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ABSTRACT
Paired- comparison models, such as Bradley–Terry and Thurstone–Mosteller, are commonly used to estimate relative strengths 
of pairwise compared items in tournament- style data. We discuss estimation of paired- comparison models with a ridge penalty. 
A new approach is derived which combines empirical Bayes and composite likelihoods without any need to refit the model, as a 
convenient alternative to cross- validation of the ridge tuning parameter. Simulation studies demonstrate much better predictive 
accuracy of the new approach relative to ordinary maximum likelihood. A widely used alternative, the application of a stand-
ard bias- reducing penalty, is also found to improve appreciably the performance of maximum likelihood; but the ridge penalty, 
with tuning as developed here, yields greater accuracy still. The methodology is illustrated through application to 28 seasons of 
English Premier League football.

1   |   Introduction

The problem of rating a list of items on the basis of a set of paired 
comparisons arises frequently, in a variety of fields including ar-
tificial intelligence (e.g., Rafailov et al. 2023), bibliometrics (e.g., 
Varin, Cattelan, and Firth 2016), education (e.g., Bartholomew 
and Jones 2022), forensic science (e.g., Thompson et al. 2018), 
genetics (e.g., Ma, Wong, and Owen 2012), politics (e.g., Loewen, 
Rubenson, and Spirling  2012), psychometrics (e.g., Maydeu- 
Olivares and Böckenholt  2005) and sport (e.g., Glickman and 
Stern 2017), to name just a few. A classical reference for the sta-
tistical analysis of paired comparisons is David (1988). A more 
recent review is Cattelan (2012), while Aldous (2017) discusses 
various aspects of paired comparisons from the point of view of 
applied probability.

In binary paired- comparison models, the probability that item i 
beats item j in a comparison between them is 

where F( ⋅ ) is the cumulative distribution function of a zero- 
symmetric continuous random variable and 𝜇i is the strength of 
item i. The symmetry restriction here is important, to ensure 
that F(𝜇i − 𝜇j) + F(𝜇j − 𝜇i) = 1 for all possible values of 𝜇i and 
𝜇j . Popular choices for F are the logistic distribution which gives 
the Bradley–Terry model (Bradley and Terry 1952) and the nor-
mal distribution that corresponds to the Thurstone–Mosteller 
model (Thurstone 1927; Mosteller 1951). These two models are 
quite similar in practice, given the well- known correspondence 
between the logit link assumed in the Bradley–Terry model 
and the probit link of the Thurstone–Mosteller model (e.g., 
Agresti 2002, 246–247). The logit and probit functions are nearly 
proportional except in the tails, and thus, in practice, it is usu-
ally difficult to see any appreciable difference in fit between logit 
and probit models.

Consider p items. Maximum likelihood estimation of the vec-
tor of strength parameters 𝝁 = (𝜇1, … ,𝜇p)

𝖳 is well known to be 
problematic, in part because the estimate of 𝜇i diverges if item i 
wins all of its comparisons or loses them all (e.g., Kosmidis and (1)Pr(i beats j) = F(𝜇i − 𝜇j),
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Firth 2021). Bias- reduced maximum likelihood (Firth 1993) over-
comes such limitations of maximum likelihood, guaranteeing 
finiteness and also better frequentist properties of the strength 
estimates (Kosmidis and Firth 2021). Finite estimates can also be 
obtained through other forms of penalized maximum likelihood 
(Mease 2003) or Bayesian methods (Caron and Doucet 2012).

The present paper develops a highly tractable alternative regu-
larization of the likelihood for the Thurstone–Mosteller model, 
using a ridge penalty that is tuned by using a new ‘pairwise em-
pirical Bayes’ method. The predictive performance of this new 
approach is studied in simulation experiments and through ap-
plication to match results from incomplete seasons of English 
Premier League football.

2   |   Ridge Regression for Paired Comparisons

We begin by assuming that the outcome of a paired comparison 
does not depend on the order in which the items are presented, 
which in sport applications means that there is no home- field 
effect; and we assume for now also that there are no ties. These 
assumptions will be relaxed later, in Section 3.2.

Denote the outcome of the paired comparison between items i 
and j as Yij = 1 if i wins and Yij = − 1 if j wins. In this paper, we 
investigate a natural form of regularization for estimation of the 
strength parameters, based on the ridge- penalized log likelihood 

where 𝓁(𝝁) is the log likelihood of the paired- comparison model, 
that is, 

Here,  denotes the observed tournament, that is,  is the set 
of index pairs (i, j) in which yij is observed; and 𝜆 ≥ 0 is a sca-
lar tuning parameter. For a fixed value of 𝜆, computation of the 
ridge estimates of the strength parameters is a relatively simple 
optimization, by using, for example, standard quasi- Newton al-
gorithms. The standard approach to determining a good value 
for 𝜆 is cross- validation. An important point is that in paired- 
comparison data, there is often some balancing structure that 
should be respected in cross- validatory splitting of the dataset; 
in round- robin tournaments, for example, it will usually make 
sense to use whole tournament rounds as cross- validation units. 
When such structure is absent, though, it can often be difficult 
to identify a suitable set of splits for cross- validation with paired- 
comparison data.

An alternative to cross- validation is estimation of 𝜆 using the 
empirical Bayes method (Morris  1983). Ridge regression coin-
cides with maximum a posteriori estimation when the strength 
parameters are uncorrelated zero- mean normal random vari-
ables with precision 𝜆, 

where Ip is the identity matrix of size p. Normality of the strengths 
is purely a working assumption here, to allow determination of 
𝜆 via the empirical Bayes method. In the simulation studies re-
ported in Section 4.2, we show that this method of determining 
𝜆 is robust in the sense that it works well even when the true 
strengths have appreciably heavier tails than a normal distribu-
tion. (There is no need to consider violations of normality due 
to skewness, because the paired- comparison model is identified 
by differences 𝜇i − 𝜇j, which have a symmetric distribution in 
any case.)

The empirical Bayes method determines 𝜆 by maximizing the 
marginal likelihood obtained from integrating out the item 
strengths. This leads to a cumbersome integral of dimension p, 

where 𝜙( ⋅ ) is the density of the standard normal random 
variable.

3   |   Pairwise Empirical Bayes

3.1   |   Estimation of the Tuning Parameter

We develop here a simple method that avoids the potentially 
high- dimensional integration  (5) by using composite like-
lihood methods (Varin, Reid, and Firth  2011). The tuning 
parameter 𝜆 is estimated by maximizing the pairwise log like-
lihood constructed from all couples of correlated paired com-
parisons, that is, those couples with one item in common, such 
as (i vs j) and (i vs k). The pairwise log likelihood for 𝜆 takes 
the form 

Here,  = { − 1, + 1} is the set of possible outcomes of the paired 
comparisons (which will be later extended in Section 3.2 to in-
clude ties), while nrs =

∑

ijk1(Yij = r,Yik = s) is the number of 
correlated couples of paired comparisons with outcomes r and s, 
and prs(𝜆) = Pr

(

Yij = r,Yik = s
)

 is the corresponding marginal 
bivariate probability.

In the following, we use the Thurstone–Mosteller model, be-
cause it is mathematically more convenient than the Bradley–
Terry model and the two models give essentially equivalent fits 
as already noted in Section  1. The mathematical convenience 
of the Thurstone–Mosteller model comes directly from the fact 
that its normal latent- variable representation is conjugate with 
the normal prior (4) that underpins ridge- penalized maximum 
likelihood—a fact that greatly simplifies the integrals required 
by the empirical Bayes method. Under the Thurstone–Mosteller 
model, the bivariate probabilities prs(𝜆) have closed- form ex-
pressions, by a well- known result sometimes referred to as 
the theorem of median dichotomy (Sheppard  1898; Cox and 
Wermuth  2002). The probability of two wins for the common 
item i is 

(2)𝓁𝜆(𝝁) = 𝓁(𝝁) −
𝜆

2

p
∑

i=1

𝜇2i ,

(3)𝓁(𝝁) =
∑

(i,j)∈

log F{yij(𝜇i − 𝜇j)}.

(4)𝝁 ∼ (0, 𝜆−1Ip),

(5)L(𝜆)=𝜆p∕2
∫
ℝ
p
exp{𝓁(𝝁)}

p
∏

i=1

𝜙(𝜆1∕2𝜇i)d𝜇,

(6)𝓁pair(𝜆) =
∑

r,s∈

nrs log prs(𝜆).
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where 𝜙2(u, v; 𝜌) is the density function of a bivariate stan-
dard normal variable with correlation 𝜌, and the Kendall rank 
correlation 

takes a value in the interval (0,1∕3). The general expression for 
prs depends on whether there is concordance or not in the out-
comes of the two paired comparisons: 

A closed- form estimate of 𝜆 is obtained via reparameterization of 
the pairwise likelihood in 𝜏, 

where c is the count of concordant correlated couples of paired 
comparisons (Yij = Yik) and d the count of discordant couples 
(Yij ≠ Yik ). The maximum pairwise likelihood estimator of 𝜏 is 
then the familiar Kendall 𝜏 coefficient 

and inversion of Equation (7) yields the maximum pairwise like-
lihood estimate of 𝜆, 

In sparse datasets with only a modest number of comparisons 
per item, it is helpful to consider making a small- sample ad-
justment along the lines of the classical ‘rule of succession’ of 
Laplace (1814). In the present context such an adjustment adds 
one imaginary concordant couple and one imaginary discordant 
couple per item, and the corresponding small- sample adjusted 
estimator of 𝜏 is 

An alternative interpretation of this adjusted estimator is that 
it maximizes a penalized version of the pairwise log likelihood, 
namely, 

3.2   |   Order Effect and Ties

The order of presentation of the items is important in many 
paired- comparison contexts, notable examples being the home- 
field effect in sport competitions or the white player advantage 
in chess. In paired- comparison models, such an order effect is 
typically described through the inclusion of an intercept term 
(e.g., Agresti, 2002), 

where Φ( ⋅ ) is the distribution function of a standard normal 
variable.

Another common complication in paired comparisons is 
the presence of ties, represented by the null outcome Yij = 0 
whenever i and j are compared but neither beats the other. As 
discussed in Agresti (1992), ties can be incorporated in paired- 
comparison models through a cumulative link model. The 
Thurstone–Mosteller model with an order effect corresponds 
to the latent continuous process Zij = 𝛿 + 𝜇i − 𝜇j + 𝜖ij, where 𝜖ij 
are uncorrelated standard normal variables. The outcome of the 
comparison depends on a threshold parameter 𝛾 ≥ 0, so that j 
beats i if Zij < − 𝛾 , i ties with j if − 𝛾 ≤ Zij < 𝛾 and i beats j if 
Zij ≥ 𝛾. The corresponding cumulative probabilities for the three 
outcomes given the strengths are 

for cutpoints −∞ = c−2 < c−1 ≤ c0 < c1 = +∞, with c−1 = − 𝛾 − 𝛿 
and c0 = 𝛾 − 𝛿. Ridge estimates of the strength parameters are 
still computed by maximizing a penalized likelihood as in (2), 
but now with the log likelihood 

As before, we proceed by empirical Bayes estimation of the 
model parameters 𝛾 , 𝛿 and 𝜆 from the marginal distribution of 
the paired outcomes and then compute the ridge estimates of 
the strength parameters. The marginal probabilities of the three 
possible outcomes are simply calculated by setting all strength 
parameters to zero, giving Pr(Yij = x) = Φ(cx) − Φ(cx−1), for 
x ∈ { − 1,0, 1}. From these marginal probabilities, consistent es-
timates of 𝛾 and 𝛿 are readily obtained as 

where p̂−1 = (n+1)−1
∑

ij1(Yij = − 1) and p̂1 = (n+1)−1
∑

ij1(Yij = 1). 
In tournaments without ties, �̂� = 0 as expected.

Having estimated 𝛾 and 𝛿, we proceed with estimation of the tun-
ing parameter 𝜆 by maximizing the pairwise log likelihood (6), 
where prs(𝜆) now denotes the joint probability of the outcomes of 
two paired comparisons with the same item appearing in either 
the first or the second position. For example, the probability that 

p11(𝜆) =Pr(Yij=1,Yik =1)

=
∫

∞

0 ∫

∞

0

𝜙2

(

u, v;
𝜆−1

1+2𝜆−1

)

dudv

=
(1+𝜏)

4
,

(7)𝜏 =
2
𝜋
arcsin

(

𝜆−1

1 + 2𝜆−1

)

prs(𝜆) =

⎧

⎪

⎨

⎪

⎩

(1+𝜏)

4
, if r= s,

(1−𝜏)

4
, if r≠ s.

𝓁pair(𝜏) = c log(1 + 𝜏) + d log(1 − 𝜏),

�̂� =
c − d
c + d

,

(8)�̂� =
1 − 2 sin(�̂�𝜋∕2)

sin(�̂�𝜋∕2)
.

�̂� =
c − d

c + d + 2p
.

(9)�̃�pair(𝜏) = 𝓁pair(𝜏) + p log(1 − 𝜏2).

(10)Pr(Yij = 1|𝝁) = Φ(𝛿 + 𝜇i − 𝜇j),

Pr(Yij ≤ x|𝝁) = Φ(cx − 𝜇i + 𝜇j), x ∈ { − 1,0, 1},

𝓁(𝝁) =
∑

(i,j)∈

log{Φ(cyij − 𝜇i + 𝜇j) − Φ(cyij−1 − 𝜇i + 𝜇j)}.

(11)�̂� =
1
2

{

Φ−1(1 − p̂1) − Φ−1(p̂−1)
}

,

(12)�̂� =
1
2

{

Φ−1(p̂1) − Φ−1(p̂−1)
}

,
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the first item i obtains a win and a tie in such a couple of paired 
comparisons is 

The other bivariate probabilities involved in the pairwise likeli-
hood are similarly computed. In these probabilities 𝛾 and 𝛿 are 
replaced with their estimates (11) and (12) so that the pairwise 
likelihood depends on 𝜆 only.

Maximization of the pairwise likelihood for 𝜆 is conveniently 
performed by using the robust algorithm of Brent (2013, ch. 4) 
on the finite interval domain of 𝜏 from Equation (7), with subse-
quent back- transformation as in Equation (8). The same small- 
sample adjustment as before remains available through the 
pairwise likelihood penalty of Equation (9).

4   |   Simulations

4.1   |   True Strengths Normally Distributed

The performance of the pairwise empirical Bayes method is 
illustrated first by simulations from the Thurstone–Mosteller 
model with normally distributed strength parameters. We con-
sidered 120 scenarios given by the combination of three values 
for the number of items p ∈ {20,40, 60}, eight values for the 
tuning parameter 𝜆 ∈ {2−1, 20, … , 26} and five sample sizes 
corresponding to five increasing fractions of the paired compar-
isons in a double round- robin tournament. More specifically, 
we simulated the full double round- robin tournament and used 
the first m rounds for training and the remaining 2(p − 1) −m 
rounds for testing. The number of training rounds was chosen 
so as to approximate a specified proportion of the tournament 
paired comparisons. For example, when we consider 20% of 
paired comparisons for training and the number of items is 
p = 30, the training set is taken to be the first 12 rounds be-
cause 0.2 × (2 × 29) = 11.6. The five sample fractions considered 
for training in our simulations are 20%, 30%, 40%, 50% and 80% 
of the paired comparisons in the double round- robin tourna-
ment. For each scenario, 1000 replications were generated and 
analysed.

The performance of our pairwise empirical Bayes method is 
compared here with three other methods: (1) maximum like-
lihood estimation, (2) bias- reduced maximum likelihood as 
in Firth  (1993) and (3) maximum ridge- penalized likelihood 
with 𝜆 determined by cross- validation. Bias- reduced maxi-
mum likelihood estimation is computed through the R (R Core 
Team 2024) package brglm2 (Kosmidis 2023). Because paired- 
comparison models are specified through pairwise differences 
of strengths, an arbitrary constraint is needed for identification 
of the maximum likelihood and bias- reduced maximum like-
lihood estimates; in the simulations, we used the constraint 
𝜇1 = 0. Cross- validated ridge estimates were calculated via the 
glmnet package (Friedman, Hastie, and Tibshirani 2010; Tay, 

Narasimhan, and Hastie  2023), using tournament rounds as 
the assessment unit. Paraphrasing the typical language used in 
model validation, we could call such a design a ‘leave one round 
out’ cross- validation.

We simulated paired comparisons without ties, in order to focus 
on the estimation of the strength parameters. Estimation of the 
tie threshold parameter 𝛾 would not be problematic, but bias- 
reduced maximum likelihood and cross- validated logistic re-
gression are computationally less expensive (for repeated use in 
a simulation experiment) in paired- comparison models without 
ties. In our simulations, the order effect parameter was set to 
𝛿 = 0.2, meaning that in approximately 58% of paired compari-
sons the first item beats the second (because Φ(0.2) ≈ 0.58).

The predictive performance of each method is measured by 
the classical logarithmic score (LS), defined as the negative 
average log likelihood for the testing paired comparisons 
computed at the strengths estimated from the training com-
parisons. As reference, we consider the naive forecast that 
predicts the result of every paired comparison using the as-
sumed marginal probability of a win for the first item, that 
is, LSnaive= −0.58 log(0.58)−0.42 log(0.42)=0.68. The naive 
forecast corresponds to predictions for the paired- comparison 
model with strength parameters all zero, 𝜇i = 0 for all 
i = 1, … , p. With this reference, we define the logarithmic skill 
score as LSS = 1 − LS∕LSnaive = 1 − LS∕0.68. The higher the 
logarithmic skill score, the better the predictive performance. 
Better forecasts on average than those obtained by the naive 
forecast have a logarithmic skill score above zero.

The simulation results are summarized in Figure 1, which dis-
plays the average of the simulated logarithmic skill scores. We 
do not report results based on cross- validation in Figure 1, be-
cause they were almost everywhere visually indistinguishable 
from those based on the adjusted pairwise empirical Bayes 
method. This finding confirms that pairwise empirical Bayes for 
the Thurstone–Mosteller model is essentially equivalent to stan-
dard cross- validation, but with the substantial computational 
advantage that no repeated refitting of the model is needed.

We now comment on the results reported in Figure  1. As ex-
pected, as the number of items or the fraction of paired com-
parisons used for training increases, all methods converge to 
the same predictive performance. Furthermore, as 𝜆 increases, 
estimates of item strengths converge to zero and therefore all 
methods produce predictions that are on average equivalent to 
those of the naive forecast. The predictive performance of max-
imum likelihood estimation is completely unsatisfactory when 
the training set is small and the number of items is 20, with its 
average logarithmic skill scores being worse than the naive fore-
cast. The bias- reduced maximum likelihood estimator improves 
substantially on maximum likelihood in most settings, but with 
small training sets and small values of 𝜆 it still leads to worse 
logarithmic skill scores on average than the naive forecast.

As shown in Figure 1, pairwise empirical Bayes has uniformly 
the best predictive performance of all methods considered. 
Pairwise empirical Bayes was even found to perform relatively 
well in a still more extreme setting, with p = 20 items and 
only four paired comparisons per item (approximately 10% of 

p10(𝜆) =Pr(Yij=1,Yik =0)

=
∫

c1

c0
∫

c0

c−1

𝜙2

(

u, v;
𝜆−1

1+2𝜆−1

)

dudv

=
∫

∞

𝛾−𝛿∫

𝛾−𝛿

−𝛾−𝛿

𝜙2

(

u, v;
𝜆−1

1+2𝜆−1

)

dudv.
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the tournament) used for training; that extreme setting is not 
displayed in Figure  1 because maximum likelihood performs 
so poorly that its logarithmic skill score values fall too far 
below zero.

4.2   |   True Strengths Distributed as Student's t

The results just described were obtained under the assumption 
of normally distributed strengths, the assumption used to con-
struct the pairwise empirical Bayes method. Less benign settings 
for pairwise empirical Bayes are considered next, by drawing 
the strengths from Student's t  distribution with 𝜈 degrees of 
freedom. The simulated strengths are scaled so that their preci-
sion continues to be 𝜆, 𝜇i ∼ t𝜈

√

(𝜈 − 2)∕(𝜆𝜈), 𝜈 > 2, i = 1, … , p, 
with t𝜈 denoting a Student's t- distributed variate with 𝜈 degrees 
of freedom. We take 𝜈 > 2 since otherwise the variance would 
be undefined. Drawing the strengths from a t  distribution is 
of interest because it allows a small number of items to be 
distinctly stronger or weaker than the rest. Figures  S1 and 
S2 display the average LSs for the same 120 scenarios consid-
ered previously, but with strengths simulated from Student's 

t  distributions with 𝜈 = 8 and 𝜈 = 3 degrees of freedom. As far 
as predictive performance is concerned, there is no perceptible 
difference between the t8 and normal distributions; and even 
in the more extreme scenario with t3- distributed strengths, the 
differences are rather small. While such simulation evidence 
is inevitably limited, it does provide some reassurance that the 
pairwise empirical Bayes method is robust to excess kurtosis 
in the strengths.

5   |   Premier League

As an illustration of the ridge method, we consider estimation 
of the strength of football teams in a round- robin tournament, 
before the tournament is complete. Since season 1995–1996, the 
English Premier League has been a double round robin between 
20 teams. The current format of the tournament therefore con-
sists of 38 match- weeks. We consider here all the results of the 
10,640 matches of the 28 seasons between 1995 and 2023, in 
order to evaluate the robustness of our method over a long pe-
riod characterized by substantial changes in (English) football. 
For each season, we trained the paired- comparison models with 

FIGURE 1    |    Logarithmic skill scores computed for incomplete double round- robin tournaments of different sizes. The columns correspond to 
various levels of incompleteness (20%, 30%, 50% or 80% of all possible paired comparisons used for training and the rest of paired comparisons for 
prediction). The rows correspond to different numbers of items (20, 40 and 60). The item strengths are drawn from a zero- mean normal distribution 
with precision 𝜆. The strengths are estimated by bias- reduced maximum likelihood (BRMLE), maximum likelihood (MLE) and pairwise empirical 
Bayes (PEB). The reference method is a naive forecast that uses only the assumed marginal probability of a win for the first item and corresponds to 
a zero logarithmic skill score (grey solid line).
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the first 10, 15, 20, 25 and 30 match- weeks and predicted the 
results of the rest of the tournament.

The problem we consider in this illustration is different from se-
quential prediction of next week's match results given the team's 
past results, for which it would be more appropriate to consider 
dynamic paired- comparison models, such as the state- space ap-
proaches of Knorr- Held  (2000) and Fahrmeir and Tutz  (1994), 
the exponential smoothing of Cattelan, Varin, and Firth (2013), 
the time- weighted likelihood of McHale and Morton (2011), the 
kernel smoothing of Bong et al. (2020) or the recent nonparamet-
ric spectral ranker of Tian et al. (2024).

In our illustration, the Thurstone–Mosteller model with ties 
(which here will be called ‘draws’, the word used in football) was 
estimated by maximum likelihood estimation using the polr 
function from the MASS package (Venables and Ripley 2002), 
by bias- reduced maximum likelihood for the cumulative lo-
gistic regression model developed in Kosmidis  (2014) and 
implemented in the R function bpolr available through the sup-
plementary materials of that paper and by our pairwise empiri-
cal Bayes method using R code available at https:// github. com/ 
crisv arin/ peb.

As a reference forecast, we considered the naive predictions calcu-
lated from long- term frequencies of home wins, draws and away 
wins pooled across all 28 seasons of the Premier League. Those 
seasons saw 46% home wins, 25% draws and 29% away wins out 
of a total number of 10,640 matches. The LS for the naive forecast 
is thus LSnaive= −0.46 log(0.46)−0.25 log(0.25)−0.29 log(0.29)=1.06.

Figure  2 displays boxplots of the collected logarithmic skill 
scores: Each boxplot is calculated from the 28 logarithmic skill 
scores for the various seasons, in a given match- week.

The boxplots show that the predictive performance of pairwise 
empirical Bayes is substantially better than that of maximum 
likelihood estimation, in particular when the training data are 
match results from only the first 10 or 15 weeks of the season. At 
those early stages of the tournament, just as we saw in the simu-
lation studies of Section 4, maximum likelihood very often pro-
duces strength- parameter estimates that predict future matches 
worse than does the naive forecast.

The results here also show that the bias- reduction method of 
Firth  (1993) improves upon maximum likelihood estimation 
in terms of prediction: In all 28 seasons and for all sizes of the 
training data, the logarithmic skill scores based on bias- reduced 
maximum likelihood are better than those of standard maximum 
likelihood. However, pairwise empirical Bayes typically performs 
even better than bias- reduced maximum likelihood. For predic-
tion in the early weeks of the season, especially, pairwise empiri-
cal Bayes outperforms the other methods by a substantial margin.

6   |   Final Remarks

The main purposes of this paper were to discuss ridge- penalized 
estimation of paired- comparison models and to develop the sim-
ple and effective pairwise empirical Bayes method for tuning the 
ridge penalty in the Thurstone–Mosteller model. As expected, the 
shrinkage provided by a ridge penalty yields predictions with sub-
stantially higher precision than standard maximum likelihood 
estimation. Indeed, when a paired- comparison model is trained 
with relatively few observations, prediction based on maximum 
likelihood is actually worse than the naive predictor that uses 
only the marginal proportions of (home win, away win and draw) 
outcomes. The poor predictive performance of maximum like-
lihood when the training set is small is due to overfitting; the 
shrinkage achieved through a ridge penalty, tuned by the pair-
wise empirical Bayes method, effectively eliminates that problem.

The simulations of Section 4 show that the amount of shrinkage 
needed for good predictive performance, especially when the 
training set and the number of items are both small, is appre-
ciably greater than the shrinkage inherent in the bias- reduced 
maximum likelihood method of Firth (1993). This is unsurpris-
ing: It is well known that unbiasedness typically is not the main 
consideration for predictive performance.

The authors are not aware of other work focused on estimation 
of paired- comparison models with a ridge penalty. Some previ-
ous work in team sports modelling has considered more tradi-
tional linear ridge penalty models to assess the contribution of 
individual players to a team's performance. A recent example is 
the adjusted plus/minus regularized model discussed in Matano 
et al. (2023); see also the references therein.

FIGURE 2    |    Boxplot summary of the distributions, across 28 Premier League seasons, of the logarithmic skill scores computed after 10, 15, 20, 25 
and 30 match- weeks. The predictions are computed with strengths estimated using maximum likelihood (MLE), bias- reduced maximum likelihood 
(BRMLE) and pairwise empirical Bayes (PEB). The reference method is a naive forecast that uses only long- term frequencies of home wins, draws 
and away wins and corresponds to a zero logarithmic skill score (grey solid line).
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