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Abstract. In fundraising management, the availability of accurate estimates of
the expected gift is crucial to implement a successful fundraising campaign. To
this aim, assessing the gift process is relevant. In this contribution, we first sug-
gest modeling the gift as an individual risk which can be seen from different
perspectives: occurrence, number and timing of donations, and the gift’s amount.
Then, we focus on one of these aspects; in particular, we model the number of do-
nations as a Poisson random variable with an intensity parameter that depends on
the individual characteristics of the Donors. The expected number of donations
and the probability of gift can be estimated by performing a Poisson regression.
Keywords. Fundraising Management, Gift Probability, Poisson Regression.
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1 Introduction

The fundraising (FR) activity is focused on how to effectively contact potential Donors
to raise funds for a particular purpose. In this process, the efficient use of information
on Donors and past campaigns plays a central role. As regards the available data, Asso-
ciations are classified according to the existence of a structured database (DB) and the
presence in the DB of specific qualitative information of Donors’ profiles (like personal
interests and attitudes, and relationship network), in addition to the usual information on
the gifts (gift history), and the typical personal profile data. Normally, this classification
strictly depends on the Organization’s size.
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In FR management, estimating the gift probability and the expected gift amount is
a prominent issue in implementing a successful campaign. Problems regarding manag-
ing the gift in FR will provide a framework for the discussion of various models and
examples. The gift is a process that can be analyzed from different perspectives: its oc-
currence, the number and timing of donations, and the donations’s amount. Each one of
these aspects can be modeled and estimated using quantitative methods.

Recent approaches to FR are characterized by a significant use of mathematical
modeling and soft computing. [4] introduce the use of mathematical modeling and De-
cision Support Systems (DSS) to help Associations decide the kind of campaign and
the features to implement, and choose the Donors to be contacted to maximize the ex-
pected return of the campaign, satisfying time and budget constraints. The approach
has been specialized for different kinds of Organizations. On one hand, [5] and [9]
consider large-sized Associations, with lists of millions of Donors and a powerful orga-
nizational system requiring a very sophisticated DSS. On the other hand, [6] consider
small-sized Organizations and develop a DSS based only on essential information with-
out an organized DB. The approach has been validated both in the operational world by
Associations that test it (as documented in [5], [6] and [9]), and in the literature (see
[23] and [19]). Medium-sized Organizations are addressed in [8] and in [7], where a
targeted DSS has been developed.

Relevant features, such as the expected gift amount and the probability of dona-
tion, can be assessed using parametric and non-parametric approaches. A very recent
research stream for FR is based on non-parametric Machine Learning (ML) models;
see, for example, [15] and [11]. Along this line, [2] propose a Multi-Layer Perceptron
(MLP) to predict the number of donations and the gift amount. [3] extend the analysis,
focusing on the relative importance of the input variables in the MLP model with the
aim of enhancing the effectiveness of FR campaigns.

As regards parametric approaches, [10] consider the gift as an individual risk and, in
particular, the authors suggest modeling the number of gifts as a Poisson random vari-
able with an intensity parameter that depends on Donors’ characteristics. In this contri-
bution, we extend the previous work [10], including a quantitative analysis. A Poisson
regression is performed to estimate the expected number of donations, the probability
of gift, and to assign a score to each Donor measuring their propensity to the donation.

The remainder of the paper is organized as follows. Section 2 discusses the im-
portance of collecting Donors’ information. In Sections 3 and 4, the gift is modeled
introducing a suitable probability distribution; in particular, we adopt a Poisson model
for the number of donations. In Section 5, the data set is described, and in Section 6, the
result of the Poisson regression are presented. Finally, Section 7 concludes with some
remarks.

2 Donors’ characteristics and the giving pyramid

In the pursue of their mission, Associations adopt strategies specifically designed to
reach the goal of a FR campaign (see [21]) and maximize the expected gift. In this
activity, the position of the Donor is of central importance (see [14] and [18]), and
particularly the search for potential Donors’ profiles (Contacts) that match some specific
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gift propensities (see e.g. [13]) in order to support the effectiveness of the FR process.
Practitioners claim that most of the success of a FR campaign is determined by choosing
the appropriate target of Donors to whom the strategy is addressed, while motivations
and creativity are not predominant factors.

Economists agree that information on Donors plays a crucial role to achieve the
improvement of the FR strategies [20]. Studies have evidenced some main factors that
influence individuals in the choice of donating. In [1] the economic and social founda-
tions of altruism is characterized by factors such as the own community or the social
network, and the so called “enlightened self-interest”. These features are also studied
by [14] and [22]. According to [18], an individual tends to assume a role-identity as
Donor, that depends on their network of social relationship. The authors identify some
variables that can affect role-identity, shape individual preferences and attitudes, and
impact on the utility people get from their decision on how and to what extent donate
[12].

Several factors should be considered when implementing FR strategies: information
on Donors, information on past campaigns, and operational knowledge and rules of
thumb of the experts in the field.

Regarding Donors characteristics to be included in the analysis, these can be further
summarized in some categories: personal situation variables (gender, age, number of
children, educational level, place of origin, size of residence town, etc.); financial situ-
ation variables (wage, wealth, investments, debts); risk aversion variables (the number
of insurance policies subscribed by the individual is usually adopted as a proxy); other
personal information (personal interests, religious involvement, social network, etc.).

All these data may not be accessible, also because in some cases they are sensi-
tive personal information. When available, information is usually managed by an or-
ganized DB (exceptions may include small Organizations). However, classical tools
for DB management have some limitations, and decisions are in practice supported by
knowledge of experts in the field (see [13]). There is indeed an increasing interest both
by Associations and providers of software and services in the FR sector to develop new
soft-computing tools able to elaborate more efficiently the available amount of data.

Some of the above mentioned factors may have a strong influence on the gift in
terms of amount and frequency. Donors can also be classified according to how often
and how much they donate. To this respect, the Donors’ segmentation is determined by
the giving pyramid. An example is represented in Fig. 1, where the ground of the pyra-
mid is constituted by the Contacts. A Donor who donates occasionally (once or very few
times) small amounts is called “Sporadic”; a Donor who gives more frequently and/or
their donations are more generous is called “Regular”; large and normally regular do-
nations are associated to the so-called “Large” Donors; finally, on top of the pyramid
there are inheritances and legacies (Donors that may be particularly involved in the As-
sociation’s mission). A finer classification is possible, depending on the characteristics
and size of the DB, and the type of FR activity.

Organizations manage an amount of information about past campaigns and, for each
Donor in the DB, the gift history is recorded. This allows to construct a giving pyra-
mid based on past history, and update the pyramid layers based on the behavior of the
Donors along time and across different campaigns. The objective is to let more Contacts
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Fig. 1. The giving pyramid in FR management representing the segmentation of the Donors

become Donors, and stabilize sporadic Donors’ to become regular ones. As getting in
touch with a Donor implies some costs, one main aim of FR management is to select
the most promising Donors/Contacts in order to maximize the expected return, subject
to budget constraints, and, at the same time, to control the return variability.

The percentage of positive responses from Donors, for every level in the pyramid,
is usually considered as a parameter estimated by the experts’ knowledge. It would be
useful to obtain accurate estimates of the probability of gift, based on the available infor-
mation on Donors, and their gift history. To this aim, in the next section, the FR process
will be formalized adopting suitable probabilistic models and specific assumptions will
be made about the distribution of the quantities of interest.

3 Modeling the gift

As discussed in the previous section, the appropriate use of the information about
Donors is crucial for the accuracy of the expected gift estimation and, in the end, for
optimizing the resources. The task of integrating the information on Donors to find an
optimal FR strategy is complex; not only does it require a clear identification of the
goals, but also a rigorous definition of the variable included in the analysis.

Besides the importance of systemically collecting and updating the data, we stress
the need of introducing quantitative tool to exploit such information. To this purpose,
the ‘gift’ can be modeled as an individual risk, in analogy with other main domains of
applications (see [16]): finance, credit risk, insurance, and marketing.

Hence, the gift can be viewed from four viewpoints:

- the occurrence of a donation: the outcome is either ‘yes’ or ‘no’;
- the frequency or count of the donations received in a period of time (a year or the
duration of the campaign): the number of gifts is zero or any positive integer;
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- the timing or duration (when a donation has occurred or the interval between do-
nations): the outcome is an interval of time, usually measured with reference to a
fixed point of origin, such as the beginning of the campaign or when the potential
Donor has been contacted for the first time;

- the gift amount: the amount of money given by the Donor for each donation (the
outcome is measured in currency units, but could be also in terms of hours).

With respect to all these perspectives, the gift is quantifiable and can be modeled using
statistical methodology, determining for any aspect listed above which kind of random
variable can be adopted: a dichotomous variable, a count variable, a duration variable,
and a continuous positive variable, respectively.

Either dichotomous or count variables can be used to model the occurrence of the
gift event. Let us simply consider a dichotomous random variable' ¥; then the probabil-
ity of gift is equal to E(Y) = p. Let X be a continuous random variable that represents
the amount of money given by the Donor for a donation, or the total gift of all dona-
tions filed in the considered period. In this case the expected gift for each Donor can be
computed by the product of the gift probability and expected gift amount, E(Y)E(X).
Considering the whole campaign, both the number of gifts and the gift amount are ran-
dom, hence campaign’s return can be modeled as a random sum; in order to compute its
expectation, some assumptions need to be introduced (such as independence amongst
Donors, and independence of gifts count and gift amounts). All these features can be
modeled in alternative ways; in Section 4 we suggest a model for the number of gifts
considering a single Donor.

We make some assumptions about the mechanism that gives rise to the gift: any
gift is associated with an individual i, the Donor; a Donor can be a person, a company,
or other entity that can be represented by some individual characteristics which are
collected in a data set; the individual characteristics of the Donor are synthesized by a
score; the gift history (gift events, timing and gift amounts) of the Donor is recorded.

A score is a statistical measure of individual risk based on individual characteristics
[16]. In the context of FR, it can be used to quantify the individual propensity to donate
(the higher the score, the higher the propensity to the gift), to rank Donors in a popula-
tion, to distinguish between (expected) “good” and “bad” Donors. This latter procedure
is called segmentation and in FR could be used to distinguish potential Contacts or to
address ad hoc advertising to subclasses of Donors.

Let x; be the vector which collects selected observable, qualitative and quantita-
tive, individual characteristics of Donor i, in a sample of n Donors. Define z; as the
vector of transformed individual characteristics (where qualitative features are prop-
erly transformed into quantitative or dummy variables). The score can be defined as a
scalar function of covariates z§9, where 0 is a vector of parameters. The score, which
summarizes the information about the Donor, can be determined by more sophisticated
approaches (see [16]).

In the next section, we focus on one of the aspects related to the gift process. In par-
ticular, we consider the number of donations and let depend them on Donors’ individual
characteristics.

Formally, denoting with G the gift/donation event, we have ¥ = 15(®), where 1g is the
indicator function of G, with P[Y = 1] = p.
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4 Poisson regression in FR

The arrival of a donation to an Association, such as a new claim to an Insurer, can be
viewed as the outcome of a random variable. In a very simple model, a dichotomous
variable indicates whether or not a gift is received. In this contribution, we suggest to
use a parametric approach for the number of gifts (in a certain period), in analogy with
insurance theory where count variables are used to model, for example, the number of
claims on one policy in a year. We consider a model, the Poisson distribution, that is
usually adopted as a starting approach for count variables; we apply it for the number
of gifts, which can then be estimated by the Poisson regression model.

Let Y represent the number of gifts in a unit of time; in a basic count variable model,
we assume that Y has a Poisson distribution with intensity parameter A. It is well known
that E(Y) = A, which is equal to its variance V(Y) = A.

In the Poisson regression model, A depends on the values of observable charac-
teristics x; of each individual or entity i. As the intensity varies across individuals, its
specification for Donor i will be

A = exp(z.0), (H

where 0 is the vector of unknown parameters and z; is a vector of transformed individual
characteristics; the exponential form ensures positivity of the intensity.

Let us consider a sample of n Donors; the gift count variables Y7, .. ., Y, in this model
are independent, conditional on the covariates, and the conditional distribution of Y; is
a Poisson distribution with parameter A; as in (1). It is worth noting that

E[Y, |x,-] = V[Y,\x,] = eXp(de); (2)

it turns out that the model is heteroskedastic by construction. Parameters 8 can be esti-
mated by maximum likelihood; the resulting log-likelihood function is’:
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1(0) is concave with respect to 0; the maximum likelihood estimator 6, is obtained
imposing first-order conditions:
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The residuals associated with Donor i are #; = y; — 5L,~, and conditions (4) are equivalent
to the orthogonality conditions for residuals and variable z;.

2See also [16] for details and properties of the estimators.
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Once estimated, the model can be used to compute the expected number of gifts for
a single Donor (or a new Contact), ;, and the probability of gift

A
P[Yi:y]:exp(_aft)yil'a y:Oa]72"" 5

As a further result, once the model is estimated, it allows to obtain, for each Donor
in the DB or for new potential Donors, a score z;8. Such an indicator can also be used
for rating Donors with respect to their propensity to the gift; the higher the score is, then
the higher the expected number of gifts A;, which indicates “good” Donors.

Poisson regression model is easy to interpret; a possible drawback is that it is based
on some strong assumptions. Nevertheless, the model allows for various extensions. For
instance, a gamma distributed heterogeneity factor can be introduced; as a result, one
obtains a negative-binomial model [16].

Here the Poisson model is adopted as a first approach for FR, in a fieled where the
use of more sophisticated models is not yet well developed, registering at the same time
an increasing interest for quantitative approaches and artificial intelligence. This basic
specification for count variables allowed us to establish a relationship between the count
variable risk models and the models based on dichotomous qualitative variables linked
to Donors’ individual characteristics. In the next section, we describe the information
available on Donors’ for a medium Organization, while in Section 6 we present an
application.

5 Description of the data

The numerical analysis in Section 6 is based on a simulated DB, already used in other
contributions in the literature ([2] and [3]), constructed from experts’ knowledge, and
based on a realistic composition of a set of Donors.

Starting with about 400000 Contacts, a set of N = 30000 Donors is obtained. These
values constitute medium to high numbers for a medium-sized Organization, or high
numbers for a small-sized Organization. In the set of Donors, 75 % are Sporadic Donors
(labeled ‘sd’). Among them, about 25 % made only one donations (labeled ‘sd1’), and
the rest made more than one donation (labeled ‘sd2’). The remaining 25 % are: 19 %
Regular Donors® (labeled ‘rd’), and 6 % Large Donors. Legacies are not present in the
considered sample.

Besides information about gift history of the Donor, other personal profile variables
collected are: age and number of children, educational level* (in four categories: Mas-
ter and Ph.D., Bachelor, High School, other/lower school level), wealth (measured in
thousands of euro), risk aversion (measured as numbers of insurance policies signed by
the Donor).

3 A further subdivision in “stable” (labeled rd1) and “dynamic” (labeled rd2) is possible.
4Categorical variable transformed into values ranging from 1 to 4, assigning 4 to the highest
category.
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Regarding the gift history, the dataset includes for each Donor: the number of do-
nations, the gift amount for each donation’, and the number of gift requests (or also
number of times when the Donor searched for information about the FR campaign).

Table 1. Distribution of some Donors’ individual characteristics along the giving pyramid

Donors low n. risks min gift max gift
wealth >1 amount amount

col2-col5

Sporadic (sd1) 70 % 35% 20 50
Sporadic (sd2) 70 % 35% 30 100
Regular (rd1) 40 % 65 % 50 400
Regular (rd2) 40 % 65% 100 500
Large 10% 65 % 300 1000

Table 2. Main statistics for the gift history (number and amount of donations, number of donation
requests), and Donors’ individual characteristics

mean std. dev. min max
n. donations 6.40 5.20 1 28
gift amount 133.65 158.20 20 1000
gift requests 15.10 8.37 1 29
age 53.43 20.86 18 89
n. children 1.50 1.12 0 3
education 2.51 1.12 1 4
wealth 398.47 310.17 10 1000
n. risks 1.07 1.67 0 5

Tables 1 and 2 report a synthesis of the data collected in the DB. In particular, Table
1 shows the composition (segmentation) of the Donors population in the giving pyramid
related to some characteristics. About 70 % of the Sporadic Donors have “low wealth”;
whereas, such a percentage decreases to about 40 % and 10 % for Regular Donors and
Large ones, respectively. In the second column, the percentage of Donors who sub-
scribed at least one insurance contract is reported; it can be observed that the number
increases when considering higher layers of the pyramid. In the last two columns, the
minimum and maximum Donation amounts are shown; in this case, results depend on

SThe average donation for each Donor is used in the analysis.
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Fig. 2. Empirical distribution of the number of donations

the very definition of Sporadic (low gift amount, low frequency), Regular (low/medium
gift amount, medium/high frequency), and Large (higher gift amount) Donors.

Table 2 reports the main statistics for the gift history (number of donations, amounts,
number of requests), and some Donor’s individual characteristics (age, number of chil-
dren, educational level, wealth, and risk aversion).

The empirical distribution of the number of donations is shown in Fig. 2. It is worth
noting that, as we considered a sample of Donors, the number of donations range from
1 to the maximum observed number. This choice allows us to avoid the inference issues
associated with the excess of zeros that arise when considering all the Contacts in the
DB.

6 Application and results

Information described in the previous section can be thought of as realization of a pro-
cess that resembles those data to be modeled. The Poisson regression is the basic count
variable model for individual risk. It is easy to estimate and interpret, but it relies on
some strong simplifying assumptions as well.

Various problems arise when trying to apply Poisson model. For instance, the Pois-
son distribution assumes the possibility of zero counts, but in practice there may not be
any. When considering the number of donations, we focus on the gift history of Donors’
already present in the DB, excluding Contacts who have not donated yet. Hence, zero
donations are not a possibility for the data being modeled, as shown in Fig. 2. On the
other hand, including in the analysis the information on Contacts would lead to another
problem: the excess of zeros. In these cases, the underlying distribution may need to
be adjusted to take into consideration or exclude zero counts®. The model could be

®More advanced approaches include two-part hurdle models and mixtures models (see [17]
for a discussion).
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amended considering, for example, a truncated distribution. In Section 6.1, we start
considering the standard Poisson regression, allowing for zero counts; in Section 6.4
we address this issue.

Another problem is over-dispersion. Theoretically, the mean and the variance have
the same value for a Poisson distribution. In practice, one observe data with larger vari-
ance. Considering data reported in Table 2, it is evident that the variance is much larger
than the observed mean. Over-dispersion occurs also when observed and predicted vari-
ances of the response differ. In Section 6.3, we will test over-dispersion and discuss how
to treat this problem.

6.1 Choice of profile’s variables

The Donor’s individual features to be used in the regression model can be divided into:
personal profile variables (age, number of children, educational level), risk aversion
variable (the number of insured risks), and economic situation (wealth measured in
thousand of monetary units). Besides these variables, the analysis takes into consid-
eration information about gift history, namely, the average donation amount for each
Donor, and the number of gift requests.

We first run a Poisson regression taking into consideration all the listed variables
(including a constant term); predictors with p—values less than the generally acceptable
level of 0.05 appear to significantly contribute to explain the number of donations. Two
information, namely the age and number of children, turned out not to be significant
and, also on the basis of information criteria (AIC and BIC), have been excluded. The
results reported in Table 3 are those of the reduced form Poisson regression model.

Table 3. Results of the Poisson regression for the number of donations when gift amount, number
of risks, wealth, number of gift requests and the two highest educational levels are considered as
explanatory variables. Pseudo R? = 0.3730. LR x%(6) = 79381.67; Prob > x? = 0.0000. Number
of observations = 30000. Residual degrees of freedom df =29993; (1/df)Deviance = 1.021245;
(1/df)Pearson= 1.036365.

coefficient  std. err. z P> 95 % conf. interval

gift amount 0.0018902 0.0000113  166.69 0.000 [0.0018680, 0.0019124]
n. risks 0.0216880 0.0013268  16.35 0.000 [0.0190875, 0.0242886]
wealth 0.0000377  0.0000077 4.92 0.000 [0.0000227, 0.0000527]
gift requests  0.0627460 0.0002960 211.99 0.000 [0.0621659, 0.0633261]
education3 0.0163401 0.0055632 2.94 0.003 [0.0054365, 0.0272437]
education4 0.0167768  0.0055933 3.00 0.003 [0.0058142, 0.0277394]
const. 0.4106476 0.0074735  54.95 0.000 [0.3959998, 0.4252954]
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Regarding the educational level, this is a categorical variable (with first level as the
default reference). We found that only the two highest level of education were signifi-
cantly different from the level of reference.

Besides the estimated coefficients 0, the table reports the standard errors of the
model parameter estimates, the confidence intervals, and statistics of the regression. In
particular, R* = 0.3730.

6.2 Goodness of fit

A first test used to assess the results obtained from the Poisson regression is the deviance
goodness-of-fit (gof) test. Table 4 reports the deviance statistic D = 30630.2, the resid-
ual degrees of freedom (df = 29993), and the resulting x> p—value. With a p—value
less than 0.05, one can consider the model well fitted. In place of the deviance, on can
also consider the Pearson y?2 statistic (see Table 4).

When we divide the two statistics by the residual degrees of freedom, it results
(1/df)Deviance = 1.021245, and (1/df)Pearson= 1.036365. We note that, the disper-
sion statistic based on Pearson gof has a value greater than 1 indicating variability in the
model higher than expected. In this case, there is a moderate amount of over-dispersion.
With a large number of observation, the statistic is less than 1.05; in such a case, one
can try to amend the model to eliminate such excess of dispersion.

Over-dispersion is an important issue, as it may cause standard errors of the esti-
mates to be underestimated. It can be due to several reasons’: positive correlations in
responses, excess variation between response probabilities or counts, violations in the
distributional assumptions of the data.

Table 4. Goodness-of-fit tests

Test Statistics Prob > x2(29993)
Deviance gof 30630.2 0.0049
Pearson gof 31083.7 0.0000

6.3 Adjust over-dispersion

When modeling count data, the assumption of equi-dispersion (the mean and the vari-
ance are the same) is rarely satisfied. Then usually the Poisson model need some ad-
justments to account for under- or over-dispersion (which is more often the case when
dealing with real data). More generally, the term over-dispersion can also be used when

TSee [17] for a discussion.
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Table S. Results of the Quasi-likelihood model regression for the number of donations when gift
amount, number of risks, wealth, number of gift requests and the two highest educational levels
are considered as variables. (Deviance = 0.9854105, Pearson= 1, with dispersion: 1.036365).
Number of observations = 30000.

coefficient  std. err. z P> [ 95 % conf. interval

gift amount 0.0018902 0.0000111 169.69 0.000 [0.0018684, 0.0019120]
n. risks 0.0216880 0.0013034  16.64 0.000 [0.0191335, 0.0242425]
wealth 0.0000377  0.0000075 5.00 0.000 [0.0000229, 0.0000524]
gift requests  0.0627460 0.0002907 215.81 0.000 [0.0621762, 0.0633159]
education3 0.0163401 0.0054647 2.99 0.003 [0.0056295, 0.0270507]
education4 0.0167768  0.0054943 3.05 0.002 [0.0060082, 0.0275453]
const. 0.4106476 0.0073412  55.94 0.000 [0.3962591, 0.4250361]

the observed variance of the count outcomes is larger than the expected variance (the
variance of the predicted or expected counts).

Considering the observed occurrences for the gift counts as shown in Fig. 2, and
statistics reported in Table 2, there is evidence of over-dispersion.

A first method we used to deal with over-dispersion is Quasi-Likelihood that allows
parameter estimates to be obtained without explicit specification on an underlying log-
likelihood function, but based only on the mean and variance of the observations. The
Pearson dispersion statistic obtained in the standard Poisson regression, (1/df)Pearson =
1.036365, is used as the variance multiplier.

The results are reported in Table 5 and the summary statistics can be compared
with those of the standard Poisson regression in Table 3. The deviance statistic is lower
(0.9854105), and the Pearson dispersion value is now 1.

Furthermore, we have implemented robust regression. Robust variance estimators
is used to adjust standard errors for correlation in the data. The results are collected in
Table 6.

Finally, we applied another method to adjust standard errors, nonparametric boot-
strapping, which is not based on specific assumptions about the underlying distribution.
Results are reported in Table 7.

It is worth noting that, the values of the bootstrapped and robust standard errors do
not differ substantially from the ones of the standard Poisson regression (see Table 3);
this is a further evidence that the model is not extradispersed.

6.4 Truncated Poisson regression

Count data relates to the number of observations that may take only nonnegative integer
values, ranging from zero to infinity; but in many cases of practical interest or study de-
sign the outcomes are limited to some determined value. When considering the number
of gifts from a Donor in a certain interval of time, one has to deal with data that have
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Table 6. Results of the robust regression for the number of donations when gift amount, number
of risks, wealth, number of gift requests and the two highest educational levels are considered
as variables. (Deviance = 1.021245, Pearson= 1.036365). Pseudo R* = 0.3730. Wald y?(6) =
64026.20; Prob > x% = 0.0000. Number of observations = 30000.

coefficient  std. err. z P>z 95 % conf. interval

gift amount 0.0018902 0.0000134 140.92 0.000 [0.0018639, 0.0019165]
n. risks 0.0216880 0.0015824  13.71 0.000 [0.0185865, 0.0247896]
wealth 0.0000377  0.0000094 4.03 0.000 [0.0000193, 0.0000560]
gift requests ~ 0.0627460 0.0003195 196.40 0.000 [0.0621198, 0.0633722]
education3 0.0163401 0.0064480 2.53 0.011 [0.0037021, 0.0289780]
education4 0.0167768 0.0065371 2.57 0.010 [0.0039643, 0.0295893]
const. 0.4106476  0.0076841  53.44 0.000 [0.3955871, 0.4257081]

Table 7. Bootstrapped regression (number of samples = 1000) for the number of donations when
gift amount, number of risks, wealth, number of gift requests and the two highest educational
levels are considered as variables. (Deviance = 1.021245, Pearson= 1.036365). Pseudo R? =
0.3730. Wald x%(6) = 64026.20; Prob > x* = 0.0000. Number of observations = 30000.

coefficient  std. err. z P> [ 95 % conf. interval

gift amount 0.0018902 0.0000134 141.07 0.000 [0.0018639, 0.0019165]
n. risks 0.0216880 0.0015824  13.71 0.000 [0.0185874, 0.0247886]
wealth 0.0000377  0.0000099 3.82 0.000 (0.0000183, 0.0000570]
gift requests ~ 0.0627460 0.0003143 199.66 0.000 [0.0621301, 0.0633619]
education3 0.0163401 0.0065128 2.51 0.012 [0.0035752, 0.0291050]
education4 0.0167768  0.0067262 2.49 0.013 [0.0035937, 0.0299598]
const. 0.4106476  0.0076504  53.68 0.000 [0.3956531, 0.4256421]
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been truncated or censored. Censoring occurs when counts can possibly exist, but due
to the study design (or other reasons) some outcomes are not present in the observed
data.

Table 8. Results of the truncated Poisson regression for the number of donations when gift
amount, number of risks, wealth, number of gift requests and the two highest educational levels
are considered as variables. Pseudo R* = 0.3890. LR x2(6) = 82750.85; Prob > x> = 0.0000.
Number of observations = 30000. Minimum number of donations is 1 and maximum number of
donations considered is 28.

coefficient  std. err. b4 P> [ 95 % conf. interval

gift amount 0.0021528 0.0000135 159.01 0.000 [0.0021263, 0.0021794]
n. risks 0.0233569 0.0014066  16.60 0.000 [0.0205999, 0.0261138]
wealth 0.0000402  0.0000081 4.99 0.000 [0.0000244, 0.0000559]
gift requests ~ 0.0690811 0.0003298 209.45 0.000 [0.0684347, 0.0697275]
education3 0.0135521 0.0058815 2.30 0.021 [0.0020245, 0.0250796]
education4 0.0174984  0.0059166 2.96 0.003 [0.0059020, 0.0290947]
const. 0.2391184 0.0085511  27.96 0.000 [0.2223585, 0.2558783]

As soon as a Donor is registered in the DB, the number of gifts Y is 1, as it the case
with data represented in 2. That is, the range of the count variable is ¥ > 1. Generally,
also the maximum number of donation can be modeled.

Here, we have considered a model where the number of gift is truncated. In partic-
ular, we exclude zero counts and limit the maximum number of gift, based on the gift
history. The performance of the Poisson truncated regression are displayed in Table 8.
One can observe that the pseudo R? has slightly improved.

7 Concluding remarks

In FR, the assessment of the expected gift is a crucial task. The accuracy of the estimated
number of donations and gift amounts depends on the efficient use of the knowledge
of Donors’ individual characteristics and gift history. Information based quantitative
approaches are implemented to optimize the resources by selecting the most promis-
ing Donors/Contacts from an organized DB, with the aim of maximizing the expected
global gift of a particular campaign, under budget constraints.

In this contribution, we propose the use of parametric models for the prediction of
Donors’ behavior. In particular, the Poisson regression model is adopted for the num-
ber of gifts. This basic specification allowed us to establish a relationship between the
count variable risk models and the models based on dichotomous qualitative variables
linked to Donors’ individual characteristics. If we can estimate the parameters of the
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distribution underlying the data, possibly with little bias, then we could use the result-
ing estimated model to make predictions and classifications. Furthermore, one can use
the resulting model to assess the probability of future events.

The aim of the present work is to provide some guidelines on how to construct,
interpret, and evaluate models in FR, such as for instance models for the gift count,
as to their fit. Then, we performed a Poisson regression on a simulated but realistic
dataset, illustrating problems that may arise when dealing with count data. In particular,
we addressed two main issues: dispersion and truncation of results. We discussed how
to interpret model coefficients and how predictions are produced.

Nevertheless, when dealing with real data, the underlying assumptions of the ba-
sic Poisson regression model seem quite unrealistic, due to the existence of some id-
iosyncratic risk related to Donors. When basic assumptions are relaxed, parametric and
semi-parametric extensions to the Poisson regression model could be applied. For ex-
ample, one may consider the residual heterogeneity of Donors as further unobserved
random variable; when gamma heterogeneity is assumed, one obtains a negative bino-
mial model. This issue is left for future research.

References

1. Andreoni, J.: Philantropy. In: Kolm, S.C., Ythier, J. (eds.): Handbook of the Economincs of
Giving, Altruism and Reciprocity 2, Elsevier (2006) 1201-1269

2. Barro, D., Barzanti, L., Corazza, M., Nardon, M.: Machine Learning and Fundraising: Ap-
plications of Artificial Neural Networks. University Ca’ Foscari of Venice, Department of
Economics Research Paper Series, 33/WP/2023 (2023)

3. Barro, D., Barzanti, L., Corazza, M., Nardon, M.: Input relevance in Multi-Layer Perceptron
for fundraising. In: Corazza M., Gannon F,, Legros F., Pizzi C., Touzé V. (eds.): Mathemati-
cal and Statistical Methods for Actuarial Sciences and Finance. MAF 2024, Springer Nature
Switzerland (2024) forthcoming

4. Barzanti, L., Dragoni, N., Degli Esposti, N., Gaspari, M.: Decision making in fund rais-
ing management: A knowledge based approach. In: Ellis, R., Allen, T., Petridis, M. (eds.):
Applications and Innovations in Intelligent Systems XV, Springer (2007) 189-201

5. Barzanti, L., Gaspari, M., Saletti, D.: Modelling decision making in fund raising manage-
ment by a fuzzy knowledge system. Expert Systems with Applications 36 (2009) 9466-9478

6. Barzanti, L., Giove, S.: A decision support system for fund raising management based on
the Choquet integral methodology. Expert Systems 29(4) (2012) 359-373

7. Barzanti, L., Giove, S.: A decision support system for fund raising management in medium-
sized Organizations. Mathematical Methods in Economics and Finance 9/10 (2018) 3-11

8. Barzanti, L., Giove, S., Pezzi, A.: A decision support system for non profit Organizations. In:
Petrosino, A., Loia, V., Pedrycz, W. (eds.): Fuzzy Logic and Soft Computing Applications.
Lecture Notes in Artificial Intelligence, Springer, Switzerland (2017) 270-280

9. Barzanti, L., Mastroleo, M.: An enhanced approach for developing an expert system for
fund raising management. In: Segura, J.M., Reiter, A.C. (eds.): Expert System Software:
Engineering, Advantages and Applications, Nova Science Publishers (2013) 131-156

10. Barzanti, L., Nardon, M.: Estimation of the gift probability in fund raising management. In:
Corazza, M., Perna, C., Pizzi, C., Sibillo, M. (eds.): Mathematical and Statistical Methods
for Actuarial Sciences and Finance. MAF 2022, Springer, Cham (2022) 70-75

11. Cagala, T., Glogowsky, U., Rincke, J., Strittmatter, A.: Optimal targeting in Fundraising: A
Machine-Learning approach. CESifo Working Papers 9037 (2021)



44

12.

13.

14.

15.

16.

17.
18.

19.
20.

21.

22.

23.

Luca Barzanti and Martina Nardon

Cappellari, L., Ghinetti, P. Turati, G.: On time and money donations. Journal of Socio-
Economics 40(6) (2011) 853-867

Duffy, J., Ochs, J., Vesterlund, L.: Giving little by little: Dynamic voluntary contribution
games. Journal of Public Economics 91 (2007) 1708-1730

Duncan, B.: Modeling charitable contributions of time and money. Journal of Public Eco-
nomics 72 (1999) 213-242

Farrokhvar, L., Ansari, A., Kamali, B.: Predictive models for charitable giving using ma-
chine learning techniques. PLoS ONE 13(10) (2021) 1-14

Gourieroux, C., Jasiak, J.: The Econometrics of Individual Risk. Credit, Insurance, and Mar-
keting. Princeton University Press, Princeton and Oxford (2007)

Hilbe, J.M.: Modeling Count Data. Cambridge University Press (2014)

Lee, L., Piliavin, J.A., Call, V.R.A.: Giving time, money, and blood: Similarities and Differ-
neces. Social Psycology Quarterly 62(3) (1999) 276-290

Melandri, V.: Fundraising. Civil Sector Press, Toronto, Canada (2017)

Nudd, S.P.: Thinking strategically about information. In: Tempel, E. (ed.): Hank Rosso’s
Achieving Excellence in Fund Raising, John Wiley & Sons, New York (2003) 349-365
Sargeant, A.: Using donor lifetime value to inform fundraising strategy. Nonprofit Manag-
ment and Leadership 12(1) (2001) 25-38

Smith, W., Chang, C.: Shipping the good apples out: A note on contributions of time and
money. Economic Bulletin 10(1) (2002) 1-14

Verhaert, G.A., Van den Poel, D.: The role of seed money and threshold size in optimizing
fundraising campaigns: Past behavior matters! Expert Systems with Applications 39 (2012)
13075-13084

MATHEMATICAL METHODS IN ECONOMICS AND FINANCE — mzef
Vol. 17/18, No. 1, 2022/23
ISSN print edition: 1971-6419 — ISSN online edition: 1971-3878
Web page: http://www.unive.it/m2ef/ —E-mail: m2ef@unive.it




