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Abstract

In today's society, the pervasiveness and sales of video games is at an all-time high. Video games
are used in a variety of application scenarios, from pure entertainment to supporting research, raising
social awareness, and training. Video games are no longer developed only by professional programmers,
but also by experts in other domains. This has made the problems surrounding the process of game
development increasingly evident. One such problem is the lack of a clear methodology for de�ning
video games, supported by user-friendly tools. Indeed, the available tools for making video games are
either too speci�c or too general. When too speci�c, the abstractions provided by the tool are so poor
that only few game genres are expressible. When too general the abstractions provided by the tool
are so generic that even expressing simple domain concepts requires a lot of e�ort.

These problems lead to the process of developing video games being a costly one, in terms of time,
money, and necessary knowledge. Such costs negatively a�ect the development process, and may even
lead to the impossibility to develop certain games. When a solution is o�ered that reduces the cost of
game development, this will bene�t in particular the developers for whom game development is not
their main job.

This thesis starts by analyzing the process of making a video game, and examines the available
tools for making them. It then proposes a solution to the high costs of making games. This solution
comes in the shape of a programming language that is exclusively focused on the domain of video
games. This language, which we call Casanova 2 (inspired by its predecessor language Casanova,
with which it shares goals and philosophy), is designed to o�er abstractions built around the typical
aspects of video games. Casanova 2 is not bound to any video game genre. Due to the speci�city of
the domain of game development, and the strong requirements it brings with it, the compiler behind
the Casanova 2 language is able to apply code analysis. Together with a series of optimization layers,
it is able to turn complex domain code into a highly-performant executable. Casanova 2 comes with
a series of advantages such as embedded networking, and high-performance encapsulation support,
which positively a�ects the production of games.

The thesis evaluates Casanova 2 by comparing it with representative languages, that are often used
for video games, on expressiveness, compactness, speed, ease-of-development, and maintainability. It
demonstrates that Casanova 2 is either equivalent to or outranks all competitors in these respects. This
warrants the conclusion that Casanova 2 achieves its goal of o�ering a game development language
that can be successfully used by a wide variety of developers to build video games.
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Chapter 1

Introduction

In this chapter we discuss traditional games and video games. We discuss the requirements that de�ne
traditional games and show that video games ful�ll such requirements. We show how by means of
digital media new games design opportunities become possible. We discuss the di�culties arising from
the development of video games, and to what extent these di�culties a�ect video game developers.
This discussion will eventually lead us to the de�nition of the problem statement and research questions
of this thesis. We conclude this chapter with the thesis outline.

1.1 Traditional games

Before games became digital, they used to be played either indoor, by means of physical objects, such
as chess, or outdoors, as in sports. We refer to these kinds of non digital games as �traditional games�.
In Homo Ludens [55], Johan Huizinga states that games (or playing) are at the foundation of many
cultures and societies, as games are a universal part of the human experience since ancient times up
until now. We can �nd traces of games in many cultures from the past. Among the oldest games we
�nd: the Royal Game of Ur [92], a board game from the First Dynasty of Ur, dated about 2500 BC;
Senet (or Senat) [85], a board game from predynastic and ancient Egypt, dated about 3500 BC; and
Polo [27], a sport game designed to develop military skills, for which oldest records were discovered
in Persia, dated about 600 BC. Nowadays, pervasiveness of games is at an all-time hight; games are
played by di�erent kinds of players regardless of their social status, age, gender, etc.

Among these games we �nd traditional games such as board games, sport games, and card games.
In the following, we discuss the fundamental aspects that are common to all traditional games.

1.1.1 Key ingredients of traditional games

A reason for the success of traditional games is associated with their ability to involve people regardless
of age or gender. Such success is based on three essential ingredients: goals, challenges, rules [88]:

1. Goals: the desired �nal results that the player plans to achieve. According to Chris Crawford
[32] a game without a goal should be considered a toy rather than a game;

2. Challenges: obstacles in a game for the player to overcome, intended to make a game more
di�cult, and interesting, or to extend the total play time;

3. Rules de�ne the dynamics of a game. They can be active or passive.

9
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� Active: any part of the rules system of a game that regulates interaction that takes place
in a game at any time, be it general or speci�c;

� Passive: constraints over the game dynamics. Such constraints can also be used in games to
make players more comfortable with playing the game, or to speed up the learning process
of the game mechanics. For example: by using classic physics as general rule in a game,
players are not required to learn how to move in the game world; by using speci�c colors
or uniforms to identify the enemy faction, the game looks less chaotic, etc.

By manipulating the above ingredients we can achieve di�erent �avors. Such �avors can be com-
bined in order to implement the so-called game genres [103]. Game genres are used in order to reach
di�erent targets of players [49]. These targets may vary depending on di�erent aspects, such as the
demographics of players, or the desired result of the game experience. Typical genres of traditional
games are billiards, board games, card games, etc.

1.1.2 Functions/goals

Every game comes with a series of goals. Such goals can be either self motivated, or provided/enforced
externally (by an instructor for example). When self-motivated, a goal can be the result of a logical or
biological need, or a social factor. For example, the socializing aspect of supporting a football team.

When the goals are provided externally, the game can become a means of accomplishing real-life,
bene�cial objectives, for example set up by an organization. In order to achieve such goals, a player is
subject to a series of situations that, together with bringing him closer to the goal, become experiences
from which the player can learn new skills or abilities. Games belonging to this category are typically
referred to as serious games. In this thesis we will focus on the development process of serious games,
since serious games are important in terms of social impact.

In all games, regardless of whether they are self motivated or not, and serious or not, we can notice
a common factor that is the �fuel� that makes people play them; this fuel is called fun. Without fun
it would be very di�cult (maybe even impossible) to manage to achieve the original desired function
of a game. Indeed, according to [57], fun is a characteristic that every game must have in order to be
de�ned as such.

About serious games

Serious games are the result of a careful mixture of the ingredients introduced in Section 1.1.1. The
function of serious games is di�erent from that of other kinds of games, since they are not only meant
for entertaining, but also for educating, raising awareness, etc. In his book Abt [5] gives a good
de�nition of what serious games are: �Games may be played seriously or casually. We are concerned
with serious games in the sense that these games have an explicit and carefully thought-out educational
purpose and are not intended to be played primarily for amusement. This does not mean that serious
games are not, or should not, be entertaining�.

We �nd traces of serious games in the past. Polo was used by Persians to teach their soldiers how
to �ght while riding a horse. Nowadays serious games are adopted by several organizations to educate
or train their members on subjects such as politics, military skills, etc. [35]

Serious games really became a class of games on their own with the advent of video games, which
are discussed next.
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1.2 Video games

Next to the concept of traditional game, in recent times the concept of digital game has appeared.
A digital game, or more commonly called video game, is a game where a user is required to interact
with a user interface presented and handled by a digital computer.

Video games �rst appeared around the mid 50's when the �rst computers were created. Among
all games, OXO, also known as Noughts and Crosses, is generally considered to be the very �rst video
game in history. Also known as tic-tac-toe, OXO was the �rst video game that supported input and
output devices: a phone dial (each number corresponded to a cell of the game grid) was used for the
input, and a CRT monitor for the output.

1.2.1 What is a video game?

One can ask the question whether the only di�erence between games and video games is that video
games require the use of digital media. In the most general sense, the answer is �yes�. However,
a digital computer (which is mainly a series of physical devices controlled by software) opens up a
series of new opportunities that traditional games cannot provide. This is possible due to the fact
that the hardware that runs a video game can be programmed. A video game always consists of a
series of instructions that the computer hardware processes sequentially, in order to provide a desired
experience. The range of achievable experiences is becoming increasingly immersive as new devices
are entering the market. For instance, augmented reality devices involve more of the player's senses
more pervasively, and are therefore able to achieve deeper levels of immersion.

In the following we show why video games can be considered actual games; we do so by showing
that video games share the same ingredients as traditional games.

� Goals: just as with traditional games, all video games have a goal that entails the �nal result
that the player plans to achieve.

� Challenges: just as with traditional games, with video games there are obstacles in a game
meant to regulate game aspects such as di�culty, or play time.

� Rules: just as with traditional games, video games are based on rules. The main di�erence it
that the rules of video games can be atomized.

� Active: in a video game, every game element can be programmed as to automatically react
to a series of user inputs. Reactivity is one the most important aspects of video games: by
mapping every action of the player to a speci�c reaction, a feedback loop chain is set up
that eventually will enhance the player's experience, as the player will feel as if he or she
is an active part of the game itself

� Passive: a video game can be programmed so to provide a series of constraints that limit
the range of possible actions of the player. Rules can also be used to make the player feel
more comfortable with the game (for example, by simulating natural gravity the physics
feel comfortable to a player, and by using particular colors and clothing options for enemies,
they become easily identi�able to the player), or to force the player to follow the story line,
so as to achieve eventually the �nal goal of the game.

Video games also come with a series of advantages that cannot be found in other kinds of games.
These advantages are typical of video games and are possible because of the adoption of digital media.
Some of these advantages are:
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� Absence of physical constraints: a video game allows the de�nition of worlds or objects that
could not exist in real life. For example, a video game might feature a world in which entities are
all subject to a di�erent gravity than the one we �nd on earth, or a video game might feature
enormous galaxies made of billions of star systems.

� Control over the �ow of time: in a video game time can be programmed and controlled/processed
by the computer. The �ow of time in a game might be dynamically adjusted in order to provide
players with di�erent kinds of experiences. A player has almost no control over the timings of
a game (unless the game rules allow it). As result, during the game, time can speed up, slow
down, or even pause.

� Visual e�ects: the rendering components of a computer make it possible to visualize on a 2D
screen the elements of a video game (including their states). Moreover, visual e�ects can be
programmed to increase the game's appeal, or to reinforce the player's involvement.

� Arti�cial intelligence: a player can be assisted by, or play against, an arti�cial intelligence (AI).
Typically, this AI, which is previously programmed by the developers of a video game, is subject
to the game rules and dynamics, and in many cases is programmed to behave almost as a �real�
player.

� Assisted learning curve: a video game can provide tutorials before, or during, a game. These
tutorials, which are typically programmed, are used to introduce a player to the main aspects
of a video game and to make him focus immediately on the important aspects of a the game.
It is often the case that these tutorials are incremental and come slowly during the game, as
introducing too many aspects of a complex game might confuse the player.

Just like with traditional games, video games genres are de�ned by particular implementations of
the above aspects. For example, consider an economy city builder. An economy city builder game,
such as SimCity, a player is tasked to manage in real-time the micro and macro economy of a city in
order to make it prosper and grow. In such a game we would typically have:

� big scenarios (possible only due to the absence of physical constraints) full of cities, each with
its own economy and dynamics, possibly controlled by other human players or AIs,

� control over the �ow of time in the hands of the player, who can pause the game, slow it down,
or speed it up,

� average rendering e�ects, as the logic engine (the city simulator) is the real selling point of games
belonging to this category,

� an AI that is specialized on automating processes of macro and micro economy of the city,

� an assisted learning feature that introduces incrementally the important elements of the game.

Such a game could not exist in the form of a traditional game (without large modi�cations), because
all the above aspects are di�cult, if not impossible, to reproduce with non-digital components. For
example a video game featuring gigantic arti�cial cities, made of millions of citizens and objects, would
require enormous spaces, and the manual of such game would come with hundreds of pages in order
to describe all possible game features and mechanics.

Video game genres di�er from each other a lot. Among such genres genres we �nd: Platform games,
such as Donkey Kong, Super Mario Bros, Jumping Flash!; First person shooter games (FPS's), such as
Wolfenstein 3D, Call of Duty, Half Life; Role-playing video games (RPG's), such as Diablo, Dungeon
Siege, Baldur's Gate; Real-time strategy games (RTS's), such as Age of Empires, Warcraft, Startcraft;
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Sport games, such as FIFA, Pro Evolution Soccer; Music games, such as Rock Band, Guitar Hero,
Sing Star; Massive multiplayer online role-playing games (MMORPG's), such as Second Life, Ingress,
The Elder Scrolls Online, Final Fantasy XI, EVE Online; etc. Of course, some of these genres are
somehow re-arrangements/evolutions of the genres of traditional games introduced in Section 1.1.1.

1.2.2 Business impact

It took several years for video games to become a global phenomenon, since in the beginning video
games were mostly used by the scienti�c community for experiments. However, slowly, video games
started to be used also for entertainment purposes, in particular when console games started to
become popular. Everything changed in 1972 when Atari presented the game Pong. Pong is generally
considered the �rst o�cial video game in history. Pong helped establish the video game industry with
great sales. Indeed, after the great success of Pong, many companies started to copy it and to present
new versions of it. This pushed Atari even more to produce more innovative games in order to beat
the competitors, and so the modern game industry was born.

This continuous exploration and competition pushed video game companies to study and develop
new kinds of video games; part of this exploration was also justi�ed by the advances of computer
hardware (one could even say that hardware advances in personal computers are also partially caused
by the popularity of video games). With more powerful hardware developers could study and develop
new techniques such as better visual e�ects, or de�ne more complex arti�cial intelligence.

As a result, video games have grown to the point that their sales have surpassed those of music
and movies (together) [2]. Mobiles video games have contributed to this big success: in 2017 alone
sales of mobile games are predicted to exceed 100 billion dollars worldwide [100].

This success can only strengthen the fact that our initial statement (about the relevance of games
as a social phenomenon) cannot be ignored. A remarkable example of this is Pokemon GO, produced
by Nintendo. Pokemon GO is a game that requires players to physically move across di�erent physical
locations in order to play the game and thus capture Pokemon.

In Europe it took just a few months to get it to be installed on millions of devices without any sort
of advertisement. Pokemon Go has become so famous and is played so much that governments limited
its usage in many public areas, such as museums, religious sites, or hospitals, as players disrupt, or
obstruct the intended activities of such public areas.

1.2.3 Functions/purposes

As stated in Section 1.1.2, video games are mainly played for fun. The main revenue of video games
comes indeed from the entertainment sector, involving games such as Tetris, Wii Sports, Grand Theft
Auto 5, or Super Mario Bros. Entertainment video games are generally sold more than traditional
games, mainly due to the advantages o�ered by digital media. Among those advantages we �nd:
complex story lines that can take days, or even weeks, to be �nished; large worlds to discover; leader-
boards where a player can compare his/her performance with the performances of other players playing
the same game; relationships that can be established with other players playing the same game;
multiplayer with players playing the same game in di�erent places across the Internet; etc.

Serious games

Video games are also used in serious scenarios. Due to the new advantages o�ered by digital media,
serious games as a whole are experiencing a new phase of their historical development. Nowadays,
serious video games are used in many di�erent scenarios such as research, education, healthcare,
defence, art, culture, religion, corporate training and advertising [35, 21, 97].
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Besides being successful, because of their realism, and thus for their ability to connect with real life
challenges, nowadays the success of serious games is also pushed by the adoption of the digital medium,
which can reinforce the overall gaming experience with elements such as pleasant visualizations, audios,
automated reward systems, and complex rules simulating real contexts, and thus the realism of the
serious game itself.

Serious games have been used also as frameworks for various kinds of scienti�c research, since in
research testing and building running examples are of much importance to validate experiments. Not
surprisingly, the �rst video games were meant to illustrate scienti�c results, or research experiments:
for example serious video games have been employed to study possible ways of interaction between
human and machine (OXO was the result of a computer science thesis in the now established research
�eld of human-computer interaction[35]).

1.3 Building video games

After this brief and compact introduction to traditional games and video games, we can now focus
our attention on the subject of this thesis, in particular, on the building of video games. We will try
to understand the complexity behind this process in order to �gure out the fundamental aspects that
de�ne it.

In the following we start with considering and understanding the fundamental processes underlying
the main process of developing a video game. We do so by considering the main professional roles
involved in the process.

1.3.1 On the process of making a video game

The process of developing a video game typically involves many professional roles with di�erent exper-
tises. In the following we present such professional roles, which we group under three main categories:
designers, artists, and programmers [15]. A visual representation is also provided (see Figure 1.1),
that explicitly shows the interactions between the following professional roles.

� Designers are the initial project coordinator when a game is created. More precisely, designers
are responsible for all those components that make up a game, without actually creating any of
these components. Designers receive the project of a game to design from a client. Typically, the
request of a game to design follows the trend of the market. Indeed, the client is in continuous
contact with the target users to understand the market's necessities. Indeed, if there is a
huge request for a feature, then the client will forward this demand to the designers during the
commission phase of the game.

Typically, designers work very closely to the programmer, as they have to continuously test the
game, with the so called testers in order to determine the e�ect of the design choices, and to
provide feedback on how to improve the game. Testers, are a group of selected users, but also
professionals, tasked to play the game in all its development phases and to provide feedback to
designers, and programmers, about the functional and non functional aspects of the game.

� Artists deal with everything related to the game content: visual, audio, etc. They work very
closely with designers, as the contents they make have to be as similar as possible to those
envisioned by the designers.

� Programmers are tasked to implement the designers' choices into actual machine instructions
and include the artists' contents in the game. Since these tasks cover di�erent aspects of a game,
they require di�erent kinds of expertises (typically, provided by di�erent programmers). The
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Figure 1.1: A graph describing the interactions among the professional roles involved in the process of devel-
oping a video game.

output of this process is the actual game, which eventually will be played by the target users
of the game.

� Contents integration: for this task a programmer is supposed to provide support to the
team in order to make the contents generated by artists accessible within the game, for
example by providing a custom importer and processor for the contents;

� Rendering : for this task a programmer is supposed to write the code necessary to display
all entities of a game and the visual e�ects to apply to them, for example by means of
custom shaders;

� Logic: for this task a programmer is supposed to provide the code necessary to implement
the aspects that are necessary to express all the game dynamics: AI, physics, networking,
scripts, I/O controllers, etc. Typically, this task includes also both the codes provided by
the previous two tasks (content integration and rendering).

Every task mentioned above comes with costs that need to be considered while developing a video
game. These costs become even more incisive if the tools used for performing a speci�c task are not
ideal for it. Since the areas covered by these tasks di�er widely from each other (and require di�erent
expertises), it would be too ambitious to study them all and solve all their issues at once. Moreover,
the designing process, or the contents generation, of a video game has creativeness as core element,
which makes it di�cult to automatize processes such as the veri�cation of correctness, or the quality,
of a solution. In contrast, the programming process is more disciplined, since its core is based on
logic, which can be automated and for which solutions can be formally veri�ed. For this reason in this
thesis we will focus on the programming process, by looking for the ideal formal/deductive mechanism
(in the form of a language) to express game logic, which at the same time minimizes its development
costs.



16 CHAPTER 1. INTRODUCTION

The motivation of our choice is also derived from the fact that the development of the logic
of a game is a pervasive task that permeates the complete development process of a video game.
During development, many versions are delivered before reaching the �nal version of the video game.
Between these versions, the logic of the game might be subject to changes which happen more or less
continuously. For example, designers might require small changes during the development process as
response to some user testing, or might add a completely new game mechanic.

Due to its impact and importance, it makes sense to investigate the process of implementing the
game logic, to understand its complexity and possibly �nd its limits and current issues. We believe
that a scienti�c approach to solving some of these issues may bene�t the whole process of developing
a game.

1.3.2 Technological complexities

At this point we analyze the process of de�ning the logic of a video game. The logic of a video game
is typically expressed by means of instructions that we give to the computer to execute. A computer
interprets these instructions by means of some tools, which we can call software1. Software typically
comes with a series of constraints (for example supported languages, allowed behaviors, etc.). A
developer, while developing the logic of a video game, must always respect these considerations (for
example if the software supports only a speci�c language then the instructions must be written in
that speci�c language).

Since we cannot change the complexity of the intended game design, as it is imposed by the design
of the video game itself, it makes sense to work on the complexity of the software. We now try to
understand more about video games software complexity.

Software complexity

Software in and of itself is a complex structure, to the point that Frederick P. Brooks discusses
software complexity as an essential property that cannot be ignored; in the following we quote this
discussion, which is taken from the article entitled No Silver Bullet: Essence and Accidents of Software
Engineering, of which we highlight in bold the steps signi�cant for this section.

�Digital computers are themselves more complex than most things people build: they have very large
numbers of states. This makes conceiving, describing, and testing them hard. Software systems
have orders-of-magnitude more states than computers do.
Likewise, a scaling-up of a software entity is not merely a repetition of the same elements
in larger sizes, it is necessarily an increase in the number of di�erent elements. In most cases,
the elements interact with each other in some nonlinear fashion, and the complexity of
the whole increases much more than linearly.
The complexity of software is an essential property, not an accidental one. Hence, de-
scriptions of a software entity that abstract away its complexity often abstract away its
essence. For three centuries, mathematics and the physical sciences made great strides by construct-
ing simpli�ed models of complex phenomena, deriving properties from the models, and verifying those
properties by experiment. This paradigm worked because the complexities ignored in the models were
not the essential properties of the phenomena.�
No Silver Bullet: Essence and Accidents of Software Engineering by Frederick P. Brooks, Jr.

Brooks also discusses that software complexity increases when the amount of interactions between
entities increases. He also suggests a way to limit, or even solve, such issues and the proposed solution

1This is often, in the video game context, more than �just� a compiler of interpreter. See Chapter 2
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is de�ned by two steps: (i) identify the essential properties of the domain touched by the problem,
(ii) �nd how to express these properties within the software itself in the most natural way, in order
to hide the complexities underneath them.

Video game software complexity

This discussion applies to video games a fortiori. Indeed, a video game is a high-level, real-time
software application that allows the de�nition of entities and their interactions. Typically a video
game features lots of interactions, where an interaction is made up of a piece of code that reads/writes
the state of an entity. Since every entity of the game can be observed by many modules in the code, all
running at the same time, a change in the state of one entity might potentially trigger such observers.
If the state of an entity changes erroneously, for example, because of an error in logic, then the
possibility to trigger observers that are not supposed to be activated is high. By accumulating these
errors in the long term the state of the game will become unstable, therefore leading to unexpected
behaviors in game. As a result, �nding the origin of the error becomes di�cult, especially if the error
becomes visible to the developer after a series of concatenated chains of errors. Given the combinatorial
complexity of game code with respect to the number of entities and their interactions, as a game grows
in complexity, or dimension, the number of unexpected behaviors explodes as a consequence.

In addition, as games might also include non-functional properties, such as runtime performance,
if the software used to develop the video game is not speci�cally designed to naturally capture such
properties, then the complexity of related code will dramatically increase even more. This is due to
the fact that these non-functional properties, which are necessary for the correct function of the game,
must be integrated in the game code by hand by the developer.

For example, high-performance is a non-functional property that is common to most video games.
In a video game like Asteroids shooter (a classic shooter game, where a player has to shoot and
destroy as much asteroids as possible without being hit by them), the amounts of asteroids and
projectiles might increase signi�cantly during the game; thus the collision detection between asteroids
and projectiles is a sensible aspect, which, if not treated properly, might signi�cantly slow down the
game performance. In a typical optimized solution, the game scene is divided into a grid, where
every cell of the grid might contain projectiles, asteroids, or the player's ship. In the optimized
solution, checking the collision between a projectile and the asteroids, requires the projectile to check
only those asteroids in its cell, and those asteroids in the adjacent ones (in a naive implementation
detecting the collision requires every projectile to check all the asteroids in the game). However, this
optimization requires additional code and data structures, which we would not have in a trivial, but
slow, non optimized implementation. This is due to the fact that the optimization described above is
not mentioned in the original design of the game.

If this solution is implemented natively by the tool then the developer is only supposed to literally
tell the tool what parts of the code require the collision detection, but if the solution is not supported
natively by the tool then the developer is tasked to: implement the whole optimization, test it, and
maintain it.

As these complexities increase in amount, risks, such as making mistakes, or unabeling to maintain
the code, become realized problems. In this thesis we will focus on �nding proper solutions to tackle
such complexities and in particular, by focusing on those solutions that support developers with
making less mistakes, and writing maintainable and readable code.

1.3.3 Video game developers

Making a video game (and software in general) is a time consuming activity. Moreover, game code
needs to be maintained, upgraded, etc. and all these activities require time. Thus the longer a video
game takes to be developed, maintained, etc. the higher will be its costs and e�ort to make.
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We �nd three distinct kinds of video games developers: video games developers, serious games
developers, and researchers. In the following we introduce these groups and discuss how costs a�ect
their work:

� The category of entertainment game developers can be divided in two subcategories: game
companies developers and independent developers. The reason of this division is due to the
fact that these two distinct groups come with totally di�erent budgets and typically di�erent
approaches in terms of marketing, game design, etc.

� Game companies typically house a large number of developers. Their budgets, which are
typically huge as well, can a�ord games that could take a few years to be developed. As
making money is their main business element, when a design of a game becomes successful
(in terms of sales) the later generations of games are often simple rearrangements.

� Independent developers (also known as indie developers), typically feature small or medium-
sized groups of developers. They are known for being innovative (their designs are often
experimental), and are typically limited in terms of �nancial resources. Unfortunately, this
limitation in terms of resources has an immediate e�ect on the quality and features of their
games, so good products may lack important but hard to build aspects such as multiplayer,
or advanced physics.

� Serious games developers typically are very small or medium-sized groups of people (sometimes
even a single person) specialized in simulations for purposes other than entertainment, such as
education, health care, city planning, etc. They are known for having limited resources [93],
since their games do not enjoy the same sales as those meant purely for entertainment, although
their social impact maybe be high nevertheless [75]. In their case costs have an immediate
consequence for their productivity and the quality of their results.

� Researchers typically are small groups of people (sometimes even a single person) who use
video games as frameworks for testing and simulating their research. It is often the case that
researchers know little about video games development, because their expertise lies in other
areas, such as medicine, social sciences, or engineering. Unfortunately, researchers do not enjoy
big budgets in general, and typically can invest only small parts of their research budgets into
the development of simulations. As the development phase increases in complexity the costs
increase as well. As a result, the progression of their research is slowed down, as some scienti�c
results are harder to obtain if the development of these simulations is slowed down due to the
limited resources.

Since it is clear that costs for making games may be a great obstacle for making games, it makes
sense now to investigate the tools used for making video games in order to understand how much
these tools keep costs and complexity in check. In this thesis we will focus on �nding proper solutions
for making game to those developers with limited resources. Speci�cally, our target audience will be
independent developers, serious games developers, and researchers

1.3.4 Current approaches

Modern tools for making video games, such as game engines (see Chapter 2.2.4), have an abstraction
mismatch with their problem domain: they are either too speci�c, or too general. When too
speci�c, a tool comes with a series of poor primitives that are e�ective just for limited genres of
games (often at most one game genre is expressible). This limitation makes such tools not suitable
for general game development. On the other end of the spectrum we �nd tools that are too general.
When too general, a tool comes with a series of low-level primitives that require developers to specify
a lot of details (often even unrelated to the game itself) to build a game.
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1.4 Our focus and problem statement

For all the kinds of tools used for developing video games it seems that none of them provides a full
solution to the problem of minimizing costs in game development without jeopardizing �exibility of
use. This is a problem for all those categories of developers with limited resources, such as serious
games developers, researchers, and indie developers. What is missing is a disciplined design that o�ers
both the ease-of-use of highly speci�c tools, plus the openness of the general tools, all in one, i.e, a
tool that minimizes the e�orts for expressing games and their dynamics, while not being bound to
speci�c genres. We look for such a tool in the �eld of programming languages and their abstractions,
instead of purely focusing on engineering aspects such as libraries and frameworks.

Problem statement Our goal is to address the issues that arise from the above analysis. We can
state the general problem statement as follows: To what extent can a tool be built, which makes
the complexities of general game development manageable for small and medium-sized
teams of developers? We argue that using speci�c tools and abstractions designed to naturally
capture properties and elements of the domain of video games, rather than general purpose tools,
would reduce the e�ort and costs of making games.

Research questions The research questions that we endeavor to answer in this thesis are:

1. What are the requirements that an ideal tool for game development needs to meet?

2. To what extent can a programming language for game development be built which meets the
identi�ed requirements?

3. How does such a programming language perform in terms of expressiveness, speed of execution,
and maintainability, when compared to commonly-used tools for game development?

Positive consequences Games and simulations in general may have a substantial e�ect on our
experiences. Virtual environments give us the opportunity to experiment with new ways to do research,
to provide education, and to train and educate people. The fact that costs and e�orts tend to rise
considerably with the complexity of simulations, puts a lot of pressure on developers with limited
resources. Our contribution to the state of the art is a reduction of the e�orts and costs by supplying
a computer language speci�cally aimed at game development. We believe that by empowering video
games developers with e�ective and powerful abstractions (in our case in the shape of a programming
language) for developing their games, which at the same time minimize the development costs, many
positive consequences might follow, since the development time and costs are reduced. For example
by avoiding to express details unrelated to the game logic, but necessary to the correct function of
adopted tool, developers can now focus on exploring and researching innovative designs for connecting
people, train students, and so on.

1.5 Contribution and thesis outline

In this thesis we explore the process of making the logic of a video game. We will study how video
games are built by exploring the tools used in game development (Chapter 2). This study will lead
us to insight into the advantages and disadvantages deriving from the usage of such tools. As we
will see none of the tools used in game development o�er more than a di�cult trade-o� between such
advantages and disadvantages when tackling the complexity of game development.
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We then present domain speci�c languages as a solution that achieves all the advantages deriving
from the usage of the tools typically used for game development, while at the same time, avoiding
many of the common disadvantages associated with such tools.

In particular we will present a domain speci�c language called Casanova 2 that is designed around
the domain of video games, and the syntax and semantics of which is built ad-hoc to tackle the
complexity of game development (Chapter 3). This novel DSL constitutes the �rst contribution of
this thesis.

Casanova 2 comes with its own compiler, which transform the high-level, game-speci�c Casanova
2 code, into a high performance executable and without any speci�c intervention from the developers
(Chapter 4). This novel compiler constitutes the second contribution of this thesis.

The semantic optimizations, which due to the speci�city of the domain signi�cantly improve the
runtime performance of Casanova 2 code are further explored in detail (Chapter 5). This novel
optimization constitutes the third contribution of this thesis.

Programming languages usually come with one or more implicit idioms for writing good programs.
These idioms capture the essence of programming with the language. We will show the idioms of
Casanova 2 and will use them to build actual games (Chapter 6).

We will evaluate Casanova 2 by means of two di�erent types of evaluation (one qualitative, the
other quantitative) to measure both the properties of the language and its attributes (Chapter 7).

Eventually, we will present the open challenges and future opportunities presented by this work,
and draw our conclusions (Chapters 8).

In Appendix A we discuss the experience gathered from the �rst workshop on Casanova 2. In
Appendix B we show how Casanova 2 works in practice by showing how it behaves when used by
new developers who are not con�dent with it. In Appendix C we introduce the basic concepts of a
multiplayer abstraction built in the Casanova 2 language supported with a concrete working example.



Chapter 2

Taxonomy of game development

approaches

While it might seem desirable to encode games close to a high-level speci�cation, the pragmatic reality
has not, until very recently, allowed this. In this chapter we discuss the fundamental aspects that
de�ne a game and show how these aspects have been captured by means of game development tools.
In particular, we begin with a formal mathematical introduction to what a game is and how its state
changes according to the �ow of time, and provide an example of a game structure (Section 2.1). We
then discuss the issues arising from implementing such formalizations as a computer program. We
present incremental solutions to these issues by relating each of them to a speci�c period of historical
evolution in computer and programming languages (Section 2.2). Moreover, for each of these solutions
we also discuss advantages and disadvantages deriving from their usages. Eventually, we propose a
solution that solves all the identi�ed disadvantages, and simultaneously covers all the advantages
(Section 2.3).

Moreover, throughout this chapter we will support the discussion of each tool by means of one
example, a moving particle. This example, which is on purpose small, in the beginning is explained
formally, has the purpose of showing what kind of considerations and problems developers are faced
with when designing and developing video games. We will see that the less a tool is suitable for
developing games, the more details and e�ort it will require to build the example in question.

2.1 What is a game?

A game is any voluntary activity where people interact in order to achieve some goals within some
constraints (described as game rules). The purpose of a game is to provide tools for the players
that allow them to approximate their challenging expectations. These expectations may be provided
externally, for example by an instructor, or may be self-motivated, like achieving entertainment[8].

2.1.1 Video Game

Within the panorama of games we �nd video games. A video game is a specialized kind of game
where the interaction is carried out by means of electronic devices. Speci�cally, a video game, which
from now on we will refer to simply as �game�, is a computer program that continuously interacts with
hardware components to carry out some game logic. The game automates the game rules mentioned
above, therefore enforcing the structure of the experience[38]. Moreover, the program also handles
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rendering, user input, the �ow of time, etc. by providing a real-time experience that helps users to
experience a �virtual reality� feeling[94].

2.1.2 Formal de�nition of a video game

In order to implement a game, we need a precise and formal detailed de�nition of its rules. Without
such a de�nition we will not be able to �explain� to the machine what it is supposed to do. Therefore,
in what follows we give a �pure� mathematical de�nition of a game that is technology independent
and helps us to focus on the game de�nition only.
A game is made up of objects (each represented by a series of numbers), which we called state. In
this formalization we can see a state w(t) as a vector of all numbers that describe the game at some
time t.

w(t) = Ct1, C
t
2, . . . , C

t
N (2.1)

The dynamics of the game de�nes how the state changes over time. We can represent the evolution
of the state by mean of an integrator that approximates each component of the state at all moments
of the duration of a game1 :

w(T ) =

∫ t=T

t=0

dw(t)

dt
dt (2.2)

The integrator above computes the value for all components of the state. In what follows we see a
trivial application of the above integrator to �nd the position of a particle, i.e, an entity with simply
a position and a velocity, over time.

As an example consider a state w(t) made up of a particle with velocity v(t) and position p(t):

w(t) = (p(t), v(t)) (2.3)

According to (2.2), for this example computing the value of w(t) requires �rst to solve the di�erential
equation:

dwt
dt

=

(
dpt
dt
,

dvt
dt

)
(2.4)

In this example, the velocity is de�ned as the rate of change of position with respect to time, and
acceleration is de�ned as the rate of change of velocity with respect to time according to Earth gravity:

dpt
dt

= v(t)
dvt
dt

= (0,−9.81, 0) (2.5)

According to (2.5) at any time t, in this example, integrating the velocity v(t) gives the position at
time t, whereas integrating the gravitational acceleration returns the velocity at time t.

It might seem, at a �rst glance, from this example that solving the integral for each component
of the state in isolation is su�cient to determine the value of the state. Unfortunately, this is usually
not true. Typically games come with more complex dynamics: in a game the value of an object (the
position for example) could be the result of combining di�erent values of the state. For instance, the
movement of a particle in a game may be subject to friction, or it may be in�uenced by collisions
with other objects in the game world. Therefore, in most of the cases, since components of the state
are tightly related to each other (with respect to time) the derivative of each component of the state
depends on many elements of the state. For these cases the function to integrate is too complex and
requires numerical methods to determine its values over time. In the following we discuss this issue
and discuss the solution used for games.

1Components of the state might behave as discrete functions, for example a number that changes according to a
timer. To treat such dynamics we treat their functions as piecewise functions.
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Numerical vs. Analytic Solutions

The fact that we are able to model the evolution of the state by means of a function does not mean
that �nding an exact solution is possible or simple. This happens because the functions to integrate
for the game will usually be too complex to allow analytical solutions: analytical solutions work only
for simple models [81]. When the game becomes complex (imagine a city simulator, or a driving
simulator with lots of physics) or the model is in�uenced by the user input, then it is not possible to
identify a closed form solution [41].
We need to use numerical methods for solving game model equations such as the Euler method [11]
(which is meant for solving systems of di�erential equations), where the initial values are the initial
state and the update describes the changes of the state over a short amount of time.
We can use Euler to �nd the solution for the evolution of our particle. Consider (2.5):

dp(t)

dt
= lim
dt→0

p(t+ dt)− p(t)

dt
= v(t)

dv(t)

dt
= lim
dt→0

v(t+ dt)− v(t)

dt
= (0,−9.81, 0)

(2.6)

By applying the Euler method to approximate the two limits in (2.6) we obtain the following:

p(t+ ∆t) = p(t) + v(t) ∗∆t v(t+ ∆t) = v(t) + a(t) ∗∆t (2.7)

At this point, by taking many steps with small ∆t (and an initial given value for time t = 0) for
every component of the State, we achieved an approximated solution for the original integral shown
in (2.2).
Of course this is an approximation. If we need higher precision methods then we could use better
approximation methods such as those in the Runge-Kutta family[24].

Implementable formal speci�cation

We now provide an algorithm that can e�ectively compute the state at any time t, given an initial
state s0.

With Euler we managed to describe how the dynamics of a game determine the evolution of the
state for a very small amount of time. Unfortunately, if we try to increase such amount of time, then
Euler alone is not enough2[82]. Ideally, we wish to apply Euler, starting from an initial state, enough
times until we reach a cumulative approximation of the state for the desired time.

For example, if we need the state for a time T , starting from an initial given state s, we apply
once Euler to s for a small step dt and use the resulted evolved state for all successive applications
of Euler. We keep repeating this operation until the amount of steps is enough to �cover� the whole
desired time T .

We observe from the above example that Euler is used at most once per step. This is important
for us, since we can now de�ne a function loop that given a state s0 and an amount of time t returns:

� s0 in case t is less or equals to zero (which literally means what is the next evolution of s0 for a
step big 0);

� the application of a new state (obtained by evolving s0 for a very small amount of time dt
according to an Euler step) and an a decreased t (from which we remove exactly dt, the amount
of time consumed by the Euler step) to a function φ. φ a high order function that unfolds a step
of loop, by applying an Euler step once.

2Euler is a numerical approximation, small steps made of small amounts of time are necessary so to avoid to end
into a wrong state.
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loopφ(s, t) =

{
s, if t ≤ 0

φ(euler_step(s, dt), t− dt), otherwise
(2.8)

Of course, the above de�nition does not specify what happens after the single step of Euler: the φ
function. To achieve the desired result, we need φ to continue with the very same process described
by loop itself. This process, known as recursion, can be explicated by taking the �xpoint of the loop
function[14]. The �xpoint operator will care to reapply loop to itself so that calling φ e�ectively calls
loop again:

fix loop = loop(fix loop) (2.9)

In the following, we show how above formalism has been captured, since the beginning of the game
development �era�.

2.2 Game development

In the previous section we showed a symbolic representation of the dynamics of a moving particle and
an equivalent numerical interpretation. Both descriptions are valid, although they di�er in precision.
The advantage of using the numerical approach is that we can implement it into a computer. Research
in game development in the past decades was focused on �nding suitable high-level interpretations for
numerical solutions that work for all those �non-functional� pragmatic requirements such as real-time
performance, networking, etc. (all these non-functional requirements add yet an additional challenge
to research) [54]. A way to implement such high-level interpretations is by means of game making
systems. Game making systems used to build actual games can be seen as ways to encode abstractions.
The various historical game making systems, or game making tools, have always been intrinsically
linked with the dominant programming languages and paradigms that were the most popular at the
time of the tool in question. Each tool, with its language (and therefore paradigm [102]), imposed a
set of limitations that ultimately were lifted by the next generation of tools [73].

This progression has clearly marched towards �nally being able to write code against the mathe-
matical speci�cation and further away from hardware considerations.

Programming paradigms

Historically, as hardware has become increasingly powerful, programming paradigms less focused on
hardware details have become usable in the practice of game development [79]. Among the possible
paradigms used for making games we �nd: functional, declarative, object-oriented (OO), and proce-
dural [68, 53, 40, 78]. By choosing a speci�c programming paradigm, game developers have to decide
in advance how to design the architecture of the implementation for their games. These designs are
shaped by the features o�ered by the chosen paradigm(s). For example procedural programming is
�performance-oriented�, OO programming is by some considered to be cognitively closer to the way
humans perceive the real-world, declarative programming is meant for querying sets of facts and rules,
and functional programming treats �all� computations as mathematical functions. Of course, every
paradigm comes with disadvantages, which should be known in advance. For example procedural pro-
gramming is not suitable for designing very complex architectures with clear separation of concerns,
OO programming tends to add lots of overhead to the CPU, declarative programming is con�ned to
query operations only, and functional programming programs are typically more complex to use, thus
require a bit more of planning before writing the actual implementations.
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The evolution of game making systems

Nowadays, we often see systems for making games that not only support programming paradigms for
dealing with the game speci�cation, but also provide sophisticated editors for building game content,
kinematics, etc. [17, 61, 32, 63]. A chronological evolution of these systems for making games (inspired
by [43]) is roughly reported in Table 2.1.

Table 2.1: Game making systems evolution

Period Design philosophy Languages Paradigms Discussed in
1950s Hand made everything. Assembly,

C
Procedural Section 2.2.1

1980s Game making systems (no programming
knowledge). User-derived, drag-and-drop vi-
sual interface engineered for the rapid proto-
typing of games.

_ Visual Section 2.2.2

1980s Graphic APIs. Developer oriented tools that
provide a series of domain abstractions to deal
with di�erent hardware sharing similar func-
tionalities.

HLSL,
GLSL,
PSSL, etc.

Declarative Section 2.2.3

mid -
1990s

Low-level game engines. Developer oriented
libraries that provide basic game functionali-
ties in the shape of composable and reusable
classes (such as physics, game loop, etc.) used
inside game code.

C/C++,
Java, C#,
etc.

OO Section 2.2.4

late -
1990s

High-level game engines. Typically come in
the shape of tools that combine visual inter-
face with actual coding. The visual interface is
meant to deal with the common tasks of mak-
ing games (assigning path �nding properties
to game entities, placing the game models on
the map, de�ning the characters animations
�ow, etc.). Code is required to de�ne special
algorithms or game structures that are di�-
cult to express with just the visual interface.

SGL,
LUA,
GML,
Python,
Casanova,
etc.

Declarative,
Functional,
OO, Visual

Section 2.2.4

The fact that we classify a tool in earlier decades, does not mean that its philosophy is not used
anymore. All the categories of tools and systems presented in Table 2.1 are still to some extent in
use nowadays, with a tendency to use elements from older layers embedded into frameworks made
according to the newest layer considerations. It is also worthy of notice that for many systems
(independently of the level of abstraction) to achieve high performance multiple forms of ad-hoc
optimizations have to be done by hand.

In what follows we discuss the elements of Table 2.1. In particular, for each element we discuss
the pros and cons of using it, and show how one would implement the particle example presented in
Section 2.1.2.

2.2.1 Assembly language (hand made everything)

Assembly language [20, 25] is the closest language to machine code. As for machine code, programs
written in assembly can directly deal with CPU components such as registers. The goal of assembly
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is to provide developers an abstraction over the binary format of machine code without losing the
ability to directly manipulate hardware components such as the CPU or memory. This abstraction is
achieved since assembly uses mnemonic operands to implement machine code.

Between the 1950s and the early 1990s most of the games were written in assembly code. The
reason was that most of the games used to run on consoles, which used to come with limited hardware
resources in terms of storage and computational power. Because of these limitations assembly language
used to be the most suitable tool. Assembly instructions are limited in terms of CPU overhead and can
produce high speed programs that work with limited storage space. Later, as hardware became more
sophisticated and powerful, games started to feature higher level code such as C, con�ning assembly
to the graphics and most performance sensitive code. For example, in Commander Keen the logic is
written in C whereas code for drawing is written in assembly3.

Successful examples Among the games written in assembly we �nd all those written for the Atari
2600, Apple II, Commodore 64, Atari 800, SEGA Genesis, the SNES, etc. In Figure 2.1 we provide
some screenshots of games written in assembly.

Nowadays assembly is rarely used, since dealing with the low-level hardware components of the
computer is achieved by means of standardized libraries. However, we occasionally �nd some traces
of assembly code in libraries (although this is getting less and less common) from a few modern game
engines.

Particle example - Assembly We now show how the �particle� example presented in Section 2.1.2
could be have been written in assembly4. Speci�cally, since the assembly code necessary to express
the dynamics of our particle is not large, due to the intrinsic verbosity of the language, in Listing 2.1
we only present code for the position and velocity update.

Advantages The main feature of assembly is the ability to provide machine instructions to exactly
specify all that the hardware must do, in extreme detail. The absolute control over hardware allows
developers to write code with very high performance. This performance was crucial in games especially
when consoles featured limited amounts of computational resources.

Disadvantages As the code above demonstrates, assembly is very verbose even to express a very
simple operation such as updating the position of the particle. This is due to the fact that assembly
does not provide e�ective abstractions for expressing high-level behaviors. By using assembly, devel-
opers are left the only choice of using low-level constructs that are tightly related to the hardware.

This limited choice pushes developers towards developing code that requires a lot of e�ort to be
coded, as developers have to specify every single behavior of the hardware, including dealing with
CPU registers or other hardware components. As a result of this, the chances of making mistakes
are signi�cant. Portability is also limited, since the choice of the assembly version is derived by the
chosen hardware and di�erent assembly versions come with di�erent instruction sets.

Moreover, as CPU's become more powerful, bigger games and more complex low-level assembly
instruction sets followed. This has slowly made it impossible to contain development costs without
moving to more advanced tools with more sophisticated abstractions.

3https://github.com/keendreams/keen
4For this example we use the syntax of x86 assembly. The x86 assembly language di�ers from other assemblies, like

MIPS assembly for example, and is meant for the class of x86 processors.
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(a) Total carnage (1992) (b) Commander Keen � Keen Dreams (1993)

(c) Prince of Persia (1989) (d) RollerCoaster Tycoon (1999)

(e) NBA Jam (1993) (f) Combat (1977)

Figure 2.1: Some assembly games
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Listing 2.1: Particle velocity and position update in the Assembly lanugage

; 24 : p = p + v * dt;

lea eax , DWORD PTR _dt$[ebp]

push eax

lea ecx , DWORD PTR $T5[ebp]

push ecx

lea ecx , DWORD PTR _v$[ebp]

call Vector2_times ; Vector2 :: operator*

push eax

lea edx , DWORD PTR $T4[ebp]

push edx

lea ecx , DWORD PTR _p$[ebp]

call Vector2_plus ; Vector2 :: operator+

mov ecx , DWORD PTR [eax]

mov edx , DWORD PTR [eax+4]

mov DWORD PTR _p$[ebp], ecx

mov DWORD PTR _p$[ebp+4], edx

; 25 : v = v + Vector2(0, -9.81f) * dt;

lea eax , DWORD PTR _dt$[ebp]

push eax

lea ecx , DWORD PTR $T2[ebp]

push ecx

push ecx

movss xmm0 , DWORD PTR __real@c11cf5c3

movss DWORD PTR [esp], xmm0

push ecx

movss xmm0 , DWORD PTR __real@00000000

movss DWORD PTR [esp], xmm0

lea ecx , DWORD PTR $T3[ebp]

call Vector2 ; Vector2 :: Vector2

mov ecx , eax

call Vector2_times ; Vector2 :: operator*

push eax

lea edx , DWORD PTR $T1[ebp]

push edx

lea ecx , DWORD PTR _v$[ebp]

call Vector2_plus ; Vector2 :: operator+

mov ecx , DWORD PTR [eax]

mov edx , DWORD PTR [eax+4]

mov DWORD PTR _v$[ebp], ecx

mov DWORD PTR _v$[ebp+4], edx
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2.2.2 Game Creation Systems

A game creation system [33] is an expression tool designed around the domain of video games. The
goal of a game creation system is to make game development accessible also to developers with no
(or little) knowledge of computer programming, by simply allowing them to click buttons in a visual
interface to de�ne the entities of a game and their behaviors [26].

Game creation systems started to show o� in the early '80s, when consoles and desktop stations
started to became widespread. They were an exploratory parenthesis ahead of its time driven by the
excessive low-level of alternative systems. ConstructionSet-Pinball, Garry Kitchen's GameMaker, and
Adventure Construction Set (see Figure 2.2) are examples of such systems.

(a) ConstructionSet: Pinball (1983) (b) Adventure Construction Set (1984)

(c) Garry Kitchen's GameMaker (1985)

Figure 2.2: Some game creation systems

Typically, a game creation system focuses on a single genre of games plus a restricted set of similar
subgenres. This is due to the fact that di�erent genres share little logic. Therefore, expressing di�erent
game genres by means of just a visual interface (without the support of any programmable system)
is di�cult, if not impossible.

For adventure games we �nd: the inform language (1996), a text adventure language; Adventure
Game Toolkit (1987), a program for adventure games development; RPG Maker (1995) and The
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Bard's Tale Construction Set(1991), softwares for creating role-playing-games; The 3D Gamemaker
(2001), a software that allows users to make 3D FPS's and adventure games; Game-Maker (1991)
and Indie game maker (2014), general purpose software tools for game development. These tools are
mainly used by small groups of developers, sometimes even by single developers.

In Figure 2.3 we �nd some examples of games made with some game creation systems. Nowadays
game creation systems are used less when compared to the past. Among the most active creation
systems we �nd RPG Maker and Indie Game Maker editor.

(a) Pipemare (Game-Maker) (b) City of Chains (RPG Maker)

(c) Slouching Towards Bedlam (Inform 6)

Figure 2.3: Games built with game creation systems

Advantages By targeting speci�c game genres, game creation systems can provide a domain inter-
face that allows developers to e�ectively build a game with no knowledge of computer programming.
The design of such visual interfaces is meant to allow developers to quickly prototype and test games,
therefore reducing costs. Fast game prototyping, reduced game development costs, and domain inter-
faces are the main advantages of these tools.

Disadvantages Di�erent games implementing di�erent genres share little logic (for example, how
much can we recycle from a solitary game into a shooter game?). In order to deal with such di�erences,
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(a) Quake (1996) (b) Wolfenstein 3D (1992)

Figure 2.4: Some software rendered games

di�erent tools (each targeting speci�c genres) with ad-hoc interfaces were developed. Such di�erences
made learning these game creation systems relatively expensive: whenever a developer changes genres
he would have to learn another system. This task is not only time consuming but also is expensive in
terms of e�ort.

The same issues apply to the customization of games made with such tools. As games got more
and more sophisticated, the necessity for more powerful and expressive game creation systems piles
up. Game creation systems try to tackle the expressiveness limitations of their visual interface,
by extending/augmenting game creation systems with scripting facilities. Because of the lack of
standardization of such scripting facilities and their poor integration in the system (game creation
systems are not developed with scripting on mind), experienced developers prefer to choose more
powerful and standardized tools such as a game engine.

2.2.3 Graphics API

A multimedia API (Application Programming Interface), such as OpenGL [87] or DirectX [67], is
a set of routines, protocols, and tools. These API's were introduced in the early '90s for handling
multimedia tasks (such as GUI, input, etc.) standardized across a variety of hardware platforms.
Through appropriate abstractions developers could access the hardware of the computer, like the
GPU, and make their code portable to di�erent machines.

A graphics API is the best known example of a multimedia API centered around rendering tasks.
The evolution of graphics API's on personal computers followed a very fast evolution curve that
started in the '80s. Until the early '80s most of the graphics of games were written by manipulating
the VGA (video graphics array) pixel by pixel in assembly or in C. By providing developers an array
that represents the pixels of a monitor, developers could plot the desired colors into speci�c pixels
(writing into that memory area would also write to the screen). Further evolutions allowed developers
not only to deal with single pixels on the screen but also to draw textures, introducing the concept of
2.5D games, which featured 3D worlds rendered with no (or very limited) graphical hardware support.
Among these software rendered 2.5D games we �nd Wolfenstein 3D and Quake (see Figure 2.4).

The CPU load of software rendered games was a known issue. As the necessity of high performance
games and advanced 3D graphics started to become widespread among developers, modern GPU's
came in to help with graphics acceleration. Thanks to graphics acceleration developers could �nally
delegate rendering tasks to the GPU while o�oading the CPU. This made it possible to achieve higher
performance, since the GPU is designed to process graphics commands in parallel and has dedicated
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memory. Moreover, this would free the CPU to process game logic such as AI, physics, networking,
and other tasks, thereby signi�cantly improving the overall game experience.

Graphics API's for accelerated hardware In the early '90s, because of the increasing complexity
of GPU's, a new generation of graphics API's (Application Programming Interface) was introduced.
The goal of such API's was to abstract the complex hardware of modern accelerated GPU's in favour
of a high-level model of its behavior. Such a model would help developers with expressing graphics
directives with little e�ort, and help developers stay focused on the design of graphics e�ects algorithms
rather than having to think constantly about speci�c hardware details.

Among such API's we �nd IRISGLP, OpenGL (an improved version of IRISGLP), Glide, and
DirectX. Nowadays DirectX and OpenGL are the most used graphics API for rendering game contents.

FFP (�xed function pipeline) Abstracting the complex hardware of GPU's became possible due
to the introduction of the so-called FFP (�xed function pipeline). Fixed functions are a series of
functions that map directly to dedicated drawing logic that can only be used on GPU's designed to
support them. By editing a set of hardware switches, developers could customize those functions.
However, this customization comes with some expressiveness limitations, since editing the hardware
switches allows developers to customize single or small groups of instructions but not the fundamental
shape of the underlying algorithms. Moreover, since the hardware switches are shared among several
functions, making predictions on the algorithms behaviors became complex and hard: changing just
one switch might a�ect the behavior of the FFP dramatically.

These limitations pushed the community towards the development of a better abstraction mecha-
nism that would lift the arti�cial limitations of the FFP.

Shaders To overcome the FFP limitations, customizable pipelines were made programmable through
the system known as �shaders�, or �programmable pipelines�. By introducing shaders, which are small
programs that are run on the GPU pipline, developers could design their own algorithms and have a
clear control over the pipeline process.

With shaders, a developer could manipulate the pipeline in two di�erent processing stages: vertex
processing and pixel processing (Figure 2.5). For vertex processing, the developer has the task of
designing an algorithm for placing every game element from model space to world space. For pixel
processing, the developer has the task of designing an algorithm to draw the game elements that are
inside the frustum of the camera to the screen (pixel by pixel). New shader models have more stages
that are programmable.

Fixed functions vs Shaders Fixed functions represent the �rst attempt to make customizable
GPU pipelines by providing developers with a series of functions that can be customized to speci�c
drawing scenarios. Shader systems are programmable instead and allow developers to deal with
graphics data (or game geometries) by means of user-de�ned algorithms that de�ne how those graphics
data are transformed and rendered.

Particle example - FFP/OpenGL/C++ In Listing 2.2 we show a complete solution to the
�particle� example presented in Section 2.1.2 written in C++ and using OpenGL as graphics API
with the FFP .

Particle example - Shader/OpenGL/C++ To bene�t from shaders, the previous code requires
some adjustments. First we need to de�ne our vertex and fragment shader. In this example we wish
to change the color of our particle to green and to make it smaller.
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Figure 2.5: Drawing stages of modern GPU's
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Listing 2.2: Particle written with C++/OpenGL

#include <GL/glut.h>

#include "math.h"

Vector2 position = Vector2(0, 0), velocity = Vector2(0, 0.0001);

void glutInitRendering () {

glEnable(GL_DEPTH_TEST );

}

void reshaped(int w, int h) {

glViewport (0, 0, w, h);

glMatrixMode(GL_PROJECTION );

glLoadIdentity ();

gluPerspective (45, 0, 1, 200);

}

void update () {

position = position + velocity;

}

void display () {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );

glClearColor (0, 0, 1, 0);

glPushMatrix ();

glColor3f (0, 1, 1);

glTranslatef(position.x, position.y, 0);

glutSolidSphere (0.1, 23, 23);

glPopMatrix ();

update ();

glutSwapBuffers ();

}

int main(int argc , char **argv) {

glutInit (&argc , argv);

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH );

glutInitWindowSize (400, 500);

glutCreateWindow("Bouncing Ball");

glutInitRendering ();

glutDisplayFunc(display );

glutIdleFunc(display );

glutReshapeFunc(reshaped );

glutMainLoop ();

}
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� The following vertex shader scales all vertices in x and y direction.

Listing 2.3: A simple vertex shader

void main(void)

{

vec4 a = gl_Vertex;

a.x = a.x * 0.5;

a.y = a.y * 0.5;

gl_Position = gl_ModelViewProjectionMatrix * a;

}

� The following fragment shader sets to green the color of all pixels corresponding to the particle
on the screen.

Listing 2.4: A simple fragment shader

void main (void)

{

gl_FragColor = vec4 (0.0, 1.0, 0.0, 1.0);

}

Once the shaders are de�ned, we need to load them into a shader object within the glutInitRendering
function.

Listing 2.5: Loading the shaders

void glutInitRendering () {

glEnable(GL_DEPTH_TEST );

//SM is properly initialized variable of type glShaderManager

shader = SM.loadfromFile("vertexshader.vs", "fragmentshader.ps");

}

To use the shader object, we need (inside the display function) to call in order the methods
�begin� and �end� of the shader object and to put the actual drawing calls within these two calls
(Listing 2.6).

Advantages API's set a new stage in game development, by providing developers an easier ab-
straction experience compared to coding everything in assembly. By means of a shader, for example,
customizing the behavior of the GPU becomes more accessible. Moreover, hardware considerations
are, to some extent, hidden to developers. Indeed, developers are not required to master memory,
CPU vector instructions, etc. to achieve high performance, since every operation in a shader maps to
complex hardware instructions.

Disadvantages API's provide generic abstractions for game development that add a level of com-
plexity to the task of making games. A developer, in order to make a game, is now also tasked with
understanding and mastering the chosen API, which for many cases comes with its own domain spe-
ci�c languages for various internal tasks. Moreover, in many cases, developers are also asked to learn
and master other domains, like math, to e�ectively use the selected API, thus adding yet another
layer of complexity. For example, when dealing with shaders, math is important in order to apply any
form of visual e�ects, from basic linear algebra in vertex transformations to approximation of complex
integrals for lighting computations.
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Listing 2.6: Calling the shader

void display () {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );

glPushMatrix ();

glTranslatef(position.x, position.y, 0);

shader ->begin ();

glutSolidSphere (1.0 ,32 ,32);

shader ->end();

glPopMatrix ();

update ();

glutSwapBuffers ();

}

These layers of complexity make the learning curve of such API's steep, further a�ecting the costs
of game development.

2.2.4 Game Engines

A game engine [19] is a tool designed to abstract the development process of a game and is used to
develop games for di�erent platforms such as consoles, desktop PCs, mobile phones, etc.

The goal of game engines is to provide a series of reusable abstractions that can be composed in
order to provide an e�ective extension tool that allows the tackling of a variety of di�erent scenarios.
This composition property, coupled with a relatively low number of abstractions available, means that
we can now e�ectively face a variety of problems in game design without having to resort to building
everything from the ground up, or use a broad variety of di�erent tools, one per speci�c scenario.

Moreover, with the rise of 3D games and the increasing computational power of hardware in the
'90s, the complexity of games increased. Games started to implement features such as sophisticated
arti�cial intelligence, complex rendering e�ects, and networking, to satisfy consumers' needs that
added yet a further layer of complexity to the task of developing video games. Since these complex
features were di�cult to implement with traditional tools (due to their limited abstraction capabilities)
the necessity for more expressive tools with higher abstraction, and speci�cally targeted to the domain
of games mechanisms, became relevant. For this purpose game engines were developed. Typically a
game engine provides several components, each of which is designed for dealing with speci�c game
development tasks such as physics, levels editing, rendering, sound, AI, networking, localization, input,
etc.

Game engines became very popular in the mid-1990s after the ground breaking titles Doom and
Quake made their appearance. The success of Doom and Quake was so dramatic that other developers
and companies wanted to reuse elements of such games for their titles, so Id Software (and later Epic
Games's with the Unreal series) designed successive versions of their game codes with reuse and
extensibility in mind: �rst the game engine is implemented (made of composable and programmable
modules) then the game engine is used to implement the game. Some of the best known game engines
are OGRE, XNA, Blender, Unreal Engine, IdTech, and Source. In Figure 2.6 a series of games built
with some of these game engines are shown.

Game engines di�er from each other based on the level of detail provided to developers to control
and customize [9]. We group such engines in the following two categories:
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(a) Star Wars Jedi Knight: Jedi Academy (idTech3) (b) Quake III Arena (idTech3)

(c) Torchlight II (OGRE) (d) Magicka (XNA)

(e) Space Shift(jMonkeyEngine) (f) Half-Life 2 (Source)

Figure 2.6: Games built with custom engines
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� Low-level engines are engines where a series of libraries are provided within some frameworks.
These frameworks typically provide developers with basic games abstractions such as the game
loop, contents loading facilities, etc. Typically, low-level game engines give the most �exibility
and performance, but they are expensive to build and use, since the developer has to maintain,
program, and connect each component used in the engine. Customization is possible by means
of fully �edged, general purpose programming languages that are used not only to connect the
components but also to de�ne the logic of the game. XNA [80], Pygame [98], jMonkeyEngine
[64], Löve [6], etc. belong to this group of engines.

� High-level engines are sophisticated game engines that come ready out of the box. The goal
of such engines is to reduce the complexity of developing games by providing already made
components that do not need developers to adapt them or connect them, since they are already
connected and integrated in the engine. Developers are only tasked to use such components and
compose them, typically by means of a GUI, to build their games. Customization in high-level
engines is possible, but by mean of general purpose languages (GPL's). OGRE [95], Unreal
Engine [44], Torque Game Engine [66], id Tech [90], etc. belong to this group of engines.

Particle example - XNA/C# We now show a complete solution to the �particle� example pre-
sented in Section 2.1.2 written in a low-level game engine. Speci�cally, we use for this sample XNA
as game engine.

Listing 2.7: Particle written in XNA and C#

public class Particle

{

Vector2 particle_position ,

particle_velocity = Vector2.One * 100;

Texture2D texture;

public Particle(Texture2D texture)

{ this.texture = texture; }

public void Update(float dt)

{ particle_position = particle_position +

particle_velocity * dt; }

public void Draw(SpriteBatch sprite)

{ sprite.Draw(texture , particle_position , Color.White ); }

}

public class MyGame : Game {

...

Particle particle;

protected override void LoadContent ()

{

spriteBatch = new SpriteBatch(GraphicsDevice );

particle = new Particle(Content.Load <Texture2D >("circ.png"));

}

protected override void Update(GameTime gameTime)

{

// Logic code goes here ...
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particle.Update (( float)gameTime.ElapsedGameTime.TotalSeconds );

base.Update(gameTime );

}

protected override void Draw(GameTime gameTime)

{

// Drawing code goes here

GraphicsDevice.Clear(Color.CornflowerBlue );

spriteBatch.Begin ();

particle.Draw(spriteBatch );

spriteBatch.End ();

base.Draw(gameTime );

}

}

Advantages Game engines are a great result of applying software engineering techniques to game
development, such as composability and resuability, for the de�nition of a series of abstractions all
meant to reduce costs and to support developers into the de�nition of games and on a variety of game
design problems like de�ning advanced AI, networking, content, etc.

Disadvantages Despite their power, engines su�er from severe limitations. These limitations are
di�erent depending on the architecture of the engine: low-level and high-level.

Low-level engines lack game-speci�c facilities to create a game due to the fact that these engines
only o�er libraries meant for general usage (libraries are unaware of the speci�c context in which they
are going to be used). Building games then requires writing large amounts of complex game speci�c
code, such as a path �nder, optimizations, AI, etc. implemented by means of GPL's.

High-level engines provide a large amount of existing components that are a potential �t for many
games. Unfortunately, being able to e�ectively choose and use a high-level engine requires developers
to read large volumes of documentation.

Games that do not �t the standard components implementation can still be implemented, but this
requires customizing components. Typically, customizing such components is done by means of GPL's
and requires large amount of complex game speci�c code.

2.3 Discussion

In the previous sections we analyzed tools for making games and discussed their features. Moreover,
for every tool we discussed advantages and disadvantages of its usage. In the following, we provide
a summary of these features. Every item of the table is the result of grouping common features
among the di�erent, previously presented, tools. Indeed, for every item we also indicate what tools
are a�ected by it.

In the following we discuss every disadvantage and advantage introduced in Table 2.2.

Disadvantages

As highlighted by the variety of tools, no solution has so far proven to be de�nitive. Nowadays, we
see a variety of game development tools (Unity3D, Unreal Engine, MonoGame, etc.) each specialized,
or simply working better, on speci�c areas of the game development panorama. This variety of tools
is also motivated by the fact that many of these tools are little more than �major rearrangements�
of previous tools (see for example the Unreal Engine series). Each of these rearrangements, which
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Code Disadvantage Involved tools
D1 Verbosity Assembly
D2 Portability Assembly
D3 Learning curve API, Game en-

gines
D4 Speci�city Game creation

systems
D5 Performance Game creation

systems
D6 Gluing Game engines

Code Advantage Involved tools
A1 Writing Game creation

systems
A2 Reading Game creation

systems, API
A3 Optimization Assembly, Game

engines
A4 Interoperability Game engines
A5 Genericity Game engines

Table 2.2: Disadvantages and advantages of tools for game development

in many cases is simply the result of engineering trade-o�s, has the task of �xing or compensating
limitations of the previous generation. However, the lack of a disciplined, scienti�c approach has led
to some structural, recurring issues, which plague multiple systems across di�erent generations. In
the following we describe such issues, presented in Table 2.2.

Verbosity: the lack of high-level abstraction results into more e�ort needed to express certain
aspects of a game. This translates into additional costs to develop a game, as for example more
code yields more errors in logic or runtime errors, less maintainable code, etc. These costs becomes
even more severe when a tool is not meant speci�cally for game development, but is rather meant
for generic domains. For example, with a general purpose language (GPL) expressing game domain
speci�c behaviors, such as those depending on the �ow of time, will typically require developers to
write complex, possibly nested, state machines. This is a time-consuming, error-prone task.

Lack of portability: a tool that requires developers to include in their solutions aspects that depend
on the adopted hardware, or on some very tool-speci�c features, for example, in Unity3D entities in
a scene are accessible through dictionaries, will make such solution dependent on the given tool. This
translates into additional costs when supporting a variety of systems, as di�erent solutions become
necessary to address di�erent platforms given the same game logic.

Steepness of learning curve: a tool for game development that requires developers to include
in their thinking process some considerations, which are not directly related to the game itself, but
rather to the speci�c tool idioms, will require additional time to develop a game. This translates into
additional costs when developing a game.

Lack of customization: some tools come with speci�c interfaces that allow the de�nition of limited
game genres (sometimes even one genre per tool). This lack of customization makes tools bound to
speci�c genres and add constraints to the design space. As games and their genres evolve in complexity
more tools become necessary to express these changes. Moreover, mixing di�erent genres becomes a
challenging issue.

Low performance: some tools for game development are meant to express any sort of game, thus
using generic and composable containers and components (with basic functionalities) to express game
entities and their behaviors. Typically, such components are built in the tool, and instantiated by the
game scripts. When a tool starts featuring many of these components then run-time performance is
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a�ected negatively, due to the impact on cache coherency, virtual tables, etc. caused by abstraction
mechanisms of modern (OO) languages.

Gluing frameworks and libraries : as games evolve in complexity, tools which lack customization
facilities become less suitable to express such games. Thus, in order to deal with this issue, tools end
up allowing third party tools or libraries to interface with them. These third party tools or libraries,
which could be for example a scripting language, might not be aware of the tool mechanics or lack
smooth integration. Thus developers are supposed to understand the mechanics of both the external
tool and the main tool for developing the game, in order to e�ectively use them, plus a layer of �gluing�
facilities which are often complex in themselves. This ultimately adds additional costs (complexity
along common boundaries between the di�erent tools, etc.) to the task of making a game.

Advantages

The booming success of tools is motivated by some clear advantages that can be reaped. For many tools
these advantages are the reason of their success, as these advantages reduce the costs of developing
a game. We present these advantage below (they have already been introduced in Table 2.2). The
following advantages are scattered among all game development tools (and never available all at once
in a tool). These advantages should be taken as a source of inspiration for future generations of game
development tools.

Writing: a tool designed around the domain of games typically comes with some features designed
speci�cally around the de�nition of some game aspects. The goal of these features is to speed up the
process of expressing those game aspects by means of appropriate abstractions. These abstractions
are chosen such that less constructs will be needed to express, for example, a complex decision tree,
spatial indexes, etc. As a result, developing a game becomes less expensive, as less time and e�ort
will be required.

Reading: a tool designed around the domain of games typically comes with features to capture
some speci�c game aspects. These features positively a�ect verbosity, as less idiomatic elements �not-
related� to the game itself become necessary. This in return improves maintainability and readability,
as less idiomatic elements are necessary to express games logic. As a result, developing a game becomes
less expensive, since less time and e�ort are required.

Optimization: a tool designed around the domain of games typically comes with some features
designed around the runtime behavior of some game aspects. It is often the case that these features
are translated automatically by the tool into equivalent, but more e�cient, executable artifacts. For
example, a tool might optimize some queries5 in a game by adopting spatial indexes without the direct
developer intervention. As a result, costs are reduced as these typically complex optimizations are
streamlined, and code retains high performance and remains well readable.

Interoperability: a tool that allows interoperability with third-party tools, typically comes with
a series of boundaries or requires adapters. These boundaries or adapters are meant to maintain
the original tool identity even when interfacing it with third-party tools that come with di�erent
philosophies. As a result, costs are kept in check, since developers can now focus only on the chosen

5�Queries�, throughout this work, refers only to in-memory endomorphisms in the domain of collections of entities
and should not be confused with SQL-style database queries. This slight misuse of the term queries comes from the
fact that game engines share plenty of architectural considerations from DBMS's
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tool, and its philosophy, instead of breaking down the program into pieces, where each piece is designed
and implemented to include considerations of the di�erent external tools.

Genericity: a tool designed around the domain of general game development typically comes with
a series of building blocks that are designed generic enough to support a variety of speci�c games. To
build a game, developers are thus only tasked to properly combine such blocks to achieve the desired
result. Since the amount of building blocks to master is limited and since they tend to be broadly
applicable, developers can focus on the logic of the game and its design, and how to express it to the
lby always using the same set of primitives instead of a separate tool (and its accompanying building
blocks) per game or per genre. Therefore, the genericity of a general programming language for video
game development yields less cognitive stress due to a reduction in the number of building blocks
available. Therefore, by means of generic tools for general game development, developers can focus
on the core of the game development process which then becomes more e�cient, and thus also less
expensive.

2.4 The necessity for a domain speci�c language

So far, speci�c problems in games have been tackled with more and more domain speci�c tools (DST's)
such as Unity. The limits of such tools were made less dire with extensibility, usually by means of a
general purpose language (GPL). However these GPL's lack the domain speci�c abstractions of games,
leading therefore to highly complex code that is expensive to maintain and develop. Indeed, modern
GPL's are particularly weak when dealing with properties typical of the domain of games such as:
concurrency over shared resources among game entities, distributed code in networked games, e�cient
event handling, and time manipulation.

In order to continue our search for better abstractions it makes sense that we now focus on GPL's
in order to augment our domain speci�c tools with domain speci�c languages (DSL's) [74]. A DSL
is a specialized language [42], typically small and very expressive, aimed at solving only problems
within the chosen domain through an optimal choice of operators, abstractions, and level of focus.
Attention on DSL's has increased in recent years, since mapping all the requirements of games with
game tools exclusively is di�cult and expensive (this di�culty gets even higher when variations in
the requirements occur often, requiring to break the careful mixture of GPL code and tool settings
found so far). Research in game development is pushing nowadays towards the study of such DSL's
in order to provide additional support over di�erent game tools. By means of such DSL's, game tools
(and game development in general) would bene�t from the advantages de�ned above:

� Writing: a DSL provides domain abstractions that can, for example, speed-up the developing
process of a game and so reducing costs. This is also due to the fact that complex behaviors or
interactions in a game can be expressed in code with few domain-speci�c constructs.

� Reading: since the abstractions provided by a DSL are built ad-hoc around a domain (in our case
the one of video games), reading and maintaining code written with it becomes more intuitive.
Moreover, ad-hoc abstractions make code more compact; this positively a�ects readability as
less words are necessary to understand complex behaviors, leading to more e�cient use of the
reader short-term memory[12].

� Optimizations: since a DSL provides abstractions that capture complex domain behaviors or
interactions, these abstractions can be used by the tool supporting the DSL (typically a compiler)
to refactor the code in order to achieve better performance. As an example see how a DBMS
optimizes SQL code (in this case SQL is the DSL and the DBMS is the supporting tool).
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� Interoperability: a DSL is small and built ad-hoc to react to variations of the domain in question.
Thus, when a third party tool or library needs to interact with the game code, there are two
possibilities that preserve the DSL nature and allow such interoperability: (i) by means of
new constructs that capture the fundamental aspects of the third-party tool or library (these
constructs will make sense only in the context of the DSL in question), or (ii) by a layer that
is built at the compiler level and that acts as an adapter between the DSL and the third-party
tool or library (in this case the compiler should provide some clear and easy-to-use interface).

� Genericity: a DSL provides a series of generic building blocks designed around a speci�c domain.
These blocks are generic enough to support the variety of programs of the domain in question.
Since the number of blocks is limited, developers can focus better on the logic of the program,
instead of requiring them to learn di�erent tools to tackle needs of di�erent programs. This
results into less cognitive stress, which eventually leads to more productivity.

Of course by achieving the above advantages, the disadvantages fade out, as they are (to some
extent) complementary to the above advantages. For this reason we do not discuss them further in
this section.

It turns out from this analysis that we need a language to achieve the advantages and solve the
disadvantages presented in Table 2.2. In particular, it turns out that a DSL seems to be a valid
solution. In what follows, we present our solution to this problem. More in detail, we present a
concrete DSL (Casanova 2) and show how our DSL incorporates all the advantages while avoiding the
disadvantages listed in Table 2.2.





Chapter 3

The Casanova 2 language

In this chapter we present our solution to the problem of creating games, using a tool that avoids the
disadvantages listed in Table 2.2, without sacri�cing the advantages listed in the same table.

This solution comes as a series of proper abstractions built ad-hoc around the domain of games.
These abstractions come in the shape of general building blocks that can be composed into in�nite
shapes, with structural correctness as the only limitation. The reason for this limitation is the fact
that structural correctness helps developers to avoid errors, such as runtime errors, logical errors, or
compilation errors, by enforcing only compositions between building blocks that are reasonable for the
domain. In the following, we will provide an implementation to these abstractions, which comes in
the shape of a Domain Speci�c Language (DSL) called Casanova 2. The goal of Casanova 2 is to help
game developers in reaching their goals by substantially reducing development e�orts, with a special
bene�t for small and medium-seized game development teams.

We begin with a discussion to identifying the complexity of games code by introducing a case study.
We use this case study to identify issues in the way games are traditionally expressed (Section 3.1).
We then introduce Casanova 2 as a tiny, concurrency-oriented, game-centered language for describing
game logic, and show how the case study is expressed in this language (Section 3.2). We round o�
with the conclusions for this chapter (Sections 3.3).

3.1 Technical challenges in games development

In this section we discuss games and their complexity by means of a case study. We consider an
example showing the complex interactions that are typical for games, in the form of the state of the
game and its continuous and discrete dynamics.

3.1.1 Running example in pseudo-language

The running example we use is a patrol moving through checkpoints. This example features two sorts
of game dynamics in a minimal way: (i) continuous when the velocity is applied to the position of the
patrol at every game iteration; and (ii) discrete when the patrol chooses the next checkpoint after he
reaches the current one. The state of the patrol is made up by the position of the patrol P, and its
velocity V.

P is a 2D Vector

V is a 2D Vector

Checkpoints is a list of 2D Vectors

45
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The logic of the game is given using a pseudo language:

P is integrated by V over dt

V points towards the next checkpoint until

the checkpoint is reached , then becomes

zero for ten seconds (the patrol is idle)

A game is said to run as a sequence of time slices, called �frames.� A typical game runs at 30 to 60
frames per second. The pseudo code above describes the logic of the patrol, which runs every frame.
The logic shows a typical dynamic present in any game, which is made up by continuous components
(the update of P in our case) and discrete components (the update of V). As a result, P changes every
frame, while V only changes upon reaching a checkpoint.

Dynamics such as the one described above are built in games either with engines or by hand. Game
engines often provide already made components for typical game dynamics. However, game engines
are often di�cult to expand or customize, hence speci�c behaviors, such as the one described above,
will require developers to implement them by hand (possibly via a programming language). Thus, we
will now focus on the scenario when such dynamics need to be built by hand.

Hand made implementations A hand made implementation is used when developers (who are
looking for speci�c behaviors): (i) want to have more control over the game implementation, (ii)face
the problem that the support of the underlying platform is poor, or (iii) want to build anything that
is not readily supported by existing libraries or engines.

Hand made implementations raise important issues to be considered before starting a new project
since:

� Games tend to be very large applications. As size increases, the number of interactions between
game entities, or code modules, increases as well, together with the risk to make mistakes; and

� Hand made optimization adds complexity, because it requires supplementary data structures and
may subtly a�ect the actual game logic. Optimization may also lead to (i) implementation issues
(for instance some optimization may work only on speci�c architectures), and (ii) maintainability
issues (any change in the game design should keep into account its e�ects on the implementation).

We now present an example of a hand-made implementation of the patrolling dynamics following
the style of [76]:

class Patrol:

enum State:

MOVING

STOP

public P, V, Checkpoints

private myState , currentCheckpoint , timeLeft

def loop(dt):

P = P + V * dt

if myState == MOVING:

if P == Checkpoints[currentCheckpoint ]:

myState = STOP

V = Vector2.Zero

timeLeft = 10
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elif myState == STOP:

if timeLeft < 0:

currentCheckpoint += 1

currentCheckpoint %= Checkpoints.length

myState = MOVING

V = Normalize(

Checkpoints[currentCheckpoint] - P))

else

timeLeft -= dt

The loop function implements the patrolling behavior. It takes one argument, a dt, which represents
the delta time elapsed since the last frame.1

The very �rst line of the loop body implements the position update behavior. The velocity
behavior depends on whether the patrol is moving or idle. While moving, we stop the patrol as soon
as he reaches the checkpoint, and set the wait timer to 10 seconds. If the patrol is idle and the
countdown is elapsed, the next checkpoint is selected. At this point the patrol points toward the new
checkpoint and starts moving again.

3.1.2 Discussion

The patrolling sample illustrates what is often a semantic schism between design and implementation
in games. Deceptively simple problem descriptions turn out to require surprisingly articulated imple-
mentations. Complexity mainly originates from the explicit de�nition and management of a series of
spurious variables that are needed to program the logical �ow of the problem but which do not come
up in the design. In our case study, which is trivial, we already have spurious variables: myState

(together with the de�nition of the state structure) and timeLeft. Moreover, the if/elif structure, the
lookup in the array of checkpoints, and the % operator to avoid out-of-bounds errors, represent yet
more noise in the code, further obfuscating its meaning.

In the following, we introduce a game-centered programming language and discuss how to rebuild
the sample above with fewer spurious constructs, in a way that is closer to a higher-level, readable
description.

3.2 Casanova 2

Languages, in general, o�er more expressive power than engines, because of their ability to combine
and nest constructs. An engine typically can be thought of an already made machine that comes
with a series of �on-o�� switches and parameters. In order to obtain the desired behavior a developer
has to interact with these switches by turning them on and o� accordingly. However, expressiveness of
these engines and customization are limited, as the amount of possible states is limited by the amount
of available switches. A language is much more expressive than an engine, since it features a tree of
switches, with mutually recursive references: recursiveness allows the de�nition of potentially in�nite
amounts of combinations of these switches.

A language speci�cally designed and built with game programming in mind can help with common
aspects of game development (such as time, concurrency, and state updates) that regular languages

1The delta time of a game can be either �xed or variable. When �xed, each update moves all entities by a �xed
time period. This can facilitate some tasks such such as the one of debugging and testing, since every movement is
deterministic and thus predictable. When variable, each update moves all entities by an amount of time that is the
time di�erence between the last update and the current one. This gives the game an indication on how long it took to
process and draw the game state, and therefore how much the various entities should �move� on screen for the user to
perceive no mismatch between real-time and game-time.
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do not encompass. In this regard, we present the language Casanova 2, based on [70], which takes its
inspiration from the orchestration model of [77]. We show how Casanova 2 is designed in particular
to express the typical dynamics present in games.

3.2.1 The basic idea behind Casanova 2

An abstraction of a game should be able to represent its main elements, i.e., its state variables and
their (discrete and dynamic) interactions and nothing else (thus no noise). For this purpose, we built
an (intentionally) small programming language of which the main features are state and rules:

1. The state of a game is represented by a hierarchical type de�nition. Each node of the hierarchy
is called an entity (besides the root, which is called world). Each entity contains a series of �elds
that represent primitive types, collections, or even references to other entities. Through access
to shared data entities we achieve concurrent coordination.

2. The logic of each entity is de�ned as a series of implicitly looping blocks of declarative code. Each
block, called a rule, represents a speci�c dynamic of the entity. A rule represents a dynamic,
which can be continuous (simple and e�ect-free) or discrete (with limited side-e�ects, the most
important of which is wait).

3.2.2 The running example in Casanova 2

We can now show how to rewrite the patrol program presented in Section 3.1 using Casanova 2.

Listing 3.1: Patrol in Casanova 2

world Patrol = {

V : Vector2

P : Vector2

Checkpoints : [Vector2]

rule P = P + V * dt

rule V =

for checkpoint in Checkpoints do

yield ‖checkpoint - P‖
wait P = checkpoint

yield Vector2.Zero

wait 10<s>

}

The �rst three lines within the de�nition of Patrol describe the game state, containing three vari-
ables: the velocity V, the position P, and a checkpoint list Checkpoints. The next line gives the only
continuous dynamic, namely the rule P which runs once per frame, i.e., at every frame the position P is
integrated by the velocity V over dt (dt is a global value supplied by the system). The remainder of the
de�nition gives the only discrete dynamic, namely the rule V, which represents the movement between
checkpoints. The checkpoints are traversed in order, and for each selected checkpoint checkpoint we
change the value of the velocity in order to move the patrol towards it (yield checkpoint - P).
Then, we wait until the patrol reaches the checkpoint (wait P = checkpoint), and once the check-
point is reached we stop the patrol, by setting its velocity to 0 (yield Vector2.Zero) for 10 seconds
(wait 10<s>). At this point the loop continues and a new checkpoint is selected. We reiterate the
list again once we have traversed all the checkpoints.
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In Casanova 2, as shown in patrol example, a fundamental design aspect is the interruptibility of
any block of code through speci�c constructs. The wait construct interrupts for a given amount of
time, whereas the yield construct interrupts but also updates the value of the �elds declared on top
of the rule. The yield construct is the only way to produce an observable side e�ect. This means that
in order to transform the state of a game developers can only use the yield construct. Moreover, any
construct, such as if, for, or while, can be nested or combined with the yield and wait constructs.
Therefore, all such constructs can represent �atomic� operations, which can be executed all at once,
but also �real-time� operations, which take a (purposefully) much longer time to run to completion.
This matches the human intuition of terms such as �while�, for example in the sentence �while these are
enemies nearby, do stay under cover�. Such a mechanism would not be implementable with a �while�
loop in a traditional programming language, but would rather become a cascading �if-then-else� or a
�switch� as in the example above.

Another crucial aspect lies in the controlled propagation of side e�ects as a result of the execution
of rules. Each rule must exactly de�ne which �elds (of the entity it runs from) it will potentially
change. The rule may only read the other �elds, and also the �elds of the root entity and child
entities. As a consequence, communication between entities follows a strong, predictable, hierarchical
discipline. Compared to raising events, or even directly writing the �elds of child entities, this enforced
discipline prevents all the problems such as �callback hell�, cyclic events, or undesired chains of events.

3.2.3 Syntax

The syntax of the language (here presented in Backus-Naur form [96]) is rather brief. It allows the
declaration of entities as simple functional types (records, tuples, lists, or unions). Records may have
�elds. Rules contain expressions which have the typical shape of functional expressions in the study
of ML languages, augmented with wait, yield, and queries2 on lists:

Listing 3.2: Casanova 2 syntax

<Program > ::=

<moduleStatement > {<openStatement >}

<worldDecl > {<entityDecl >}

<moduleStatement > ::= module id

<openStatemnt > ::= open id

<worldDecl > ::= world id ["("<formals >")"] =

<worldOrEntityDecl >

<entityDecl > ::= entity id ["("<formals >")"] =

<worldOrEntityDecl >

<worldOrEntityDecl > ::= "{" <entityBlock > "}"

<entityBlock > ::= {<fieldDecl >} {<ruleDecl >}

<create >

<create > ::= Create "(" {<formals >} ") = <expr >

<formals > ::= id [":" <type >] {"," <formals >}

<fieldDecl > ::= id [":" <type >]

<ruleDecl > ::= rule id {"," id} "=" <expr >

<type > ::= int |boolean |float |Vector2

|Vector3 |string |char

|list "<" <type > ">" |<generic >

|<type > "[" "]" |id

2To make high order functions (HOF's), such as map, or �lter, simpler to write.
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<generic > ::= "'" id

<expr > ::= ...(* typical expressions : let , if ,

for , while , new , etc. *)

| wait (<arithExpr > | <boolExpr >)

| yield | <arithExpr > | <boolExpr >

| <literal > | <queryExpr > | <seq >

<seq > ::= <expr > <expr >

<arithExpr > ::= ...// arithmetic expressions

<boolExpr > ::= ...// boolean expressions

<literal > ::= ...// strings , numbers

<queryExpr > ::= ...// query expressions

In the above we omit the trivial expressions grammar, which follows typical syntaxes such as in
C#.

3.2.4 Semantics

The semantics of Casanova 2 are rewrite-based [62], meaning that the current game world is trans-
formed into another one with di�erent values for its �elds and di�erent expressions for its rules. Given
a game world ω, the world is structured as a tree of entities. Each entity E has some �elds f1 . . . fn
and some rules r1 . . . rm.

E = { Field1 = f1; . . .; Fieldn = fn;

Rule1 = r1; . . .; Rulem = rm }

Each rule acts on a subset of the �elds of the entity by de�ning their new value after a certain number
of steps of the simulation. For simplicity, in the following we assume that each rule updates all �elds
simultaneously.

An entity is updated by evaluating, in order, all the rules for the �elds, without guarantees about
the order of execution:

tick(e:E, dt) =

{ Field1=tick(f
m
1 , dt); . . .; Fieldn=tick(f

m
n , dt);

Rule1=r
′
1; . . .; Rulem=r′m }

where

fm1 , . . ., fmn , r′m = step(fm−11 , . . ., fm−1n , rm)

.

.

f1
1, . . ., f1

n, r′1 = step(f1, . . ., fn, r1)

We de�ne the step function as a function that recursively evaluates the body of a rule. The function
evaluates expressions in sequential order until it encounters either a wait or a yield statement. It
also returns the remainder of the rule body3, so that the rule will e�ectively be resumed where it left
o� at the next evaluation of step:

step(f1, . . ., fn, {let x = y in r′}) =

step(f1, . . ., fn, r′[x:=y])

3Notice that this is not the actual implementation. Speci�cally, rules can only iterate through a �nite set of subsets
of its body, so we can just index (with an integer) the active subset, instead of representing the remaining code explicitly
in memory.
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step(f1, . . ., fn, {if x then r′ else r′′; r′′′})

when (x = true) = step(f1, . . ., fn, {r′; r′′′})

step(f1, . . ., fn, {if x then r′ else r′′; r′′′})

when (x = false) = step(f1, . . ., fn, {r′′; r′′′})

step(f1, . . ., fn, {yield x; r′}) = x, r′

step(f1, . . ., fn, {wait n; r′})

when (n > 0.0) = f1, . . ., fn, {wait (n-dt); r′}

step(f1, . . ., fn, {wait n; r′})

when (n = 0.0) = step(f1, . . ., fn, r′)

step(f1, . . ., fn, {for x in y:ys do r′; r′′})

step(f1, . . ., fn,

{r′[x:=y];

for x in ys do r′; r′′})

step(f1, . . ., fn, {for x in [] do r′; r′′})

step(f1, . . ., fn, r′′)

3.3 Summary

The Casanova 2 language is an example of a domain speci�c language. Its goal is to abstract the logic
of games by means of a series of primitives and language structures designed to capture properties
shared among all applications in the domain of games.

Casanova 2 comes with syntax and semantics that are built around the domain of games. This
results into games that are closer to their high-level descriptions. For example, see the short game
described in Section 3.3.2, or the games listed in Appendix B.

In Section 7.2 an evaluation of our language is provided both in terms of performance and com-
pactness of game code.

A language like Casanova 2 can only be called suitable for its purpose if it leads to an executable
which has high performance. This means that it needs to be supported by a compiler that is able
to create such fast executables. The compiler of the Casanova 2 language is discussed in the next
chapter.





Chapter 4

Compiler architecture

In this chapter we discuss a concrete architecture of a compiler that implements the solution presented
in Chapter 3. More precisely, we present a compiler that not only captures the syntax and semantics
of the Casanova 2 language, but which also allows Casanova 2 games to run at high speed thanks to
domain speci�c optimization. This chapter is divided into three parts: the �rst part discusses the
compiler architecture and its internals (Section 4.1), the second part shows the speci�c generation of
the most pervasive constructs, state machines, at a high performance (Section 4.2), and the third part
shows to what extent the Casanova 2 compiler supports third party tools and engines (Section 4.3).

4.1 The structure of the Casanova 2 compiler

The syntax and semantics described in Chapter 3 are expressed in practice by means of a concrete
architecture. This architecture comes in the shape of a source-to-source compiler [51]. More precisely
the Casanova 2 compiler is a layered compiler, where every layer can be seen as a computational node,
and is tasked with performing speci�c tasks. Besides capturing the syntax and the semantics of the
language, the layers of the Casanova 2 compiler perform various kinds of transformations and checks,
such as type checking, or generating the state machines for the bodies of the rules.

This structure is e�ective since it allows developers, who are developing a new feature of the
language, to work only on one layer at a time, without breaking the others. Ideally, overlapping
between layers should be minimal in order to keep the compiler, and its layers, maintainable. In
Figure 4.1 a diagram shows the structure of the Casanova 2 compiler. In the �gure, every box
represents a layer performing a unique task. For example, the box Code generation transforms the
abstract syntax tree (AST) into actual code, such as C# code. The �arrows� indicate the direction of
the various transformations. For example, the arrow between the Parser and Type checker indicates
that the parsed AST, which is output from the parsing phase, is given as input to the type checker;
the type checker ensures that all the entities of the parsed AST respect the rules of the Casanova 2
type system. In the following, the various layers of Figure 4.1 are explained:

� Source code represents the source Casanova 2 game code.

� Parser transforms the game source code, which is given as a plain text �le, into an abstract1

tree instance, where each node of the tree denotes constructs occurring in the source code.

1The keyword abstract derives from the fact not every detail of the original syntax is represented explicitly. For
example the expression (1 + 2) + 3 is represented by the node Plus(Plus(1, 2),3). Note that the parentheses are not
mentioned. In this cases the parentheses are the omitted details.

53
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� Type checker checks if the structure of the parsed AST is consistent with the rules of the
Casanova 2 type system.

� Query optimization provides speci�c optimizations over typical predetermined query patterns.
For example, a query that �lters entities based on a predicate is transformed to perform the
�lter only if the entities populating the collection have changed state.

� State machine generation generates a state machine for every rule present in the source code.

� Semantics domain optimization provides some speci�c optimizations over typical structural pat-
terns, which are common and legible into their more convoluted, but faster, equivalents.

� Code generation transforms the results of all steps into executable code. The language of the
output is determined by the layer, therefore making the compiler adaptable. Moreover, this layer
is responsible for adapting the resulting code, so as to make it work with a targeted framework,
such as Unity3D. If no target framework is selected then an executable program (with a built-in
game loop) is generated.

Figure 4.1: The structure of the Casanova 2 compiler

4.2 Code generation

Now that we discussed the shape of the Casanova 2 compiler we can discuss how Casanova 2 programs
are executed by the machine. Every Casanova 2 program is converted into an equivalent one in C#.
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Currently the code generation layer supports C#, but in the future we could easily support more
languages, such as JavaScript, to run Casanova 2 directly in a browser.

The conversion of Casanova 2 constructs into a high-level, mature language, such as C#, is an
important advantage: it prevents the problems associated with low-level languages, like Assembly, in
the back-end phases of the implementation process.

Moreover, a signi�cant advantage of using a language such as C# is that there are di�erent
compilers for C# that compile it to di�erent platforms. This makes Casanova 2 programs portable,
since we can use the .Net compiler or the Mono compiler to generate assemblies that can run on
di�erent platforms, for example .Net can be used to generate games that work on Windows machines,
and same for Mono on Linux based machines.

In the following we discuss how Casanova 2 constructs are interpreted by our compiler in order to
produce an equivalent version of them by means of a targeted language, in this case C#. In particular,
we start this discussion with the data structures and functions that make up game entities, because
entities represent the core of a Casanova 2 program, and they contain everything we �nd in a game:
from the dynamics to the state (Section 4.2.1). The state, which is captured by attributes, is discussed
in Section 4.2.2; the dynamics instead, which are captured by rule, are discussed in Section 4.2.3.

4.2.1 Entities

In Casanova 2, an entity can be a simple entity (in this case we denote the entity with the keyword
entity next to the entity name), or the world entity (which is denoted with the keyword worldEntity

next to the world entity name).
Both the world entity and the simple entities, are transformed into C# classes. For example the

following Casanova 2 entities:

worldEntity Scene = {

...

}

entity Player = {

...

}

Are all translated into the following C# classes:

class Scene {

...

}

class Player {

...

}

Casanova 2 also supports inheritance, but only of Casanova 2 entities that inherit externally
imported classes. This form of inheritance can be very useful when supporting third-party tools. It
is common for game tools and engines to require users to inherit some external class, such as a class
implementing a MonoBehavior of Unity3D.

4.2.2 Attributes

Every entity in Casanova 2 comes with a series of attributes that compose it. An attribute in Casanova
2 has a name and a type. The type can be primitive, such as integer, or string, or can be made custom
(in this case a custom type can be either another Casanova 2 entity or an imported type, such a class
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type from a third-party library). When transformed to C#, attributes in Casanova 2 are treated
as C# attributes. In the following an example is provided, where an entity player contains three
attributes: Name of type primitive string, Position of type imported Vector3, and Faction of type
internal Faction.

entity Player = {

Name : string

Position : Vector3

Faction : Faction

}

entity Faction = {

...

}

In this case the attributes of the entity Player are translated into attributes of a class Player in C#.
The same holds for the entity Faction.

class Player = {

String Name;

Vector3 Position;

Faction Faction;

}

class Faction = {

...

}

4.2.3 Rules

In Casanova 2 a rule expresses the dynamics of one or more entities, by a�ecting the state of their
attributes. The rules of a Casanova 2 game are executed in order following a depth-�rst traversal
strategy: starting from the world entity we �rst run in order (top-to-down) the world entity rules, and
then we visit its attributes. For each attribute we �rst check if it is a Casanova 2 entity, if so then we
visit its instance, run its rules in order (top-to-down), then for each of its attribute we repeat again
the same behavior. We say that a game iteration is completed when starting from the world entity we
stop the above traversal, because we reached the last Casanova 2 instance of the game tree structure.
In Figure 4.2 we show a typical traversal of a Casanova 2 program, where four entities (World, X, Y,
and Z) are traversed and updated. In this case a game iteration is complete after we run, in order,
the rules (starting from the World entity): W1, X1, Y1, and Z1.

To avoid an instance to be traversed twice in the same frame, we use the keyword ref. The
keyword ref, which is placed next to an attributes name, is used to denote a virtual reference to
a Casanova 2 entity, the logical container of which is stored somewhere else in the game state. In
the following an example is provided. In this example a player is stored logically in the attribute
Players in the worldEntity, but in a turn based game we might need to track explicitly the current
player. Thus, in worldEntity we also have an attribute CurrentPlayer that references the current
player. Note the ref keyword next to CurrentPlayer; without it the current player instance would
be updated twice per frame: once when traversing the players list and another one when traversing
the current players attribute.
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Figure 4.2: An example of a traversal in Casanova 2. In this case, starting from the World we run the rules
of each entity by following in order depth-�rst the arrows 1, 2, 3, and 4.

worldEntity World = {

Players : [Player]

ref CurrentPlayer : Player

...

}

From the point of view of code generation, each rule is transformed into a method of the entity
container class. Each transformed rule receives a unique id and is run in order by means of an update
method belonging to the entity container class. In the following we show an example of a ball, to which
a gravity force is applied. The entity comes with a series of attributes: Position, Acceleration,
and Velocity. The force behavior is expressed by 4 rules: the �rst one (from the top) resets at every
frame the Acceleration vector, the second one adds to Acceleration the force of gravity, the third
one applies to Velocity the current acceleration, and the fourth one applies to Position the current
Velocity. Note how the order of execution is very important. For example if we swapped the �rst
two rules, then the ball would not move, since the acceleration would be equal to zero, when applied
to the Velocity.

entity Ball {

Acceleration : Vector3

Velocity : Vector3

Position : Vector3

rule Acceleration = yield Vector3.zero

rule Acceleration =

yield Acceleration + Vector3 (0f, -9.8f)

rule Velocity =

yield Velocity + Acceleration * dt
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rule Position =

yield Position + Velocity * dt

}

When compiling the Casanova 2 program above, the compiler generates a class Ball containing
the attributes given, but also adds multiple methods, distinguished by a unique id, one for each of the
rules in the entity. Moreover, an additional method Update is also added to this class. When called,
Update takes care of: (i) calling in order the rules of its instance, and (ii) traversing in order the
attributes of its instance and calling, for each attribute of type Casanova 2 entity, its Update method.
In case an attribute is a collection of Casanova 2 entities, then the Update method iterates each entity
belonging to the collection, and for each these entities the corresponding Update method is called. If
an attribute is denoted with the ref keyword, then the compiler will not generate any update call for
it. In the following we show how the Ball program is compiled to C#.

class Ball {

Vector3 Acceleration;

Vector3 Velocity;

Vector3 Position;

public void Update(float dt){

R0(dt);

R1(dt);

R2(dt);

R3(dt);

// Here we would , in order , iterate and update the

// Casanova 2 attributes belonging to this class

}

public void R0(float dt){

this.Acceleration = Vector3.zero

}

public void R1(float dt){

this.Acceleration = this.Acceleration + Vector3 (0f, -9.8f)

}

public void R1(float dt){

this.Velocity = this.Velocity + this.Acceleration * dt

}

public void R1(float dt){

this.Position = this.Position + this.Velocity * dt

}

}

However, not all Casanova 2 constructs can be transformed directly into C# constructs, or with
the minimal adjustments seen so far. In Casanova 2 each rule implements a series of instructions that
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can be interrupted whenever necessary. This interruption happens only by means of speci�c language
constructs, such as wait. Such constructs cannot be found in C# natively. However, by adopting
special constructs for altering the execution �ow of a Casanova 2 rule, it is possible at compiler time
to break the rule into small sequential pieces, each representing speci�c actions to run at a speci�c
time. This category of programs are typically referred as to state machines [45]. A big advantage of a
state machine is that it allows to achieve high-performance, despite the fact that when building state
machines, code typically loses important properties such as readability and maintainability. However,
We can ignore this because the resulting code is not meant for developers to be consulted, but only
for the machine to run. In the following we discuss how state machines are treated and transformed
by the Casanova 2 compiler.

4.2.4 Generating state machines for rules' code

In accordance to the good and established practices of modern (object-oriented) software engineering,
implementations of architectures similar to Casanova 2 for mainstream engines, such as Unity3D, are
based on a series of nested state machines. Nesting allows some measure of separation of concerns and
code reuse, and is therefore favored Unfortunately, nesting yields low performance because of repeated
state selections, one per level of nesting.

In contrast, the Casanova 2 compiler produces an inlining of all the nested state machines into a
single state machine with equivalent semantics, but faster runtime. The readability of the produced
code is negatively a�ected due to the many low-level considerations, and the lack of structural nesting,
which would otherwise help the reader with orienting himself in the original Casanova 2 code.

Flat vs non-�at state machines

In Figure 4.3 we show two equivalent state machines. The state machine in Figure 4.3a shows a
non-�at state machine P which is made up of three inner state machines: P1, P2, P3. Each of them
is running a series of operations, for example P1 runs A, B, and then C. The order of execution is
determined by the arrows. For example an arrow between A and B means: run B after A is done.
When the source of an arrow is a state machine containing other state machines, then the source state
machine must �nish �rst with its internal logic, before continuing with the target of the arrow, for
example, in our case the process C, which is marked with a double circle (meaning it is the last process
of P1), is the last process to run inside P1 before continuing with P2.

In the following a solution in pseudo code of the state machine in Figure 4.3a is provided. As we
can see a series of variable (StateP, StateP1, StateP2, and StateP3) is used to track the state of the
program P in order to select the current process to run. This allows the temporary suspension of the
program, for example due to a wait, and its resuming, without messing up with its logical execution
order.

Every process is run by means of the run_program function. The run_program function takes as
input a program, such as A, or B, and a continuation. The continuation instructs the given program on
how to behave when speci�c conditions are met. In our case all continuations are called after the cur-
rent program is done. For example the instruction run_program A (on done : StateP1 is 'B')

means: run program A and when A is done, set the state StateP1 to 'B'. In all our examples whenever
a program ends, its continuation sets the next state machine to run by assigning the appropriate state
variable. This simulates the �arrow behavior� described above.

This mechanism makes our formalism independent from any input program. Thus programs, such
as A or B, can be made of either simple instructions, or complex programs using multiple state machines.
What is common to all these programs is that once they are done, they all call a continuation that
alters that �ow of execution of the caller program.
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(a) A non. �at state machine

(b) The �attened state machine

Figure 4.3: A comparison of a non-�at state machine and its equivalent one

switch StateP:

case 'P1':

switch StateP1:

case 'A' -> run_program A (on done : StateP1 is 'B')

case 'B' -> run_program B (on done : StateP1 is 'C')

case 'C' -> run_program C (on done : StateP is 'P2')

case 'P2':

switch StateP2:

case 'M' -> run_program M (on done : StateP2 is 'N')

case 'N' -> run_program N (on done : StateP is 'P3')

case 'P3':

switch StateP3:

case 'Y' -> run_program Y (on done : StateP3 is 'Z')

case 'Z' -> run_program Z (on done : EXIT)

However, the above solution is expensive in terms of memory, since as the program scales in
complexity, the memory needed to track the intermediate states increases as well. The same applies
even more dramatically to CPU usage, since every switch requires the CPU to perform comparison
operations which do not scale in terms of performance: more comparisons yield to more CPU load,
and thus less performance.
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Ideally we wish to have fewer variables and fewer state selections in order to improve the perfor-
mance. More precisely, we wish to have one state machine, made of one switch, that captures the
complete logical execution of the program. In Figure 4.3b an equivalent solution to the state machine
proposed in Figure 4.3a is provided. Note that in this new solution we have only one state machine
(P123) containing all the processes of the non-�at state machine, and where each process of the �at
state machine is connected in the same logical order as in the non-�at version. In the following a code
for this state machine is provided.

switch StateP123:

case 'P1A' -> run program A (on done : StateP123 is 'P1B')

case 'P1B' -> run program B (on done : StateP123 is 'P1C')

case 'P1C' -> run program C (on done : StateP123 is 'P2M')

case 'P2M' -> run program M (on done : StateP123 is 'P2N')

case 'P2N' -> run program N (on done : StateP123 is 'P3Y')

case 'P3Y' -> run program Y (on done : StateP123 is 'P3Z')

case 'P3Z' -> run program Z (on done : EXIT)

In the code above we managed to reduce the number of switches necessary to track the program
state, without losing the logical execution order of the original program, since every process sets its
continuation when it is done. This code is less readable, as the nested layers are not visible anymore,
but it is faster to run. The compiler of the Casanova 2 language implements this second choice of
state machine, which is implemented by means of code analysis. Our code analysis, inspects the game
code to understand the nesting layers, and later uses this knowledge to implement a �at state machine
that executes the intended original logic. In the following we provide a complete description of this
optimization process.

Code analysis for state machines generation

At the compiler level every Casanova 2 rule block, which can be made up of di�erent blocks with
di�erent levels of nesting, is interpreted as a control �ow graph, which represents how the program
control is passed between the various di�erent blocks. Consider a Casanova 2 rule and its corresponding
�ow graph both depicted in Figure 4.4a and 4.4b respectively.

(a) A Casanova 2 rule; on the left its basic blocks are
identi�ed as B1, B1.1, B1.2, and B2.

(b) The �ow graph of the Casanova 2 rule.

Figure 4.4: A Casanova 2 rule code and its control �ow representation.
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As we can see, every block in Figure 4.4a has an input and an output. For example, B1.2 is
reachable only by B1, and leaving B1.2 can only bring the �ow to B2. Note also the dashed arrows that
appear in the �ow graph. A dashed arrow between two blocks means that changing the control takes
one frame to be completed. This behaviour corresponds in Casanova 2 to the yield statement, which
suspends the execution of the rule, for one frame, right after updating the targeted attribute(s). By
means of the �ow graph analysis we can represent all possible nestings of rules and their relationships.

We track in a table information about the �follows� relationship between blocks. We can use this
information to tell, when dealing with a sub-block, to whom it is supposed to return the control. For
example, in Figure 4.4a B2 is the block where any nesting after B1 should eventually jump to. Thus,
before compiling B1.1 and B1.2, B1 should inform the compiler that their exits must correspond to
B2. We can apply this process recursively and to any level of nesting. As a result, every block is aware
of which (other) block it is supposed to return the control to when it is done.

Moreover, the compiler always adds a last block called EXIT_BLOCK, which is always targeted when
leaving the last instruction of the outermost block of a rule. EXIT_BLOCK points to the entry block
of its rule. Block indexes are assigned incrementally, thus the �rst block is always indexed as 0 to
force the rule to repeat itself after it is done. This allows interpretation of all instructions (without
any modi�cation) with the same algorithm, since the exit index is always provided as input to the
recursive algorithm.

In the following, we provide the formal rules that show how the Casanova 2 compiler interprets
blocks and generates the corresponding state machine. In general, an expression that has the following
shape [[expr]]_exit => CODE means: transform expr to CODE; and use _exit as continuation to
when CODE is done.

Moreover, in the following rules the keywords goto and gotoSuspend are used to simulate the
temporal suspensions of Casanova 2 code. More precisely, a goto X instruction updates the state
of the current block to execute of the current state machine to X, and jumps to the case of the
state machine that corresponds to X; whereas gotoSuspend behaves similarly to goto, but instead of
jumping we return the control to the caller of the method containing the state machine (in C# we
simulate this behaviour with the return statement).

Interpreting a block of instructions We start with the rule that ignores the �rst simple expres-
sions of a block followed by a non simple one. A simple expression is an expression that does not
suspend the execution of the rule. Note that in the generated code we use _lb* and goto. _lb will
become a new case of the �at state machine, while * denotes that _lb must be fresh and never used
before (same applies for variables, in the following int x* stands for a fresh variable x with a unique
name). The goto construct instead tells the program to jump to the label indicated by its value (in
this case _lb_Es*).

The �rst simple rules of a block are collected into one case of the state machine, whereas the rest is
reinterpreted by the compiler into a di�erent case of the state machine. Note that when reinterpreting
the _exit is kept the same, since all these expressions belong to the same nesting level.

Rest can be none, one, or more expressions (simple or not). We omit some trivial cases, such as
when the block does not contain non-simple rules, or contains only simple rules, since they are trivial
to implement and follow the same shape as speci�ed below.

Listing 4.1: Interpreting block of instrutions

JSimpleExpression1
..

SimpleExpressionN

NonSimpleExpression

RestKexit
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=>

_lb*:

SimpleExpression1

..

SimpleExpressionN

goto _lb_Es*

_lb_Es*

JNonSimpleExpression
RestKexit

Interpreting a while loop A while loop generates a series of fresh labels, which are used to
determine where to goto when evaluating the condition. If the condition is false then we exit the
block, otherwise we continue with the body of the while. Note that when we interpret the body B we
assign as exit to it the fresh _lb*. This means that when the body is done it will jump back to _lb*

in order to perform the condition check again.

Listing 4.2: Interpreting a while loop

Jwhile C do

BK _exit

=>

_lb*:

if !C then

goto _exit

else goto _else*

_else *:

JBKlb∗

Interpreting a collection Iterating a collection resembles a typical for loop iteration with an index
variable, such as for(int i = 0; i < ..; i++) { .. }. Indeed we iterate the collection until the
index has reached the end. Note, similar to the while loop, when interpreting the body B we assign to
it as exit the label _lb*, where the block following _lb* performs the availability check of the next
item. When all items have been iterated, control goes to _exit.

Listing 4.3: Interpreting a collection iteration

Jfor a in A do

BKexit

=>

_for_lb *:

var counter* = -1

if A.length = 0 then

goto _exit
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else

var a = A[0]

goto _lb*

_lb*:

counter* ++

if counter* >= A.length then

goto _exit

else

a = A[counter *]

goto _else

_else *:

JBKlb∗

Interpreting an if-then-else Interpreting an if-then-else requires to generate two cases for the
state machine: one that deals with the then body, and the other one with the else body. Both the
then and the else blocks have _exit as label to relinquish control to when they are done.

Listing 4.4: Interpreting an if-then-else

Jif C then A else BKexit

=>

_lb*:

if C then goto _then*

else goto _else*

_then *:

JBKexit
_else *:

JCKexit

Interpreting an if-then Interpreting an if-then requires to generate one state machine that deals
with the then body. The then block has _exit as label to go to when it is done.

Listing 4.5: Interpreting an if-then

Jif C then BKexit

=>

_lb*:

if C then goto _then*

_then *:

JBKexit

Interpreting a wait with boolean condition A wait on a boolean condition keeps checking the
condition until it becomes true. When true we jump to _exit. Note the gotoSuspend construct,
which tells the state machine to resume from this block on next iteration, since the predicate is not
true.
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Listing 4.6: Interpreting a boolean guard

Jwait CONDITIONKexit

=>

_lb*:

if !CONDITION then

gotoSuspend _lb*

else

goto _exit

Interpreting a wait with a timer A wait on a timer counts down to 0 before moving the control
to exit. As long as the timer is greater than 0 we keep decreasing it by dt and suspend the rule to let
other rules perform their dynamics. Note that before starting to count down we �rst store the initial
value of the timer in order to not let other rules interfere with this timer.

Listing 4.7: Interpreting a timer

Jwait TIMEKexit

=>

_lb*:

var count_down* = T

goto wait_lb*

_wait_lb *:

if count_down* > 0.0 then

count_down* -= dt

gotoSuspend _wait_lb*

else

goto _exit

Updating an attribute When yielding (yield) we �rst update the attribute(s) which are a�ected
by the rule in question, then we call gotoSuspend with exit as label to jump to at the next frame.

Listing 4.8: Interpreting a yield

[[ yield E]] _exit

=>

_lb*:

set E

gotoSuspend _exit

Interpreting a rule The operation of interpreting the outermost block of a rule, denoted with
the symbol [J. . .K], generates an extra label (our _exit_block) that is used to simulate the in�nitely
repeating loop behavior of a rule. Note that when interpreting the body of the loop we use the J. . .K
operator that uses the interpretation seen so far.
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Listing 4.9: Generating the exit_block of a Casanova 2 rule

[JAK]

=>

_exit_block:

JAKexit_block

However the above rule tend to generate a large number of labels and goto's which can be reduced
in order to optimize the structure of the code. In the following we show two rules that are used in the
compiler to reduce redundant labels and goto.

Optimizing goto The �rst optimization reduces the number of trivial goto's i.e. those goto's that
jump to labels that are declared right after them. In this case the compiler traverses again the code
in search of this pattern, and whenever we have a match the goto is removed. As a consequence when
the control leaves that case it immediately falls into the next block.

Listing 4.10: Optimizing goto's

A

goto _lb

_lb*:

B

=>

A

_lb*:

B

Compacting labels The second optimization performed by the compiler reduces the amount of
consecutive labels into one. When compacting to one label, the compiler traverses also the sub-blocks
in order to change all the goto using the old labels into goto that reference the compacted one.

Listing 4.11: Compacting consecutive labels

_lbx:

_lby:

EXPR

=>

_lbxy:

EXPR [_lbx 7→ _lbxy ,

_lby 7→ _lbxy ]

Discussion With the rules seen so far we managed to convert the body of rule into a �at state
machine, disregarding its complexity and number of nesting. By manipulating only one state variable,
and by using low-level instructions, such as goto that compile to very few machine operations (such
as a single jump), we achieved a �at state machine that is computationally e�cient. Naturally, the
code maintainability of the generated sources is a�ected negatively, but this code is not intended to
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be read by developers, and is sound because of the rules above: every expression above has only one
unambiguous way of interpretation.

4.3 Supporting third-party tools and engines

Every entity has an update method, which is called by the entity that contains it. What about the
world entity? Where is its update called? We can integrate the call of the world entity into a so
called game loop. Such a game loop can be either provided externally or internally, as shown in Figure
4.5. In Figure 4.5 we show the only two types of game loops supported by Casanova 2: one provided
internally and the other externally.

When the game loop is externally provided, then a layer is necessary that adapts a Casanova 2
game, to make it work with an external game engine (see Figure 4.5a). Otherwise, when there is not
an external game loop, the Casanova 2 compiler generates an ad-hoc game loop that is independent
from any game engine (see Figure 4.5b), which keeps polling the Update method of the world entity
every 16 milliseconds. The choice of 16 milliseconds is due to the fact that there is no reason to run
the game loop faster than 60 frames per second, as most monitors have a 60Hz of refresh rate. This
parameter is easily con�gurable should there be reason for a higher framerate.

(a) In presence of an external game loop

(b) In absence of an external game loop

Figure 4.5: Representation of the input and output process of the Casanova 2 compiler w.r.t. the presence of
external game engines or frameworks.

This mechanism also allows Casanova 2 to be, to some extent, independent of speci�c frameworks
(it only depends on C#), since the language and its games are encapsulated and not aware of how
they are used or where they are included. Indeed, the only adjustment a developer is supposed to
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make, is to teach the compiler how to interpret the loop of each external platform, since every platform
comes with a di�erent way of dealing with the game loop: for example the loop of XNA/MonoGame
is di�erent from the one provided by Unity3D, and is yet again di�erent from the one found in Unreal
Engine. We implemented several examples of Casanova 2 applications that run on di�erent platforms
through the mechanism presented here, which we discuss in detail in Chapter 7.

Proxy system When interfacing with external libraries or frameworks, such as rendering or physics
engines, in order to maintain the Casanova 2 source code independent from the details of these libraries,
we need to use the so-called proxy system. The proxy system acts as an adapter between the Casanova
2 code and the external libraries and frameworks. The proxy system allows reuse of Casanova 2 code
along with di�erent libraries and frameworks. This way we can have the same game logic, written
in Casanova 2, used in Unity3D, MonoGame, or Unreal Engine at the cost of minimal impact on
the Casanova 2 sources. The proxies, each speci�c for one framework or library, will still need to
be written by the developers in order to successfully connect the Casanova 2 code with the external
library or framework.

In Figure 4.6 an example of a proxy is provided. In this example a Casanova 2 program imports
an external VisualPatrol, which comes with two public members: Position and Create. Note that
Casanova 2 is not aware of the concrete implementation behind the VisualPatrol, since in one case a
concrete VisualPatrol is provided by a program that uses the facilities of XNA framework, whereas
in the other case the program uses facilities from Unity3D.

Figure 4.6: Casanova 2 code interfacing with two di�erent frameworks, but both implementing the same proxy,
namely VisualPatrol.

A proxy system is meant to generalize over the aspects of the target library or framework that
are needed for the Casanova 2 program. This then ensures that the Casanova 2 program can re-
main the same, regardless of the external system used. Examples of concrete proxies interfacing
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a common library for game development can be found at https://github.com/vs-team/casanova-
mk2/wiki/Casanova%20Proxy.

4.4 Summary

In this chapter we discussed the implementation of a compiler for the Casanova 2 language. In partic-
ular, we discussed the structure of this compiler, and showed how this compiler interprets Casanova
2 programs, so as to generate code that exhibits fast runtime performance. Moreover, we discussed
how Casanova 2 programs interoperate with third-party tools and engines, by means of the so-called
proxy system. In next chapter, we will investigate further the opportunities o�ered by the domain of
games to improve even even more the performance of Casanova 2 programs.





Chapter 5

Compiler optimization

In this chapter we show a case study on how to improve the performance of the Casanova 2 language
runtime by means of domain speci�c optimization. Domain speci�c optimization arises from a series
of observations about recurrent patterns in code that, while being idiomatic and frequently used by
programmers in practice, exhibit undesirable runtime properties (i.e. they are too slow or use too
much used memory). The domain speci�c optimization is applied in the form of a series of heuristics
to recognize such idiomatic code and transform its semantics, to alleviate the negative properties. The
domain speci�c optimization thus allows programmers to write clear, readable, intuitive, idiomatic
code, but with the same desirable performance as hand optimized code (which is far more complicated
to handle). A typical example of domain speci�c optimization is found in the SQL family of languages.

Speci�cally, in this chapter we present a solution to the loss of performance in games that occurs as
a consequence of the encapsulation design pattern, which is generally used to keep code maintainable.

5.1 Maintainability vs. speed

Video games are composed of several inter-operating components, which accomplish di�erent and
coordinated tasks, such as drawing game objects, running the physics simulation of bodies, and moving
non-playable characters using arti�cial intelligence. These components are periodically activated in
turn to update the game state and draw the scene. When the game complexity increases, this leads
to an increase in size and complexity of the components, which, in turn, leads to an increase in the
complexity of developing and maintaining them, and thus an increase in development costs.

Since a video game, during its development, is in a continuous evolution, it is often the case that at
the end of its development the �nal design of the game is quite di�erent from the initial design. If not
tackled in advance this evolution will a�ect heavily the available resources, as non maintainable game
code will require considerable development time to be �xed and adapted to design changes. To alleviate
such costly changes, game code should be structured in a way that maintaining or restructuring it is
relatively painless.

According to [16], the typical life cycle of software implemented by means of a programming lan-
guage is: (i) building a prototype; (ii) designing a version of which code is readable and maintainable;
and eventually (iii) optimizing (after obtaining con�dence with the context and the problem) the
code from the previous point, to meet any remaining (often non-functional) requirements.

We can see that this cycle is applicable to game development as well: (i) building a game prototype
is always necessary to become con�dent with the context of the problem and the chosen tool; (ii)
designing game code that is maintainable and readable requires developers to abstract the problem and
to focus more on the high-level interactions of the game and its data structures; and (iii) optimizing is

71
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a common process in game development, for example in the case of performance optimization (which
is of high importance for games).

Regarding designing maintainable game code, this is usually done using software development
techniques. Software development techniques have been studied to improve software maintainability
and tackle complexity [30]. Encapsulation, which consists of isolating a set of data and operations on
those data within a module and providing precise speci�cations for the module [56], is an example of
a technique aimed at increasing code maintainability and readability

Indeed developing a game is a highly dynamic process [99] involving a wide variety of team members
with di�erent roles, such as designers, programmers, artists, etc. Design very often changes during the
development stage, as proven in several examples from the industry, such as Starcraft, Duke Nuke'em
Forever, and Final Fantasy XV [72]. Small changes to the design translate into considerable amount of
code. For example, since a game may feature many small entities, encapsulation forces those entities
to interact through speci�c interfaces. In Figure 5.1 we see an example. In the upper part of Figure
5.1 the class A has an explicit reference to an instance of type B. This means that A can interact with,
and know everything about, the internals of B. This entails that whenever a part of B changes, if A
uses that part as well, A needs to change too. In the lower part of Figure 5.1 an equivalent version to
the �rst one is provided, but in this case the shared aspects have been encapsulated, and are provided
by means of an interface, to A. This means that A only knows how to access the aspects of B it needs
via the interface IB, and whenever B changes, as long as the interface IB does not change, A does not
need to be noti�ed. Moreover, this mechanism allows the de�nition of di�erent implementation of IB
(see B1 and B2), which can be used in di�erent situations, without the necessity to change the code
of A.

Figure 5.1: The two diagrams show two versions of code structures: one which does not use encapsulation,
and the other one which uses encapsulation.

When calling methods of the interfaces, overhead is added due to dynamic dispatching [105]. Such
overhead ultimately a�ects the performance of games at runtime negatively, so a complete refactoring
that accommodates performance becomes necessary. Similar negative e�ects come from various design
patterns, which all add layers of indirection. These e�ects impact negatively cache coherency and force
CPU prediction failures [7].

What seems ideal is to have the advantages coming from both stages (ii) and (iii): game code
that is well maintainable and readable, while at the same time being fast at runtime. To this purpose,
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we investigated this problem and developed a solution that allows developers to write encapsulated
code in Casanova 2, which through extensive automated optimization turns source code into a high-
performance executable, thereby relieving developers from refactoring design structures by hand, thus
reducing the chances to make mistakes and the overall game development costs.

We start with a discussion on the focus of this chapter and related works (Section 5.2). Then we
discuss encapsulation and typical complex optimizations, which break encapsulation, by introducing
a case study. We use the case study to identify issues in using both the encapsulated and the opti-
mized code in Section 5.3. We then introduce our idea for dealing with encapsulation without losing
performance Section 5.4. We use this idea to propose a concrete implementation, with corresponding
semantics, within the Casanova 2 language in Section 5.5. Eventually, in Section 5.6 we discuss the
advantages of our technique.

5.2 Focus of the work and related works

The focus of this chapter lies exclusively within the restricted, non-general-purpose �eld of game
development (and its sibling, real-time simulations). This greatly narrows the scope of the optimization
problem, but also severely constrains the spectrum of possible solutions. To understand this, consider
that on a hand we have the deep complexity of the underlying mathematics of the physical aspects
of the game and the highly concurrent nature of the discrete logic; on the other hand, we have the
fundamental, pervasive non-functional requirement that no single update/draw cycle may ever take
more than 1/60th of a second in total. Whereas in other soft-real-time domains one might occasionally
accept a degradation of performance, provided that the variance of the distribution of computational
cycles is acceptably low, the game becomes a clear failure if frames are regularly delayed.

This very strict performance requirement automatically excludes a large number of (admittedly
beautiful and powerful) frameworks that in and of themselves would solve many architectural issues
that games do need to face.

The two frameworks that, however, are potentially suitable for our purpose of optimizing the speed
of game code (while still retaining encapsulation) are runtime dynamic machinery, and compile-time
code generators.

5.2.1 Runtime dynamic machinery

Highly dynamic frameworks typically make use of mechanisms that either feature large numbers of
dynamic/virtual calls, or rely on re�ection. The use of dynamic/virtual calls within a big hierarchy
of objects has a dramatic impact on performance because it severely disrupts cache coherency [101].
This is unfortunate, as it rules out the widespread use of design patterns such as decorators, and in
the functional programming world the extensive use of monads.

Re�ection mechanisms (for example re�ection in .NET [83]) tend to be even less e�ective than
mechanisms with large amounts of dynamic/virtual calls, as they combine the same number of cache
disruptions with the need to box/unbox everything and constantly check for the correct types of boxed
arguments. Among the frameworks that use this technique, we �nd (i) Proxies in C#, an aspects
oriented library supported by the .NET framework, and (ii) netty.io, an event driven framework for
networking. The overhead of these techniques makes it unfortunately very easy to exceed the maximum
allotted time of 1/60th of a second per frame, or requires to dramatically reduce the number of entities
processed by the game, which in turn results in a poorer game experience.
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5.2.2 Compile-time code generators

A more promising venue of investigation is that of compile-time code generators, which make it
possible to implement sophisticated, reusable meta-patterns such as those discussed above, but without
having to rely on expensive forms of dynamism. Examples of such generators are Haskell templates,
C++ templates, and macros in Lisp. The performance of these generators is clearly bound to the
performance of the underlying language. Performance is a very strict and stringent requirement within
our domain of focus, and so this immediately excludes frameworks based on languages such as Haskell
or Java that have less control on performance because of large amounts of boxing (in Haskell laziness
induces boxing [58]). Other frameworks o�er less disciplined meta-structures. For example, C++
templates lack a higher kinded type system that would allow us to constrain type parameters and get
some measure of control on error messages. While this might seem trivial, C++ templates are very
unwieldy to use and debug because the untyped replacement mechanism generates pages of errors at
the (correct) libraries only because they have been instantiated with the wrong parameters.

Moreover, hybrid frameworks, such as Treecc (an Aspect-Oriented approach to writing compilers),
force patterns on the generated code which make too much use of polymorphism. This partially
defeats the point of compile-time code generators for games, as it still causes performance issues such
as those outlined in [101].

Games choose runtime dynamic machinery via mostly object oriented design patterns, and re-
�ection when strictly needed. In the following section we discuss a short example to explain the
problem of encapsulation in games, and in the end we discuss the advantages and disadvantages of
using encapsulation when designing a game.

5.3 Encapsulation in games - an example

To illustrate the discussions hereafter, we now present a game that contains typical elements that are
often encountered in game development. The game consists of a set of planets linked together by
routes. A player can move �eets from his planets to attack and conquer enemy planets. Fleets reach
other planets by using the provided routes. Whenever a �eet gets close enough to an enemy planet
it starts �ghting the defending �eets orbiting the planet. The game can be considered the basis for a
typical Planet Wars strategy game (such as Galcon [3]).

In our running example, we assume that a Route is represented by a data structure containing (i)
the start and end point as references to Planets, and (ii) a list of Fleets traveling via such route.
Planet is a data structure containing (i) a list of defending Fleets, (ii) a list of attacking Fleets,
and (iii) an Owner. Each �eet has an owner as well. Each data structure contains a method called
Update, which updates the state of its associated object at every frame. Furthermore, we assume that
all the game objects have direct access to the global game state, which contains the list of all routes
in the game scenario.

According to the de�nition of encapsulation, data and operations on them must be isolated
within a module and a precise interface must be provided. Moreover, each entity is responsible for
updating its own �elds in such a way that it maintains its own invariant.

5.3.1 Design techniques and operations

In our running example the modules are the Planet and Route classes de�ned above, data are
their �elds. To support encapsulation, in the following implementation each entity is responsible
for updating its �elds with respect to the world dynamics. The operations for each entity are the
following:
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Planet: Takes the enemy �eets traveling along its incoming routes, which are close to the planet,
and moves them into the attacking �eets list;

Route: Removes the traveling �eets, which have been placed in the attacking �eets of the
destination planet from the list of traveling �eets.

class Route

Planet Start , Planet End ,

List <Fleet > TravellingFleets ,

Player Owner

void Update ()

foreach fleet in TravellingFleets

if End.AttackingFleets.Contains(fleet)

this.TravellingFleets.Remove(fleet)

class Planet

List <Fleet > DefendingFleets ,

List <Fleet > AttackingFleets

void Update ()

foreach route in GetState () .Routes

if route.End = this then

foreach fleet in route.TravellingFleets

if distance(fleet.Position , this.Position) < min_dist &&

fleet.Owner != this.Owner then

this.AttackingFleets.Add(fleet)

An alternative design, which does not use encapsulation, allows the route to move the �eets close
to the destination planet directly into the attacking �eets by writing into the planet �elds. In this
scenario the route is modifying data related to the planet and the route is writing into a reference to
a planet.

class Route

Planet Start , Planet End ,

List <Fleet > TravellingFleets

void Update ()

foreach fleet in this.TravellingFleets

if distance(fleet.Position , this.Position) < min_dist &&

fleet.Owner != End.Owner then

this.TravellingFleets.Remove(fleet)

End.AttackingFleets.Add(fleet)

5.3.2 Discussion

In our running example a programmer is left with the choice of (i) either using the paradigm of
encapsulation, which improves the understandability of programs and eases their modi�cation [91], or
(ii) breaking encapsulation by writing directly into the planet �elds from an external class, which, as
we will show below, is more e�cient but potentially dangerous [36].

As far as performance is concerned, in the encapsulated version, the planet queries the game
state to obtain all routes of which endpoints are the planet itself, and for every route selects the
enemy traveling �eets that are close enough to the planet. At the same time, a Route checks the list
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of attacking �eets of its endpoints and removes the �eets that are contained in both lists from the
traveling �eets. If we consider a scenario containing m planets, n routes, and at most k traveling �eets
per route, each planet should check the distance condition for O(nk) ships, thus the overall complexity
is O(mnk). The non-encapsulated version checks for each route the distance for a maximum of k ships
and then directly moves those close to the planet, for which the overall complexity is O(nk). Therefore,
the performance on the non-encapsulated version is better. One could argue that adding a spatial
index in the planet containing the incoming routes could lead to higher performance, however this
would break the SOLID (Single responsibility, Open-closed, Liskov substitution, Interface segregation,
and Dependency inversion) principle of Design Patterns, as a planet would contain information on
the topology of part of the map. In particular the Single Responsibility is violated, as the task of the
planet is less deducible.

As far as maintainability is concerned, in a game containing planets, many entities might need to
interact with each planet (such as �eets, upgrades, and special weapons). Assume that a special action
freezes all the activities of a planet. We have to propagate this behavior into the code of all the entities
in the game that may interact with a planet, disabling such interactions when the planet is frozen. In
the encapsulated version of the code, such behavior needs only be implemented in one place, namely
in the planet. In the non-encapsulated version, it must be implemented in each and every entity that
may interact with a planet. Moreover, if the developer forgets to make this change even in just one of
the entities, the game no longer functions correctly; i.e., bugs associated with planets might actually
�nd their cause in other entities. It is clear that the maintainability of the encapsulated version of
the code is much better than the maintainability of the non-encapsulated version.

The main advantage of using encapsulation is related to the maintainability of code, because
encapsulated operations that alter the state of an entity are strictly de�ned within the entity de�nition.
This helps to reduce the amount of code to maintain in case the entity changes the normal behavior of
an entity. In our scenario all the activities that alter the planet are inside the planet, so if we remove
(or disable) a planet then all its operations are suspended.

What we desire to achieve is the maintainability of encapsulated game code, combined with the
performance of non-encapsulated code. In the following sections, we show how this can be achieved
with Casanova.

5.4 Optimizing encapsulation

In this section we introduce the idea of a code transformation technique that changes encapsulated
programs into semantically equivalent, but more e�cient implementations. In particular, we will
discuss the idea behind how to optimize the lookups of those elements in the game that exhibit some
speci�c temporal behavior. Moreover, we will discuss where to implement such optimization.

5.4.1 Optimizing lookup

In our running example, the main drawback of the encapsulated version is that each planet has to check
all the �eets to see if they are close enough to move into the list of attacking �eets. An optimization
can be achieved by maintaining an index FleetIndex in Planet, containing a list of those Fleets that
satisfy the attacking property, i.e., being owned by a di�erent player and close enough to the planet.
When an enemy Fleet is close enough to a Planet, it is moved into FleetIndex by the Route, which
stores a list of traveling �eets. When FleetIndex changes, it noti�es Planet, so that Planet can
update AttackingFleets.

A predicate is a conditional statement based on one or more �elds of an object of a class A. We can
generalize the aforementioned situation by saying that encapsulation su�ers from loss of performance
whenever an object B needs to update one of its �elds depending on a predicate. B stores an index
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IA that is used to keep track of all possible objects of class A satisfying the predicate. Any object
of A has a reference to B and is tasked with updating the index IA of B. B checks IA every time it
needs to interact with the instances of A satisfying the predicate.

5.4.2 Optimizing temporal/local predicates

If we take into consideration the fact that predicates belong to (potentially hundreds or thousands)
entities in a simulation that exhibit similar behaviors (ships, bullets, asteroids, etc.) [31], we can
expect that some predicates will exhibit some sort of temporal locality on their values. We can group
those predicates, and their respective blocks of code, and apply an optimization that (i) keeps their
code block inactive in a sleeping collection, and (ii) activate only those blocks of which the predicate
has changed. In general, this would yield a higher performance without asking developers to write
the optimization code themselves.

5.4.3 Language level integration

The process described above can be automated at the compiler level as a code transformation, since
the index creation and management always follows the same pattern, and thus the compiler itself can
create and update the required data structures. Casanova 2, which is a game development oriented
language, ensures that variables are only changed through speci�c statements; this makes it possible
for the Casanova 2 compiler to identify patterns in code that are suitable for this optimization. The
Casanova 2 compiler optimizes the encapsulated implementation by creating and maintaining the
required indices. This way the code written by the programmer will keep the bene�ts of readability
and maintainability that encapsulated code holds, without su�ering from loss of performance or the
necessity to break encapsulation to manage the optimization data structures. In the next session we
present the compiler architecture and the transformation rules.

5.5 Implementation Details

Most games represent simulations of some sort. A property of simulations is a certain temporal locality
of behaviors [31]. This translates to the fact that some predicates tend to have a high chance of no
value change between frames.

To reduce the amount of interactions with the supporting data structures, and to achieve better
performance, we optimize those predicates that exhibit temporal locality, selected based on manual
annotations.

We will refer to a predicate on �elds that exhibit temporal locality as Interesting Conditions (ICs).
These predicates are stored in a data structure called the Interesting Condition Data Structure (ICDS).

ICs are used to identify, which blocks of code can be suspended and resumed with little overhead.
We use ICs at compile time to generate code that is able (through the support of speci�c data-
structure) to suspend and wake up with little overhead. This is schematically shown in Figure 5.2.

5.5.1 Casanova 2 rule

In Casanova 2 the state of a game changes only upon the execution of a rule. A rule is a block of code
acting on a subset of the entity �elds called domain, which has at least one yield statement and zero
or more wait statements. The former updates the value of the �elds of an entity, the latter suspends
the evaluation of the rule until its condition is met, temporally a�ecting the �elds update. The rule
body is re-executed once the end is reached.
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Figure 5.2: System Con�guration

An example of a rule that illustrates the wait statement (which speci�es that a shield is repaired
when it gets damaged) is the following :

rule Shields =

wait Shields <= 0

wait ShieldReloadTime

yield 100

5.5.2 Compilation - Recognizing ICs in Casanova 2

From here on we will refer to the wait predicate as an IC, since its value a�ects the update of an
entity with respect to the �ow of time.

We also include query conditions in our IC taxonomy. We can think of a query as an entity
containing a list of valid query elements that satisfy the where condition. An element adds itself to
the valid query elements only if it satis�es the query where condition (this is done by adding to its
rules a rule that starts with a wait on the query condition and ends with a yield that appends itself
to the valid query elements).

An example of a rule with a query (which selects ships that are not destroyed) is the following:

rule Ships = yield [from s in Ships do

where s.Life > 0

select s]

The e�ect of a yield is to suspend the execution of the rule for one frame and to assign the selected
query elements to the selected �eld. To achieve the optimization as described in the previous section,
the compiler uses an optimization analyzer (composed by a code analyzer and a code generator as
shown in Figure 5.2(h)), which requires the identi�cation of ICs in code. This is discussed next.

Casanova 2 allows interaction with external libraries and frameworks such as the .NET framework.
Because the analyzer cannot infer the temporal behavior of external libraries, we add the restriction
that an IC must be fully dependent on Casanova 2 data types. The restriction is necessary because
the analysis will lead to alterations in the structure of the game code and �eld creation, update, and
access. Given the informal considerations above, we introduce the following de�nitions:

� A suspendable statement is either a wait or a yield;

� A suspendable rule is a rule containing a suspendable statement. A suspendable rule is interesting
(ISR) if the wait argument is an IC or a yield on a query.

� An atomic rule is a rule that does not contain suspendable statements.
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We now present two algorithms that respectively check if a predicate is a�ected by an atomic rule
(Algorithm 1) and to build the ICDS (Algorithm 2). For brevity we do not present the procedure to
check if a rule is an ISR, which can be done by simply traversing the syntax tree of the rule body.

Algorithm 1 Check if a predicate is a�ected by an atomic rule

function Atomic(p)
E is the set of entities.
DFA← ∅
for e ∈ E do

R is the set of rules in e
for r ∈ R do

if r is an atomic rule then
for f ∈ r.domain do

DFA ∪ {(e, f)}
end for

end if
end for

end for
D ← set of (entity, field) in the predicate p.
return ∃x ∈ D : x ∈ DFA.

end function

Algorithm 2 ICDS construction

function buildICDS( )
ICDS ← ∅
E is the set of entities.
for e ∈ E do

R is the set of rules in e
for r ∈ R do

if r is an ISR then
p is the �rst interesting condition of r
if not Atomic(p) then

ICDS ∪ {(e, r.index, r.domain, p)}
end if

end if
end for

end for
return ICDS

end function

Given a Casanova 2 program, we build the ICDS data structure as follows: we iterate over every
entity; for every rule in each entity, if the rule is suspendable, interesting and the predicate does not
contain �elds that are a�ected by an atomic rule, we add the entity, the rule index, the rule domain,
and the predicate to the ICDS (See Figure 5.2(c)).
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5.5.3 Run-time e�cient sleep/wake-up system

We use the data structure generated by the analyzer to produce two distinct kinds of rules: atomic
rules (see Figure 5.2(b)) that are run every frame, and suspendable rules (see Figure 5.2(g)). Every
suspendable rule depends on an IC. Because of the property of temporal locality of rules that contain
ICs, they do not need to run at every frame. Therefore the game program should activate and
deactivate rules as needed at run time. The game needs to: (i) activate a suspendable rule when its
IC changes value, and (ii) deactivate a suspendable rule when its IC is not satis�ed (i.e., when it is
false). The game keeps a rule active as long as the evaluation of its IC is true. Suspendable rules
di�er from classic atomic rules in Casanova 2 since suspendable rules may become inactive, i.e., they
do not run during every update in the game loop.

We de�ne the Object Set (OBS) as the set of pairs made of an instance of an entity and its �eld,
that appear as arguments in an IC. Information used to build an OBS is collected by using the ICDS.
The idea behind the optimization is that, whenever the �eld of an element of OBS changes during the
game loop (see Figure 5.2(f)), we activate the corresponding Interesting Suspendable Rule (ISR) R by
triggering it (see Figure 5.2(e)).

We implement the previous behavior by means of dictionaries that keep track of the dependencies
among OBS and R. We use dictionaries in this implementation since they exhibit the best asymptotic
complexity with respect to the following operations: check, add, remove, and iterate. From now on
we will refer to one of these dictionaries as a Dictionary of Entity-Predicates (DEP).

We use the static information from the ICDS (see Figure 5.2(c)) to refer to the appropriate dictio-
nary, based on the shape of the IC, to generate unique names for dictionaries. For every �eld in the
predicate, we combine the name of the type of the object containing the �eld, the name of the �eld
itself, the entity containing the ISR, and the ISR index.

As key we use a pair made of the reference to the object containing the �eld of the IC and the
�eld itself. As value we store a collection of pairs made of the instance of the entity containing the
ISR and the ISR index. We use a collection because it might be the case that one or more instances
of the same entity type are pending on the same speci�c object �eld. In the example below the rule
in E waits on a �eld X in the world, and the world contains a collection of instances of E. When X

changes, all the rules of each instance of E waiting for X must be resumed.

world W =

X : int

L : List <E>

rule X =

wait 10

yield X + 1

...

entity E =

...

rule Y =

wait world.X % 2 = 0

...

An entry of the dictionary in the example would be (world,X), (L[0],rule Y).

5.5.4 Suspendable rules instantiate, destroy, and update

In order to maintain the suspendable rules we identify three stages that represent the life cycle of a
suspendable rule:
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� On creation: when we instantiate an element of which a �eld appears in one of the OBS pairs,
we use the instance and the �eld itself as a key to populate all its DEPs with an empty collection
as value. When we instantiate an entity of which rules are targeted by an IC, we add the pair
made of the entity instance and each targeted rule as a value in its DEPs;

� On destroy: when an instance appears either as a value or a key in one of DEPs, we remove
all the occurrences of the instance in DEPs;

� On update: when a �eld of an IC changes we notify the entities pending on it. After generating
the IC data structure, we can safely refer to the dictionaries relying on the fact that the generated
code is sound and will not produce errors at run-time. As a consequence of a noti�cation, the
ISRs involved in the noti�cation will be activated during the next frame (if they were inactive).
We add them to a collection representing the active rules of the entity containing the involved
ISRs (see Figure 5.2(d)). We group instances of the same target type into the same collection
to achieve better performance (we iterate the active rules all at the same time per type instead
of iterating them while iterating each entity). We store a collection in the world that contains
per entity all the suspended rules that are run during a game iteration.

Rules in Casanova 2 are translated at compile time into a series of switches without nesting within
functions that return void. ISRs return Done when the evaluation of their IC is false (stay inactive)
or Working when the evaluation of their IC is true (go active) or we are still busy with the execution
of the block after the IC. When a suspendable rule gets suspended, i.e., its evaluation returns Done,
we simply remove it from the active rules collection (see Figure 5.2(a)).

5.5.5 Query interpretation

We transform a query into semantically equivalent code where every entity appearing in the from

expression (source) adds or removes itself from an index stored in the entity containing the query
(target). We add or remove a source entity in the target index only if the condition is true. This is
done by generating a rule that waits for the condition to be true in the target entity. Applying our
optimization to queries means that we do not need to iterate conditions every frame: we keep the rule
suspended until the condition changes its value.

5.5.6 Examples

In the following we present three code snippets, and discuss brie�y how they are interpreted by the
aforementioned approach.

Example 1 The �rst snippet below, a suspended rule update, presents the entity E, which contains
a rule that waits until the condition C become true and a rule that updates C every �ve seconds. C

is an interesting condition and changes only occasionally, thus the associated rule, which updates F,
can bene�t from optimization.

entity E =

F : T

C : bool

rule F =

wait C

B

rule C =

wait 5.0f
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yield not C

Example 2 The second snippet, an atomic rule update, behaves similarly to the previous one,
except that C changes every frame. In this case C is an interesting condition, but the rule that changes
F will not bene�t from the optimization as C changes constantly.

entity E =

F : T

C : bool

rule F =

wait C

B

rule C = yield not C

Example 3 In the third snippet, a suspended query rule update, F is updated by selecting those
elements in Elems (a collection of elements of type S) that satisfy a condition C. C is a �eld in S which
changes every �ve seconds.

entity E =

F : [T]

Elems : [S]

rule F =

[for e in Elems do

where e.C

select e]

entity S =

C : bool

rule C =

wait 5.0f

yield not C

Our compiler analyses the query above so as to generate a rule in S that adds this to the collection
Elem in F, but only when the condition C is true. If the value contained in C exhibits some temporal
locality then the compiler will optimize the new generated rule so as to check the value of C only when
C is updated.

entity E =

F : [T]

Elems : [S]

entity S =

ref SourceE : E

C : bool

rule SourceE.F =

wait C

yield this @ SourceE.F
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5.6 Summary

Game developers often have to choose between maintainability of their code and speed of execution,
a choice that more often than not �avours speed over maintainability. By using encapsulation, game
code may be written in a maintainable way, but compilation of encapsulated code in general-purpose
languages often leads to slower games. We proposed a solution to the loss of performance in encap-
sulated programs using automated optimization at compile-time. In this chapter, we presented an
implementation of this solution in the Casanova 2 language. In Section 7.2 an evaluation of Casanova
2 is provided both in terms of performance and compactness of game code.





Chapter 6

Designing games with Casanova 2

In this chapter we discuss how to design and make games in Casanova 2. We begin with an introduction
of the basis ingredients for making games in Casanova 2 (Section 6.1). These ingredients are meant
to introduce the fundamental elements that are necessary when designing a game in Casanova 2. We
then use these elements to describe a general design for building real-time strategy games (Section
6.2). Eventually, we use this design to implement a concrete real-time strategy game (Section 6.3).

6.1 Casanova 2 games basis ingredients

Casanova 2 is a language designed to capture common aspects of video games by providing domain
speci�c constructs. By composing these constructs it is possible to encode di�erent programs for
di�erent video games.

The space of encodable programs is gigantic in scope, and a programming language typically
narrows this scope by coming up with a limited amount of constructs and their combinations. This
narrowing function of programming languages is needed to make the problem of encoding programs
tractable in practice by human programmers, but of course it comes at a cost. While some programs
become easy and clear to express in a given language, many more programs cannot be encoded easily
and sometimes cannot be encoded at all. A language such as Casanova 2 covers well the expression
of some speci�c programs, but does so at the expense of others.

We now turn our attention to informally estimating what sort of narrowing function is performed by
Casanova 2 on the domain of encodable programs. This means identifying the idioms that Casanova 2
proposes and implicitly tries to enforce. These idioms encompass all those programs and functionalities
that are �easy to write�. The collection of these idioms de�nes a path of least resistance for making
games in Casanova 2, leading to fundamental design guidelines of games built with the language. The
idiom of Casanova 2 is based on the fundamental concepts of entities, attributes, and rules. Entities
and attributes represent the static structure of a game, i.e., the rigid elements of a game that do not
change during its life time. Rules represent the dynamic parts of a game, i.e., the moving parts of a
game that continuously change during its life time.

6.1.1 Entities

In Casanova 2, the scene of a game, which is made up of a structured collection of elements, is
captured by the so-called game entities. Game entities are always grouped into a graph structure, the
entry point of which is an entity called worldEntity. We can think of the worldEntity as the entry
point of a game, which contains all the visible and abstract elements of the game. Visible entities

85
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are the concrete parts of the game, which typically appear in the early stages of the game design.
Among these visible entities we can �nd entities such as a soldier, a rock, a car. Abstract entities
are those elements in a game that we typically cannot see, since they work in the background. For
example, an abstract entity might be used to perform some background operation, such as a battle
entity instantiated to referee a �ght between two players. Abstract entities are less intuitive than the
visible ones, since they might not be explicitly part of the design itself.

In the following code listing we introduce a game, which is made of an outer container Galaxy (the
root of this game structure), a visible Player entity, a visible Planet entity, and an abstract Link
entity, which will be used to connect two di�erent planets (in this case a player can travel the galaxy
only through links).

worldEntity Galaxy = {

...

}

entity Player = {

...

}

entity Planet = {

...

}

entity Link = {

...

}

6.1.2 Attributes

Every entity is made of a series of characterizing attributes that specify how data is stored. When an
entity is instantiated, space is reserved in memory to store the values of its attributes. The values of
the attributes of an entity are called state of the entity. The state of the game is then the union of all
states of all entities populating the game.

Every attribute can either be a primitive value, such as a number, or a reference to a derived
type, such as a Casanova 2 entity or an external imported class. Primitive types are typically atomic,
whereas derived types are compositions of other types.

When referencing a Casanova 2 entity, the developer must distinguish whether the attribute is
a foreign or a primary reference. Primary references represent the �is composed of� relationship,
whereas foreign references represent the �knows about� relationship. This distinction is important for
the compiler, to avoid an entity to be updated more than once per frame in the presence of cyclical
references, and for the developer, to distinguish dependencies and structure. By default all attributes
in Casanova 2 are primary. If a developer wants to declare an attribute as foreign then he has to add
the keyword ref next to the attributes' name. As in the database literature [34], a foreign reference
is used to declare a weak link between two entities, whereas a primary reference is used to distinguish
unambiguously an entity from another. For example the position of a planet is primary, whereas its
owner could be foreign, since a planet can be owner-less.

Attributes are the only way in Casanova 2 to simulate containment of entities (if B is logically
contained in A, then A must have an attribute of type B). Moreover, by default every entity (except for
the world entity) has a foreign and implicit attribute that references the world entity, since referencing
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the world entity explicitly is not possible in Casanova 2. This constraint enforces the meaning of the
world entity, which represents something intrinsic and always available in the game to every other
entity.

In the following code listing we continue building upon the example given in the previous section to
show how attributes can be used to determine the structure of entities and their logical organization.
In this example the player(Player), the collection of available planets ([Planet]), and the collection
of the allowed links between planets are all stored in the Galaxy world entity.

Every planet has at least an optional Owner, a Name, and a Position. When conquered, a planet
changes its owner, to reference the player who just conquered it. Note that Owner in Planet is marked
as ref, which means that Owner is a foreign attribute, thus is just used to establish the link between
the player and the planet, because the owner is not a part of the planet itself.

Every link is directed and connects two planets by two foreign references, each per planet.

worldEntity Galaxy = {

MainPlayer : Player

Planets : [Planet]

Link : [Link]

...

}

entity Player = {

Name : string

...

}

entity Planet = {

ref Owner : Option <Player >

Position : Vector3

Name : string

...

}

worldEntity Link = {

ref From : Planet

ref To : Planet

...

}

As for entities, attributes not only capture visible aspects of a game, but also the invisible or
abstract ones. An example of a visible aspect of a game, which is captured by an attribute, is the
number of current lives of a player. The number of current lives of a player is typically displayed on
the screen and stored inside the players entity.

...

entity Player = {

Lives : int

...

}

Another example of a game aspect captured by an attribute, but this time abstract, is the time it
takes for a player's ship to move from one planet (CurrentPlanet) to another (Destination), after
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the engine is started (when EngineStarted is true). In this case, the attribute (TimeLeftToArrive)
is an abstract concept, internal to the ship, meant to internally simulate the travelling time.

...

entity Ship = {

EngineStarted : bool

TimeLeftToArrive : float

...

ref Destination : Option <Planet >

ref CurrentPlanet : Planet

...

}

6.1.3 Rules

So far we discussed the capturing of game elements, by means of entities, and how to �ll them with
data, by means of attributes. Without any sort of dynamic logic the game state will never change,
thus it would keep the same values for ever. But a game is a dynamic system where all entities move,
and interact with each other. Thus, to achieve such dynamism we need to change the state of the
entities populating the game.

In Casanova 2, the state of an entity can only be changed by means of a rule. Indeed, rules are
the only machinery able to perform the dynamics of a game. Every rule belongs to one instance of
a game entity, and is de�ned inside the entity declaration of such instance. Thus, the moment an
instance disappears from the game state, the associated rules will stop a�ecting the game state. A
rule has a limited e�ect, which means that it can change limited portions of the game state. Indeed,
when de�ning a rule we must also declare what attributes of what entities are a�ected by the rule.

The dynamics of a rule are expressible via a block of code, which can be executed either atomi-
cally, or discretely.

When atomic, the code of a rule is executed all at once without interruptions. Continuous rules
capture those aspects of a game that are always true and cannot be interrupted, such as gravity, or
the current �nancial value of a city in a city simulation game.

In the previous example, we could de�ne a rule that applies continuously a velocity to the ship's
position. In this case the rule a�ects the Position attribute of its instance (our ship) by applying,
every frame, the current Velocity.

...

entity Ship = {

...

Position : Vector3

Velocity : Vector3

rule Position = yield Position + Velocity * dt

...

}
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When discrete, the �ow of a rule is not continuous. Thus, it can be interrupted, for example
to wait for an external condition to happen. Discrete rules capture those aspects of a game that
takes a long time and various real-time decisions to complete, and thus need intermediate steps, the
completion time of which may be unknown or might take some time, to be completed such as spawning
an entity, a timer, or behaviors that require synchronization between two di�erent entities.

Be means of discrete rules we are able to de�ne a rule that waits for the ship to have a targeted
planet, and once the engine is started it sets up the velocity and the arrival timer. Once the ship is
arrived the timer and the velocity are set to zero. Note the second discrete rule, in the following code
listing, which is working in strict synchronization with the �rst one. This rule keeps decreasing the
arrival timer by dt whenever the arrival timer is greater than zero (this rule is actually simulating a
countdown behavior). Without this rule, the �rst discrete rule would end up in a starvation situation.

...

entity Ship = {

EngineStarted : bool

TimeLeftToArrive : float

ref Destination : Option <Planet >

ref CurrentPlanet : Planet

Velocity : Vector3

rule TimeLeftToArrive , Velocity =

wait EngineStarted && Destination.IsSome

yield GetTime(Destination.Value , CurrentPlanet),

GetVelocity(Destination.Value , CurrentPlanet)

wait TimeLeftToArrive < 0

yield 0, Vector3.zero

rule TimeLeftToArrive =

wait TimeLeftToArrive > 0

yield TimeLeftToArrive - dt

...

}

So far we have seen the fundamental idioms that compose any Casanova 2 game. By composing
them and following the good practices suggested above, we can build di�erent kinds of games. In order
to show the quality of our idioms and their generality in practice, we now show a concrete example
of a game design captured by means of our Casanova 2 idioms. More precisely, we will discuss the
real-time-strategy (RTS) game genre, and will provide a concrete example of its implementation.

6.2 Building RTS games in Casanova 2

In the video game industry real time strategy (RTS) games are one of the most popular genre [28].
Moreover, RTS games are used as frameworks for many di�erent kinds of serious scenarios, such AI
simulations [23], simpli�ed military simulations [22], and learning [86].

Thus, because of its relevance, especially for the serious games scenario, in this section we will
focus our attention on the development of games belonging to this genre in Casanova 2.

We will use this section to show to what extent the idioms presented in the previous section are
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good at capturing complex game designs. We will �rst discuss a general taxonomy for RTS games
(Section 6.2.1) and show how Casanova 2 idioms cover such taxonomy (Section 6.2.2). Then we will
use the implemented taxonomy to build a concrete game (Section 6.3).

The game discussed in this section is based on the design of an already existing video game called
Galaxy Wars, a real-time space strategy game. This design of such game is discussed in Section 6.3.

6.2.1 An analysis of RTS games

Implementing an RTS requires writing code for all of the common game elements such as units, battles,
movement, production, resources gathering, statistics, etc.

We identify the common game elements of an RTS by mean of a taxonomy [4]. In this paper a
design pattern which we call RAA1 (resource, actors, action) is introduced for representing RTS'. In
particular the design e�ectively describes any RTS game in terms of:

� Resource, which is any kind of game statistic. A statistic might represent a numerical value of
a battle, or the cost to deploy a unit, etc.

� Actor, which is any kind of game element that contains resources. We distinguish di�erent
entities by their resources and actions.

� Action, which describes an interaction, is used to describe the �ow of resources among entities.

Whereas the de�nition of action given above covers generic types of interactions (like the attack of
a ship, or the percentage of construction) special attention should be given to the speci�c sorts of
actions that are common to all RTS games. We identi�ed these special actions in terms of: creation,
deletion, and strategy update:

� Creation An entity is created after some conditions in the game world are met. A condition
could be for example the player who decides to create a �eet to attack an enemy player, an
automated spawner that after a certain amount of time creates a unit, etc. Furthermore, the
creation of an entity typically consumes some game resources of the player. If the resources are
not enough then creation will be postponed or not allowed at all.

� Deletion Analogous to creation, an entity is deleted after some conditions in the game are met.
A condition could be for example during a battle the life of the entity is lower or equal to zero.
Entities removed from the game world are not able to interact with other entities.

� Strategy update During the life time of an entity it often happens in an RTS that the entity
changes its behavior. For example a resource gatherer unit mainly collects resources, but if
necessary it can also attack; a �eet moving around the world might eventually end up in the
local �eets of a planet or take part in a battle. All these actions di�er from each other, indeed
their logics a�ect di�erent sets of resources even though the entity remains the same.

Next, we discuss how express the just introduced taxonomy in the Casanova 2 language.

6.2.2 Abstracting RTS games in Casanova 2

In this section we show how Casanova 2 can implement the RAA pattern, and also extend it with the
special actions (CDU): creation, deletion, and strategy update. More speci�cally, for each element of
this pattern we will provide an abstraction that captures it by means of some Casanova 2 constructs.

1In the original manuscript this taxonomy is called REA [4], but to avoid ambiguity with the de�nitions of Casanova
2, we will refer to resources as resources, entities as actors, and actions as actions.
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Resources

Resources can be modelled as a Casanova 2 entity with no rules, and a �eld for each of the resources
used in the RAA pattern. In a game we might have di�erent resource entities for di�erent groups of
resources. We de�ne a resource entity by �rst de�ning its name ResourceName and then by listing
the resources contained in it. A resource in Casanova is a �eld and it is de�ned as a tuple Resource
* Type where the �rst item refers to the �eld name while the latter refers to the �eld type. In the
following code listing we show a generalized description for a generic resource entity.

entity ResourcesName =

R1 : T1
R2 : T2
...

Rn : Tn

Actors

RAA entities can be modelled directly as Casanova entities. An actor will contain the Resources

(of type ResourcesName) and a series of rules that will act as the constant, mutable, and threshold
actions of RAA.

entity Actor =

Resources : ResourcesName

// constant actions

// mutable actions

// threshold actions

Actions

Following the RAA pattern, we divide the actions into 3 categories: (i) constant transfer, (ii) mutable
transfer, and (iii) threshold transfer. We model RAA transfers as rules in Casanova.

An action in RAA simply connects a source and a target. In Casanova the source is the action/rule
container while the target is an entity containing a �eld that refers to the source. The target checks
the source reference whenever it needs to interact with it. More speci�cally, the source resources are
read by the target actor periodically to locally update their �elds. The resources to transfer generated
by actions are stored inside the source entity of the same actor. We refer to the resources to transfer
as Transfers in Casanova. The de�nition of the actions will be shown in the following items.

� Constant transfer A constant transfer simply adds the resources of the source actor to the
resources of the target. The following rule, which is contained in the source actor, updates the
Transfers whenever a condition is met, restrictions is a predicate that speci�es a condition
to apply the action. The rule waits one frame, to ensure that the target actor reads the change,
before resetting the Transfers.

enity SourceActor =

Resources : ResourcesName

...

rule Resources.Transfers =

wait restrictions

yield Some(some_resources)

yield None
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Every time some Transfers are produced the target actor reads them and updates its resources
accordingly. We use the same restriction as in the source entity to ensure that the generated
Transfers belong to that speci�c target instance. We assume for brevity that we have a +
operator for the entity Resources, which behaves like a vector sum, to be used by the aggregate
function sum in the query.

enity TargetActor =

Resources : ResourcesName

ref Source : SourceActor

...

rule Resources =

wait Source.Transfers.IsSome & restrictions

yield Resources + Source.Transfers.Value

� Mutable transfer In the mutable transfer the resources are moved from the source to the
target. A transfer can be also negative in RAA. In case of negative transfers we simply swap the
logic so the source implement the behavior of the target and vice-versa. The rule of the mutable
transfer behaves almost the same as for the continuous transfer. The only di�erence is that in
the source together with setting the Transfers by an amount some_resources we also remove
the same some_resources from the source resources. Again, we assume for brevity that we have
a - operator for the entity Resources, which behaves like a vector di�erence, to be used by the
aggregate function diff in the query. In the following we use a Resources\{Transfers}; this
is shortcut to say select all the attributes in Resources which are not in Transfers.

enity SourceActor =

Resources : ResourcesName

...

rule Resources.Transfers , Resources\{Transfers} =

wait restrictions

yield Some(some_resources), Resources\{Transfers} - some_resource

yield None

� Threshold transfer The threshold transfer is a constant or a mutable transfer that executes the
resources transfer, as in the examples above, until a certain threshold_condition is satis�ed.
Once we meet the threshold_condition a series of output values are yielded and then reset.
For this kind of action we need to extend the source entity de�nition with additional �elds to
store the output of the rule.

enity SourceActor =

Resources : ResourcesName

Output0 : Option <T0>

Output1 : Option <T1>

...

Outputn : Option <Tn>

...

rule Resources.Transfers , Output0, ... , Outputn =

.| threshold_condition ->

yield None , Some value0, ... , Some valuen
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yield None , None , ... , None

.| _ ->

wait restrictions

yield Some(some_resources), Output0, ... , Outputn

yield None , Output0, ... , Outputn

Creation

Creation of an entity always follows some event. In Casanova we can combine the creation expression
with action. This is allowed since inside a rule in Casanova statements are run imperatively. The
following shows a generalization for the creation of an object after an action is run. An entity of type
SomeEntity is spawned after an action is run.

enity SourceActor =

OutputObject : [SomeEntity]

...

rule Resources.Transfers , SomeObject =

// an action

yield Resources.Transfers , [new SomeEntity(some_parameters )]

Deletion

If an instance O is about to get destroyed, all instances I's that share some logic with O must be
noti�ed that O is about to get destroyed. An instance of I knows that O is about to get destroyed
when O is moved into a special �eld called DestroyedO. O is moved into DestroyedO for a certain
amount of time before we reset the DestroyedO �eld. In the following code SourceActor contains,
besides the usual �elds, also a reference to an object O of type Object and the DestroyedO, which
is an option of type Object. Below, Option<T> is either one T, or none. It is a safer alternative to
nullable values, coming from the world of functional programming.

enity SourceActor =

ref DestroyedO : Option <Object >

O : Option <Object >

...

rule O, DestroyedO =

wait restrictions

let acc = O

yield None , Some acc

Strategy update

An entity moves according to some logic. In this case we can apply a constant transfer to for example
update an entity position according to its velocity. An entity might change its behavior according
to some conditions. For example a �eet might change from travelling to attacking. This kind of
behavior might resemble the strategy pattern and in Casanova we implement it by explicitly moving
the moving object from a container of type F into an other container of type T. T and F share some
information like physical information, graphics, etc. but di�er in terms of behavior. We can generalize
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the movement behavior by combining the above actions. We start with the de�nition of an entity
MovingActor which is an entity that moves the position of its instance according to its velocity.

enity MovingActor =

Resources : ResourcesName

rule Resources.Position = yield Resources.Position +

Resources.Velocity * dt

//.. other rules and fields

An entity ActionActor is an entity that shares some structure with the MovingActor entity (for
example the position or the velocity) but implements di�erent rules.

enity ActionActor =

Resources : ResourcesName

rule Resources.Position = // move around a target for example

rule Resources.Life = // remove life if the entity is hit

//.. other rules and fields

A SourceActor is an entity that contains among its �elds a MovingActor and an ActionActor

�eld. SourceActor combines the actions described above so that when an entity of type MovingActor
needs to behave like an ActionActor we use the deletion pattern to move the MovingActor into a
temporary location, so as to give time to notify all the entities, and then we assign it to ActionActor.
The code below shows this solution.

enity SourceActor =

AActor : Option <ActionActor >

ref AActorToDestroy : Option <ActionActor >

MActor : Option <MovingActor >

rule AActor , AActorToDestroy = // deletion logic code

rule MActor =

wait AActorToDestroy.IsSome

yield Some(new MActor(AActorToDestroy.Value.Resources ))

Next, we show how the just described Casanova 2 model e�ectively expresses an RTS. We do so
by introducing a concrete case study and then its implementation in Casanova 2, which uses the just
described model of an RTS game.

6.3 Implementation of a case study

We now implement a strategy game based on an already existing strategy game called Galaxy Wars
game by means of the RAA pattern and the Casanova 2 language.

Galaxy wars (GW) is an RTS game published in 2012 inspired by the popular board game Risk.
Galaxy wars has been used as a case study in related research [69]. The gameplay revolves around
strategic choices, where timing, battles, and resource management are key elements to prevail against
the opponents. The elements of Galaxy Wars that follow the RAA pattern are: �eet, planet, statistic,
and link. Resources are statistics, the actors are �eets, planets, and links. The possible actions are
movement, �ght, and upgrade. In GW most of the entities are static. An actor that can be created
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and deleted is �eet. A �eet is spawned after a player decides to send some units to a planet. A �eet is
disposed after either it has reached its destination, or it has lost a battle. Moreover, the �eet actor is
the only actor which might change its strategy/behavior during its lifetime (a �eet can either travel
along a link or �ght in a battle).

With the following code, which is complete, we wish to illustrate how little code is needed to
implement such a game in Casanova 2, and how generic such code can be2.

6.3.1 The world entity

We begin by de�ning the structure of the world entity. The world contains the collection of Planets in
the map, the collection of Links connecting the planets, the collection of Players, and a Controller
that manages the input controller and provides facilities like: the current selected planet, whether a
mouse button is down, etc.

worldEntity GalaxyWars =

Planets : [Planet]

Links : [Link]

Players : [Player]

Controller : Controller

// rules

6.3.2 Resources

The resources are all those elements that in�uence the game dynamics. In Galaxy Wars the resources
are:

� the players statistics (attack, defense, production, research)

� the planets statistics

� the �eets statistics

� the �eets stationed in a planet

� the �eets moving around the map

We use the properties below to model the statistics of the entities: player, planet, and �eet. We use
these statistics to amplify or reduce the amount of resources to transfer, thus to alter the impact of
the e�ects of the entity container.

entity GameStatistics =

Attack : float32

Defence : float32

Production : float32

Research : float32

2The complete working version of the this game can be found at https://github.com/vs-team/casanova-mk2/blob/
master/Unity/Tutorials/-GalaxyWars/Assets/World.cnv, or can be requested to the author. Note that to run this
game the Unity3D framework must be installed in the computer

https://github.com/vs-team/casanova-mk2/blob/master/Unity/Tutorials/- Galaxy Wars/Assets/World.cnv
https://github.com/vs-team/casanova-mk2/blob/master/Unity/Tutorials/- Galaxy Wars/Assets/World.cnv
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6.3.3 Actors

Actors, or entities, represent the resource containers in Galaxy Wars. The entities in Galaxy Wars
are:

� Planet which represents the container of stationed �eets. Each planet has its own statistics.
Statistics a�ect: the attack and velocity of outgoing �eets, the local production of �eets, and
the defense capabilities

� Link which is a directed connection between two planets. Links are used by �eets to move
around the map

� Fleet which represents the armies of a player. A �eet is made up of ships, and statistics
are assigned to every �eet. A �eet might behave di�erently depending on its current task.
Therefore, we distinguish two di�erent kinds of �eet, each of which inherits a base �eet and is
able to accomplish a speci�c task. The kind of �eets that we identi�ed are:

� AttackingFleet, which is a �eet capable of carrying out �ghting tasks;

� AttackingFleetToMerge, which represents a special attacking �eet which has just con-
quered a planet and thus has to be added to the planet stationary �eets (together with the
other allied attacking �eets who participated in the battle);

� TravelingFleet, which represents a �eet traveling along a link;

� LandingFleet, which represents a special traveling �eet which is about to land on the
destination planet;

� Battle which carries out the �ghting task on a planet

� Player which is the owner of entities in a game. Every player belongs to a faction. Factions
di�er from each other based on their statistics. During the game, the statistics of a player can
be changed by means of upgrades

6.3.4 Fields

In addition to the resources de�ned above, additional data �elds are used in every entity to support
the internal logic of each entity. In what follows we go through each entity and for each entity list its
�elds.

Planet

Each planet has its own statistics, the number of stationed �eets, the incoming �eets, an owner, a link
to a (possible battle), the landing �eets, an info about whether it is selected, an info about whether
it has just been right-click selected, and its position.

entity Planet =

Statistics : GameStatistic

LocalFleets : int

InboundFleets : [Fleet]

ref Owner : Option <Player >

Battle : Option <Battle >

LandingFleets : [LandingFleet]

Seleted : bool



6.3. IMPLEMENTATION OF A CASE STUDY 97

RightSelected : bool

Position : Vector3

Link

Moreover, its source and destination, a link made up of a collection of traveling �eets.

entity Link =

ref Source : Planet

ref Destination : Planet

TravellingFleets : [TravellingFleet]

Fleet

A Fleet has statistics, the number of ships, a ref to the link on which it is traveling, an owner, a
destroyed �ag, and the position.

entity Fleet =

Statistics : GameStatistic

Ships : int

ref Link : Link

ref Owner : Player

Destroyed : bool

Position : Vector3

� AttackingFleet An attacking �eet is a specialized �eet that contains a ref to the actual �eet
and a reference to its battle.

entity AttackingFleet =

ref MyFleet : Fleet

ref MyBattle : Battle

� AttackingFleetToMerge An attacking �eet to merge is a specialized �eet that contains a ref
to the actual �eet and a reference to the attacking �eet with which it has to join.

entity AttackingFleetToMerge =

ref MyFleet : Fleet

ref FleetToMergeWith : AttackingFleet

� TravelingFleet Is a specialized �eet that contains a reference to the actual �eet, the destination
planet, and the velocity.

entity TravelingFleet =

MyFleet : Fleet

ref Destination : Planet

Velocity : Vector3

� LandingFleet Contains the reference to the actual �eet.

entity LandingFleet =

MyFleet : Fleet
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Battle

A battle is made up of the planet where the battle is taking place, a collection of attacking �eets, the
losses of the hosting planet, the losses of the attacking �eets, the just destroyed attacking �eets, and
the just arrived attacking �eets that have to be grouped into the attacking �eets.

entity Battle =

ref MySource : Planet

AttackingFleets : [AttackingFleet]

DefenceLost : Option <int >

AttackLost : Option <int >

FleetsToDestroyNextTurn : [AttackingFleet]

FleetsToMerge : [AttackingFleetToMerge]

Player

A player is made of the statistics of its faction and his display name.

entity Player =

Statistics : GameStatistic

Name : string

6.3.5 Actions

Actions are the only way, according to RAA, to exchange resources like the amount of attacks in a
battle, the number of �eets to produce, etc. In Galaxy Wars we identi�ed three kind of actions: battle,
production and upgrade.

Battle

A Battle action involves a planet MySource and a series of AttackingFleets.

� Attack In this design only one selected attacking �eet at a time can attack MySource, namely
the �eet which is at the head of the AttackingFleets collection. Every few milliseconds damage
is computed and stored in the Battle entity. Before computing the amount of damage, we check
that there are still �eets in the AttackingFleets collection.

entity Battle =

...

rule AttackLost , DefenceLost =

yield None , None

wait 1.0f

if AttackingFleets.Count > 0 then

yield

// amount of losses based on the

// statistics of both the attacking

// fleet and the planet

The amount of damage represents the damage that has to be applied to both the selected
attacking �eet and the defending planet. This damage will always be applied since every instance
of AttackingFleet and Planet involved in a battle keeps updating the number of �eets.
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entity AttackingFleet =

...

rule MyFleet.Ships =

wait MyBattle.AttackLost.IsSome &&

MyBattle.AttackingFleets.Head = this

yield MyFleet.Ships - MyBattle.AttackLost

entity Planet =

...

rule LocalFleets =

wait Battle.IsSome && Battle.DefenceLost.IsSome

yield LocalFleets - Battle.DefenceLost.Value

� Attacking �eet selection A random selection is used to allow all attacking �eets to attack
the planet.

entity Battle =

...

rule AttackingFleets =

.| AttackingFleets.Count <= 1 => yield AttackingFleets

.| _ =>

wait Random.Range (1.0f , 2.0f)

yield AttackingFleets.Tail @ [AttackingFleets.Head]

� Ownership We change the owner of a planet when at the end of a battle the attacker list is
not empty. When we change the owner we also update the number of LocalFleets, by adding
all the �eets that share the same new owner and that are attacking the planet.

entity Planet =

...

rule Owner , LocalFleets =

if Battle.IsSome &&

LocalFleets = 0 &&

Battle.AttackingFleets.Count > 0 then

let new_owner = Battle.AttackingFleets.Head.MyFleet.Owner

let fleets_to_add =

Battle.AttackingFleets

.Where(f => f.MyFleet.Owner = new_owner &&

f.MyFleet.Ships > 0)

.sum(f => f.MyFleet.Ships)

yield Some new_owner , fleets_to_add

Production

The spawning of a new �eet follows a simple schema: if a battle is ongoing on a planet then production
is interrupted and the planet keeps polling the battle in order to update its local �eets; if the planet
is neutral (it is not possessed by any player) then production does not take place; eventually if the
planet is not neutral and there is no ongoing battle then we wait some time, which depends on the
production statistics of both the player and the planet, and then we add a new �eet to the local �eets.
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entity Planet =

...

rule Owner , LocalFleets =

.| Battle.IsSome => yield LocalFleets

.| Owner.IsNone => yield 0

.| _ =>

wait T //time depending on the owner statistics

//and the planet production statistics

yield LocalFleets + 1

Upgrade

When the planet is selected and a key associated to an upgrade is pressed, we: (i) wait some time
(depending on various stats), and then (ii) we upgrade the selected statistic. If the planet is neutral
then its statistics are kept to 1.

entity Planet =

...

rule Statistics.STAT =

.| Owner.IsNone -> yield 1

.| _ ->

wait IsSelected && KeyPressed(STAT_KEY)

wait //time depending on the owner

//and the planet research

yield max(MAX_STAT , Statistics.STAT + 1)

6.3.6 Creation

In Galaxy Wars we create entities when: (i) a battle is about to start, and (ii) when a �eet is spawned.

Battle

On a planet a battle is created either when the planet is neutral and a �eet is approaching the planet; or
the planet is not neutral, there are no battles ongoing on the planet, and an enemy �eet is approaching
the planet.

entity Planet =

...

rule Battle =

let exits_an_enemy_fleet =

LandingFleets.Count = InboundFleets.Count |> not

if (Owner.IsNone && Battle.IsNone && exits_an_enemy_fleet) ||

(Owner.IsSome && exits_an_enemy_fleet) then

yield Some (new Battle(this))

wait Battle.AttackingFleets.Count <= 0

yield None
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Fleet

We consume all local �eets of a planet and move them through the link when the source planet is
selected (and its �eets are greater than 0) and the destination planet is selected as well.

entity Link =

...

rule TravellingFleets , Source.LocalFleets =

wait Source.Selected && Destination.RightSelected &&

Source.Owner.IsSome && Source.Battle.IsNone &&

Source.LocalFleets > 0

yield new TravellingFleet(Destination) :: TravellingFleets , 0

In the following the selection logic of a planet is presented. Note the function IsMouseOver,
which might vary depending on the adopted rendering framework, for example, when using Unity3D
IsMouseOver becomes a property, which returns a data of type bool, and is exposed by the proxy
attached to the planet. IsMouseOver in this case would be internally managed and updated by the
proxy itself.

entity Planet =

...

rule Selected =

wait Input.GetMouseButtonDown (0) &&

not (Input.GetKey(KeyCode.LeftShift) ||

Input.GetKey(KeyCode.LeftControl ))

yield IsMouseOver(Position)

rule RightSelected =

wait Input.GetMouseButtonDown (0) &&

(Input.GetKey(KeyCode.LeftShift) ||

Input.GetKey(KeyCode.LeftControl ))

if IsMouseOver(Position) then

yield true

yield false

6.3.7 Deletion

Analogously to creation, in Galaxy Wars the entities which might be disposed during a game are
battles and �eets.

Battle

The logic of the deletion of a battle is tightly related to the logic of its creation. In the previous
subsection a battle is disposed only when the amount of AttackingFleets is equal to 0.

Fleet

The general logic of deletion of a �eet is as follows: if the �eet has no ships then it has to be destroyed.
In code, a �eet destroys itself when the number of its Ships is less or equal to zero.
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entity Fleet =

...

rule Destroyed =

wait Ships <= 0

yield true

Fleets can be specialized for �ghting, traveling, or landing during their lifetime.

� Fighting If during a battle the attacker manages to conquer the planet then all the attacking
�eets that share the same owner of the just conquered planet have to be destroyed.

entity AttackingFleet =

...

rule MyFleet.Destroyed =

wait (MyBattle.MySource.Owner.IsSome &&

MyFleet.Owner = MyBattle.MySource.Owner)

yield true

They are then �ltered from the attacking �eets collection and moved into FleetsToDestroyNextTurn.
We move such �eets to destroy in a di�erent collection so their logic will not a�ect the logic of
the battle. Fleets to be destroyed stay in the list exactly one frame.

entity Battle =

...

rule FleetsToDestroyNextTurn =

yield

[for f in AttackingFleets do

where (MySource.Owner.IsSome &&

f.MyFleet.Owner = MySource.Owner ))

select f]

Fleets that have not managed to conquer the planet, but which have been destroyed, are �ltered
from the attacking list collection.

entity Battle =

...

rule AttackingFleets =

yield

[for f in AttackingFleets do

where (not f.MyFleet.Destroyed) &&

not FleetsToDestroyNextTurn.Contains(f)

select f]

� Landing A landing �eet is a travelling �eet which is about to land and which owner is the same
as its destination planet. In order to not add twice the ships of the landing �eet to the local
�eets of the destination planet, a landing �eet stays exactly one frame in the game.

entity LandingFleet

...

rule MyFleet.Destroyed = yield true
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New landing �eets are continuously added to the local �eets.

entity Planet

...

rule LocalFleets =

yield LandingFleets.Sum(f => f.MyFleet.Ships) +

LocalFleets

� Traveling When a traveling �eet has reached its destination, the �eet is automatically �ltered
by the link.

entity Link =

...

rule TravellingFleets =

yield

[for f in TravellingFleets do

where (f.MyFleet.Destroyed |> not &&

Vector3.Distance(f.MyFleet.Position ,

Destination.Position) >

Destination.MinApproachingDist)

select f]

6.3.8 Strategy update

An entity during its life cycle might change its behavior based on its state. An example of this kind of
behavior in Galaxy Wars could be identi�ed in the �eet entity. For example an attacking �eet behaves
di�erent from a moving �eet. In Casanova 2 we distinguish these two cases by means of two di�erent
entities that share some common properties, but implement di�erent rules.

Inbound Fleets

When a �eet, travelling along a link, is approaching its destination, the planet has to choose whether
to: (i) add the �eet to the planet's local �eets (see production of a planet above), or (ii) add the �eet
to a battle. To implement the just described scenario we start with the de�nition of a bu�er to place
in the Planet entity called InboundFleets. The InboundFleets of a planet represents all �eets that
are approaching the planet.

entity Planet =

...

rule InboundFleets =

yield [for l in world.Links do

where (l.Destination = this)

for f in l.TravellingFleets do

where (Vector3.Distance(f.MyFleet.Position , Position) <=

MinApproachingDist)

select f.MyFleet]

InboundFleets acts like a dispatcher. When a �eet enters the InboundFleets collection, other
entities are able to consume it for their internal logic. To avoid entities to consume twice the same
�eet, �eets in InboundFleets last for one frame before being disposed. When an entity consumes an
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inbound �eet it decides what behaviors to apply to the selected �eet. This is done by assigning the
�eet to an other instance, of di�erent type, which contains the �eet but provides new rules.

Attacking �eets to merge

Fleets that come from the same link and that share the same owner have to be joined. To do so, every
enemy inbound �eet that shares the same source link of a �eet stored in AttackingFleets is selected
and converted into an AttackingFleetToMerge. Eventually all the �eets of type AttackingFleetToMerge
are stored into FleetsToMerge for one frame.

entity Battle =

...

rule FleetsToMerge =

yield

[for i_f in MySource.InboundFleets do

for a_f in AttackingFleets do

where (not a_f.MyFleet.Destroyed &&

i_f.Link = a_f.MyFleet.Link)

select (new AttackingFleetToMerge (i_f , a_f))]

When we create an attacking �eet to merge the reference to the actual attacking �eet is stored
in the FleetToMergeWith of the attacking �eet to merge. An attacking �eet iterates every frame
all the attacking �eets of its battle and selects those �eets to merge whose FleetToMergeWith is the
attacking �eet in question. After selection, the number of ships of the selected attacking �eets to
merge is added to the local �eets of the attacking �eet.

entity AttackingFleet =

...

rule MyFleet.Ships =

yield MyBattle.FleetsToMerge

.Where(f => f.FleetToMergeWith = this)

.sum(f.MyFleet.Ships)

+ MyFleet.Ships

Attacking �eet

A battle entity selects the enemy �eets from the inbound �eets of its MySource �eld and adds them
to its AttackingFleets every frame, as long as the selected �eets are not in FleetsToMerge. Before
adding the inbounding attacking �eets, every inbound enemy �eet is converted to an attacking �eet.

entity Battle =

...

rule AttackingFleets =

yield

[for f in MySource.InboundFleets do

let is_ship_to_merge = FleetsToMerge.Contains(f)

where is_ship_to_merge &&

(MySource.Owner.IsNone ||

not (f.Owner = MySource.Owner ))

select new AttackingFleet(f, this)]
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The moment a �eet becomes an attacking �eet and is added to the AttackingFleet collection the
new attack logic can be run.

Landing �eet

Finally, A planet selects all allied �eets among its inbound �eets and adds them to the LandingFleet
collection every frame, so the planet can later add those �eets to its local �eets. Before adding the
inbound allied �eets, every �eet is converted to an inbound �eet.

entity Planet

...

rule LandingFleets =

if Owner.IsSome then

yield

[for inbound_fleet in InboundFleets do

where (inbound_fleet.Owner = Owner)

select (new LandingFleet(inbound_fleet ))]

else yield []

6.4 Summary

In this section we showed the idioms of the Casanova 2 language, which help developers with designing
and building games in practice. Moreover, we presented a detailed and extensive example of the im-
plementation of a game in Casanova 2. This game has been used to show not only the implementation
details necessary to implement a video game in Casanova 2, but also to give the reader the idea of
how complex behaviors are encoded in Casanova 2, in an idiomatic fashion.





Chapter 7

Evaluation

This chapter discusses the evaluation we made of Casanova 2 to ensure that it ful�lls the requirements
de�ned in Section 2.3. We present two di�erent kinds of evaluation, one analytical based on the
observation of some objective properties which are not directly measurable, and one quantitative based
on direct measurements. We have chosen these two kinds of evaluation, to measure the attributes of
the Casanova 2 language from di�erent perspectives: (i) the analytical evaluation discusses features
of Casanova 2 related to the experience of using it in practice; whereas (ii) the quantitative evaluation
discusses the attributes of Casanova 2 with respect to other representative languages used for game
development, such as performance and amount of code needed to encode game aspects.

7.1 Analytical evaluation

In Section 2.4 we discussed the advantages that result from the adoption of doman speci�c languages
(DSL's) for developing video games. However, the discussion was not centered around Casanova 2.
In the following we get back to those advantages, but this time we present them with speci�c focus
on Casanova 2. In the following subsections we discuss how the features provided by the Casanova 2
language realize the advantages introduced in Section 2.4. Speci�cally, the features that that we will
discuss are: writing, readability, optimization/performance, interoperability, and genericity.

7.1.1 Ease of writing

A fundamental requirement for a DSL is that it allows the de�nition of programs belonging to its
domain. Being a DSL, Casanova 2 comes with a series of domain abstractions that cover typical aspects
of game development such as the �ow of time, suspensions, and rules. Among these abstractions we �nd
constructs such as wait, rule, world, dt, etc. When compared to other tools for game development,
these Casanova 2 abstractions o�er a clear advantage in terms of development time and compactness.
This is due to the fact that Casanova 2 abstractions capture complex behaviors of games, which by
means of a GPL would require considerable time to be expressed and tested, as most of the constructs
of a general purpose language (GPL) are generic and for general usage. For example, to implement
a rule the body of which is suspendable in Casanova 2 a developer would write the rule body in an
imperative fashion, but with the possibility to use keywords such as wait that allow the suspension of
statements. In contrast, to simulate a suspendable rule in a GPL, a series of switches, each expressing
the various nested steps, would be necessary. Suspending a rule by means of these switches would
require the developer to set up by hand how and where to resume the next iteration. Some GPLs
come with higher level constructs and helpers for concurrent behavior, such as coroutines. However,
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even in this case additional code that coordinates such mechanisms is necessary. All this code makes
the program harder to maintain, since lots of spurious aspects must be encoded which are not directly
related to the game design, but are still necessary to maintain and emulate temporal behaviors.

This lack of noise in the code is visible in di�erent games written in Casanova 2, examples of which
we �nd in Chapter 6 and in Appendix B. The measurements allow us to conclude that Casanova 2
o�ers evident advantages in terms of development time and compactness of the resulting game code.

7.1.2 Readability

Being easy to write is not a su�cient requirement for a DSL, since the development of a game is a
dynamic process made up of several phases in which, before achieving the �nal goal, the code might
change. During these phases it is important for the code to be readable, in order to be maintainable.
In order to be readable the DSL itself must provide constructs, in the shape of domain abstractions,
that facilitate this property, which help developers understand their own code and to map it to the
design elements present in the game.

Indeed, capturing typical aspects of video games with speci�c language abstractions, positively af-
fects compactness: by means of one abstraction we can express many concrete and complex behaviors.
Casanova 2 captures, by means of domain speci�c abstractions, the typical aspects of games such as
the �ow of time, suspensions, and rules.

As a game requires less and less unrelated considerations hard-coded in the game code, the �nal
game code becomes more readable and maintainable. This is due to the fact that when dealing with
game code developers will �nd more and more considerations (in the form of Casanova 2 instructions)
that are directly mapped to elements present in the game design.

This property is also backed up by the quantitative evaluation carried our in Section 7.2.3. More-
over, a preliminary experiment to measure the readability of Casanova 2 code has been carried out
during a workshop session on Casanova 2. A description of the workshop is summarized in Appendix
A. Results of this preliminary work show that Casanova 2 code is readable by senior developers who
never developed games using Casanova 2 before.

In conclusion, Casanova 2 code is highly readable, and therefore maintainable. As the quantitative
evaluation in Section 7.2.3 will show, this result holds even when compared to other tools for game
development.

7.1.3 Optimizations/Performance

A DSL for games that is readable, and allows the de�nition of compact programs, should also hide con-
siderations that are not part of the game design, since such considerations might a�ect the readability
of the code. In games it is often the case that developers have to consider in their code non-functional
requirements, such as performance, which are not part of the game design itself. Therefore, a DSL
for games should be able to capture such requirements without the direct intervention of developers,
thus without a�ecting the readability of the original input code.

Due to the speci�city of the application domain and of the provided Casanova 2 abstractions,
the Casanova 2 compiler (as discussed in Chapter 4 and 5) is able to e�ectively use code analysis
techniques and to apply them to generate code that exhibits fast runtime execution, without the direct
intervention of the developer to encode faster algorithms by hand. For example, by using statements
that suspend the execution of blocks of code, such as wait or yield, the Casanova 2 compiler is able
to identify those parts of the code that need to be suspended, and to use this information to generate
a more e�cient (yet equivalent) version.

Another example is provided by the encapsulation optimization discussed in Chapter 5. This
optimization allows developers to write programs that exhibit high encapsulation without losing per-
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formance at runtime, because of the many messages passed between the di�erent, encapsulated, inter-
acting entities in a program. This is possible because the Casanova 2 compiler transforms the input
program into an equivalent version where a source entity updates directly a target entity, instead of
asking the target entity to update itself with new data from the source entity. As this reduces the
number of communications, the overall runtime performance is improved.

This property has been measured with two scenarios where we compared the performance of
Casanova 2 games against the performance of equivalent implementations, but written with other
representative languages used in game development.

The results of these experiments, which are found in Section 7.2.2, show that Casanova 2 supports
the making of games that exhibit high-performance at runtime.

7.1.4 Interoperability

Being a DSL does not guarantee the fact that Casanova 2 can tackle all the aspects of game devel-
opment, such as rendering, content management, etc. Casanova 2 should support interoperability in
order to be able to delegate such tasks, which are not integrated in Casanova 2, to existing tools.

Casanova 2 allows interoperability due to the architecture of its compiler. Speci�cally, Casanova
2 o�ers a layered compiler that allows developers to extend it whenever needed. For example, the
last layer transforms the intermediate code, generated during the various compilation stages, into an
equivalent version but written in a di�erent language; if a developer needs to target new engines or
platforms, he/she will only need to adapt the last layer to include the rules of how to translate the
intermediate code into the target language.

The Casanova 2 compiler also allows Casanova 2 programs to interface with other game engines or
frameworks without the necessity of a prede�ned layer in the compiler that regulates the interaction.
This can happen in two di�erent ways: either by referencing the library directly in the Casanova 2
game code, or by means of the so-called proxy system. The proxy system acts as an adapter between
the targeted framework and the Casanova 2 code.

To support this property, and more speci�cally to show that Casanova 2 can interoperate with
external libraries or frameworks, in the following we show di�erent examples of frameworks that
interoperate with Casanova 2 code. The choice of these frameworks is derived from the fact that
we want to show how even if the frameworks implement di�erent architectures, we can still connect
Casanova 2 code to them, since Casanova 2 is framework independent.

In order to show that Casanova 2 achieves interoperability, in the following we show three appli-
cations of Casanova 2 with di�erent frameworks: MonoGame, Unity3D, and Lego mindstorms V3.
For all the three examples we used the proxy system to interface Casanova 2 code with the external
framework.

MonoGame

MonoGame is a low-level framework for general game development, which is nowadays used by many
developers. MonoGame is an open source framework based on XNA (another widely used tool for
game development, which has been discontinued). It is mainly used for 2D games, and was the �rst
engine supported in Casanova 2. Among the �rst applications made with MonoGame and Casanova 2,
we �nd the �rst version of the Dyslexia game (Figure B.3a), used as research tool at Tilburg University

As MonoGame comes with its own game loop, the Casanova 2 compiler processes Casanova 2 code
and generates C# code that is later included in a MonoGame project. Once included, the Casanova 2
game is then run inside the MonoGame framework. Casanova 2 code then interacts with MonoGame
facilities through the proxy system (see Section 4.3).
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Unity3D

Dealing only with low-level game engines such as MonoGame by itself does not guarantee that
Casanova 2 is also suitable for interoperating with more complex and higher-level engines. Therefore,
to assess that Casanova 2 is suitable for interoperating with complex and high-level game engines, we
tested Casanova 2 together with the Unity3D engine.

We chose the Unity3D engine, since it is widely used by the game development community, and
is becoming a standard for many game development contexts. Among the examples of Casanova 2
and Unity3D games we �nd all the games discussed in Appendix B, and those implemented internally
within our research team (see Figure 7.1). The examples in Figure 7.1 are demonstrations of simula-
tions implemented in Unity3D for demo purposes. Speci�cally, the demo in Figure 7.1a shows how to
simulate complex physics in Casanova 2 through an asteroids �eld simulation, whereas the demos in
Figures 7.1b and 7.1c show how to handle the user's input in Casanova 2, and eventually the demo in
Figure 7.1d shows an AI controlling a patrol's behavior in Casanova 2.

Figure 7.1: Some Casanova 2 games internally produced

As Unity3D comes with its own game engine, the Casanova 2 compiler processes Casanova 2 code
and generates C# code that is then run by the Unity3D engine. Casanova 2 code interacts with
Unity3D through the proxy system, similarly to MonoGame.

Lego mindstorms V3

We also explored usages of Casanova 2 with other frameworks that are not meant for game development
such as the Lego mindstorms V3. Lego mindstorms V3 is not a game engine, but it exhibits similarities
to the game development �eld, such as concurrency, and manipulation of behaviors depending on time.
Lego mindstorms is a kit that contains software and hardware meant to create and customize robots.
We successfully managed to run a Casanova 2 program to steer a robot (see Figure 7.2).

As Lego mindstorms is only meant to be controlled remotely, the Casanova 2 code is run inside a
local game loop built ad-hoc by the Casanova 2 compiler. Casanova 2 code interacts with the remote
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Figure 7.2: A Casanova 2 running a Lego mindstorms V3 program

elements of the robot through the proxy system.
From these experiences we conclude that Casanova 2 is suitable for interoperating with a high

variety of front-ends, whether it is low-level (MonoGame), high-level (Unity3D), or outside the realm
of games altogether (Mindstorms).

7.1.5 Genericity

Interoperability by itself does not guarantee that we can actually develop any possible video game.
It is up to the Casanova 2 language to ensure the possibility to generically build all sorts of games.
Indeed, the building blocks of Casanova 2, i.e., its syntax and semantics, are designed to support the
de�nition of games regardless of their genre or structure. The genericity of these building blocks has
been assessed by a series of games made with the Casanova 2 language. In the following we list some
of these games:

� Galaxy wars, a real time strategy game

� Zombie shooter, an �escape the city�, multiplayer shooter game

� Dyslexia, a game for detecting dyslexia in children

� 3D asteroid shooter, a 3D asteroids shooter game

� Contact, a multiplayer game for studying the evolution of language

It is worth noticing that most of the games, and samples, made with the Casanova 2 language were
developed by bachelor students of computer science, who learned Casanova 2 speci�cally to produce
these games. A detailed explanation of these games and a discussion of the developers and their
background can be found in Appendix B.

On junior game developers During the year 2016 we tested Casanova 2 usability by asking junior
developer to build games with it. These tests, besides showing us that it is possible to implement
di�erent kinds of games, showed us that the language syntax is mature enough to allow junior devel-
opers with little knowledge of the language to successfully build games. Examples of the games built
and a description of the developers' background can be found in Appendix B.
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On senior game developers Moreover, we also made an investigation on the perceived quality of
Casanova 2 by expert game developers. This experiment, which took the shape of a workshop at the
University of Amsterdam, showed us that while Casanova 2 is missing some important technological
aspects, such as a real-time debugger, it is still usable by expert developers. Casanova 2 is appreciated
by expert developers, and the perceived advantages of the language overlap with what we expect to be
the strong points of Casanova 2. More details regarding this workshop, and the questionnaire we gave
to the participants, can be found in the Appendix A. Due to the relatively low number of participants
at the workshop, it does not make sense to statistically analyze their answers to the questionnaire we
provided, though we can still convey our impression of their responses.

7.2 Quantitative analysis

In this section we discuss the quantitative analyses of attributes of Casanova 2 which are important for
game development. We will present such attributes by comparing them against other representative
languages used for game development. The attributes that we will discuss in the following section are
performance and code length. These two attributes are important since a game must run fast and at
the same time its code should be compact and readable in order to remain maintainable.

In section 7.2.1, we discuss the set up and criteria used to evaluate Casanova 2. Sections 7.2.2 and
7.2.3 report on the evaluation of the program's performance and compactness/readability respectively.

7.2.1 Set up and goal of the evaluation scenarios

In evaluating Casanova 2, we consider performance and readability as most crucial evaluation criteria.

Performance Performance is a fundamental indicator of the feasibility of a programming language
that needs to be used in a resource-conscious scenario such as games, since every feature in a game
comes with a series of costs in terms of CPU cycles. As a game starts including more and more features,
the demands on the CPU increase as well. As the game grows more complex, eventually the CPU stops
being su�ciently powerful to render one frame in the time needed for a smooth experience. Games are
real-time applications, thus high-performance is required in order to keep the overall game experience
immersive. When high performance is a�ected negatively, for example, because of the presence of
complex features, the developers have to choose between either removing the involved features (or
reduce them in e�ect), or re-factoring the involved features in order to (if possible) achieve higher-
performance. The �rst option has an evident negative e�ect on the game design, since fewer initial
design considerations will appear in the �nal version of the game. The second option has as problem
that, due to the fact that it is accompanied by an increase in code size and complexity, maintainability
of the code is a�ected negatively.

Readability Every feature in a game needs to be written by means of some code. As the number
of features increases the code to express them increases as well. When a language is not suitable to
�naturally� express some features, the amount of code necessary to express them becomes very large,
since every �hard to express� feature (and each of its sub-aspects) will require lots of awkward, verbose
code. As an immediate e�ect of such increase in code size is that game code becomes less readable.
When readability is a�ected negatively as an immediate e�ect we have that maintainability is a�ected
negatively as well. This has an cascading e�ect on other important aspects in game development, such
as debugging and adding new features to the game, since they now will become more complex and
will take more time to implement. Thus, readability of the code of a game is an important attribute
that has to be watched closely in order to preserve the feasibility of the game development process.
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Ideally what we would like to achieve is a game of which the code is not only maintainable and
compact, but also of high performance. The goal of this quantitative evaluation is to �nd whether
Casanova 2 allows the de�nition of programs that exhibit high performance, and which code is at the
same time readable and concise.

Tested languages We have chosen four comparison languages which represent various development
styles and which are all used in practice for building games. We have chosen a variety of languages
which all exhibit various mixtures of performance and succinctness, with the goal of testing Casanova
2 as a language that captures the useful attributes of these languages in game development. We have
mostly focused on those languages which are used for building game logic, and we have shied away
from considering languages such as C++, which are used for building engines or libraries [50], as
Casanova 2 is not in direct competition with them and therefore a comparison would be meaningless.
Three of the chosen languages are dynamically typed programming languages: Lua, JavaScript, and
Python, which have as their main selling points simplicity and immediacy [52]. The fourth chosen
language is C# because of its good performance and relative simplicity when compared to C++.

The four languages mentioned above are all used when discussing the general performance and
code length of Casanova 2 programs (scenario 1). However, C# is the only language used in the
second part of the evaluation (scenario 2), since it is the only language (among the ones described
above) that, according to the �rst part of this evaluation, has a performance pro�le comparable to
that of Casanova 2.

Set up We tested the two evaluation variables of Casanova 2, performance and readability, using
two di�erent scenarios. In Section 7.2.3 we discuss the performance results in each of these scenarios,
in Section 7.2.2 the readability results. For the two evaluation variables, we compare Casanova 2
programs with equivalent ones written in other languages.

Scenario 1 simulates a scenario featuring ten thousands patrols moving in di�erent directions.
The number of patrols is large in order to simulate the crowded scenes of a typical video game. The
choice of the patrol is derived from the fact that patrols o�er discrete dynamics, which we often �nd
in games, such as waiting until the next checkpoint is reached. Thus, the combination of thousands
of entities all performing complex, intertwined, and nested behaviors o�er an interesting benchmark
scenario from both perspectives: performance, since a high amount of entities featuring complex
interactions stress the CPU , and code length, since de�ning complex operations that exhibit nesting
behavior can require lots of code which amount can increase dramatically when the support of the
chosen tool is limited.

Scenario 2 simulates a generic game in which one thousand entities are spawned every 5 seconds
(initially the game starts with 10000 entities). When spawned every entity stays inactive for a random
amount of time (between 5 and 10 seconds) before getting activated. When activated, the entity starts
moving for a random period of time (between 4 and 8 seconds), and eventually when this time is elapsed
the entity gets destroyed.

This simulation is built to get a systematic evaluation of the proposed approach to the encapsu-
lation optimization discussed in Chapter 4 for both performance and code length: performance, since
a scenario is built to test the performance of the fast wakeup collection1 (entities stay inactive for a
few seconds before getting activated) against a continuously polling solution that checks the states
changes, and code length, since building such optimization by hand requires a considerable amount of

1For this evaluation additional conditions are added (with di�erent timers) to each entity, in order to make the
simulation dynamics more articulated and �heavy� in terms of amount of code to run.
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Table 7.1: Performance comparison

Language Time per frame
Casanova 2 0.07ms

C# 0.12ms
JavaScript 24.07ms

Lua 20.90ms
Python 20.15ms

code, which we do not �nd in the game description, that with Casanova 2 comes �for-free� due to the
compiler analysis.

7.2.2 Performance

Performance is a fundamental indicator of the feasibility of a programming language that needs to be
used in a resource-conscious scenario such as games. In particular, we observe that, in many cases,
programming languages for games o�er a di�cult either-or choice between simplicity and performance.
In the following, we show how Casanova 2 code can achieve high runtime performance, by means of a
series of evaluations on resource-consuming game scenarios. We will use the outcome of these evalua-
tions to compare the performance of Casanova 2 code against the performance of other representative
languages used in game development.

More speci�cally, in this section we discuss the performance of Casanova 2 by means of two di�er-
ent scenarios. In the �rst one we show the performance of Casanova 2 and its constructs against other
representative languages used in game development, which we used idiomatically. This evaluation
shows how by translating the bodies of Casanova 2 rules into the �at state machines introduced in
Section 4.2.4 we can achieve high-performance at run-time. The second evaluation presents the perfor-
mance gained at runtime by Casanova 2 games when switching on, in the compiler, the optimization
introduced in Section 5.

Scenario 1

In this scenario we made an e�ort towards implementing the sample by using coroutines and generators
[71] whenever available, in order to express the game logic in an idiomatic style for each of the tested
languages. In order to compare the language functionality, we are only running the logic of the
game and we do not execute any other unrelated components, such as the graphics engine, which
might otherwise pollute the outcome of our evaluation. The code samples can be found on [1]. For
this �rst scenario we used Casanova 2 with the compiler introduced in Chapter 4, without the extra
optimizations that were introduced in Chapter 5.

Results We have generated tens of thousands of entities in a loop that simulated a hundred thousand
frames. This corresponds roughly to half an hour of play time on a reasonably crowded scene. The
results are summarized in Table 7.1.

As we can see from the table, the performance of Casanova 2 is of the same order as C#, and is
multiple orders of magnitude faster than that of the scripting languages. In this simple but populated
scenario, the limits of Lua, Python, and JavaScript, deriving from the high cost of dynamic lookup,
are clearly shown. For example in a statement such as s.p.x.a.b() there are 4 lookups, each of
which will �rst check the existence of the attribute, and then proceed to actually dereference the
attribute. In addition, all languages idiomatically implement state machines by means of coroutines
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and generators. The techniques abundantly use virtual calls, which add overhead at the expense of
performance.

The big advantage of Casanova 2 is that it uses all the static information available, in order to
avoid work at runtime while still o�ering expressive and concise constructs. For this reason, code such
as yield a, b, c translates directly into assignments, while retaining higher level semantics.

In Figure 7.3 a detailed comparison between the code of the Casanova 2 program and the equivalent
Python implementation is provided. We chose only Python for a detailed comparison, because as all
three dynamics languages roughly exhibit similar verbosity and performance. Furthermore Python
shares pro�ling tools with C# and Casanova 2 via Visual Studio, therefore a closer performance
evaluation is possible.

Every node of the �ow graph in Figure 7.3 represents a computational element of the running
example (for example Patrol Update represents the code that takes care of calling the rules, or
methods in case of Python, that modify the velocity and the position of the patrol). Moreover, every
node comes with two tables each representing the performance of that speci�c computational element
in Casanova 2 and Python respectively. Every table comes with a series of records each representing
various aspects such as total execution time in seconds, and total percentage of time spent in this
node. Note that each item comes with an inclusive (incl) and exclusive (excl) measure: inclusive
means that its amount includes not only the time spent in the current node, but also the time spent
in all the children of this node; exclusive means that its amount does not include the time spent in the
children of this node, but only the time spent in the current node. For example in the node Update

Patrol consider the CNV table: 18 ms excl represents the total time that the program spent in this
node; 7.83% excluded (excl) represents the total percentage time the program spent in this node; and
53.58% incl represents the total percentage time the program spent in this node and in its children.

We notice that Casanova 2 is in general faster than Python, due to the fact that Casanova 2
is compiled whereas Python is interpreted. Thus, optimization techniques, such as resolving call
addresses at compile time, or inlining instructions, typical of statically compiled languages, do not
apply to interpreted languages, such as Python. This translates into code that is generally less
performant. Moreover, by adopting �at state machines to capture interruptible code blocks, note this
is possible only because of our code analysis done at compile time, we avoid the typical overhead
deriving from using design patterns (such as the strategy pattern) for capturing abstract behavior
(such as coroutines). Indeed, in Python, to suspend and later resume a piece of code, a supporting
data structure is necessary in the form of a coroutine to emulate this behavior. However, this comes
at a cost, since lots of virtual calls and dynamic dispatching are necessary in order to maintain the
coroutine generic with respect to a concrete implementation. We can see in Figure 7.3 the cost of
using coroutines in Python by looking at the node called Next (at the bottom of the �gure). This
node takes care of moving the iteration from one coroutine state to another. As we can see this
computational element consumes about 30% of the total spent time just for switching between one
state of the program and another, whereas in Casanova 2 changing from one state to another requires
the program to just set one single integer variable: the next state.

However, being statically compiled does not provide such an obvious advantage since languages,
such as C# still run slow, because of their generality and incapacity of applying domain speci�c
optimization, such as the one proposed in Section 4.2.4. Indeed, just like in Python, coroutines in C#
use the same philosophy (both are based on the strategy pattern), which translates into additional
resources to maintain and update the data structures necessary to support the coroutine and therefore
allow blocks of code to suspend.

In the following we discuss the second scenario, which evaluates the performance of the optimization
over encapsulated code introduced in Chapter 4.
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Figure 7.3: Performance comparison between Casanova 2 (Cnv) and Python (Py). In the �gure, for each
operation/processing module, the runtime is given (in ms), and the percentages of total execution time spent
in it, or in it and in its children, expressed as excl and incl, respectively.

Scenario 2

In the second scenario, we discuss the performance of two compilation outputs of Casanova 2 against
an equivalent implementation in the C# language. The �rst compilation output is generated by the
standard Casanova 2 compiler, whereas the second compilation output is generated by an alterna-
tive version of the Casanova 2 compiler, which implements the optimization technique introduced in
Chapter 4. Moreover, in this evaluation we also discuss the performance of the two di�erent generated
outputs against an idiomatic, but equivalent, implementation in the C# language. We also run the
code with two di�erent game engines, namely Unity3D and MonoGame, both using .Net but of dif-
ferent versions. The reason of this choice is derived from the fact that we want to show the generality
of our optimization, no matter the concrete implementation or framework running it.

Results For each output we measure the time (in milliseconds) that it takes to fully complete the
logic of a single frame (i.e., updating all the entities in the game). We did not include the time it
takes to render the game screen, since rendering is not a�ected by our optimization, though it might
a�ect the performance measure and add unwanted noise.

Table 7.2 shows the performance results of our scenario. As we can see for both frameworks
(Unity3D and Monogame) the performance of our optimized Casanova 2 code is higher than the
one running the non-optimized version and the idiomatic C# implementation. Using Unity3D the
optimized code is one order of magnitude faster with respect to the non-optimized code. Using
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MonoGame the optimization is linearly faster. The di�erence is due to the implementation of the
game loop in the underlying frameworks.

Table 7.2: Running time comparison

Platform Language Optimized Performance

Monogame
Casanova 2 No 0.0159 ms
Casanova 2 Yes 0.0098 ms

C# - 0.0147 ms

Unity3D
Casanova 2 No 0.0257 ms
Casanova 2 Yes 0.0085 ms

C# - 0.1642 ms

In Chapter 4 we discussed the preconditions for a condition to become interesting. This is impor-
tant, since the data structure supporting our optimization adds runtime overhead, and thus should
only be used when the overhead is lower than the gained performance. Therefore, all attributes in-
volved in the condition should exhibit some sort of temporal locality in order to bene�t from our
optimization.

Speci�cally, if the behavior of inappropriately optimized entities is not coherent with respect to
the �ow of time (in our case every entity would get activated too soon), the cost of entering and
exiting the data structure implementing the fast-wake-up mechanism becomes too high, to the point
that the performance gained is less than the costs, and therefore overall performance. To support this
observation, in the following we discuss this with concrete numbers.

We made a series of variations to our initial scenario, to test the performance of our optimized
code with di�erent activation times. The activation times that we are going to test are: between 5 and
30 seconds, between 10 and 30 seconds, and between 15 and 30 seconds. We chose 5 seconds as the
lowest activation time, since below this amount the performance of our optimized code is always worse
than the non-optimized code. For this scenario, when activation time is below 5 seconds the condition
stops being interesting. Moreover, for every scenario we tested a di�erent number of initial entities
(besides the 1000 entities added every 5 seconds). This increase in number of entities should add
some dynamism to the application, as more entities will interact with the fast-wake-up data structure.
Thus, by means of the Visual Studio pro�ler we can measure the costs of interactions between the
di�erent game entities and the fast-wake-up data structure. The initial number of entities in question
are: 500, 1000, 3000, and 5000 entities. For this scenario, we used the MonoGame framework with
.Net 4.5.

The results of this scenario are summarized in Figures 7.4, 7.5, 7.6, and 7.7. As we can see the
optimized version performs better when the activation time of each entity is greater than 5 seconds.
However, performance decreases when the scene becomes too crowded.
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Figure 7.4: Comparing performance of optimized vs.
non optimized Casanova 2 version, with 500 entities
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Figure 7.5: Comparing performance of optimized vs.
non optimized Casanova 2 version, with 1000 entities
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Figure 7.6: Comparing performance of optimized vs.
non optimized Casanova 2 version, with 3000 entities
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Figure 7.7: Comparing performance of optimized vs.
non optimized Casanova 2 version, with 5000 entities

When the number of initial entities is greater than 5000 or the minimum activation time is too low
(less than 5 seconds) the number of interactions with our fast-wake-up data structure becomes too
high. After pro�ling the code with the above setup, we observed that activating the suspended entities
costs less than 0.1% of the total amount of execution time of the application. Instead, handling the
activated entities requires an increasing amount of resources.

In our implementation, all activated entities are stored in a dictionary, to speed up the check of
whether an entity is activated or not. However adding, removing, and iterating the active entities
come at a cost. The costs associated to these operations are: adding costs O(1), but O(N) in
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case of a collision or in case we exceed the underlying arrays capacity; removing costs O(1), but
O(N) in case of a collision; and iterating all entities costs O(N). Thus, the more entities enter or
exit the dictionary the higher will be the chance of a collision, thus the higher will be the costs.
In our concrete implementation a method called UpdateSuspendedRules takes care of handling the
activated entities, and to deactivate them whenever needed. In Table 7.3 we show the impact of the
UpdateSuspendedRules method with respect to the initial amount of entities and their deactivation
time. In this comparison we also added 1 second of minimum activation time to show the impact of
interacting often with the dictionary.

Table 7.3: CPU activity of the UpdateSuspendedRules method in Casanova 2.

Minimum
deactivation
time
(seconds)

Percentage of CPU activity in
UpdateSuspendedRules

Initial
amount
500

Initial
amount
5000

1 1.76% 1.97%
5 1.35% 1.67%
10 1.27% 1.43%
15 0.85% 1.32%

As we can see the total percentage of execution time decreases as the activation time increases
and the total amount of initial entities decreases. Indeed, as the amount of entities interacting with
the dictionary decreases (either because the activation time of the entities is longer, or the number of
entities interacting with our dictionary is less) the performance gets higher.

We also provide a detailed evaluation of this scenario in Table 7.4. In this table we �nd the exact
measures of this evaluation (grouped by initial amount of entities and their minimum deactivation
time). In each cell, on the lower left we �nd the total time that the optimized code took to complete
the simulation (every simulation takes 2000 frames to �nish, with a dt of 0.016 seconds), whereas
on the upper right we �nd the total time that it took the non-optimized code to complete the same
simulation.

Table 7.4: Detailed performance evaluation of the same running example run by Casanova 2 with and without
optimization. For all the averages the amount of squared mean distance is less that 1.0E-3.

Minimum
deactivation
time
(seconds)

Optimization
enabled

Total average execution time (ms)
Initial
amount
500

Initial
amount
1000

Initial
amount
3000

Initial
amount
5000

5 yes 0.629 0.693 0.973 1.365
5 no 0.641 0.695 0.995 1.347
10 yes 0.689 0.738 1.080 1.465
10 no 0.689 0.759 1.087 1.49
15 yes 0.718 0.780 1.148 1.618
15 no 0.740 0.819 1.198 1.644

As we can see the performance of our optimization, when the deactivation time is below 5 seconds,
is almost the same as the non-optimized version. This is due to the high number of interactions between
the active entities and the fast-wake-up data structure. However, above 5 seconds the performance
of the optimized solution is greater than the standard Casanova 2 solution. This is due to the fact
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that entities stay deactivated for a longer period of time, and so their rules are not uselessly polled at
every frame.

Our solution still exhibits good performance when the total number of entities interacting with the
fast-wake-up data structure is greater than 5000. Moreover, we observe that, above this number, the
performance of our solution decreases, due to accumulated costs of entering and exiting the fast-wake-
up data structure. However, in a game it is di�cult to �nd 5000 entities exhibiting temporal locality
behavior. Most of game entities in a game are dynamic, and our optimization is meant for those that
exhibit continuous and stable behavior. Thus, choosing the rules that exhibit some temporal locality,
is a delicate task that should be derived from in-game observations. In the future we could delegate
this task to a tool that analyses the game entities' behavior.

We also experimented for di�erent settings the optimized implementation of the running example
to test possible limitations of the data structure supporting our optimization. More precisely, we
tried to �x the initial size of our dictionary to 10000 to reduce the number of possible collisions.
Moreover, we also changed the fast-wake-up collection from dictionary to a sorted dictionary so as to
have a constant addition and deletion time of log(N). However, in both scenarios we did not observe
signi�cant changes in the results.

7.2.3 Readability

Building a video game requires encoding its design into a concrete program by means of some pro-
gramming language. Every program allows many di�erent encodings which all correctly represent the
original design. These encodings vary in terms of variables names, structure of algorithms, structure
of classes, etc. These encodings, while equivalent in the sense of all implementing the same design, are
not all equal. When we consider readilibity in this evaluation, we �rst focus on how they range along
a spectrum of complexity: some are simpler, while others are more complex. Developers always try to
achieve those encodings that are optimal in terms of simplicity in order to keep the encoding simple
and therefore cheap to maintain and extend. However, measuring whether an encoding is optimal is
not possible in a fully mechanical, objective way. For example, Kolmogorov complexity is the common
approach to discuss program complexity, but there exists no way to determine Kolmogorov complexity
for practical programs [65].

Therefore, we are forced to resort to a series of heuristics to de�ne some measure that we believe
correlates with simplicity.

Ideally, a language should allow the de�nition of compact programs with the lowest amount of
visible information that is not related to the problem, and with the highest amount of high-level
information that is a�ne to the problem.

In this evaluation we used (i) the number of lines of a program as a metric to measure its length,
but also (ii) the number of syntagms (i.e. the number of distinct keywords and operators) necessary
to write the program [39].

i We counted the number of lines of each source implementing our running examples, thereby
assessing the size of the implementation, with the assumption that a bigger sample corresponds
to more complexity.

ii We counted the syntagms of each source implementing our running examples, with the assump-
tion that a higher count corresponds to more knowledge required from the developer. Indeed,
mental lookups of the sort �what does this operator do?� add overhead to our mind, and this
makes the program harder to understand.

When combining these two metrics we can e�ectively measure the complexity of a program: a
program is readable when we have both few lines of code and a low number of syntagms.
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Table 7.5: Syntax comparison between the program written in Casanova 2 and the others written with the other
tested languages.

Language Syntagms Lines of code Total words
Casanova 2 47 31 104

C# 61 69 269
JavaScript 52 41 257

Lua 47 45 249
Python 50 34 214

It must be noted that some languages, which look compact at a �rst sight, come with a series of
constructs that are di�cult to manipulate and hard to understand. Indeed, when pushed to its limits,
succinctness can damage readability of a programming language by ending up with the so-called �line
noise� [48]. So, even if a program turns out to be short, this is not a guarantee that it is also readable.

In the following we show the results of our scenarios. We will assess the readability of the two
scenarios introduced previously (Section 7.2.1). In the �rst one we show the readability of Casanova
2 and its constructs against other representative languages used in game development, which we used
idiomatically. This evaluation shows how domain speci�c syntax and semantics can help keep code
compact. The second evaluation presents the readability gained by Casanova 2 programs, against an
idiomatic implementation in C#, by adopting the compiler optimization introduced in Chapter 5.

Scenario 1

For this evaluation we have taken the running example used in the �rst scenario of the performance
evaluation section. The purpose of this scenario is to test how discrete and continuous dynamics
in Casanova 2 can be expressed naturally within a block of code without any sort of adjustment,
nor the need for special constructs. This is the reason why in Casanova 2 we �nd constructs for
the manipulation of the �ow of time in the program, which are natively and fully integrated in the
language itself. This results in coherent syntax and semantics that can naturally express continuous
and discrete dynamics. In the following we show the results of this choice and its impact in terms of
readability and maintainability of Casanova 2 programs.

Results The results of this test are summarized in Table 7.5. As we can see, Casanova 2 resulted in
signi�cantly less lines of code and syntagms, especially with respect to C# (the only other language
with comparable high performance).

These positive results for the Casanova 2 language are only possible because every its construct
is designed to capture typical aspects of game development. For example, a rule (which represents a
behavior of which the execution is repeated every time we reach the end of its block) can be suspended
at any moment during a game. Now consider the following code in Casanova 2, which represents a
suspendable rule containing two nested for loops:

rule ... =

for x in [1..10] do

wait 10<s>

let z = random(0, 10)

for y in [1..z] do

...

In the code above we have a for loop that at every iteration waits 10 seconds before recurring with
the inner for loop.
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When comparing the implementation above to others made with languages that do not natively
support suspension of code, the resulting source will include low-level considerations, such as state
machines, that will negatively a�ect the complexity and thus the readability of the code.

Indeed, if we would express the above code in C# then we would need a state machine capable of
expressing the for loops, and the wait behavior. Moreover, since in the code above the variable z,
which is a random number between 0 and 10, is used after its declaration in the inner for loop state-
ment, the state machine would need a mechanism to store and propagate the intermediate generated
variables, and make them available to the various blocks, or cases, of the state machine. As one can
imagine this solution is not trivial to implement, and the reason is derived from the fact that C# was
not designed to tackle this kind of issue as part of its idioms.

The other tested languages, such as Lua, come close to the code above, as Table 7.5 shows.
However, these languages trade their generality for a loss of performance, since they translate the
code above into a series of dynamic bindings represented with data structures each requiring a runtime
representation (each binding binds the current block of instructions with its continuation).

Scenario 2

For this evaluation we have measured the lines of code and syntagms of the second scenario discussed
in the performance evaluation.

More speci�cally, in this section we compare the code written in Casanova 2 against the output of
the compiler, which is written in C#, and an equivalent version written in C# that does not include
the optimization described in Chapter 5. For this scenario, it is important to focus on how much
code a developer would write by hand in order to achieve comparable performance as in the optimized
version, when such optimization is not supported natively by the language.

Results Table 7.6 shows the code length for each implementation. Casanova 2 game code needs
about half the lines of code compared to the idiomatic C# implementation. The intermediate code
that the Casanova 2 compiler creates (which is C# code) is considerably longer due to the presence
of support data structures. With increasing code complexity, we may expect the original Casanova
2 code to remain compact, while the generated code will increase rapidly in size, with additional
data structures and associated logic code. Note that the intermediate code that does not include the
optimization discussed in Chapter 5 is longer than the idiomatic C# implementation. This is due
the presence of the state machines that the compiler generates to represent the rules bodies. Indeed,
each rule is translated into a switch, for which the di�erent cases capture the various blocks of a rule.
Moreover, every construct in Casanova 2 that manipulates the execution �ow of a rule is mapped to
a series of constructs, such as return or goto, in the intermediate code.

Table 7.6: Code lines comparison for a single player game

Original language Generated language Optimized code Lines
Casanova 2 - - 45
Casanova 2 C# No 139
Casanova 2 C# Yes 327

C# - - 88

As we can see from the results in the above table, the number of lines of code belonging to the
Casanova 2 version that includes the optimization discussed in Chapter 5 is considerably longer than
the other implementations. This is due to the fact that the optimization itself comes with a series of
additional data structures, of which the manipulation is not trivial. Indeed, at every game iteration



7.3. SUMMARY 123

the world entity (after traversing all the entities) has to go through all the suspended rules that are
active in that frame, and to run them all. When, after the execution of an active rule, the rule is done
with its execution (i.e., it needs to get deactivated) the world entity will also be tasked to remove it
from the active rules list.

Moreover, when an attribute is involved in an interesting condition, even more additional code
is necessary. This code has to deal with the possible activation of the rules that contain interesting
conditions that depend on the attribute in question. This gives an idea of how much more code should
be directly written in C# to support such an optimization. No additional code needs to be included,
since the compiler will add it automatically, as discussed in Chapter 5.

7.3 Summary

In this chapter we evaluated Casanova 2 with respect to the run-time performance and readability
of its programs. For each of these evaluations we compared Casanova 2 against other tools for game
development. Each of these tools is selected based on: (i) its relevance for the evaluation, and (ii)
its representativeness in the community of video games development. The collected evidence shows
that Casanova 2 is better than other representative languages used in game development in both
readability and runtime performance.

We also discussed an analytical evaluation of Casanova 2, where we showed that Casanova 2
implements all the requirements, introduced in Section 2.3, that de�ne the qualities that a language
for game development should have. Moreover, as Casanova 2 is meant to work with any tool for game
development, we presented a series of case studies where we showed Casanova 2 working with other
third-party tools.

Casanova 2 works properly with other frameworks, is compact and maintainable, and has a compiler
that produces fast runtime game code. In conclusion, Casanova 2 is a suitable language for game
development that satis�es all requirements introduced in Section 2.4.





Chapter 8

Conclusion

This chapter provides a conclusive answer to the problem statement and research questions introduced
in Section 1.4. Section 8.1 discusses the three research questions: what are the requirements for an
ideal game development tool, to what extent a language can capture such requirements, and how such
language performs in the reality of game development; Section 8.2 answers the problem statement,
which discusses to what extent a tool that is built speci�cally for the domain of games can improve the
process of making video games; Section 8.3 discusses future work; Section 8.4 adds the �nal remarks
for this thesis.

8.1 Answer to research questions

The three research questions stated in Section 1.4 are now answered, in Sections 8.1.1, 8.1.2, and 8.1.3
respectively.

8.1.1 Game development tools requirements

The �rst research question reads:

Research question 1: What are the requirements that an ideal tool for game development
needs to meet?

The answer to the �rst research question is derived from Chapter 2. Speci�cally, in Section 2.3 we
introduced a series of advantages and disadvantages which an ideal tool for game development needs
to meet. Such advantages and disadvantages are derived from an analysis of the tools used in game
development and from their evolution. In conclusion, the answer to the �rst research question is that
an ideal tool for game development should:

� come with features to speed up the development process and to contain the complexity of game
code,

� present its features in a way tuned to the domain of games, to make game code readable and
therefore more maintainable,

� come with a series of already built-in strategies for increasing game code runtime performance,
without the direct intervention of the developer,
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� be able to interoperate with already existing tools and libraries available on the market, since
some of these tools might come with closed solutions to some speci�c problems, and

� be able to build generic game genres, without any preference to a speci�c one.

At the same time such an ideal tool should avoid disadvantages that are inherent to several other
game development tools. These disadvantages, which could be seen as antagonistic to the advantages
above, are identi�ed as: verbosity of programs, lack of portability, steepness of learning curve, lack
of customization, low-performance, and gluing frameworks and libraries to compensate for a lack of
fundamental design concepts, or constructs, in the adopted tool.

8.1.2 Implementing game development tools requirements

The second research question reads:

Research question 2: To what extent can a programming language for game development be
built, which meets the identi�ed requirements?

The answer to the second research question is derived from Chapters 2, 3, 4, 5, and 6. In Section
2 we identi�ed DSL's as a solution to the limitation imposed by GPL's used in game development
tools, in order to tackle all those issues that are not (properly) tackled natively. In Chapter 3 we
presented a concrete DSL called Casanova 2, which is aimed at reducing the complexity of making
games. Casanova 2 comes with its own syntax and semantics that are designed around the common
aspects of the video games domain. In Chapter 4 we presented a compiler that, together with ensuring
structural correctness of Casanova 2 games, also translates Casanova 2 games code into executable
programs with fast runtime performance. In Chapter 5 we further explored the opportunities o�ered
by the underlying domain of video games to improve the performance of Casanova 2 games. In Chapter
6 we showed what a complete game looks like in Casanova 2. In particular, we showed that when
embracing the requirements discussed in Section 8.1.1 at language level, the resulting games code is
simple, compact, and readable.

8.1.3 Evaluation of the DSL

The third research question reads:

Research question 3: How does such a programming language perform in terms of expres-
siveness, speed of execution, and maintainability, when compared to commonly-used tools for
game development?

The answer to the third research question is given in Chapter 7. In this chapter we discussed the
features and attributes of the Casanova 2 language by means of two di�erent evaluations: a qualitative
and a quantitative one, respectively.

In the qualitative evaluation we discussed the requirements speci�ed in Section 8.1.1. For each of
these requirements, we discussed how Casanova 2 accomplishes them by means of practical examples.
In the quantitative evaluation we discussed the performance and readability attributes of Casanova 2
by a quantitative analysis, and we compared them with those produced by other representative tools
used in game development. Casanova 2 was shown to outperform all compared tools and languages
with respect to runtime performance, and compactness of its program's code.
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8.2 Answer to problem statement

The problem statement reads:

Problem statement: To what extent can a tool be built, which makes the complexities of
general game development manageable for small and medium-sized teams of developers?

Our main goal in this thesis is to reduce the complexity of game code. We introduced domain
speci�c abstractions for game development, and built programming tools that implement those ab-
stractions. These abstractions assist developers in reaching their goals by substantially reducing
development e�orts, with a special bene�t for smaller development teams that work on serious games.
We wrap these abstractions in the concrete shape of a programming language.

A programming language suited for game development should always keep in mind the requirements
discussed in Section 8.1.1. In this thesis we propose a programming language, called Casanova 2, which
is aimed at achieving such requirements. Casanova 2 is a language speci�cally designed for building
computer games, and it o�ers a solution to the high development costs and complexity of games.

Being tailored to the speci�c domain of games makes Casanova 2 capable of expressing properties
that are common to the design of games, such as time �ow, suspensions, games entities, etc. As an
immediate result the resulting Casanova 2 code is similar to how we think of a game from a mathe-
matical perspective (see Section 2.1). Moreover, Casanova 2 guarantees non-functional requirements
(performance being the central one) as it comes with a series of built-in optimizations that do not
require the developers' direct intervention.

Casanova 2 does not trade its advantages for expressive power. The language is not bound to
speci�c genres, and is shown to be e�ective in the hands of a broad spectrum of developers.

We have shown these properties by means of a mixture of extensive benchmarks which compare
Casanova 2 sources with equivalent sources written in typical programming languages, but also by
means of actual game development activities performed by di�erent developers, from junior to senior.

We consider Casanova 2 particularly suitable for smaller development teams, which are willing to
trade some of �exibility and execution speed of general programming languages, such as C#, for speed
and ease of development and maintainability of code.

Therefore, in answer to the problem statement, we state that Casanova 2 is a suitable language
for game development that o�ers a signi�cant step forward for developers in achieving a more e�cient
process of translating a game design into an actual, working game.

8.3 Future work

Casanova 2 comes with a series of features that have proven to be convenient for video game developers.
However, a modern language for game development, such as Casanova 2, should also be �exible (which
entails being useful in a broad range of contexts) and extensible (adaptable beyond the limitations of
its original design). In order to be �exible and extensible, it is important that the compiler architecture
is constructed in a way that is open to changes and extensions. This is not entirely the case for the
current version of the Casanova 2 compiler.

Therefore, we are focusing our research e�orts on the de�nition of a meta-compiler that supports
the automatic creation of a compiler for any of a general class of programming languages. Preliminary
results show that it is possible to implement an equivalent version of the Casanova 2 compiler in
the meta-compiler, with less e�ort and lines of code when compared to the traditional hard-coded
implementation.

This meta-compiler, once �nished will allow us to experiment with adding new features to Casanova
2, without the need to make time-consuming changes to the existing compiler. Such features encompass
networking capabilities, a dedicated debugger, and compilation towards di�erent target languages.



128 CHAPTER 8. CONCLUSION

Of these new features, networking capabilities are, in our view, the most important, and should
be added to Casanova 2 soon. We already did some preliminary experiments in this regard, of which
the results are reported in Appendix C.

8.4 The future of game development

Where once games were meant almost exclusively for entertainment, nowadays the applicability of
games has expanded beyond that, and increasingly professionals who are not game developers them-
selves see a need or use for the development of a game for a particular purpose within their own
knowledge domain. As such professionals usually do not have the budget to let their envisioned games
be developed by dedicated game developers, they are in need of a game development approach that
provides them with the ability to develop all kinds of games with compact, readable, and maintain-
able code that translates into fast executables. For this purpose, general programming languages
are unsuitable as they are hard to learn and use, while most game development tools are limited to
particular genres and produce relatively slow executables.

This is where domain-speci�c languages come in. A good DSL for game development provides a
programming paradigm that is tuned to the development of games, allowing the developer to focus on
the high-level game concepts (regardless of the game genre), safe in the knowledge that the DSL itself
will take care of the concepts common to most games, and will produce fast executables. Casanova 2
is such a DSL.

Considering that games are ubiquitous nowadays, and are increasingly seen as playing a role in
training, education, research, and social interaction, there is a clear need for Casanova 2 and its ilk.
The existence of such a language may help in lifting the application of games in a variety of domains
beyond the level of mere aspiration.
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Appendix A

Casanova 2 questionnaire

In this appendix chapter we discuss the experience gathered from the �rst workshop on Casanova
2. The workshop was held during the GameOn conference in Amsterdam on December 2015. A
group of about 12 developers attended the workshop, which took about 3 hours. During the workshop
the participants were invited to build themselves some samples in Casanova 2. All the materials
used for workshop were provided through an on-line repository on Github (https://github.com/vs-
team/casanova-mk2/wiki/Workshop).

A.1 Questions

At the end of workshop the participants attend a short survey. The goal of this survey was to
understand the background of the participants, to understand whether the participants appreciated
Casanova 2, and what are advantages and disadvantages of Casanova 2 observed by the participants.

In the following we provide the questions of this survey, and for each question we provide a
motivation on why we chose it:

Q1 : What is the best feature of Casanova?

This open question is meant to investigate the observed and understood the advantages of
Casanova 2 by the participant. It is also meant to investigate whether the observed and un-
derstood advantages coincide (or at least partially overlap) with the features that characterize
Casanova 2.

Q2 : What is missing?

This open question is meant to investigate the observed missing features of the Casanova 2.
Answers deriving from this question might help us with choosing future features to implement.

Q3 : Would you consider using Casanova in your daily work?

This closed question is meant to understand whether the observed, and understood, features of
Casanova 2 are convincing enough to make new developers choosing for it.

Q3.1 : If yes, for what kind of games?

This closed question is meant to investigate possible and future applications of Casanova
2.
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Q4 : What computer languages do you use professionally?

This open question is meant to investigate the professional developing background of the par-
ticipant.

Q5 : Which systems or tools have you used to make games?

This open question is meant to investigate the professional gaming background of the participant.

Q6 : What does the following code do? (answer: the color toggles between red and
green ever second)

This closed question is meant to understand whether the participant understood the basic me-
chanics of the Casanova 2 (including its syntax).

Q7 : What does the following code do? (when the cube is selected it get scaled up until
a countdown is over. Then the cube is destroyed)

This closed question is more di�cult than the previous one, and is meant to strengthen the
answer of the previous question.

A.2 Grouped answers

In the following the grouped answers given by the participants are provided.

Q1 : What is the best feature of Casanova?

� Apparent simpli�cation of threaded code execution

� E�ective coding

� The coroutine like way of coding

� Interruptible statements

� Wait + condition seems elegant

� Abstraction of time behavior

� Casanova constructs more closely match a designer's intention

� A good environment for game development

Q2 : What is missing?

� Debugger

� Too little info to answer

� Too early to sya

� More precise parse errors noti�cation

� Automatic generation of proxies for my custom entities

� A back end that compiles into C#/JavaScript/Python

� Do not know
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Q3 : Would you consider using Casanova in your daily work?

No Yes

30%

70%

Answers

P
er
ce
n
ta
g
e

Q3.1 : If yes, for what kind of games?

� Language education games

� Educational games

� Education on game programming

� Puzzle learning for learning math

Q4 : What computer languages do you use professionally?

C# C++ Python Java JavaScript

50% 50%

33% 33%

16%

Answers

P
er
ce
n
ta
g
e

Q5 : Which systems or tools have you used to make games?

Processing Html5 Unity Unreal

Engine

Ogre XNA Blender Photoshop Java Flash

16% 16%

83%

16% 16% 16% 16% 16% 16% 16%

Answers

P
er
ce
n
ta
g
e
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Q6 : What does the following code do? (answer: the color toggles between red and
green ever second)

Correct Not correct

100%

0%

Answers

P
er
ce
n
ta
g
e

Q7 : What does the following code do? (when the cube is selected it get scaled up until
a countdown is over. Then the cube is destroyed)

Correct Not correct

83%

17%

Answers

P
er
ce
n
ta
g
e

Results As a result, it turns out that Casanova 2 is appreciated by the experts who attended the
workshop, although most of the participants would like to spend more time experimenting with the
language. Moreover, all participants understood the advantages derived from the use of Casanova 2
such as compactness, readability, etc.

A.3 Discussion

Casanova 2 is appreciated by expert game developers (see questionnaire), who not only understood
the advantages deriving from using Casanova 2, but also would use Casanova 2 in their everyday and
professional lives. This questionnaire was not interesting to us only from the point of view of the
appreciation level of Casanova 2; it also showed us that some import aspects are missing and felt
by the expert developer. We are already planning to implement some of these aspects, such as a
debugging facility, in on of the next development stages of Casanova 2.



Appendix B

Casanova 2 games

In this appendix we show how Casanova 2 works in real life. More speci�cally, we will show, and
discuss, how Casanova 2 behaves when used by new developers who are not con�dent with it. We
will do so by asking developers with no knowledge of Casanova 2 to build video games (our running
examples). Moreover, by means of these games we wish to show how Casanova 2 provides a framework
that is suitable for building video games not limited to speci�c genres.

In the following, we discuss these games and for each of them we will discuss its design, the
technological choices made by the developers, and eventually our �nal observations.

B.1 Groups and games description

Every group is composed of third year bachelor students in computer science and who chose Casanova
2 as subject to work with

B.1.1 Group 1

The �rst group is made of 4 students from the Rotterdam University of Applied Sciences. Before
starting their work, the students received a short training on Casanova 2. After the tutorial, the
students worked on a total of 2 games. The genres of games the students worked on are a strategy
game, and a �rst person shooter game.

Game 1 - a strategy game

The �rst game the students made is a strategy games, inspired by the open source and online game
Galaxy Wars (http://galaxywarsthegame.com/). In Figure B.1 you �nd a screenshot of the game
made by the students.

Technological choices The students used Casanova 2 for developing the logic of the game, whereas
Unity3D for: including the game contents, and rendering.

Our observations The game took the students a few weeks to be completed. When compared to
the original game (the original Galaxy Wars logic was written in F#), the Casanova 2 code made by
the students is more compact in terms of lines number.
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(a) A strategy game made by a group of students

Figure B.1: A strategy game made by a group of students

Results The main mechanics we �nd in the original Galaxy Wars, expect for the networking (which
is not supported in Casanova 2 yet), can be found also in the version made by the students. In
conclusion, we can say that it is possible for novice programmers to make strategy games in Casanova
2.

Game 2 - a shooter game

The second game the students made, right after they previous one, is a �rst person shooter. The
game belongs to the survival genre, where a group of players try to survive in a city overrun by enemy
zombies by escaping from it on a virtual car.

Technological choices As for the previous game, the students chose Casanova 2 for developing
the logic of the game, and Unity3D for: including the game contents, and renderings. Moreover, the
game was developed so to be played inside a virtual reality lab (supplied with 360 degree projection),
in order to let all the players play together in the same room. To simulate the weapons used in game,
wired hand gestures controllers were used; while for driving the car the students used a USB racing
wheel.

Our observations As observed before, when mastered, Casanova 2 speeds up the development
process of a game. It took a short time (about 7 weeks) to implement the main functionalities of
the game. Thus, leaving the students plenty of time for designing and implementing new additional
features to include in the game. The main di�culties, we observed, encountered by the students are
connecting and testing the external controllers and connecting the game to the virtual reality lab.

Moreover, it worth to acknowledge the fact that for this speci�c game, little technical support
was provided. The students, all by themselves: designed and implemented the game, found suitable
external controllers and connected them to Casanova 2, connected the game to the augmented reality
lab, etc.
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Results The game was completed in about 2 month and a half, and tested in the virtual reality lab-
oratory together with all the external devices (steering wheel and gestures controllers). In conclusion,
we can say that it is possible for novice programmers to make �rst person shooter games in Casanova
2.

B.1.2 Group 2

The second group is made of one student from Inholland University of Applied Sciences. As for
Group 1, before starting with making games, the student received a short training on Casanova 2.
After the tutorial, the students worked on a series of games, for a total of 6 games (5 of which are
more simulations than fully �edged games), to run on a web browser.

Game 1 - tutorials

The games the student made vary from each other, since they are meant as examples for a tutorial in
Casanova 2. The samples and games the student made are: a ship �ying in the open space, a basket
ball �eld simulation, a snow�ake �eld, a �ocking system, a series of controllable and moving patrols,
and eventually an asteroids shooter game. In Figure B.2 you �nd the just introduced samples.

Each sample comes with a prede�ned learning goal that a new user, who is starting to study
Casanova 2, would get:

� Moving ship, introduces the basics of Casanova 2;

� Basket ball �eld, teaches about interoperability with third-party tools;

� Snow�ake �eld, introduces intermediate aspects of Casanova 2, such as how to manipulate
entities in collections;

� Flocking, introduces advanced aspects of Casanova 2, such as how to build a physics system;

� Controllable patrols, introduces advanced integration aspects of Casanova 2, such as how to
capture and propagate a click on a game element from Unity3D to Casanova 2;

� Asteroids shooter, sums up the acquired knowledge so far and puts it into the development of
a fully �edged game that includes (together with the game dynamics) a menu system, audio
e�ects, a scoring system, etc.

Technological choices As for the previous group, the student chose Casanova 2 for developing
the logic of the samples, and Unity3D for: including the game contents, renderings, and running the
simulations and games on a web browser.

Our observations In about three months the student managed to implement, and comment (for
the tutorial) all the 6 samples and games. As noticed with the previous group, the language was
not di�cult to use; most of the di�culties encountered by the student were related to other kinds of
complexities, not related to the language itself, such as understanding the physics behind the �ocking
simulation.

Results All the samples were completed on time and are fully working and available via web browser
on https://github.com/vs-team/casanova-mk2/wiki/Casanova Samples and Demos. In conclusion, we
can say that it is possible for novice programmers to implement samples for tutorials on Casanova 2
and a space shooter.
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(a) Moving ship (b) Basket ball �eld (c) Snow�ake �eld

(d) Flocking (e) Controllable patrols (f) Asteroids shooter game

Figure B.2: A series of tutorials made by a student during his internship

B.2 Discussion

This collection of empirical evidences give a strong indication that Casanova 2 is suitable for making
at least the games shown in this appendix chapter: �rst person shooter games, strategy games, space
shooter games, and tutorial samples. Moreover, as observed previously, Casanova 2 code is compact
and is understandable by novice developers to the point that novice developers managed in short time
to implement di�erent kinds of games.

(a) A game for detecting dyslexia in children (b) A game for studying the evolution of a lan-
guage

Figure B.3: Some Casanova 2 games

Casanova 2 has been used also for making a series of applications used as part of teaching and
research projects. A notable application is a game for detecting dyslexia in children (see Figure B.3a).
Another notable application is a game for studying the evolution of languages (see Figure B.3b).
Both games have been used as a tool for research and features some articulated animations and state
machines.

The collected results so far are preliminary (more running examples and users are needed to
strengthen our observations), however these results are already interesting and promising.



Appendix C

Casanova 2 networking, a preliminary

work

In this appendix chapter we introduce the basic concepts of the implementation of multiplayer game
development for Casanova 2. This implementation aims to relieve the programmer of the complexity of
hard-coding the network implementation for an online game, while preserving game code compactness
and maintainability. Typical networking implementations break encapsulation as what to send over
the network is dependent on the game logic, thus small changes in the game structure could a�ect
heavily the networking layer.

We show that code analysis is required to generate the appropriate network primitives to send and
receive data. Finally, we present a simple multiplayer game to show a concrete example.

C.1 Introduction

Adding multi-player support to games is a highly desirable feature. By letting players interact with
each other, new forms of gameplay, cooperation, and competition emerge without requiring any ad-
ditional design of game mechanics [47]. This allows a game to remain fresh and playable, even after
the single player content has been exhausted. For example, consider any modern AAA (AAA refers
to games with the highest development budgets[104]) game such as Halo 4. After months since its
initial release, most players have exhausted the single player, narrative-driven campaign. Nevertheless
the game remains heavily in use thanks to multiplayer modes, which in e�ect extended the life of the
game signi�cantly. This phenomenon is even more evident in games such as World of Warcraft or
EVE, where multiplayer is the only modality of play and there is no single-player experience.

Challenges Multi-player support in games is a very expensive piece of software to build. Multiplayer
games are under strong pressure to have very good performance[29]. Performance is both in terms of
CPU time, and in bandwidth used. Also, games need to be very robust with respect to transmission
delays, packets lost, or even clients disconnected. To make matters worse, players often behave
erratically. It is widespread practice among players to leave a competitive game as soon as their
defeat is apparent (a phenomenon so common to even have its own name: �rage quitting� [59]), or
to try to abuse the game and its technical �aws to gain advantages or to disrupt the experience of
others.

Networking code reuse is quite low across titles and projects. This comes from the fact that the
requirements of every game vary signi�cantly: from turn-based games that only need to synchronize
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the game world every few seconds, and where latency is not a big issue, to �rst-person-shooter games
where prediction mechanisms are needed to ensure the smooth movement of synchronized entities, to
real-time-strategy games where thousands of units on the screen all need to be synchronized across
game instances [89]. In short, previous e�ort is substantially inaccessible for new titles. Encapsulation
su�ers from this ad-hoc nature of the implementation of the networking layer in multiplayer games.
Indeed managing the information about game updates over a network requires each game entity to
interface the game logic code with network connection and socket objects, data transmission method
calls such as send and receive, and support data structures to manage tra�c and track the status of
common protocols. This happens because each game entity must provide the following functionality
in order to work in a multiplayer game:

� Update the logic in the fashion of a singleplayer counterpart.

� Choose what data is necessary to send over the network and create the message containing this
information.

� Choose what data can be lost and what data must always be received by the other clients.

� Periodically check if incoming messages contain information that needs to be read and to speci�c
updates.

Combining these requirements together within the same entity breaks encapsulation because now
the logic of the entity and lots of spurious details only relevant to the networking implementation are
mixed together, resulting in a highly noisy program. Maintenance then becomes very hard, as every
change in the game logic must also be re�ected in the networking implementation.

Existing approaches Networking in games is usually built with either very low-level or very high-
level mechanisms. Very low-level mechanisms are based on manually sending streams of bytes and
serializing only the essential bits of the game world, usually incrementally, on unreliable channels
(UDP). This coding process is highly expensive because building by hand such a low-level protocol
is di�cult to get right, and debugging subtle protocol mismatches, transmission errors, etc. will take
lots of development resources. Low-level mechanisms must also be very robust, making the task even
harder.

High-level protocols such as RDP, re�ection-based serialization, frameworks (such as Pastry, netty.io),
etc. can also be used. These methods greatly simplify networking code, but are rarely used in com-
plex games and scenarios. The requirements of performance mean that many high-level protocols or
mechanisms are insu�cient, either because they are too slow computationally (especially when the
rely on re�ection or events) or because they transmit too much data across the network.

C.1.1 Motivation

To avoid the problems of both existing approaches, we propose a middle ground. We observe that
networking fundamental abstractions upon which the actual code and protocols are built do not vary
substantially between games, even though the code that needs to be written to implement them
does. The similarity comes from the fact that the ways to serialize, synchronize, and predict the
behaviour of entities are relatively standard and described according to a limited series of general
ideas. The di�erence, on the other hand, comes from the fact that low-level protocols need to be
adapted to the speci�c structure of the game world and the data structures that make it up. Until
now, common primitives have not been syntactically and semantically captured inside existing domain-
speci�c languages for game development[18]. Using the right level of abstraction, these general patterns
of networking can be captured, while leaving full customization power in the hand of the developer
(to apply such primitives to any kind of game).
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C.1.2 Related works

In the following we discuss some existing networking tools used in game development and we highlight
some issues that arise from their use.

The Real time framework (RTF) RTF [46] is a middleware built for C++ to relieve the program-
mer from dealing with data compression. It is more �exible than solutions based on game engines
or hand-made implementations, since it automates the process of data transmission. Moreover, it
supports distributed server management. Unfortunately, this solution has several �aws:

� All entities must inherit from the class Local and the semantics of the position is pre-determined,
often clashing with rendering or physics;

� Platform independence requires that the programmer uses RTF primitive types;

� Data transmission automation requires that all game entities inherit the class Serializable;

� Being a middleware, RTF is not aware of what games are going to use it (every game comes
with di�erent data structures). Thus, the developer is tasked to include in his code also logic to
update the RTF layer, in order to keep the game updated over the network.

Network scripting language (NSL) NSL [84] provides a language extension based on a send-
receive mechanism. Moreover it provides a built-in client side prediction (a feature missing in existing
highly concurrent and distributed languages such as Stackless Python [60] and Erlang [10]), which is
periodically corrected by the server.

Unreal Engine/Unity Engine Unreal Engine [44] and Unity Engine [37] are commercial game
engines supporting networking. Both Unity and Unreal Engine use a client-server approach. In
Unreal Engine the server contains the �true� game state, and the clients contain a �dirty� copy, which
is validated periodically. It is possible to de�ne entities (actors in Unreal Engine jargon) that are
replicated on the clients. Whenever a replicated actor changes on the server, this change is also
re�ected on the clients. Additional customization can be achieved through Remote procedure calls
(RPC's) of three kinds:

� The function is called on the server and executed on the client. This is used for game element
that do not a�ect gameplay, such as creating a particle e�ect when a weapon is �red;

� The function is called on the client and executed on the server. This is useful for events that
a�ect the other clients and should be validated by the server;

� The function is executed in multi-cast, meaning that the server calls the function and that it is
executed on both the server and all the clients.

The Unity Engine uses a similar approach based on networking components, synchronized at every
frame, and RPC's to de�ne custom synchronization events.

Unfortunately, customization comes at the cost of the level of detail that developers must face.
Using RPC's require a deep knowledge of the engine and writing lots code.

C.2 Networking architecture

In this section we introduce a small example that addresses the requirements of designing a multiplayer
game. We then present an architecture that aims to ful�ll these requirements.
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C.2.1 The master/slave network architecture

We choose to implement the networking layer in Casanova 2 by using a peer-to-peer architecture for
the following reasons:

� Server-client architectures are more reliable but suitable only for speci�c genres of games (mostly
Shooter games), while other genres, such as Real-time strategy games or Online Role Playing
Games use p2p architecture.

� We do not have to write a separate logic for an authoritative game server, which has to validate
the actions of clients.

Casanova will provide a generic tracking server, which is run separately from the main program.
The tracking server is a thin service that connects players participating in a single game, and helps
with forwarding the network tra�c through NATs.

Each client maintains a local copy of the world entity and has direct control over a single portion
of it. Instances belonging to such portion are seen as master by this player, who is always allowed
to directly change the state of the master instances without having to validate this state change by
synchronizing with other players through the network.

Each client also maintains a portion of the world that is not directly under his control. Instances
belonging to such portion are seen as slave by this player, who is only allowed to predict the local
state of the instances and, whenever he receives an update from their masters, must correct this
prediction according to the data contained in the received messages. The slave part of the world is
thus maintained passively by the client: the only active part is predicting the evolution of the entity
state and correcting it whenever he receives an update by its master.

For this purpose we extend the syntax of Casanova rules by allowing them to be marked with the
modi�ers master and slave. These rules are executed respectively on master and slave entities. Note
that it is still possible not to mark a rule with these modi�ers, which means that the rule is always
executed independently of the fact that the entity is either master or slave on that particular client.
We also allow to mark a rule as connecting and connected. These rules are triggered only once
respectively when a new client connects and when the clients detect a new connection.

Casanova also provides primitives to send (reliably or unreliably) and receive data. A schematic
representation of this architecture can be seen in Figure C.2.

Note the aim of this architecture is to provide language-level primitives to describe the networking
logic. This means that the compiler will be able to generate code compatible with low level network
libraries that provide transmission functions over the network channel without having to change
Casanova code in the program. In our implementation we chose the .NET library Lidgren, which is
widely used also in commercial game engines, such as Unity3D and MonoGame, but nothing prevents
the compiler to be expanded in order to target other similar libraries for other languages, such as
jgroups [13].

C.2.2 Case study

Let us consider a simple shooter game where each player controls a space ship. Players can move
forward, backward, and rotate the ship to change direction. Moreover, they can use the ship lasers
to shoot other players. If a laser hits an enemy ship we increase the player's score. Designing such a
game requires to address the following issues, depicted by the schematic representation in Figure C.1:

1. Each player must maintain a local version of the game state (world). In order to avoid to �ood
the network with messages, all the copies are not fully synchronized at each frame, thus they
are slightly di�erent and each client knows the latest version of only part of the copy.



C.2. NETWORKING ARCHITECTURE 143

(a) Unknown correct game state when P3 joins the game.

(b) Networking game state seen from the point of view
of P1. P2 is partially synchronized, P4 is fully syn-
chronized, and P3 is a new client that is late and is
still sending its data

Figure C.1: Representation of the game world in a networking scenario

2. A player connecting to an existing game must be able to receive the latest update of the game
state and send the new ship he will control to existing players in the game.

3. A player already connected to the game must detect a new connection and send his master
portion of the game state.

4. Each player must be able to control only one ship at a time. This means that the part of
the game logic that processes the input and modify the spatial data of the ship (position and
rotation) should only be executed on the ship controlled by the player and not on the local copies
of other players' ships. This means that each player sees as master only one ship instance.

5. Each player must send the updated state of the ship he controls to the other players after
executing the local update. To achieve better performance over the network, the data is not
sent at every update, but with a lower frequency.

6. Each player must receive the updated state of slave ships controlled by other players. In this
phase we must take into account that, as explained above, not every update is sent so the player
should �predict� what will happen during the game frames in which he does not receive an
update.



144 APPENDIX C. CASANOVA 2 NETWORKING, A PRELIMINARY WORK

Figure C.2: master/slave architecture

C.2.3 Implementation

Each of the scenarios described above requires speci�c language extensions. This extensions identify
connection, ownership (master/slave), and various send and receive primitives. In this section we
introduce each primitive by using a multiplayer game example 1. We now give an implementation
of the shooter game presented above and using the extended version of Casanova 2 with network
primitives.

The world contains a list of ships controlled by each player.

world Shooter = {

Ships : [Ship]

...

}

Each Ship contains a position, a rotation, a collection of shot projectiles, and the score.

entity Ship = {

Position : Vector2

Rotation : float32

Projectiles : [Projectile]

Score : int

...

}

Each Projectile contains its position and velocity.

entity Projectile = {

1The game source code and executable can be found at https://github.com/vs-team/casanova-mk2/wiki/

Networking-extension

https://github.com/vs-team/casanova-mk2/wiki/Networking-extension
https://github.com/vs-team/casanova-mk2/wiki/Networking-extension
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Position : Vector2

Velocity : Vector2

...

}

Connection When a player connects we must consider two di�erent situations: (i) a player is
already in the game and must send the current game state to the connecting players, and (ii) the
player who is connecting needs to send the ship he will instantiate and control (its initial state). Both
the players in the game and the connecting one must receive the game states that are sent. For this
purpose we introduce two additional modi�ers, connecting and connected, that can be added to
rule declarations to mark their role in the multiplayer logic.

Connecting: A rule marked with connecting is executed once when a player joins the game. In
our example the player should send his initial state (the created ship) to the other players. We use
the primitive send_reliable because we must be sure that eventually all players will be noti�ed of
the ship creation.

world Shooter = {

...

rule connecting Ships =

yield send_reliable Ships

}

Connected: A rule marked with connected is run whenever a new player joins the game. When
this occurs, each player sends its ship. The system will take care to send only the ship controlled
locally by the player itself for each player. The rule will use the send_reliable primitive for the
same reason explained in the previous point.

world Shooter = {

...

rule connected Ships =

yield send_reliable Ships

}

C.2.4 Master updates

As explained above, each client manages a series of local game objects (called master objects) that
are under its direct control. The other clients read passively any update done on those instances
and update their remote copy (slave objects) accordingly. We mark rules a�ecting the behaviour of
master objects as master. In our example the following situations are run as master: (i) synchronizing
the ships among players, (ii) updating the ship and projectiles spatial data, and (iii) creating and
destroying projectiles.

� Each player is tasked to maintain the list of Ships in the world. This requires to receive the
updated list from other players and to store the new value in a master rule. Indeed the world is
a special case of an entity that is shared among players, and not directly owned by somebody.
Each ship contained in that list and received from other players will be treated appropriately as
slaves, while the only one owned by the current player will be under his direct control. In this
rule we use let!, which is an operator that waits until the argument expression returns a result
and then binds it to the variable. The rule uses receive_many, which receives and collects the
list of sent ships by the other players.
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world Shooter = {

...

rule master Ships =

let! ships = receive_many ()

yield Ships @ ships

}

� The master version of the ship update reads the input of the player and moves (or rotates) the
ship if the appropriate key is pressed. Note that this part must be executed only on a master
object, because we want to allow each player to control only the ship it owns and instantiates at
the beginning of the game. Below we show just the rule to move forward, the other movement
and rotation rules are analogous. We use an unreliable send because it is acceptable to lose an
update of the position during a certain frame: shortly after there will be a new update.

entity Ship = {

...

rule master Position =

wait world.Input.IsKeyDown(Keys.W)

let vp = new Vector2(Math.Cos(Rotation),

Math.Sin(Rotation )) * 300 .0f

let p = Position + vp * dt

yield send p

}

We do the same for projectiles, except the projectile position is continuously updated and
synchronized over the network without having to wait that a key is pressed.

� Creating a new projectile happens when the player shoots. A ship keeps track of the projectiles
it has shot so far, and adds a new one to the list of the existing projectiles. The updated list is
sent to all players with the new instance of the projectile. As explained in Section C.2, we only
send the new projectiles and not the whole list.

entity Ship = {

...

rule master Projectiles =

wait world.Input.IsKeyDown(Keys.Space)

let vp = new Vector2(Math.Cos(Rotation),

Math.Sin(Rotation )) * 500 .0f

let projs = new Projectile(Position , vp) :: Projectiles

yield send_reliable projs

wait not world.Input.IsKeyDown(Keys.Space)

}

Filtering the colliding projectiles and updating the score is run as a master rule. The rule
computes the set di�erence between the ship projectiles and the colliding projectiles and updates
the list of projectiles, sending them through the network as well. Even in this case, the network
layer sends only the information about the projectiles to remove. Note that the score is managed
by each player locally, as it does not require to be synchronized (we do not print the other players'
scores. Doing so would indeed require to also send the score).
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entity Ship = {

...

rule master Projectiles , Score =

let collidingProjs =

[for p in Projectiles do

let ships =

[for s in Ships do

where s <> this and

Vector2.Distance(p.Position ,s.Position) < 100 .0f

select s]

where ships.Count > 0

select p]

let newProjectiles = Projectiles - collidingProjs

yield send_reliable newProjectiles ,

Score + collidingProjs.Count

}

C.2.5 Managing remote instances

The game objects that were not instantiated by a client, but received from another client, are slave
objects and must be synchronized di�erently than master objects. For this purpose, a rule can be
marked as slave. In our example we use slave rules in the following situations: (i) synchronizing
other players' ships and projectiles spatial data, and (ii) projectiles instantiated by other players.

� Every remote projectile and ship is synchronized locally by a rule, which tries to receive a
message containing updated special data. Below we provide the code to update the position of
the ship, the synchronization of other spacial data is analogous.

entity Ship = {

...

rule slave Position = yield receive ()

}

� When a projectile is instantiated remotely, we have to receive it and add it to the list of pro-
jectiles. We use receive_many because the new projectiles are added to a list. This case also
supports the situation where a ship could shoot multiple projectiles at the same time.

entity Ship = {

...

rule slave Projectiles =

let! projs = receive_many ()

yield projs @ Projectiles

}

C.3 A preliminary evaluation

Compactness is an important aspect of a language that determines the maintainability of code written
with it. Our proposal for a networking in Casanova 2 shows an interesting measure in terms of
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Table C.1: Code lines comparison for a multiplayer game

Language Lines
Casanova 126

C# 1257

compactness. When comparing the Casanova 2 game code of the networked game presented in Section
C.2.2 (�gure C.3 show this game in action and played by two clients) with an equivalent hand-made
implementation written in C#, the di�erence is one order of magnitude (see Table C.1).

Figure C.3: A multiplayer Casanova 2 game made with the monogame framework

C.4 Discussion

Writing networking code by hand is a daunting and expensive task as seen in the tables C.1 and 7.6.
To achieve the desired behavior, lots of code is necessary that will lead to a code that is less readable
and maintainable. With our proposal the Casanova 2 is not a�ected by networking considerations, but
rather the code remains compact, readable, and maintainable. These results are even more remarkable
if we consider the fact that networking in games is known to be complex and typically require lots of
verbose code. Our solution provides good primitives for networking, which preserve code encapsulation
because they do not require polling the identity of an entity with network speci�c information that it
is not related to the game logic of the entity itself. Of course networking does impact the logic of the
entity, but this should be re�ected by minimal code adjustments.
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