most recent trends in automated detection (Davis et al.,
2019).

It was only in 2012–2013 that object-based image analysis stricto
sensu was given a second chance, this time for automating the deli-
neation and classification of landforms starting from Digital Elevation
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Models (DEMs) (Verhagen, Drăguţ, 2012, 2013). The promising results
of this project triggered a new season of experimentation. In 2013, the
method was used with success in the identification and classification of
mountain pools on aerial photographs for ethnoarchaeological purposes
(De Guio et al., 2013). In the same period, it was employed for the
textural characterization of ancient marbles from petrographic micro-
graphs (Hofmann et al., 2013). The following year, OBIA was tested for
analyzing magnetic anomalies deriving from geophysical surveys
(Pregesbauer et al., 2014) and it was cited as an engaging novelty for
archaeological RS in a theoretical paper by Sevara and Pregesbauer
(2014). An article on semi-automatic photointerpretation of aerial
images combined with near infra-red (NIR) data was published in 2015
(De Guio et al., 2015). From 2016 to 2018, there was a steep increase in
the quality and quantity of the publications, pointing to rapid ad-
vancements in the near future. Sevara et al. (2016) compared pixel-
based and object-based image analysis in two test areas starting from
different LiDAR visualizations. Moreover, Freeland et al. (2016) re-
ported the results of a study in the Kingdom of Tonga, where they
compared the results of the GeOBIA approach with an inverted pit-
filling algorithm called iMound. OBIA was also experimented for the
first time at artifact-level for classifying a set of prehistoric stone tools
based on morphometric characteristics (Lamotte, Masson, 2016). A
custom procedure was tested by Cerrillo-Cuenca (2017) for the detec-
tion of megalithic barrows on LiDAR data. Furthermore, it proved
helpful in predicting the location of control places suited for human
occupation in mountainous environment (Burigana et al., 2017) and for
mapping and monitoring of the vanishing heritage connected to the
First World War (WWI) (Magnini et al., 2017). New approaches were
employed on Maya sites for the classification of the land cover con-
nected with different types of archaeological structures (Inomata et al.,
2017); in the USA, the method was employed for the identification of
ethnoarchaeological charcoal hearths (Witharana et al., 2018) and,
again, for mound and shell-ring detection (Davis et al., 2018, 2019).

What emerges from this general chrono-history of OBIA applications
in archaeology is that the method is generally used to identify small,
round archaeological structures: most often mounds, but also barrows,
charcoal pits and shell-craters. The source datasets for landscape-level
analyses are usually constituted by LiDAR-derived DEMs and their vi-
sualizations. However, aerial and satellite imaging (both orthophotos
and multispectral data) were also used, sometimes in a multi-layer
process. Moreover, it should be noted that there is a wide variability in
the scale of the analyses, from the regional to the microscopic level
(Hofmann et al., 2013; Heidrich et al., 2013; Gerisch et al., 2018).

3. Results and discussion

3.1. Practical issues

Despite the strengths and opportunities offered by OBIA, a series of
drawbacks and weakness must be taken into account when considering
the slow emergence of this method in archaeological RS. The criticism
of conservative archaeologists has significantly slowed down in the last
few years as the technological advances in the field of computer-aided
OPSR have demonstrated their significant contribution to the research
(Bennett et al., 2014); however, a series of practical issues is still pre-
venting from an extensive diffusion of the method beyond the restricted
circle of RS experts.

The basic obstacle should probably be associated to the software
solutions (both proprietary and FOSS) for object-based image analysis,
which are far from being user-friendly. Back in the early days of
GeOBIA, Hay and Castilla (2008) noted that “under the guise of ‘flex-
ibility’, some commercial object-based software provides overly com-
plicated options, resulting in time-consuming analyst ‘tweaking’”. If this
was true for computer scientists less than a decade ago, it is even more
true for most of today's archaeologists that have just managed to reach a
systematic integration of Geographic Information Systems (GIS) into

the everyday field practice. The recent birth of eCognition Essentials
(Trimble Inc.) has tried to overcome this problem and to offer an in-
tuitive workspace for object-based classifications, especially with NN.
However, the Developer version still retains the most complete collec-
tion of tools and algorithms which are crucial for rule-based classifi-
cation of archaeological RS data.

Segmentation is a second point of interest. This phase is in fact the
most criticized step of an OBIA project, as highly dependent on the
personal choices of the operator. Different supervised and unsupervised
methods have been proposed over the years to automate the selection of
the scale parameter, as recently synthetized in the review paper by
Zhang and Du (2016). However, the problem is yet to be completely
solved, as segmentation is highly dependent on the data source, the aim
of the study, the geographical context, the surrounding contrast and the
internal heterogeneity (Zhang et al., 2018). In general terms, it was
stated that over-segmentation is usually preferable than under-seg-
mentation (Witharana and Civco, 2014); in fact, any specialized soft-
ware offers the chance to refine the image-objects to better fit with the
real-world objects during all the steps of the workflow. This is parti-
cularly obvious for archaeological case studies, where an apparent over-
segmentation is often necessary for granting the necessary detail to
traces that may appear secondary in the investigated context, such as in
the case of evanescent crop-marks in cultivated and uncultivated fields,
within a network of agricultural channels and rural houses (De Guio
et al., 2015).

The incompleteness of the residual record is a major problem ar-
chaeology. This is even more evident in the field of RS, because this
approach mostly relays on mediation factors (vegetation/soil/snow/
shadow-marks, micro-morphology, etc.) which can sometimes limit the
interpretative potential of the work, if disconnected from ground-truth
assessment strategies. In fact, the archaeological remains are always
affected by post-depositional processes which progressively alter their
original characteristics, with different degrees of impact (Schiffer,
1972; Wood, Johnson, 1978; Nash, Petraglia, 1987; Leonardi, Balista,
1992; Harris, 1997). These processes can often lead to multifinality, i.e.
a high variability in the physical outcomes of the same category of
evidences (von Bertalanffy, 2003; Forbes, 2017). On the other hand,
different archaeological entities can end up sharing similar character-
istics at a certain point of their morphogenetic path, so much as to be
not easily distinguishable from a remote point of view. This problem
can be framed in the general context of equifinality, which accounts for
the possibility of a convergent or similar behavior in open natural and
anthropic systems of high complexity (Fig. 1) (von Bertalanffy, 2003;
Graham, Weingart, 2015; Forbes, 2017).

Moreover, the archaeological traces on RS imagery are often asso-
ciated to a complex palimpsest of historical and contemporary infra-
structures of both natural and anthropic origin. Their presence affects
the spatial continuity and/or the integrity of the ancient remains and
can significantly hamper a proper semi-automatic recognition.

As previously noted, human perception can differ widely from a
digital classification based on numeric values. For example, despite the
straightforward nature of mountain pools in Alpine environment, ap-
plying the object-feature “roundness” is often not enough to correctly
identify them all (De Guio et al., 2013). This kind of logical con-
sequentiality has value in the conceptual domain, but can rarely be
applied to real-world case studies. The presence of outliers (i.e. the twin
pools) requires a revision of the original mental model and the use of
different morphometric, textural, chromatic or relational parameters
able to incorporate the widest variability of the considered archae-
ological entities.

Further limits sometimes highlighted in the literature are the re-
producibility of the method and the exportability of the rule-sets
(Sevara et al., 2016; Freeland et al., 2016). These questions are strictly
entangled with the willingness of sharing the descriptors and para-
meters used in the classification process and are primarily connected to
the operators rather than with the method per se. Nevertheless, both are
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also rooted in the dilemma posed by the so-called semantic gap, which is
the lack of coincidence between the information extracted from the
visual data and the interpretation given by one or more experts on a
given dataset (Smeulders et al., 2000). In this sense, the association of
semantics based on formal and material ontologies (Husserl, Moran,
2001) to the archaeological domain seems one of the most promising
answers, as it will be better discussed in the following paragraphs.

3.2. Towards a theoretical framework

The application of OBIA in archaeology is essentially based on ex-
pert knowledge. This means that the archaeologist retains an essential
role in the whole process of image classification and data interpreta-
tion. Hence, automation should be regarded as an aid rather than a
substitute of traditional visual inspection. At the same time, “the pro-
cess transforms object-based image analysis into a type of computer-
aided photointerpretation in which two experts analyzing the same data
will obtain two different results because of their different experiences”,
as it was already pointed out in the field of Earth Observation (EO)
(Arvor et al., 2013).

With this in mind, it is now necessary to propose an explicit theo-
retical framework to provide a common ground for further develop-
ments of the method in the archaeological practice and to foster object-
based applications in archaeology towards higher levels of heuristic
awareness. In turn, this will help to minimize the human bias in-
troduced during the classification, contribute to the performance of
(semi)automatic image interpretation and ease the interoperability of
the data.

In this chapter, we discuss the use of ontologies as a mean to for-
malize archaeological knowledge. We also stress the role of the ar-
chaeological landscape, which is a four-dimensional entity derived from
long-lasting human/nature interactions. Moreover, we define the no-
tion of archaeological objects in the context of OBIA and we use them to
explain the complexity of the archaeological palimpsest. By doing so,
we also suggest a possible method to address the problem of classifying
multi-/equi-final entities.

3.2.1. Diachronic Semantic Models (DhSM)
The use of ontologies and semantic modeling has been proposed on

various occasions as an approach for linking the conceptualized idea of
the geographic entities and their digital representations (among others:
Dehn et al., 2001; Eisank et al., 2011; Arvor et al., 2013; Ghazouani
et al., 2018). As already noted, ontologies were defined as a formal,
explicit specification of a shared conceptualization (Gruber, 1993) ea-
sily transferrable in machine-readable language. Shared

conceptualizations can be also regarded in terms of mental models, that
are meant to simplify complex real-world situations and are often dis-
cipline-specific (Bishr, 1998). The same author describes semantics and
semantic modeling as “the relationship among the computer re-
presentations and the corresponding real world feature within a certain
context”. This process involves three main domains of knowledge: 1)
the real-world domain, made up of concrete entities (e.g. an existing
village, cemetery, road); 2) the conceptual domain, constituted by ab-
stract ideas of real-world entities based on expert knowledge; 3) the
digital domain, associated to the virtual representation of real-world
entities in computer-generated data.

However, the application of this approach to the archeological re-
search is not straightforward as the chronological depth introduces a
new variable in the system. Consider the case of an ancient settlement.
In the real-world domain, it was subject to specific transformations
(during use, obliteration, destruction, re-use …) that altered its original
characteristics irreversibly. When trying to formalize a general on-
tology, it is necessary to consider its history through time: how could
have it looked like in the past? How could it be now, after the trans-
formations induced by the post-depositional processes in that specific
context? And finally, how does it effectively appear, from a RS per-
spective?

In extreme synthesis, landscape archaeology is the study of the re-
lationship between humans and nature in a diachronic perspective. The
combined transformations in the landscape promoted by these two
actors trigger the formation and the evolution of the archaeological
record that can be studied through RS imagery. As shown in the scheme
of Fig. 1, this uneven and often unpredictable succession of anthropic
and natural actions can cause both a high rate of morphogenetic
variability within the same class of archaeological evidences (multi-
finality) and similar outcomes deriving from the nonlinear development
of different entities (equifinality). This palimpsest results in varying
degrees of shift between the conceptualized idea of a specific archae-
ological evidence and its physical, real-world appearance.

For this reason, semantic models should be applied with a dia-
chronic perspective. Fig. 2 summarizes the biunivocal connections be-
tween the digital, the conceptual, and the real-world domains in the
study of the archaeological record at landscape-level. At the same time,
it introduces the core concept of Diachronic Semantic Models (DhSM),
which integrates the idea of evolution/transformation in the for-
malization of ontologies derived from expert knowledge. In other
words, having a clear picture of how an ancient context should have
looked like is not enough. One needs to be aware of the possible
modifications that occurred during the millennia to develop an efficient
conceptualized model that can be translated in machine language and

Fig. 1. The multifinality (top) and equifinality (bottom) problem from an archaeological RS perspective.
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used to maximize the results of a semi-automatic image analysis.
Further consequence is that classification does not necessarily co-

incide with interpretation. While classification can be neutral (para-
metrically speaking), interpretation is subjective because it relies both
on the information extracted from the actual data and from additional
knowledge sources which can be a priori and contextual (Ghazouani
et al., 2018). Interpreting is giving meaning; in the case of OBIA, it
consists in assigning a semantic label to a group of image-objects that
share a set of meaningful parameters. According to this view, devel-
oping ontologies based on DhSM is an essential point within the OBIA
framework because it helps in formalizing explicit knowledge models
which can be shared among the archaeological RS community and thus
offer a common ground in the image interpretation and decision-
making domain.

3.2.2. Archaeological objects: simplifying complexity
In computer vision, ‘objects’ are autonomous portions of the real-

world defined by specific properties which express an enduring identity
in contrast with the characteristics of the surroundings (Smith, 2001).
To avoid any misunderstanding, it should be stressed that objects are
real-word entities, while image-objects in OBIA are self-coherent seg-
ments of a digital image (Castilla, Hay, 2008).

According to our proposal, archaeological objects (in short, archaeo-
objects) constitute a sub-set of geographic objects as defined by Castilla
(2003). Specifically, archaeo-objects are scale-dependent, bounded
geographical areas with archaeological significance that can be iden-
tified as the residual referent of the original archaeological record at a
specific stage of its morphogenetic path. Despite the focus on the cur-
rent situation, archaeo-objects are intrinsically dynamic and their
transformations through time can be broadly modeled using DhSM.

Demarcating the boundaries is the result of a cognitive process and
can be viewed as a conceptual activity; the borders of an archaeo-object
may be gradual or abrupt, and eventually a single archaeo-object may
be physically split up by the presence of modern disturbance. However,
as Castilla and Hay (2008) have demonstrated, this constitutes the
peculiarity of certain geo-objects with respect to the conventional
geographic entities that are ontologically autonomous.

It is possible to distinguish two main categories of archaeological
objects: simple and complex. Complex systems theory distinguishes
between simple, complicated and complex systems (Forbes, 2017).
Simple systems are composed by few elements, are fully predictable and
can be easily modeled. Complicated and complex systems, instead,
possess a higher number of parts and require more information to be
described. Yet, while complicated systems are fully predictable, com-
plex systems are characterized by a certain degree of entropy that

prevents the possibility to fully model or predict them. As all archae-
ological objects share a certain degree of unpredictability, our defini-
tions of simple and complex archaeo-objects will also relay on the
concept of heterogeneity, according to what was proposed by
(Weinberg, 1975) who developed a classification based on small-
number, middle-number and large-number systems.

Essentially, simple archaeo-objects are made up of one or a few
homogeneous parts with similar behaviors and can be defined with a
limited set of descriptors and parameters. Despite their unpredict-
ability, it is however possible to model them with a decent level of
accuracy within a given context (Fig. 3). It seems no coincidence that
most object-based archaeological case studies have dealt with the in-
vestigation of simple archaeo-objects such as mounds (among others:
Kramer, 2015; Freeland et al., 2016; Davis et al., 2018), shell-craters
(Magnini et al., 2017) and charcoal hearths (Witharana et al., 2018).

Complex archaeo-objects comprise a low to high number of het-
erogeneous parts, require a vast amount of information to be described,
are not fully predictable and can be modeled as a whole in a given
context only with a low degree of accuracy. In other words, despite
being generally perceived by the human observer as a single entity,
complex archaeo-objects are composed by elements belonging to one or
more hierarchically interconnected sub-classes. This is clearly ex-
emplified by the remains of an ancient settlement (Fig. 4a) or by the
fortification published in Sevara et al. (2016).

It is interesting to note that even archaeological objects that might
be conceptualized as simple, in specific environmental (season, level of
disturbance, etc.) and representational (sensor typology, scale, etc.)
conditions are more consistent with the category of complex archaeo-
objects. Consider for instance the case of the paleo-channel and the
ancient road in Fig. 4b, where the presence of modern structures affects
the spatial continuity and alters the integrity of the crop/soil-marks to
such an extent that the traces can be no more classified with a limited
set of descriptors and parameters (e.g. high ratio between length and
width, uniformity in color) (De Guio et al., 2015).

For this reason, it is crucial to work on multiple layers with a variety
of datasets and/or to use OBIA in conjunction with other OPSR ap-
proaches for accurately identifying objects at landscape scales (e.g., De
Guio et al., 2015; Cerrillo-Cuenca, 2017; Davis et al., 2018).

The formal distinction between simple and complex archaeo-objects
is important as it can help to address the problem of semi-automatic,
digital classification of multifinal entities or of complex archaeo-ob-
jects, which are a long-lasting problem in applying an object-based
approach to archaeological RS.

As already noted, complex archaeo-objects can be seen as a hier-
archically interrelated group of simple archaeo-objects. Hence, the next

Fig. 2. Graphical representation of the biunivocal connections linking the real-world, the conceptual and the digital domains for modeling the evolution of the
archaeological landscape through time.
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step in the analysis of complex archaeo-objects is to split up the overall
DhSM into single, hierarchically interconnected elements, to evaluate
their presence/absence in the scene and then to reconstruct the com-
plex object through relational parameters between the individual sub-
classes. The opportunity to create specific rule-sets for each element
and to modulate them in a global rule-set through a hierarchical pro-
cedure opens new perspectives for the use of this method also in a
multiplicity of palimpsestic archaeological contexts.

Fig. 5 shows a preliminary classification of the multifinal class
“trench” related to the WWI trenching system around the Austro-
Hungarian fort in Luserna (province of Trento, Italy). The trenches were

first classified according to their post-depositional history and their
appearance on the LiDAR visualizations in the three sub-classes: re-
stored, filled and residual. Secondly, the three classes were merged to
obtain a general representation of the class “trench”.

The expression Archaeological Object-based Image Analysis or
ArchaeOBIA was first introduced in its French form (ArchéOBIA) by
Lamotte and Masson (2016), who intended to promote “une métho-
dologie d'extraction automatique d'informations quantitatives sur des
collections archéologiques quelle que soit la période” (“a methodology
for the automatic extraction of quantitative information from archae-
ological collections regardless of the period”). The authors limited the

Fig. 3. Classification of simple archeo-objects: an example of WWI shell craters in Alpine environment (68).

Fig. 4. Classification of complex archeo-objects. (a1) Multispectral WorldView 2 satellite image of the ancient village of Tebtynis (Egypt), with classification of the
excavation progress (a2) for time series analysis; (b1) aerial image of Ponte Moro (Po Plain, Italy) with crop/soil-marks related to a Bronze Age infrastructural system
interrupted by a modern hydric and road network, (b2) with classification of a paleo-channel (blue) and an ancient crossroad (yellow). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)
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field of applications of object-based methods in archaeology to the
morphometric computation of material remains at item-level, in terms
of artifacts and ecofacts (Lucas, 2012). However, as we hope to point
out throughout this chapter, the potential of the OBIA approach impacts
various fields of the archaeological research, from EO at regional and
local scale, to material studies at item and microscopic levels (Fig. 6).

3.3. ArchaeOBIA in action

For this reason, we propose a conceptual revision of the term. In
particular, ArchaeOBIA will be employed throughout the text when
referring to the use of object-based methods in archaeology within the
theoretical framework of DhSM and archaeo-objects. The workflow
concept of an ArchaeOBIA project is summarized in Fig. 7. The en-
visaged workflow is constituted by 5 main interconnected steps, com-
prising: data input, segmentation, classification, data output and vali-
dation, which can eventually lead to refining or to a direct re-
application of the rule-set. The first step includes the know-why re-
presented by the mental model of the operator formalized as DhSM and
the raster/vector files that constitute the basic data for the analysis.
Subsequently, segmentation and classification are performed in itera-
tive cycles to produce meaningful image-objects; the more suitable
descriptors and parameters for the specific case study are evaluated
accordingly. The results consist of new raster/vector files, a rule-set and

a series of numerical values which can be used for further statistical
processing. The final phase is the systematic validation of the results by
means of ground/aerial and geophysical surveys, excavation trenches,
remote cross-validation or literature research to minimize the bias de-
rived from the equivocality of the archaeological record. According to
our view, assessment needs to be fully integrated in the workflow and
not treated as a separate, optional component (as previously suggested
in e.g. Ainsworth et al., 2013; Bennett et al., 2014; Freeland et al., 2016;
Magnini et al., 2017; Davis, 2018). At a following stage, verified rule-
sets can be exported and applied in different (but similar) contexts, with
eventual refining to cope with differences in scale, contrast, resolution
etc. of the new case study.

3.3.1. A matter of scale
The following paragraph will provide a scalar overview of OBIA in

archaeology, with the aim of exemplifying the variety of the possible
applications and the potential of the method in answering specific ar-
chaeological questions. The discussion will distinguish four scale-levels,
the first two related to EO and the others to material studies: 1) the
regional-level considers extensions bigger than fifteen square kilo-
meters; 2) the local-level ranges between fifteen square kilometers and
metric scale; 3) the item-level goes from metric to millimetric scale; 4)
the sub-item, microscopic level considers magnifications in the order of
millimeters to nanometers (Fig. 6). The thresholds used are arbitrary
but based on the average values derived from a selection of OPSR/OBIA
case studies published in the archaeological literature (see Table 1).

The earliest approaches of regional-level OBIA in archaeology can

Fig. 5. Complex archeo-objects: the case of the WWI trenching system around
Fort Lusern (province of Trento, Italy). (a) Classification according to the post-
depositional history in 3 different classes: restored trenches (yellow), filled
trenches (blue) and residual trenches (green); (b) merging of the previous
classes in the multifinal class “trenches”. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this
article.)

Figure 6. ArchaeOBIA levels of application. (a) regional-level: classification of
“control places” in Alpine environment (Isarco Valley, Bolzano Province, Italy)
starting from LiDAR data; (b) local-level: classification of the perimetral bank of
the Bronze Age Terramare settlement of Castello del Tartaro (Po Plain, Italy);
(c) item-level: classification of the recalcified osteological tissue in a Bronze Age
cranium of the Olmo di Nogara necropolis (Po plain, Italy) after medical sur-
gery; (d) classification of the glassy matrix and the different types of crystalline
inclusions in a SEM-BSE image of a Ptolemaic glass sample from Egypt.
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be traced back in the works of (Veraghen, Drăguţ, 2012, 2013), who
used the method to create geomorphological maps from LiDAR data for
assisting the archaeological predictive modeling. The results are of high
significance from a methodological point of view, as they show the
reliability and speed of OBIA in automatically classifying landforms at
regional scale. Starting from those pioneering experiences, our research

group further explored the potential of object-based image analysis for
archaeological predictive modeling, by testing a protocol for locating
“control places” in two test areas in Alpine environments (Northern
Italy). The rule-set was developed on the Western Asiago Plateau
(Vicenza province, Veneto) (Burigana et al., 2017) and subsequently re-
applied automatically in the Isarco Valley (South Tirol). Firstly, we

Fig. 7. Chart representing the general workflow of an ArchaeOBIA project.

Table 1
A selection of 35 archaeological papers using OBIA (white background) and other OPSR approaches (gray background) divided per scale range. If more than one case
study is present in the same publication, the various areas analyzed are separated by semicolons (;). Whenever the dimensional information is not explicitly defined in
the text, we estimated the values using the images available (signaled in the table with *).

Article Year Dimension of Area/s Scale Notes

Hoffmann et al. (2013) 2013 micrographs/not reported Microscopic
Aprile et al. (2014) 2014 *10–12 mm2 Microscopic Area of each thin section (14)
Bettineschi (2018) 2018 10mm2 Microscopic Mean area of 64 SEM-BSE images
Hein et al. (2018) 2018 6mm2 Microscopic Area of each thin section (59)
Lamotte, Masson (2016) 2016 *46 cm2 Item Mean area of 52 artefacts
Magnini (2017) 2017 8.87 cm2; 86.91 cm2 Item
De Laet et al. (2007) 2007 *4–5 km2 Local
Jahjah et al. (2007) 2007 7.74 km2 Local
Schneider et al., 2015 2014 total not reported/*8–9 km2 (validation) Local
De Guio et al. (2015) 2015 0.78 km2; 1 km2 Local
Kramer (2015) 2015 *3.5–4 km2; *1 km2 Local
Sevara et al. (2016) 2016 0.26 km2; 0.9 km2 Local
Magnini et al. (2017) 2017 4 km2 Local
Toumazet et al. (2017) 2017 2 km2 Local
Lasaponara, Masini (2018) 2018 *0.24 km2; *0.75 km2 Local
Witharana et al. (2018) 2018 10 km2; 10 km2 Local
Davis et al. (2019) 2019 *10 km2; *15 km2; 3 km2 Local
De Boer (2007) 2007 12 km2; 15 km2; 52 km2 Local/Regional
Caspari et al. (2014) 2014 not reported Local/Regional?
Bescoby (2006) 2006 42 km2 Regional
Menze et al. (2006) 2006 38400 km2 Regional
Trier et al. (2009) 2009 not reported/no scale bar Regional?
Menze, Ur (2012) 2012 23000 km2 Regional
Trier, Pilø (2012) 2012 29.3 km2; 400 km2 Regional
Veraghen, Drăguţ (2012) 2012 192 km2 Regional
Schuetter et al. (2013) 2013 69 km2 Regional
Veraghen, Drăguţ (2013) 2013 192 km2 Regional
Freeland et al. (2016) 2016 259 km2 Regional
Burigana et al. (2017) 2017 52 km2 Regional
Inomata et al. (2017) 2017 441 km2 Regional
Magnini (2017) 2017 110 km2 Regional
Davis et al. (2018) 2018 2481 km2 Regional
Guyot et al. (2018) 2018 246.7 km2 Regional
Trier et al. (2018) 2018 0.92 km2 (training); 400 km2 Regional
Matos-Machado et al. (2019) 2019 100 km2; 2.9 km2; 4.2 km2 Regional
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considered the physiographic, climatic and morphological character-
istics of the selected areas. After a preliminary evaluation of the local
landscape, it soon became apparent that numerous factors classically
used for predictive modeling, such as the availability of water, timber,
pastures and quarries, were essentially ubiquitous in the area (Burigana
et al., 2017). For this reason, we applied three DEM processing tech-
niques: slope, local dominance and solar radiation. Classification was
implemented with a rule-set that selected only image-objects with high
local dominance and solar radiation, but low slope, which were con-
sidered more suitable parameters for human occupation and territorial
control (Fig. 6a).

The project returned five areas on the Asiago Plateau that were
ground controlled, confirming an anthropic exploitation covering a
time span from protohistory to WWI. Subsequently, the same model
was applied to the Isarco Valley to verify the replicability of the
method. The procedure resulted in 36 potential “control places”, the
majority of which (24) found good correspondence with the archae-
ological sites known in the area. The remaining 12 archaeo-objects
identified by the predictive model were remotely controlled analyzing
orthophotos and, where available, a LiDAR-derived DTM with 0.5m
resolution. The interpretation of the data confirmed a possible an-
thropic exploitation covering a time span from protohistory (Bronze/
Iron Age) to the XIX century for half of them (Magnini, 2017). The
outcomes of the analysis proved the feasibility of the approach that can
be exported and applied to similar mountainous landscapes for site
predictivity analysis.

A significant portion of the archaeological efforts in the use of OBIA
were performed at local scale (Fig. 6b, Table 1). The aim of the works is
generally to implement an automated approach for identifying and/or
mapping archaeological sites or specific types of ancient (infra)struc-
tures in a given area (De Laet et al., 2007; Jahjah et al., 2007; Kramer,
2015; De Guio et al., 2015; Witharana et al., 2018; Davis et al., 2019).
In certain cases, mapping is not only devoted to quantifying the ar-
chaeological record, but also performed for monitoring its evolution
through time in view of improving the management of the cultural
landscape (Sevara et al., 2016; Magnini et al., 2017).

The average rate of true positives in landscape-level OPRS and OBIA
applications, calculated from the review published by Trier (et al.,
2018), ranges in the order of 81%; a similar accuracy (84%) was also
reached in other publications, considering both omission and commis-
sion errors (Magnini et al., 2017). The study by Trier (et al., 2018)
covers a selection of papers published in the period from 2012 to 2018
and one can perceive a progressive increase in the performance of the
classification, up to a pick-rate of 98% true positives and 1% false ne-
gatives touched in 2018. In other words, the value of OPSR and OBIA
for archaeology is no more in question, as demonstrated by the abun-
dant bibliography and the high number of successful case studies. What
is still missing at this point is the development of dedicated, sound and
shared theoretical bases, that can surpass the boundaries of pure
computer sciences for adapting to the specificities of archaeological
research. With this paper, we hope to offer a further contribution to-
wards this goal.

Looking at the published literature on OBIA, there are only two
papers dealing with item-level applications (Lamotte, Masson, 2016;
Masson, Lamotte, 2018). In their research, the authors were able to
characterize a group of prehistoric handaxes in terms of colorimetric,
textural and morphometric indices. The results were used as a statistical
guide to compare the different objects and to propose typological cor-
relations with chronological significance. In fact, manual measurements
are characterized by limited repeatability due to the difficulty of
identifying the correct orientation of the object and of choosing the
reference points. By combining OBIA and 3D models, it is possible to
obtain repeatable and exportable metric data. Fig. 6c presents the ap-
plication of LiDAR visualizations and OBIA on the laser scanner data of
Late Bronze Age (XIV-XII century BC) cranial samples for the quanti-
fication of the recalcified osteological tissue linked to the life

expectancy of the human subjects after medical surgery.1 The possibi-
lity to reapplying the original rule-set on various crania optimizes time
and workload, providing an objective and repeatable methodology for
the measurement and therefore the comparison of the different wounds.
The accuracy was evaluated with reference to a repeated set of manual
trials. The results obtained are essentially comparable with the manual
extraction of the measures; yet, there is a substantial advantage in terms
of time necessary to perform the task. Tentative tests using pixel-based
classification, instead, offered very little advice as they were unable to
detect the textural changes that distinguish the original bone from the
recalcified tissue.

Again, OBIA has been tested for the analysis of archaeometric data
only in very limited occasions, as well as OPRS in general (e.g. Aprile
et al., 2014; Hein et al., 2018). Looking at OBIA applications, Hoffmann
et al. (2013) proposed a method for the extraction of mineral grains in
microscopic images of marbles thin sections. The data were used as a
basis for the morphological and textural measurements intended for the
identification of the provenance of the material. Recently, Bettineschi
(2018) employed OBIA for analyzing SEM-BSE (Scanning Electron Mi-
croscope – Backscattered Electrons) images selected to represent the
most significant color classes of the investigated set of opaque archae-
ological glasses2 (Fig. 6d). After the classification, the data were
quantitatively analyzed to obtain indications on the number of the
coloring and opacifying inclusions, their maximum and average di-
mensions and on the ratio between the total volume of the glassy matrix
and the volume of the crystalline inclusions, porosity excluded (as
proposed in a per-pixel approach by Artioli et al., 2008). The accuracy
in terms of phase identification and classification was evaluated based
on a combination of chemical analysis and visual inspection on a subset
of the 64 analyzed micrographs and it returned a preliminary value of
over 90%. This objective and reproducible method provided a quanti-
tative and qualitative estimation of the textural characteristics of the
different glasses, offering new hints on the production technologies
used and on the standardization of the manufacturing processes.

It should be stressed that, up to now, the application of OBIA to
material studies is mostly devoted to quantification, rather than iden-
tification. In fact, there are multiple benefits in employing OBIA as an
automated method of quantification at item and sub-item level. While
manual measurements are generally subject to random errors of vari-
able magnitude, automatic procedures generate precise and repeatable
data. Assuming the existence of systematic errors (of omission/com-
mission), the resulting shift from the real value will be constant for all
measures, thus granting better comparability of the data. Moreover,
OBIA can simultaneously consider morphometry, color, texture and
relational parameters, helping in refining the final classification, if
compared to the traditional per-pixel approaches.

4. Conclusions and perspectives

OBIA is a growing trend in archaeological RS. In this paper, we
offered a synthesis of its basic principles and discussed the most re-
levant papers dealing with archaeological case studies. Moreover, we
showed the practical problems which still preclude a wider diffusion of
the method among the archaeological RS community and the field
operators. It was argued that some of these issues can be overcome by
introducing a theoretical framework able to formalize expert knowl-
edge. The incompleteness and dynamic nature of the archaeological
record led us to propose the use of ontologies based on Diachronic
Semantic Models (DhSM). This formal approach can provide a possible
key for the description of the evolution of the archaeological record
through time. Moreover, it can prove particularly useful for the clas-
sification of multi-/equi-final entities which constitute a long-lasting

1 The publication is currently in preparation.
2 A dedicated paper is currently in preparation.
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problem in archaeological photointerpretation. Additionally, we in-
troduced a formal definition of archaeo-objects, which are the focus of
all RS applications in archaeology, especially in the field of computer-
aided methods for automated and semi-automated image analysis.

This overall theoretical framework represents the backbone of the
ArchaeOBIA concept. In general terms, ArchaeOBIA can be defined as
the application of object-based image analysis to archaeological re-
search, irrespectively of the scale of investigation. Furthermore, this
approach is designed to systematically integrate OBIA and result as-
sessment, to achieve an appropriate balance between processing speed
and reliability of results. A scheme on the integration of DhSM and
ArchaeOBIA is proposed in Fig. 8.

The paper also presented a series of case studies at regional, local,
item and microscopic scale to highlight the versatility of the method.
Judging from those data, ArchaeOBIA shows promising growth op-
portunities with regards to the fields of application and the type of
sensors whose data might be processed in the near future. Besides, it
proved as a reliable and reproducible method to deal with the com-
plexity of the archaeological record. In fact, ArchaeOBIA offers an ef-
ficient and robust protocol to help (semi)automatic photointerpretation
and data analysis, capable of simultaneously operating on multiple
layers for the classification of archaeo-objects. It also grants the op-
portunity to speed up the process of image analysis and object re-
cognition when working at landscape level or with huge amount of data
thanks to the exportability of the rule-sets. Finally, it is a powerful tool
for protecting the archaeological record as a multi-temporal, multi-
level, (semi)automatic monitoring system. In detail, object-based image
analysis is an instrument of exceptional potential for the time-series
diagnostics of the degradation processes both at landscape and item
level. In this sense, it is also an effective means to identify and prevent
illegal excavations and looting actions in the perspective of an ‘Applied
Archaeology’ (Downum, Price, 1999). Furthermore, the method can be
used to monitor processes of destruction (voluntary or accidental) of
cultural heritage areas impacted by military conflicts or natural ha-
zards, that are essentially inaccessible for direct interventions on the
field (as seen in Lasaponara, Masini, 2018 using automatic feature ex-
traction). Another possible direction is the application of ArchaeOBIA
to Unmanned Aerial Vehicles (UAV)-derived data. After the success and
capillary diffusion in the archaeological practice of aerial platforms
equipped with a variety of sensors (from optical to multi/hyper-spectral

and LiDAR) (Bosco et al., 2015; Stek, 2016; De Reu et al., 2016;
Campana, 2017; Colombatti et al., 2017) it is just a matter of time
before OBIA will start to be employed in the post-processing of data
from UAV surveys.

Future research is expected to further expand the role of OBIA in
archaeology. Although this is only the beginning of a long-term process,
we anticipate that the proposed ArchaeOBIA approach will be able to
enhance the interoperability of the rule-sets and disclose new possibi-
lities towards an explicit method for extracting archaeological in-
formation from RS imagery. Building from this preliminary discussion,
we hope that the archaeologists will become more and more aware of
their fundamental value in the (semi)automatic recognition of archaeo-
objects. As their knowledge and mental models will be systematically
integrated in DhSM, translated in machine-readable language and used
as a reference for OPSR, the overall accuracy of the results will hope-
fully reach new standards.
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