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Abstract.

Motivation: The colored compacted de Bruijn graph (c-dBG) has become a fundamental tool used
across several areas of genomics and pangenomics. For example, it has been widely adopted by methods
that perform read mapping or alignment, abundance estimation, and subsequent downstream analyses.
These applications essentially regard the c-dBG as a map from k-mers to the set of references in which
they appear. The c-dBG data structure should retrieve this set — the color of the k-mer — efficiently
for any given k-mer, while using little memory. To aid retrieval, the colors are stored explicitly in
the data structure and take considerable space for large reference collections, even when compressed.
Reducing the space of the colors is therefore of utmost importance for large-scale sequence indexing.

Results: We describe the meta-colored compacted de Bruijn graph (Mac-dBG) — a new colored de
Bruijn graph data structure where colors are represented holistically, i.e., taking into account their
redundancy across the whole collection being indexed, rather than individually as atomic integer lists.
This allows the factorization and compression of common sub-patterns across colors. While optimizing
the space of our data structure is NP-hard, we propose a simple heuristic algorithm that yields prac-
tically good solutions. Results show that the Mac-dBG data structure improves substantially over the
best previous space/time trade-off, by providing remarkably better compression effectiveness for the
same (or better) query efficiency. This improved space/time trade-off is robust across different datasets
and query workloads.

Code availability: A C++17 implementation of the Mac-dBG is publicly available on GitHub at:
https://github.com/jermp/fulgor.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 1, 2023. ; https://doi.org/10.1101/2023.07.21.550101doi: bioRxiv preprint 

https://github.com/jermp/fulgor
https://doi.org/10.1101/2023.07.21.550101


Meta-colored compacted de Bruijn graphs 1

1 Introduction

The colored compacted de Bruijn graph (c-dBG) has become a fundamental tool used across several areas of
genomics and pangenomics. For example, it has been widely adopted by methods that perform read mapping
or alignment, specifically with respect to RNA-seq and metagenomic identification and abundance estima-
tion [1,2,3,4,5,6,7,8]; among methods that perform homology assessment and mapping of genomes [9,10]; for
a variety of different tasks in pangenome analysis [11,12,13,14,15,16,17], and for storage and compression
of genomic data [18]. In most of these applications, a key requirement of the underlying representation of
the c-dBG is to be able to determine — with efficiency being critical — the set of references in which an
individual k-mer appears. These motivations bring us to the following problem formulation.

Problem 1 (Colored k-mer indexing). Let R = {R1, . . . , RN} be a collection of references. Each
reference Ri is a string over the DNA alphabet Σ = {A,C,G,T}. We want to build a data structure (referred
to as the index in the following) that allows us to retrieve the set Color(x) = {i|x ∈ Ri} as efficiently as
possible for any k-mer x ∈ Σk. If the k-mer x does not occur in any reference, we say that Color(x) = ∅.
Hereafter, we simply refer to the set Color(x) as the color of the k-mer x.

Of particular importance for biological analysis is the case where R is a pangenome. Roughly speaking,
a pangenome is a (large) set of genomes in a particular population, species or closely-related phylogenetic
group. Pangenomes have revolutionized DNA analysis by providing a more comprehensive understanding
of genetic diversity within a species [19,20]. Unlike traditional reference genomes, which represent a single
individual or a small set of individuals, pangenomes incorporate genetic information from multiple individuals
within a species or group. This approach is particularly valuable because it captures a wide range of genetic
variations, including rare and unique sequences that may be absent from any particular reference genome.

Contributions. The goal of this paper is to propose a solution to Problem 1 focusing on the specific,
important, application scenario where R is a pangenome. (We note, however, that the approaches described
herein are general, and we expect them to work well on any corpus of highly-related genomes, whether or not
they formally constitute a pangenome.) To best exploit the properties of Problem 1, we capitalize on recent
indexing development for c-dBGs [21]. The result is the meta-colored compacted de Bruijn graph (Mac-dBG)
— a new data structure where colors are represented holistically, i.e., taking into account their redundancy
across the whole collection being indexed, rather than individually as atomic integer lists. After covering
preliminary concepts in Section 2 and a review of the state of the art in Section 3, we describe the Mac-dBG
in Section 4.1 and 4.2. We present the underlying NP-hard optimization problem in Section 4.3 and discuss
a simple framework for constructing the Mac-dBG in Section 4.4. Section 5 presents experimental results to
demonstrate that the Mac-dBG remarkably improves the best previous space/time trade-off in the literature.
In fact, it essentially combines the space effectiveness of the most compact solutions with the query efficiency
of the fastest solutions, at the expense of a slower construction algorithm. We conclude in Section 6 where
we highlight some promising future directions.

A C++17 implementation of the Mac-dBG is available at: https://github.com/jermp/fulgor.

2 Preliminaries: modular indexing of colored compacted de Bruijn graphs

In this section we provide some background information to better understand the design principles of the
solutions we review in Section 3 and of the new one we propose in Section 4.

In principle, Problem 1 could be solved using a classic data structure from Information Retrieval — the
inverted index [22,23]. In the context of this problem, the indexed documents are the references {R1, . . . , RN}
in the collection R and the terms of the inverted index are all distinct k-mers of R. Using the notation from
Problem 1, it follows that Color(x) is the inverted list of the term x. Let L denote the inverted index for
R. The inverted index L explicitly stores the ordered set Color(x) for each k-mer x ∈ R. The goal is to
implement the map x → Color(x) as efficiently as possible in terms of both memory usage and query time.
To this end, all the distinct k-mers of R are stored in an associative dictionary data structure D. Suppose we
have n distinct k-mers in R. These k-mers are stored losslessly in D. To implement the map x → Color(x),
D is required to support the operation Lookup(x), which returns ⊥ if k-mer x is not found in the dictionary
or a unique integer identifier in [n] = {1, . . . , n} if x is found. Problem 1 can then be solved using these two
data structures — D and L — thanks to the interplay between Lookup(x) and Color(x): logically, the
index stores the sets {Color(x)}x∈R in some compressed form, sorted by the value of Lookup(x).
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(a) c-dBG
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<latexit sha1_base64="l0NtWflgvs12vxBr4U2y0HHZoPg=">AAACbXicbVHbSsNAEN3GW63XKj4pEqyiD1ISLeqLIPriYxWrQg1ls53Uxc0m7k6qNfgNvuqn+RX+gpu0iK0OLBzOnJk9M+PHgmt0nM+CNTY+MTlVnC7NzM7NLyyWl651lCgGDRaJSN36VIPgEhrIUcBtrICGvoAb/+Esy990QWkeySvsxeCFtCN5wBlFQzU2z1r7m63FilN18rD/AncAKmQQ9Va5cHnXjlgSgkQmqNZN14nRS6lCzgS8lu4SDTFlD7QDTQMlDUF7ae721d4yTNsOImWeRDtnf1ekNNS6F/pGGVK816O5jPwv10wwOPJSLuMEQbL+R0EibIzsbHS7zRUwFD0DKFPceLXZPVWUoVnQUCfE44AKDbt5oXuMKgEvFdwHM6EcGbBL1WPipS+8Nsz/yL1UwhM+576HFFeul2Y7yNyWzBXc0Z3/Bdd7VfegWrvYq5ycDu5RJKtkg+wQlxySE3JO6qRBGOHkjbyTj8KXtWKtWet9qVUY1CyTobC2vwFelb4X</latexit>

⇠3
<latexit sha1_base64="oEHZOp4hsC+xMBCH2s9lmXc5GVs=">AAACbXicbVHbSsNAEN3GW63XKj4pEqyiD1ISKepLQeyLj1WsCjWUzXZSFzebuDup1uA3+Kqf5lf4C25iEVsdWDicOTN7ZsaPBdfoOB8Fa2JyanqmOFuam19YXFour1zpKFEMWiwSkbrxqQbBJbSQo4CbWAENfQHX/n0jy1/3QWkeyUscxOCFtCd5wBlFQ7W2G53adme54lSdPOy/wB2CChlGs1MuXNx2I5aEIJEJqnXbdWL0UqqQMwEvpdtEQ0zZPe1B20BJQ9Bemrt9sXcM07WDSJkn0c7Z3xUpDbUehL5RhhTv9HguI//LtRMMjr2UyzhBkOz7oyARNkZ2Nrrd5QoYioEBlCluvNrsjirK0CxopBNiPaBCw35e6NZRJeClgvtgJpRjA/apeki89JnXRvkfuZdKeMSn3PeI4tL10mwHmduSuYI7vvO/4Oqg6h5Wa+cHlZPT4T2KZJ1skT3ikiNyQs5Ik7QII5y8kjfyXvi01qwNa/NbahWGNatkJKzdL2Cbvhg=</latexit>

⇠4
<latexit sha1_base64="LLPrdZynvIysXha2HA2Tw258bH4=">AAACbXicbVHbSsNAEN3GW63XKj4pEqyiD1ISqZcXQfTFxypWhRrKZjupi5tN3J1Ua/AbfNVP8yv8BTdpEVsdWDicOTN7ZsaPBdfoOJ8Fa2x8YnKqOF2amZ2bX1gsL13rKFEMGiwSkbr1qQbBJTSQo4DbWAENfQE3/sNZlr/pgtI8klfYi8ELaUfygDOKhmpsnrX2N1uLFafq5GH/Be4AVMgg6q1y4fKuHbEkBIlMUK2brhOjl1KFnAl4Ld0lGmLKHmgHmgZKGoL20tztq71lmLYdRMo8iXbO/q5Iaah1L/SNMqR4r0dzGflfrplgcOSlXMYJgmT9j4JE2BjZ2eh2mytgKHoGUKa48Wqze6ooQ7OgoU6IxwEVGnbzQvcYVQJeKrgPZkI5MmCXqsfES194bZj/kXuphCd8zn0PKa5cL812kLktmSu4ozv/C673qu5BtXaxVzk5HdyjSFbJBtkhLjkkJ+Sc1EmDMMLJG3knH4Uva8Vas9b7UqswqFkmQ2FtfwNiob4Z</latexit>

⇠5
<latexit sha1_base64="rxoaLGCHmeDj+l2uFt3sK5iiDns=">AAACbXicbVHbSsNAEN3Ge70rPikSrKIPUhIR9UUo9sVHld6gDWWznejiZhN3J2oNfoOv+ml+hb/gJhaxrQMLhzNnZs/M+LHgGh3ns2BNTE5Nz8zOFecXFpeWV1bXGjpKFIM6i0SkWj7VILiEOnIU0IoV0NAX0PTvq1m++QhK80jWsB+DF9JbyQPOKBqqvlvtnux2V0pO2cnDHgfuAJTIIK66q4WbTi9iSQgSmaBat10nRi+lCjkT8FrsJBpiyu7pLbQNlDQE7aW521d7zzA9O4iUeRLtnP1bkdJQ637oG2VI8U6P5jLyv1w7weDMS7mMEwTJfj4KEmFjZGej2z2ugKHoG0CZ4sarze6oogzNgoY6IZ4HVGg4zAvdc1QJeKngPpgJ5ciAj1Q9JF76wo+H+V+5l0p4wufc95Ci5npptoPMbdFcwR3d+ThoHJXdk/Lx9VGpcjG4xyzZJDvkgLjklFTIJbkidcIIJ2/knXwUvqwNa8va/pFahUHNOhkKa/8bZKe+Gg==</latexit>

⇠6

= [3,4,5,9,10,11,13,15]

= [2,3,15]

= [1,3,5,7,9,10,11]

= [1,3,5,7,9,11,13]

= [1,3,6,7,9,11,12,13,14,16]

= [6,8]
<latexit sha1_base64="rtTXHK2+Sy5PQOQDSubRkD2fJYM=">AAACbXicbVHbSsNAEN3Ee70rPikSrKIPUhIR9UUQffFRxV6gDWWznbSLm03cnag1+A2+6qf5Ff6Cm1jEVgcWDmfOzJ6ZCRLBNbruh2WPjU9MTk3PlGbn5hcWl5ZXajpOFYMqi0WsGgHVILiEKnIU0EgU0CgQUA/uLvJ8/QGU5rG8xX4CfkS7koecUTRUdfuifbzdXiq7FbcI5y/wBqBMBnHVXrZuWp2YpRFIZIJq3fTcBP2MKuRMwEuplWpIKLujXWgaKGkE2s8Kty/OjmE6Thgr8yQ6Bfu7IqOR1v0oMMqIYk+P5nLyv1wzxfDEz7hMUgTJvj8KU+Fg7OSjOx2ugKHoG0CZ4sarw3pUUYZmQUOdEE9DKjTsF4XeKaoU/EzwAMyEcmTAB6ruUz975ofD/I/czyQ84lPhe0hx6/lZvoPcbclcwRvd+V9QO6h4R5XD64Py2fngHtNknWyRPeKRY3JGLskVqRJGOHklb+Td+rTX7A1781tqW4OaVTIU9u4XZq2+Gw==</latexit>

⇠7
<latexit sha1_base64="uRsBo0iWn7zEZ9Gb5praUOJiBLA=">AAACbXicbVHbSsNAEN3Ee70rPikSrKIPUhIR9UUQffFRxV6gDWWznbSLm03cnag1+A2+6qf5Ff6Cm1jEVgcWDmfOzJ6ZCRLBNbruh2WPjU9MTk3PlGbn5hcWl5ZXajpOFYMqi0WsGgHVILiEKnIU0EgU0CgQUA/uLvJ8/QGU5rG8xX4CfkS7koecUTRUdfuifbLdXiq7FbcI5y/wBqBMBnHVXrZuWp2YpRFIZIJq3fTcBP2MKuRMwEuplWpIKLujXWgaKGkE2s8Kty/OjmE6Thgr8yQ6Bfu7IqOR1v0oMMqIYk+P5nLyv1wzxfDEz7hMUgTJvj8KU+Fg7OSjOx2ugKHoG0CZ4sarw3pUUYZmQUOdEE9DKjTsF4XeKaoU/EzwAMyEcmTAB6ruUz975ofD/I/czyQ84lPhe0hx6/lZvoPcbclcwRvd+V9QO6h4R5XD64Py2fngHtNknWyRPeKRY3JGLskVqRJGOHklb+Td+rTX7A1781tqW4OaVTIU9u4XaLO+HA==</latexit>

⇠8

= [1,3,8,11,12,13,14,16]

= [12,16]

(b) state-of-the-art index layout
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Fig. 1: In panel (a), an example colored compacted de Bruijn graph (c-dBG) for k = 3. (In the figure,
a k-mer and its reverse complement are considered as different k-mer for ease of illustration. In practice,
these are considered identical.) The unitigs of the graph are colored according to the set of references they
appear in. In panel (b), we schematically illustrate the state-of-the-art index layout (the Fulgor index [21];
see Section 3) assuming the c-dBG was built for N = 16 references, highlighting the modular composition
of a k-mer dictionary, D, and an inverted index, L. Note that unitigs are stored in D in color order, hence
allowing a very efficient mapping of k-mers to their distinct colors.

To exploit at best the potential of this modular decomposition into D and L, it is essential to rely on
the specific properties of Problem 1. For example, we know that consecutive k-mers share (k − 1)-length
overlaps; also, k-mers that co-occur in the same set of references have the same color. A useful, standard,
formalism that captures these properties is the so-called colored (compacted) de Bruijn graph (c-dBG).

Let K be the set of all the distinct k-mers of R. The node-centric de Bruijn graph (dBG) of R is a
directed graph G(K, E) whose nodes are the k-mers in K. There is an edge (u, v) ∈ E if the (k − 1)-length
suffix of u equals the (k − 1)-length prefix of v. Note that the edge set E is implicitly defined by the set of
nodes, and can therefore be omitted from subsequent definitions.

We refer to k-mers and nodes in a dBG interchangeably. Likewise, a path in a dBG spells the string
obtained by concatenating together all the k-mers along the path, without repeating the shared (k − 1)-
length overlaps. In particular, unary paths (i.e., non-branching) can be collapsed into single nodes spelling
strings that are referred to as unitigs. Let U = {u1, . . . , um} be the set of unitigs of the graph. The dBG
arising from this compaction step is called the compacted dBG, and indicated with G(U).

The colored compacted dBG (c-dBG) is obtained by logically annotating each k-mer x with its color,
Color(x). While different conventions have been adopted in the literature, here we assume that only non-
branching paths with nodes having the same color are collapsed into unitigs. The unitigs of the c-dBG we
consider in this work have the following key properties.

1. Unitigs spell references in R. Each distinct k-mer of R appears once, as sub-string of some unitig of the
c-dBG. By construction, each reference Ri ∈ R can be spelled out by some tiling of the unitigs — an
ordered sequence of unitig occurrences that, when glued together (accounting for (k-1)-symbol overlap
and orientation), spell Ri [24]. Joining together k-mers into unitigs reduces their storage requirements
and accelerates looking up k-mers in consecutive order [25].

2. Unitigs are monochromatic. The k-mers belonging to the same unitig ui all have the same color. We
write x ∈ ui to indicate that k-mer x is a sub-string of the unitig ui. Thus, we shall use Color(ui) to
denote the color of each k-mer x ∈ ui.

3. Unitigs co-occur. Distinct unitigs often have the same color, i.e., they co-occur in the same set of ref-
erences, because they derive from conserved sequences in indexed references that are longer than the
unitigs themselves. We indicate with z the number of distinct colors C = {C1, . . . , Cz}. Note that z ≤ m
and that, in practice, there are almost always many more unitigs than there are distinct colors.

Fig. 1a illustrates an example c-dBG with these properties. We refer to a compacted c-dBG as G(U , C).
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3 Related work

The solutions proposed in the literature to represent c-dBGs, and that fall under the “color-aggregative”
classification [26], all provide different implementations of the modular indexing framework as described in
Section 2. As such, they require an efficient k-mer dictionary along with a compressed inverted index.

For example, Themisto [27] makes use of the spectral BWT (SBWT) data structure [28] for its k-mer
dictionary and an inverted index compressed with different strategies based on the sparseness of the color
lists (ratio |Ci|/N). MetaGraph [29] uses the BOSS [30] data structure for the dictionary and exposes several
general schemes to compress metadata associated with k-mers [29,31], which essentially constitute an inverted
index. Bifrost [32], instead, uses a (dynamic) hash table to store the set of unitigs and an inverted index
compressed with Roaring bitmaps [33]. The compact bit-sliced layout (or COBS) [34] can be considered as
an approximate c-dBG in that the Color(x) query might contain false positives, i.e., spurious reference
identifiers (but never false negatives). This is a consequence of building a Bloom filter for each reference,
filled with all the k-mers in the reference. The Bloom filter matrix is stored in an inverted manner, and
represents a collection of approximate colors. Being approximate, this method completely avoids the space
consumption of the exact k-mer dictionary and the space is all due to the approximate colors.

However, none of these solutions simultaneously exploit all three unitig properties described in Section 2
to achieve faster query time and better space effectiveness. For example, Themisto disregards Property 1 as a
direct consequence of using the SBWT data structure that internally arranges the k-mers in colexicographic
order, and not in their order of appearance in the unitigs. This consideration is also valid of the BOSS data
structure, hence for MetaGraph. Themisto exploits Property 3 instead, by compressing only the set of the
distinct colors. Alanko et al. describe how it is possible in Themisto to reduce the space for the mapping from
k-mers to colors by spending O(log z) bits for only some k-mers (the so-called core k-mers), while instead
using 1 + o(1) bits for the other k-mers. However, this still requires dedicated storage related to the color
per -k-mer, thus failing to exploit Property 2. Lastly, COBS does not exploit any specific property: unitigs are
broken into their constituent k-mers and indexed separately; looking up consecutive k-mers (most likely part
of the same unitig) has no locality of reference due to Bloom filter lookups; colors are stored approximately
and partitioned into shards, so that a Color(x) query has to combine several partial results together.

To the best of our knowledge, the only solution that exploits all three properties is the recently-introduced
Fulgor index [21], which we now review since it is the basis of our development in Section 4.

The solution implemented by Fulgor is to first map k-mers to unitigs using the dictionary D, and then
succinctly map unitigs to their colors. The colors C = {C1, . . . , Cz} themselves are stored in compressed
form in an inverted index L. By composing these mappings, Fulgor obtains an efficient map directly from
k-mers to their associated colors (see also Fig. 1b). The composition is made possible by leveraging the order-
preserving property of its dictionary data structure — SSHash [25,35] — which explicitly stores the set of
unitigs in any desired order. This property has some important implications. First, looking up consecutive
k-mers is cache-efficient since unitigs are stored contiguously in memory as sequences of 2-bit characters.
Second, if k-mer x occurs in unitig ui, the Lookup(x) operation of SSHash can efficiently determine the
unitig identifier i, allowing to map k-mers to unitigs. Third, if unitigs are sorted in color order, so that unitigs
having the same color are consecutive, then mapping a unitig to its color can be implemented in as little as
1 + o(1) bits per unitig and in constant time via a Rank query.

4 Meta-colored compacted de Bruijn graphs

When indexing large pangenomes, the space taken by the (compressed) colors dominates the whole index
space [21,32,27] (see also the space breakdowns in the Supplementary material, Fig. 4a). Efforts toward
improving the memory usage of c-dBGs should therefore be spent in devising better compression algorithms
for the colors. In this work, we focus on exploiting the following crucial property that can enable substantially
better compression effectiveness: The genomes in a pangenome are very similar which, in turn, implies that
the colors are also very similar (albeit distinct).

By “similar” colors we mean that they share many (potentially, very long) identical integer sub-sequences.
This property is not exploited if each color Ci is compressed individually from the other colors. For example,
if Ci shares a long sub-sequence with Cj , this sub-sequence is actually represented twice in the index, which
wastes space. This example is instrumentally simple; yet, it suggests that the identification of such common
sub-sequences across a large collection, as well as the design of an effective compression mechanism for these
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patterns, is not easy. A further complicating matter is that the example clearly generalizes to more than
two sub-sequences, hence increasing with pangenome redundancy and aggravating the memory usage of an
index that encodes them redundantly in each color.

To address this issue, we describe here the meta-colored compacted de Bruijn graph, or Mac-dBG. In the
Mac-dBG, a color is represented as a sequence of references to sub-sequences that are shared with potentially
many other colors. We refer to these references as meta colors. These common sub-sequences, which we call
partial colors, are encoded once, rather than a number of times equal to the number of colors in which
they appear. This allows reducing the required space for the index while incurring low query overhead when
partial colors are sufficiently long. Indeed, we demonstrate experimentally in Section 5 that the Mac-dBG
substantially improves over the space/time trade-off of a traditional c-dBG data structure.

Another key strength of this representation via meta/partial colors is its generality: it can applied to any
c-dBG data structure arising from the composition of D and L to readily improve its space and query time.

4.1 Definition

Let G(U , C) be the c-dBG built from the reference collection R = {R1, . . . , RN}. We recall from Section 2
that we indicate with C = {C1, . . . , Cz} the set of distinct colors of G.

LetN = {N1, . . . ,Nr} be a partition of [N ] = {1, . . . , N} for some r ≥ 1, i.e.,Ni ̸= ∅ for all i,Ni∩Nj = ∅
for all (i, j) such that i ̸= j, and ∪Ni = [N ]. Let an order between the elements of each Ni = {ei,j} be fixed
(for example, by sorting the elements in increasing order). Any N induces a permutation π : [N ] → [N ],

defined as π(ei,j) := j+Bi−1 where Bi =
∑i

t=1 |Nt| for i > 0 and B0 = 0, for i = 1, . . . , r and j = 1, . . . , |Ni|.
We assume from now on that the N reference identifiers and the colors in C have been permuted according
to π. After the permutation, N determines a partition of R into r disjoint sets:

R1 = {Ri|0 = B0 < i ≤ B1},R2 = {Ri|B1 < i ≤ B2}, . . . ,Rr = {Ri|Br−1 < i ≤ Br = N}.

Definition 1 (Partial colors). Let Pi be the set

Pi =
{
{x−Bi−1|x ∈ Ct ∩ {Bi−1 + 1, Bi−1 + 2, . . . , Bi − 1, Bi}} | ∀Ct ∈ C

}
,

for i = 1, . . . , r. The elements {Pij} of the set Pi are the partial colors induced by the partition Ni. We
indicate with P = {P1, . . . ,Pr} the set of all partial color sets.

In words, Pi is the set obtained by considering the distinct colors only for the references in the i-th
partition Ri by noting that — by construction — they comprise integers x such that Bi−1 < x ≤ Bi.

The idea is that the set P = {P1, . . . ,Pr} form a dictionary of sub-sequences (the partial colors) that
spell the original colors C = {C1, . . . , Cz}. Let us now formally define this spelling.

Definition 2 (Meta colors). Let Ct ∈ C be a color. A meta color is an integer pair (i, j) indicating
the sub-list L := Ct[b . . . b + |Pij |] if there exists 0 < b ≤ |Ct| − |Pij | such that L[l] = Pij [l] + Bi−1, for
l = 1, . . . , |Pij |. It follows that Ct can be modeled as a list Mt of at most r meta colors. We indicate with
M = {M1, . . . ,Mz} the set of all meta color lists.

Given G(U , C), the Mac-dBG is the graph G(U ,N , π,P,M) where the set of nodes, U , is the same as
that of G but the colors C are represented with the partial colors P and the meta colors M.

The Mac-dBG permits to encode the colors in C into smaller space compared to the original c-dBG and
without compromising the efficiency of the Color(x) query, for the following reasons.

1. If Np =
∑r

i=1 |Pi| is the total number of partial color sets, then each meta color (i, j) can be indicated
with just log2(Np) bits. Potentially long sub-lists, shared between several color lists, are therefore encoded
once in P and only referenced with log2(Np) bits instead of redundantly replicating their representation.

2. Each partial color Pij can be encoded more succinctly because the permutation π guarantees that it only
comprises integers lower-bounded by Bi−1 + 1 and upper-bounded by Bi. Hence only log2(Bi − Bi−1)
bits per integer are sufficient.

3. The total number of integers in P is less than that in the original C, i.e.,
∑r

i=1

∑|Pi|
j=1 |Pij | ≤

∑z
t=1 |Ct|

because partial colors are encoded once.
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<latexit sha1_base64="Qp2aY0gQt/qltItb6ySjS5yOJbo=">AAACdXicbVFNTxsxEHW2H4T0C+gRVVo1adVDle5GCLggIbhw6IFWBJASC806s2DF613s2dDUyu/g2v4sfgnXepeoakJHsvT05o395jkplLQURXeN4MnTZ89XmqutFy9fvX6ztr5xavPSCOyLXOXmPAGLSmrskySF54VByBKFZ8n4sOqfTdBYmesTmhbIM7jUMpUCyFO8M8yArgQo93XWuVhrR92orvAxiOegzeZ1fLHe+D4c5aLMUJNQYO0gjgriDgxJoXDWGpYWCxBjuMSBhxoytNzVrmfhB8+MwjQ3/mgKa/bfCQeZtdMs8crKpF3uVeT/eoOS0l3upC5KQi0eHkpLFVIeVhGEI2lQkJp6AMJI7zUUV2BAkA9q4SaivRSUxc/1YLxHpkTulEzQb6iXFpyAuS65+ym3Fvm/cu403tCP2veC4iTmrsqgctvyvxAvZ/4YnPa68XZ361uvvX8w/48m22Tv2ScWsx22z47YMeszwa7ZLfvFfjfug3dBJ/j4IA0a85m3bKGCL38AAN/CDA==</latexit>L
<latexit sha1_base64="ccFKRjLSyGzwOffhbFF22sxLVhk=">AAACdXicbVFNTxsxEHW2H4T0C+gRVVo1adVDle5GCLggIeDQI60IICUWmnVmwYrXu9izoamV38G1/Vn8Eq71LlHVhI5k6enNG/vNc1IoaSmK7hrBk6fPnq80V1svXr56/WZtfePU5qUR2Be5ys15AhaV1NgnSQrPC4OQJQrPkvFh1T+boLEy1yc0LZBncKllKgWQp3hnmAFdCVDuaNa5WGtH3aiu8DGI56DN5nV8sd74PhzlosxQk1Bg7SCOCuIODEmhcNYalhYLEGO4xIGHGjK03NWuZ+EHz4zCNDf+aApr9t8JB5m10yzxysqkXe5V5P96g5LSXe6kLkpCLR4eSksVUh5WEYQjaVCQmnoAwkjvNRRXYECQD2rhJqK9FJTFz/VgvEemRO6UTNBvqJcWnIC5Lrn7KbcW+b9y7jTe0I/a94LiJOauyqBy2/K/EC9n/hic9rrxdnfrW6+9fzD/jybbZO/ZJxazHbbPvrJj1meCXbNb9ov9btwH74JO8PFBGjTmM2/ZQgVf/gDwmMIE</latexit>D

= [(1,1)(2,1)(3,1)(4,1)]

= [(2,2),(4,2)]

= [(1,2),(2,1),(3,2),(4,3)]

= [(1,3),(2,1),(3,2)]

= [(1,4),(2,3),(3,2),(4,4)]

= [(4,5)]

= [(1,4),(2,2),(3,1),(4,6)]

= [(1,5)]

<latexit sha1_base64="KP8WzuT491I6vChZrjP6D2UfarI=">AAACbXicbVHbSsNAEN3Ge721ik+KBKvog5SkFPVFEH3xRajSqlBD2WwndXGzibsTtQa/wVf9NL/CX3ATi9jqwMLhzJnZMzN+LLhGx/koWGPjE5NT0zPF2bn5hcVSeelSR4li0GKRiNS1TzUILqGFHAVcxwpo6Au48u9OsvzVAyjNI9nEfgxeSHuSB5xRNFRr86zjbnZKFafq5GH/Be4AVMggGp1y4eKmG7EkBIlMUK3brhOjl1KFnAl4Kd4kGmLK7mgP2gZKGoL20tzti71lmK4dRMo8iXbO/q5Iaah1P/SNMqR4q0dzGflfrp1gcOClXMYJgmTfHwWJsDGys9HtLlfAUPQNoExx49Vmt1RRhmZBQ50QDwMqNOzmhe4hqgS8VHAfzIRyZMAHqu4TL33m9WH+R+6lEh7xKfc9pGi6XprtIHNbNFdwR3f+F1zWqu5etX5eqxwdD+4xTVbJBtkhLtknR+SUNEiLMMLJK3kj74VPa8Vas9a/pVZhULNMhsLa/gJu2b4f</latexit>

"1
<latexit sha1_base64="27StC3TxZKD3Owkjw3QeApRdRVk=">AAACbXicbVHbSsNAEN3GW613xSdFglX0QUpSRH0Rir74IlRpVaihbLYTXdxs4u6kWoPf4Kt+ml/hL7hJi9jqwMLhzJnZMzN+LLhGx/ksWGPjE5NTxenSzOzc/MLi0vKVjhLFoMkiEakbn2oQXEITOQq4iRXQ0Bdw7T+cZvnrLijNI9nAXgxeSO8kDzijaKjm1nm7utVeLDsVJw/7L3AHoEwGUW8vFS5vOxFLQpDIBNW65ToxeilVyJmA19JtoiGm7IHeQctASUPQXpq7fbW3DdOxg0iZJ9HO2d8VKQ217oW+UYYU7/VoLiP/y7USDI68lMs4QZCs/1GQCBsjOxvd7nAFDEXPAMoUN15tdk8VZWgWNNQJ8TigQsNeXugeo0rASwX3wUwoRwbsUvWYeOkL3x/mf+ReKuEJn3PfQ4qG66XZDjK3JXMFd3Tnf8FVteIeVPYvquXayeAeRbJGNskucckhqZEzUidNwggnb+SdfBS+rFVr3droS63CoGaFDIW18w1w374g</latexit>

"2
<latexit sha1_base64="m5VVBW94wFewOAQwr5zd942c2OE=">AAACbXicbVHbSsNAEN3Ge721ik+KBKvog5SkivoiiL74IlSxKtRQNtuJLt1s4u5ErcFv8FU/za/wF9ykRWx1YOFw5szsmRk/Flyj43wWrJHRsfGJyani9Mzs3HypvHClo0QxaLBIROrGpxoEl9BAjgJuYgU09AVc+52TLH/9CErzSF5iNwYvpHeSB5xRNFRj/ay1s94qVZyqk4f9F7h9UCH9qLfKhYvbdsSSECQyQbVuuk6MXkoVcibgtXibaIgp69A7aBooaQjaS3O3r/aGYdp2ECnzJNo5+7sipaHW3dA3ypDivR7OZeR/uWaCwYGXchknCJL1PgoSYWNkZ6Pbba6AoegaQJnixqvN7qmiDM2CBjohHgZUaNjOC91DVAl4qeA+mAnl0ICPVD0kXvrCdwf5H7mXSnjC59z3gOLS9dJsB5nbormCO7zzv+CqVnX3qrvntcrRcf8ek2SZrJEt4pJ9ckROSZ00CCOcvJF38lH4spasFWu1J7UK/ZpFMhDW5jdy5b4h</latexit>

"3
<latexit sha1_base64="vHOBb+jrOC6UWQoaSlopHO5wocA=">AAACbXicbVHbSsNAEN3GW613xSdFglX0QUoiRX0Rir74IlRpVaihbLYTXdxs4u6kWoPf4Kt+ml/hL7hJi9jqwMLhzJnZMzN+LLhGx/ksWGPjE5NTxenSzOzc/MLi0vKVjhLFoMkiEakbn2oQXEITOQq4iRXQ0Bdw7T+cZvnrLijNI9nAXgxeSO8kDzijaKjm1nm7utVeLDsVJw/7L3AHoEwGUW8vFS5vOxFLQpDIBNW65ToxeilVyJmA19JtoiGm7IHeQctASUPQXpq7fbW3DdOxg0iZJ9HO2d8VKQ217oW+UYYU7/VoLiP/y7USDI68lMs4QZCs/1GQCBsjOxvd7nAFDEXPAMoUN15tdk8VZWgWNNQJ8TigQsNeXugeo0rASwX3wUwoRwbsUvWYeOkLrw7zP3IvlfCEz7nvIUXD9dJsB5nbkrmCO7rzv+Bqv+IeVKoX++XayeAeRbJGNskucckhqZEzUidNwggnb+SdfBS+rFVr3droS63CoGaFDIW18w10674i</latexit>

"4
<latexit sha1_base64="K4dt2N9dgWB9v2Diy7HT2UDrjic=">AAACbXicbVHbSsNAEN3Ge71VxSdFglX0QUpS6uVFEH3xRahiVaihbLYTXbrZxN2JWoPf4Kt+ml/hL7hJi9jqwMLhzJnZMzN+LLhGx/ksWCOjY+MTk1PF6ZnZufnSwuKVjhLFoMEiEakbn2oQXEIDOQq4iRXQ0Bdw7XdOsvz1IyjNI3mJ3Ri8kN5JHnBG0VCNjbPW7karVHYqTh72X+D2QZn0o95aKFzctiOWhCCRCap103Vi9FKqkDMBr8XbRENMWYfeQdNASUPQXpq7fbU3DdO2g0iZJ9HO2d8VKQ217oa+UYYU7/VwLiP/yzUTDA68lMs4QZCs91GQCBsjOxvdbnMFDEXXAMoUN15tdk8VZWgWNNAJ8TCgQsNOXugeokrASwX3wUwohwZ8pOoh8dIXXhvkf+ReKuEJn3PfA4pL10uzHWRui+YK7vDO/4KrasXdq9TOq+Wj4/49JskKWSfbxCX75IickjppEEY4eSPv5KPwZS1bq9ZaT2oV+jVLZCCsrW928b4j</latexit>

"5
<latexit sha1_base64="9jO/Tnw8vPwiEar0z/AQoc1sNFg=">AAACbXicbVHbSsNAEN3Ge71VxSdFglX0QUpSRH0Rir74Iqi0VaihbLaTurjZxN2JWkO/wVf9NL/CX3ATi9jqwMLhzJnZMzN+LLhGx/koWGPjE5NT0zPF2bn5hcXS0nJTR4li0GCRiNSNTzUILqGBHAXcxApo6Au49u9Ps/z1IyjNI1nHXgxeSLuSB5xRNFRj67x9sNUulZ2Kk4f9F7gDUCaDuGgvFa5uOxFLQpDIBNW65ToxeilVyJmAfvE20RBTdk+70DJQ0hC0l+Zu+/a2YTp2ECnzJNo5+7sipaHWvdA3ypDinR7NZeR/uVaCwZGXchknCJJ9fxQkwsbIzka3O1wBQ9EzgDLFjVeb3VFFGZoFDXVCPA6o0LCXF7rHqBLwUsF9MBPKkQEfqXpIvPSF7w/zP3IvlfCEz7nvIUXd9dJsB5nbormCO7rzv6BZrbgHlf3Larl2MrjHNFkjm2SXuOSQ1MgZuSANwggnr+SNvBc+rVVr3dr4llqFQc0KGQpr5wt4974k</latexit>

"6
<latexit sha1_base64="Rur3YuXlRwXulbX/lLSyerLTUfg=">AAACbXicbVHbSsNAEN3Ge71VxSdFglX0QUpSRH0Rir74Iqi0VaihbLaTurjZxN2JWkO/wVf9NL/CX3ATi9jqwMLhzJnZMzN+LLhGx/koWGPjE5NT0zPF2bn5hcXS0nJTR4li0GCRiNSNTzUILqGBHAXcxApo6Au49u9Ps/z1IyjNI1nHXgxeSLuSB5xRNFRj67x9uNUulZ2Kk4f9F7gDUCaDuGgvFa5uOxFLQpDIBNW65ToxeilVyJmAfvE20RBTdk+70DJQ0hC0l+Zu+/a2YTp2ECnzJNo5+7sipaHWvdA3ypDinR7NZeR/uVaCwZGXchknCJJ9fxQkwsbIzka3O1wBQ9EzgDLFjVeb3VFFGZoFDXVCPA6o0LCXF7rHqBLwUsF9MBPKkQEfqXpIvPSF7w/zP3IvlfCEz7nvIUXd9dJsB5nbormCO7rzv6BZrbgHlf3Larl2MrjHNFkjm2SXuOSQ1MgZuSANwggnr+SNvBc+rVVr3dr4llqFQc0KGQpr5wt6/b4l</latexit>

"7
<latexit sha1_base64="pn5DqAJ3PB0UzvSLV6BUPdKfNFg=">AAACbXicbVHbSsNAEN3Ge71VxSdFglX0QUpSRH0RRF98Eaq0VaihbLaTurjZxN2JWoPf4Kt+ml/hL7hJi9jqwMLhzJnZMzN+LLhGx/ksWGPjE5NT0zPF2bn5hcXS0nJTR4li0GCRiNSNTzUILqGBHAXcxApo6Au49u/Psvz1IyjNI1nHXgxeSLuSB5xRNFRj66J9tNUulZ2Kk4f9F7gDUCaDqLWXCle3nYglIUhkgmrdcp0YvZQq5EzAa/E20RBTdk+70DJQ0hC0l+ZuX+1tw3TsIFLmSbRz9ndFSkOte6FvlCHFOz2ay8j/cq0EgyMv5TJOECTrfxQkwsbIzka3O1wBQ9EzgDLFjVeb3VFFGZoFDXVCPA6o0LCXF7rHqBLwUsF9MBPKkQEfqXpIvPSF7w/zP3IvlfCEz7nvIUXd9dJsB5nbormCO7rzv6BZrbgHlf3LavnkdHCPabJGNskucckhOSHnpEYahBFO3sg7+Sh8WavWurXRl1qFQc0KGQpr5xt9A74m</latexit>

"8

<latexit sha1_base64="4v06d67ps9c141+zXGCMrns0q68=">AAACcXicbVHbSiNBEO2M7q5Gd9fLk/jSGIWFlTAtor4Isr74GMV4IQ6hp1OjjT09Y3eNmm3yFb7qh/kd/oA9YxATLWg4nDpVfaoqzpW0GIbPtWBi8tv3H1PT9ZnZn79+z80vnNisMALaIlOZOYu5BSU1tFGigrPcAE9jBafx9X6ZP70FY2Wmj7GfQ5TySy0TKTh66ny11XVsnQ1Wu3ONsBlWQT8DNgQNMoxWd752dNHLRJGCRqG4tR0W5hg5blAKBYP6RWEh5+KaX0LHQ81TsJGrHA/ommd6NMmMfxppxX6scDy1tp/GXplyvLLjuZL8KtcpMNmJnNR5gaDF20dJoShmtByf9qQBgarvARdGeq9UXHHDBfoljXRC3E24srBeFbJdNAVETskY/IR6bMBbbm6KyP2Xm6P8uzxyGu7wvvI9ojhmkSt3ULqt+yuw8Z1/BicbTbbV3DzcaOz9G95jiiyTFfKHMLJN9sgBaZE2ESQlD+SRPNVegqWABitv0qA2rFkkIxH8fQXDML+f</latexit>

%1,1
<latexit sha1_base64="4L++c+atF1r8+Oebet0sLddl4K0=">AAACcXicbVHbThsxEHWWlksokNAn1BcroVIlULQbRcALEiovPKZVwkVhFXmdWbDwehd7NpBa+Yq+wofxHfxAvUtUNaEjWTo6c2Z8ZibKpDDo+y8Vb+nDx+WV1bXq+qeNza1affvcpLnm0OepTPVlxAxIoaCPAiVcZhpYEkm4iO5Oi/zFGLQRqerhJIMwYTdKxIIzdNTVbndog/32dHdYa/otvwz6HgQz0CSz6A7rlZ/Xo5TnCSjkkhkzCPwMQ8s0Ci5hWr3ODWSM37EbGDioWAImtKXjKf3qmBGNU+2eQlqy/1ZYlhgzSSKnTBjemsVcQf4vN8gxPgqtUFmOoPjbR3EuKaa0GJ+OhAaOcuIA41o4r5TfMs04uiXNdUI8jpk0sF8WBseocwitFBG4CdXCgGOm7/PQ/hKdef6vPLQKHvCx9D2n6AWhLXZQuK26KwSLO38Pztut4KDV+dFunnyf3WOVfCEN8o0E5JCckDPSJX3CSUJ+kyfyXHn1djzqNd6kXmVW85nMhbf3B8U3v6A=</latexit>

%1,2
<latexit sha1_base64="rR1VGNG/d5PivBlACFBXTdZGbKk=">AAACcXicbVFNT9tAEN0YWiC05etUcVkRKlVqFNmAWi5IiF56DIgkoMSK1ptxsmK9dnfHlLDKr+Da/jB+R/8Aa2OhJnSklZ7evJl9MxNlUhj0/ceat7T85u3K6lp9/d37DxubW9tdk+aaQ4enMtVXETMghYIOCpRwlWlgSSShF918L/K9W9BGpOoSpxmECRsrEQvO0FHX++2hDZqHs/3hZsNv+WXQ1yCoQINU0R5u1S4Go5TnCSjkkhnTD/wMQ8s0Ci5hVh/kBjLGb9gY+g4qloAJbel4Rj85ZkTjVLunkJbsvxWWJcZMk8gpE4YTs5gryP/l+jnGx6EVKssRFH/+KM4lxZQW49OR0MBRTh1gXAvnlfIJ04yjW9JcJ8STmEkDzbIwOEGdQ2iliMBNqBYGvGX6Zx7ae3E0z7/IQ6vgF96VvucUl0Foix0UbuvuCsHizl+D7kEr+No6Oj9onJ5V91glu2SPfCYB+UZOyQ/SJh3CSUIeyG/yp/bX++hRb+9Z6tWqmh0yF96XJ8c+v6E=</latexit>

%1,3
<latexit sha1_base64="qT1qXwgTWLRvbbw0mkWbPaLfyFw=">AAACcXicbVHBThsxEHW2pQ0pbaGcUC8WAQmpKNpFEe0lUgQXjmlFEqqwirzObLDwehd7FghWvoIrfBjfwQ/Uu4mqJulIlp7evBm/mYkyKQz6/kvFe/N27d376nrtw8bHT583t770TJprDl2eylRfRMyAFAq6KFDCRaaBJZGEfnR9WuT7t6CNSNU5TjIIEzZWIhacoaN+73WGNjhsTveGm3W/4ZdBV0EwB3Uyj85wq/LrcpTyPAGFXDJjBoGfYWiZRsElTGuXuYGM8Ws2hoGDiiVgQls6ntJ9x4xonGr3FNKS/bfCssSYSRI5ZcLwyiznCvJ/uUGO8Y/QCpXlCIrPPopzSTGlxfh0JDRwlBMHGNfCeaX8imnG0S1poRNiK2bSwGFZGLRQ5xBaKSJwE6qlAW+ZvslD+yCai/xfeWgV3OF96XtBcR6EtthB4bbmrhAs73wV9I4awXGj+fOo3j6Z36NKvpJdckAC8p20yRnpkC7hJCGP5Ik8V169HY96uzOpV5nXbJOF8L79AclFv6I=</latexit>

%1,4
<latexit sha1_base64="zl0N/gb9aPTOVmCs+U5Ir9WSYYk=">AAACcXicbVFNT9tAEN2YUiC0BdpTxWVFqITUKLIR/bggIXrhGBBJQIkVrTfjZMV6bXbHlHSVX8EVfhi/gz/A2lhVEzrSSk9v3sy+mYkyKQz6/mPNW3qz/HZlda2+/u79h43NrY9dk+aaQ4enMtUXETMghYIOCpRwkWlgSSShF139KvK9G9BGpOocpxmECRsrEQvO0FGXu+2hDZrfZrvDzYbf8sugr0FQgQapoj3cqp0NRinPE1DIJTOmH/gZhpZpFFzCrD7IDWSMX7Ex9B1ULAET2tLxjH5xzIjGqXZPIS3ZfyssS4yZJpFTJgwnZjFXkP/L9XOMf4ZWqCxHUPzloziXFFNajE9HQgNHOXWAcS2cV8onTDOObklznRAPYyYNNMvC4BB1DqGVIgI3oVoY8Ibp6zy0f8TBPP9XHloFv/G29D2nOA9CW+ygcFt3VwgWd/4adPdbwffWwel+4+i4uscq2SY7ZI8E5Ac5IiekTTqEk4TckXvyUHvyPnvU23mRerWq5hOZC+/rM8tMv6M=</latexit>

%1,5

= [3]
= [1]
= [1,3]
= [1,2,3,4,5]
= [2,5]

<latexit sha1_base64="Dupr+KtH0b5Fud7nbI/fRLRs7F8=">AAACcXicbVHbThsxEHWWlksokNAn1BcroVIlULQbRcALEiovPKZVwkVhFXmdWbDwehd7NpBa+Yq+wofxHfxAvUtUNaEjWTo6c2Z8ZibKpDDo+y8Vb+nDx+WV1bXq+qeNza1affvcpLnm0OepTPVlxAxIoaCPAiVcZhpYEkm4iO5Oi/zFGLQRqerhJIMwYTdKxIIzdNTVbndo2/vBdHdYa/otvwz6HgQz0CSz6A7rlZ/Xo5TnCSjkkhkzCPwMQ8s0Ci5hWr3ODWSM37EbGDioWAImtKXjKf3qmBGNU+2eQlqy/1ZYlhgzSSKnTBjemsVcQf4vN8gxPgqtUFmOoPjbR3EuKaa0GJ+OhAaOcuIA41o4r5TfMs04uiXNdUI8jpk0sF8WBseocwitFBG4CdXCgGOm7/PQ/hKdef6vPLQKHvCx9D2n6AWhLXZQuK26KwSLO38Pztut4KDV+dFunnyf3WOVfCEN8o0E5JCckDPSJX3CSUJ+kyfyXHn1djzqNd6kXmVW85nMhbf3B8U5v6A=</latexit>

%2,1
<latexit sha1_base64="ETXVHiXqkUQCo4udGsAnpS+I3jc=">AAACcXicbVFNbxMxEHUWaENK2xROiIuVFAmpVbQbRYVLpAguHAPKR6t0FXmd2dSq17u1Z9sGK7+CK/wwfgd/AO8mQiRhJEtPb96M38xEmRQGff9XxXvy9NnefvV57eDF4dFx/eTlyKS55jDkqUz1ZcQMSKFgiAIlXGYaWBJJGEe3n4r8+B60Eaka4CKDMGFzJWLBGTrq6rQ/te3z9vJ0Wm/6Lb8MuguCNWiSdfSnJ5Wv17OU5wko5JIZMwn8DEPLNAouYVm7zg1kjN+yOUwcVCwBE9rS8ZK+dcyMxql2TyEt2X8rLEuMWSSRUyYMb8x2riD/l5vkGH8IrVBZjqD46qM4lxRTWoxPZ0IDR7lwgHEtnFfKb5hmHN2SNjohdmMmDZyXhUEXdQ6hlSICN6HaGvCe6bs8tN9EZ5P/Kw+tggd8LH1vKAZBaIsdFG5r7grB9s53wajdCi5anS/tZu/j+h5V8oY0yDsSkPekRz6TPhkSThLynfwgPyu/vdce9RorqVdZ17wiG+Gd/QHHQL+h</latexit>

%2,2
<latexit sha1_base64="TWXE8r45bXSJw/R/krKZ2OI0ZvM=">AAACcXicbVHBThsxEHW20NK0FEJPiItFqIQEinZTBFyQonLpMSCSUIVV5HVmwcLrXezZ0NTKV/Tafli/oz+Ad7NCTehIlp7evBm/mYkyKQz6/p+a92pl9fWbtbf1d+/XP2xsNrb6Js01hx5PZaqvI2ZACgU9FCjhOtPAkkjCILo/L/KDCWgjUnWF0wzChN0qEQvO0FHf9roj2z78PNsbbTb9ll8GfQmCCjRJFd1Ro3Z5M055noBCLpkxw8DPMLRMo+ASZvWb3EDG+D27haGDiiVgQls6ntFPjhnTONXuKaQl+2+FZYkx0yRyyoThnVnOFeT/csMc49PQCpXlCIrPP4pzSTGlxfh0LDRwlFMHGNfCeaX8jmnG0S1poRPiWcykgcOyMDhDnUNopYjATaiWBpww/ZCH9oc4WuSf5aFV8IjfS98LiqsgtMUOCrd1d4VgeecvQb/dCo5bRxftZudLdY81skN2yT4JyAnpkK+kS3qEk4T8JL/I79pfb9uj3u5c6tWqmo9kIbyDJ8lHv6I=</latexit>

%2,3

= [1,2,3]
= [1]
= [1,3]

<latexit sha1_base64="S3EuwixN9C/RD7XlGIjFWA9n3Xc=">AAACcXicbVHBThsxEHW2pQ0pbaGcUC8WAQmpKNpFEe0lUgQXjmlFEqqwirzObLDwehd7FghWvoIrfBjfwQ/Uu4mqJulIlp7evBm/mYkyKQz6/kvFe/N27d376nrtw8bHT583t770TJprDl2eylRfRMyAFAq6KFDCRaaBJZGEfnR9WuT7t6CNSNU5TjIIEzZWIhacoaN+73WGtnkYTPeGm3W/4ZdBV0EwB3Uyj85wq/LrcpTyPAGFXDJjBoGfYWiZRsElTGuXuYGM8Ws2hoGDiiVgQls6ntJ9x4xonGr3FNKS/bfCssSYSRI5ZcLwyiznCvJ/uUGO8Y/QCpXlCIrPPopzSTGlxfh0JDRwlBMHGNfCeaX8imnG0S1poRNiK2bSwGFZGLRQ5xBaKSJwE6qlAW+ZvslD+yCai/xfeWgV3OF96XtBcR6EtthB4bbmrhAs73wV9I4awXGj+fOo3j6Z36NKvpJdckAC8p20yRnpkC7hJCGP5Ik8V169HY96uzOpV5nXbJOF8L79AclLv6I=</latexit>

%4,1
<latexit sha1_base64="o+p9UQ2NDq9xLYFs5SPrypXoR0c=">AAACcXicbVHbSiNBEO2Mrpfoen1afGmMwsJKmAlBfRFEX/YxK8YLcQg9nRrT2NMzdteosclX+Kof5nf4A9szBjHRgobDqVPVp6qiTAqDvv9a8aamf8zMzs1XFxZ/Li2vrK6dmTTXHNo8lam+iJgBKRS0UaCEi0wDSyIJ59HNcZE/vwNtRKpOcZBBmLBrJWLBGTrqcqvVtc2dxnCru1Lz634Z9CsIRqBGRtHqrlZOrnopzxNQyCUzphP4GYaWaRRcwrB6lRvIGL9h19BxULEETGhLx0O67ZgejVPtnkJasp8rLEuMGSSRUyYM+2YyV5Df5To5xvuhFSrLERR//yjOJcWUFuPTntDAUQ4cYFwL55XyPtOMo1vSWCfEg5hJAztlYXCAOofQShGBm1BNDHjH9G0e2kfRHOc/5KFVcI8Ppe8xxWkQ2mIHhduqu0IwufOv4KxRD3brzX+N2uHR6B5zZINskt8kIHvkkPwlLdImnCTkiTyTl8qb98uj3ua71KuMatbJWHh//gPLUr+j</latexit>

%4,2
<latexit sha1_base64="45rZCxSwEWV0h7kauw56XbqaykM=">AAACcXicbVFNTxsxEHW20KZpKR89IS4WSSUkomiXRsAlUlQuPQZEIFWyirzOLFh4vYs9C02t/Ipe2x/W39E/gHcToSZ0JEtPb96M38xEmRQGff9PxXu1tv76TfVt7d37jQ+bW9s7VybNNYc+T2WqBxEzIIWCPgqUMMg0sCSScB3dnRX56wfQRqTqEqcZhAm7USIWnKGjvjV6Y9tufp41xlt1v+WXQV+CYAHqZBG98XblYjRJeZ6AQi6ZMcPAzzC0TKPgEma1UW4gY/yO3cDQQcUSMKEtHc/oJ8dMaJxq9xTSkv23wrLEmGkSOWXC8Nas5gryf7lhjvFpaIXKcgTF5x/FuaSY0mJ8OhEaOMqpA4xr4bxSfss04+iWtNQJsRMzaaBZFgYd1DmEVooI3IRqZcAHpu/z0P4Q7WX+WR5aBY/4vfS9pLgMQlvsoHBbc1cIVnf+ElwdtYLjVvv8qN79srhHleyRfXJAAnJCuuQr6ZE+4SQhP8kv8rvy19v1qLc/l3qVRc1HshTe4RPNWb+k</latexit>

%4,3
<latexit sha1_base64="MAEpJIJCLyXf0Bd5zaSNhn6JpJY=">AAACcXicbVFNTxsxEHW2tA3pF7QnxMUiVKpUFO2iiPYSKSoXjgGRhCqsIq8zGyy83sWeBVIrv6JX+GH8Dv4A3k2ESMJIlp7evBm/mYkyKQz6/kPFe7P29t376nrtw8dPn79sbH7tmTTXHLo8lak+i5gBKRR0UaCEs0wDSyIJ/ejysMj3r0EbkapTnGQQJmysRCw4Q0f93e0MbXOvOd0dbtT9hl8GXQXBHNTJPDrDzcrJ+SjleQIKuWTGDAI/w9AyjYJLmNbOcwMZ45dsDAMHFUvAhLZ0PKXfHTOicardU0hL9mWFZYkxkyRyyoThhVnOFeRruUGO8e/QCpXlCIrPPopzSTGlxfh0JDRwlBMHGNfCeaX8gmnG0S1poRNiK2bSwF5ZGLRQ5xBaKSJwE6qlAa+ZvspD+080F/lneWgV3OBt6XtBcRqEtthB4bbmrhAs73wV9PYbwUGjebxfb/+Z36NKtskO+UEC8ou0yRHpkC7hJCH/yR25rzx6Wx71dmZSrzKv+UYWwvv5BM9gv6U=</latexit>

%4,4
<latexit sha1_base64="v7o9UAkzHD95YjVG6T0LXlikIy8=">AAACcXicbVHbTuMwEHUDy6WwXJ8QLxYFaaVFVYLK5QUJwQuPBVEuKlHluBOwcJxgT4Bi9St4hQ/jO/gBnFChbdmRLB2dOTM+MxNlUhj0/feKNzb+a2Jyaro6M/t7bn5hcencpLnm0OKpTPVlxAxIoaCFAiVcZhpYEkm4iO6OivzFA2gjUnWGvQzChN0oEQvO0FFX682ObWxu99c7CzW/7pdBf4JgAGpkEM3OYuX0upvyPAGFXDJj2oGfYWiZRsEl9KvXuYGM8Tt2A20HFUvAhLZ03KcbjunSONXuKaQl+2+FZYkxvSRyyoThrRnNFeT/cu0c473QCpXlCIp/fRTnkmJKi/FpV2jgKHsOMK6F80r5LdOMo1vSUCfE/ZhJA5tlYbCPOofQShGBm1CNDPjA9H0e2mfRGOa/5aFV8IhPpe8hxVkQ2mIHhduqu0IwuvOf4HyrHuzUGydbtYPDwT2myCpZI39IQHbJATkmTdIinCTkhbySt8qHt+JRb+1L6lUGNctkKLy/n9Fnv6Y=</latexit>

%4,5
<latexit sha1_base64="dH32Mk/qgBNurnFwoH3SCz3Skyk=">AAACcXicbVHbTttAEF2bcmnacn2qeFkRKiE1imwUAS9IiL70MUWEpApWtN6Mk1XWa7M7pg2rfAWv7Yf1O/oDXZuoIoGRVjo6c2b2zEycS2EwCP54/sqb1bX1jbe1d+8/bG5t7+zemKzQHDo8k5nuxcyAFAo6KFBCL9fA0lhCN558KfPde9BGZOoapzlEKRspkQjO0FHfD9sD22qczA4H2/WgGVRBX4JwDupkHu3Bjnd1O8x4kYJCLpkx/TDIMbJMo+ASZrXbwkDO+ISNoO+gYimYyFaOZ/STY4Y0ybR7CmnFPq+wLDVmmsZOmTIcm+VcSb6W6xeYnEVWqLxAUPzpo6SQFDNajk+HQgNHOXWAcS2cV8rHTDOObkkLnRDPEyYNNKrC8Bx1AZGVIgY3oVoa8J7puyKyD6K1yP+XR1bBD/xZ+V5QXIeRLXdQuq25K4TLO38Jbo6b4Umz9e24fnE5v8cG2ScH5IiE5JRckK+kTTqEk5Q8kl/kt/fX/+hT/+BJ6nvzmj2yEP7nf9Nuv6c=</latexit>

%4,6

= [2,5,6]
= [1,6]
= [5]
= [3]
= [3,4]
= [4]

<latexit sha1_base64="i48IK8ZqqU6WQCxOYAvYw1uSMMY=">AAACcXicbVFNT9tAEN0YWiC05etUcVkRKlVqFNmAWi5IiF56DIgkoMSK1ptxsmK9dnfHlLDKr+Da/jB+R/8Aa2OhJnSklZ7evJl9MxNlUhj0/ceat7T85u3K6lp9/d37DxubW9tdk+aaQ4enMtVXETMghYIOCpRwlWlgSSShF918L/K9W9BGpOoSpxmECRsrEQvO0FHX++2hPWwGs/3hZsNv+WXQ1yCoQINU0R5u1S4Go5TnCSjkkhnTD/wMQ8s0Ci5hVh/kBjLGb9gY+g4qloAJbel4Rj85ZkTjVLunkJbsvxWWJcZMk8gpE4YTs5gryP/l+jnGx6EVKssRFH/+KM4lxZQW49OR0MBRTh1gXAvnlfIJ04yjW9JcJ8STmEkDzbIwOEGdQ2iliMBNqBYGvGX6Zx7ae3E0z7/IQ6vgF96VvucUl0Foix0UbuvuCsHizl+D7kEr+No6Oj9onJ5V91glu2SPfCYB+UZOyQ/SJh3CSUIeyG/yp/bX++hRb+9Z6tWqmh0yF96XJ8dCv6E=</latexit>

%3,1
<latexit sha1_base64="MPm/roNu6AmqpVwmoGEPjiZNJ1A=">AAACcXicbVHBThsxEHW20NK0FEJPiItFqIQEinZTBFyQonLpMSCSUIVV5HVmwcLrXezZ0NTKV/Tafli/oz+Ad7NCTehIlp7evBm/mYkyKQz6/p+a92pl9fWbtbf1d+/XP2xsNrb6Js01hx5PZaqvI2ZACgU9FCjhOtPAkkjCILo/L/KDCWgjUnWF0wzChN0qEQvO0FHf9roj+/mwPdsbbTb9ll8GfQmCCjRJFd1Ro3Z5M055noBCLpkxw8DPMLRMo+ASZvWb3EDG+D27haGDiiVgQls6ntFPjhnTONXuKaQl+2+FZYkx0yRyyoThnVnOFeT/csMc49PQCpXlCIrPP4pzSTGlxfh0LDRwlFMHGNfCeaX8jmnG0S1poRPiWcykgcOyMDhDnUNopYjATaiWBpww/ZCH9oc4WuSf5aFV8IjfS98LiqsgtMUOCrd1d4VgeecvQb/dCo5bRxftZudLdY81skN2yT4JyAnpkK+kS3qEk4T8JL/I79pfb9uj3u5c6tWqmo9kIbyDJ8lJv6I=</latexit>

%3,2

= [2]

= [1,2]

<latexit sha1_base64="V9lnTJJHbeRQY1Q/WIscbxFXMsw=">AAACdXicbVFNTxsxEHW2X5CWFtojqrQiadUDCrsogl6QULlwTCsCSImFZp1ZsPB6N/YskFr5Hb2Wn8Uv4Yp3iaomMJKlpzdv7DfPSaGkpSi6awQvXr56/WZpufn23cr7D6trH49tXhqBfZGr3JwmYFFJjX2SpPC0MAhZovAkuTyo+idXaKzM9RFNCuQZnGuZSgHkKd4eZkAXApTrTdtnq62oE9UVPgXxDLTYrHpna41fw1Euygw1CQXWDuKoIO7AkBQKp81habEAcQnnOPBQQ4aWu9r1NPzimVGY5sYfTWHN/j/hILN2kiVeWZm0i72KfK43KCn9zp3URUmoxeNDaalCysMqgnAkDQpSEw9AGOm9huICDAjyQc3dRLSXgrK4WQ/Ge2RK5E7JBP2GemHBKzDjkrvfsjvP/5Nzp/Gabmrfc4qjmLsqg8pt0/9CvJj5U3C83Yl3Ot2f2639H7P/WGLrbIN9YzHbZfvskPVYnwk2Zn/YX3bbuA8+B+3g66M0aMxmPrG5CrYeAAj7whA=</latexit>P<latexit sha1_base64="HjgKDxvL65m9An5gfX5Lswppqtk=">AAACdXicbVFNTxsxEHW2H4T0C+gRVVo1adVDle5GCLggIbhwqUQrAkiJhWadWbDi9S72bGhq5XdwbX8Wv4RrvUtUNaEjWXp688Z+85wUSlqKortG8OTps+crzdXWi5evXr9ZW984tXlpBPZFrnJznoBFJTX2SZLC88IgZInCs2R8WPXPJmiszPUJTQvkGVxqmUoB5CneGWZAVwKU+zrrXKy1o25UV/gYxHPQZvM6vlhvfB+OclFmqEkosHYQRwVxB4akUDhrDUuLBYgxXOLAQw0ZWu5q17Pwg2dGYZobfzSFNfvvhIPM2mmWeGVl0i73KvJ/vUFJ6S53UhcloRYPD6WlCikPqwjCkTQoSE09AGGk9xqKKzAgyAe1cBPRXgrK4ud6MN4jUyJ3SiboN9RLC07AXJfc/ZRbi/xfOXcab+hH7XtBcRJzV2VQuW35X4iXM38MTnvdeLu79a3X3j+Y/0eTbbL37BOL2Q7bZ0fsmPWZYNfslv1ivxv3wbugE3x8kAaN+cxbtlDBlz8C5sIN</latexit>M

<latexit sha1_base64="CclVrsKDUmxLEz+zZVo9XEXzorw=">AAACbXicbVHbSsNAEN3Ge71VxSdFglX0QUoior4Ioi8+qrQq1FA224ku3Wzi7qxag9/gq36aX+EvuEmL2OrAwuHMmdkzM2EquEbP+yw5I6Nj4xOTU+Xpmdm5+crC4pVOjGLQYIlI1E1INQguoYEcBdykCmgcCrgOO6d5/voRlOaJrGM3hSCmd5JHnFG0VGPDtPY3WpWqV/OKcP8Cvw+qpB/nrYXS5W07YSYGiUxQrZu+l2KQUYWcCXgt3xoNKWUdegdNCyWNQQdZ4fbV3bRM240SZZ9Et2B/V2Q01robh1YZU7zXw7mc/C/XNBgdBhmXqUGQrPdRZISLiZuP7ra5AoaiawFliluvLrunijK0CxrohHgUUaFhpyj0j1AZCDLBQ7ATyqEBH6l6MEH2wvcG+R95kEl4wufC94Ci7gdZvoPcbdlewR/e+V9wtVvz92t7F7vV45P+PSbJClkn28QnB+SYnJFz0iCMcPJG3slH6ctZdladtZ7UKfVrlshAOFvfyje+TA==</latexit>D6
<latexit sha1_base64="S7KtX5RzI1a/+Skn1fvwQgFOQsY=">AAACbXicbVHbSsNAEN3Ge71VxSdFglX0QUoior4Ioi8+qrQq1FA224ku3Wzi7qxag9/gq36aX+EvuEmL2OrAwuHMmdkzM2EquEbP+yw5I6Nj4xOTU+Xpmdm5+crC4pVOjGLQYIlI1E1INQguoYEcBdykCmgcCrgOO6d5/voRlOaJrGM3hSCmd5JHnFG0VGPDtA42WpWqV/OKcP8Cvw+qpB/nrYXS5W07YSYGiUxQrZu+l2KQUYWcCXgt3xoNKWUdegdNCyWNQQdZ4fbV3bRM240SZZ9Et2B/V2Q01robh1YZU7zXw7mc/C/XNBgdBhmXqUGQrPdRZISLiZuP7ra5AoaiawFliluvLrunijK0CxrohHgUUaFhpyj0j1AZCDLBQ7ATyqEBH6l6MEH2wvcG+R95kEl4wufC94Ci7gdZvoPcbdlewR/e+V9wtVvz92t7F7vV45P+PSbJClkn28QnB+SYnJFz0iCMcPJG3slH6ctZdladtZ7UKfVrlshAOFvfzD2+TQ==</latexit>D7

<latexit sha1_base64="TDOExPpnSNx7+DOP8BX+V95GB+s=">AAACbXicbVHbSsNAEN3GW623qvikSLCKPkhJRNSXguiLjypWhRrKZjvRpZtN3J1Va/AbfNVP8yv8BTexiK0OLBzOnJk9MxOmgmv0vI+SMzI6Nj5RnqxMTc/MzlXnFy51YhSDJktEoq5DqkFwCU3kKOA6VUDjUMBV2D3O81cPoDRP5AX2Ughieit5xBlFSzXXTdtfb1drXt0rwv0L/D6okX6ctudL5zedhJkYJDJBtW75XopBRhVyJuClcmM0pJR16S20LJQ0Bh1khdsXd8MyHTdKlH0S3YL9XZHRWOteHFplTPFOD+dy8r9cy2B0EGRcpgZBsu+PIiNcTNx8dLfDFTAUPQsoU9x6ddkdVZShXdBAJ8RGRIWG7aLQb6AyEGSCh2AnlEMDPlB1b4Lsme8O8j/yIJPwiE+F7wHFhR9k+Q5ytxV7BX9453/B5U7d36vvnu3UDo/69yiTZbJGtohP9skhOSGnpEkY4eSVvJH30qez5Kw4q99Sp9SvWSQD4Wx+AcAZvkc=</latexit>D1
<latexit sha1_base64="efgeuN2Fq7mcxQrrSoBbR6WGX08=">AAACbXicbVHbSsNAEN3Ge70rPikSrKIPUpJS1BdB9MVHFatCDWWzndTFzSbuzlZr8Bt81U/zK/wFN7GIrQ4sHM6cmT0zE6aCa/S8j5IzMjo2PjE5VZ6emZ2bX1hcutKJUQwaLBGJugmpBsElNJCjgJtUAY1DAdfh/Umev+6C0jyRl9hLIYhpR/KIM4qWamyaVm2ztVDxql4R7l/g90GF9OOstVi6uG0nzMQgkQmqddP3UgwyqpAzAS/lW6MhpeyedqBpoaQx6CAr3L64W5Zpu1Gi7JPoFuzviozGWvfi0Cpjind6OJeT/+WaBqODIOMyNQiSfX8UGeFi4uaju22ugKHoWUCZ4tary+6oogztggY6IR5GVGjYLQr9Q1QGgkzwEOyEcmjALlUPJsieeX2Q/5EHmYRHfCp8Dygu/SDLd5C7Ldsr+MM7/wuualV/r1o/r1WOjvv3mCSrZIPsEJ/skyNySs5IgzDCySt5I++lT2fFWXPWv6VOqV+zTAbC2f4Cwh++SA==</latexit>D2
<latexit sha1_base64="AWphupaeUDbhaGDV2uaJdddwxNc=">AAACbXicbVHbSsNAEN3Ge71W8UmRYBV9kJJoUV8E0RcfVawKNZTNdlIXN5u4O6vW4Df4qp/mV/gLbmIRWx1YOJw5M3tmJkwF1+h5HyVnaHhkdGx8ojw5NT0zO1eZv9SJUQwaLBGJug6pBsElNJCjgOtUAY1DAVfh3XGev3oApXkiL7CbQhDTjuQRZxQt1VgzrZ211lzVq3lFuH+B3wNV0ovTVqV0ftNOmIlBIhNU66bvpRhkVCFnAl7KN0ZDStkd7UDTQklj0EFWuH1x1y3TdqNE2SfRLdjfFRmNte7GoVXGFG/1YC4n/8s1DUb7QcZlahAk+/4oMsLFxM1Hd9tcAUPRtYAyxa1Xl91SRRnaBfV1QjyIqNCwVRT6B6gMBJngIdgJ5cCAD1TdmyB75vV+/kceZBIe8anw3ae48IMs30Hutmyv4A/u/C+43K75u7X62Xb18Kh3j3GyRFbJJvHJHjkkJ+SUNAgjnLySN/Je+nQWnWVn5VvqlHo1C6QvnI0vxCW+SQ==</latexit>D3
<latexit sha1_base64="cIv6VPfrBI4r7CCcFbbSgYiSz0s=">AAACbXicbVHbSsNAEN3Ge71W8UmRYBV9kJJIUV8E0RcfVawKNZTNdlIXN5u4O1utwW/wVT/Nr/AX3MQitjqwcDhzZvbMTJgKrtHzPkrOyOjY+MTkVHl6ZnZufqGyeKUToxg0WCISdRNSDYJLaCBHATepAhqHAq7D+5M8f90FpXkiL7GXQhDTjuQRZxQt1dgwrfpGa6Hq1bwi3L/A74Mq6cdZq1K6uG0nzMQgkQmqddP3UgwyqpAzAS/lW6MhpeyedqBpoaQx6CAr3L64m5Zpu1Gi7JPoFuzviozGWvfi0Cpjind6OJeT/+WaBqODIOMyNQiSfX8UGeFi4uaju22ugKHoWUCZ4tary+6oogztggY6IR5GVGjYKQr9Q1QGgkzwEOyEcmjALlUPJsieeX2Q/5EHmYRHfCp8Dygu/SDLd5C7Ldsr+MM7/wuudmv+Xq1+vls9Ou7fY5KskHWyTXyyT47IKTkjDcIIJ6/kjbyXPp1lZ9VZ+5Y6pX7NEhkIZ+sLxiu+Sg==</latexit>D4
<latexit sha1_base64="Nm2CVrqxHdR8N8+RuxbfF19Sing=">AAACbXicbVHbSsNAEN3Ge71W8UmRYBV9kJJIvbwIoi8+qlgVaiib7aQubjZxd1atwW/wVT/Nr/AX3MQitjqwcDhzZvbMTJgKrtHzPkrO0PDI6Nj4RHlyanpmdq4yf6kToxg0WCISdR1SDYJLaCBHAdepAhqHAq7Cu+M8f/UASvNEXmA3hSCmHckjzihaqrFmWjtrrbmqV/OKcP8CvweqpBenrUrp/KadMBODRCao1k3fSzHIqELOBLyUb4yGlLI72oGmhZLGoIOscPvirlum7UaJsk+iW7C/KzIaa92NQ6uMKd7qwVxO/pdrGoz2g4zL1CBI9v1RZISLiZuP7ra5AoaiawFliluvLrulijK0C+rrhHgQUaFhqyj0D1AZCDLBQ7ATyoEBH6i6N0H2zOv9/I88yCQ84lPhu09x4QdZvoPcbdlewR/c+V9wuV3zd2v1s+3q4VHvHuNkiaySTeKTPXJITsgpaRBGOHklb+S99OksOsvOyrfUKfVqFkhfOBtfyDG+Sw==</latexit>D5

<latexit sha1_base64="0M3DsD6r0zRDrgMf/IhV+30S62E=">AAACbXicbVHbSsNAEN3Ge71VxSdFglX0QUoior4Ioi8+qrQq1FA224ku3Wzi7qxag9/gq36aX+EvuEmL2OrAwuHMmdkzM2EquEbP+yw5I6Nj4xOTU+Xpmdm5+crC4pVOjGLQYIlI1E1INQguoYEcBdykCmgcCrgOO6d5/voRlOaJrGM3hSCmd5JHnFG0VGPDtA43WpWqV/OKcP8Cvw+qpB/nrYXS5W07YSYGiUxQrZu+l2KQUYWcCXgt3xoNKWUdegdNCyWNQQdZ4fbV3bRM240SZZ9Et2B/V2Q01robh1YZU7zXw7mc/C/XNBgdBhmXqUGQrPdRZISLiZuP7ra5AoaiawFliluvLrunijK0CxrohHgUUaFhpyj0j1AZCDLBQ7ATyqEBH6l6MEH2wvcG+R95kEl4wufC94Ci7gdZvoPcbdlewR/e+V9wtVvz92t7F7vV45P+PSbJClkn28QnB+SYnJFz0iCMcPJG3slH6ctZdladtZ7UKfVrlshAOFvfzkO+Tg==</latexit>D8
<latexit sha1_base64="1JJ4ZpdRcQgn0fzRcTWLUn1R+AM=">AAACbXicbVHbSsNAEN3Ge71W8UmRYBV9kJJI8fIgiL74qGJVqKFstpO6uNnE3Vm1Br/BV/00v8JfcBOL2OrAwuHMmdkzM2EquEbP+yg5Q8Mjo2PjE+XJqemZ2bnK/KVOjGLQYIlI1HVINQguoYEcBVynCmgcCrgK747z/NUDKM0TeYHdFIKYdiSPOKNoqcaaae2vteaqXs0rwv0L/B6okl6ctiql85t2wkwMEpmgWjd9L8Ugowo5E/BSvjEaUsruaAeaFkoagw6ywu2Lu26Zthslyj6JbsH+rshorHU3Dq0ypnirB3M5+V+uaTDaCzIuU4Mg2fdHkREuJm4+utvmChiKrgWUKW69uuyWKsrQLqivE+JBRIWGraLQP0BlIMgED8FOKAcGfKDq3gTZM6/38z/yIJPwiE+F7z7FhR9k+Q5yt2V7BX9w53/B5XbN36nVz7arh0e9e4yTJbJKNolPdskhOSGnpEEY4eSVvJH30qez6Cw7K99Sp9SrWSB94Wx8AdBJvk8=</latexit>D9
<latexit sha1_base64="AHCyIlIzbRbKipgCRuXLLFkL+38=">AAACcHicbVHBSiNBEO2Mump0V6MXwYOzxoVlkTATRL0IohePKkYDcQg9nRpt7OkZu6vV2OQnvOqP+Rt+gT1jEBO3oOHx6lX1q6o4F1xjELxWvInJqR/TM7PVufmfvxYWa0vnOjOKQYtlIlPtmGoQXEILOQpo5wpoGgu4iG8Oi/zFHSjNM3mG/RyilF5JnnBG0VHtDdO1YTDY6C7Wg0ZQhv8dhENQJ8M47tYqp5e9jJkUJDJBte6EQY6RpQo5EzCoXhoNOWU39Ao6Dkqago5saXjg/3FMz08y5Z5Ev2S/Vliaat1PY6dMKV7r8VxB/i/XMZjsRpbL3CBI9vFRYoSPmV9M7/e4Aoai7wBlijuvPrumijJ0OxrphLiXUKFhsywM91AZiKzgMbgJ5diAd1Tdmsg+8q1R/lMeWQn3+FD6HlGchZEtdlC4rborhOM7/w7Om41wu7F10qzvHwzvMUNWyTr5S0KyQ/bJETkmLcKIIE/kmbxU3rwVb837/SH1KsOaZTIS3r93jG6/jQ==</latexit>D10

AGCG
CGCTCG
CGAACG
CGTCCG
CGGAT
ATTAT
CAT
GAGTT
ATAGA
GACA

Fig. 2: Mac-dBG layout discussed in Example 1 for the colors of the c-dBG from Fig. 1. Note that the partial
color P1,4 = [1, 2, 3, 4, 5] shared between C5 and C7 is now represented once as a direct consequence of
partitioning, and indicated with the pair (1, 4) instead of replicating the five integers it contains in both C5

and C7. The same consideration applies to other shared sub-sequences.

4. It is efficient to recover the original color Ct from the meta color list Mt: for each meta color (i, j) ∈ Mt,
sum Bi−1 back to each decoded integer of Pij . Hence, we decode strictly increasing integers. This is,
again, a direct consequence of having permuted the reference identifiers with π. Observe that, in principle,
the representation of the colors with meta/partial colors could be described without any permutation π
— however, one would sacrifice space (for the reason 2. above) and query time since decoding a color
list from meta colors would eventually need to sort the decoded integers. In conclusion, permuting the
reference identifiers with π is an extra degree of freedom that we can exploit to improve index space and
preserve query efficiency, noting that the correctness of the index is not compromised when reference
identifiers are re-assigned globally.

Example 1. Let us consider the z = 8 colors from Fig. 1b, forN = 16. Let r = 4 andN1 = {1, 12, 13, 14, 16},
N2 = {3, 5, 9}, N3 = {7, 11}, N4 = {2, 4, 6, 8, 10, 15}, assuming we use the natural order between the integers
to determine an order between the elements of each Ni. Thus, we have B1 = 5, B2 = 8, B3 = 10, and
B4 = 16. The induced permutation π can be visualized by concatenating the sets Ni from i = 1 to 4 and
assigning “new” identifiers, from 1 to N , in this concatenated order:

{ 1 12 13 14 16 }{ 3 5 9 }{ 7 11 }{ 2 4 6 8 10 15 }
new identifiers → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

which results in π(1) = 1, π(12) = 2, π(13) = 3, etc., that is π = [1, 11, 6, 12, 7, 13, 9, 14, 8, 15, 10, 2, 3, 4, 16, 5].
Now we apply the permutation π to each color, obtaining the following permuted colors (vertical bars
represent the partial color boundaries B1, . . . , B4).

C1 = [3|6, 7, 8|10|12, 15, 16] C2 = [6|11, 16] C3 = [1|6, 7, 8|9, 10|15] C4 = [1, 3|6, 7, 8|9, 10]
C5 = [1, 2, 3, 4, 5|6, 8|9, 10|13] C6 = [13, 14] C7 = [1, 2, 3, 4, 5|6|10|14] C8 = [2, 5]

For example, color C1, that before was [3, 4, 5, 9, 10, 11, 13, 15] (see Fig. 1b), now is

[π(3), π(4), π(5), π(9), π(10), π(11), π(13), π(15)] = [6, 12, 7, 8, 15, 10, 3, 16]

or [3, 6, 7, 8, 10, 12, 15, 16] once sorted. The partial colors are the distinct sub-sequences in each partition
of the permuted colors. For example, P1 is the set of the distinct sub-sequences in partition 1, i.e., those
comprising the integers x such that 0 < x ≤ B1 = 5. Hence, we have five distinct partial colors in partition 1,
and these are [3], [1], [1, 3], [1, 2, 3, 4, 5], and [2, 5]. Importantly, note that from the integers in partial colors
from partition i > 1 we can subtract the lower bound Bi−1. For example, from the integers in the partial
color [6, 7, 8] from C1 in partition 2 we can subtract B1 = 5, hence obtaining [1, 2, 3]. Overall, we thus obtain
that P comprises four partial color sets, as shown in Fig. 2. The figure also shows the rendering of the colors
C = {C1, . . . , C8} via meta color lists, i.e., how each each color can be spelled by a proper concatenation of
partial colors.
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4.2 Data structures used and two-level intersection algorithm

Given a Mac-dBG G(U ,N , π,P,M), a concrete implementation includes a representation for U , P, and
M (plus also the sorted array B[1..r] = [0, B1, . . . , Br−1]). The Mac-dBG is not bound to any specific
compression scheme nor any specific dictionary data structure, allowing one to obtain a spectrum of different
space/time trade-offs depending on choices made. In this paper, we made the following choices: (1) we use
the SSHash data structure [25,35] to represent the set of unitigs U ; (2) we adopt the same compression
methods as used in Fulgor [21] to compress the partial colors and the same mechanism to map unitigs to
their colors (using a binary vector of length m, equipped with ranking capabilities); (3) we represent each
meta color list as a list of log2(Np)-bit integers.

Very importantly, note that choices (1) and (2) directly imply that our Mac-dBG implementation fully
exploits the key unitig properties described in Section 2 as Fulgor does.

The Mac-dBG opens the possibility to achieve even faster query times than a traditional c-dBG, due
to the manner in which the partitions factorize the space of references, if a two-level intersection algorithm
is employed for pseudoalignment. There are several pseudoalignment algorithms (see [21, Section 4] for
an overview) that standard c-dBG data structures directly support; here we focus on the full intersection
algorithm. Given a query string Q, we consider it as a set of k-mers. Let K(Q) = {x ∈ Q|Color(x) ̸= ∅}.
The full intersection method computes the intersection between the colors of all the k-mers in K(Q). Our
two-level intersection algorithm is as follows. First, only meta colors are intersected (thus, without any need
to access the partial colors) to determine the partitions in common to all colors being intersected. Then
only the common partitions are considered. Two cases can happen for each partition. (1) The meta color
is the same for all colors: in this case, the result of the intersection is implicit and it suffices to decode the
partial color indicated by the meta color. (2) The meta color is not the same, hence we have to compute the
intersection between different partial colors. This optimization is beneficial when the colors being intersected
have very few partitions in common, or when they have identical meta colors.

4.3 The optimization problem

As evident from its definition, the effectiveness of a Mac-dBG crucially depends on the choice of the partition
N and upon the order of the references within each partition as given by the permutation π. There is, in fact,
an evident friction between the encoding costs of the partial and meta colors. Let Nm and Np =

∑r
i=1 |Pi|

be the number of meta and partial colors, respectively. Since each meta color can be indicated with log2(Np)
bits, meta colors cost Nm log2(Np) bits overall. Instead, let Cost(Pij , π) be the encoding cost (in bits) of
the partial color Pij according to some function Cost. On one hand, we would like to select a large value of
r so that Np diminishes since each color is partitioned into several, small, partial colors, thereby increasing
the chances that each partition has many repeated sub-sequences. This will help in reducing the encoding

cost for the partial colors, i.e., the quantity
∑r

i=1

∑|Pi|
j=1 Cost(Pij , π). On the other hand, a large value of r

will yield longer meta color lists, i.e., increase Nm. This, in turn, could erode the benefit of encoding shared
patterns and would require more time to decode each meta color list.

We can therefore formalize the following optimization problem that we call minimum-cost partition
arrangement (MPA).

Problem 2 (Minimum-cost partition arrangement). Let G(U , C) be the compacted c-dBG built from
the reference collection R = {R1, . . . , RN}. Determine the partition N = {N1, . . . ,Nr} of [N ] = {1, . . . , N}
for some r ≥ 1 and permutation π : [N ] → [N ] such thatNm log2(Np)+

∑r
i=1

∑|Pi|
j=1 Cost(Pij , π) is minimum.

Depending upon the encoding scheme we choose, smaller values of Cost(Pij , π) may be obtained when
the gaps between subsequent reference identifiers are minimized. Finding the permutation π that minimizes
the gaps between the identifiers over all partial colors is an instance of the bipartite minimum logarithmic
arrangement problem (BIMLOGA) as introduced by Dhulipala et al. [36] for the purpose of minimizing the
cost of delta-encoded lists in inverted indexes. The BIMLOGA problem generalizes other known optimization
problems, such as minimum logarithmic arrangement (MLOGA) and minimum logarithmic gap arrangement
(MLOGGAPA) [37] problems, which are themselves modifications of the classic minimum linear arrangement
problem (MLA) — all these problems are known to be NP-hard [38,39,37,36].
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We note that BIMLOGA is a special case of MPA: that for r = 1 (one partition only) and Cost(Pij , π)
being the log2 of the gaps between consecutive integers. It follows that also MPA is NP-hard under these
constraints. This result immediately suggests that it is unlikely that polynomial-time algorithms exist for
solving the MPA problem.

4.4 The SCPO framework

In this section we propose a construction algorithm for the Mac-dBG. The algorithm is an heuristic for the
MPA optimization problem defined in the previous section (Problem 2), and it is based on the intuition
that similar references should be grouped together in the same partition so as to increase the likeliness of
having a smaller number of longer shared sub-sequences. The algorithm therefore consists in the following
four steps: (1) Sketching, (2) Clustering, (3) Partitioning, and (4) Ordering (SCPO).

1. Sketching. We argue that a reasonable way of assessing the similarity between two references is determin-
ing the number of unitigs that they have in common. Recall from Property 1 (Section 2) that each reference
Ri ∈ R can be spelled by a proper concatenation (a “tiling”) of the unitigs of the underlying compacted
dBG. If these unitigs are assigned unique identifiers by SSHash, it follows that each Ri can be seen as a list
of unitig identifiers. The idea is that these integer lists are much shorter and take less space than the actual
DNA references. To reduce the space of a list even further, we compute a sketch of the list based on the fact
that if two sketches are similar, then the original lists are similar as well.

2. Clustering. The sketches are fed as input of a clustering algorithm.

3. Partitioning. Once the clustering is done, each input reference Ri is labeled with the cluster label of the
corresponding sketch so that the partition of R into R1, . . . ,Rr is uniquely determined.

4. Ordering. Finally, one may order the references in each Ri to determine a permutation π that yields a
better compression for the partial colors Pi. In fact, while the goal of clustering and partitioning is to factor
out repeated sub-patterns within the colors, the goal of the ordering step is to assign nearby identifiers to
references that tend to co-occur within the partial colors (as already mentioned in Section 4.3).

In this work, we use the following specific instance of this framework. We build hyper-log-log [40] sketches
of W = 210 bytes each. As clustering algorithm, we use a divisive K-means approach that does not need
an a-priori number of clusters to be supplied as input. At the beginning of the algorithm, the whole input
forms a single cluster that is recursively split into two clusters until the mean squared error (MSE) between
the sketches in the cluster and the cluster’s centroid is not below a prescribed threshold (which we fix to
10% of the MSE at the start of the algorithm). Let r be the number of found clusters. The complexity of
the algorithm depends on the topology of the binary tree representing the hierarchy of splits performed. In
the worst case, the topology is completely unbalanced and the complexity is O(WNr); in the best case, the
topology is perfectly balanced instead, for a cost of O(WN log r). Note that the worst-case bound is very
pessimistic because, in practice, the formed clusters tend to be reasonably well-balanced in size.

In the current version of the work, we did not perform any ordering of the references within each cluster.
We leave the investigation of this opportunity as future work.

Lastly in this section, it is worth noting that the approach we describe here for constructing Mac-dBGs
bears a conceptual resemblance to the phylogenetic compression framework recently introduced by Břinda et
al. [41]. At a high level, this owes to the fact that both approaches take advantage of well-known concepts in
compression and Information Retrieval — namely that clustering and reordering are practical and effective
heuristics for boosting compression. However, while the approach by Břinda et al. focuses on clustering
references so as to improve the construction of collections of disparate dictionaries, we strictly focus on the
effectiveness and efficiency of the index. As such, our approach adopts a single k-mer dictionary and instead
induces a logical partitioning over the colors. This layout allows to avoid having to record k-mers that appear
in multiple partitions more than once. As a result, while the phylogenetic compression framework aims to
scale to immense and highly-diverse collections of references, it anticipates a primarily disk-based index in
which partitions are loaded, decompressed, and searched for matches, similarly to a database search (or
similarly to BLAST [42]). On the other hand, the Mac-dBG approach we present here places a premium
on query time, and aims to enable in-memory indexing with interactive lookups for the purpose of fast
read-mapping against the index.
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Table 1: Index space in GB, broken down by space required for indexing the k-mers in the dBG (SSHash for
both Fulgor and Mac-dBG, SBWT for Themisto, and BOSS for MetaGraph) and data structures required
to encode colors and map k-mers to colors.

Genomes
Mac-dBG Fulgor Themisto MetaGraph COBS

dBG Colors Total dBG Colors Total dBG Colors Total dBG Colors Total Total

EC 3,682 0.29 0.52 0.81 0.29 1.36 1.65 0.22 1.85 2.08 0.10 0.23 0.33 7.53

SE

5,000 0.16 0.16 0.32 0.16 0.59 0.75 0.14 1.29 1.43 0.07 0.19 0.26 9.11
10,000 0.35 0.33 0.68 0.35 1.66 2.01 0.32 3.50 3.81 0.13 0.38 0.51 18.68
50,000 1.26 2.14 3.40 1.26 17.03 18.30 1.07 32.42 33.48 0.36 1.95 2.31 88.61
100,000 1.72 3.83 5.55 1.72 40.70 42.44 1.35 75.94 77.28 0.45 3.50 3.95 173.58
150,000 2.03 5.37 7.40 2.03 68.60 70.66 1.58 125.16 126.74 — — — 265.49

GB 30,691 21.31 7.85 29.16 21.31 15.45 36.85 18.33 30.88 49.21 5.23 4.77 10.00 21.23

5 Experiments

In this section we present the results of experiments conducted to assess the performance of the Mac-dBG.
(The interested reader can find further experiments and details in the Supplementary material.) We fixed
the k-mer length to k = 31. All experiments were run on a machine equipped with Intel Xeon Platinum
8276L CPUs (clocked at 2.20GHz), 500 GB of RAM, and running Linux 4.15.0.

Datasets. We build Mac-dBGs with the proposed SCPO framework on the following pangenomes: 3,682
E. Coli (EC) genomes from NCBI [43]; different collections of S. Enterica (SE) genomes (from 5,000 up to
150,000 genomes) from the collection by Blackwell et al. [44]. Additionally, we also include a much more
diverse collection of 30,691 genomes assembled from human gut samples (GB), originally published by Hiseni
et al. [45]. Table 4 in the Supplementary material reports some basic statistics about these collections.

Other evaluated tools. We compare the Mac-dBG against the following indexes, reviewed in Section 3:
Fulgor [21], Themisto [27], MetaGraph [46,29,31], and COBS [34]. Links to the corresponding software
libraries can be found in the References. We use the C++ implementations from the respective authors. All
software was compiled with gcc 11.1.0. We provide some details on the tested tools.

Both Themisto and COBS were built under default parameters as suggested by the authors, that is: option
-d 20 for Themisto which enables the sampling of k-mer colors in the SBWT for better space effectiveness; in
COBS, we have shards of at most 1024 references where each Bloom filter has a false positive rate of 0.3 and
one hash function. MetaGraph indexes were built with the relaxed row-diff BRWT data structure [29] using
a workflow available at https://github.com/theJasonFan/metagraph-workflows that we wrote with the
input of the MetaGraph authors.

Index size. Table 1 reports the total on disk index size for all of the methods evaluated. Compared to
the most recent indexes, Fulgor and Themisto, that where previously shown to achieve the most desirable
space/time trade-offs, Mac-dBG substantially improves on the space (and, as we shall see next, without any
negative impact on query time). In fact, the only index smaller on disk than Mac-dBG is MetaGraph in the
relaxed row-diff BRWT configuration — at least in the cases where we were able to construct the latter within
the construction resource constraints. However, unlike the other indexes evaluated, the on disk index size
MetaGraph is not representative of the working memory required for query when using the (recommended
and default) batch mode query.

The COBS index, despite being approximate, is consistently and considerably larger than all of the other
(exact) indexes, except for the the Gut bacteria collection (GB). The differing behavior on GB likely derives
from the fact that the diversity of that data cause the exact indexes to spend a considerable fraction of their
total size on the representation of the k-mer dictionary itself (e.g., 18−21.3 GB). However COBS, by design,
eliminates this component of the index entirely.

Finally we observe that, as the number of references grow in the SE datasets, the already-large savings of
Mac-dBG become even more prominent. For example Mac-dBG is 43% of the size of Fulgor (2.34× smaller)
for SE 5,000, but is only 10% of the size of Fulgor (9.55× smaller) for SE 150,000. As the size of the collection
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Table 2: Total query time (elapsed time) and memory used during query (max. RSS) as reported by
/usr/bin/time -v, using 16 processing threads. The read-mapping output is written to /dev/null for
this experiment. We also report the mapping rate in percentage (fraction of mapped read over the total
number of queried reads). The query algorithm used here is full-intersection. The “B” query mode of Meta-
Graph corresponds to the batch mode (with default batch size); the “NB” corresponds to the non-batch
query mode instead. In red font we highlight the workloads exceeding the available memory (> 500 GB).

Genomes Rate
Mac-dBG Fulgor Themisto MetaG.-B MetaG.-NB COBS

mm:ss GB mm:ss GB h:mm:ss GB mm:ss GB h:mm:ss GB h:mm:ss GB

EC 3,682 98.99 2:40 0.85 2:10 1.68 0:03:40 2.46 22:00 30.44 1:05:41 0.40 0:45:11 34.93

SE

5,000 89.49 1:16 0.37 1:16 0.82 0:03:50 1.82 14:14 36.54 0:20:32 0.33 0:38:34 41.93
10,000 89.71 2:45 0.75 2:26 2.11 0:07:35 4.16 28:15 92.18 0:43:40 0.61 1:01:14 84.20
50,000 91.25 14:00 3.65 19:15 18.53 0:42:02 33.14 — — 4:30:03 2.72 3:54:18 408.82
100,000 91.41 26:48 6.29 27:30 42.78 1:22:00 75.93 — — 9:40:06 4.82 8:07:29 522.56
150,000 91.52 41:30 8.51 42:30 70.55 2:00:13 124.27 — — — — 7:47:14 522.63

GB 30,691 92.91 01:03 28.51 01:10 30.02 0:01:20 48.47 28:55 15.86 0:22:05 9.91 0:34:45 225.57

grows, and more repetitive sub-patterns in the collection of colors appears, the Mac-dBG index is able to
better capture and eliminate this redundancy.

Query efficiency. Table 2 reports the query times of the indexes, performing full-intersection pseudoalign-
ment (see Alg. 1 from [21]), on a high-hit workload. The performance on low-hit workloads is less informative,
but is provided in the Supplementary material (Table 5) for completeness. The queried reads consist of all
FASTQ records in the first read file of the following accessions: SRR1928200 for EC, SRR801268 for SE, and
ERR321482 for GB. These files contain several million reads each. Timings are relative to a second run of
each experiment, where the indexes are loaded from the disk cache (which benefits the larger indexes more
than the smaller ones).

Consistent with previously reported results [21], we find that among existing indexes, Fulgor provides
the fastest queries. As expected, Mac-dBG does not not sacrifice query efficiency compared to Fulgor. After
Mac-dBG and Fulgor, we note that Themisto is the next fastest index, followed by MetaGraph in batch
query mode. The query speeds of COBS and of MetaGraph when not executed in batch mode are much
lower than that of the other indexes, in some cases being (more than) an order of magnitude slower.

Critically, it is not the case with all indexes evaluated here that the size of the index on disk is a good
proxy for the memory required to actually query the index. Specifically, for MetaGraph, when used in batch
query mode (“B”), the required memory can exceed the on-disk index size by up to 2 orders of magnitude,
and in several tests this resulted in the exhaustion of available memory and an inability to complete the
queries under the tested configuration. On the other hand, Fulgor, Themisto, Mac-dBG and MetaGraph
when not executed in batch mode (“NB”) require only a small constant amount of working memory beyond
the size of the index present on disk.

Construction time and space. In Table 3 we consider the resources needed to build the indexes. The
Mac-dBG is built from a Fulgor index to which we apply the SCPO framework. For this reason, the time
reported in Table 3 for the Mac-dBG has to be summed to the time needed to first build a Fulgor index. We
do not describe here the construction algorithm for the Mac-dBG for space constraints; we just point out
that the algorithm is single-threaded except for the construction of the sketches. Despite not being heavily
engineered yet, the end-to-end construction of the Mac-dBG is competitive to that of Themisto and much
faster than that of MetaGraph. As for the memory used, the end-to-end construction of the Mac-dBG takes
the max. RSS between that of SCPO and that of Fulgor, which is always the max. RSS of Fulgor.

The fastest indexes to build are Fulgor and COBS, the latter being even faster on the GB collection for
reasons already explained. The tested MetaGraph configuration is significantly slower to build than all the
other indexes; for example, we were unable to build the index for SE 150,000 within 3 days and using 48
parallel threads (the construction process also produced > 1 TB of intermediate files).
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Table 3: Total index construction time (elapsed time) and GB of memory used during construction (max.
RSS), as reported by /usr/bin/time -v, using 48 processing threads. The reported time includes the time
to serialize the index on disk. In red font we highlight the constructions exceeding the available memory
(> 500 GB) and for which we had to cap the maximum memory usage to 100 GB. The time reported for
the Mac-dBG is that for running the SCPO construction, hence it has to be summed to the time needed to
first build a Fulgor index to partition.

Genomes
Mac-dBG Fulgor Themisto MetaGraph COBS

h:mm GB h:mm GB hh:mm GB hh:mm GB h:mm GB

EC 3,682 +0:05 2.77 0:06 16.89 00:19 17.18 00:46 149.38 0:03 6.39

SE

5,000 +0:04 1.15 0:04 12.91 00:11 12.97 00:47 190.99 0:09 8.13
10,000 +0:10 2.82 0:09 23.60 00:25 23.58 01:50 218.76 0:17 16.15
50,000 +1:50 21.59 1:13 43.76 02:32 96.00 14:16 118.95 1:41 82.49
100,000 +4:37 47.68 2:56 73.54 06:25 202.42 26:40 103.99 2:37 83.79
150,000 +7:41 77.11 4:36 136.94 10:00 323.10 — — 4:54 159.31

GB 30,691 +0:31 68.86 2:27 115.05 06:21 183.56 10:50 99.54 0:22 17.08
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Fig. 3: The same data from Table 2 but shown as space vs. time trade-off curves, for some example datasets.

6 Conclusions

We have introduced the Mac-dBG data structure. The Mac-dBG represents a new state-of-the-art represen-
tation for answering color queries over large collections of reference sequences, and achieves a considerable
improvement over existing work in terms of the space/time trade-off it offers. Specifically, Mac-dBG is almost
as small as the smallest variant of MetaGraph — which is the smallest compressed c-dBG representation on
disk. Yet, when queried, Mac-dBG requires essentially the same space as is required for the index on disk,
while the MetaGraph representation expands manyfold to improve query throughput via batch queries. At
the same time, Mac-dBG provides query speed as fast as the fastest existing c-dBG index, Fulgor. This en-
hanced trade-off can be visualized in Fig. 3. We believe these characteristics make Mac-dBG a very promising
data structure for enabling large-scale color queries across a range of different applications.

To achieve these substantial improvements over the prior state of the art, the Mac-dBG focuses on provid-
ing an improved representation of the color table, the element of the index that tends to grow most quickly
as the number of indexed references increases. Specifically, Mac-dBG compresses the colors by factoring
out shared sub-patterns that occur across different colors. The color table is represented as a set of meta
colors and partial colors which are combined to recover the original colors exactly. While most interesting
formulations of determining the optimal factorization into meta colors and partial colors appear NP-hard,
we nonetheless describe a heuristic approach that works well in practice.

Future work would first focus on improving the compression of partial colors even further with the help
of a more principled permutation π and that of the meta colors with a more succinct encoding method.
Lastly, we plan to engineer the construction steps of the SCPO framework. We include in the Supplementary
material a list of interesting research questions related to the Mac-dBG data structure.
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