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Seasonal climate forecasts show skill in
predicting winter chill for specialty crops
in California

Check for updates

Prakash Kumar Jha 1 & Tapan B. Pathak1,2

Many fruits and nuts crops in California require sufficient winter chill to break dormancy, and
insufficient chill can harm fruit quantity and quality. Early information on winter chill forecast can help
growers prepare for a low chill year. Here we evaluate use of dynamic climate models for chill
accumulation forecast in California. Using temperature forecasts from seasonal prediction systems,
we found that the multimodel forecasts can predict chill. This is evident from the anomaly correlation
coefficients exceeding 0.5 between themodel-predicted and reference chill values for most California
regions. The forecasts correctly identified chill categories in over 50% instances in more than 40% of
the Central Valley and southern parts of California. The forecasts also demonstrated skill in capturing
the interannual variability of chill, especially during yearswith substantial decrease in chill. Additionally,
the seasonal forecast canprovidepotentially useful crop specificchill sufficiencyprediction.However,
forecasts beyond a one-month lead time showed reduced forecast skills.

About three-quarters of the United States’ fruits and nuts are grown in
California and the southwestern state is a global leader in production and
supply of some of these products1. Some of these crops such as walnut,
pistachio, cherry, pear, and plum require high amounts of winter chill2.
Although impacts associated with insufficient chill vary with species and
cultivars3, common symptoms include delayed flowering and uneven bud
break4 causing extendedflowering period resulting into lack of uniform fruit
ripeness, poor fruit quality and extended harvest date4,5. More importantly,
exposure to low temperatures is necessary in some species for the initiation
of female reproductive parts and proper fruit set, to develop proper shape,
size and quality fruits4,6,7, and prevent reduction in yield8. Impacts of low
chill are not only limited to the reproductive performance but also in
reducing plant vigor and vegetative growth9, inhibiting lateral buds and
causing domination of apical buds9.

Previous studies have indicated that chill accumulation is expected to
decline significantly in the future10,11. According to these studies, insufficient
chill has already been observed in the Central Valley of California, which is
one of the main production regions for fruits and nuts in California.
Inter-annual prediction of chill anomalies (above average, normal,
and below average) can help farmers to manage risks under adverse
chill conditions. An important question arises: Is there a reliable method
to forecast interannual variability in chill accumulation? Zhang et al.12

assessed the relationship between chill accumulation and various modes of
climate variability including the Oceanic Niño Index (ONI), Pacific-North

American teleconnection pattern (PNA), and Pacific Decadal Oscillation
(PDO) for three major growing regions of California (Central Coast,
SacramentoValley, andSan JoaquinValley). Results fromthis study showed
that these teleconnections can explain very small part (on average, less than
16%) of the interannual variability in chill accumulation for these regions
over the period 1979–2019. Therefore, using these indices to predict chill
accumulation will be less reliable due to the lack of a strong association
between chill accumulation and these indices.

There is a need to explore alternate approaches. One such approach
could be to use inter-annual temperature prediction from dynamic cli-
mate models. Then the question is whether climate models have skill to
predict temperature for the growing season of these crops over these
regions before the season starts. Our goal was to evaluate the potential
use of seasonal forecasts from climate models for November, December,
January, and February (NDJF), referred to as NDJF, for predicting chill
accumulation, commencing from various lead times. Since, chill is
derived from temperature, the first question is whether climate models
have good skill to forecasts temperature over California, mainly during
the winter season. There are some studies conducted earlier in this
regard. Zhang et al.13 found that the North American Multi Model
Ensemble (NMME)’s skill to forecast temperature for the interior regions
of California is better than the persistence forecasts. The anomaly cor-
relation coefficients ranged from 0.4 to 0.6 for the zero-lead seasonal
forecasts of DJF and MAM for two inland locations (Tahoe City
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and Parker Dam). Slater et al.14 found that the correlation coefficients
between NMME’s temperature forecasts and PRISM (Parameter eleva-
tion Regression on Independent Slopes Model) data for the Southwest
regions of the US varied from 0.1 to 0.5 between November and March.
The ensemble mean has better skill than individual models in all regions
and months, with the highest skill found in the shortest lead time
(0.5 months) and declining rapidly thereafter. Shukla et al.15 evaluated
skill of the NMME, comprising six models, to forecast air temperature in
California using a set of hindcasts from 1982–2010 for each grid cell at a
resolution of 1°x1°. They found that models have some skill (correlation
coefficient between 0.2 and 0.4) to predict temperature over December,
January, February, and March (DJFM) at a zero-month lead time, when
forecasts are issued at the start of the season. In general, these studies
concluded that the dynamic models exhibit limited skill in predicting
temperature at the sub-seasonal to seasonal timescale in California. This
is evident from the anomaly correlation coefficient (ACC) values, which
range from 0.1 to 0.5 in forecasts with zero or one-month lead time. Even
though, models are not good at predicting day-to-day variability in
temperatures at seasonal-to-sub-seasonal timescale, given that we are
interested in predicting total chill accumulation over a season, our
hypothesis is that the skill in predicting daily variability in temperature is
different than the skill to predict total chill accumulation in a way that we
are not interested in predicting which day will be exactly warmer or
cooler, rather we are interested in overall chill accumulation in a season.
Therefore, our assumption is that even though models are not good at
predicting day-to-day variability in temperature, they might be better at
predicting the overall chill accumulation over a season.

Although there are some studies for projecting chill under climate
change scenarios in the future10,16, we did not find any peer-reviewed studies
to predict chill on an interannual time scale in California. The objective of
this study is to assess potential of state-of-the-art global climate models to
predict winter season (NDJF) chill anomalies and chill sufficiency for
important specialty crops of California at different lead times. Early infor-
mation on chill sufficiency can help growers prepare for dealing with
insufficient chill. Given that the aim of this research is to help growers in
decision-making by providing them with winter season chill sufficiency
information, it is important to determine the level of concern among
California farmers regarding the decline in chill accumulation. Hence, the
study also investigates the extent to which farmers in California are con-
cerned about the observed diminishing trend in chill accumulation over
recent decades.

Results
Extent of concern among farmers regarding decreasing chill
accumulation
From the survey data, it became evident that a significant majority of the
farmers are concerned about the declining chill accumulation. Specifically,
out of the 341 farmers who participated in the survey, a notable 70% voiced
their concerns about the observed decreasing trend in chill accumulation
over the past few decades17. These farmers represent diverse regions across
California, encompassing a spectrum of agricultural landscapes and culti-
vating a variety of crops. Nearly half (47%) of themhailed from San Joaquin
Valley,while one-quarter quarter (25%)were from the Superior region,with
the rest spread throughout California (see Fig. 2 in ref. 17). The majority
were white (75.5%) males (82%) aged between 22 and 87 years, and almost
all (95.3%) were fruit and nut producers17. With California’s agricultural
sector being renowned for its cultivation of a wide array of crops, ranging
from fruits like cherries and apples to nuts like almonds and walnuts, the
implications of diminishing chill accumulation reverberate across multiple
facets of the farming industry. Notably, crops such as stone fruits (e.g.,
cherries, plums) and certain varieties of berries are particularly sensitive to
the availability of chill hours during their dormant periods, crucial for their
subsequent flowering and fruit set. By providing farmers with compre-
hensive insights into chill accumulations projected for theupcoming season,
theygain a strategic advantage inmitigating risks.Armedwith this foresight,

theycan adeptly leverage favorable conditions or brace for challenges during
low-chill years.

Correlation between model predicted and observed chill
accumulation
We computed anomaly correlation for total Chill Portions (CP) and Chill
Hours (CH) during the NDJF season, using temperature forecasts from the
models at different leadmonths and the same estimatedusing reference data
for the period between 1993 and 2015.

Overall, the anomaly correlation coefficients (ACCs) for CP (CH) in
the multimodel average of 1-month lead forecasts exceeded 0.5 in 82%
(81%) areas of California, 84% (88%) within the Central Valley (com-
bined San Joaquin and Sacramento Valley), and 98% (77%) in the
southern parts of California including San Diego, Los Angeles, and
Inland South (Figs. 1, 6). Additionally, ACCs for CP (CH) in the mul-
timodel average of 1-month lead forecasts exceeded 0.5 across 84% to
89% (90% to 94%) of regions where these five crops are grown (Figs. 1, 7).
However, the ACC gradually decreased with lead time, and values higher
than 0.5 were limited to 32% (35%), 19% (20%) and 12% (18%) of
California for CP (CH) in forecasts with lead times of 1–4 months,
2–5 months, and 3–6 months (Fig. 1). Similarly, the ACC declined with
lead time within the five crop-growing regions, with values surpassing 0.5
found in only 30% to 47% (21% to 35%), 5% to 15% (21% to 33%) and
1% to 12% (19% to 22%) of areas in forecasts with lead times of
1–4 months, 2–5 months, and 3–6 months (Figs. 1, 7).

Across individual models, in 1-month lead forecasts, the areas of
California with ACC values greater than 0.5 varied from 34% to 81%
(Figs. S1, S2). Notably, GloSea6-GC3.2, SPSv3, and SEAS5 demonstrated
superior performance compared to CFSv2 and CanCM4. Conversely, for
predictions with lead times extending beyond one month, areas of
California with ACC exceeding 0.5 were limited to less than 43%, with
CFSv2 exhibiting relatively better performance compared to other
models. Relatively bigger areas with ACCs higher than 0.5 were in mul-
timodel prediction than the individual model, indicating improved pre-
diction accuracy when using multiple models.

Prediction of categorical forecasts
Our results revealed that for the NDJF season, multimodel forecasts for
the CP (CH) category from a 1-month lead were accurate more than 50%
of the time in 40% (43%) of California areas, 41% (52%) in the Central
Valley (combined San Joaquin and Sacramento Valley), and 83% (59%)
in the southern parts of California including San Diego, Los Angeles and
Inland South (Figs. 2, 6). The multimodel forecasts for the CP (CH)
category from a 1-month lead were accurate more than 50% of the time
in 42% to 50% (54% to 57%) of the areas where walnut, pistachio, cherry
and plum are grown (Figs. 2, 7). The corresponding figures for pear were
lower, 0.23% (0.32%). However, these are the forecasts of chill category,
and do not provide the actual values. It is important to get an idea about
how the forecast of chill category translates into the actual values of chill
for effective chill management. For a given location, within the same
category of chill forecast, the difference between model predicted and
actual chill amount varies from year to year. We found that, when a chill
category forecast is accurate, it is 71% (78%) likely that the difference
between reference PRISM data andmodel predicted NDJF aggregated CP
(CH) will be limited to less than 20% in California (Fig. S3). In the
Central Valley, the corresponding probabilities of experiencing less than
a 20% bias are 61% (88%) (Fig. S3).

As the lead time increased, the accuracy of forecasts declined, and areas
with values surpassing correct forecastsmore than 50%of the timewere less
than 17% in forecasts with lead times exceeding one month (Fig. 2). Spe-
cifically, within regionswhere thefive crops are cultivated, the proportion of
areaswith correct forecastsmore than 50%of the timewas less than 30% for
CP and less than 42% for CH in forecasts with lead times exceeding one
month (Figs. 2, 7). In 1-month lead forecasts, the areas of California with
correct forecasts of theCP (CH) categorymore than 50%of the time ranged
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Fig. 2 | Percentage of correct prediction of Chill Portions and Chill Hours
category during the November-December-January-February season total out of
total predictions from 1993 to 2015 for multimodel forecasts. The first row
includes CP forecasts at lead times of (a) 1-month, (b) 1–4-months, (c) 2–5-months,
and (d) 3–6-months. The second row contains CH forecasts at lead times of (e)

1-month, (f) 1–4-months, (g) 2–5-months, and (h) 3–6-months. The predictions
were categorized into above-normal, normal, and below-normal categories for the
standardized normal variate (SNV) of Chill Portions in a particular year above 1,
between −1 and 1, and less than 1. The SNV of CP (CH) was calculated by sub-
tracting mean of CP (CH) and dividing by the standard deviation of CP (CH).

Fig. 1 | Anomaly correlation coefficients between reference and multimodel-
averaged Chill Portions and Chill Hours. CP and CH were aggregated for the
November-December-January-February (NDJF) season, across various lead times
spanning from 1993 to 2015. The first row includes CP forecasts at lead times of (a)
1-month, b 1–4-months, (c) 2–5-months, and (d) 3–6-months. The second row

contains CH forecasts at lead times of (e) 1-month, (f) 1–4-months, (g) 2–5-months,
and (h) 3–6-months. The multimodel includes NCEP’s CFSv2, CMCC’s SPSv3,
UKMO’s GloSea6-GC3.2, ECMWF’s SEAS5 and CCCma’s CanCM4. Only statis-
tically significant (p < 0.05) correlation is shown here.
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from 12% to 51% across individual models. Similar to ACC forecasts,
GloSea6-GC3.2, SPSv3 and SEAS5 demonstrated superior performance in
the 1-month period; however, their performance was inconsistent in fore-
casts with higher lead times (Figs. S4, S5).

Prediction of crop-specific chill sufficiency
Our findings indicated that the multimodel forecasts correctly predict
whether the NDJF season total CH would be above or below walnut
thresholds more than 50% of the time, covering almost all walnut-growing
regions in California regardless of the lead times (Fig. 3). Similarly, for
pistachios, cherries, plums, and pears, corresponding percentages ranged
from 86–99%, 74–99%, and 97–99%, and 96–99%, respectively, contingent
upon lead times (Fig. 3). Despite the large regional variability in forecast
accuracy, the influenceof lead timeonaccuracywas limited to less than16%.
All models correctly predictedCH thresholds 50% of the time in all walnut-
growing regions, with the differences in percentage areas among models
being less than 16% in the case of the remaining four crops (Figs. S6–S9).
While these types of forecasts demonstrated improved accuracy in pre-
dicting crop-specific chill sufficiency, a limitation lies in their ability to
quantify the extent of increase or decrease in chill.

Observed vs. predicted chill
The one-month lead predictions from multiple models demonstrate
accurate forecasting of interannual fluctuations in Chill Portions (CP or
CH), particularly during the years characterized by a sharp decline in
chill, such as 1995, 2005, and 2014–2015 (Figs. 4, 5). The cumulative
season CP, as per the reference PRISM data, consistently falls within the
multimodel prediction’s minimum and maximum range across different
crops and counties, more than half of the time (Fig. 4). Nevertheless,
there are instances (pistachio and plum in Fresno; walnut and cherry in
San Joaquin and Stanislaus) where the CH in the reference data lie
outside the predicted range of models more than half of the time (Fig. 5).
The anomaly correlation coefficients for county-averaged CP (or CH)
predictions frommultimodel versus reference data ranged from 0.4 to 0.8
(0.5 to 0.7) for forecasts with a one-month lead time (Table 1). The
correlation coefficients for multimodel chill (CP or CH) prediction at
one-month lead time were significant (p < 0.05) across almost all crops
and counties, except for pear in Lake County.

The predictive spread of multimodels for chill (CP or CH) declined in
forecasts with longer lead times, evident in the widening range between the
maximum and minimum predictions, accompanied by a reduction in
ACCs values along with their statistical significance (Figs. S10–S15,
Table S2).

Discussion
Insufficient winter chill prevents some specialty crops from realizing their
full potential yield along with lowering their fruit quality. Farmers in Cali-
fornia are concerned about the impact of decreasing chill accumulation
observed in the recent decades. Advance information on the coming sea-
son’s winter chill can help growers to manage low chill to minimize such
losses. This study identified the potential to forecast the category of chill
amount (above, below, normal) for the forthcoming winter months one
month in advance. Accurate predictions, more than half of the time, are
attainable for the majority of the Central Valley and southern parts of
California by leveraging temperature predictions from multimodel fore-
casts. Additionally, we have proved that cumulative CP for theNDJF season
in the reference PRISM data, averaged across different locations where a
specific crop is grown in a county, falls within the range of multimodel
predictions more than half of the time for forecasts made one month in
advance.The forecasts forCHwere inaccuratemoreoften than those forCP.
Given that farmers still prefer using CH over CP due to their simplicity,
further research, outreach, and educational efforts to improve CH forecasts
may be warranted.

However, the predictive skill diminishes beyond the one-month
timeframe. The low skill of models to predict temperature might be

associated with their limited skill to predict precipitation considering
temperature is modified by the occurrence of precipitation18. The
low skill of dynamic models in capturing interannual variability
in precipitation may be attributed to their inadequacy in capturing
circulation anomalies independent of the El Niño–Southern Oscillation,
which accounts for only 25% of interannual variability in California’s
precipitation19.

Despite the preference for forecasts covering the entire winter season
for effective chill management, the current approach, though limited,might
serve as a valuable tool in the absence of more sophisticated alternatives,
particularly given the low skill of seasonal forecasts in predicting tempera-
tures. We have prioritized multimodel predictions over individual models,
as our results showed that no singlemodel consistently outperformedothers
across all lead time and spatial regions in California. The variations in the
performance of models to predict chill, a parameter derived from tem-
perature forecasts, across California can be attributed to a combination of
factors, including proper representation of physical processes, slowly
varying boundary conditions, initial conditions, complex topography,
vegetation dynamics, andmodels’ spatial resolution and parametrizations20.
Zhang et al.13 also found that temperature forecasts errors in models varied
across different locations in California, with inland regions demonstrating
comparatively higher accuracy than coastal areas, primarily due to inade-
quate representation of low cloudiness conditions in all the models. Addi-
tional information regarding these elements in the models is available
in https://confluence.ecmwf.int/display/CKB/Description+of+the+C3S+
seasonal+multi-system and model specific reference can be found in
Table 2.

Another important question is what the added value of this prediction
is compared to climatology. As we can see in Fig. 4, the climatology of CP
cannot tell whether there will be enough chill in the coming season, but the
model prediction can. A prediction that can inform growers, in a particular
year, that the chill amount is going tobevery low, canbeuseful. For example,
in 2015, the pistachio industry in California was hit hard by insufficient
winter chill21. By planning early and starting applications of Kaolin clay
spray on dormant pistachio trees starting from late November, Doll et al.22

were able to increase chill portionsby5–7units, resulting intohigher yield in
the orchard near CoalingaCalifornia. Jarvis-Shean23 examined the efficacies
of different chemicals including hydrogen cyanamide to advance bud break
in terminal and lateral branches in “Chandler” variety of walnut in Sacra-
mento Valley and observed that in some cases these treatments were able to
hasten bud break.

The reduction in chill accumulation is not only a problem for
California but has also been observed in other parts of the world16,24. In
the tropics, where the temperate fruits are cultivated in mountainous
areas, the declining trends in chill accumulation might cause insufficient
chill most frequently25. There are several examples of successful appli-
cation of rest breaking chemicals such as hydrogen cyanamide spray
to promote bud-break in different regions which are experiencing
insufficient chill26–28. Other chemicals, such as plant growth regulators
comprising thidiazuron29, which contribute to rest breaking and are
considered as relatively less toxic for human health. Alternatives to
chemicals include overhead irrigation systems to reduce bud temperature
through evaporative cooling30, pruning during late season31, and inducing
dormancy by artificially defoliating trees after harvest32. For new orch-
ards, selecting a combination of cultivars and rootstocks that require
lower chill33, and selecting sites with sufficient winter chill not only in
present but also in future climates are some options. While it might be
possible to substantially reduce chill requirements for some crops in
future as a result of the sustained breeding efforts (e.g. modern blueberry;
Rowland et al.34), for other temperate fruits trees developing a low-chill
variety might take extremely long due to various constraints including
cost and time commitments and lack of specific knowledge on key
genetic markers related to a specific environmental stress35.

We have predicted CH and CP, with a focus on a few specialty crops
of California, using temperature forecasts from the state-of-the-art
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Fig. 3 | Percentage of correct prediction of November-December-January-
February season total crop-specific chill sufficiency. The 1st row includes forecast
of walnut at lead times of (a) 1-month, (b) 1–4-months, (c) 2–5-months, and (d) 3-6-
months. Similarly, the 2nd row (e–h), 3rd row (i–l) 4th row (m–p), and 5th row (q–t)
contain the corresponding forecasts for pistachio, cherry, plum, and pear

respectively. The forecast was considered correct if total chill accumulation in the
forecast and actual NDJF season, estimated using the reference PRISM data, both
were in the same direction— either above or below the Chill Hours threshold of the
corresponding crops— in each year from 1993 to 2015.
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climate models available for subseasonal and seasonal predictions,
which are openly accessible. It may be possible to extend similar
approaches to other regions of the world and crops facing insufficient
winter chill. However, there are some caveats. First, the chill require-
ments of a crop determined for a given location may not be
valid elsewhere, and therefore, chill requirement of a species should
always be verified using data from a specific location36. Second, the
prediction accuracy of climate models in forecasting temperatures for the
study area must be evaluated, as their predictive performance can vary
across different regions of the world37,38. It is advisable to repeat this
analysis using daily data from climate models. If daily data demonstrate
superior predictive capabilities compared to the current approach,
adjustments to the methodology should be made, incorporating the use
of daily data.

Conclusion
This study explored the potential use of seasonal forecasts from global
dynamic climate models for predicting winter season chill before the
season starts. We found that while models differ in their skill to predict
chill, the multimodel forecasts of temperatures demonstrate the potential
to predict chill (CP or CH) one month ahead during the winter season
(NDJF). The ACC between the model-predicted and reference PRISM
chill values exceeded 0.5 for most parts of California and the Central
Valley for predictions with a one-month lead time. These forecasts
accurately identified the chill category (CP or CH) in over 50% of
instances, covering more than 40% of the Central Valley and Southern
California. The use of these forecasts extends to anticipating interannual
variations in chill (CP or CH), especially during years characterized by a
sharp decrease in chill. Notably, the forecasts demonstrated a relatively

Fig. 4 | Total crop-specific county-averaged Chill Portions during November,
December, January, and February from 1993 to 2015 in reference PRISM data
(red lines) compared to the prediction frommultimodel range (grey shadowing)
for different counties of California.Only the top 3 counties in terms of cultivation

for each crop were selected. The multimodel prediction includes the range (max-
imum andminimum) of Chill Portions from 5models predicted fromOctober (one-
month lead time).
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stronger ability to predict a crop-specific chill threshold (a single value)
compared to forecasting interannual variability. Forecasts beyond a one-
month lead time exhibited limited potential, as evidenced by decreased
ACC, diminished predictability of chill category and a weaker ability to
capture interannual variability in chill amount compared to forecasts
with a one-month lead time.

Materials and Methods
Study Area
While, the study encompassed the entire California region, our analysis
specifically targets various ecoregions within California (Fig. 6), as well as
counties where the majority of cultivation for these five crops takes place
(Fig. 7). We presented the results of chill sufficiency specific to the
location of each crop separately. To identify locations where cultivation
of these crops occurs, we used 30m CDL from the USDA-NASS for the
year 2022 (https://croplandcros.scinet.usda.gov/). For each crop, masks

were generated by aggregating the 30-meter CDL data to match the 4 km
resolution of the PRISM grid. Subsequently, chill sufficiency forecasts
were presented for these crop-specific masked regions at the 4 km
resolution of the PRISM grid.

Farmers’ survey to understand their concern regarding chill
accumulation
We extracted the information about farmers’ concern regarding decreasing
chill accumulation and its impact on the future of farming in California from
a survey conducted as a part of the United States Department of Agriculture
(USDA) National Institute of Food and Agriculture (NIFA) project17. The
survey aimed to gather insights from farmers regarding their perspectives,
experiences, and knowledge regarding the impacts and vulnerabilities of
climate change, as well as assessing their needs for tools, resources, and
extensions programs. The exact question was “To what extent are you
concerned about climate-related impacts for the future of your agricultural

Fig. 5 | Total crop-specific county-averaged Chill Hours during November, December, January, and February from 1993 to 2015 in reference PRISM data (red lines)
compared to the prediction from multimodel range (grey shadowing) for different counties of California.
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operations (select ALL that apply)?” Reduced chill accumulations were one
of the climate-related impacts. Responses were grouped intomultiple choices
Likert-type scales: Not at all concerned, Somewhat concerned, Concerned,
and Very concerned. The entire questionnaire was 39 pages. We have
provided the portion used in this article in Supplementary Table S1.

The survey was distributed through Qualtrics using 12,933 emails
purchased fromMarketID. Tomaximize participation, five reminders were
sent. Subsequently, responses underwent meticulous screening to eliminate
potential AI-generated or fraudulent submissions, employing criteria
devised by the project team. Ultimately, 341 responses from farmers were
deemed valid and included in the analysis. For this study, we extracted
information related to chill reported by farmers to better understand their
overall concerns related to chill accumulations and to translate these con-
cerns into meaningful actions.

Data and model for chill quantification
Daily maximum (Tmax) andminimum (Tmin) temperatures from reference
PRISM at a spatial resolution of 4 km are available from 1982 to 2018
(https://www.prism.oregonstate.edu/). Monthly hindcasts of temperature
were obtained from global climate models participating in NMME along
with the models which are available in the Copernicus Climate Data Store
(https://cds.climate.copernicus.eu/ #!/home). We selected the Climate
Forecasting System version 2 (CFSv2) of the National Centers for Environ-
mental Prediction (NCEP) and Canadian coupled general circulation model
version 4 (CanCM4) of the Canadian Centre for Climate Modelling and
Analysis (CCCma), as earlier assessment by ref. 13, has shown that these
systems (SPSs) have relatively better performance in predicting sub-seasonal
to seasonal temperature over the California region. Also, we used European

Center for Medium Range Weather Forecasting (ECMWF)’s SEAS5, Euro-
Mediterranean Center on Climate Change (CMCC)’s SPS version (v) 3, and
United Kingdom Met Office (UKMO)’s GloSea6-GC3.2. Table 2 describes
each model’s hindcast length, initial conditions, ensemble size, period and
model-specific reference. Further details descriptions about the atmospheric
and ocean components of these models are available in ECMWF’s
C3S seasonal multi-system (https://confluence.ecmwf.int/display/CKB/
Description+of+the+C3S+seasonal+multi-system). We used hindcasts of
monthly Tmax and Tmin from each model for the period 1993–2016 to be
consistent in time period across models. We used the ensemble average of all
members of thesemodels. In order to understand the possible use of seasonal
forecasts, our initial step involved evaluating hindcasts for the NDJF season
with a one-month lead time. This entails using hindcasts initialized at the start
of each month, such as initializing November hindcasts on the 1st of
November, December hindcasts on the 1st of December, and so forth. How-
ever, from an application standpoint, one-month lead forecasts prove to be of
limitedvalue, as theydonotprovide sufficient time forgrowers tomanagechill
requirements effectively. Consequently, we extended the assessment to
include hindcasts for the entire NDJF season, initialized from November 1st,
referred to hereafter as 1-4-month lead time. Similarly,we evaluatedhindcasts
forNDJF seasons initialized fromOctober 1st and September 1st, denoted as 2-
5-month and 3-6-month lead times, respectively.

The hindcasts from climate models are available at a spatial reso-
lution 1°x1° (~ 111 km). However, these model data at 1° x 1° resolution
lack the ability to accurately represent the temperature variations
influenced by topography, coastlines, and other meso-climatic factors.
In contrast, the reference PRISM data can capture such small-scale
variability. These small-scale variabilities in temperature are important

Table 2 | Description of the climate models used in this study

Forecasting Center System Hindcasts length Hindcasts ensemble size Hindcast period Reference

ECMWF SEAS5 215 days 51 1981–2016 Johnson et al.59

CMCC SPSv3 6 calendar months 40 1993–2016 Gualdi et al.60

UKMO GloSea6-GC3.2 215 days 28 1993–2016 MacLachlan et al.61; Williams et al.62

NCEP CFSv2 215 days 28 1993–2016 Saha et al.63

CCCma CanCM4 214 days 10 1993–2020 Merryfield et al.64

Table1 | Total crop-county-specificChill Portions (Hours) in referenceCPo (CHo), inmultimodel 1-month leadCP1 (CH1) and1–4-
month lead CP1-4 (CH1-4) along with correlation coefficients between reference andmultimodel 1-month lead r1P (r1H) and 1-4-
month lead r1-4P (r1-4H)

Crop County CPo CP1 CP1-4 r1P r1-4P CHo CH1 CH1-4 r1H r1-4H

Pista Kern 64 63 63 0.79 0.54 968 1043 1054 0.69 0.48

Pista Fresno 69 67 67 0.67 0.52 1015 1112 1120 0.59 0.43

Pista Tulare 65 63 63 0.78 0.52 950 1017 1025 0.65 0.41

Walnut San Joaquin 71 69 69 0.58 0.48 964 1104 1106 0.62 0.45

Walnut Butte 73 70 70 0.54 0.44 1018 1132 1130 0.66 0.55

Walnut Sutter 72 70 70 0.5 0.41 942 1090 1088 0.47 0.33

Plum Sutter 72 70 70 0.5 0.41 942 1090 1088 0.47 0.33

Plum Tulare 65 62 63 0.75 0.49 960 1024 1029 0.62 0.37

Plum Fresno 69 67 67 0.67 0.52 1017 1116 1124 0.58 0.42

Pear Sacramento 71 69 69 0.54 0.42 932 1091 1097 0.56 0.39

Pear Lake 76 73 73 0.41 0.21 1318 1330 1328 0.66 0.41

Pear Mendocino 75 72 72 0.49 0.25 1230 1292 1305 0.72 0.5

Cherry San Joaquin 71 69 69 0.57 0.48 963 1104 1106 0.62 0.44

Cherry Kern 65 63 63 0.78 0.54 963 1040 1050 0.7 0.5

Cherry Stanislaus 70 68 68 0.6 0.49 972 1101 1109 0.64 0.51

The underlined Pearson correlation coefficients are significant at a significance level of 5%.
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for realistic prediction of winter chill. We wanted to predict seasonal
anomaly of chill by using monthly hindcasts from models and daily
climatology of the reference PRISMdata.We used PRISMdata to ensure
preservation of the small-scale temperature variability embedded in the
PRISM data. Various previous studies39–41 have used similar approaches.
This approach is pragmatic because accessing and processing daily
hindcasts from these models would require relatively more computa-
tional resources. To compute CH or CP, we needed hourly temperature
data, which was derived from daily Tmax and Tmin. First, we downscaled

models’ monthly Tmax and Tmin to their daily values by using PRISM’s
daily climatology of Tmax and Tmin along with the models’ monthly
temperature anomalies using the following equation.

Tmax ¼ TmaxðobDclÞ þ T1
mx ðmdMÞ�σmdMTmx=σObMTmx

Tmin ¼ TminðobDclÞ þ T1
minðmdMÞ�σmdMTmin=σObMTmin

Fig. 7 | Cultivation locations for specific crops in California. This figure displays the geographic distribution of (a) walnut, (b) pistachio, (c) cherry, (d) plum, and (e)
pear cultivation across California, with colored areas representing the regions where each crop is grown.

Fig. 6 | Map of California counties along with the
ecoregions. The county boundaries are represented
by thin black lines, while the ecoregion boundaries
are indicated by thick blue lines. The numbers on the
map correspond to each county, with the county
names listed alongside their respective numbers
(ID) in the legend.
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Where Tmax and Tmin are the daily maximum and minimum temperatures
respectively from amodel. Tmax (obDcl) andTmin (obDCl) are daily climatology
ofTmax andTmin fromreferencePRISMdata.T1

mx (mdM) andT
1
min (mdM) are

monthly anomalies of Tmax and Tmin from a model. σmdMTmx, σmdMTmin,

σObMTmx and σObMTmin are the monthly standard deviations of Tmax and
Tmin from a model and reference data respectively.

The daily climatology of Tmax and Tmin in the reference PRISM data
were derived by simple averaging of their daily values for each day from
1993 to 2016. Monthly anomalies of Tmax and Tmin were computed by
subtracting the climatological average from the monthly hindcasts. Simi-
larly, the standard deviations of Tmax and Tmin in both models and obser-
vations were computed from their respective monthly values in the models
and reference data.

This method produces Tmax and Tmin hindcasts of a model at a daily
frequency at a spatial resolution of the PRISMdata, 4 km for each lead time.
Thus, within each grid of hindcasts, there were many grids of PRISM. We
transformed hindcasts from models to 4 km grid by repeating the value
present in 4 kmgrid. To calculate chill hours andportions, temperature data
needs tobe in anhourly time step.Thehourly temperaturewasderived from
the daily Tmax andTmin, latitude, sunrise and sunset hours using a sine curve
for the daytime warming and a logarithmic function for nighttime cooling,
using the ChillR package developed by Luedeling et al.42.

Approaches to quantify chill
One chill unit is defined as anhour of exposure to the optimum temperature
required tomeet the chilling requirement of a species or cultivar43. The total
chilling requirement for a species is defined as the number of hours of
exposure to a specified temperature range, which may vary depending on
species and cultivars44,45. Consequently, the chill models used for calculating
chill accumulation need different temperature ranges, where accumulation
is negative or zero above below certain specified limits43,46,47. In California,
growers commonly use the Chilling Hours Model48,49. However, an
increasing number of them have begun to embrace CP using the Dynamic
Model16,50,51.

In this study, Chill Hours were calculated using the Chilling Hours
model48,49 by accumulating number of hours within the temperature range
of 0–7.2 °C and discarding the rest. Themodel treats all temperature ranges
equally. We used the ‘Chilling_Hours’ function from the ChillR package to
compute Chill Hours. On the other hand, Chill Portions were computed
using the ‘Dynamic_Model’ function in the ChillR package. The
Dynamic Model computes CP in a two-step process: initially, cold tem-
peratures result in the formation of an intermediate product, which can
either be destroyed by subsequent warm temperatures or augmented by
moderate temperatures52. Once a specific amount of this intermediate
product has amassed, it is irreversibly stored as a CP, impervious to sub-
sequent temperatures. It needs hourly temperature in degree Celsius
between two time periods as an input and uses experimentally derived
constants in an exponential equation to obtain cumulative CP over the
entire duration. The Dynamic Model is deemed particularly suitable for a
warming climate such as in California16. This is due to its incorporation of
the mechanism for negating chilling effects by high temperatures, a phe-
nomenon extensively documented in controlled chilling experiments53–55,
alongwith its consideration of the impact ofmoderate temperatures on chill
accumulation56.

Although, CP quantifies chill more accurately than CH under Cali-
fornia conditions, we used both CP and CH because large portions of
growers in California still use CH because of its simplicity. We computed
CH and CP for the NDJF season from different lead times using reference
PRISM data and hindcasts from models for the period 1993–2015. Chill
computation of 2016 was not possible, given that we needed January and
February data of next year, 2017, which were not available in our dataset.

Evaluation of chill forecasts
We evaluated the skill of individual models, along with the multimodel
average, to predict CH and CP from different lead months. Rather than

using individual ensemblemembers from thehindcasts,we used the average
of all members, assuming equal probability for each ensemble member
within the model. Subsequently, we determined the multimodel average by
assigning equal weight to each model .

We used the ACC between NDJF seasonal anomalies of these indices
for each year and same from the reference data. The NDJF seasonal
anomalies were derived from the actual values of these indices by sub-
tracting their respective climatology.We computed statistical significance of
this correlation using the Pearson method.

Apart from these deterministic predictions, we also evalua-
ted the potential of chill forecasts in the form of categories. To exam-
ine the potential of categorical chill prediction, we categorized each
year from 1993 to 2015 into above normal, normal, and below normal
chill year depending on the values of the standardized anomaly of the
accumulated CP or CH in reference PRISM data and the models,
separately.

The standardized anomalies of accumulatedCHorCPwere computed
separately for NDJF season by subtracting the climatology from the actual
chill of the season and dividing by the interannual standard deviation.
Yearswith above average chill accumulation (standardizedCHorCP> 0.5),
were categorized as above-normal chill years. Similarly, years with below
average chill accumulation (standardizedCHorCP <−0.5)were defined as
below-normal chill years, while years with chill accumulation within
the standardized chill accumulation (−0.5 to 0.5) were considered as
normal years.

Thus, each year was categorized as above-normal, normal, and
below-normal years in terms of chill accumulation based on CH and CP
in both reference (PRISM data) and in the models. We calculated
the percentage of correct forecast by counting number of years in which
the model's predicted chill categories matched the reference chill cate-
gories out of the total years. Forecasts were considered useful only if they
were correct more than half (50%) of times, otherwise it would cause
more harm than good.

Each crop differs in terms of its chill requirement. For example, the
amounts of CH (CP) required for satisfactory growth of walnut, pistachio,
plum, pear and cherry are approximately 700 (38–54), 1000 (36–65), 900,
1350, 1200 (30–70) respectively11,57.

Nut yields increase exponentially by the increase in chill accumulation
until these thresholds are reached, after which yields remain unaffected by
the further increase in chill accumulation58. We examined models’ skill to
predict crop-specific chill sufficiency, in a specific year, for these five spe-
cialty crops as they require relatively higher amounts of chill compared to
other crops.

A model’s forecast was considered correct if the model was able to
predict NDJF season total chill accumulation above (below) a crop-specific
threshold in a specific year if the actual chill accumulated in that particular
year, estimated using the reference PRISM data, was indeed above (below)
the threshold of that crop.We used crop-specificCH for this purpose, as CP
threshold for allfive cropswasnot available.We calculated the percentage of
correct forecast out of total forecasts. Given that each crop requires different
chill thresholds, we repeated this analysis for each crop separately.

We compared the NDJF season total chill (CP and CH) in reference
PRISM data during 1993–2015 with the model-predicted chill at various
lead times for top three counties in California in terms of cultivation of
walnut, pistachio, plum, pear and cherry. The selection of these top three
countieswas based ondata from the 30mCroplandData Layer (CDL) from
the National Agricultural Statistics Service (NASS) of the U.S. Department
of Agriculture (USDA-NASS) for the year 2022 (https://croplandcros.
scinet.usda.gov/).

It is important to highlight that, we aggregated November-December
(ND) forecasts of a givenyearwith the January-February (JF) forecastsof the
next year. As a result, theCPorCH for 1993 comprised theNDforecasts for
1993 along with the JF forecasts for 1994, and so on. Accordingly, the CP or
CH forecasts for 2015 encompassed theND forecasts of 2015 alongwith the
JF forecasts of 2016. The county-specific chill for each crop was computed
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by averaging chill across all points within a county where the crop is grown.
Subsequently, we computed correlation between observed and predicted
county-averaged chill for each crop.

Data availability
All data used in this study are available online. PRISM data are publicly
available at: https://www.prism.oregonstate.edu/. Monthly hindcasts of
temperature from NCEP CFSv2, ECMWF’s SEAS5, CMCC’s SPSv3,
UKMO’s GloSea6-GC3.2 are publicly available at the Copernicus Climate
Data Store (https://cds.climate.copernicus.eu/#!/home). We obtained
CanCM4’s hindcasts from the International Research Institute for Climate
and Society (IRI) available at http://iridl.ldeo.columbia.edu/SOURCES/.
Models/.NMME/, since it was not available in the Climate Data Store
of ECMWF.

Code availability
The data in this study were analyzed using publicly available libraries in the
Rprogramming languages.Allfigureswere createdby the authorsusingRas
well, except Fig. 6 which was produced using ArcMap. Scripts are available
upon requests.
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