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Giovanni Fasano

Abstract We study the role of the recently introduced infinite number
grossone, to deal with two renowned Krylov-subspace methods for symmet-
ric (possibly indefinite) linear systems. We preliminarily explore the relation-
ship between the Conjugate Gradient (CG) method and the Lanczos process,
along with their specific role of yielding tridiagonal matrices which retain
large information on the original linear system matrix. Then, we show that on
one hand there is not immediate evidence of an advantage from embedding
grossone within the Lanczos process. On the other hand, coupling the CG
with grossone shows clear theoretical improvements. Furthermore, refor-
mulating the CG iteration through a grossone-based framework allows to
encompass also a certain number of Krylov-subspace methods relying on
conjugacy among vectors. The last generalization remarkably justifies the
use of a grossone-based reformulation of the CG to solve also indefinite
linear systems. Finally, pairing the CG with the algebra of grossone easily
provides relevant geometric properties of quadratic hypersurfaces.

1 Introduction

We consider the iterative solution of indefinite linear systems by Krylov-
subspace methods. After a preliminary analysis, where a couple of renowned
methods are briefly detailed and compared, we directly focus on those algo-
rithms based on the generation of conjugate vectors, and we disregard those
methods which rely on generating Lanczos vectors.
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More specifically, we analyze the behaviour of the Conjugate Gradient
(CG) method in case of degeneracy, since it yields relevant implications when
solving symmetric linear systems within Nonconvex Optimization problems.
In this regard, the current literature on Krylov-subspace methods (see e.g.
[27]) reports plenty of applications in nonlinear programming, where the CG
is used and it can possibly prematurely halt on the solution of indefinite linear
systems (e.g. Newton’s equation for nonconvex problems).

We recall that the CG iteratively computes the sequence {x;}, where x;
approximates at step k the solution of the symmetric linear system Ax = b,
being A € R"*". The stopping rule of the CG is based on a Ritz-Galerkin
condition, i.e. the norm of the current residual r; = b — Ax; is checked, in
order to evaluate the quality of the current approximate solution xj. Unex-
pectedly, the unfortunate choice of the initial iterate x; may cause a premature
undesired stop of the CG on specific indefinite linear systems. As well known,
the last drawback may have a direct dramatic impact on optimization frame-
works: a so called gradient-related direction cannot be computed and possibly
inefficient arrangements need to be considered. When a premature stop of
the CG occurs it corresponds to an unexpected numerical failure: namely a
division by a small quantity is involved. This situation is usually addressed
in the literature as a pivot breakdown, and corresponds to the fact that the
steplength along the current search direction selected by the CG tends to
be unbounded. As a consequence, the CG stops beforehand and the current
iterate x; may be far from a solution of the linear system (i.e. the quantity
|l7% || might be significantly nonzero).

This paper specifically addresses the pivot breakdown of the CG, from

a perspective suggested by the recent introduction of the numeral grossone
[37]. We urge to remark that a comprehensive description of the grossone-
based methodology can be found in [42], and it should be stressed that it is
not formally related to non-standard analysis (see [43]).
Our perspective is definitely unusual for the CG, since the literature of the
last decades has mainly focused on its performance and stability, rather than
on the way to recover its iteration in the indefinite case. Nevertheless, we are
convinced that a proper investigation of the ultimate reasons of CG degener-
acy might pursue a couple of essential tasks:

e to recover the degeneracy and provide gradient-related directions within
optimization frameworks;

e to generate negative curvature directions, that allow convergence of opti-
mization methods to solutions satisfying second order necessary optimality
conditions.

As regards the organization of the paper, in Sect. 2 we detail similarities
and dissimilarities of two well known Krylov-subspace methods: namely
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the CG and the Lanczos process. In Sect. 3 we describe one of the main
conclusions in the current paper, i.e. the use of grossone with the CG can
help overcoming problems of degeneracy in the indefinite case. Section 4
contains details on the second relevant contribution of this paper, namely the
use of grossone for the iterative computation of negative curvature directions
in large scale (unconstrained) optimization frameworks, where the objective
function is twice continuously differentiable. Finally, a section of conclusions
will complete the paper.

As regards the symbols adopted in the paper, we use R” to represent the set
of the real p-vectors, while for the sake of simplicity ||x|| is used to indicate
the Euclidean norm of the vector x, in place of ||x ||». Given the n-real vectors x
and y, with x” y we indicate their standard inner product in R". The symbol
f € C*(A) indicates that the function f is £ times continuously differen-
tiable on the set 4. The symbol B > 0 (respectively B > 0) indicates that
the square matrix B is positive definite (respectively semidefinite). Finally,
Ay (A) (respectively A, (A)) represents the largest (respectively smallest)
eigenvalue of the square matrix A.

2 The CG Method and the Lanczos Process for Matrix
Tridiagonalization

Let us consider the solution of the symmetric linear system
Ax=b, AeR"™", ey

where the matrix A is possibly indefinite and nonsingular. As longas A in (1)
is positive definite, the CG method [26] iteratively provides a tridiagonaliza-
tion of it (see also [22]). A general description of the CG method for solving
(1) is reported in Table 1 [25], where ry11 = b — Axgy1 and the sequences
{r;} and {p;} are such that after £ 4 1 iterations:

rl.Trj = 0, iZj<k+1, (orthogonality among {r;}),

riij:()’ ]<l§k+1,
piTApj =0, i#j<k+1, (conjugacy among {p;}).

Assume that after m steps the CG stops and r,;, 41 = 0 (i.e. a solution to the
linear system (1) is found), then setting
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Table 1 The CG method for solving (1) when A > 0

The Conjugate Gradient (CG) method
Stepl: k=1, x1eR", ri=b-Ax;, pP1=ri.
Step k: If ri =0 then STOP, else
T pi
Xk+1 = Xk + Ok, Ok = pf:;]u’
Tksl = Tk — Ok Apk, ,
v A 12
Pk+l = Tial + Bi P, Br = - l’;;%'A::: = Hﬂ’r‘khlzl ,
k «— k +1 repeat Step k.
End if
ry r,
Rm:(_... m ) e RV,
el el
1
Py = (P_ P ) < R,
(o I
along with
1 0
L. = Y /31 T e R"Xm
m — ’
0 vV Bm—11
and X
m 0
Dm — : c Rm><m’
1
0 O

after an easy computation we have from (2)—(5)
PuLl =R,
AP, =R, LDy,
APyLl = RyLyDyLl — AR, = R,TSC,

being Tnf C=1Ln Dy LI € R™™ the symmetric tridiagonal matrix
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Remark 1 Relation (8) underlies a three-term recurrence among the resid-
uals {r;}, being

A ||ri|| € span{ri—y,ri,rix1}, i €{l,....m}. (10)
ri

2.1 Basics on the Lanczos Process

Similarly to the previous section, let us now consider the Lanczos process
which is reported in Table 2. Unlike the CG method, it was initially conceived
to iteratively solve a symmetric eigenvalue problem in the indefinite case [29],
so that after m steps it allows to reduce (8) into relation

AQm = OnTE, (11)

where A is the matrix in (1), @, = (g1 - - - gm) and THI; is again a tridiagonal
matrix, such that (Sturm sequence of tridiagonal matrices)

dm (A) < (T,,%) < (T,,’;_l) <. <im (T,,’;_l) < Au (T,,%) < (A).

Moreover, coupling the Lanczos process with a suitable factorization of the
matrix Tnf, the iterative solution of (1) can be pursued.

Indeed, given a symmetric indefinite matrix A, after m > 1 steps the Lanc-
zos process similarly to (2) generates the directions (the Lanczos vectors)
q1, - - -, qm satisfying the orthogonality properties

qlq; =0, i#j<m.

In particular at step k < m of the iterative procedure, the basis {q1, . .., g} for
the Krylov subspace K (g1, A) = span{q1, Aq1, ..., Ak_lql} is generated.
Then, as for the CG, the Lanczos process provides a basis of K (g1, A) which
is used to solve the problem
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Table 2 The Lanczos process for the tridiagonalization of (1), when A is possibly indef-
inite

The Lanczos process

Stepl: k=0, vp=b eR", qo=0, & = |b].
Step k: If 6 =0 then STOP, else
Vi

- Yk
qk+1 = o
k—k+1,
ar = q Aqx,
Vi = (A= arl)qk — Ok-19k-1,
Ok = |lvells
repeat Step k.
End if

min  ||Ax — D|.
xeKr(q1,4A)

Hence, since
dim [K1(q1, A)] < dim [Ka(g1, A)] < -+,

in at most » iterations of the CG or the Lanczos process a sufficient informa-
tion is available to compute the solution of (1).

Similarly to the CG (see (8)), in case at step m of the Lanczos process we
have g, 11 =0 (.e. K, (g1, A) = Kyr1(q1, A)), then relation (11) holds,
where T,k € R™*™ is the tridiagonal matrix

a1 61 0
S . .
L 1
I, = o ;
5m—1
0 Sm—1 Oy

and a conclusion similar to (10) holds, replacing R, by Q,, and TS by TE.
Moreover, at step kK > 1 of the Lanczos process we also have

Tk = 0f AQy,

so that in case the Lanczos process performs n steps, the square matrix Q,
turns to be orthogonal and its columns span R”.

On the other hand, since A is nonsingular the problem (1) is equivalent to
compute the stationary point of the quadratic functional
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1 T T
q(x) = Ex Ax — b x, (12)

and the Lanczos method can be a natural candidate for its solution, too.
Indeed, if the Lanczos process stops at step m (i.e. &,, = 0), then replacing
x = Quz, with z € R™, into (12) and recalling that g; = b/||b||, we obtain:

V(@) = QpAQuz— Qub = Tyz—|blle.
Hence, if the solution z* of the tridiagonal system
Tyz—lbllet = 0, zeR", (13)

is available, the point x* = Q,,z* is both a solution of the original system
(1) and a stationary point of (12) over the Krylov subspace K, (b, A) =

span{qi, ..., qm}-

2.2 How the CG and the Lanczos Process Compare: A Path
to Degeneracy

We urge to give some considerations about the comparison between the CG
and the Lanczos process, in the light of possibly introducing the issue of
degeneracy for both these algorithms:

e the Lanczos process properly does not solve the linear system (1); it rather
reformulates (1) into the tridiagonal one (13). This means that some further
calculations are necessary (i.e. a factorization for the matrix Tnf ) in order
to give the explicit solution of (13) and then backtracking to a solution of
(1). The CG (similarly for the CG-based methods in [14—16, 18] — see the
next sections) does not require the last two-step solution scheme, inasmuch
as at step k it at once decomposes the matrix TkCG and computes xj41 as

X € argmin Ax — bl};
k1 € argmin {Il I}

e since the solution z* of (13) yields the solution x* = Q,,z* of (1), for the
Lanczos process we apparently need to store the matrix Q,,, in order to
calculate x*. However, in case we are just interested about computing the
solution x*, the storage of Q,, can be avoided (see e.g. [27], the algorithm
SYMMLAQ [35] and the algorithm SYMMBK [3]), by means of a suitable
recursion. On the other hand, in case the Lanczos process were also asked to
provide information on negative curvature directions associated with g (x)
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in (12), at x*, then the storage of the full rank matrix Q,, seems mandatory
(see also [30]) or an additional computational effort is required (see the
more recent paper [6]). Both the CG and the CG-based schemes reported
in this paper avoid the last additional effort. Hence, our great interest for
specifically pairing grossone with conjugacy.

We also recall that the tridiagonal matrices Tnf G and THI; are obtained in a
similar fashion, by the CG and the Lanczos process, respectively. However,
in general neither in case A > 0 nor in the indefinite case they coincide,
as extensively motivated in the paper [17]. Furthermore, the CG explicitly
performs the Cholesky-like factorization T,X¢ = L,, D,, LT of TS in (8),
in order to solve the linear system (1). The last matrix decomposition always
exists when A > 0; conversely, if A is indefinite this decomposition exists if
and only if no pivot breakdown occurs, i.e. none of the diagonal entries of
D, is near zero (which causes a premature stop of the CG).

On the contrary, if the Lanczos process is applied it cannot stop beforehand
also when A is indefinite, because it does rely on any matrix factorization of
Tnf, meaning that no pivot breakdown can occur (see also [35]). Therefore,
the application of the Lanczos process is well-posed in the indefinite case,
too. In the next sections we show that the last conclusion motivates the use of
grossone to handle pivot breakdown for the CG. Conversely, no immediate
application of grossone algebra for the Lanczos process seems advisable,
inasmuch as no breakdown opportunity can take place.

3 Coupling the CG with Grossone: A Marriage
of Interest

Here we motivate the importance of pairing the CG with grossone, in case
the system matrix A in (1) is indefinite. We first give a geometric viewpoint
of the CG degeneracy (see the next section), then we detail how to recover
the last degeneracy using grossone: this yields a general framework, that is
used to describe the issue of degeneracy also for several CG-based methods,
as detailed in [12].

3.1 The Geometry Behind CG Degeneracy

When the CG is applied to solve (1), with A indefinite, by Sect. 2.2 a possible
degenerate or nearly degenerate situation may occur, namely ka Api =~ 0,
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with pr # 0. This implies a couple of results we report here, that will be
suitably reinterpreted in the next sections from an alternative standpoint,
using grossone.

Observe that when A is positive definite, at any Step k of the CG we
have 0 < A, (A)| px > < kaApk, so that kaApk is suitably bounded from
below. Conversely, in case A is indefinite (nonsingular), a similar bound does
not hold and possibly we might have ka Apy = 0, for a nonzero vector py.
Furthermore, in order to better analyze the (near) degenerate case, when A
is indefinite nonsingular and at Step k£ we have |ka Apirl = exllprll?, ex > 0,
with || pill, | px+11] < 400, then (see also [15]) the angle o x+1 between the
vectors pi and py41 satisfies

T ( £k ) < | < T n ( £k ) (14)
— —arccos | ———— | < |k k+1| < = + arccos .
2 Aa(A)] =7 A (A)]

The two side inequality (14) suggests that p; and py4+; may not become
parallel as long as the constant value ¢ is sufficiently bounded away from
zero. Conversely when pj and py41 tend to be parallel, it implies from (14)
that g4 is approaching zero. As special cases, we report in Figs. 1 and 2 the
geometry of the directions when A > 0 (Fig. 1) and A is indefinite (Fig. 2),
respectively. In Fig. 1, when the eccentricity of the ellipse increases, then a
(near) degeneracy may occur, butsince A > 0no degeneracy can be observed,
i.e. px and py41 cannot become parallel. On the contrary, in Fig. 2 we have A
indefinite, so that at Step k of the CG we can experience a degeneracy, with
p kT Api = 0and apremature CG halt. Equivalently, the point x4 approaches
a point at infinity and the norm of || px+1| becomes unbounded; moreover
(see [12]), px and pg41 tend to become parallel.

3.2 A New Perspective for CG Degeneracy Using Grossone

This section details how the recently defined extension of real numbers based
on grossone (see e.g. [1, 7, 21, 28, 32, 36-41, 45], along with the related
applications in optimization frameworks [2, 4, 5, 8—12, 23]), can be suitably
used to model the CG degeneracy. In particular, we show that:

e adopting grossone algebra within the CG allows to recover the CG degen-
eracy in the indefinite case;

e coupling the CG with grossone provides results which exactly match the
analysis carried on for the CG-based methods in [14, 31];
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Pk

Fig. 1 The geometry behind the conjugate directions pg and pg4i: when A > 0 in (1)
then without loss of generality in (14) we have g > A,,(A) > 0

e our approach confirms the geometry behind CG degeneracy in the indefinite
case, as underlined by polarity for quadratic hypersurfaces (see also Fig. 2
and [18]).

On this purpose, let us consider the computation of the steplength 6; at Step
k of Table 1. Then, we set
pi Ap = s, (15)

where

o s= 0@ ifthe Step k is anon-degenerate CG step (i.e. if ka Apx # 0),
e s = O(®?) if the Step k is a degenerate CG step (i.e. if kaApk =0).

In the last setting, following the standard Landau-Lifsitz notation we indicate
with the symbol O (@~?) aterm containing powers of © at most equal to —2.
Observe that in the last case, standard results for grossone imply that the finite
part of ka Apy equals zero (or equivalently ka Apy is infinitesimal). To large
extent, the grossone-based expression on the righthand side of (15) can be
further generalized; nevertheless, the setting (15) both seems simple enough
and adequate to prove that the axioms and the basic algebra of grossone are
well-suited to detail the behaviour of the CG, in the degenerate case.
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Fig. 2 The geometry of conjugate directions with A indefinite nonsingular in (1): since
| p,{ Apy| is sufficiently bounded away from zero then p; and pp4; are conjugate and

do not tend to become parallel. Conversely, when ka Api = 0 then py and pr4 tend to
become parallel

In particular, a remarkable aspect of our approach is that using grossone
to cope with CG degeneracy does not require to alter the scheme in Table 1,
which is therefore almost faithfully applied ‘as is’. This represents an
undoubted advantage with respect to the CG-based methods (namely pla-
nar methods) in [14-16, 25, 31], that indeed need to suitably rearrange the
CQG iteration in order to dodge degeneracy. The consequence of introducing
grossone in Table 1 is analyzed in the next Sect. 3.3, where in case of CG
degeneracy at Step k, the expressions of the coefficients and vectors at Step
k explicitly depend on @ and its powers.

3.3 Grossone for the Degenerate Step k of the CG

From Table 1, the position (15) and the properties of the CG, when A is
indefinite and the Step k is degenerate we have
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lIrel?
Tkl =Tk — Ok Apr = rg — Apk, (16)
s@
so that after a few arrangements (see [12])
[l llrell* | Apx I
=r + = —B_ 1 — Apy + ——m————
Pk+1 = Tk41 + PPk = —Br—1Pk—1 D APk 207

17
We highlight that the CG degeneracy implies s@ to be infinitesimal, so that
| Pk+1]l tends to be unbounded. The last result matches the geometric perspec-
tive reported in Sect. 3.1. Then, from (17) and the orthogonality/conjugacy
conditions among vectors generated by the CG we can also infer

rlrj=0, plAp; =0, Vi £ j,
along with
4 4 4
T Il T P ITA el
Pii1ADPk+1 = 202 (Apr)” A(Api) O +0(@), (18)

(we recall that O (®) in (18) sums up powers of @ equal to 41 and 0), and

eIl A pil®

202 (19)

T 2
Fep1Pk+1 = —[Irell” +

From (16), (18)—(19) and recalling that when ka Apy is infinitesimal so does
s@, we obtain after some computation

Il ) ca Y4 0@ ). (0
AL (Pk)_ﬁk—lm Pk-1+ 0(@77).  (20)

A noteworthy consequence of (16)—(17) and (20) is that in practice

Tk+2 =Tk —

e ri,...,rare independent of @,
e rr+1 and pg41 heavily depend on @,
e 142 is independent of negative powers of s@.

Thus, the geometric drawback detailed in Sect. 3.1, i.e. the CG degeneracy
in the indefinite case, can be bypassed by exploiting the simple grossone
algebra and neglecting the (infinitesimal) term with s® in (20). This leaves
the steps in the CG scheme of Table 1 fully unchanged.

Similarly, as regards the computation of the search direction py2, by (16),
(17) and (20) we have after some arrangements
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el Iresall? @ »
A(A —p — B ———Api_ [0J(®) .
NApp A AP T T P T e e F (;) )

Thus, similarly to rg3, in case of CG degeneracy also py.2 is independent
of negative powers of @ (i.e. equivalently || pr12|| < +00, so that grossone
algebra is able to bypass the degeneracy, recovering the CG iteration). After
some computations it is also not difficult to verify that the vectors r¢+1, px+1,
rk+2, Pk+2 in (16), (17), (20) and (21) satisfy the standard CG properties

Pk+2 =Tk —

rkT+2r,~:0, i=1,...,k+1,
(22)
kaHApi:O, i=1,...,k+1.

An additional remarkable comment from (21) is that, neglecting the terms

which contain powers of s@ larger or equal to 1 (i.e. neglecting infinitesi-
mals in (21)), the vector py1, coincides with the one obtained in Algorithm
CG_Plan of [14] (a similar result holds considering the algorithm by Luen-
berger in [31], too). Therefore, the use of grossone to cope with a CG degen-
eracy at Step k does not simply recover the theory and the results in [14,
31], but it also retrieves the same scaling of the generated search directions,
which is a so relevant issue for large scale problems.
Also note that the expression of pry1 in (17) explicitly includes negative
powers of s@, showing that to large extent it can be assimilated to a vector
with an unbounded norm, in accordance with Fig. 2, where xj1 is a point at
infinity.

Now, let us compute the iterate x;4,, to verify to which extent using
grossone may recover the CG iteration in case of degeneracy at Step k. By
Table 1 and [12], and using

Xk+2 = Xk + Ok pk + Ok1 Prt

we obtain the final expression

Il o — lI7sl?
I Apxll? I Apicll*

which perfectly matches the expression of xx4> computed in [14, 31], as
long as 0@ Yyis neglected. Therefore, in case of CG degeneracy at Step k,
using grossone does not simply recover the residuals and search directions as
in (22), butit also recovers the iterate xi 2, since itis independent of grossone.
Table 3 gives a formal description of CG), i.e. the CG method where @ is

ApTAAp) P + 0(@7h), (23)

Xk42 = Xk +
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Table3 The CGg) algorithm for solving the symmetric indefinite linear system Ax = b.
In a practical implementation of Step k of CG), the test ka Api # 0 may be replaced
by the inequality |kaAp/<| > 8/<||p/<||2, with g > 0 small

CG: the CG method coupled with grossone

Data: Setk=1,x; €R", ri=b—-Ax|, s =0(D7?).
If |1 || = O, then STOP. Else, set p; = ry.
Step k: If || pi || is finite (bounded) and p{Apk # 0 then compute
ar = 1] pr/pL APk, Xis1 = Xk + QrPrs Tiet = Tk — QLAPE.
If |41 || = 0, then STOP.
Elseif || pi || is finite (bounded) set pf Apy = s@ and compute
rest = 1= |Ire |2/ (s©) Apy.
Else compute @ = r| px/pi Apk.
Xk+l = Xk + Qi Pk, Thel =Tk — A APk
If the finite part of ry satisfies ||rx+1 ]| = O, then STOP.
Endif
Set B =—rr Api/pLApk = llrca P/ 7k 1%, and
Pk+l =Tl +Prprs k=k+ 1.
Go to Step k.

introduced in case of degeneracy, while Proposition 1 summarizes the results
in the current section.

Proposition 1 Let be given the indefinite linear system Ax = b, with A €
R"*" and n large. Suppose the CGgy method in Table 3 is applied for its
solution, using the position (15). In case at Step k < n the quantity | ka Apil
is bounded away from zero, then the vectors generated by CGg) exactly
preserve the same properties of the corresponding vectors generated by the
CG method in Table 1. Conversely, in case at Step k we have ka Apir =0,
then the vectors xi42 in (23) and py2 in (21) computed by the CGg differ
by infinitesimals from the corresponding vectors computed by the CG_Plan
in [14] (or by the algorithm in [31]).

4 Large Scale (unconstrained) Optimization Problems:
The Need of Negative Curvatures

The solution of indefinite linear systems like (1) is almost ubiquitous in both
constrained and unconstrained optimization frameworks. E.g. the iterative
solution of the following problem
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min f(x), 24)
xeR”

where f is twice continuously differentiable and » is large, requires in a
unified framework (i) to solve the associated Newton’s equation (first order
methods)

V2f(xj)s ==V fix)), (25)

and (ii) to identify those minima among the stationary points (second order
methods — see also [6]). The task (ii) is often accomplished by selecting
promising negative curvature directions for the function f at the current
iterate x ;. In particular, for the sake of clarity here we restrict our attention to
the Truncated Newton methods, that represent an efficient class of iterative
methods to solve (24). Among them, the second order methods often rely
on the theory in the seminal papers [33, 34], in order to assess algorithms
generating negative curvature directions and converging to solutions where
the Hessian matrix is positive semidefinite.

4.1 A Theoretical Path to the Assessment of Negative
Curvature Directions

On the guidelines of the previous section, and with reference to [34], a
sequence {d;} of effective negative curvature directions can be generated
in accordance with the following assumption.

Assumption 1 Let us consider the optimization problem (24), with f €
C?(R"); the nonascent directions in the sequence {d;} are bounded and sat-
isfy (see also [30])

(@) Vf(x)Td; <0, dijzf(xj)dj <0,

(b) if limj oo d] V? f(x;)d; = 0 then lim oo min {0, Ay [V>f(x))]} =
0. O

In practice, (a) in Assumption I claims that at x; the nonascent vector
d; cannot be a positive curvature direction for f. Conversely, condition (b)
prevents the asymptotic convergence of the iterative algorithm to a region of
concavity for the objective function. Evidently, on convex problems eventu-
ally the solutions of (24) both fulfill Newton’s equation and satisfy second
order stationarity conditions, without requiring the computation of negative
curvature directions.

We remark that even in case the current iterate x; is far from a station-
ary point, the use of the negative curvature direction d; may considerably
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enhance efficiency in Truncated Newton methods. The latter fact was clearly
evidenced in [19, 24, 30], and follows by considering at x; the quadratic
expansion along the vector d

1
qj(d) = fOc)) +VfxpTd+5d"Vf(x)d,
which implies for the directional derivative of g (d)
Vg @)'d=Vfx)Td+d"Vfx))d.

Thus, Vg ; (d)T d may strongly decrease both when d is of descent for f at
x;j and is a negative curvature direction for f at x;.

On large scale problems, we highlight that computing effective negative
curvature directions for f* at x;, fulfilling Assumption 1, is a challenging
issue, but it may become an easier task as long as proper factorizations
of V2 f(x j) are available. Indeed, suppose at x; the nonsingular matrices
M; e R"*k and Cj,0;,B; € RF*K are available such that

MIV f(x))M;=Cj, Cj=Q;B;0". (26)

Then, for y € R* and assuming that w € R¥ is an eigenvector of B j associated
with the negative eigenvalue A < 0, relations (26) yield

M) V2 F My = ¥T [MIVEFapM; ]y = 5T Cy
= (@I B;j(Qfy) = w'Bjw = Aw|* < 0,

so that d; = My represents a negative curvature direction for f at x;. Fur-
thermore, if A is the smallest negative eigenvalue of B;, then My also rep-
resents an eigenvector of V2 f (x ;) associated to it.

The most renowned Krylov-subspace methods for symmetric indefinite
linear systems (i.e. SYMMLQ, SYMMBK, CG, Planar-CG methods [15—
17]) are all able to provide the factorizations (26) (i.e. they fulfill item (a)
in Assumption 1) when applied to Newton’s equation at x;. Nevertheless,
fulfilling also (b) and the boundedness of the sequence of negative curvature
directions is definitely a less trivial task (see e.g. the counterexample in Sect.
4 of [34]).

In this regard, we highlight that, under mild assumptions, by the use of
grossone (namely CGg) in Table 3) we can easily yield an implicit Hessian
matrix factorization as in (26), fulfilling both (a) and (b), as well as the
boundedness of the negative curvature directions {d;} in Assumption 1. To
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accomplish this last task we need the next result (the proof follows from
Lemma 4.3 in [34] and Theorem 3.2 in [20]).

Lemma 1 Let problem (24) be given with f € C*(R"), and consider any
iterative method for solving (24), which generates the sequence {x ;}. Let the
level set Lo = {x € R" : f(x) < f(x0)} be compact, being any limit point
X of {x;} a stationary point for (24), with |A[V2f()2)]| > A > 0. Suppose
n iterations of a Newton-Krylov method are performed to solve Newton’s
equation (25) at iterate x j, so that the decompositions

RIV?f(x))R; =Tj, Tj=L;B;L} (27)

are available. Moreover, suppose R; € R"*" is orthogonal, T; € R"*" has
the same eigenvalues of V* f (x i), with at least one negative eigenvalue, and
L;, Bj € R"*" are nonsingular. Let 7 be the unit eigenvector corresponding
to the smallest eigenvalue of B, and let y € R" be the (bounded) solution
of the linear system LJT y = Zz. Then, the vector dj = R;y is bounded and
satisfies Assumption 1.

However, three main insidious drawbacks arise from Lemma 1:

e both computing the eigenvector z of B; and solving the linear system
LJT y = z might not be considered easy tasks;

e the vector y should be provably bounded (equivalently |det(L ;)| should
be bounded away from zero, for any j > 1);

e at iterate x; the Newton-Krylov method adopted to solve (25) possibly
does not perform exactly » iterations.

4.2 CGg for the Computation of Negative Curvature
Directions

Though the third issue raised in the end of the previous section remains of
great theoretical interest, in practice when the sequence {x;} is approaching
a stationary point, then we typically observe that Newton-Krylov methods
tend to perform a large number of iterations to solve (25). On the contrary,
the first two issues in the end of the previous section may be definitely more
challenging, since they can be tackled only by a few Krylov-subspace meth-
ods, due to the structure and the complexity of the generated matrices L ;
and B; in Lemma 1. In our approach (see also [11] for more complete jus-
tifications), we can provably show that the use of CGg) can fruitfully fulfill
all the hypotheses of Lemma 1. In particular, in the current section we detail
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how to couple the Krylov-subspace method in [14] with CGgp, in the light
of complying with the hypotheses of Lemma 1. Broadly speaking, observe
that the Krylov-subspace method in [14] is basically a CG-based algorithm
which performs exactly the CG iterations, as long as no degeneracy is experi-
enced. On the contrary, in case at Step k the breakdown condition p kT Apr =0
occurs, a so called planar step is carried on to equivalently replace the Steps
k and k 4 1 of the CG. Hence the taxonomy of planar method.

Assume without loss of generality that the Krylov-subspace method in
[14] has performed n steps. Moreover, for the sake of simplicity hereafter in
this section we drop the dependency of matrices on the iterate subscript j.
After some computation the following matrices are generated by the method
in [14] (see also [13])

Ly 0 0 B 0 0
L=1]|Ly Lpn O s B = 0 Bn O s
0 L3 Lj3s 0 0 B33
where
1
. 0 —VBi—1 10
Lyy=|-VvB , Ly = , Ly = ,
S 0.« 0 01
(28)
—/BiBr+1 0 1
Lo=| +  ifiLs=[VAe D)
.' 1
0 0 —/Bn-1 1
and
1 1
_ 0 0
o 0 \/ﬂ_k k42
By = , By = , B3z = ,
1 VB ers1 1
0 — 0 —
k1 Un
(30)
such that
AR=RT, T=LBL", (31)

being the matrix R € R"*" orthogonal with
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R= < . i ) (32)
7]l lrall )

and rxy1 = Apy, while T € R"™" is tridiagonal. Moreover, the quantities
{a;}, {Bi}, ex+1 in (28)—(30) are suitable scalars (being in particular ex4; =
(Api)T A(Apy)/

| Apx|l?). We also recall that 8; > 0, for any i > 1.

Furthermore, to simplify our analysis, the above matrices L and B are
obtained applying the method in [ 14], assuming that it performed all CG steps,
with the exception of only one planar iteration (namely the k-th iteration),
corresponding to have indeed ka Api ~ 0. Then, our approach ultimately
consists to introduce the numeral grossone, to exploit a suitable matrix fac-
torization in place of (31), such that Lemma 1 is fulfilled. To this purpose, let
us consider again the algorithm CG) in Table 3 (see also [12]), and assume
that at Steps k and k + 1 it generated the coefficients oy and og1. Thus, we
have!

1 s@
ak  llrell?
(33)
L AP
Qi1 s@

Moreover, using the equivalence in Table 4 between the quantities computed
by the algorithm in [14] and CGg), we can compute the matrices

Ly 0 0 B 0 0
I = Loy chk_l 0 , D= 0 I§22 0 ) (34)
0 igz L33 0 0 B33

where L1, Ly, are defined in (28), L33 in (29), B;1, B33 in (30), and

(—=vVBiBer1 0)- V! 1

A aps®

L3 = : , Bp= ;
s@

0

0 Of+1

! More correctly, we urge to remark that the expressions (33) are obtained neglecting in
the quantity ok 41 the infinitesimal terms, i.e. those terms containing negative powers of
s@, that are indeed negligibly small due to the degenerate Step k in CG.
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Table 4 Correspondence between quantities/vectors computed by the algorithm in [14]
(left) and the algorithm CGy in [12] (right)

Algorithm in [14] CG in [12]

i, i=1,...,k

i, i=1,...,k

Api
Fk+1

Ti, i > k + 2 (neglecting the terms with
Ti, i>k+2 s®D)

Di, i=1,...,k
Di, i=1,...,k

Apk
| Apkll
Di» i > k 4+ 2 (neglecting the terms with
Di> i>k+2 s@)

o, i=1,...,k

Pk+1

o, i=1,...,k

o;, i > k 4+ 2 (neglecting the terms with
o, i>k+2 S@)

Bi, i=1,... k-1

Bi. i=1,...k—1

IApx|I*
b el

Bi, i > k 4+ 1 (neglecting the terms with
Bi, i>k+1 s@)

with
l7icll v/ Bicri = Brrit
N R AN

IricllAev/Ae Aktl/ =Pkt
VB lApd Bt

and Ag, Agy are the eigenvalues of By; in (30). Thus, in Lemma 1 we have
for matrix T; the novel expression (see also (31))

T;=LBL" = LDLT.

We are now ready to compute at iterate x; the negative curvature direction
dj which complies with Assumption 1, exploiting the decomposition 7 =
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LDLT from Lemma 1. The next proposition, whose proof can be found in
[11], summarizes the last result.

Proposition 2 Suppose n iterations of CGq) algorithm are performed to
solve Newton’s equation (25), at iterate x j, so that the decompositions

RTV2f(x;))R=T, T=LDLT

exist, where R is defined in (32), and L along with D are defined in (34). Let
Z be the unit eigenvector corresponding to the (negative) smallest eigenvalue
of D, and let  be the solution of the linear system LT y = Z. Then, the vector
d; = RY is bounded and satisfies Assumption 1. In addition, the computation
of dj requires the storage of at most two n-real vectors.

Observe that the computation of the negative curvature direction d;
requires at most the additional storage of a couple of vectors, with respect to
the mere computation of a solution for Newton’s equation at x;. This con-
firms the competitiveness with respect to the storage required in [20]. Thus,
the approach in this paper does not only prove to be applicable to large-scale
problems, but it also simplifies the theory in [20]. We remark that the theory
in [20] is, to our knowledge, the only proposal in the literature of iterative
computation of negative curvature directions for large-scale problems, such
that

e it does not rely on any re-computation of quantities (as in [24]),
e it does not require any full matrix factorization,
e it does not need any matrix storage.

5 Conclusions

We propose an unconventional approach for a twofold purpose, within large-
scale nonconvex optimization frameworks. On one hand we consider the
efficient solution of symmetric linear systems. On the other hand, our pro-
posal is also able to generate negative curvature directions for the objective
function, allowing convergence towards stationary points satisfying second
order necessary optimality conditions. Our idea exploits the simplicity of
the algebra associated with the numeral grossone [37], which was recently
introduced in the literature.

The theory in this paper also guarantees that the iterative computation
of negative curvatures does not need any matrix storage, while preserving
convergence. In addition, the proposed approach is independent under mul-
tiplication of the function by a positive scaling constant or adding a shifting
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constant. This is an important property that is specially exploited in global
optimization frameworks (see e.g. [44, 45]), where strongly homogeneous
algorithms are definitely appealing.
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