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Abstract

Graph-based representations have become increasingly popular due to their ability
to characterize in a natural way a large number of systems which are best described
in terms of their structure. Concrete examples include the use of graphs to represent
shapes, metabolic networks, protein interactions, scientific collaboration networks and
road maps. The challenge in this domain is that of developing efficient tools for the
analysis and classification of graphs, a task which is far from being trivial due to their
rich expressiveness.

In this thesis, we introduce a novel algorithm to extract an undirected graph from
a 3d shape. Then, we show how to learn a graph generative model which is able to
capture the modes of structural variation within a set of graphs, and how to select
the optimal model using a classical MML approach, as well as a novel information-
theoretic framework. Shifting our focus from generative to deterministic classifica-
tion approaches, we then introduce a family of graph kernels, which are based on a
quantum-mechanical analysis of the structure of the graph. This leads us to the fi-
nal part of the thesis, where we propose a series of algorithms for the analysis of graph
structure which build on the common idea of exploiting the correlation between struc-
tural symmetries and the interference properties of quantum walks.






Sommario

Le rappresentazioni basate su grafi hanno visto crescere negli anni la loro popolar-
ita per la loro capacita di descrivere in maniera naturale un ampio numero di sistemi
caratterizzati da una forte componente strutturale. Esempi concreti includono 'uso di
grafi per rappresentare forme, reti metaboliche, interazioni proteiche, collaborazioni
scientifiche e mappe stradali. In questo campo, la sfida & quella di sviluppare stru-
menti efficienti per I'analisi e la classificazione di grafi, un compito reso ancora piu
arduo dalle ricche potenzialita espressive dei grafi.

La tesi comincia con l'introduzione di un nuovo algoritmo per l'estrazione di un
grafo indiretto da un oggetto tridimensionale. Mostriamo quindi come imparare un
modello generativo in grado di catturare le variazioni strutturali all'interno di un in-
sieme di grafi, e come selezionare il modello ottimale usando un classico approccio
MML, oltre ad un nuovo sistema basato sulla teoria dell'informazione. Spostiamo a
questo punto l'attenzione dagli algoritmi di classificazione generativi a quelli deter-
ministici, ed in questo contesto introduciamo una nuova famiglia di kernel su grafi
che si basano su un’analisi meccanico-quantistica delle struttura dei grafi. Questo ci
porta alla parte finale della tesi, dove proponiamo una serie di algoritmi per 1'analisi
della struttura dei grafi che si basano sull’idea comune di sfruttare la correlazione tra
simmetrie strutturali e i pattern di interferenza tipici dei cammini quantistici.
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Preface

This thesis covers the research which I carried out during my three years of PhD at the
Department of Environmental Sciences, Informatics and Statistics of Ca’ Foscari Uni-
versity of Venice, Italy. Although I started by improving and extending my MSc thesis
on medial surfaces and graph representations of shapes, I soon realized that the big
challenge actually lied in the so-called field of graph-based pattern recognition. I con-
sider myself extremely lucky for having had the chance of researching on such a diverse
and multi-faceted topic, as this led me to develop a broad spectrum of expertise which
in my opinion is essential for conducting academic research at the highest level possi-
ble. I should mention, finally, that the six months that I spent working at the University
of York, UK, had a key role in the shaping of my scientific and technical knowledge. Un-
fortunately, the continuous pressure in academia to rapidly and continuously publish
novel work too often leads to scarcer collaborations among different research groups,
as in the race for novelty there is no room for second place. But the sharing of ideas lies
at the very heart of scientific research, and only by discussing and sharing our ideas
within the community our work can really bloom.

Before overviewing the contents of this thesis in the next Chapter, I would like to
end with a quote that best illustrates what should always remain the true driving force
of academic research, and what has actually pushed me to become a PhD student: the
passion for science.

The feeling of awed wonder that science can give us is one of the highest experi-
ences of which the human psyche is capable. It is a deep aesthetic passion to rank
with the finest that music and poetry can deliver. It is truly one of the things that
make life worth living and it does so, if anything, more effectively if it convinces us
that the time we have for living is quite finite.

Richard Dawkins, Unweaving the Rainbow: Science, Delusion and the Appetite for
Wonder.
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Introduction

The focus of this thesis is on the mathematical object known as graph. Historically, the
theory of graphs has its roots back in 1736, when Euler was trying to solve the prob-
lem of finding a walk through the city of Konigsberg such that each bridge would have
been crossed exactly once. As this small yet important example suggests, the fortune
of graphs lies in their ability to intuitively model a vast variety of real-world problems.
In particular, graph-based representations have long been used in computer science
to characterize in a natural way a large number of objects which are best described in
terms of their structure, with applications in fields as diverse as computer vision, bioin-
formatic, linguistic and sociology. However, the rich expressiveness of graphs usually
comes at the cost of an increased difficulty in applying standard pattern recognition
techniques on them. The challenge, in this sense, is that of developing efficient tools
for the analysis and classification of graphs, a task which proved to be far from trivial.

This thesis attempts to address these issues by introducing a wide spectrum of
novel techniques for the modeling, classification and analysis of graph structures. Chap-
ter [3| introduces a novel algorithm for the extraction of medial surfaces from three-
dimensional shapes, where the medial surface can be seen as an intermediate rep-
resentation in the process of extracting a graph from a shape. Chapter 4| and Chap-
ter[5|cover the problem of graph classification using generative and discriminative ap-
proaches, respectively. Finally, in Chapter [f] we shift our attention to the problem of
analyzing the structure of a graph.

Graph-Based Representations: Medial Surfaces

Graph-based representations have long been used to model 2D and 3D shapes in com-
puter vision applications, in an attempt to automatically analyze and classify objects.
Today, the wide availability of cheap 3D scanning devices renders topical the auto-
mated extraction of a representation which provides a simple venue to perform shape
analysis and representation under deformation and articulation. For this reason, the
design of efficient algorithms for 3D skeleton extraction is of pivotal importance. The
3D skeleton, or medial surface, of an object, is usually defined as the locus of the cen-
tres of the maximal inscribed spheres which are at least bitangent to the shape bound-
ary. While in 2D the image needs to be segmented in order to extract the skeleton, in 3D
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the objects are naturally modeled as distinct meshes, thus rendering the skeletoniza-
tion much more practical. The addition of a third dimension, however, renders the
task of medial surfaces extraction particularly challenging. First, there is an exponen-
tial growth of the number of voxels, which may render the computation impracticable
when a high resolution is needed. Further, volumetric objects are commonly repre-
sented as triangle meshes, that may eventually need to be voxelized before any further
computation is done. Depending on the resolution chosen, this discretization might
yield the wrong topology. Moreover, not only the spatial and time complexity of the
algorithm is increased, but also tasks that are almost trivial in two dimensions, such
as ensuring the topological equivalence between the object and its skeleton, become
more challenging when a third dimension is added.

We deal with the problem of medial surfaces extraction in Chapter[3} where we pro-
pose a hierarchical algorithm where we iteratively decide whether if refining a voxel or
not based on the local value of the divergence of the momentum field, i.e., the con-
fidence that we have in a point being skeletal. With the medial surface to hand, it is
possible to represent the relations between its parts as an unattributed graph, which
then may provide the starting point for a shape recognition pipeline.

Graph-Based Pattern Recognition

Standard classification techniques can be usually divided into two broad categories,
namely the generative and the discriminative approaches. Let x be a data belonging to
class y. The generative approach will try estimate the joint probability density function
p(x,y), or, equivalently, p(x|y) and p(y). The classification is then performed using
p(ylx), which is obtained by applying Bayes rule. On the other hand, discriminative
approaches will try to estimate p(y|x) directly from the data, which is equivalent to
learn a classification function y = f(x).

Unfortunately, our ability to analyze graphs is severely limited by the lack of ex-
plicit correspondences between the nodes of different graphs, and the variability of
the graphs structure. This is clearly a problem for generative models, which in order
to estimate p(x|y) usually require the mapping of the nodes and edges of the observed
graphs to the nodes and edges of the model graph. The problem is even worse in the
case of discriminative approaches, which usually require the graphs to be first embed-
ded into a vectorial space, a procedure which is far from being trivial. Again, the reason
for this is that there is no canonical ordering for the nodes in a graph and a correspon-
dence order must be established before analysis can commence. Moreover, even if a
correspondence order can be established, graphs do not necessarily map to vectors of
fixed length, as the number of nodes and edges can vary.



Generative Approaches: Learning the Structure

Chapter /4| considers the problem of learning a generative graph model ¢ that can
be used to describe the distribution of structural data and characterize the structural
variations present in the observed set S = (g1,...,81).- The proposed graph generative
model works by decoupling the structural and stochastic parts and making the naive
assumption that the observation of each node and each edge is independent of the oth-
ers, but allowing correlations to pop up by mixing the models. Moreover, we enhance
the generalization capabilities of the approach by adding to the generative model the
ability to add nodes which are not part of the core structure, thus not requiring to
model explicitly isotropic random noise.

Here we deal with the problem of the hidden correspondences between the mod-
els and the observations by marginalizing the observation probability of a graph over
all the possible correspondences. On the other hand, standard approaches, which as-
sume the maximum likelihood estimation for the correspondences, or simply a single
estimation, yield a bias in the estimation of the probability density function p(x|y).
However, averaging over all possible correspondences is clearly not possible due to the
super-exponential growth of the set. Hence, in Section [4.1.1)lwe show how to solve the
problem by resorting to an importance sampling estimation approach.

Discriminative Approaches: Graph Kernels

The interest in generative approaches comes from their ability to better characterize
the structural variation of the set. However, discriminative approaches usually show a
higher classification performance. Unfortunately, standard discriminative techniques
usually work on vectorial spaces, and thus we are once again confronted with the prob-
lem of establishing a correspondence between graphs and vectors. Kernel methods,
whose best known example is furnished by support vector machines, provide a neat
way to shift the problem from that of finding an embedding to that of defining a pos-
itive semidefinite kernel, via the well-known kernel trick. More precisely, rather then
explicitly introducing a vectorial space, one needs to define the kernel measure be-
tween two graphs, which, if certain conditions are satisfied, will correspond to a dot
product in an implicitly defined vectorial space. The literature is rich of successful at-
tempts to define kernel between graphs. Most of these usually fall within the family of
R-convolution kernels. The fundamental idea behind R-convolution kernels is that of
defining a kernel between two discrete objects by decomposing them and comparing
these simpler substructures.

Chapter |5|introduces a novel graph kernel which evaluates the similarity between
two graphs through the evolution of a suitably defined continuous-time quantum walk
on their structure. Quantum walks on graphs represent the quantum mechanical ana-
logue of the classical random walk on a graph. Recently, there has been an increas-
ing interest in using quantum walks as a primitive for designing novel quantum algo-
rithms, as quantum walks have shown to possess unique properties which can lead
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to exponential speedups over their classical counterparts. These properties seem to
be intimately related to the constructive and destructive interference effects of quan-
tum processes, which are themselves tightly connected to the presence of symmetri-
cal structures in the graph. In order to exploit this connection, given two graphs, we
first merge them into a new structure whose degree of symmetry will be maximum
when the original graphs are isomorphic. With this new graph to hand, we compute
the density operators of the quantum systems representing the evolution of two suit-
ably defined quantum walks. Finally, we define the kernel between the two original
graphs as the quantum Jensen-Shannon divergence between these two density oper-
ators. Moreover, Section shows how to further increase the performance of this
kernel in a classification task. This is achieved by applying standard manifold learning
techniques on the kernel embedding to map the data onto a low-dimensional space
where the different classes can exhibit a better linear separation.

Graph Structure Analysis

In Chapter[6|we move the focus from traditional graph-based pattern recognition tech-
niques to the analysis of graph structure, in the more general framework of complex
network science. Complex network science is rapidly gaining popularity among re-
searchers due to its key role in understanding the massive amount of data which are
produced every day by human activities, the most intuitive example being online so-
cial networks. More generally, complex network science is interested in the study of
the properties of a large number of complex systems which are modeled as graphs, and
are not limited to online social networks. A non-exhaustive list of examples includes
metabolic networks, protein interactions, brain networks, vascular systems, scientific
collaboration networks and road maps. Properties such as small-worldness and the
power-law distribution of vertex degrees have been observed in these networks, sug-
gesting a marked difference with Erdos-Rényi random graphs.

However, in recent years there has also been a growing interest in characterizing
the presence of symmetries in real-world networks, which is in turn linked to the re-
dundancy and robustness of networks. Inspired by the quantum mechanical analysis
of Chapter 5| we propose again to exploit the correlation between structural symme-
tries and the interference properties of quantum walks. More precisely, Section
deals with the measurement of the degree of symmetry of a graph. Section[6.2} on the
other hand, introduces a novel algorithm for the explicit detection of approximate axial
symmetries where the graph structure is probed through the evolution of two suitably
defined quantum walks. Finally, Section [6.3]is dedicated to the study of a novel mea-
sure of node centrality, i.e., the importance of a node in a network.



Related Work

This Chapter is intended to give a comprehensive overview of the existing literature
covering the topics of this thesis. To this end, we will need to introduce a number of
concepts which will be needed to understand the following Chapters. In particular,
Section 2.4 will be dedicated to an overview of quantum computation and the relation
between quantum walks and structural symmetries, as this idea will form the basis of
the analysis of Chapter and Chapter@ Note, however, that none of the Sections of this
Chapter is intended to provide an exhaustive survey of the state-of-art techniques in
the relative topic. When needed, however, the reader will be provided with references
to more rigorous surveys.

This Chapter is organized as follows. Section [2.1|reviews the main algorithms for
2D and 3D skeletons extractions. Section [2.2]illustrates the literature on graph genera-
tive models, while Section[2.3| provides an overview of graph kernels. In Section 2.4 we
provide a review of the relevant literature on quantum computing, particularly the lit-
erature on the quantum walk, and we discuss the relation between quantum walks and
structural symmetries. Finally, Section [2.5]illustrates some concepts and algorithms of
complex network science, with particular emphasis on structural symmetries and cen-
trality measures.

2.1 Medial Surfaces Extraction

The skeleton of a 2D shape, or medial axis transform, is defined as the locus of the
centers of the maximal inscribed circles bitangent to the shape boundary. This shape
descriptor has found a large number of successful applications in computer vision,
due to a number of important properties. The skeleton is in fact a concise repre-
sentation of the original shape and it is topologically equivalent to it. Moreover, the
skeleton is invariant to several shape deformations, which include rotations, changes
of viewpoint and changes of scale. The 3D equivalent of the skeleton is the medial sur-
face, sometimes called 3D skeleton. Although it retains the interesting properties of
its two-dimensional counterpart, the 3D skeleton poses a series of challenges which
make it considerably harder to compute. A non exhaustive list of applications of skele-
tons includes 2-D and 3-D shape recognition [110}129], volumetric models deforma-
tion [28,[150], segmentation [114] and protein structure identification [13].
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(a) Original Shape (b) 2D Skeleton

Figure 2.1: A 2D shapes and the medial axis extracted with a thinning algorithm.

In the following Subsections we provide a review of the 2D and 3D skeleton ex-
traction algorithms present in the literature. For a more exhaustive survey of the topic
see [129].

2.1.1 2D Skeletons

Over the years several methods have been proposed to compute the 2D skeleton of a
shape, but all of them can be can be basically divided into four main categories.

Thinning Methods

The first class of methods are the thinning ones, which simulate Blum’s grassfire trans-
form by iteratively eroding layers from the shape [26] [50]. During the thinning proce-
dure care must be given not to change the object topology and to ensure the correct
geometrical position of the skeleton with respect to the original shape, since the result
is clearly dependent on the order in which the erosion is performed. Unfortunately,
while fast and simple to implement, these algorithms are quite sensitive to Euclidean
transformations, so they typically fail to locate accurately the skeleton of the object.
Fig. shows the example of a 2D shape and the medial axis extracted using a thin-
ning method.

Distance Transform Based Methods

The second class of methods exploits the fact that the skeleton coincides with the local
extrema of the Euclidean distance transform [41] [63] [87]. This in turn relies on the
computation of the Euclidean distance between each point in the interior of the object
and the boundary of the shape, which can be done in linear time O(n), where n is the
number of pixel of the image [97]. These approaches then attempt to detect the ridges
of the distance map either directly or by evolving a series of curves, such as snakes,
under a potential energy field defined by the distance map. Although these methods
fulfill the geometrical constraint, ensuring the topological correctness is not trivial.
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Figure 2.2: The Voronoi diagram of a set of two-dimensional points.

Voronoi Diagram Methods

A third class of methods is based on the Voronoi diagram of a subset of the bound-
ary points [106]. The Voronoi diagram of a set of points (called generating points) is
defined as the partition of the space into regions so that each region contains the gen-
erating point p and the locus of the points that are nearer to p than to any other gener-
ating point. Fig.|2.2|shows the Voronoi diagram of a set of 15 two-dimensional points.
The idea of these approaches is that, under appropriate smoothness conditions, the
Voronoi diagram of a subset of the boundary points converges to the skeleton as the
number of the sampled boundary points increases. Fig.[2.3|shows 16 points uniformly
sampled along the boundary of a rectangle, and the resulting skeleton is highlighted in
red.

These methods ensure topology preservation and invariance under Euclidean trans
formations, in addition to locate the skeleton with great accuracy, provided that the
boundary of the shape is sampled densely enough. However, if the object being skele-
tonized is not a polygon, they obviously suffer from limitations due to the computa-
tional complexity of finding the Voronoi diagram of the shape (or alternatively the De-
launay triangulation). Moreover, approximating a smooth shape with many straight
line segments introduces a lot of spurious branches, which then need to be pruned
with techniques typically based on heuristics.

Differential Methods

The fourth, and final, class of methods is based on the analysis of the differential struc-
ture of the boundary. In [82], the boundary is segmented at points of maximal cur-
vature and the authors show that the skeleton is a subset of the Voronoi diagram of
these segments. Despite its accuracy, the main drawback of this approach is the need
to estimate the boundary curvature by fitting a curve to it, which is a computational



8 2. Related Work

Figure 2.3: The skeleton is a subset of the Voronoi diagram.

demanding and quite delicate task. A somehow similar approach is that of Leymarie
and Leving [87], which is based on the concept of active contours introduced in [78].
Kass, Witkin and Terzopoulos cast the problem of boundary location into a curve evo-
lution framework, where the curve is evolved in a potential energy field under certain
smoothness constraints. By using the distance map as the energy function, Leymarie
and Leving are able to estimate the shape skeleton by simulating the grassfire trans-
form and identifying the points where the wavefront collapses as the skeletal points.
Unfortunately, as in [82] this requires an initial segmentation of the boundary at cur-
vature extrema, which is itself a challenging problem.

Another important method that belongs to this class stems from the Hamiltonian
analysis of the boundary flow dynamics [127]. Siddiqi et al. state that the singular
points where the system ceases to be Hamiltonian (i.e., an energy conservation prin-
ciple is violated) are responsible for the formation of skeletal points. Their analysis,
however, is inevitably flawed by the fact that they don't take into account the effects
of the boundary curvature, a problem which they only partially solve in [128]. Subse-
quently, however, Torsello and Hancock [138] show how to completely overcome the
problem by performing a Hamilton-Jacobi analysis of the flow under conditions where
the flow density varies due to curvature.

2.1.2 3D Skeletons

Similarly to its two-dimensional counterpart, the 3D skeleton (medial surface) of a vol-
umetric object can be defined as the locus of the centers of the maximal inscribed
spheres which are at least bitangent to the shape boundary. Note that in the literature
there are two competing 3D generalizations of the skeleton: the curve (or line) skele-
ton [45, 17], which provides a minimal representation for shape analysis and recogni-
tion, and the medial surfaces, which, on the other hand, carry enough information to
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Figure 2.4: The medial surface is the locus of the centers of the maximal inscribed
spheres which are at least bitangent to the shape boundary.

recover the original shape. Moreover the medial surface is topologically equivalent to
the shape in the sense that there exists a homotety that maps its segments (considered
as two oriented surfaces) to the original mesh. The same is not true of the line skeleton
which is a lossy simplification of the shape. Finally, the curve skeleton is ill-defined in
some degenerate cases, as for example the shape of a cup. In this thesis, we therefore
concentrate on the extraction of medial surfaces from triangulated meshes.

Arcelli et al. [16] propose a distance-driven algorithm that is topology preserving
but works only on voxelized objects, and thus is unable to cope with high resolution
inputs. The same holds for the algorithm proposed by Siddiqi et al. [129], which is a
generalization to three dimensions of the Hamilton-Jacobi skeleton and suffers from
the same limitations of its two-dimensional counterpart, since it doesn’t take into ac-
count the effects of boundary curvature. A more robust algorithm is that of Reniers
et al. [L15], where both the curve and the surface skeletons are located by means of an
advection-based importance measure. Unfortunately this measure turns out to be well
defined only for genus 0 shapes.

Another approach is that of Bai et al. [21] and Quadros et al. [111], who propose to
use adaptive octrees in order to reduce the spatial and time complexity. This allows
some parts to be discretized more densely while the rest can be analyzed at a coarser
scale. However, both these approaches work on a precomputed octree, where the grid
refinement criterion is based on simple heuristics. In [21] they propose to increase the
grid resolution on those voxels that are roughly at the center of the shape, since the me-
dial surface is supposed to be located approximately there. Anyway, they clearly state
that the design of an optimal grid adaptation criterion for skeleton computation is be-
yond the scope of their paper, and a more efficient heuristic should be used instead.
In [I11] the octree nodes are generated according to the vertices and centroids of the
facets of an input CAD model, therefore the density of the nodes is higher in the pres-
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Figure 2.5: A set of increasingly rotated objects and the associated delaunay graphs
representations. During the rotation, the set of interest points which undergo the de-
launay triangulation changes, and as a result the structure of the graphs varies. Gen-
erative models can be used to help capturing the structural variations of the observed
graphs.

ence of small features or regions of high curvature. The resulting skeleton, however, is
disconnected, and it is composed of sets of nodes at different levels of resolution.

On the other hand Yoshizawa et al. [150] and Hisada et al. [71] take a Voronoi-based
approach, where the skeleton of a mesh is approximated by a skeletal mesh having the
same connectivity as the original mesh. The QuickHull algorithm [23] is used to ex-
tract the Voronoi diagram of the mesh vertices, then for each mesh vertex v they de-
fine a skeletal point p at a distance d along v’s normal, where the displacement d is
computed as the distance from v to the arithmetic mean of the Voronoi vertices of the
Voronoi region containing v. The connectivity between skeletal vertices is then de-
fined according to the connectivity between the corresponding mesh vertices. These
approaches are fast and do not require an initial voxelization, but extract only an ap-
proximation of the skeleton and are extremely sensible to small perturbations of the
boundary.

2.2 Graph Generative Models

Graph-based representations have been used with considerable success in computer
vision in the abstraction and recognition of object shape and scene structure, as they
can concisely capture the relational arrangement of object primitives, in a manner
which can be invariant to changes in object viewpoint. Despite their many advantages
and attractive features, the methodology available for learning structural representa-
tions from sets of training examples is relatively limited, and the process of capturing
the modes of structural variation for sets of graphs has proved to be elusive. Fig.
shows a set of 2D objects and the associated delaunay graph representations. As the
object is rotated, the graph structure can change dramatically, thus making the ability
of capturing this variation of pivotal importance.

Recently, there has been considerable interest in learning structural representa-
tions from samples of training data, in particular in the context of Bayesian networks,
or general relational models [59]. The idea is to associate random variables with the
nodes of the structure and to use a structural learning process to infer the stochastic
dependency between these variables. However, these approaches rely on the avail-
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ability of correspondence information for the nodes of the different structures used
in learning. In many cases the identity of the nodes and their correspondences across
samples of training data are not known, rather, the correspondences must be recovered
from structure.

In the last few years, there has been some effort aimed at learning structural archetypes
and clustering data abstracted in terms of graphs. In this context spectral approaches
have provided simple and effective procedures. For example Luo and Hancock [109]
use graph spectral features to embed graphs in a low dimensional space where stan-
dard vectorial analysis can be applied. While embedding approaches like this one pre-
serve the structural information present, they do not provide a means of characteriz-
ing the modes of structural variation encountered and are limited by the stability of the
graph’s spectrum under structural perturbation.

Bonev et al. [30], and Bunke et al. [36] summarize the data by creating super-graph
representation from the available samples, while White and Wilson [146] use a prob-
abilistic model over the spectral decomposition of the graphs to produce a generative
model of their structure. While these techniques provide a structural model of the sam-
ples, the way in which the supergraph is learned or estimated is largely heuristic in na-
ture and is not rooted in a statistical learning framework. Torsello and Hancock [139]
define a superstructure called tree-union that captures the relations and observation
probabilities of all nodes of all the trees in the training set. The structure is obtained
by merging the corresponding nodes and is critically dependent on the order in which
trees are merged. Todorovic and Ahuja [134] applied the approach to object recogni-
tion based on a hierarchical segmentation of image patches and lifted the order de-
pendence by repeating the merger procedure several times and picking the best model
according to an entropic measure. However, the model structure and model parame-
ter are tightly coupled, which forces the learning process to be approximated through
a series of merges, and all the observed nodes must be explicitly represented in the
model, which then must specify in the same way proper structural variations and ran-
dom noise. The latter characteristic limits the generalization capabilities of the model.

An alternative to these approaches consists in computing the graph median or the
generalized graph median [74}56]. Given a set of observed graphs, the graph median
is defined as the graph that minimizes the sum of the distances to all the observed
graphs. The difference in the graph median and its generalized version lies in the fact
that the former belongs to the set of observed graphs while the latter generally does
not. Note that these kinds of approaches aim at learning a graph structural prototype,
rather than a probabilistic model, where instead the goal is that of defining a probabil-
ity distribution over the observed graphs.

Recently, Han et al. [66] introduced a method for learning a generative model of
graphs which can be seen as an extension of [139]. The method is posed in terms of
learning a supergraph from which the samples can be obtained by edit operations. Af-
ter estimating the probability distributions for the occurrence of supergraph nodes and
edges, the authors propose an EM approach to learn both the structure of the super-
graph and the correspondences between the nodes of the observed graphs and those
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of the supergraph, which are treated as missing data. Similarly, Torsello [135] proposed
a generalization for graphs which allowed to decouple structure and model parameters
and used a stochastic process to marginalize the set of correspondences, however the
approach does not deal with attributes and all the observed nodes still need be ex-
plicitly represented in the model. Further, the issue of model order selection was not
addressed. Torsello and Dowe [136] addressed the generalization capabilities of the ap-
proach by adding to the generative model the ability to add nodes, thus not requiring
to model explicitly isotropic random noise, however correspondence estimation in this
approach was cumbersome and while it used a minimum message length principle for
selecting model-complexity, that could be only used to choose from different learned
structures since it had no way to change the complexity while learning the model.

Closely related to the problem of learning a model is that of selecting the optimal
one from a set of candidate models. Standard model selection methods include the
Minimum Message Length criterion (MML) [143], the Aikake [14] and the Bayesian
Information Criteria [120]. Given a set of candidate models, one may be tempted to
choose the one that best fits the training data as the optimal one, e.g., the one with the
highest likelihood given the training data. However, this usually comes at the cost of
overfitting the model to the observed data. As an example, consider the problem of es-
timating the best curve to fit 6 data points. A fifth-order polynomial can fix the points
exactly, but it may be an overkill if, for example, the 6 points lie on a straight line. More-
over, if the points are affected by noise we would end up modeling the noise as well.
For this reason, the optimality criterion should be a trade-off between the goodness of
fit of the model and the complexity of the model. MML, AIC and BIC represent differ-
ent ways to weight the goodness of fit of the model, i.e., its likelihood given the training
data, and its complexity, usually expressed as a function of the number of parameters
of the model.

2.3 Graph Kernels

Although generative approaches to graph classification seem attractive because of their
ability of characterizing the modes of structural variation of graphs, discriminative ap-
proaches are known to provide a much better performance in terms of classification
accuracy. Unfortunately, our ability to apply discriminative algorithms is severely lim-
ited by the restrictions posed by standard pattern recognition techniques, which usu-
ally require the graphs to be first embedded into a vectorial space, a procedure which
is far from being trivial. The reason for this is that there is no canonical ordering for the
nodes in a graph and a correspondence order must be established before analysis can
commence. Moreover, even if a correspondence order can be established, graphs do
not necessarily map to vectors of fixed length, as the number of nodes and edges can
vary.

Kernel methods [119], whose best known example is furnished by support vector
machines (SVMs) [141], provide a neat way to shift the problem from that of finding



2.3. Graph Kernels 13

an embedding to that of defining a positive semidefinite kernel, via the well-known
kernel trick. In fact, once we define a positive semidefinite kernel k: X x X — R on a
set X, then we know that there exists amap ¢ : X — H into a Hilbert space H, such that
k(x,y) = cp(x)T(,b( y) forall x, y € X. Thus, any algorithm that can be formulated in terms
of scalar products of the ¢(x)s can be applied to a set of data on which we have defined
our kernel. As a consequence, we are now faced with the problem of defining a positive
semidefinite kernel on graphs rather than computing an embedding. However, due to
the rich expressiveness of graphs, also this task has proven to be difficult.

Many different graph kernels have been proposed in the literature [44) 90, 60, 31,
125]. Graph kernels are generally instances of the family of R-convolution kernels in-
troduced by Haussler [67]. The fundamental idea is that of defining a kernel between
two discrete objects by decomposing them and comparing some simpler substruc-
tures. The initial attempts to define graph kernels actually focused on particular sub-
sets or families of graphs, such as trees [44] or strings [90]. In [44] the authors introduce
a kernel on trees which is used for natural language processing tasks, where the kernel
function computes the number of common subtrees in two trees, while in [90], the
kernel function computes the number of common subsequences between two string
of characters. However, the limit of these kernels clearly lies in the fact that they only
work on a small subset of graphs, thus losing the potential expressiveness of more gen-
eral graphs.

To this hand, a number of more generic graph kernels have then been introduced
in the literature. For example, Girtner et al. [60] propose to count the number of com-
mon random walks between two graphs, while Borgwardt and Kriegel [31] measure the
similarity based on the shortest paths in the graphs. Shervashidze et al. [125], on the
other hand, count the number of graphlets, i.e. subgraphs with k nodes. Note that
these kernels can be defined both on unattributed and attributed graphs, where the
attributes are generally on the nodes. Another interesting approach is that of Bai and
Hancock [20], where the authors investigate the possibility of defining a graph kernel
based on the Jensen-Shannon kernel. The Jensen-Shannon kernel is a non-extensive
information theoretic kernel, which is defined in terms of the entropy of probability
distributions over the structures being compared [96]. Bai and Hancock extend this
idea to the graph domain by associating with each graph either its Von Neumann en-
tropy [108], i.e., the Shannon entropy associated with the Laplacian eigenvalues of the
graph, or the steady state distribution of a random walk on the graph. For a more com-
plete review of graph kernels see [142].

A similar but somehow simpler problem that we need to face in the graph domain
is that of measuring the similarity, or alternatively the distance, between graphs. Gen-
erally, the similarity between two graphs can be defined in terms of the lowest cost
sequence of edit operations, for example, the deletion, insertion and substitution of
nodes and edges, which are required to transform one graph into the other [121]. An-
other approach is that of Barrow and Burstall [24], where the similarity of two graphs
is characterized using the cardinality of their maximum common subgraphs. Simi-
larly, Bunke and Shearer [37] introduced a metric on unattributed graphs based on the
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maximum common subgraph, which later Hidovi¢ and Pelillo extended to the case of
attributed graphs [70} [140]. Unfortunately, both computing the graph edit distance
and finding the maximum common subgraphs turn out to be computationally hard
problems. For an extensive review of graph distance measures refer to [61].

2.4 Quantum Computation

In quantum information, the quantum bit, or qubit, is the fundamental unit of infor-
mation, and represents the quantum analogue of the classical bit. Just as a classical
bit can be in a state, i.e., 0 or 1, a qubit can be in the state |0) or |1), where the Dirac
notation is used as the standard notation for quantum mechanics. In contrast with a
classical bit, however, a qubit can be also in a superposition of these two states, i.e., a
linear combination of the form

lv) =al0)+BI1) 2.1)

where a and B are complex probability amplitudes such that |a|®> + |B|> = 1. In other
words, the state space for a qubit is a ray in a Hilbert space.

Quantum algorithms have gained a lot of popularity due to the possibility of ex-
ploiting quantum-mechanical phenomena such as superposition and entanglement
in order to obtain consistent speedups over classical computers. However, In the next
two Sections we will focus our attention on the relevant literature on quantum walks
and divergence measure between quantum states, as we will make extensive use of
these concepts in Chapter [5|and Chapter[6] For a comprehensive book on quantum
computing and quantum information the reader is referred to [105].

2.4.1 Quantum Walks

Recently, there has been an increasing interest in using quantum walks as a primitive
for designing novel quantum algorithms [79}15,/42}[117] on graph structures. Quantum
walks on graphs represent the quantum mechanical analogue of the classical random
walk on a graph. Despite being similar in the definition, the dynamics of the two walks
can be remarkably different. This is due mainly to the fact that while the state vec-
tor of the classical random walk is real-valued, in the quantum case the state vector is
complex-valued. This property allows different paths of the walk to interfere with each
other in both constructive and destructive ways. In the classical case the evolution of
the walk is governed by a double stochastic matrix, while in the quantum case the evo-
lution is governed by a unitary matrix, thus rendering the walk reversible. This in turn
implies that the quantum walk is non-ergodic and, most importantly, it does not have
a limiting distribution. Fig. shows the distribution of a quantum walk and a ran-
dom walk at time T on a line. Quantum walks have been extensively studied on a wide
variety of graphs [99, [81], such as the infinite line, cycles, regular lattices, star graphs
and complete graphs. Because of these properties, quantum walks have been shown
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Figure 2.6: Probability distributions of a quantum walk (blue) and a random walk (red)
on a line. Note that the quantum walk is spreading faster than the random walk.

to outperform their classical analog in a number of specific tasks, leading to polyno-
mial and sometimes even exponential speedups over classical computation [122] 55].
For example, Farhi and Gutmann [55] have shown that if we take two co-joined n-level
binary trees that are connected by their leaves, a quantum walk commencing from the
root of the first tree can hit the root of the second tree exponentially faster than a sim-
ilarly defined classical random walk. The major contribution of Farhi and Gutmann’s
work [55] is to show that one may achieve an exponential speedup without relying on
the quantum Fourier transform.

In the case of the co-joined trees graph described above, the presence of a sym-

Figure 2.7: An example of a graph displaying a symmetrical structure, where we high-
lighted the pairs of symmetrical vertices. Note that by permuting the pairs of linked
nodes the adjacency relations are preserved.
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metrical structure is of key importance to the speedup. Given a graph G = (V, E), an
automorphism is a permutation o of the set of vertices V of the graph which preserves
the adjacency relations, i.e. if (1, v) € E then (o(u),0(v)) € E. The set of symmetries
of G can thus be represented by its automorphism group Aut(G). Figure shows
an example of a symmetric graph. Whenever the graph possess some kind of sym-
metry, the constructive interference between certain paths will lead to faster hitting
times. A number of recent works have further investigated the connection between
the structural symmetries of the graph and the evolution of the quantum walk. For in-
stance, Krovi and Brun [84] have proved that the phenomenon of infinite hitting times
is generally a consequence of the symmetry of the graph and its automorphism group.
Emms et al. [52] showed that there is a link between symmetries in the graph structure
and a quasi-quantum analogue of the commute time. Specifically, the authors define
a quasi-quantum analogue of the commute time associated with the continuous-time
quantum walk and then explore the possibility of using it to embed the nodes of the
graph into a low dimensional vector space. Their work reveals that the symmetries
of the graph correspond to degenerate directions in the quantum commute time em-
bedding space. However, their analysis is not based on a principled observable and is
hence semi-classical.

2.4.2 Divergence Measures

In the context of quantum computation and quantum information, a number of dis-
tance (divergence) measures have been introduced in the literature. One of the rea-
sons that makes these measures particularly attractive is the possibility of discriminat-
ing between different quantum states. In his seminal paper, Wootters [148] investi-
gates the problem of distinguishability and defines the concept of statistical distance
between pure quantum states. Wootters’ work is fundamentally based on the exten-
sion of a distance over the space of probability distributions to the Hilbert space of
pure quantum states. Similarly, attempts to define a distance measure between pure
and mixed quantum states are typically based on the generalization of divergence or
distance measures commonly used in the space of probability distributions, as it is
the case for the Hellinger distance [69]. The same holds for the relative entropy [89],
which is a generalization of information theoretic Kullback-Leibler divergence. How-
ever, note the relative entropy is neither a distance, as it is not symmetric, nor does it
not satisfy the triangle inequality, and, most importantly, it is unbounded.

A more recent case is that of the quantum Jensen-Shannon divergence [93} 94, 86].
The classical Jensen-Shannon divergence [88] is a measure of similarity between prob-
ability distributions that has its routes in information theory. Unlike the Kullback-
Liebler divergence [85], it is both symmetric and is directly linked to a metric (it is the
square of a metric). Moreover, it can be used to define positive semi-definite kernels.
As a result, the underlying metric space of probability distributions can be isometri-
cally embedded in a real valued Hilbert-space. The quantum Jensen-Shannon diver-
gence has recently been developed as a generalization of classical Jensen-Shannon di-
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Figure 2.8: The road network of the city of Hollywood is an example of a complex sys-
tem that can be naturally represented using a graph structure.

vergence to quantum states by Majtey, Lamberti and Prato [93} 94} [86]. The QJSD is
computed from the density matrices defined using the outer-products of the eigen-
vectors of the quantum systems being compared. As a result the QJSD is given as the
difference in Von Neumann entropy [105] of the mixed and pure states. For pure states
the square root QJSD is proved to be a metric, while for mixed states there is strong
experimental evidence that it is. Moreover, the authors show that for mixed quantum
states the quantum Jensen-Shannon divergence has good distinguishability proper-
ties.

2.5 Graph Structure Analysis

Complex networks are usually defined as graphs with non-trivial topological features
that describe the interactions between a set of entities. The study of complex net-
works [54] has recently attracted considerable interest because of the large variety of
complex systems that can be modeled and analyzed using graphs. A non-exhaustive
list of examples includes metabolic networks [73], protein interactions [72], brain net-
works [131], vascular systems [145], scientific collaboration networks [103] and road
maps [77]. Fig.|2.8|shows a graph representation of the road network of the city of Hol-
lywood. Properties such as small-worldness and the power-law distribution of vertex
degrees [54] have been observed in several real-world networks, suggesting a marked
difference with Erd6s-Rényi random graphs [53].

An important area of research in complex network science deals with the spectral
properties of graphs. An undirected graph G(V, E) is usually represented in terms of its
symmetric adjacency matrix

(2.2)

A = lif (u,v) e E
Y1 0 otherwise

where V is the set of n nodes of the graph and E = V x V is the set of edges. Let D
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be the diagonal matrix with elements d,, = ¥."'_, A(u, v), where d,, is the degree of the
node u. Then, we define L = D — A as the graph Laplacian, a combinatorial analogue
of the Laplace-Beltrami operator [75]. The spectrum of the adjacency or Laplacian
matrix of a graph is then defined as the set of eigenvalues 1;, each associated with
an eigenvector ¢;. Although for large graphs the complete eigendecomposition of the
adjacency matrix may prove to be computationally too expensive, we can get some
interesting insights into the structure of the graph by looking only at a small sample
of the eigenvalues. For instance, one can show that the size of the maximum clique
in a graph is at least n/(n — A1(A)), where A;(A) denotes the larges eigenvalue of the
adjacency matrix. More generally, spectral graph theory proves that to some extent
it is possible to distinguish among different types of structures simply by looking at
their spectrum. For an extensive study of the relation between the spectra of adjacency
matrices and the structure of graphs refer to [27,43].

More recently there has been some interest in characterizing the presence of sym-
metries in graphs [91] [149]. Recall that, given a graph G(V, E), an automorphism is a
permutation o of the set of vertices V of the graph which preserve the adjacency rela-
tions, i.e. if (i, v) € E then (o (u),o(v)) € E. Hence we can view the group of automor-
phisms Aut(G) of a graph as a representation of its symmetries. MacArthur et al. [91]
observe that many real-world graphs possess a very large automorphism group, in con-
trast to classical random graph models. In particular the authors observe the pres-
ence of a certain number of small symmetric subgraphs, such as tree-like or clique-like
structures, and relate this to the redundancy and thus robustness of real-world graphs.
Note however that the problem of finding the set of automorphisms of a graph is ac-
tually an instance of the graph isomorphism problem, and thus it belongs to the NP
class. Xiao et al. [149] study the origin of symmetry in real-world graphs. In common
with [91], their work is based on the analysis of local symmetric motifs such as sym-
metric bicliques, i.e. an induced complete bipartite subgraph, denoted as Ky, ,y,, in
which every vertex of V; is connected to every vertex of V,. Their analysis reveals that
the symmetry of graphs is a consequence of a particular linkage pattern, where vertices
with similar degrees tend to share common neighbors. It is also worth mentioning the
work of Mowshowitz [98], which links the complexity of a graph to the entropy of the
distribution of symmetric orbits.

Another fundamental task in graph structure analysis is that of measuring the im-
portance of a vertex. To this end, a large number of centrality indices have been intro-
duced in the literature [54], and each of these measures capture different but equally
significant aspects of a vertex importance. The most common examples are probably
the degree, closeness and betweenness centrality [57,/58,104].

The degree centrality is defined as the number of links incident upon a node. Given
a graph G with n nodes and adjacency matrix A, the degree centrality of u is

DC(u)=)_ A(u,v) (2.3)
v=1

The degree centrality naturally interprets the number of edges incident on a vertex as
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a measure of its “popularity”. Alternatively, it can be interpreted as the risk of a node
being infected in a disease spreading scenario.

The closeness centrality links the importance of a vertex to its proximity to the re-
maining vertices of the graph. More precisely, the closeness centrality is defined as the
as the inverse of the sum of the distance of a vertex to all other nodes of the graph,

cCw =2 2.4)
s(u)
where s(u) denotes the sum of the distances from u to all the other nodes of the graph,
i.e.,
n
s(w) =) du,v) (2.5)
v=1
where d(u, v) denotes the distance between u and v.

Finally, the betweenness centrality is a measure of the extent to which a vertex lies
on the paths between others, where the path may be either the shortest path or a ran-
dom walk between the nodes. If sp(vy, v2) denotes the number of shortest paths from
node v; to node v,, and sp(vy, u, v2) denotes the number of shortest paths from v, to
vy that go through u, the betweenness centrality of u is

Bew=Y Y PUnnv2) (2.6)

v1=10vy=1 SP(VI’VZ)

Note that this definition assumes that the communication takes place along the short-
est path between two vertices. A number of measures have been introduced to take
into account alternative scenarios in which the information flows through different
paths [54,57,58,104].
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Medial Surfaces Extraction

The skeleton has proven to be a valuable and widely used shape descriptor for a num-
ber of tasks such as 2-D and 3-D shape recognition [110} [129], volumetric models de-
formation [28,[150], segmentation [114] and protein structure identification [13]. The
interest in this descriptor stems from its being a concise representation of the original
shape, which is topologically equivalent to it, and invariant to several shape deforma-
tions.

When working in two dimensions, the skeleton, or medial axis transform, is de-
fined as the locus of the centers of the maximal inscribed circles bitangent to the shape
boundary. Alternatively, it can be defined as the set of singularity points created by
the inward evolution of the shape boundary with constant velocity according to the

-

% = vN(1), where C (1) is the equation of the boundary at time ¢, v

is the constant velocity and N(¢) is the normal to the boundary. Finally the skeleton can
be seen as the set of ridge points of the distance map [29] [41], where the distance map
is the function D(x, y) that assigns to every point in the interior of a shape its distance
to the closest point on the boundary.

eikonal equation

Our purpose in this Chapter is to propose a novel algorithm for medial surfaces ex-
traction that is based on a generalization to three dimensions of the density-corrected
analysis of Torsello and Hancock [138], while taking an adaptive octree-based approach
for the discretization of the initial mesh in a manner that is similar to that proposed by
Bai et al. [21] and Quadros et al. [111]. Contrary to these approaches, we decide not
to precompute the whole octree in advance, but instead we keep the original mesh,
that is used for distance computations, and we iteratively decide whether if refining a
voxel or not based on the local value of the divergence of the momentum field, i.e., the
confidence we have in that point being skeletal. Finally we design a simple alignment
procedure to correct the displacement of the extracted skeleton with respect to the true
underlying medial surface. We evaluate the proposed approach with an extensive se-
ries of qualitative and quantitative experiments, comparing our method against other
approaches in the literature under varying mesh conditions.
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3.1 Preliminaries

In this Section we review the two-dimensional continuous formulation of the Hamilton-
Jacobi skeleton [127] and its density corrected counterpart [138], where the latter will
form the basis for our medial surface extraction algorithm.

3.1.1 Hamilton-Jacobi Skeleton

Let the distance map D be a function that assigns to each point in the interior of the
shape its distance to the closest point on the object boundary C. The velocity field is
defined as

F=VD (3.1)

where V = (8/0x,0/0y)” is the gradient operator. Under the assumption that the vector
field F is conservative everywhere except on the skeleton, the skeletal points can be
identified by looking for those points where the system ceases to be conservative. Note
that in this setting, the flux of the vector field F can be seen as modeling the flow of
an incompressible fluid. Since the net flux of F through the boundary of the shape
is positive, by virtue of the divergence theorem it follows the interior of the shapes
contains a set of points which behave like sinks, i.e., the skeletal points. Recall that the
divergence is defined as

. F-#dl [
_ JoaF-1i _ lim pa(F)
|A|—0 | Al |[AlI—=0 | A

(3.2)

where A is an arbitrary area, 0 A is its boundary, 7 is the outward norm at each point
ondAand ¢4 (F) is the net flux of F through 0 A. That is, the divergence of Fis propor-
tional to the net flux of the field F. Hence, in [127] the authors propose to identify as
skeletal those points where

E
im 2498 g (3.3)
[Al—=0 |A]
or, using (3.2),
V-F<0 (3.4)

It can be shown, however, that the flux of F is not conservative, and as a conse-
quence F can be seen as modeling the flow of a compressible rather than an incom-
pressible fluid. When the fluid is compressible, however, its density changes during the
inward evolution in a way which is proportional to the boundary curvature, and as a
result the velocity field is no longer conservative.

As a first attempt to overcome this problem, one may introduce the normalized flux

L alF)
o=ty G0 09
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Since </>A(17“) =V ﬁ(f)lAI where ¢ € A and |A| = n7r?, in the limit the normalized flux
becomes R R
lim ba(F) — lim V-F(¢)
r—0 27r r—0 2
Note, however, that due to the discrete structure of the image lattice the integration
radius can only theoretically approach zero, and its minimum value will be of one pixel.
More precisely, Torsello and Hancock [138] show that, assuming an integration radius
of one pixel, the normalized flux at p is

r=0 (3.6)

N k
N@mmm:—{? 3.7)

where k(p) is the curvature at a location p belonging to the evolving boundary. As a re-
sult, near the endpoints of the skeleton, due to the extreme curvature of the boundary
front, the value of the flux will tend to infinity, causing severe problems in the extrac-
tion of the skeleton.

Density-Corrected analysis

Consider a now segment d (1) of the boundary front C(z) at time ¢. Assume that d ()
has average linear density p(f) and length /(#). Now, under the eikonal equation, at
time ¢ + At the segment will evolve into d[(t+ At) with average linear density p(f + A¢)
and length /(¢ + At). Assuming that the boundary front is curved, this implies I(f) #
I(t+ At). Also, since the mass m = I(#)p(¢) of the segment is conserved, we have that
l(Hp(t) =1(t+At)p(t+At)) and thus p(t) # p(t + Ab).

In other words, when the front is curved the average linear density is not constant
over time and thus we have to resort to the more general principle of conservation of
mass. Based on this intuition, Torsello and Hancock [138] suggest that there is indeed
a conservative field associated with the dynamics of the boundary evolution, but this
cannot be the velocity field. Instead, they define the so-called momentum field M =
pF, where p is a scalar field that assigns to each point the linear density of the boundary
front. By a simple analysis of the change of density of d[(#) over the time, one can prove
that

V-(pF)=0 (3.8)

as suggested by the above intuition, and thus ¢ 4(pF) = 0 for any region A not contain-
ing a skeletal point.

Finally, applying the rule of product differentiation to the conservation equation
and setting o = log(p) we obtain

Vo-F=-V-F, (3.9)

which can be further reduced to the system of ordinary differential equations along the
path of boundary points

2 __V.F
{mﬂﬂm V- F(s(t)) 5.10

£s(8) = F(s(1))
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Figure 3.1: Steps to refine the skeleton: a) computation of the gradient and Laplacian
of the distance map; b) integration of the log-density in the voxels with a full neighbor-
hood; c) alternating thinning and dilation step to detect skeletal voxels at the current
level of the octree.
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where s(¢) is the trajectory of a boundary point under the eikonal equation.

3.2 Hierarchical Skeletonization

Our algorithm works as follows. We are given a triangulated mesh, a starting resolution
resmin and a desired resolution res,,,y. Initially we compute a complete voxelization
of the shape at resolution res;,;,. Given this initial coarse discretization, we compute
the distance transform D, its gradient F = VD and the divergence V - E , then we inte-
grate the density o = log(p) and finally we compute the divergence of the momentum
field V- (o F). With this information to hand, we are able to extract a first approximation
of the medial surface. Assuming that a very low starting resolution res;,;, is given as
input, we now wish to further refine the extracted skeleton up to a res;, 4 resolution.

To this end, we iteratively increase the resolution by subdividing the leaves of the
octree with a large value of V- (pﬁ), i.e., those voxels that are most likely to contain
skeletal points. The Hamiltonian analysis is then carried over the newly created octree
level and the refinement process is iterated until the required resolution res;,,;, and
octree level logg (resayx) is reached.

In order to carry over the Hamiltonian analysis at a lower octree level the following
steps must be undertaken (see Fig.[3.1):

1. Velocity field computation. For each voxel U at the current resolution level we
compute its distance to the shape boundary. Given the distance map, we first
compute its gradient in ¥ by fitting a hyperplane in a least squares sense on
the voxel neighbors, then we determine its Laplacian by computing the flux of F
through the surface of the convex-hull bounded by the neighbours of 7, divided
by its volume.

2. Integration of the front-density. For each voxel at the current resolution level we
compute the density of the evolving front by evaluating Eq. We integrate the
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density starting from the current level boundary inward, under the assumption
that the initial boundary has a complete 26-neighborhood where the value of the
density is inherited from the parent voxels.

3. Thinning and dilation. With the divergence information to hand, we iteratively
remove the current level boundary voxels in distance order when the value of the
divergence is under a certain threshold. In order to guarantee the preservation of
the object topology, we remove a voxel only if it is simple, i.e., if its removal does
not alter the object topology by disconnecting the shape or introducing a hole.
Once the thinning procedure is completed, we dilate the skeleton to partially
compensate for discretization errors incurred at the coarser levels. We alternate
the thinning-dilation process until no voxels can be added to the thinned skele-
ton. Finally a last dilation is performed to guarantee that the exploded points
have a complete neighborhood around each skeletal point.

With this high-level overview in mind, we will now present all the computational
ingredients needed by the proposed approach.

3.2.1 Distance Computation

The distance transform computation is certainly one of the most expensive operations
that we need to perform. We decide not to compute the distance map with respect to a
discretized boundary, instead we keep the original mesh and we make distance queries
with respect to it. In particular, the input mesh is saved on an Axis Aligned Bounding
Box (AABB) tree, a common data structure that is used to make distance queries faster.
Avoxel is assigned either to the interior or exterior of the shape by casting a ray from the
center of the voxel to a random direction and computing the number of intersections
with the mesh. If the number of intersections is odd, the point is classified as interior,
otherwise it is classified as exterior. We acknowledge that better algorithms for com-
puting the signed distance transform have been proposed in the literature (e.g., [19]),
but we also want to stress that the distance map issue is completely incidental to the
main problem of skeletonization, which is the one we are addressing in this Chapter.

3.2.2 Gradient and Laplacian Computation

Once the distance map is to hand, its gradient and divergence can be determined.
Note, however, that while in the beginning all the leaves of the octree are at the same
level and thus the gradient and the Laplacian can be approximated using the finite dif-
ference method, as the skeleton is refined there will be several voxels at different levels
of resolution. For this reason we need resort to a different approximation method that
is able to cope with a non-uniform grid setting.

Note that in the remainder of the Chapter we will operate on different neighbor-
hoods of a voxel, according to the type of operation that we intend to perform. This
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include the 6—, 18— and 26— neighborhoods, where n— refers to the adjacency relation
between the voxels. Recall that two voxels are 6-adjacency if they share a face, 18-
adjacent if they share a face or an edge and 26-adjacent if they share a face, an edge or
a vertex. In particular, we will always assume that a 26-neighborhood is used, with the
exception of a few cases. As explained later in the text, when computing the laplacian
of the distance map we only use local information and thus we restrict ourselves to a
6-neighborhood. On the other hand, during the integration of the density, we will use
the subset of the 26-neighbors that have already been visited by the inward-evolving
boundary. Finally, when ensuring the topology preservation, we will refer to the work
of Malandain et al. [95], where the 6—, 18— and 26— neighborhoods are used to char-
acterize the voxels.

Following [102], we compute the gradient by performing a 4D linear regression over
all the neighbors of X. More formally, given a set of points {(x;, y;, zi, di)}l@ » where
(xi, yi,2i) Tisa neighbor of X and d; its distance to the boundary, we look for the coef-
ficients A, B, C, D minimizing

E(A,B,C,D):Zw,-(Ax,-+Byi+Czi+D—d,-)2. 3.11)
i
The gradient is then F(¥) = HE%’E’%;H' As a weight w; we used the inverse of the dis-

tance of the point (x;, y;, z)T.

Note that this approach has a problem whenever the skeleton crosses the convex
hull of the neighborhood, as we integrate across a singularity resulting in erroneous
computation of the gradient. A common solution to this problems to perform one-
sided computations to avoid crossing the singularity, however one-sided computa-
tions usually exhibit larger bias. Here we chose to perform a two-sided computation of
the gradient as we are not interested in its value close to the singularity as we are adopt-
ing a one-sided process for the computation of the momentum field. The experiments
will show, that even with this possible instability due to the possibility of crossing a
singularity in the computation of the gradient, the momentum filed is well conserved
outside the of the skeletal branches resulting in a well localized skeleton.

As for the laplacian of the distance map, i.e., the divergence of the velocity field, we
compute it using a discretization of the divergence theorem around the convex hull of
the 6-neighborhood of each point. Note that even if the leaves are not guaranteed to be
at the same level, and thus we cannot guarantee to have a complete 26- or 18- neigh-
borhood, due to the octree construct we always have at least a 6-neighborhood. Doing
a linear approximation of F(¥) over the faces of the convex hull, we can approximate
the flux

N 8 1
) (fc):f F(s)-n(s)ds= Y =A7;-
U sU ;3 tH

Y ﬁ(ﬁ)), (3.12)
ﬁE Vt

where U is the convex hull of the 6-neighbors of X and Ay, 7i;, and V; are respectively
the area, the normal, and the set of vertices of the (triangular) faces of U. Due to the di-
vergence theorem, we have [, V- F(¥) dx = @y (%), from which we obtain the following
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Figure 3.2: Integration of the density along the boundary path.

discretization for the divergence:

3.13
Ul 19 319

3.2.3 Integration of the Momentum Field

Once the distance, gradient and Laplacian have been computed, we can integrate the
density in the newly subdivided skeletal points.

Itis of key importance that the density integration is carried out only on those point
that have a complete 26-neighborhood, i.e., those with a homogeneous neighborhood.
The voxels with a non-homogeneous neighborhood, on the other hand, will simply in-
herit the value of the density and divergence fields of their parent node. The reason for
this is that an inhomogeneous neighborhood induces a higher discretization error to
the direction of the gradient which will severely affect the accuracy of the integration
step. Thus, before refining the skeleton to a higher resolution level, we perform a dila-
tion of the skeletal voxels in order to guarantee that all their children will indeed have
a complete neighborhood. Then, after the refinement, there will be a 1-voxel thick
boundary of voxels with non-homogeneous neighborhood that will be children of the
dilation voxels, rather than of the skeletal voxels. Note that this dilation can simply be
considered a part of the last thinning/dilation step of the refinement of the previous
level, which will be described later.

In order to compute the momentum field over the interior of the shape we need
to solve Eq. A common approach in this case is that of solving the linear system
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obtained by rewriting Eq. as a system of difference equation. The problem here
is that the skeleton is a set of singularities of momentum field, i.e., we expect the den-
sity field to have different values at opposite sides of a medial surface. Consequently,
the linear system has no solution. Even looking for an approximate solution using a
gradient descent method would result in oscillations near the skeleton, so a different
approach is needed.

As proposed by Torsello and Hancock [138], we decide to integrate the equation in
the time domain. The critical point is to ensure that when we compute the log-density
o of boundary points at time ¢ we reference only the values of o calculated at points
already crossed by the inward-evolving boundary. In order to do so, we opt to find a
numerical solution of Eq.[3.10lusing a Crank-Nicolson approximation [47].

Assume that there exists a family of surfaces B; representing the inward evolution
of the boundary B, that can be locally parametrized as B;(u, v) around any point X.
Then, we have

. . | R .
o(Bi(u,v)) =0 (Bi-1(u,v)) + E[V'F(Bt(u» V) +V-F(B;-1(u,v))] (3.14)

In the spatial domain, if X = B}(u, v) we have Et_l(u, v) ~ ¥ — F(X), which, substi-
tuted into Eq.[3.14} yields

o (%) :0(55—13(55))+%[V~13(55) +V-FXx-F®)] (3.15)

Unfortunately the point ¥ — F(X) is not guaranteed to belong to the cubic lattice, so
we actually need to interpolate it using the values at the eight vertices of the cube con-
taining it. Once again we should ensure that the interpolation doesn’t cross the medial
surfaces. Luckily, X is the last of the eight vertices visited by the evolving boundary, so
this requirement is met. Thus we can safely use the trilinear interpolation which yields

0@ = (0@ -F®) - A= IR~ IE){ - B)o ) (3.16)

+1V-F@ + V- FGE - F@))/A- A= 1R -1FRDA - |F))

where, F;, F», and F3, are the three components of F(%) and, due to the fact that we
use trilinear interpolation, o (X — F&)-Q1-|F)(1-|F))(1-|Fs)o (%) does not depend
on the value of o(X). As Fig. shows, the point X — F(%) does not to the belong to
the cubic lattice. We then interpolate it using the values of the log-density on the eight
corners of the cube containing the point. Note that X is the last of the eight vertices
which is visited during the boundary evolution, and thus we are guaranteed that all
the points that we use for the interpolation are on the same side of the medial surface.

Given this formulation, we can integrate the value of the log-density over the inte-
rior of the shape, starting from the most external voxels inwards. At the first level the
most external voxels will be the boundary boxes, which have a unit density, and thus a
null log-density. At all other steps, the external voxels will be the voxels with irregular
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Figure 3.3: The dilation process is needed to regain detail lost at lower levels, although
care must be given not to change the shape topology.

neighborhood that inherit the log-density from their parents. Once the log-density has
been integrated, we can proceed to compute the divergence of the momentum field in
each point of the interior of the shape. The value of V- (o F) (%) is given by approximat-

ing Eq.[3.9]as follows

V- (0F)(®) = Aoe” D180 (3.17)

+1 |V FG - F@)e?EF® 1 v. F(7)es™

where Ao = o(%) — (% — F(¥)). Note that, since the equations introduced in this Sec-
tion are to be evaluated at different levels of resolution, the integration step is actually
dependent on the corresponding voxel size.

3.2.4 Skeleton Extraction

With the divergence information to hand, we can select the voxels that are likely to
contain skeletal points and that will be further subdivided to form the next level in the
octree. The skeleton extraction is based on a thinning process guided by the value of
the divergence of the momentum field at each voxel.

Divergence Driven Thinning

In [137] Torsello and Hancock show that the field pF is conservative outside skeletal
branches, while its flux through a 1-voxel circle centered on a skeletal point is propor-
tional to d//ds, i.e., the ratio between the boundary length d/ and the skeletal segment
length ds. This means that theoretically, skeletal branches can be detected by checking
voxels with negative divergence of the momentum field. However, adopting any spa-
tial discretization to compute the flux results in a spread-out of the divergence-based
signal.

Following Torsello and Hancock, we thin the shape by iteratively removing bound-
ary points in decreasing order of divergence. That is to say that without any further
control on the thinning process we might actually end up introducing holes in the
skeleton or even splitting it into disjoint parts.
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Figure 3.4: A box shape and its medial surface.

Recall that one of the key properties of the skeleton is that of having the same topol-
ogy of the original shape. While for some approaches like the Voronoi-based ones this
comes at no cost, the voxel-based methods should always take into account whether
if the removal of a voxel would disconnect the shape, introduce a hole or erode it by
deleting the endpoints. Unfortunately, when dealing with volumetric objects, ensur-
ing that this property holds is not always an easy task. Hence, in this Chapter we resort
to the voxel classification of Malandain et al. [95], which allows us to efficiently identify
removable voxels by exploring the connectivity of their neighborhood. More precisely,
Malandain et al. show how to classify a 3D point X in a cubic lattice by computing
two features. Let N, (%) denote the n-adjacent neighbors of ¥. Then C*(X) and C(%),
defined as follows.

C* (%) is the number of the 26-connected components 26-adjacent to X in BN N, (X),
where B is the set of object points.

C(X) is the number of the 6-connected components 6-adjacent to X in W n Nyg(%),
where W is the set of background points.

With this result to hand, we can easily identify the simple points of the medial sur-
face [95], i.e., those points whose removal does not alter the topology of the object. We
can then proceed with the thinning process by iteratively removing all simple points
in decreasing order of divergence. More precisely, the conditions for a point to be re-
moved are that 1) it is simple, 2) it is not an endpoint and 3) it is characterized by a
negative divergence of the momentum field. Note, however, that due to the errors in-
troduced by the discretization of the shape, after the first thinning process the medial
surface can be two-voxel thick in certain regions. To ensure thinness at the highest
resolution level we further thin the shape by removing all those points that are simple
but not endpoints of the surface, regardless of their divergence. Following [129], we
decide to restrict our definition of an endpoint to a 6-neighborhood. In this case, it
can be shown that a necessary condition for a point to be an endpoint is to have three
6-adjacent background voxels
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Figure 3.5: Dilating the skeleton recovers details lost in the coarser levels.

Skeleton Dilation

With the proposed hierarchical approach, once a voxel is flagged as non skeletal at any
level, all its descendants will inherit the property. A problem with this is that fine details
might be lost at coarser level, resulting in parts of the skeleton that will be missing at all
levels (see Fig. . Further, note that the skeletal voxels detected at the coarsest level
are not even guaranteed to be connected and, since all further processing is topology
preserving, a disconnected skeleton will remain disconnected at all levels.

We address the latter problem by keeping only the largest component, while the
missing detail is addressed by dilating the skeleton after it has been computed at each
new level. This way, once the voxels are small enough to capture the detail, the skeleton
will regrow into the missing parts. Note that since the dilation adds new voxels to the
current medial surface, we need to ensure that the topology is preserved, thus we dilate
only into voxels that would become simple after the dilation (see Fig.[3.3).

Let V denote the set of voxels before we start thinning the current level of the tree,
and let U be the subset of V formed by the boundary voxels of V. We then thin V to
reveal the skeletal voxels as previously described. After the thinning step, we check if
some voxel v € U has been selected as skeletal. If that is the case, we dilate it and we
compute D, EF, V- E , 0, V- (pI:“ ) on the dilated set. Then, we apply the thinning process
again. The dilation-thinning process is iterated until the thinned skeleton contains no
boundary voxels. This process gives us an adaptive dilation which adds only new can-
didate skeletal voxels with a large value of V- (oF) and thus can be skeletal. Fig.
shows the special case of a box shape, together with the extracted medial surface. Ini-
tially, the whole set of voxels in the interior of the cube belongs to V, while the bound-
ary voxels on the faces, edges and vertices of the cube belong also to U. Because of the
negative value of the divergence, the voxels on the edges of the cube will survive the
first thinning step, and thus will be selected as skeletal. Since these voxels belong to
U, they will be dilated, as explained above. Note that U will also be updated in order
to include the new dilated boundary of V. However, the following thinning iteration
will remove all the voxels in U, and the dilation-thinning process will finally converge.
Note that during all these steps we always ensure that the topology of the object is not
altered by adding or removing only simple points.

With this improvement, we are able to recover small details that might have been
lost during the first discretizations, as well as longer skeletal segments. Fig.|3.5(shows
how critical this procedure is. The eagle model in the figure clearly needs a very dense
voxelization in order to capture details such as the claws, or even entire parts such
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(a) Before Thinning (b) After Thinning

Figure 3.6: The final iteration of the thinning procedure removes all the simple points
which are not endpoints. In this way, however, it can introduce small bumps on the
surface, as shown in (b). Here we would like to remove the vertex marked with Y, but
since this voxel satisfies the endpoint condition it cannot be deleted.

as the wings. With the proposed approach, one can simply start from a lower and less
computationally intensive resolution and then refine the extracted skeleton to a certain
desired resolution.

Finally, once the iterated dilation-thinning process gives us the final skeleton, we
perform one final dilation step to ensure the presence of a complete 26-neighborhood
around the new set of voxels on which we need to compute p and V- (pﬁ). At the
last resolution level, the final dilation process is substituted with the endpoint-driven
thinning that gives us a 1-voxel thick medial surface.

3.2.5 Medial Surface Alignment

At the end ot the thinning process, we obtain the set of voxels most likely to contain
the medial axis, thus placing vertices at the center of the voxels, and deriving the mesh
connectivity from the adjacency information of the voxels, will result in a fine approx-
imation of the medial surface in the form of a triangulated mesh. There are, however
two sources of noise that limit the quality of the extracted surface, but that can effec-
tively be addressed with a post-processing step.

The firstis an artifact due to the limited control over the order in which the thinning
process eliminates the voxels. The final iteration of the thinning procedure removes all
the simple points which are not endpoints, however, thinning order, and the topology
and endpoints preservation rules might prevent us from choosing the correct skeletal
voxels as candidate for elimination, while preferring some adjacent voxel which are
not endpoints and whose removal doesn't alter the object topology (see Fig.[3.6). As a
consequence, depending on the spatial order of the thinning, we might introduce little
bumps on the surface. Due to their formation process, these bumps can be detected
easily by comparing their distance to the surface to that of a nearby voxels. Let d(v)
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Figure 3.7: Due to the voxelization, the centers of the voxels are very likely to be dis-
placed with respect to the true underlying medial surface. Hence the medial surface
alignment procedure is needed to achieve a better approximation of the skeleton.

be the distance of candidate point v from the shape’s surface, let F(v) be the gradient
of the distance map in v, and let w be the neighbor of v in the direction of E (v), i.e.,
closest to the line v + tF(v). If d(w) > d(v) then we v is a bump and we simply remove
v from the set of skeletal voxels and mark w as skeletal.

The second limit is a result of the discrete nature of the grid: the centers of the
skeletal voxels will be actually slightly displaced with respect to the true underlying
medial surface. We address this issue by allowing the final vertices to move within the
voxel from the central position to one that is most likely to lie in the skeletal surface,
resulting in a higher precision skeletal mesh even at low voxel resolution (see Fig.[3.7).

Hence, given a voxel v, we compare the orientation of its velocity field (gradient
of the distance transform) with that of its 26-neighbours, in order to determine which
voxels lie on the other side of the medial surface. We call this set O,. Note that thanks to
the previous refinement step, we are sure that at least one of v’s neighbours will indeed
lie on the other side of the medial surface. With the set of voxels to hand, we proceed by
computing for each voxel w € O, belonging to this set the intersection between the true
medial surface and the line connecting w and v. Let s, and s,, be the surface points
closest to v and w respectively, we look for the point p,, = av + (1 — a) w along the line
connecting v to w, for which ||p,, — syl = lIpw—swll, i-e., is equidistant from the closest
surface points. This point p,, is likely to be very close to the medial surface, but it
displacement from the original position is not limited to the direction of inward motion
of the surface and has also a tangential component. We eliminate this by interpolating
the position over all the neighbors in O,,.

Fig.3.8illustrates the interpolation process. Let O, = {wy, -+, wi} and let py, -+, pk
be the corresponding estimated points on the medial surface, we interpolate between
their position using Shepard’s inverse distance weighting method [123]. Shepard’s in-
terpolation method is a generalized barycentric interpolation approach designed for
sparse data. It reconstruct the position of a point as a linear combination of the sam-
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Figure 3.8: The location of the realigned skeletal point is estimated performing an
inverse-distance weighted interpolation of the points p; obtained finding the bitan-
gent point along the lines connecting v to its neighbors on the other side of the skeletal
surface.

(c) Low Resolution With Alignment (d) High Resolution With Alignment

Figure 3.9: The proposed alignment procedure yields a faster convergence speed, in
the sense that we are able to get a good approximation of the real underlying medial
surface even at low levels of resolution.

ples p;
k
. w; .
* = M (3.18)
Yo Wi
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Figure 3.10: The medial surface of a shape with genus greater than 0.

where the weights w; are a function of the inverse distance d; of the interpolant p* to
the samples p;, usually w; = é.

In order to apply Shepard formula we need to estimate the (squared) distances of
the points p; to the interpolant p*. To this end we make the simplifying assumption
that the gradient of the distance map F is approximately orthogonal to the medial sur-
face at p*. Under this assumption we note that d; = || p; — v||sin8;, where 6; is the angle
between F(v) and vp;, and thus

1 1 1

a2 lipi—vI2sin?0; lpi— vlE(1—cos?8;)

wi; =
1
lpi — vI12 = ((pi— v)TF"(v))2 '

Fig.|3.7|shows the result of the alignment procedure on the voxels of a medial sur-
face segment. Perhaps the major advantage of the proposed procedure is that it yields
a faster convergence speed for the medial surface extraction algorithm. Fig.[3.9|clearly
shows that when we skip the alignment step we need to increase the depth of the hier-
archical refinement considerably in order to get a decent approximation of the under-
lying medial surface. On the other hand, if we align the skeletal voxels as described in
this Section we can stop the hierarchical refinement earlier and still get a good result.

(3.19)

3.3 Experimental Results

In this Section we evaluate the quality of the proposed algorithm with a wide series
of experiments. Here we present quantitative and qualitative comparison with three
different approaches, namely the Hamilton-Jacobi algorithm of Siddiqi et al. [127],
the multiscale algorithm of Reniers et al. [115] and the Voronoi-based approach of
Yoshizawa et al. [150]. Note that the first two methods work on a voxelized 3D shape,
while the latter works directly on the mesh. The analysis has been performed on a se-
lection of 40 shapes from the Princeton Shape Benchmark [126] and the SHREC 2010
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database [33]. All skeletons are extracted with res;,;; = 16 and res;,, = 1024, unless
otherwise stated. Note that the proposed approach works independently of the shape’s
genus, and our dataset include shapes with genus greater than zero (see for example
Fig.[3.10).

Fig. shows the hierarchical discretization of a sample shape. As expected, the
deepest leaves, i.e., the highest resolution voxels, are located around the skeleton of
the shape. Note also that the density of the voxelization is increased where the shape
is more detailed, which is exactly what we expect to happen. This figure clearly shows
the advantages of a hierarchical discretization of the shape against a complete one. The
skeletons extracted at various stages of hierarchical refinement are shown in Fig.

3.3.1 Qualitative Evaluation

Here we propose a qualitative evaluation of our algorithm by comparing it with the
Voronoi-Based approach of Yoshizawa et al. [150], the Multiscale algorithm of Reniers
etal. [115] and the standard Hamilton-Jacobi method. Both the implementations of [150]
and [115] were downloaded from the authors websites, while we implemented the
Hamilton-Jacobi algorithm simply by dropping the density integration procedure in
our framework.

Fig. shows a qualitative comparison between the four methods. The Voronoi
skeleton is clearly the noisiest one and in most cases fails to provide an acceptable
approximation of the medial surface, although it is computationally significantly less
expensive than the other algorithms. The Multiscale approach on the other hand per-
forms quite well, although due to the complexity of processing a complete voxeliza-
tion of the shape it was not able to reach the level of detail of our method. Finally, the
Hamilton-Jacobi skeletons exhibit a few spurious skeletal segments due to the lack of
the correction of the curvature effects. Fig. provides a magnified view of the torso
and head of a selected medial surface extracted with our algorithm and the standard
Hamilton-Jacobi method, respectively. As Fig. shows, the head of the human
shapes contains some spurious segments which are located as expected in the areas

Figure 3.11: The shape voxelization performed by our algorithm: the highest resolution
voxels are all located around the skeleton.
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(d) 256 x 256 x 256 (e) 512x512x512 (f) 1024 x 1024 x 1024

Figure 3.12: The hierarchical refinement of the medial surfaces. The skeletal points are
meshed for ease of visualization.

of higher curvature. Although setting a stricter threshold eliminates these spurious
branches, it also results in a loss of details in the torso, as highlighted in Fig.|3.14(c)

3.3.2 Skeleton Localization

The Hamilton Jacobi framework [127,128] is based on the principle that the (normal-
ized) flux around an infinitesimal area not containing a skeletal branch is zero, while
it is non-zero over the skeleton. This guarantees the divergence-based thinning ap-
proach to converge to the exact location of the skeleton points. However, as noted
in [138], this analysis is true only for the normalized flux and only in the limit. Adopt-
ing any spatial discretization to compute the normalized flux results in non-zero values
also outside the skeleton that is proportional to the curvature of the inward evolving
front. this results in a spread-out of the divergence-based signal especially close to
skeletal endpoints, severely affecting the localization of the skeletal branches and also
resulting in the creation of small spurious branches [138]. The curvature correction
process [138], on the other hand, localized the non-zero values of the divergence much
better, resulting in better localization and avoiding the creation of spurious branches.
In this Section we evaluate the localization properties of the skeletons extracted
with our algorithm and we compare it against the standard Hamilton-Jacobi approach.
To evaluate the localization properties of the density correction we plot the distribu-
tion of the voxels as a function of both divergence and distance to the skeleton. In
order to evaluate the loss in localization caused by the hierarchical approach, we com-
pare this distribution for shapes at the same target level but at different starting levels.
In particular, the histograms in Fig. plot the average distribution of skeletons ex-
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Hierarchical Hamilton-Jacobi [127] Multiscale Voronoi-Based [150]

Figure 3.13: Comparison of our approach against a standard Hamilton-Jacobi algo-
rithm, the Multiscale algorithm of Reniers et al. [115] and the Voronoi-Based approach
of Yoshizawa et al. [150].

tracted at the maximum resolution of 128 x 128 x 128, with starting resolutions going
from 128 x 128 x 128 (single level), to 16 x 16 x 16 (multi-level (16)), thus all the skeletons
were extracted with varying levels of hierarchical refinement.

First we note that when the hierarchical approach goes through more levels, the
points tend to be more concentrated around the skeleton. This is to be expected since
there is a decrease in the total number of voxels expanded. In general we see that the
proposed algorithm yields a good localization of the skeleton, since the points with
non-zero divergence are all located near the skeleton, while the points that are far from
the skeleton have a value of the divergence equal to zero. However, we do observe a
little noise due to the propagation of numerical errors, which is typical of hierarchical
algorithms. Nonetheless, the distribution remains tightly peaked, with very few points
far from the skeleton with a non-negligible divergence of the momentum field.
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Figure 3.14: A magnified view of the head and torso of the medial surface of a human
shape. The standard Hamilton-Jacobi algorithm produces spurious segments which
can be removed by setting a stricter threshold, although this results in a loss of details
of the torso.

Fig.[3.16/compares the localization of the divergence of the momentum field against
that of the velocity field as used by Siddiqi et al. [127]. As previously reported by Torsello
and Hancock [138], even in 3D the momentum field localizes the skeleton much more
tightly than the velocity field.

Here we show also a slice of the shape voxelization in order to reveal its interior,
where the voxels are colored according to the value of the divergence, i.e., low values
correspond to white while high (negative) values correspond to black. Recall that the
value of V- F in a point p depends on the local boundary curvature and thus its value
tends to infinity as p moves closer to a skeleton endpoint, even if p is not skeletal.

As a consequence of this, we observe some blurred areas around the endpoints of
the medial surface. On the other hand, in the density-corrected slice we see a much
sharper localization of the skeleton.

3.3.3 Sensitivity to Mesh Resolution

We now evaluate the sensitivity of the proposed approach to different samplings and
sampling densities of the mesh. Given a mesh, we compute 3 increasing simplifica-
tions where the number of triangles is decreased respectively to 50%, 25% and 10%
(see Fig. . For each of these, we extract the medial surfaces using our approach, the
standard Hamilton-Jacobi one, the Voronoi-Based approach of Yoshizawa et al. [150]
and the Multiscale [115] algorithm. We then compute the average nearest neighbour
distance between the voxels of the medial surfaces of the simplified meshes and those
of the original medial surface.

Table|3.1|shows the average cost for different levels of simplification and different
skeleton extraction methods. As we can see, our approach yields the minimum average
distance, hence showing that it is less sensitive to the mesh resolution than the other
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Figure 3.15: Distribution of the voxels as a function of both divergence and distance to
the skeleton. The starting resolution ranges from 128x128x128 to 16 x 16 x 16, while the

maximum resolution remains fixed at 128 x 128 x 128. Note that the points with non-

zero divergence are all located near the skeleton, while the points that are far from
the skeleton have a value of the divergence equal to zero. We note a decrease of the

total number of points that are located far from the skeleton, which is in line with the
decrease of total voxels created. We also observe a little noise due to the propagation

of numerical errors, which is typical of hierarchical algorithms.

methods. Note that under a 50% mesh simplification the Hamilton-Jacobi algorithm
performs similarly to our method, as by removing 50% of the triangles the mesh qual-
ity is only slightly altered, and hence we don't observe the formation of new spurious

branches. On the other hand, as we further simplify the mesh, its surfaces becomes
less smooth and this in turns yields the formation of some spurious segments which
induce a higher average nearest-neighbour distance. As expected, the Voronoi-based

approach turns out to be the most unstable. It is known, in fact, that in the case of
Voronoi-Based skeletonization algorithms the quality of the extracted medial surface
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Figure 3.16: Comparison between the momentum field (left) and the velocity field
(right). The left histogram shows a good localization of the skeleton, while in the right
histogram we observe a non-negligible tail of distant points with non-zero divergence.

greatly depends on the mesh resolution and on how densely it is being sampled. It is
hence clear that by simplifying the shape we are inevitably altering the quality of the
resulting medial surface, as Table clearly shows. Finally the Multiscale algorithm
seems to perform slightly better than us when the number of triangles is decreased by
50%, while for higher levels of mesh simplification our approach is achieving better

results.

3.3.4 Robustness Against Noise

A good skeletonization algorithm should also be able to deal with moderately noisy in-
puts. To this end, we approximate the skeletonization of the diffused shape by smooth-
ing the distance map as in [138]. Hence, given a voxel and its neighborhood, we update
the local value of the distance by interpolating the values of the distance function on
its neighbors [76].

Fig. shows the robustness to noise of the proposed approach. The results ob-
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Figure 3.17: Medial surfaces of increasingly simplified meshes extracted, where the
number of triangles is reduced to 50%, 25% and 10% respectively. All the medial sur-
faces are extracted using the proposed algorithm.

| Mesh Simplification | 50% | 75% | 90%

Our Method 0.0009 | 0.0012 | 0.0017
Hamilton-Jacobi 0.0008 | 0.0014 | 0.0024
Multiscale [115] 0.0004 | 0.0019 | 0.0021

Voronoi-Based [150] | 0.0032 | 0.0044 | 0.0051

Table 3.1: Average nearest neighbour distance between medial surface of the original
shape and its simplified counterparts. Note that our methods is less sensitive to mesh
quality when compared to the standard Hamilton-Jacobi approach, the Voronoi-Based
approach of Yoshizawa et al. [150] and the Multiscale [115] algorithm.

tained by our algorithm and the Multiscale one are comparable. Note, though, that in
the latter the robustness is achieved thanks to a fine tuning of the importance thresh-
old, comes at the cost of losing some detail in the finer parts. On the other hand the
Voronoi-based algorithm is unable to cope with the noise on the mesh boundary and
thus performs much worse than the other approaches. Finally, the presence of noise
clearly increases the formation of spurious branches in the Hamilton-Jacobi algorithm.

In order to evaluate quantitatively the robustness to noise, we compute again the
average nearest neighbour distance between the medial surface extracted from the



3.3. Experimental Results 43

.
N
‘
2 &
4\
(-

Figure 3.18: Effects of noise. The first row shows the skeletons extracted from the
original object, while the second and the third rows show the skeletons after ran-
dom vertex displacement of respectively 10% and 20% of the average edge applied to
the shape. From left to right: our approach, Hamilton-Jacobi, Multiscale and
Voronoi-based [150].

original mesh and the medial surfaces extracted from the noisy shapes. The results
are shown in Table As the qualitative experiments suggested, the Voronoi-based
approach is clearly performing worse than all the other methods, while the Multiscale
approach and the proposed algorithm yield similar results, although we know that in
the Multiscale approach this comes at the cost of losing fine details. Finally, once again
the importance of the density correction is highlighted by the decreased performance
of the standard Hamilton-Jacobi approach.

| MeshNoise | 10% | 20%
Our Method 0.0010 | 0.0014
Hamilton-Jacobi 0.0013 | 0.0033
Multiscale 0.0009 | 0.0018
Voronoi-Based [150] | 0.0112 | 0.0146

Table 3.2: Average nearest neighbour distance under increasing mesh noise. Com-
pared to the standard Hamilton-Jacobi approach and the Voronoi-Based approach of
Yoshizawa et al. [150], our methods is less sensitive to noise, while it performs similarly
to the Multiscale algorithm.
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Figure 3.19: The plots show the memory and time requirements for the computation
of a series of skeleton with different levels of refinement. Our approach clearly outper-
forms the standard algorithm where the space is completely discretized.

3.3.5 Time and Spatial Complexity

Perhaps the most obvious advantage of our algorithm is the decrease of space and time
requirements. As for theoretical complexity, it is governed by the sorting of points with
respect to their distance to the boundary that takes place before the density integra-
tion, which is O(nlog(n)), where n is the number of leaves of the octree. Anyway, while
in the case of a complete grid n = m?3, where m is the final skeleton resolution, in the
proposed approach the growth is only quadratic, i.e., n = m?, since the voxels are re-
fined only around the two-dimensional medial surfaces.

Fig. shows the memory and time requirements for the extraction of a series
of skeletons from a wide variety of shapes. Note that because of the higher mem-
ory requirements of the complete discretization, the machine on which the experi-
ments were performed, which is equipped with 20 GB of RAM, couldn’t afford resolu-
tions beyond 256 x 256 x 256. On the other hand, using the hierarchical approach we
could easily reach resolutions as high as 1024 x 1024 x 1024, which would have required
1,073,741,824 voxels if we were to voxelize the shape uniformly.

3.4 Conclusion

In this Chapter we presented a novel algorithm for medial surfaces extraction that is
based on the density-corrected Hamiltonian analysis [138]. In order to cope with the
exponential growth of the number of voxels, we compute a first coarse discretization
of the mesh which is iteratively refined until a desired resolution is achieved. The re-
finement criterion relies on the analysis of the momentum filed, where only the voxels
with a suitable value of the divergence are exploded to a lower level of the hierarchy.
In order to partially compensate for the discretization errors incurred at the coarser
levels, a dilation procedure is added at the end of each iteration. Finally we designed a
simple alignment procedure to correct the displacement of the extracted skeleton with



3.4. Conclusion 45

respect to the true underlying medial surface. We evaluated the proposed approach
with an extensive series of qualitative and quantitative experiments.

With the skeleton to hand, one can segment it into different components and use a
graph to represent the relation between these parts. However, this procedure is likely
to introduce noisy nodes and edges in the graph. In the next Chapter we will show
how to learn a generative model from a set of observed graphs which is able to capture
the structural variations while designating an external node to model the presence of
noise.
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Learning Graph Structure

In the previous Chapter we have introduced a novel algorithm for the extraction of me-
dial surfaces from 3D shapes. With the medial surface to hand, one can easily segment
it into different components and use a graph to represent the relation between these
parts. Given a set of graphs that represent our shape database, one is now faced with
the problem of classifying these shapes into different objects.

Standard classification techniques can be usually divided into two broad categories,
namely the generative and the discriminative approaches. Generally speaking, while
generative approaches try estimate the joint probability density function p(x,y) and
obtain p(y|x) by applying Bayes rule, discriminative approaches try to estimate p(y|x)
directly from the data, where x denotes the data and y denotes the class label. In this
Chapter we propose a novel generative model for graphs which works by decoupling
the structural and stochastic parts and making the naive assumption that the observa-
tion of each node and each edge is independent of the others, but allows correlations
to pop up by mixing different models. The model is described in Section[4.1} where we
adopt a Minimum Message Length [143] criterion to prune mixture components and
model nodes. An alternative criterion is proposed in Section where we illustrate
an adaptation of the Approximation Set Coding framework [35] to our model selection
problem.

4.1 A Generative Model for Graphs

Consider the set of undirected graphs S = (g1,..., g;), our goal is to learn a generative
graph model ¢ that can be used to describe the distribution of structural data and
characterize the structural variations present in the set. To develop this probabilistic
model, we make an important simplifying assumption: We assume that the model is a
mixture of naive models where observation of each node and each edge is independent
of the others, thus imposing a conditional independence assumption similar to naive
Bayes classifier, but allowing correlation to pop up by mixing the models.

The naive graph model ¢ is composed by a structural part, i.e., a graph G(V, E),
and a stochastic part. The structural part encodes the structure, here V are all the
nodes that can be generated directly by the graph, and E < V x V is the set of possible
edges. The stochastic part, on the other hand, encodes the variability in the observed
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Figure 4.1: A structural model and the generated graphs. When the correspondence
information is lost, the second and third graph become indistinguishable.

graph. To this end we have a series of binary random variables 6; associated with each
node and 7;; associated with each edge, which give us respectively the probability that
the corresponding node is generated by the model, and the probability that the corre-
sponding edge is generated, conditioned on the generation of both endpoints. Further,
to handle node- and edge-attributes, we assume the existence of generative models

W/ and We that model the observable node and edge attribute respectively, and that
are parametrlzed by the (possibly vectorial) quantities w} and w? i Note that 0; and
W/ need not be independent, nor do 7;; and We With thls formalism, the generation
of a graph from a naive model is as follows: Flrst we sample from the node binary indi-
cator variables 8; determining which nodes are observed, then we sample the variables
7;,j indicating which edges between the observed nodes are generated, and finally we
sample the attributes W' and Wf] for all observed nodes and edges, thus obtaining
the full attributed graph.

Clearly, this approach can generate only graphs with fewer or equal nodes than
V. This constraint limits the generalization capability of the model and forces one to
model explicitly even the observed random isotropic noise. To correct this we add the
ability to generate nodes and edges not explicitly modeled by the core model. This is
obtained by enhancing the stochastic model with an external node observation model
that samples a number of random external nodes, i.e., nodes not explicitly modeled in
the generative model. The number of external nodes generated is assumed to follow a
geometric distribution of parameter 1—6, while the probability of observing edges that
have external nodes as one of the endpoints is assumed to be the result of a Bernoulli
trial with a common observation probability 7. Further, we assume common attribute
models W” and W¢ for external nodes and edges, parametrized by the quantities w”
and w¢. This way external nodes allow us to model random isotropic noise in a com-
pact way.

After the graph has been sampled from the generative model, we lose track of the
correspondences between the sample’s nodes and the nodes of the model that gen-
erated them. We can model this by saying that an unknown random permutation is
applied to the nodes of the sample. For this reason, the observation probability of a
sample graph depends on the unknown correspondences between sample and model
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Figure 4.2: Model estimation bias. If a single node correspondence is taken into ac-
count the estimated model will exhibit a bias towards one of multiple possible corre-
spondences.

nodes.

Figure|4.1/shows a graph model and the graphs that can be generated from it with
the corresponding probabilities. Here model is unattributed with null probability of
generating external nodes. The numbers next to the nodes and edges of the model
represent the values of 6; and 7;, ; respectively. Note that, when the correspondence in-
formation (letters in the Figure) is dropped, we cannot distinguish between the second
and third graph anymore, yielding the final distribution. Note that, from a structural
perspective, our generative model is essentially a complete graph, where each edge is
labeled with a (possibly zero) probability of observation, in contrast to alternative ap-
proaches such as the generalized set median of Jiang et al. [74] and Ferrer et al. [56].
Also, while the latter aim at building a structural prototype of a set of observed graphs,
our goal is that of learning a probabilistic model of the underlying structure.

Given the node independence assumptions at the basis of the naive graph model,
if we knew the correspondences o mapping the nodes of graph g to the nodes of
the model ¢, we could very easily compute the probability of observing graph g from
model ¥:

P09 = A=0) [ Pleso0nw): 1 Pzt ol
i€V & (i,))€E &8

1 PEp@l00M: [T PlEoiopHe9,
igv (i, )EE

where the indexes i € V and (i, j) € E indicate product over the internal nodes and
edges, while, with an abuse of the formalism, we write i ¢ V and (i, j) € E to refer to
external nodes and edges. With the ability to compute the probability of generating any
graph from the model, we can compute the complete data likelihood and do maximum
likelihood estimation of the model ¢, however, here we are interested in the situation
where the correspondences are not known and must be inferred from the data as well.

Almost invariably, the approaches in the literature have used some graph matching
technique to estimate the correspondences and use them in learning the model pa-
rameters. This is equivalent to defining the sampling probability for node g as P(g|¥) =
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maxgey, P(g1¥,0). However, as shown in [135], assuming the maximum likelihood es-
timation, or simply a single estimation, for the correspondences yields a bias in the es-
timation as shown in Figure[4.2| Here, the graph distribution obtained from the model
in Figure is used to infer a model, however, since each node of the second sam-
ple graphs is always mapped to the same model node, the resulting inferred model is
different from the original one and it does not generate the same sample distribution.

To solve this bias Torsello [135] proposed to marginalize the sampling probability
over all possible correspondences, which, once extended to deal with external nodes,
results in the probability

1
P(gl9) = ) P(gl%4,0)P(0)=— P(gl¥,0), (4.1)
ogexy |Zg| gexy

where g is is the quotient of g modulo permutation of its nodes, i.e., the representation
of g where the actual order of the nodes is ignored, X" is the set of all possible partial
correspondences between the m nodes of graph g and the n nodes of model ¢, and Z¢
is the set of symmetries of g, i.e., the set of graph isomorphisms from g onto itself.

Clearly, averaging over all possible correspondences is not possible due to the super-
exponential growth of the size of X7"'; hence, we have to resort to an estimation ap-
proach. In [135] was proposed an importance sampling approach to compute a fast-
converging estimate of P(g|¥). Note that similar importance sampling approaches
marginalizing over the space of correspondences have been used in [25] and [112]. In
particular, in the latter work the authors show that the estimation has expected poly-
nomial behavior.

4.1.1 Correspondence Sampler

In order to estimate P(g|¥), and to learn the graph model, we need to sample corre-
spondences with probability close to the posterior P(o|g,%). Here we generalize the
approach in [135] for models with external nodes, also eliminating the need to pad the
observed graphs with dummy nodes to make them of the same size of the graph model.

Assume that we know the node-correspondence matrix M = (m;j), which gives us
the marginal probability that model node i corresponds to graph node h. Note that,
since model nodes can be deleted (not observed) and graph nodes can come from the
external node model, we have that Vh,Y ; m;, <1 and Vi,} ;, m;, < 1. We turn the
inequalities into equalities by extending the matrix M into a (n+ 1) x (m + 1) matrix M
adding n + m slack variables, where the first n elements of the last column are linked
with the probabilities that a model node is not observed, the first m elements of the
last row are linked with the probability that an observed node is external and element
at index n+1,m+1 is unused. M is a partial doubly-stochastic matrix, i.e., its first n
rows and its first m columns add up to one.

With this marginal node-correspondence matrix to hand, we can sample a corre-
spondence as follows: First we can sample the correspondence for model node 1 pick-
ing a node h; with probability m, j,. Then, we to condition the node-correspondence
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matrix to the current match by taking into account the structural information between
the sampled node and all the others. We do this by multiplying m; ;. by P(gp, k|%1, ),
i.e., the probability that the edges/non-edges between k and /; map to the model edge
(1, j). The multiplied matrix is then projected to a double-stochastic matrix Mf ! us-
ing a Sinkhorn projection [130] adapted to partial doubly-stochastic matrix, where the
alternate row and column normalization is performed only on the first n rows and m
columns. We can then sample a correspondence for model node 2 according to the dis-
tribution of the second row of Mlh ' and compute the conditional matching probability

]\_/_Ilh 12.h2 in much the same way we computed Mlhl. and iterate until we have sampled
a complete set of correspondences, obtaining a fully deterministic conditional match-

ing probability M {’ lnh ", corresponding to a correspondence o, that has been sampled

with probability P(0) = (M)1,n, - ("o, .. (20

4.1.2 Estimating the Model

With the correspondence samples to hand, we can easily perform a maximum likeli-
hood estimation of each model parameter by observing that, by construction of the
model, conditioned on the correspondences the node and edge observation are inde-
pendent to one another. Thus, we need only to maximize the node and edge models
independently, ignoring what is going on in the rest of the graph. Thus, we define the
sampled node and edge likelihood functions as

P(go |00}
Zi(5,9) = P
i ;ZIS; P(o)
P(go(i),a(j)lTi:f’wl?j)
g') (S)(g) = '
i,j 51;[8; P(o)

from which we can easily obtain maximum likelihood estimates of the parameters 6;,
w;?, 7;,j, and a)f]..
Further, we can use th samples to update the initial node-correspondence matrix

in the following way

1 P(olg,¥9)

M = M,
St

where M, is the deterministic correspondence matrix associated with o. Thus in our
learning approach we start with a initial guess for the node-correspondence matrix
and improve on it as we go along. In all our experiments we initialize the matrix based
only on local node information, i.e. m; j is equal the probability that model node i
generates the attributes of graph model h.

The only thing left to estimate is the value of |2, but that can be easily obtained
using our sampling approach observing that it is proportional to the probability of
sampling an isomorphism between g and a deterministic model obtained from g by
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setting the values of 7; ; to 1 or 0 according the existence of edge (i, j) in g, and setting
6 = 0. It interesting to note that in this corner case, our sampling approach turns out
to be exactly the same sampling approach used in [18] to show that the graph isomor-
phism problem can be solved in polynomial time. Hence, our sampling approach is
expected polynomial for deterministic model. and we can arguably be confident that
it will perform similarly well for low entropy models.

4.1.3 Model Selection

Given this sampling machinery to perform maximum likelihood estimation of the model
parameters for the naive models, we adopt a standard EM approach to learn mixtures
of naive models.

This, however, leaves us with a model selection problem, since model likelihood
decreases with the number of mixture components as well as with the size of the naive
models. To solve this problem we follow [136] in adopting a Minimum Message Length [143]
approach to model selection, but we deviate from it in that we use the message length
to prune an initially oversized model.

Thus we seek to minimize the combined cost of a two part message resulting in the
penalty function

D ( S|

1
I = log 5) + 5 log(wD) —1 - Y log(P(g1%,04)), (4.2)

ges

where |S| is the number of samples and D the number of parameters for the structural
model.

The learning process is initiated with a graph model that has several mixture com-
ponents, each with more nodes that have been observed in any graph in the training
set. We iteratively perform the EM learning procedure on the oversized model and,
with the observation probabilities to hand, we decide whether to prune a node from a
mixture component or a whole mixture component and after the model reduction we
reiterate the EM parameter estimation and the pruning until no model simplification
reduces the message length.

The pruning strategy adopted is a greedy one, selecting the operation that guaran-
tees the largest reduction in message length given the current model parameters. Note
that this greedy procedure does not guarantee optimality since the estimate is clearly
a lower bound, as the optimum after the pruning can be in a very different point in
the model-parameter space, but it does still give a good initialization for leaving the
reduced parameter set.

In order to compute the reduction in message length incurred by removing a node,
while sampling the correspondences we compute the matching probability not only
of the current model, but also of the models obtained from the current one with any
singe node removal. Note, however, that this does not increase the time complexity of
the sampling approach and incurs only in a small penalty.
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Figure 4.3: Top row: Left, a sample of the shape database; right, edit distance matrix.
Bottom row: Multidimensional Scaling of the edit distances.
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4.1.4 Experimental Evaluation

In order to asses the performance of the proposed approach, we run several experi-
ments on graphs arising from different classification problems arising from 2D and 3D
object recognition tasks, as well as one synthetic graph-classification testbed. The gen-
erative model is compared against standard nearest neighbor and nearest prototype
classifiers based on the distances obtained using several graph matching techniques
at the state of the art. In all cases the prototype is selected by taking the set-median of
the training set. The performance of the generative model is assessed in terms of the
classification performance for the classification task to hand. For this reason, for all
the experiments we plot the precision and recall values:

Lp [p
tp+fp tp+fn
where p indicates the true positives, tn the true negatives and fn the false negatives.

With the exception to the last set of experiments, all the graphs used have a single
numerical attribute associated to each node and no attributes linked with the edges.
The last set of experiments, on the other hand, is based on edge-weighted graphs with
no node attribute.

For the node-attributed graphs, we adopted the rectified Gaussian model used in [139].
To this end, we define a single stochastic node observation model X; for each node i.
We assume X; is normally distributed with mean p; and standard deviation o;. When
sampling node i from the graph model, a sample x; is drawn from X;. If x; = 0 then
the node is observed with weight w; = x;, otherwise the node will not be present in the
sampled graph. Hence the node observation probability is 6; = 1 —erfc(u;/0;) where
erfc is the complementary error function

precision = recall =

1 1
erfc = —ex (——sz) ds.
X \/27‘5 p 2

The edge observation model, on the other hand is a simple Bernoulli process.

Shock Graphs

We experimented on learning models for shock graphs, a skeletal based representation
of shape. We extracted graphs from a database composed of 150 shapes divided into
10 classes of 15 shapes each. Each graph had a node attribute that reflected the size of
the boundary feature generating the corresponding skeletal segment. Our aim was to
compare the classification results obtained learning a generative model to what can be
obtained using standard graph matching techniques and a nearest neighbor classifier.
Figure |4.3| shows the shape database, the matrix of extracted edit distances between
the shock graphs, and a multidimensional scaling representation of the distances; here
numbers correspond to classes. As we can see, recognition based on this representa-
tion is a hard problem, as the class structure is not very clear in these distances and
there is considerable class overlap.
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Figure 4.4: Precision and Recall on the shock graph dataset as the number of training
samples increases.

In Figure[4.4 we compare the classification performance obtained with the nearest
neighbor and nearest prototype rules with the one obtained by learning the generative
models and using Bayes decision rule for classification, i.e., assigning each graph to
the class of the model with largest probability of generating it. Note that the graphs
are never classified with a model that had the same graph in the training set, thus in
the case of the 15 training samples, the correct class had only 14 samples, resulting
in a leave-one-out scheme. Figure shows a clear improvement of about 15% on
both precision and recall values regardless the number of samples in the training set,
thus proving that learning the modes of structural variation present in a class rather
than assuming an isotropic behavior with distance, as has been done for 40 years in
structural pattern recognition, gives a clear advantage.

3D Shapes

The second test set is based on a 3D shape recognition task. We collected a number
of shapes from the zhang2005retrieving 3D Shape Benchmark [152] and we extracted
their medial surfaces using the algorithm introduced in Chapter (3| The final dataset
was obtained by transforming these skeletal representations into an attributed graph.
Figure[4.5|shows the shapes, their graph distance matrix and a Multidimensional Scal-
ing representation of the distances. The distances between the graphs were computed
using the normalized metric described in [140], which in turn relies on finding a max-
imal isomorphism between the graphs, for which we adopted the association graph-
based approach presented in [109]. Both the distance matrix and the Multidimensional
Scaling show that the classes are well separated, resulting in a relatively easy classifica-
tion task.

Once again we tested the generative model performance against the nearest neigh-
bor and the nearest prototype classifier. Figure confirms our intuition that this
was indeed an easy task, since both the nearest neighbor and the nearest prototype
classifiers achieve the maximum performance. Yet, the generative model performs ex-
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Figure 4.5: Top row: Left, shape database; right, distance matrix. Bottom row: Multidi-
mensional Scaling of the graph distances.

tremely well, even when the training set contains just a very few samples. As for the
performance gap between the nearest neighbor and the generative model, it is proba-
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Figure 4.6: Precision and Recall on the 3D shapes dataset.

bly due to the very naive way of estimating the initial node correspondences, and could
be probably reduced using a more sophisticated initialization.

Synthetic Data

To further assess the effectiveness of the proposed approach we tested it on syntheti-
cally generated data, where the data generation process is compatible with the naive
model adopted in the proposed learning approach. To this end, we have randomly
generated 6 different weighted graph prototypes, with size ranging from 3 to 8 nodes.
For each prototype we started with an empty graph and then we iteratively added the
required number of nodes each labeled with a random mean and variance. Then we
added the edges and their associated observation probabilities up to a given edge den-
sity. Given the prototypes, we sampled 15 observations from each class being careful
to discard graphs that were disconnected. Then we proceeded as in the previous set of
experiments computing the dissimilarities between the graphs and learning the graph
models.

Generating the data with the same model used for learning might seem to give an
unfair advantage to our generative model, but the goal of this set of experiments is
asses the ability of the learning procedure to obtain a good model even in the presence
of very large model-overlap. A positive result can also provide evidence for the validity
of the optimization heuristics.

Figure shows the distance matrix of the synthetic data and the corresponding
Multidimensional Scaling representation. There is a considerable overlap between dif-
ferent classes, which renders the task particularly challenging for the nearest neighbor
and nearest prototype classifiers. Yet, our generative model was able to learn and de-
scribe this large intra class variability, thus coping with the class overlap. Figure
plots the precision and recall curves for this set of experiments. Even with a relatively
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Figure 4.8: Precision and Recall on the synthetic dataset.

small training set, our approach achieves nearly 90% precision and recall, and as the
number of observed samples increases, it yields perfect classification. On the other
hand, the nearest neighbor classifier is not able to increase its precision and recall
above the 84% limit, while the nearest prototype approach exhibits even lower per-

formance.

Edge-Weighted Graphs

In the finals set of experiments, we applied the approach to an object recognition task.
To this end we used a subset of the COIL-20 dataset [101]. For each image we ex-



4.2. Information Theoretic Model Selection 59

tracted the most salient points using a Matlab implementation of the corner detector
described in [68], the salient points where connected according to a Delaunay triangu-
lation, thus resulting in an edge-weighted graph, were the edge-weights correspond to
the distance between the salient points.

With this representation we used different node and edge observation models. Since
nodes are not attributed, we used simple Bernoulli models for them. For the edges, on
the other hand, we used a combined Bernoulli and Gaussian model: a Bernoulli pro-
cess establishes whether the edge is observed, and if it is the weight is drawn accord-
ing to an independent Gaussian variable. The reason for this different weight model
resides in the fact that the correlation between the weight and the observation proba-
bility that characterized the rectified Gaussian model did not fit the characteristics of
this representation.

To compute the distances for the nearest neighbor and nearest prototype rule, we
used the graph matching algorithm described in [46], which is capable of dealing with
edge-weighted graphs. Once the correspondences where computed, we adopted the
same metric as before. As Figure 4.9 shows, the generated dataset is even more com-
plex than the synthetic one. This is mainly due to the instability of the corner detec-
tor, which provided several spurious nodes resulting in very large intra-class structural
variability.

Figure shows that even on this difficult dataset, we significantly outperform
both the nearest neighbor and nearest prototype classifiers, emphasizing once again
the advantages of our structural learning approach.

4.2 Information Theoretic Model Selection

We conclude this Chapter by introducing a novel approach to establish the optimal-
ity of a generative model. Standard model selection methods include the Minimum
Message Length criterion (MML) [143], the Aikake [14] and the Bayesian information
criteria [120]. In Section for example, we have shown how to choose an optimal
model according to a MML criterion. Generally speaking, although these principles are
motivated from different viewpoints, most of them employ penalizing the parameters
(or complexity) of the model in order to generalize well on a new dataset. For example,
AIC assigns a cost to the model which is equal to twice the number of its parametres.
Although these approaches have been used with considerable success for many years,
they are all more or less sensible to the size of the training set. That is, if the observa-
tions are not enough these methods tend to underestimate the size of the generative
model.

Here, on the other hand, we propose an alternative method which is specifically
designed to establish the optimality of a model in terms of its generalization capabil-
ities. The method we propose is an information-theoretic criterion that is inspired by
the Approximation Set Coding framework [35]. The ASC framework has recently been
introduced by Buhmann in the context of clustering validation, but our deviates from
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Figure 4.9: Top row: Left, shape database; right, distance matrix. Bottom row: Multidi-
mensional Scaling of the graph distances.

it under several aspects. We first review the ASC framework of Buhmann and then we
proceed to explain our modified version.
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Figure 4.10: Precision and Recall on the COIL-20 dataset.

4.2.1 Approximation Set Coding

We are given a set of objects O = {0y, ..., 0,} which is characterized by a set of measure-
ments X associated with these objects. Let a hypothesis be a solution to our pattern
recognition problem. In particular, in [35] a hypothesis c is defined as a function as-
signing data to clusters. Let R(c) be the risk function associated with a particular clus-
tering algorithm, i.e., a function which evaluates the quality of a hypothesis according
to a specific criterion of coherency. In the case of k-means, the risk function measures
the average distance of the objects to the nearest cluster centroid. Given a set of mea-
surements and of alternative clustering solutions, the best hypothesis c* is defined as
the hypothesis that minimizes the empirical risk of data clustering given the measure-
ments X, i.e.,

ct(X) = argminR(c,X) (4.3)
[
Then the set Cy (X) of empirical risk approximations for clustering is defined as
CyX):={cX): R(c,X) = R(chX) + v} (4.4)

that is the set of hypotheses that are at most y-far from the optimal one, in terms of the
risk function.

Given this setting, a clustering algorithm A should be validated by evaluating the
generalization properties of the clustering solutions c(X'")) on a set of test data with
associated measurements X, where X' and X represent the training and test sets
respectively. Therefore, one needs to define a mapping v which identifies a hypothe-
sis for the training set with a hypothesis for the test data. With this mapping to hand,
it is then possible to enumerate the y-optimal clustering solutions which are also y-
optimal on the test data. Note that here y controls the trade off between the general-
ization power and the informativeness of the clustering algorithm.
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Approximation set coding uses the observation that there are a set of problem spe-
cific invariants, i.e., a set of transformations which alter the sample data without es-
sentially changing the clustering model in any way. In the clustering problem, these
are the random permutations X = {07y, ..., O'an} of the objects. The generalization prop-
erty of a clustering algorithm is then evaluated in the following noisy communication
scenario. Initially, a sender S and a receiver R agree on a clustering algorithm with an
associated risk function R(c, X'") and a mapping function w. Then, S and R obtain
the data X' from the problem generator PR, which also generates the set of random
permutations X. With X; and Z to hand, both S and R determine the approximation
sets Cy(o;0XW), 1<i < 27" In this communication scenario, the approximation sets
C(o; oX1) play the role of Shannon’s codebook vectors. Finally, the communication
takes place in the following way: 1) the sender S selects the permutation o and sends
it to the problem generator PR; 2) PR generates a new dataset X®) and its permuted ver-
sionX = 030X®; 3) PR sends X to R, which then computes the approximation set Cy (X);
5) finally, R estimates the applied permutation as

& =argmax|(y o Cy(00X"))nC, X (4.5)
o€X

With this setting to hand, one can select the optimal clustering method as the one
which yields the highest channel capacity in the transmission of the invariant o;. Note
that Buhmann’s framework is designed to validate a clustering algorithm. As a conse-
quence, in order to apply it to our model selection problem we need to understand the
fundamental distinction between validating a meta-model (or algorithm), as opposed
to simply validating a model, which is a lower level problem.

4.2.2 Approximation Set Coding For Model Selection

Han et. al [65] recently proposed to extend Buhmann’s framework from the vectorial
domain to the graph domain in order to solve a prototype size selection problem. How-
ever, the authors are actually validating a learning algorithm, rather than a graph pro-
totype. In our work, we intend to correct their analysis by modifying in a simple yet
fundamental way the communication scenario.

In the graph model validation setting, a hypothesis c is a mapping (match) of the
sample graphs to a model graph. As in the usual ASC framework, we have a risk func-
tion R(c) which evaluates the cost of a particular matching. In order to evaluate the
generalization properties of the model, we need to be able to transfer the matches from
the training set of graphs GV, to the test set G?. For each graph g\ in G, we find the
most similar graph in G, and the mapping between T; between the two, where the sim-
ilarity is computed in terms of graph edit distance. Thus T; o glgl) is the image of glgl) in
the second set.

In this new setting, the invariants that we need to transmit are the permutation of
the sample graphs and of their nodes. Note, in fact, that if we consider the sample
graphs in a different order, or their nodes are permuted in some way, the structure of
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the recovered model should be the same (although the model graph nodes may also
be in a different order). However, the new communication scenario requires an im-
portant modification of in the initial setup of the channel. In this case, the sender S
and the receiver R need to agree also on the model ¢ which will be used to compute
the approximation sets, i.e., the codebook vectors. In other words, while in [65] at the
two ends of the channel S and R rely on two different models to compute the approxi-
mation sets, which implies that a meta-model rather than a model validation is taking
place, in our setting S and R need to operate given the same model which is initially
sent to both by the problem generator PR.

Then, given a set of models {¥4;} i we select the model which yields the highest
channel capacity, i.e., the one which maximizes the mutual information between S
and R. As shown by [35], the mutual information between sender and receiver can be
computed as

I - 1 o (lT”ACy,12|)
|Cy111Cy 2]

where |Cy 1| is the number of hypotheses which are within a cost y of the best cost
in set 1 (and likewise for |Cy2|). The quantity |ACy 12| is the number of hypotheses
in set 2 which are within a cost y of the best cost in set 1, where we need to define a
way of transferring hypotheses from set 2 to set 1. More precisely, unlike [65], for each
model we compute the average mutual information by repeatedly partitioning the set
of observations into G and G@, thus reducing the dependence of the chosen model
from the quality of the partition. Clearly this is not possible in [65], as the models used
to encode and decode the invariants are learned given the partitioned observations.

(4.6)

4.2.3 Model Selection Framework

In this Section, we show how to extend the methodology of the approximate set coding
from the vector domain to the graph domain. To this end, we redefine three important
ingredients in the approximate set coding (i.e. hypothesis, cost function and partition
function), and generalize them from vector domain to graph domain. In the following,
we commerce by introducing our problem and then explain the new definition of the
ingredients.

Given a set of sample graphs, our aim is to select the optimal model graph for
the sample graphs. To ensure that the optimal model graph generalizes well on new
dataset, we adopt a two-sample set scenario and repeatedly partition the sample graphs
into two sets of the same size

1 1
GV =(g" &" .. g1}

G¢? =g g”,..g7) 4.7)

Here the superscripts indicate different sample-set and the subscripts indicate the
graph indices. The best model graph is determined according to its average gener-
alization capability on the two sets.
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Hypothesis And Cost Function

The hypotheses originally proposed in the clustering problem are the assignments of
data points to clusters [34]. In this work, the hypotheses consist of the set of corre-
spondences of each of the sample graphs onto its corresponding model graph. By
direct analogy with the clustering problem, each correspondence is equivalent to an
assignment of a point to a cluster; the model graph here is a parameter equivalent to
the cluster centroid. For each dataset G (g € {1,2}) a hypothesis is

cqg=(0"0\?, ..o (4.8)
where Ug.q) (i €{1,...,n}) is the assignment between graph i from set g and the model

graph 4. The set of all possible hypotheses is Z and it consists of all the possible corre-
spondences between all samples and the model graph.

Furthermore, we need a cost function R,(c,) to quantify the effectiveness of a par-
ticular hypothesis c;. The cost function measures how consistent the given correspon-
dences are with the model graph. Here the cost function of a hypothesis is the negative
logarithm of the joint observation probability of the graphs gl@ e G

Ry(cq) = —1ogP(G'?|9,c,)

-y ((1 ~0)+ Y P(g”&@I0.)+ Y Pg”&@nid,)+
(@) vevV veV

1

LA ORIV LIS P(gl?‘”(fi(u),éi(v))m,y)) (4.9)

(u,v)EE (u,v)¢E

where ¢ = 07!, In order to normalize the minimum cost of the hypotheses to zero,

we define the relative cost of hypothesis. Suppose the optimal hypothesis (i.e., the
hypothesis yielding the lowest costs between the sample graphs and the model graph)
is cj, the relative cost of hypothesis ¢, is

ARg(cq) = Rqlcq) — Rqlcy) (4.10)

Partition Function

The measurement of the mutual information of the two sample-set requires counting
the number of the hypotheses which are within a certain cost of the optimal solution.
However, this is hard to do as it involves exploring all the hypotheses. Fortunately, this
value can be estimated using some concept from statistical physics. Considering the
hypotheses as microcanonical ensembles in statistical mechanics, their number can
be estimated by calculating the partition function [34]

Zg= ) exp[-PARy(c,)] (4.11)

CqECq
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where f is a positive scaling parameter known as the inverse computational tempera-
ture. Essentially, § coarsens the precision of the partition function approximating the
number of hypotheses that fit the sample set [35]. When f is zero, the partition func-
tion is equal to the number of all the possible hypotheses. When S is very large, the
partition function only counts the number of optimal hypotheses. Because f controls
the number of hypotheses fitting the sample set, we will call these -optimal hypothe-
ses. In our case, the hypotheses space is the set of all the possible correspondences
between the sample graphs and the model graph. The hypotheses space is very large
and the computation of the partition function will be expensive. Later we show how
we use the Importance Sampling approach to sample the correspondence between the
sample graphs and the model graph and approximate the partition function.

To measure how well the hypotheses generalize for the two sample sets, we count
the number of B-optimal hypotheses in the first set which also exist in the second set,
when transferred to the first set. We therefore need a way of transferring hypotheses
from the second dataset to the first. We denote the cost of the hypothesis ¢, between
the transferred graphs and model graph % as R;(c;). This is the cost of making hy-
pothesis ¢, for the graphs G when evaluated against the data in GV, The following
procedure may be used to find the transfer. For each g\’ graph in G, we find the most
similar graph in G? and the correspondence between T; between the two. T;o g!" is
then the image of this graph in the second set. From these images, we compute the
cost of ¢, by comparing the images to the model graph ¢ under the correspondences
in ¢,. Finally, the joint partition function is formulated as

Ziz=)_ exp[-P(AR/(c2) + ARy (c2))] . (4.12)

C2 Ecgz

The quantity AR;(c») is the relative cost of hypothesis ¢, between the image graphs of
G in the second set and the model graph . It is equivalent to the cost of hypothesis
¢» between the image graphs and ¢ minus their minimum cost.

The model graphs can then be ranked according to their mutual information be-
tween the two sets

1 VAP
Ig=—1 4,13
P= 0 Og(lez) *.13)

In the above equation, Z;,7, are the respective partition functions of two sample sets
and Z;» is their joint partition function. Note, however, that Iz depends on the given
partition of the data. Hence, we propose to repeatedly partition the data and com-
pute the average mutual information between the pair of sets, rather then the mutual
information.

Partition Function Approximation

In order to deal with the super-exponential growth of the set of possible correspon-
dences, we decide to resort to an Importance Sampling approach in a manner which is
similar to that of Section Importance Sampling is a variance reduction sampling
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technique used when computing Monte Carlo approximations [64]. Suppose we want
to estimate the average E[h(x)] = A|| J4h(x)dx, where h(x) is a real function taking
values in A. If we sample k values of /2(x) uniformly we obtain the Monte Carlo estima-
tor E[h(x)] = %Zle h(x;). However, it is often the case that in some of the regions of A
the value of h(x) is very small, i.e. its impact to the estimate is negligible. One way to
overcome this problem would be that of taking a larger number k of samples, but the
reason why we resorted to a Monte Carlo approximation in the first place was actually
to avoid enumerating all the possible correspondences. If instead we sample from a
different and non necessarily uniform distribution f, we can estimate E[h(x)] as

||A||
Ef[h(x)] = h(x; 4.14
Flh(x0)] = Z (x )f( 3 (4.14)

1
AT

where ) is called the importance factor. In other words, we are taking a weighted
sum of the h(x;), where the importance factor is used to correct the error introduced

when sampling from the new distribution f. Note that if we choose f(x) = T 283 el
A

the variance of the estimator is zero and thus a single sample is sufficient to estimate
E[h(x)]. However this would require computing f 4 h(x)dx, so in practice one should

. h(x)
choose f to be as close as possible to Tohodz"

In this work, we need to approximate the value of the partition functions Z,, Z»
and Z;;. Since the approximation procedure is going to be the same in all the three
cases, we simply review the equations for Z;. In this case, || Al| = n! and h(x) = exp[-BAR;(c1)],
and thus

1 X exp[—BAR;(c1)]
, e " a1
Z1=E. |exp[-p 1(61)]]n |6 | )3 P(cy) )

C1€E61

In order to implement the importance sampler we follow the approach of Sec-
tion Recall that AR; = R4(cq) — Rq(cfi') and R;(cq) = —logP(G(q)I‘g,cq), where

G'% is a set of observations and ¢ is the model graph. Hence, for each graph gl@ e G,
we want to sample a correspondence 0 ? with probability close to

P(g"|%4)
> wPE"14,0\)

(4.16)

The sampling of the correspondences then follows closely that of Section [4.1.1]
Note, however, that the procedure described in this Section actually aims at providing a
good approximation of the first moment of exp[AR,(c,)], rather than its fth moment,
as one would expect. In fact, the correct solution would require repeating the sampling
procedure for each desired 8, which is clearly unfeasible. However, in the experimental
part we will show that even with this simplification the resulting approximation is still
satisfying.



4.2. Information Theoretic Model Selection 67

5 ‘ ‘
== Qversized(+1)
4.5 Original size |
Undersized(-1)
4 Undersized(-2)H
== Undersized(-3)

Mutual Information

| | | | |
0 2 4 6 8 10 12 14 16 18 20
Beta

Figure 4.11: The variation of the mutual information as the inverse temperature £ in-
creases. The solid and the dotted lines show the exact and the approximated values of
the mutual information, respectively.

4.2.4 Experimental Evaluation

The novelty of the proposed model selection framework requires an extensive and
careful experimental validation both on synthetic and real-world graphs. In particu-
lar, in this Section we study the quality of the importance sampling approximation and
we compare our method with several standard model selection criteria.

Synthetic Data

To begin with, we evaluate our approach on a set of synthetically generated graphs.
A total of 50 observations are sampled from a generative model with 6 nodes, where
the node and edge observation probabilities are set randomly. Hence, we know the
original model and, most importantly, we are aware of the existence of an underlying
generative model which can reasonably describe our observations. On the other hand,
in many real-world datasets the heteroscedasticity of the observations renders learning
a model extremely hard, if not impossible.

We start by studying the error caused by the importance sampling approximation
described in Section To this end, we need to compute the exact value of the
partition functions, which motivates our choice of a relatively small size for the gen-
erative model. Given the set of 50 observations, a total of 5 models are learned, with
sizes ranging from 7 to 3. Hence, we learn one oversized model, one model with ground
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Figure 4.12: The variation of log Z}, as the inverse temperature f increases. The solid
and the dotted lines show the exact and the approximated values of the mutual infor-
mation, respectively.

truth size, and 3 undersized model. The reason why we learn only one oversized model
is that every oversized instance converged to a model with no more than 6 nodes, that
is the observation probability of the nodes dove to 0 on all nodes except 6.

Figure[4.11]shows the values of the mutual information as the inverse temperature
p increases. Here the solid lines indicate the values of the exact functions, while the
dotted lines indicate the values of the approximated functions. We first note that, inde-
pendently of the importance sampling approximation, the model yielding the highest
mutual information is the one which has the same size of the original model. However,
we observe a misestimation of the mutual information when the importance sampling
is introduced. The reason lies in the relatively poor approximation of Z,, as shown
in Figure In fact, the correspondence sampler described in Section is de-
signed to give a good approximation of Z; and Z,, rather than Z;,. This is clear from
Figure(4.13(a)land |4.13(b)}, which shows a close to perfect match between the approx-
imated and the exact values of log Z; and log Z,. If we go back to Figure[4.12} we can
observe that the gentler the slope of log_Z;,, the easier it is to transfer a correspon-
dence from G to G». In fact, when the inverse temperature increases, exp[—B(AR(c2)+
ARy(c»))] is dominated by the correspondences ¢, for which AR;(c2) + ARz (c») is close
to zero, i.e. those correspondences which are optimal both in G; and in G,. Note also
that we do not want our correspondence sampler to pick always the optimal corre-
spondence between a graph and a model, as this would underestimate the difficulty
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Figure 4.13: The variation of log Z; and log Z, as the inverse temperature f increases.
The solid and the dotted lines show the exact and the approximated values of the mu-
tual information, respectively.

of the transfer, i.e. the value of the approximated log Z;, would be higher than in the
exact case. This is for example the case of the second undersized model.

We should stress, however, that the errors introduced by the importance sampling
approximation do not prevent us from being able to chose the correct model as the
one which maximizes the mutual information. More precisely, the relative order be-
tween the different models seems to be unaffected by the approximation. On the other
hand, note that we have a great divergence between the real and the approximated
values when f tends to zero. In particular, when § = 0 the value of Z; should be equal

to the number of possible correspondences between the sample graphs and the mod-
k exXp[-BAR;i(c1)] _
c1€61 P(c1) -
Z’gl €6 P(c;))~ !, whichis clearly wrong. Recall, that this is a consequence of the fact that
we are approximating the first moment rather than the fth moment of exp[AR; (c1)].
As we observed, however, this simplification, which is required for the framework to be

feasible, still yields reasonable results.

Finally, Figure and Figure show that the values of log Z; and log Z»
converge to a horizontal asymptote. In fact, as § increases, log Z,; is essentially count-
ing the number of optimal hypothesis, i.e., the correspondences for which AR, (c,) = 0.
On the other hand, Figure shows that the optimal correspondence of the graphs
in the test set do not necessarily generalize to the optimal correspondence of their
mapped graphs in the training set, and hence log_Z;» does not converge to a horizon-
tal asymptote. However, as already noted the steepness of the slope depends on the
difficulty of transferring the hypotheses between the two sets. Clearly, the smaller the
model the easier it is to transfer a hypothesis, as the external node will have a higher
observation probability. In fact, the external nodes increases the number of symme-
tries of the model and thus the number of optimal graph-to-model correspondences.

els, while in the importance sampling approach we get Z; = ﬁ )
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Dataset | AIC [ BIC | MML | MI |
MUTAG (overall) | 0.632 | 0.632 | 0.632 | 0.684
MUTAG (class 1) | 0.720 | 0.720 | 0.720 | 0.600
MUTAG (class2) | 0.462 | 0.462 | 0.462 | 0.847
Letters (overall) 0.732 | 0.720 | 0.720 | 0.720
Letters (A) 0.793 | 0.793 | 0.793 | 0.828
Letters (E) 0.931 | 0.931 | 0.931 | 0.931
Letters (H) 0.965 | 0.965 | 0.965 | 0.965
Letters (M) 0.690 | 0.621 | 0.621 | 0.621
Letters (N) 0.655 | 0.655 | 0.655 | 0.655
Letters (V) 0.758 | 0.758 | 0.758 | 0.758
Letters (W) 0.207 | 0.241 | 0.241 | 0.207
Letters (X) 0.665 | 0.665 | 0.665 | 0.665
Letters (Y) 0.931 | 0.931 | 0.931 | 0.931

Table 4.1: The classification accuracy on the MUTAG and Letters datasets for differ-
ent choices of the model selection method. Here MML denotes the Minimum Mes-
sage Length criterion, AIC denotes the Aikake Information Criterion, BIC denotes the
Bayesian Information Criterion and finally MI indicates the proposed Mutual Informa-
tion criterion. Note that for each dataset the best accuracy is highlighted in bold.

However, for the same reason such a model will also a higher limiting value of log Z;
and log Z,, which will penalize the value of its mutual information I = log #,—-log Z; —
log.Zg.

Real-World Data

Our aim here is that of comparing the proposed model selection method to standard
methods which are commonly used in the literature, namely the Minimum Message
Length criterion (MML) [143], the Aikake [14] and the Bayesian information criteria [120].
Here we evaluate the goodness of a model selection method in terms of classification
accuracy. More precisely, given a dataset of graphs we partition each it into training
data and testing data. We then learn a set of generative models of different sizes for
each class. The goodness of a model selection method is thus evaluated as the classifi-
cation accuracy achieved by the optimal model, according to that method.

The experiments are performed on two real-world dataset, namely MUTAG and the
Letters dataset from the IAM Graph Database Repository [116]. MUTAG is a dataset of
188 mutagenic aromatic and heteroaromatic compounds labeled according to whether
or not they have a mutagenic effect on the Gram-negative bacterium Salmonella ty-
phimurium. The Letters dataset consists of 15 capital letters from the Roman alpha-
bet. These letters are chosen so that they can be drawn using only straight lines, which
makes it easy to map a letter to a graph. More precisely, the edges of the graph cor-
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respond to the straight lines, whose endpoints are encoded as the graph nodes. Note
that in the original dataset each node is labeled with a two-dimensional attribute giv-
ing the coordinates the corresponding endpoint, while the edges are unlabeled. In our
experiments, however, we will drop the node attributes, and as a consequence we need
to prune the dataset to avoid including letters which share the same structure, e.g., N
and Z, or A and K.

Table[4.1|shows the results of the experiments in terms of classification accuracy. In
particular, for each model selection method, we show the overall accuracy along with
the per class accuracy. Note that the proposed model yields the highest classification
accuracy in the MUTAG dataset, while in the Letter dataset its performance is compa-
rable to that of MML and BIC.

4.3 Conclusions

In this Chapter we have addressed the problem of learning a generative model for
graphs from samples. The model is based on a naive node independence assumptions,
but mixes such simple models in order to capture node correlation. The correspon-
dences are estimated using a fast sampling approach, the node and edge parameters
are then learned using maximum likelihood estimates, while model selection adopts
a minimum descriptor length principle. Experiments performed on a wide range of
real world object recognition tasks as well as on synthetic data show that learning the
graph structure gives a clear advantage over the isotropic behavior assumed by the vast
majority of the approaches in the structural pattern recognition literature. In particu-
lar, the approach very clearly outperforms both the nearest neighbor and the nearest
prototype rules regardless of the matching algorithm and the distance metric adopted.

Moreover, in this Chapter we have introduced a novel information-theoretic method
for model selection. The optimal model is selected so as to maximize the mutual infor-
mation of the two partitioned sets of observed graphs. To compute the mutual infor-
mation, we extended the theory of approximate set coding from the vector domain to
the graph domain. Experimental results showed that our model selection criterion per-
forms comparably to other widely used methods such as MML, AIC and BIC, beating
all of these methods in a bioinformatic dataset.

In the next Chapter we will introduce turn our attention from generative to dis-
criminative classification approaches. Discriminative approaches are generally char-
acterized by a higher classification performance, but they usually work in a vectorial
space. However, it is not clear how to embed a graph onto a vectorial space. Using ker-
nel methods, rather then explicitly introducing a vectorial space, one simply needs to
define the kernel measure between two graphs, which, if certain conditions are satis-
fied, will correspond to a dot product in an implicitly defined vectorial space. The next
Chapter will be then dedicated to the introduction of a novel graph kernel.
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Quantum Jensen-Shannon
Divergence Graph Kernels

In the previous Chapter we introduced a novel generative model for graphs. It is known,
however, that discriminative classification approaches usually yield a higher predic-
tion accuracy than generative ones, and thus in this Chapter we turn our attention to
them. In particular, we introduce a novel kernel on unattributed and attributed graphs
where we probe the graph structure through the evolution of a continuous-time quan-
tum walk [55} [79]. Section [5.1| provides a brief overview of continuous-time quantum
walks and other quantum-mechanical tools that will be used in the definition of our
kernel. Section5.4/introduces a novel graph kernel where we take advantage of the fact
that the interference effects which characterise the quantum walk evolution seem to be
enhanced by the presence of symmetrical motifs in the graph [51]. To this end, we de-
fine a walk onto a new structure that is maximally symmetric when the original graphs
are isomorphic. To define the kernel, we make use of the quantum Jensen-Shannon
divergence, a measure which has recently been introduced as a means to compute the
distance between quantum states [94}186]. Finally, in Section 5.5 we propose to apply
standard manifold learning techniques on the kernel embedding to map the data onto
a low-dimensional space where the different classes can exhibit a better linear separa-
tion.

5.1 Quantum Mechanical Background

The continuous-time quantum walk [55] is a natural quantum analogue of the classical
random walk. Classical random walks model a diffusion process on a graph, and have
proven to be a useful tool in the analysis of its structure. Let G(V, E) be an undirected
graph, where V is a set of n vertices and E = (V x V) is a set of edges. Diffusion on the
graph is modeled as a Markovian process defined over V, with transitions restricted
to adjacent vertices. More formally, we define the general state for the walk at time ¢
as a probability distribution over V, i.e., a vector, p; € R”, whose uth entry gives the
probability that the walk is at vertex u at time ¢. Recall that the adjacency matrix of the
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graph G is the symmetric matrix with elements

Aw:{ lif (u,v) € E 5.1)

0 otherwise

and let D be the diagonal matrix with elements d,, = ¥.!'_, A(u, v), where d,, is the de-
gree of the node u. Then, the continuous-time random walk on G will evolve according
to the equation

pr=e"po (5.2)

where L = D — A is the graph Laplacian, a combinatorial analogue of the Laplace-
Beltrami operator [75].

The continuous-time quantum walk, i.e., the quantum counterpart of the continuous-
time random walk, is similarly defined as a dynamical process over the vertices of the
graph. By contrast to the classical case where the state vector is constrained to lie in a
probability space, here the state of the system is defined through a vector of complex
amplitudes over V whose squared norm sums to unity over the nodes of the graph,
with no restriction on their sign or complex phase. These phase differences allow in-
terference effects to take place. Moreover, in the quantum case the evolution of the
state vector of the walker is governed by a complex valued unitary matrix, whereas the
dynamics of the classical random walk is governed by a stochastic matrix. Hence the
evolution of the quantum walk is reversible, implying that quantum walks are non-
ergodic and do not possess a limiting distribution. As a result, the behaviour of classi-
cal and quantum walks differs significantly, and quantum walks possess a number of
interesting properties not exhibited by classical random walks.

More formally, using the Dirac notation, we denote the basis state corresponding
to the walk being at vertex u € V as |u). A general state of the walk is a complex linear
combination of the basis states, such that the state of the walk at time ¢ is defined as

lwe)= ) au(®)lw (5.3)

ueVv

where the amplitude «a,(f) € C and |1,U t)E C'Vl are both complex.

At each instant in time the probability of the walker being at a particular vertex of
the graph is given by the square of the norm of the amplitude of the relative state. Let
X! be arandom variable giving the location of the walker at time ¢. Then the probabil-
ity of the walker being at the vertex u at time ¢ is given by

Pr(X'=u) =ay(t)a (1) (5.4)

where a,(¢) is the complex conjugate of @, (). Moreover ),y a,(t)a;(t) = 1 and
ay(Hay (1) el0,1],forallue V, teR".

The evolution of the walk is then given by the Schrédinger equation, where we take
the time-independent Hamiltonian of the system to be the graph Laplacian, yielding

0
5 W) =—iLly:). (5.5)
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Given an initial state | ), we can solve Equation (5.5) to determine the state vector at
time ¢ ‘

[ye)=e"" o) . (5.6)
Note that generally one may use any Hermitian operator as the Hamiltonian. Com-
mon choices are the graph adjacency matrix, the normalized Laplacian and the sign-
less Laplacian.

Finally, we can compute the spectral decomposition of the graph Laplacian L =
®ADT, where @ is the n x n matrix ® = (P1l¢p2l...1pjl...I¢px) with the ordered eigenvec-
tors ¢ ;s of L as columns and A = diag(Ay, 12, ..., 4j,..., ;) is the n x n diagonal matrix
with the ordered eigenvalues A; of L as elements, such that 0 = A1 <A, <... < 4. Us-
ing the spectral decomposition of the graph Laplacian and the fact that exp[—iLt] =
Dexp[—iAf] @' we can then write

lw:)=®e ™MD |yg). (5.7)

5.1.1 Density Operator

The observation process for a quantum system is defined in terms of projections onto
orthogonal subspaces associated with operators on the quantum state space called
observables. Let O be an observable of the system, with spectral decomposition

0=)> a;P; (5.8)
i
where the a; are the (distinct) eigenvalues of O and the P; the orthogonal projectors

onto the corresponding eigenspaces. An observation of a quantum state |1,I/> is one of
the eigenvalues a; of O, which is observed with probability

P(a;) ={y|P;|y) (5.9)
leaving the system in the state
; Pi|y)
= —, (5.10)
)= B

where || |w) |l = /(¥ |y) is the norm of the vector |y).

The density operator (or density matrix) is introduced in quantum mechanics to
describe a system whose state is an ensemble of pure quantum states |1//i>, each with
probability p;. The density operator of such a system is defined as

p=pilyi)vil. (5.11)
l

Density operators are positive unit-trace matrices directly linked with the observables
of the (mixed) quantum system. The expectation value of the measurement can be
calculated from the density matrix p:

(0y=tr(p0), (5.12)
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where tr is the trace operator. Similarly, the observation probability of a; can be ex-
pressed in terms of the density matrix p as

P(a;) =tr(pP;) (5.13)
Finally, after the measurement, the corresponding density operator will be

p' =) PipP; (5.14)
i

5.1.2 Quantum Jensen-Shannon Divergence

In this Chapter we intend to use continuous-time quantum walks to probe the struc-
ture of graphs. In particular, we will compare suitably defined quantum walks in order
to establish the degree of similarity between two graphs. To this end, for each walk we
would like to study how the probability distribution over the state space varies with
time. Unfortunately, when a measurement is made the wave function collapses and,
with a probability equal to the squared norm of its amplitude, only one of the possible
basis states is observed. In other words, if the state |u) is observed, after the measure-
ment the new state of the quantum walk will be |1,(/> = |u). This implies that all further
information previously contained in the state is lost and further measurements will not
yield any additional information about the pre-measurement state. Hence we need to
design an experiment that will allow us to analyze the behaviour of the quantum walk
without causing the wave function collapse. In this Section we will review the quantum
Jensen-Shannon divergence (QJSD) [93} 94, 86], a recently introduced distinguishabil-
ity measure between quantum states.

The von Neumann entropy [105] Hy of a mixture is defined in terms of the trace
and logarithm of the density operator p

Hy =—tr(plogp) =-) &;In¢; (5.15)
7

where ¢;,...,¢, are the eigenvalues of p. If <U/i| Iy |w,~> =1, i.e., the quantum system
is a pure state |1Vi> with probability p; = 1, then the Von Neumann entropy Hy(p) =
—tr(plogp) is zero. On other hand, for a mixed state described by the density operator
o we have a non zero Von Neumann entropy associated with it.

With the Von Neumann entropy to hand, the quantum Jensen-Shannon divergence
between two density operators p and o is defined as

Dys(p,0) =HN(p+—0)—1 N(p)—lHN(U) (5.16)
2 2 2
This quantity is always well defined, symmetric and positive definite.
It can also be shown that Dj;s(p,0) is bounded, i.e., 0 < Djs(p,0) < 1. Let p =
Y. i pipi be a mixture of quantum states p;, with p; € R* such that }_; p; = 1, then one

can prove that
HN()_ pipi) < Hs(pi) +Y_ piHn(p)) (5.17)
i i
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where Hg indicates the Shannon entropy and the equality is attained if and only if the
states p; have support on orthogonal subspaces. By setting p; = p2» = 0.5, we see that

p+oy 1 1
Dys(p,0) = Hy( 5= = 5 Hv(p) = 5 Hy(0) < 1 (5.18)
Hence Dy is always less than or equal to 1, and the equality is attained only if p and o
have support on orthogonal subspaces.

Our interest in the quantum Jensen-Shannon divergence lies in the fact that it veri-
fies several interesting properties which are required for a good distinguishability mea-
sure between quantum states [94, [86]. The problem of discriminating between two
quantum states |(/)> and |1//> of a given physical system is of central importance in
quantum computation and quantum information, and it is based on the definition of
a suitable distance measure. Recall that a function

d=XxX—R (5.19)
defined over a set X is a distance if, for every x, y € X,
dx,y)=z0withd(x,y)=0<x=y (5.20)

and it is symmetric, i.e.,
d(x,y) = d(y,x) (5.21)

Moreover, d is said to be a metric for X if it satisfies the triangle inequality
dx,y)+d(y,z)=2d(x,z) (5.22)

forevery x,y,z € X.

In his seminal paper, Wootters [148] investigates the problem of distinguishability
and defines the concept of statistical distance between pure quantum states. Here the
distance between two different preparations |¢) and |y) of the same physical system
is computed by counting the number of distinguishable states between |¢)> and |w>
The main result of Wootters’ work is to show that this distance is equal to the angle in
Hilbert space between |</)) and |1//) As a consequence, Wootter’s distance is defined as

dw (|, |w)) = arccos(| {p|w)D), (5.23)

where [ (¢ | )| denotes the modulus of the inner product for ¢ and . It can be proved
that this distance satisfies the triangle inequality and is thus a metric.

Wootters’ work is fundamentally based on the extension of a distance over the space
of probability distributions to the Hilbert space of pure quantum states. Similarly, at-
tempts to define a distance measure between pure and mixed quantum states are typ-
ically based on the generalization of divergence or distance measures commonly used
in the space of probability distributions. This is the case of the relative entropy [89],
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which is a generalization of information theoretic Kullback-Leibler divergence. How-
ever, the relative entropy is neither a distance, as it is not symmetric, nor does it not
satisfy the triangle inequality, and, most importantly, it is unbounded.

The square root of the QJSD, on the other hand, is bounded, it is a distance and,
as proved by Lamberti et. al [86], it satisfies the triangle inequality. In particular, the
authors give a formal proof for the case of pure states, while for the case of mixed states
they support their claim with numerical evidence. Note that alternative metrics have
been proposed in the literature, such as the Bures distance [38], which is defined as

B(p,0) = \/E[1—tr((p”zop”z)”z)]m. (5.24)

The Bures distance and the QJSD require the same number of observations, since they
both need the full density matrices to be computed. However, the QJSD turns out to be
faster to compute than the Bures distance. In fact, the latter involves taking the square
root of matrices, usually computed through matrix diagonalization which scales as
O(n®), where n is the number of vertices in the graph. On the other hand, to compute
the QJSD only the eigenvalues of p, o and p;—g are needed, which can be computed in
O(n?).

5.2 Preliminaries

Given two graphs G;(Vy, E;) and Gq(V», E2), we want to measure their similarity by
comparing the evolution of two suitably defined continuous-time quantum walks on
the graphs. Let |1//t> =Y uev ayu(t)|u) be a continuous-time quantum walk on G(V, E)
at time ¢ where the Hamiltonian is defined to be the graph adjacency matrix A. We let
the two quantum walk evolve until a time T and we define the average density operator
et over this time as

1 T
T = ?f lwe)(w| de (5.25)
0

In other words, we defined a mixed system with equal probability of being in any of the
pure states defined by the quantum walk evolution. Thus, we are now able to compute
the divergence between two quantum walks on G; and G, as the quantum Jensen-
Shannon divergence between their density operators. We now establish the complexity
of computing the density matrix.

Recall that |y ) = e~ |y). Note, however, that the following equations hold in-
dependently of the choice of the Hamiltonian. We start by rewriting Eq. as

1 7T . .
pr= ?fo e " wo) (wol e dt (5.26)
Since e~ "4’ = ®e M dT, we can rewrite the previous equation in terms of the spectral

decomposition of the adjacency matrix,

1 T . .
et o o e
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The (r, ¢) element of pr can be computed as

1 rT ) )
pr(rc) =— f (ZZ(Prke"%zkal(O))(ZZam(oﬁqune”"fcpm)dt (5.28)
TJo \T7 m n

Letyr =) ;¢a;(0) and v, = Zm(pmnan(O)T, then

1 (T g - g -
pr(ro)=— fo (Zcprke‘”k“wkZ(bme”"twn) dt (5.29)
k n

which can be finally rewritten as

1T
pr(n0) =2 Y pridenPin fo e A=t gy (5.30)
k n

Ifwelet T — oo, Eq. further simplifies to

pr(r,0)= Y D Y AR rmPAR) cnWmWn (5.31)

/1]66]\ m n

where A is the set of unique eigenvalues of A and ¢(Ay) is the matrix whose columns
are the eigenvectors associated with 1. As a consequence, we see that the complexity
of computing the density matrix is upper bounded by that of computing the eigende-
composition of ¢4, i.e. O(7[3).

Note that the time-average density operator can also be rewritten in terms of the
projectors on the eigenspaces of the unitary operator inducing the walk, as we will
show in Section[6.1.1}

5.3 AGraph Kernel From Continuous-Time Quantum Walks

Let the initial state of the a continuous-time quantum walk on the unattributed graph
G(V,E) be
lwo) =D au(0)|w (5.32)

ueV

where a,(0) = d—c” and d,, is the degree of vertex u. In our first attempt to define a graph

kernel using the QJSD, we propose to compute the divergence between two graphs as
the QJSD between their density operators, denoted pr and o7 respectively. Then, we
define the continuous-time quantum walk kernel kcrow (G1, G2) as

kctow(Gi,Gz2) = exp(-=ADjs(pT,07)) (5.33)

where A is a decay factor which satisfies 0 < A < 1. Here A is used to ensure that the large
values do not tend to dominant the kernel value. Note that this kernel is parametrized
by the time T. For ease of computation, we decide to let T — oo.
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Lemma 5.3.1. The continuous-time quantum walk kernel is positive definite.

Proof. Proof This follows the definitions in [86} 94, 83]. In [83], a diffusion kernel k; =
exp(1s(Gp, G4)) associated with any symmetric similarity measure s(Gp, G4) has been
proven to be positive definite. Since the quantum Jensen-Shannon divergence be-
tween a pair of density matrices is symmetric [86,(94], the proposed quantum Jensen-
Shannon graph kernel is positive definite. O

When the graphs have different size, i.e., | V1| # | V»|, in order to compute H, N(‘)T;i)

we extend the smaller graph to the size of the larger one by adding a number of discon-
nected nodes. It is important to note that the resulting similarity measure is not per-
mutation invariant. For this reason, in the next Section we will propose an alternative
kernel which overcomes the problem by performing all the computation on a union of
the two original graphs. First, however, we evaluate the classification performance of
this kernel.

5.3.1 Experimental Evaluation

The experiments are performed on three different standard dataset, namely MUTAG,
Enzymes and PPI. Table reports some statistics about these datasets. MUTAG is
a dataset of 188 mutagenic aromatic and heteroaromatic compounds labeled accord-
ing to whether or not they have a mutagenic effect on the Gram-negative bacterium
Salmonella typhimurium. Enzymes is a dataset of graphs representing protein tertiary
structures that consists of 600 enzymes from the BRENDA enzyme database. Finally,
the PPI dataset consists of protein-protein interaction (PPIs) networks related to his-
tidine kinase from two different groups: 40 PPIs from Acidovorax avenae and 46 PPIs
from Acidobacteria.

We then compare the performance of our kernel with several alternative meth-
ods, namely the Weisfeiler-Lehman subtree kernel [124], the shortest path graph ker-
nel [31], the Shannon entropy associated with the information functionals FV and FP [49],
and the Ihara zeta function on graphs [113]. For the kernel methods, we compute
the kernel matrix of each graph kernel on each dataset and then we apply the kernel
PCA [118] on the kernel matrix to embed the graphs into principle component space
as feature vectors. For other methods, we compute the characteristics values of graphs
on each dataset. We perform 10-fold cross-validation using a Support Vector Machine
(SVM) with Sequential Minimal Optimization (SMO). All the SMO-SVMs and their pa-
rameters were optimized on a Weka workbench [147]. We report the average classifi-
cation accuracy of each method in Table

Despite the fact that our kernel is not permutation invariant, it is still competi-
tive when compared with alternative methods. Note, however, that these results are
achieved by first embedding the graphs onto a vectorial space using kPCA. Without
this first step, the classification accuracy of our kernel actually turns out to be among
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| Method | MUTAG | Enzymes | PPI |
| CTQW | 84.04 | 3216 | 76.20 |
| SP | 8529 | 3116 | 72.92 |
| WL [ 8205 | 4642 | 75.90 |
FV 84.57 [ 2417 70.93
FP 84.57 | 2417 70.93
ZF 80.85 | 32.00 70.93

Table 5.1: Classification accuracy on unattributed graph datasets. CTQW is the pro-
posed kernel, SP is the shortest-path kernel [31], WL is the Weisfeiler-Lehman subtree
kernel [124], FV and FP are the information functionals [49] and ZF denotes the Ihara
zeta function on graphs [113].

the worst. In the next Section, however, we show how to develop a permutation invari-
ant QJSD kernel and we show that it outperforms the alternative kernels in a number
of classification tasks.

5.4 QJSD Kernel

Given two graphs G;(Vi, Ey,v1) and Go(Vs, E2,v2), where v, and v, are respectively
the functions assigning attributes to the nodes of G; and G, we build a new graph
94 =,8,w)where V =V, UV,, & = EyUE,UE]y, and (u,v) € Ej» only if u € V; and
v eV, (see Fig. for an example). Moreover, the edges (u, v) € Ej are labeled with a
real value w(vy(u),v2(v)) representing the similarity between v;(u) and v2(v). Note
that in the case in which the graphs are unattributed, ¢ will be unweighted. With
this new structure to hand, we define two continuous-time quantum walks |wa ) =
Yueva,0)|w and |yl) =Y ,ev af(0) |u) on & with starting states

dy - d, -
+*2ifueG +*2ifueG

a;(O):{ c ! a;(O):{ ° ' (5.34)
+3ifueG

where d,, is the degree of the node u and C is the normalisation constant such that the
probabilities sum to one.

Let the adjacency matrix of the graph be the Hamiltonian of the system. We then
let the two quantum walks evolve until a time T and we define the average density
operators pr and o 7 over this time as

1T o, 1 (T
pr=7 [ i wilde  or== [ fui)ilar (5.35
0 0

Note that if the two original graphs are attributed, the walk on the composite struc-
ture will spread at a speed proportional to the edge weights, which means that given
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Figure 5.1: Given two graphs G; (V1, E1) and G»(V», E>) we build a new graph ¢ = (7, &)
where 7 = VyuV,, & = E; UE, and we add a new edge (u, v) between each pair of nodes
ueViandve Vs,

an edge (u,v) € Ejy, the more similar v; () and v»(v) are, the faster the walker will
propagate along the inter graphs connection (u, v). On the other hand, the intra-graph
connection weights, which are not dependent on the nodes similarity, will not affect
the propagation speed.

Then, given two unattributed graphs G; and G,, we define the quantum Jensen-
Shannon kernel k7 (G, G2) between them as

k1(Gy,G2) =Dys(pr,07) (5.36)

where pr and o are the density operators defined as in Eq. Note that this kernel
is parametrised by the time 7. As it is not clear how we should set this parameter, here
we propose to let T — oo. However, in Section[5.5.1|we will show that a proper choice
of T canyield an increased average accuracy in an SVM classification task.

We now proceed to show some interesting properties of our kernel. First, however,
we need to prove the following lemma and theorem.

Lemma 5.4.1. Given a graph G with adjacency matrix A, the unitary operator U' =
e~ js invariant to graph symmetries.

Proof. Recall that U’ = e~'A!, where A is the graph adjacency matrix. If u and v belong
to a symmetry orbit (a group of vertices where v, and v, belong to the same orbit if
there is an automorphism 7 € Aut(G) such that 7(v;) = v»), then there exists an auto-
morphism of the graph with a corresponding permutation matrix 22 such that

A= AP (5.37)

and
Zlu) =|v) (5.38)

In other words, the graph Laplacian is invariant to symmetries. As we will show, the
same holds for the unitary operator of the quantum walk. In fact, given the spectral
decomposition of the graph adjacency matrix A= ®A® ', we can see that the following
equality holds

PAD = 2T (OADT)P (5.39)

and thus
o= (5.40)
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Let us now write the unitary operator in terms of the adjacency matrix eigendecompo-
sition, which yields
e = e Mo T (5.41)

From Equations[5.40|and[5.41]it follows that
De M =P Twe M TP (5.42)
which concludes the proof. O

Theorem 5.4.2. If G, and G, are two isomorphic graphs, then pr and ot have support
on orthogonal subspaces.

Proof. We need to prove that

1 T T
(pT)TaT:ﬁfO ptldtlfo o,dt =0 (5.43)

where 0 is the matrix of all zeros, pt lw;){y;| and o, = |y} )(w}|. Note that if
ptlcr[2 =0 for every f; and f, then p o = 0. We now prove that if G; is isomorphic
to G, then <1//;1 w;;> =0 for every 1, and t,.

If 4 =1t =t, then

(wolWH'U yg)=0 (5.44)

since (U)TU? is the identity matrix and the initial states are orthogonal by construc-
tion. On the other hand, if f; # t», we have

(ws| UM yg)=0 (5.45)

where A; =t — 1.
To conclude the proof we rewrite the previous equation as

(wo| UM |yg) = k; ;. (0) ,_ZI af Uy

m n n
At At
=2, a0 ) ajOU - ) a0 ) aOU,
k=1 L=1 ko=m+1 =1

m n n n
Z_ Z_ (Oa; OUN. - Y Y af @apOUp, =0 (5.46)

ko=m+11=1

where the indices [, [, I5, k run over the nodes of ¢4, while k; and k, run over the nodes
G, and G, respectively.

To see that Eq.[6.9/holds, note that according to Lemmal5.4.1|U is invariant to graph
symmetries, and that if G; and G, are isomorphic, the first and the second halves of
|1//g ) are equal up to the permutation which maps the nodes of G; to those of G,. O
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Corollary 5.4.3. Given a pair of graphs G, and G, the kernel satisfies the following
properties: 1)0 < k7(Gy, Go) <1 and 2) if Gy and G, are isomorphic, then kt(G1,G2) = 1.

Proof. The first property is trivially proved by noting that, according to Eq. the
kernel between G; and G is defined as the quantum Jensen-Shannon divergence be-
tween two density operators, and then recalling that the value of quantum Jensen-
Shannon divergence is bounded to lie between 0 and 1.

The second property follows again from Eq. and Theorem[5.4.2] It is sufficient
to note that the quantum Jensen-Shannon divergence reaches its maximum value if
and only if the density operators have support on orthogonal spaces. O

Unfortunately we cannot prove that our kernel is positive semidefinite, but both
empirical evidence and the fact that the Jensen-Shannon Divergence is negative semidef-
inite on pure quantum states [32] while our graph kernel is maximal on orthogonal
states suggest that it might be.

5.4.1 Experiments on Unattributed Graphs

In this Section, we evaluate the performance of our kernel and we compare it with a
number of well-known alternative graph kernels, namely the classic random walk ker-
nel [60], the shortest-path kernel [31] and a set of graphlet kernels [125]. We test differ-
ent variants of the graphlet kernel, where we vary the graphlet sizes k € {3,4} and the
type of graphlets (all possible size k graphlets vs only those which are fully connected).

The experiments are performed on three different standard dataset, namely MU-
TAG, Enzymes and PPI. To these three datasets, we add a fourth set of 30 synthetically
generated graphs, 10 for each class. The graphs belonging to each class were sampled
from a generative model with size 12,14 and 16 respectively. Details about the genera-
tive model can be found in Chapter[4]

We first evaluate the Multidimensional Scaling embedding of the synthetic graphs
for three different distance matrices, namely the edit distance, the distance between
the graph spectra and the distance corresponding to our kernel function. The distance
between the graph spectra is computed as follows. For each graph G with adjacency
matrix A, we compute the column vector sg of the ordered eigenvalues of A. As the
graphs are of different sizes and thus their spectra are of different lengths, the vectors
are all made to be the same length by padding zeros to the end of the shorter vector.

’ datasets H # graphs \ # classes \ avg # nodes \ disjoint ‘
Synth 30 | 3(10each) 13.77 N
MUTAG 188 | 2 (125vs. 63) 17.93 N
Enzymes 600 | 6 (100 each) 32.63 Y
PPI 86 | 2 (40vs. 46) 109.60 N

Table 5.2: Statistics on the graph datasets.
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Figure 5.2: Two-dimensional MDS embeddings of the synthetic data (top row) on dif-
ferent distance matrices (bottom row). From left to right, the distance is computed as
the edit distance between the graphs, the distance between the graph spectra and the
distance associated with the QJSD kernel.

The (i, j)th element of the distance matrix is then d;; = |[s; — s;|. Figure shows the
MDS embeddings and the graph distance matrices. It is clear that the distance matrix
associated with our kernel has a well-defined block structure which is reflected in the
MDS embedding, where the three classes seem to be easily separable.

A second experiment uses a binary C-SVM to test the efficacy of our kernel for clas-
sification. We perform 10-fold cross validation, where for each sample we indepen-
dently tune the value of C, the SVM regularizer constant, by considering the training
data from that sample. The process is averaged over 100 random partitions of the data.
Given this setting, we first investigate the effect of the time parameter in the classifi-
cation accuracy. Fig. shows the value of the average accuracy (+ standard error)
on the synthetic dataset as the time parameter T varies. Here the red horizontal line
shows the mean accuracy for T — oco. The plot shows that the choice of the time greatly
influences the performance of our kernel, as we can clearly see that the average accu-
racy reaches a maximum before stabilizing around the asymptotic value. This should
be compared with the average accuracy that we achieve for T — oo, which, although
not optimal, is not too far from the maximum.

Finally, Table[5.4]reports the average classification accuracies (+ standard error) of
the different kernels. As we can see, the proposed kernel achieves the best result on
three out of four datasets. The poor accuracy on the Enzymes dataset is likely to be
linked to the presence of disjoint graphs, as this will affect the way in which the walk
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Figure 5.3: The mean accuracy (+ standard error) of the QJSD kernel as the time pa-
rameter T varies. The red horizontal line shows the mean accuracy for T — oco.

spreads through the graph. Note, however, that this is a particularly hard dataset where
the structures of the graphs provide limited information about the underlying class
structure. In fact, all kernels based only on graph structure perform only marginally
better than random guess, and node and edge attributes need to be taken into account
too.

5.4.2 Experiments on Attributed Graphs

In this Section, we evaluate the performance of the proposed kernel and we compare
it with a number of well-known alternative graph kernels, namely the classic random
walk kernel [60], the shortest-path kernel [31] and the 3-nodes graphlet kernel [125],
both in their unattributed and attributed versions. Note that since the attributed ver-
sions of these kernels are defined only on graphs with categorically labeled nodes, in
our experiments we will need to bin the node attributes before computing the kernels.

We use a binary C-SVM to test the efficacy of the kernels. We perform 10-fold cross
validation, where for each sample we independently tune the value of C, the SVM reg-
ularizer constant, by considering the training data from that sample. The process is
averaged over 100 random partitions of the data, and the results are reported in terms
of average accuracy + standard error.

Synthetic Data

We start by evaluating the proposed kernel on a set of synthetically generated graphs.
To this end, we have randomly generated 3 different weighted graph prototypes with
size 16, 18 and 20 respectively. For each prototype we started with an empty graph and
then we iteratively added the required number of nodes each labeled with a random
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| Kernel | Synth | MUTAG | Enzymes | PPI |
| QISD | 85.20+0.47 | 86.55+0.15 | 24.20+0.38 | 78.43+0.30 |
| SP | 74.90+0.33 | 85.02+0.17 | 28.55+0.42 | 66.14+0.40 |
| RW | 78.53+0.43 | 77.87+0.21 | 22.15+0.37 | 69.70+0.30 |
Gs 79.33+0.39 | 82.04+0.14 | 24.87+0.22 | 51.95+0.44
Gy 83.60+0.48 | 81.89+0.13 | 28.60+0.21 | 73.14+0.37

CG3 56.57+0.47 | 66.43+0.08 | 19.92+0.27 | 52.89+0.50
CGy 81.57+0.54 | 69.08+0.15 | 23.05+0.06 | 61.56+0.41

Table 5.3: Classification accuracy (+ standard error) on unattributed graph datasets.
QJSD is the proposed kernel, SP is the shortest-path kernel [31], RW is the random walk
kernel [60], while G (CGy) denotes the graphlet kernel computed using all graphlets
(all the connected graphlets, respectively) of size k [125].

mean and variance. Then we added the edges and their associated observation prob-
abilities up to a given edge density. Given the prototypes, we sampled 20 observations
from each class being careful to discard graphs that were disconnected. Details about
the generative model used to sample the graphs can be found in Chapter[4] Figure[5.4]
shows the edit distance matrix of the dataset and the Multidimensional Scaling of the
graph distances.

With the synthetic graphs to hand, we initially investigate how the value of the
kernel between two graphs varies as we apply Erdos-Rényi noise to the graph struc-
ture. In this case the similarity between two nodes u and v is defined as w(u,v) =
e"l("l(”)_"zw))z, where v; (1) and v, (v) are the real-valued attributes associated with u
and v respectively. Figure|5.5/shows the result of this experiment. Here we randomly
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Figure 5.4: Edit distance matrix and Multidimensional Scaling of the graph distances
for the synthetic dataset.
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Figure 5.5: The effects of Erdos-Rényi structural noise applied to the nodes and edges
of the graph on the kernel value. Using the proposed similarity measure, the noisy
versions of the graph belonging to the first class are clearly distinguishable from the
instances of the second class. As expected, taking the attributes into account (right)
makes the distinction even clearer (note the difference in the scale).

pick a graph G belonging to class 1, and we compute a number of increasingly noisy
versions of it. The noise is applied either to the edges only, i.e. adding or deleting
edges, or to the nodes as well, i.e. adding or deleting nodes and edges. We then com-
pute the average value of the kernel between G and its corrupted versions, and we plot
it against the average similarity between G and the graphs of class 2. Figure|5.5[shows
that, even at considerably high levels of noise, G is clearly distinguishable from the in-
stances of the second class. As expected, taking the attributes into account renders the
distinction even clearer (note the change in the y-scale). However, when augmented
with the attributes information, our kernel measure seems to be slightly more sensitive
to structural noise, in particular when the noise is affecting the nodes of the graph.

As a second experiment, we test the accuracy of our kernel in a classification task.
The results are shown in Table[5.4] As we can see, our kernel outperforms or is compet-
itive with the alternatives, and yields a close to 100% average accuracy. Note also that,
as expected, taking the similarity between the node attributes into account results in a
marked increase in the kernel performance. Quite surprisingly, however, we found that
the random walk kernel on the categorically labeled graphs yields a lower performance
than its unattributed version.

Delaunay Graphs

We then tested the efficacy of the proposed kernel on the COIL [100] dataset, which
consists of images of different objects, with 72 views of each object obtained from
equally spaced viewing directions over 360°. For each image, a graph is obtained by
computing the Delaunay triangulation of the corner points extracted by the Harris
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Figure 5.6: The four selected objects from the COIL [100] dataset and a sample of their
associated Delaunay graphs. Each node of the graphs is labeled with the (x, y) coordi-
nates of the corresponding feature point.
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Figure 5.7: Edit distance matrix and Multidimensional Scaling of the graph distances
for the COIL dataset.

corner detection algorithm. Moreover, each node is labeled with the (x,y) coordi-
nates of the corresponding feature point. The similarity between two nodes is w(u, v) =
e"l”"l(u)_w“’)”%, where ||v; (1) —v(v)|l2 is the Euclidean distance between the two fea-
ture points u and v. Here we choose 4 different objects, each with 21 different 5° ro-
tated views. Figure [5.6/shows the four selected objects together with their associated
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graphs, while Figure |5.7|shows the edit distance matrix and the MDS of the graph dis-
tances.

We first investigate how integrating the information on the nodes attributes influ-
ences the expressive power of our kernel. Figure[5.8shows the MDS embedding on the
graph distances computed from the unattributed kernel (left) and the attributed one
(right). Although the embedding shows that a considerable overlap remains between
the different classes, taking the node attributes similarities into account adds a further
dimension which can help to discriminate better among the 4 selected objects.

This is indeed reflected in the results of the classification task shown in Table 5.4l
In the attributed case, in fact, the average accuracy of the QJSD kernel is increased by
more than 10%, and it outperforms that of all the remaining kernels. Note, however,
that if the node labels are dropped, the performance of the QJSD kernel is among the
lowest, which once again underlines the importance of incorporating the attributes
similarities in the compositional structure.

Shock Graphs

Finally, we experimented using shock graphs, a skeletal-based representation of the
differential structure of the boundary of a 2D shape. We extracted graphs from a database
composed of 120 shapes divided into 8 classes of 15 shapes each. Each graph has a
node attribute that reflects the size of the boundary feature generating the correspond-
ing skeletal segment. Figure shows the shape database, the edit distances matrix
between the shock graphs and the corresponding MDS. As we can see, the class struc-
ture is not very clear, and there is a considerable overlap between different classes.
This is reflected in the average accuracy of the kernels, which is the lowest among the
three datasets, as Table[5.4shows. However, the proposed kernel still outperforms or is
competitive with the others.

3 1 2 3
Figure 5.8: Multidimensional Scaling of the graph distances computed from the kernel
matrix of the COIL dataset. Left, completely structural approach; right, including the
information on the nodes attributes.
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Figure 5.9: Top row: Left, a sample of the shape database; right, edit distance matrix.
Bottom row: Multidimensional Scaling of the edit distances. As we can see, the class
structure is not very clear and there is a considerable overlap between different classes.

5.5 Manifold Learning on the QJSD Kernel

In this Section, we study the separability properties of the QJSD kernel and we apply
standard manifold learning techniques [133, on the kernel embedding to map the
data onto a low-dimensional space where the different classes can exhibit a better lin-
ear separation. The idea stems from the observation that the multidimensional scaling
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| Kernel | Synth | Shock COIL
QJSD,, | 95.87+0.14 | 66.65+0.22 | 95.56+0.20
QJSD 84.57+0.25 | 53.97+0.19 | 84.05+0.22
SP,, 96.36+0.12 | 65.05+0.25 | 94.40+0.14
SP 91.13+0.15 | 52.62+0.32 | 85.25+0.21
RW,, 92.97+0.18 | 53.26+0.29 | 90.78+0.26
RW 80.23+0.30 | 26.11+0.32 | 78.60+0.25
G3, 88.75+0.25 | 41.18+0.27 | 89.25+0.21
G3 85.60+0.25 | 38.85+0.32 | 84.20+0.22

Table 5.4: Classification accuracy (+ standard error) on attributed graph datasets.
QJSD is the proposed kernel, SP is the shortest-path kernel of Borgwardt and
Kriegel [31], RW is the random walk kernel of Gartner et al. [60], while G3 denotes
the graphlet kernel computed using all graphlets of size 3 described in Shervashidze
et al. [125]. The subscript w identifies the kernels which make use of the attributes
information. The best performing kernel for each dataset is highlighted in bold.
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Figure 5.10: The MDS embeddings from the QJSD kernel consistently show an horse-
shoe shape distribution of the points.

embeddings of the QJSD kernel show the so-called horseshoe effect [80]. This particular
behaviour is known to arise when long range distances are not estimated accurately,
and it implies that the data lie on a non-linear manifold. This is no surprise, since
Emms et al [52] have shown that the continuous-time quantum walk underestimates
the commute time related to the classical random walk. For this reason, it is natural
to investigate the impact of the locality of distance information on the performance
of the QJSD kernel. Given a set of graphs, we propose to use Isomap [133] to embed
the graphs onto a low-dimensional vectorial space, and we compute the separability
of the graph classes as the distance information varies from local to global. Moreover,
we perform the same analysis on a set of alternative graph kernels commonly found in
the literature [60, 31} [125]. Experiments on several standard datasets demonstrate that
the Isomap embedding shows a higher separability of the classes.

Figure[5.10]shows the MDS embedding of the distance matrices associated with the
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QJSD kernel for the synthetic, MUTAG and COIL datasets. Details on the datasets can
be found in Section[5.5.1] These embeddings clearly suffer from a horseshoe shape ef-
fect, which is usually the result of an accurate estimate of the distance between objects
only when they are close together, but not when they are far apart [80]. As a conse-
quence, it should be possible to increase the kernel performance by filtering out in
some way this long range distance information.

Here we propose a simple yet effective way to achieve this goal. Given a set of
graphs, we compute the Isomap [133] embedding of the graphs and we evaluate the
separability of the graph classes as the distance information varies from local to global.
Isomap is a well-known manifold learning technique, which extends classical MDS by
incorporating the pairwise geodesic distances between points. To this end, a neigh-
borhood graph is constructed from the original set of points, where each node is con-
nected to its k nearest neighbors in the high-dimensional space. The geodesic distance
between two nodes is then defined as the sum of the edge weights along the shortest-
path between them. It is known that Isomap suffers from several shortcomings, so
further work should focus on experimenting with more robust manifold learning tech-
niques.

The class separability is evaluated in the following way. For each embedding, we
perform a 10-fold cross validation using a binary C-SVM with a linear kernel, where
we let the value of the SVM regularizer constant C vary over the interval 107> and 10°.
Then, we take the maximum value of the average classification accuracy as an indicator
of the separability. More formally, we look for the Isomap embedding which maximizes

argmaxmaxa (5.47)
dk  C

where a is the 10-fold cross validation accuracy of the C-SVM, C is the regularizer con-
stant, d is the embedding dimension and k is the number of nearest neighbors. Note
that the multi-classification task is solved using majority voting on a set of one-vs-one
C-SVM classifiers.

5.5.1 Experimental Results

The experiments are performed on four different dataset, namely MUTAG, PPI, COIL [100]
and a set of shock graphs. The COIL dataset consists of the 4 objects shown in Fig-
ure[5.11} each with 72 views obtained from equally spaced viewing directions over 360°.
For each image, a graph is obtained as the Delaunay triangulation of the Harris corner

Figure 5.11: Sample images of the four selected object from the COIL-100 [100] dataset.
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Figure 5.12: 3D plot of the 10-fold cross validation accuracy on the PPI dataset as the
number of the nearest neighbors k and the embedding dimension d vary.

points. Finally, we select a set of shock graphs, a skeletal-based representation of the
differential structure of the boundary of a 2D shape. The 120 graphs are divided into 8
classes of 15 shapes each. Each graph has a node attribute that reflects the size of the
boundary feature generating the corresponding skeletal segment. To reflect the pres-
ence of attributes, the QJSD kernel is modified by labeling the new connections of the
merged graph with the similarity between its two endpoints. To these four datasets,
we add a fifth set of 30 synthetically generated graphs, 10 for each class. The graphs
belonging to each class were sampled from a generative model with size 12,14 and 16.

Figure[5.12]shows the 3D plots of the 10-fold cross validation accuracy on the Isomap
embeddings of the QJSD, the random walk and the graphlet kernels for the PPI dataset,
as the size of the initial neighborhood and the embedding dimension vary. The plots
show that for this dataset the QJSD kernel seems to be less sensitive to the locality of
the distance information. On the other hand, for the graphlet kernel the maximum ac-
curacy is achieved for a smaller neighborhood, which means that in this case the long
range distance information is less accurate.

Figure shows the two-dimensional Isomap embeddings with the highest lin-
ear separability for the QJSD kernels on the synthetic dataset, MUTAG and COIL. The
result clearly shows the lack of the horseshoe shape distribution of Figure Note,
however, that the best embedding is usually found at a dimension higher than two
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Figure 5.13: The optimal two-dimensional Isomap embeddings in terms of separability
between the graph classes.
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| Kernel | Synthetic | MUTAG | PPI | COIL | Shock |

QJSD 90.00 88.27 78.75 | 84.44 | 67.50
QJSD;so | 96.67 91.96 90.69 | 91.53 | 77.50
SP 80.00 86.08 71.25 | 85.56 | 61.67
SPrso 86.67 89.33 87.08 | 89.17 | 60.05
RW 86.67 77.02 70.97 | 79.72 | 49.17
RWiso 86.67 81.35 82.50 | 80.97 | 50.12
GR 86.67 82.92 49.56 | 86.67 | 39.17
GR1so 90.00 84.53 77.08 | 87.78 | 54.17

Table 5.5: Maximum classification accuracy on the unattributed graph datasets. Here
SP is the shortest-path kernel of Borgwardt and Kriegel [31], RW is the random walk
kernel of Gartner et al. [60], while GR denotes the graphlet kernel computed using all
graphlets of size 3 described in Shervashidze et al. [125], while the subscript 1SO in-
dicates the result after the [somap embedding. For each dataset, the best performing
kernel before and after the embedding is shown in bold and italic, respectively.

and, as shown in Figure the separability can change significantly as the dimen-
sion varies. Figure also shows a clearer separation among the different classes, as
highlighted in Table which shows the separability of the data for each kernel and
dataset. It is interesting to observe that, with the exception of a few cases, the Isomap
embedding always yields an increased separability of the data, independently of the
original kernel. It should also be underlined that the QJSD kernel always yields the
highest separation, with a maximum classification accuracy above 90% in 4 out of 5
datasets.

5.6 Conclusions

In this Chapter, we have introduced a novel kernel on unattributed and attributed
graphs where we probe the graph structure using the time evolution of a continuous-
time quantum walk. More precisely, given a pair of graphs we computed the quantum
Jensen-Shannon divergence between the evolution of two quantum walks on a suitably
defined union of the original graphs. With the quantum Jensen-Shannon divergence
to hand, we established our graph kernel. We performed an extensive experimental
evaluation and we demonstrated the effectiveness of the proposed approach.

We then studied the separability properties of the QJSD kernel and we have pro-
posed a way to compute a low-dimensional embedding where the separation of the
different classes is enhanced. The idea stems from the observation that the multidi-
mensional scaling embeddings on this kernel show a strong horseshoe shape distribu-
tion, a pattern which is known to arise when long range distances are not estimated
accurately. Here we proposed to use Isomap to embed the graphs using only local dis-
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tance information onto a new vectorial space with a higher class separability. An exten-
sive experimental evaluation has shown the effectiveness of the proposed approach.

In the next Chapter, we will use the quantum mechanical framework introduced
here to develop a set of novel algorithms for analyzing the structure of graphs. More
precisely, we will show how to use the connection between structural symmetries and
the interference effects of quantum walks to establish the presence of approximate ax-
ial symmetries in the graph and to define a new node centrality measure.



Graph Structure Analysis

The quantum mechanical analysis discussed in the previous Chapter is based on the
fundamental connection between the structure of a graph and the interference ef-
fects which arise during the evolution of quantum walks. More precisely, the proposed
framework was based on the existence of an intimate connection between structural
symmetries and destructive (constructive) interference. In this Chapter we intend to
investigate further the relation between quantum walks and graph symmetries, and, in
particular, we are interested in exploiting the interference effects of quantum walks to
probe the structure of a graph. In a sense, then, the concepts introduced here fit into
the more general field of complex network science.

The remainder of this Chapter is organized as follows: Section provides what
appears to be the first attempt in the literature to measure the amount of approximate
symmetries possessed by a graph. Section on the other hand, is devoted to the
explicit detection of approximate symmetry axes, but using a semi-classical rather than
a purely quantum approach. Section|[6.3|concludes the Chapter with the introduction
of a novel vertex centrality index which relates the phase of a vertex to its influence on
the evolution of a suitably defined quantum walk.

6.1 Measuring the Degree of Symmetry of a Graph

In this Section we attempt to quantify the degree of (approximate) symmetries pos-
sessed by a graph by evaluating the quantum Jensen-Shannon divergence [86, [94] be-
tween the evolution of two quantum walks on the graph with suitably defined initial
states.

6.1.1 Quantum Mechanical Setup

Given a pair of nodes u € V and v € V in an undirected graph G(V, E), we define two
independent quantum walks with starting states

u) —|v) lu) +|v)

N\ L
|%>——\/E |1;”0>——\/§ : 6.1)
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where, and to recap our earlier definition, the basis state corresponding to the walk
being at vertex u € V is denoted as |u). Intuitively, by setting the initial amplitude on
the two nodes to be respectively in anti phase and in phase, we allow the walk to high-
light the presence of destructive and constructive interference patterns on the graph.
We then let the two quantum walks evolve under Equation[5.6| until a time T and we
define the average density operators pr and o1 over this time as

| L T
pr=7 [ widwilde  or== [ |ui)wiar 62
0 0

where we use the graph Laplacian as the Hamiltonian of the system. In other words,
our system has equal probability of being in any of the pure states |w;> (|1//j) respec-
tively) defined by the quantum walk evolution.

Given this setting, we are now able to compute the quantum Jensen-Shannon di-
vergence Djs(pr,0 1) between the two walks using Equation[5.16] Due to the interfer-
ence effect, we expect the mixed states for the two walks to have maximum divergence
when the two initial nodes are symmetrically located in the graph. This is a conse-
quence of the way in which we have initialised the two walks. Specifically, we aim to
use the destructive and constructive interference effect by setting the initial node am-
plitudes to be respectively in anti phase and in phase. On the other hand, when the
two nodes are not symmetrically located then we expect the two resulting mixed states
to be similar, thus yielding a low value of D;s(p7,07). In the following theorem we
prove that when u and v are symmetrically placed, then pr and o7 have support on
orthogonal subspaces, which implies D;s(pr,07) = 1.

Theorem 6.1.1. Let pr and ot be defined as in Equation[6.29 If u, v are symmetrically
placed and |y ) and |y} ) are defined as in Equation|6.1, then D;s(pr,07) = 1.

Proof. We start by noting that if p7 and o 1 have support on orthogonal subspaces then

I d -
(pT)TUT:ﬁfO Ptldtlfo 0,dh=0 (6.3)

where 0 is the matrix of all zeros, p; = |y} ){y;| and o, = |y} )(w}|- Note that if
p:flatz =0 for every f; and f, then (pT)TaT = 0. We can hence go on to show that
if u and v are symmetric, then <w;1 ‘1//'[2> =0 for every t; and t,. Let U’ = e /L%, If
=1t =t then
(wolWH'U'yg)=0 (6.4)
since by definition (U*)TU" is the identity matrix (since U is unitary) and the initial
states are orthogonal by construction.
On the other hand, if f; # £, we need to prove that when u and v are symmetrical

then |1//;1> and ‘1//;“2> are still orthogonal. In other words,

(wo| UM |yg)=0 (6.5)
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(a) 7x7 Grid (b) Noisy 7x7 Grid

Figure 6.1: The QJSD between pairs of walks initialised according to Equation[6.1] Here
the color indicates the value of the QJSD between two walks and the axes are indexed by
the nodes, where the 49 nodes of the grid are numbered from 1 to 49 from left to right,
from top to bottom. Note that the QJSD of the two walks is maximum (equal to 1) when
the two walks are initialized on symmetrically placed nodes. If the symmetry is broken
by deleting one edge [6.1(b)} the QJSD remains considerably higher on approximately
symmetrically placed nodes.

where A; = £, — #;. Recall that y; = 1/v2(luy — |v)) and wg =1/v2(lu) + |v)). Then, if
we denote by Uit]. the i j-th element of U, we have that

(wo|UM |wg)y=Ult - Ust + Ut — Ubt (6.6)

which further reduces to
(wo | UM [wi) = Uni - U, (6.7)

since the matrix U’ is symmetric.

To conclude the proof, we prove that when u and v are symmetrical we have U/, =
U!,. This is immediate if we observe that Lemma still holds if we replace the
adjacency matrix with the graph Laplacian.

O

We should stress, however, that the converse of Theorem|[6.2.1]does not hold. Note,
in fact, that if we were able to prove the converse then we could give a polynomial-time
solution to the graph isomorphism problem.

The proof of Theorem basically relies on the fact that whenever two nodes u
and v are symmetrical, then U}, = U!  for each time #, where UL, is the wave kernel
signature of x at time ¢. However, our analysis relies only on computing the diver-
gence between two density operators, while directly observing the wave kernel signa-
ture would cause a collapse of the wave function. Note also that a similar analysis can
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Figure 6.2: A star graph with 4 nodes and a modified version where two leaves are con-
nected by an extra edge representing structural noise. The bar graph shows that al-
though the symmetry between nodes 2-3 and nodes 2-4 is broken with the addition of
an extra edge, the QJSD is still sensibly higher for those pairs of nodes, suggesting the
presence of an approximate symmetry.

be done by comparing the heat kernel signature [132] h(x) = (HX, HEZ ... ,H;’;) of u
and v, where we denote by H., the solution of the heat equation at point x at time .
On a manifold, it can be shown that if H! , = H}, for each t, then the two points have
the same global geometry, which means they either are the same point or symmetri-
cally placed, with respect to the intrinsic geometry. Note, however, that this only holds
for points on a manifold.

Figure shows the value of D;s(pr,0 1) for all the possible pairs of nodes with
initial non-zero amplitude on a 7 x 7 grid with reflecting boundary conditions. In the
remainder of the Chapter we will refer to this matrix as the QJSD matrix. As expected,
the QJSD matrix clearly reveals the presence of several perfect symmetries, i.e., pair of
nodes for which Djs(pr,071) = 1. Note that if we randomly delete an edge the sym-
metries are very likely to be broken, as we observe in Figure Although we don’t
observe any perfect symmetry, the value of D;s(p 7,0 1) remains higher on some pairs
which were previously identified as being symmetrical, suggesting a connection be-
tween approximate symmetries and high values of the quantum Jensen-Shannon di-
vergence.

To further support this claim, in Figure we show the value of the QJSD for a
star graph with four nodes and a noisy version of it, where the noise is represented
by an additional edge joining nodes #3 and #4. Clearly, in the original star graph the
three leaves are all symmetric with respect to the root node. However, if we alter the
structure of the graph by adding an edge between #3 and #4, this results in breaking
the symmetries between #2 and #3 and between #2 and #4 and, as a consequence,
the QJSD between these nodes decreases. Interestingly, however, the QJSD for these
pairs remains higher than the QJSD between #1 and #2, which is exactly what we would
expect given the original symmetry.
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Efficient computation of the QJSD

In this sub-Section we show how to compute the solution to Equation analytically.

Let Py = Z’Ij(jl) c/),l,k(pl .. be the projection operator on the subspace spanned by the
1(A) eigenvectors ¢, i associated with the eigenvalue A of the graph Laplacian. The
evolution operator of the quantum walk can be then expressed in terms of this set of
projectors, i.e.,

U'=Y e Mpy (6.8)
A

Recall that |w 1y=U" |W0>- According to Equation we can rewrite the density oper-
ator p; associated with the pure state |1,(/ £) as

,Oz — Ulfpo(Ut)T — Z Z e_i(/ll_/lz)tp/llpOP:{z (6.9)
MEAAEA

As a consequence, we can reformulate Equation|6.29|as

1 rT |
pT:—f ptdt: Z Z P/hpopx—lrz_ € ‘h /12)tdt (6.10)
T Jo AMEAAEA T'Jo

Solving the integral in Equation finally yields
i(1— eiT(lz—ﬂl))

por = Py poP; (6.11)
/hzeAAgZeA R T - A)

Note that if we let T — oo, then the integral in Equation|6.10|reduces to the Dirac delta
function 6(1; — A,). Hence, Equation|6.10|simplifies to

Poo= Y PapoP; (6.12)
AeA

where A is the set of distinct eigenvalues of the graph Laplacian, i.e. the eigenvalues
A with multiplicity u(1) = 1. A consequence of Equation is that the infinite-time
limit of the average density matrix commutes with the graph Laplacian L, in fact

=Y PyApoP, =
AeA

Lpoo = (Z APAPI) (Z PipoP;

AEL AEL

= pooL. (6.13)

Y P;LpOPI) (Z AP P
AeA AeA

Hence, given the spectral decomposition of the graph Laplacian L = ®A®T, the den-
sity matrix, expressed in the eigenvector basis given by @, assumes a block diagonal
form, where each block corresponds to an eigenspace of L corresponding to a single
eigenvalue. Thus, if L has all eigenvalues distinct, then p, expressed in the unique
eigenbasis of L will be diagonal and its diagonal entries will directly correspond to
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Figure 6.3: The average QJSD as a function of the structural (edge) noise for a 5 x 5 grid
and a complete graph. Adding by randomly deleting (inserting) edges has the effect of
breaking the symmetries of the original graphs and as a consequence the average QJSD
decreases. Here the solid line indicates the mean, while the dashed lines indicate the
standard deviation.

its eigenvalues. More generally, to compute the eigenvalues of p.,, we need to solve
independently for the eigenvalues of each diagonal block, resulting in a complexity
O(X e i #(1)?), where p(A) is the multiplicity of the eigenvalue A.

Note that Godsil [62] recently proved a similar result for the average mixing matrix.
Here, the mixing matrix of a continuous-time quantum walk at time ¢ is defined as
M, = (UH" o U?, where U is the unitary operator inducing the walk and (Ao B); i=
A;;jB;; denotes the Schur-Hadamard product of two matrices A and B. The average
mixing matrix is then defined as the limit of the Cesaro mean of the mixing matrix as
t — oo. Finally, the author shows that this quantity can be rewritten in terms of the
projectors on the eigenspaces of the unitary operator of the walk.

6.1.2 Experimental Results

In this Section we intend to use the QJSD matrix to measure the degree of symmetry
possessed by a graph. The basic requirements of this measure should be a) that its
value increases (decreases) as the number of approximate symmetries of the graph in-
creases (decreases), b) that it is permutation invariant and c) possibly easy to compute.
Here we choose to use the average of the QJSD matrix as a simple yet effective means
of characterizing the degree of symmetry possessed by a graph. Although it is known
that as a statistic the average lacks robustness, since it is significantly affected by out-
liers, our experiments show that it provides a fast and permutation invariant way of
measuring the degree of symmetry of a graph. More precisely, we investigate how the



6.1. Measuring the Degree of Symmetry of a Graph 103

—=—Noisy Wheel
——Erdos-Renyi Graph

—=—Noisy Grid
A —— Erdos—Renyi Graph|

Average QJSD
o o
(2] ~

o
2}

©
~

o
w

(a) 5x5 Grid (b) Wheel

Figure 6.4: The average of the QJSD matrix clearly distinguishes between a random
graph and a symmetrical graph where artificial noise is added. Here the solid line indi-
cates the mean, while the dashed lines indicate the standard deviation.

average QJSD over the pair of nodes varies for increasing time intervals. To this end,
we numerically simulate the evolution of the two quantum walks with starting states
as defined in Equation[6.1]using the software package MATLAB.

In our first experiment, we take a 5x5 grid with reflecting boundary conditions and
a complete graph of size 10 and we iteratively add structural noise by deleting an in-
creasing number of edges at each step. The procedure is repeated 100 times, and for
each level of noise we compute the mean over the 100 trials of the average QJSD on the
noisy graphs, where for each pair of nodes the QJSD is computed as in Equation [6.12
Figure shows the result, where the structural noise affects from 0% to 25% of the
graph edges. Here the solid line indicates the mean, while the dashed line indicates
the standard deviation over the 100 repeated trials. Note that as the noise increases,
the graphs become less and less symmetric, and at the same time the average QJSD
rapidly decreases. This seems to fit with our hypothesis that the average QJSD can be
used as a simple indicator of the degree of symmetry of a graph.

As a second experiment, we take the same 5x5 grid and we randomly create noisy
versions of it by adding or deleting up to 3 edges at random locations. We then com-
pare the average QJSD (over all pairs of nodes) on these graphs with that of a set of
Erdos-Rényi random graphs. Figure[6.4]shows the average of the QJSD matrix for time
intervals of increasing length. Again the solid line indicates the mean, while the dashed
line indicates the standard deviation over 100 trials. As we can see, we are able to com-
pletely discriminate between the noisy versions of the 5x5 grid and the Erd6s-Rényi
graphs. This seems to confirm our intuition that the average QJSD matrix is able to
capture the presence of (approximate) symmetrical patterns in a graph. We repeat the
same experiment, but this time we perturb the 32-cycle graph where we have added a
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central axis of symmetry which connects an opposite pair of vertices. Again, the per-
turbed versions of the modified 32-cycle graph have a higher average QJSD when com-
pared to Erdos-Rényi random graphs.

As a third experiment, we select three different random graphs models, namely the
Watts-Strogatz [144], the Barabdsi-Albert [22] and the Erdds-Rényi [53] models. The
Erdos-Rényi random graphs are generated by connecting pairs of nodes in the graphs
with a uniform probability p. The Watts-Strogatz model produces small-world graphs
with a high clustering coefficient and a short average path length. Finally, the pref-
erential attachment algorithm of Barabdsi and Albert generates scale-free graphs. In
this type of random graph the degree distribution of the vertices follows the power-law
distribution, which is a property observed in many real-world graphs. In Figure
we show some examples of Erdos-Rényi, small-world and scale-free random graphs.
We add to these three graph models a set of strongly regular graphs. A regular graph
with v vertices and degree k is said to be strongly regular if there are two integers ¢
and 60 such that every two adjacent vertices have € common neighbours and every two
non-adjacent vertices have # common neighbors. We choose strongly regular graphs
because they are known to be highly symmetric and this should be reflected in the
value of the QJSD.

We can see from Figure that we are able to discriminate these three types of
random graphs by observing the average QJSD. In particular, due to their nature, the
small-world graphs seem to have more symmetries than the two alternative models. In
fact, the small-world graph is constructed by randomly linking the nodes of a regular
ring lattice, thus yielding an interpolation between an Erd6s-Rényi graph and a regular
graph. Note also that the average QJSD is reduced by adding or deleting random edges,
since this amounts to hiding the symmetrical patterns under increasing levels of noise.
Although reduced, the average QJSD for the small-world graphs remains considerably
higher than that of the Erdos-Rényi and scale-free graphs, where the addition of ran-
dom noise does not seem to alter the average QJSD. As expected, the high number of
symmetries possessed by strongly regular graphs is reflected in the higher value of the
average QJSD, which remains clearly distinct from the three random graphs even in
the presence of Erdés-Rényi noise. Note also that if the graph structure of the strongly

(a) Erdos-Rényi (b) Small-World (c) Scale-Free

Figure 6.5: Examples of graphs generated by the Erdds-Rényi, Watts-Strogatz and
Barabasi-Albert models respectively.
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Figure 6.6: The effects of noise on the mean of the QJSD matrix on different type of
graphs, for time intervals of increasing length. Note that here the solid line indicates
the mean, while the dashed lines indicates the standard error.

regular graph is not perturbed, the QJSD between each pair of nodes is maximum, i.e.
each pair of nodes is in a symmetrical relation. Finally, although the behaviour of the
scale-free and Erdos-Rényi graphs is somewhat similar under noise, it is still possible
to distinguish between them. In other words, the average QJSD of a scale-free graph is
generally lower than that of an Erdos-Rényi graph.

6.2 Approximate Axial Symmetries Detection

We now turn to the problem of explicitly identifying the approximate axes of symmetry
of a graph. To this end, however, we need to somehow relax the quantum mechani-
cal formalism adopted so far, and turn to a more semi-classical approach. Although
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not clearly stated, in fact, the analysis described in the previous Section is indeed not
semi-classical, as it is fully based on observable properties. This is because although
the QJSD is not directly a quantum-mechanical observable, it can be computed from
density matrices whose entries are indeed observables. Here, however, we require the
complete observation of the wavefunction evolution in order to detect the nodes of the
symmetry axes.

As a first attempt one may try to detect approximate axial symmetries by simply
measuring the destructive interference patterns of continuous-time quantum walks.
More precisely, given a suitable starting state for the quantum walk, one may identify
those nodes of the graph which show a low average observation probability as the axial
nodes. However, this analysis doesn’t take into account the fact that a low observation
probability may be also due to other structural characteristics, such as a low degree of
the node.

A better solution requires evolving two quantum walks on the graph rather than
just one. Similarly to the previous Section, these two walks are initialised so as to high-
light the destructive and constructive interference patterns. With this setting to hand,
those vertices that simultaneously show a low observation probability under destruc-
tive interference and a high observation probability under constructive interference
are identified as axial.

6.2.1 Quantum Mechanical Setup

Given a pair of vertices u, v, we define again two independent quantum walks on G
with starting states

u) —|v) | +>:|u)+|v> (6.14)

o\
|1//0 > \/E 0 \/E
Let us denote by a;, (1) and a} (¢) the amplitude on node v at time ¢ during the evolu-
tion of the quantum walk with initial state |1,Ua ) and |w3 ), respectively. According to
Eq.[6.14 we have that a;,(0) = —a;,(0) and a},(0) = «;(0), while for any w # u, v both
a,(0) and a,(0) are equal to zero. We will show that, as a consequence of this, when-
ever u and v will be symmetrical with respect to a symmetry axis A the destructive
interference will result in a complete cancellation of the wavefunction amplitude on
the nodes of A.
We now let |wa ) evolve until a time T and we define the average observation prob-
ability of the walker at node v as

- L,
n(aU(O))T:?fO a,(Da, ()" dt (6.15)
Similarly, we can define 7(a}(0))r given |y ). Here we propose to take the limit of
7(a;,(0))r and 7(a} (0))r as T — oo, which we simply denote as 7 (a}, (0)) and 7 (a;, (0)),
respectively. We now show how to compute this limit analytically. Note that here we
will refer to a general quantum walk |, ), but the same observations will hold for |y )

and |y7).
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Let PA® " be the spectral decomposition of the graph normalized Laplacian and
let Py = Z‘Ij(jl) Pa, k‘l’; . be the projection operator on the subspace spanned by the p(1)
eigenvectors ¢, i associated with the eigenvalue A of the graph normalized Laplacian.

The evolution operator of the quantum walk can be then expressed in terms of this set
of projectors, i.e.,

m .
U'=Y epy (6.16)
A=1

where m denotes the number of unique eigenvalues of the normalized Laplacian. We
now introduce the density matrix which describes the ensemble of quantum states

|wt>,i.e.
1 T
pT:?fO lwe)(we|de (6.17)

Note that the diagonal of pr can be encoded as a vector with elements 7 (a,(0)) 7. If we
let T — oo, we have already proved that the previous equation simplifies to

m
Poo= Y. PapoP; (6.18)
A=1

In order to compute the diagonal elements of po, we start by rewriting the density
matrix appearing in Eq. as

m [ p) . 1) .
Poo= 2| 2 PakiPar, | Vo) (wol| 2 darbas, (6.19)
A=1\k;=1 ko=1
By rearranging the terms of the previous equation we get
m [ ) - - pA) p) - -
Poo= D | 2 PakPrr, PoPriPrr, + 2. D Pak DAk, P0PAL DAL, (6.20)
A=1\k=1 ki=1ka#k

where pg = |1,(/0> <W0|~ Note that each term of the inner summations can be written as
the product of a scalar by a matrix, and thus we can rewrite the previous equation as

m [ nd) - .
poo = Z ( Z ((,b,l,kIPO(;bxl.kl)(P/l,h(P/l,kl

A=1\k =1
nA) ) . .
* Z Z (d)/l,kzpo(rb/lykl)(rb/l,klgb/l)kz) (6.21)

k1=1kx#ky

The i jth element of p, can then be computed as

m (1)
. T T
Pooli, J) =} ( > (%,klPO‘/}A,kl)¢A,(i,k1)</’;t,(j,k1)
A=1\k =1

pAd) g

+ Z Z ((P;Lr,kzpo(p/l,kl)(P/l,(i,kl)(/);{,(j’kz)) (622)

k1=1ky#k;
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(@) T=0.01 (b) T=0.02

Figure 6.7: The nodes with degree 1 have a lower probability of being observed com-
pared to the other nodes, and thus they can be accidentally identified as axial. Here we
draw each node with a diameter that is proportional to the number of times in which
the node has been identified as being axial.

where ¢, (i ) denotes the ith element of the kth eigenvector associated with A. Finally,
note that if all the eigenvalues of the normalized Laplacian are distinct, the equation
for m(a,(0)) further reduces to

m m
(@)= Y 3 000250 = Y ((wol#a)* 65, (6.23)
A=1 A=1
We now prove that when two nodes v; and v, are symmetrical and the initial state
of the walk is |1//a ), the average observation probability of the nodes of the symmetry
axis will be zero.

Theorem 6.2.1. If a pair of nodes vy, v is symmetrical with respect to a symmetry axis
Aand a;, (0) = —a,,(0), then 7(a;,(0)) =0, Vw € A.

Proof. Recall that

T
m(a,(0)r = %f a,(Da, ()" de (6.24)
0

and a,(0) =) j e~ Lwil g~ (0), where L, j is the element (w, j) of the graph normalized
Laplacian. We now show that, under the hypothesis of the theorem, a;,(f) = 0 at each
instant ¢ and thus it trivially follows that 7 (a,(0)) = 0.
First note that according to Eq.[6.14]we can write
o~ iLwot _ g=iLuwuyt

a,(0) 7 (6.25)
and thus we simply need to prove that whenever v; and v, are symmetrical with re-
spect to w then e~Lwn’® = g=ilwn ! This follows again from Lemma and noting
that, since by hypothesis w is a node of the symmetry axis for v; and v,, we have that
e Hwnt = g=iLwnt which concludes the proof. O
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Clearly the converse of Theorem does not hold. In fact, if we were able to prove
the converse then we could give a polynomial-time solution to the graph isomorphism
problem.

6.2.2 Symmetries Detection Criterion

Given the setup we have just described, we can now proceed to the axial nodes iden-
tification. Recall once again that, as Fig. shows, by observing only the evolution
of the anti-phase walk one tends to favor nodes with a low degree, where the average
observation probability is usually very low.

We hence propose to identify those vertices that simultaneously show a low obser-
vation probability under destructive interference and a high observation probability
under constructive interference as axial nodes. In fact, one can easily show along the
same lines of Theoremthat when the initial state is |1//g ), if vy, v are symmetrical
with respect to w their contributes on w will constructively combine rather than can-
cel out, and thus the resulting observation probability on w will be higher. With this
setting to hand, a node w is identified as being axial if there exists at least one pair of
nodes u and v for which
_ n(a;,(0)

m(ay, (0))

where 7 is a given threshold. Fig.|6.8|clearly shows that with this new criterion we are
able to overcome the limitations highlighted in Fig.

Note that, according to Theorem in the case of an exact symmetry 1, = oo.
In real-world scenarios, however, we have to deal with the presence of structural noise,
which will eventually break the symmetries of the graph. We argue that in this case the
value of 7, can still be used to detect approximate axial symmetries and to characterise
the graph structure. Consider for example the toy graph of Fig. As we can see, for
higher values of T we detect the presence of a two-node axis of symmetry. Surprisingly,
as we relax the threshold a different pattern is revealed, with 3 nodes rotating around a
central axis. This can be explained by observing that the toy graph of Fig.[6.9]is actually
a star graph with 3 leaves connected to a central root node. Clearly the root represents
the symmetry axis, while the extra edge connecting two of the leaves can be interpreted
as structural noise.

The simple procedure described above can be used to establish if two nodes are
symmetrical with respect to an axis. In order to detect all the symmetry axis of a graph,
one can simply iterate the same procedure for each pair of nodes of the graph. More-
over, given a pair of nodes, we are able to estimate the symmetry axes sizes by counting
the number of nodes w where n,, > 7.

(6.26)

Nw

6.2.3 Experimental Results

In this Section, we validate the proposed approach by performing a series of exper-
iments on both synthetic data and real-world data. The synthetic data is composed
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Paltal

(@ =10 (b) T=2

Figure 6.8: The axial symmetries detected with the algorithm introduced in this Sec-
tion. Note the importance of taking the evolution of both walks into account.

AA A

@ 1t=4 (b) T=3 (c)1=2

Figure 6.9: A noisy 4 nodes star. As the threshold is relaxed, the original axis of symme-
try is revealed.

of Erdos-Rényi random graphs [53], small-world graphs, scale-free graphs, stochastic
Kronecker graphs [92] (which exhibit both small-world and scale-free properties), and
strongly regular graphs. A regular graph, i.e., a graph where each vertex has degree k,
is said to be strongly regular if there are two integers A and u such that every two ad-
jacent vertices have A common neighbours and every two non-adjacent vertices have
¢ common neighbors. We choose strongly regular graphs because they are known to
be highly symmetric and this should be reflected in the experimental results. The real-
world data, on the other hand, is composed of a set of road networks.

Synthetic data

For each graph in the dataset, we compute its symmetry axes together with their sizes,
as explained in the previous Section. Figure[6.10]shows the distribution of the symme-
try axes length for each type of graph, for different choices of the threshold 7. Note that
local symmetries correspond to larger axes, since the axis size is equal to the number
of nodes of the graph minus the size of the symmetric orbit, which in the case of a local
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Figure 6.10: Symmetry axes distribution. Note that as the threshold varies, the shape of
the strongly-regular graphs distribution remains unaltered, as the symmetries present
in this category are all exact. Recall that the higher the threshold, the stricter it is.

symmetry is clearly small. On the other hand, a global symmetry will correspond to a
smaller symmetry axis. In other words, a left peaked distribution indicates the pres-
ence of global symmetries, while a right peaked distribution indicates the presence of
local symmetries.

Note that the distribution for the strongly-regular graphs remains unaltered when
we change 7. This is because the graphs in this category possess exact symmetries, due
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Figure 6.11: Road networks of the cities of Hollywood, Petropolis and Chengkan, along
with the corresponding axes length distributions. Note how different layouts give rise

to different distributions.

to their regular structure. Hence the probability of the walker being found at a node be-
longing to a symmetry axis is exactly zero and thus n,, = oo regardless of the threshold
value. Note, moreover, that the high number of symmetry axes belonging to this class
of graphs is exactly what we would expect given the high degree of symmetry displayed
by strongly-regular graphs. As for the other graph models, Figure shows that the
number of exact symmetries is clearly lower. In particular, we observe the presence of
a moderate amount of exact local symmetries in the scale-free graphs, which are prob-
ably due to the presence of small trees rooted at a hub node. The class of scale-free
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</

Figure 6.12: A detail of the road network of Chengkan, showing the particular linkage
pattern that characterizes this city.

graphs is also that which is most easily separated from the remainder, being character-
ized by a fat and long tail on the right. The small-world, Erdos-Rényi and Kronecker
graphs, on the other hand, show very similar distributions. It is interesting to note that
the behaviour of the stochastic Kronecker graphs, which possess both scale-free and
small-world properties, seems to be dominated by their small-world behaviour. More
generally, Figure shows that we can, to some extent, separate graphs belonging to
different graph models on the basis of their symmetry axes distributions.

Real-world data

Road networks are a typical example of technological networks, i.e. man-made net-
works designed for the distribution of resources. Other examples include power grids,
airline routes, river networks and the Internet. In this Section we apply our algorithm
to 3 different city layouts, namely a portion of the city of Hollywood in the USA, the city
of Petropolis in Brazil and the village of Chengkan in China. Each city is represented by
an undirected graph which is the dual of its road network, i.e., each node is a street and
two nodes are connected by an edge if they meet at a crossing. The sizes of the resulting
graphs is 1991 nodes for Hollywood, 1969 for Petropolis and 1272 for Chengkan. For
each graph, we compute the approximate symmetry axes and their length for different
thresholds.

Figure shows the embeddings of the three cities and the corresponding dis-
tributions. We observe that different layouts of the cities give rise to different distri-
butions. As expected, the first city, which shows a very regular grid-like structure, re-
sponds markedly to the presence of approximate global symmetry, and shows little or
no local symmetry. On the other hand, the second city displays for each threshold a
wider distribution, and it seems to possess a number of exact local symmetries which
are reflected in the far right side of the plot. A similar pattern was displayed by the
scale-free graph model in Fig. In fact, a visual inspection of the graph confirms
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the presence of several small hubs, which are typical of scale-free models. Finally, the
third city shows a remarkably large number of local symmetries, which arise as a con-
sequence of its very particular linkage pattern, which is shown in Fig.

6.3 A Quantum Measure of Vertex Centrality

Inspired by the symmetry analysis of the previous Sections, we would like to now shift
the focus from the characterization of the whole graph to that of a single node. In par-
ticular, we would like to measure the centrality of a vertex as the number of times in
which it belongs to an axis of symmetry. Establishing the importance of the vertices
of a graph is of key importance in the analysis of complex networks, and a number
of centrality indices have been introduced in the literature [54]. The most common
examples are probably the degree, closeness and betweeness centrality [57, 58, [104].
Each of these measures capture different but equally significant aspects of a vertex im-
portance. The degree centrality naturally interprets the number of edges incident on a
vertex as a measure of its “popularity”. The closeness centrality links the importance of
a vertex to its proximity to the remaining vertices of the graph. Finally, the betweeness
centrality is a measure of the extent to which a vertex lies on the paths between others.

In this Section we would like to extend the existing centrality indices by using the
continuous-time quantum walk as a means to measure the centrality of a node. Given
the symmetry analysis framework developed in the previous Section, a first guess could
be that of measuring the centrality of a vertex as the number of times in which it be-
longs to an axis of symmetry. However, in this case computing the centrality of a single
vertex would require iterating the symmetries detection over all the pairs of nodes of
the graph. Thus, we propose an alternative measure which relates the importance of a
vertex to the influence that its initial phase has on the evolution of a suitably defined
quantum walk.

6.3.1 QJSD Centrality

In order to measure the centrality of vertex v, we define two quantum walks where v is
initially set to be in phase and in antiphase with the respect to the other nodes, respec-
tively. That s, we define two walks |y} ™) = ¥ ey a7 (0) |y and |y} ") = ¥ ey alF (0) |u)
on G with starting states

1

ifj=v
¢ J

v+ 1w
3 = = V .
+¢ otherwise a; (0 {+c Vi (6.27)

v— —

a; (0)= {
where C is the normalisation constant such that probabilities sum to 1. Alternatively,
we may define the initial amplitude to be proportional to the square root of the nodes
degree, i.e.,

_vd; ifj=v

aro=4 £ "7 @t ={ 4 Y4 y; (6.28)
J dj . J C J
+— otherwise
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Figure 6.13: The correlation between degree and QJSD centrality, for a star graph (red
dots) and a scale-free graph (blue squares). The blue line shows the predicted depen-
dency between the two centrality indices.

Now let p, and o, be the density operators which describe the ensembles of quan-
tum states |y?~) and |y?*) respectively, i.e.,

. 1 T _ _ . 1 T
po=tim = [l M de o= dim [l wide 629

Then we can measure how the initial phase of the vertex v affects the evolution of the
quantum walks by computing the distance between the quantum states defined by p,
ando,,i.e.,

Cyjs(w) =Dys(py,0v) (6.30)

We stress that the computation of the QJSD centrality is entirely based on principled
observables. As a consequence, it should be possible, at least in theory, to design a
quantum algorithm to compute the QJSD centrality that could benefit from the power
of quantum computers. However, the design of such an algorithm is clearly beyond the
scope of this thesis.

We are now interested in studying to what extent the QJSD centrality depends on
the degree of the nodes. It is known, in fact, that the classical versions of centrality, like
the betweeness centrality, are highly correlated with the degree. Let the initial states
of the walks be defined as in Eq. and let the normalized Laplacian be the Hamil-
tonian of our system. We start by observing that [§7}*) = ¥ e @4 (0) |u) corresponds
to the eigenvector ¢, associated to the zero eigenvalue of the Hamiltonian, and as a
consequence |fﬁ(’)’ +> will remain constant over time. In other words, we have that

ou =75 (@) 631
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Figure 6.14: Correlation between the QJSD centrality and the degree centrality for dif-
ferent choices of the Hamiltonian (adjacency matrix or normalized Laplacian) and of
the initial state (normalized uniform distribution or normalized degree distribution).
Interestingly, when we choose the normalized Laplacian as the Hamiltonian and the
amplitudes are initialised according to the degree distribution, the correlation is al-
most linear.

From this, it immediately follows that the spectrum of o, is composed of a single
eigenvector ¢y with eigenvalue equal to 1. As a consequence of this and of Equa-
tion[6.16} p, and o, are simultaneously diagonalizable, and therefore each eigenvalue
of their sum is a sum of eigenvalues of p, and o,. More precisely, when the two walks
are initialised as in Eq.@ all the eigenvalues p; of 2 ";U” will be equal to the eigenval-
ues of p,, except for the eigenvalue py+1 which is associated to the common eigenvec-
tor ¢po. We now show that, as a consequence of this, the QJSD centrality is proportional

to the degree centrality. Recall that

Py+0Oy

1
)~ 5 (Hy(@0) + H(py) (6.32)

Crs(v) = Dys(pu,0,) = H
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From Equations and we have that Hy(o,) = 0. As a consequence,

. Pvt0oy _l
Dys(pu,o) = Hy (5] = S H(pw)
Ho+1 po+1 Hi pi 1
=-— log, 5 —;)?llog23l+§;pilogzyi
Ho+1 po+1 i 1 1
= - logz(,u0+1)+z———Zuilogzui+—2uilog2ui
2 2 iz0 2 2iz0 25
1 Ho Ho
=1--1 1)+ —1 6.33
5 08, (o +1) + 5 08> Ho+1 (6.33)

where p; denotes the ith eigenvalue of p, and we used the fact that }°; 4; = 1. We now
proceed to show that i is proportional to the degree of node v, and therefore the QJSD
centrality is proportional to the degree centrality. In fact, we have that

2
Ho = (9ol po o) = (o 77 = [1- 71 6:31)
where d,, is the degree of v and | E| denotes the number of edges in the graph. In other
words, when we take the normalized Laplacian as our Hamiltonian and we initialise
the walks according to Eq. the QJSD centrality turns out to be quasi-linearly cor-
related with the degree centrality. Fig. shows the correlation between the QJSD
centrality and the degree centrality for a scale-free random graph and a star graph. In
the case of a general graph, the two measures appear to be exactly linearly correlated,
which explains the behaviour observed in Figl6.14] The non-linear behaviour, in fact,
is observed only for nodes with a normalized degree close to 1, as in the case of a star
graph.

Note that, although so far we assumed that the Hamiltonian of the quantum walk
was the graph normalized Laplacian, the Laplacian and the adjacency matrix have also
been used in the literature. However, the evolution of the walk and thus the QJSD
centrality can vary a lot under these different settings. Fig. shows the correlation
between the QJSD centrality and the degree centrality computed on a stochastic Kro-
necker graph for different choices of the initial state and the Hamiltonian. As we can
see, the correlation is close to 1 when Eq. is used to define the initial amplitude.
Such a strong correlation seems to imply that this variant of our measure is useless, as
the degree centrality is certainly much easier to calculate. However, for a number of
vertices of the graph the order which results from the two measures is actually differ-
ent, and it is in these small differences that lies the significance of our index.

In the remainder of this Chapter we will use the adjacency matrix as the Hamil-
tonian and we will set the initial state according to Eq. as the high correlation
with the degree centrality makes the QJSD centrality fairly easy to interpret. Finally, we
conclude this Section with an evaluation of the impact of the magnitude of the initial
amplitude on the nodes centrality. More formally, we define the starting states with



118 6. Graph Structure Analysis

£02 //////I//I/ "’,lll ‘\llll N

25

35 10
0.5 5

Weight Nodes

Figure 6.15: The QJSD centrality as a function of the nodes and of the weight w.
For each node, the highest centrality corresponds to the choice of a different weight
(marked with a red dot). Moreover, the order of the nodes varies as w varies.

(a) Original (b) Modified

Figure 6.16: The QJSD centrality for a 5x5 mesh. The left and rigth figures show the
resulting QJSD centrality when the walk is initialised as in Eq. and in Eq. re-
spectively.
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where w is a real value which is used to change the initial magnitude of the wavefunc-
tion on v. The idea is that the higher the initial magnitude on v, the more marked
will the interference effects be. Fig. shows the value of the QJSD centrality for the
nodes of a5 x5 mesh as w is increased from 0.1 to 15. Note that each node achieves its
maximum centrality for a different choice of w and that for different weights the order
of the nodes induced by the QJSD centrality varies. Ideally, given a node v, one may
want to set the weight so as to maximize the divergence for that specific node. How-
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ever, since iterating the measurement of the QJSD centrality for different weights may
prove too cumbersome, we propose to set the amplitude of v equal to the sum of the
amplitudes on the remaining nodes. Although this is clearly not the optimal solution,
as Fig. shows the proposed weighting scheme yields a result which is certainly
closer to common sense than the original scheme. Therefore, in the remainder of this
Chapter we will assume that the initial amplitude of the walk is defined as in Eq.

6.3.2 Experimental Results

We apply the QJSD centrality to two commonly used network datasets, namely Zachary’s
karate club [151] and Padgett’s network of marriages between the 16 most eminent
Florentine families in the 15th century [107]. Fig.[6.17|shows Zachary’s karate club net-
work, where each vertex is drawn with a diameter that is proportional to the QJSD cen-
trality. We see that there are two main actors, node #1 and node #2, which correspond
to the instructor and the administrator of the club. Note that using our measure the
administrator turns out to be the node with the highest centrality, which is also the
most central according to the betweeness centrality, while the degree centrality elects
the instructor as the most important node. However, the betweeness centrality indi-
cates as the second most important actor node #3, as this vertex has many contacts
with both the members of administrator cluster and the members of instructor cluster
and thus it is misunderstood as a center by the betweenness centrality. Finally, node #4
is identified as the third most important by the degree centrality, leaving node #3 at the
fourth place, although the latter is more central in the sense that it shares many links
with nodes of the administrator group and of the instructor group.

Padgett’s network of marriages is depicted in Fig. In Table we show the

Figure 6.17: Zachary’s karate club network, where we have drawn each node with a
diameter that is proportional to its QJSD centrality.
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Figure 6.18: Padgett’s network of marriages between eminent Florentine families in the
15th century [107]. We omit the Pucci, which had no marriage ties with other families.

ranking of the 15 families according to their QJSD centrality. As expected, the Medici
easily best the Strozzi, which are their main rivals, which agrees with the idea that
Medici’s supremacy was largely due to their skills in manipulating the marriage net-
work. Interestingly the Pazzi, which is the most loosely connected family of the graph,
achieves the lowest centrality. Moreover, Peruzzi, Castellan and Bischeri all get a higher
centrality than Albizzi, although the degree of the four vertices is the same. This fits
nicely with the fact that the Peruzzi, Castellan, Bischeri and Strozzi form a rather cliquey
group in which the actors support each other, while the Albizzi remains a bit more iso-
lated.

Family Centrality || Family Centrality
Medici 0.3120 Albizzi 0.1299
Strozzi 0.2103 Barbadori | 0.0913
Guadagni 0.1831 Salviati 0.0697
Peruzzi 0.1531 Ginori 0.0421
Castellan 0.1516 Acciaiuol 0.0389
Ridolfi 0.1491 Lambertes | 0.0225
Bischeri 0.1440 Pazzi 0.0221
Tornabuoni | 0.1410

Table 6.1: The QJSD centrality of the families of Padgett’s network [107].
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6.4 Conclusions

Much recent research in the quantum walks domain has shown the existence of a link
between the interesting properties shown by quantum walks on graphs and the pres-
ence of symmetrical motifs in the graphs structure. This particular structure, in fact,
can lead to remarkable interference effects, both constructive and destructive. In this
Section[6.1]we have proposed a way to measure the presence of symmetries in a graph
using the quantum Jensen-Shannon divergence. This in turn has allowed us to design
an experiment to analyze the behaviour of the quantum walk without causing the wave
function collapse. We showed how to define two mixed states based on two different
quantum walks on the graph, and we used the resulting density operators to measure
the distance between the two quantum states. In particular, we proved that when the
graph possesses a symmetry, the QJSD between the two quantum states is maximum.
Our experiments show that a simple measure such as the average of the QJSD ma-
trix is able to capture the structural difference between a symmetrical graph and an
Erd6s-Rényi random graph, even in the presence of moderate Erdds-Rényi noise, as
well as to distinguish between different random graph models. In Section|[6.2]we have
shown how to explicitly detect approximate axial symmetries by performing a semi-
classical analysis of the interference. We demonstrated the efficacy of our approach
by analyzing both synthetic and real-world data. Finally, in an attempt to relate the
importance of a vertex to its influence on the interference patterns emerging during
the quantum walk evolution, in Section[6.3|we have proposed to use of the quantum
Jensen-Shannon divergence between two suitably defined quantum states to intro-
duce a novel centrality measure.
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Conclusions

In this thesis we introduced a wide spectrum of techniques for the modeling, classifi-
cation and analysis of graph structures. Our contributions can be identified into four
different areas. Chapter [3|introduced a novel algorithm for the extraction of medial
surfaces (3D skeletons) from three-dimensional shapes. The extraction of skeletons is
a common pre-processing technique in the analysis of 2D shapes. With the skeleton
to hand, one can segment it into different components and use a graph to represent
the relation between these parts. In this sense, our medial surface extraction algo-
rithm represents a first vital step in the pipeline for acquiring and analyzing 3D shapes.
Chapter [4|and Chapter [5| dealt with the classification of graphs, using generative and
discriminative approaches, respectively. More specifically, we introduced a novel al-
gorithm for learning a generative model for graphs in Chapter[4} together with a novel
information-theoretic criterion for model selection. In Chapter [5, on the other hand,
we described a new kernel for unattributed and attributed graphs which is based on
a quantum-mechanical analysis of the graph structure. In the same Chapter, we pro-
posed a way to increase the performance of the kernel by applying standard manifold
learning techniques on it. Finally, in Chapter[6|we used a similar quantum-mechanical
framework for analyzing the structure of the graph, with particular attention on the
discovery of approximate axial symmetries. We now recap in detail the contributions
of this thesis and the future directions of research.

Contributions and Novelty

The problem of medial surfaces extraction was addressed in Chapter[3] Although there
exists a large number of successful algorithms for the extraction of skeletons from 2D
shapes, the addition of a third dimension makes the task of medial surfaces extraction
particularly challenging. To this end, we generalized to three dimensions the density-
corrected analysis of Torsello and Hancock [138] where we iteratively refined an initial
coarse discretization of the shape interior by focusing on those point that were more
likely to be skeletal. More precisely, at each iteration we computed the gradient and
Laplacian of the distance map, we integrated the log-density in the voxels with a full
neighborhood and we alternated thinning and dilation steps to detect skeletal voxels at
the current level of resolution. In order to ensure that the original object topology was
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maintained throughout the process, we adopted the strategy proposed by Malandain
et al. [95], which allowed us to efficiently identify which voxels could be removed by ex-
ploring the connectivity of their neighborhood. The experimental part clearly demon-
strated that our method is efficiently able to recover the medial surface and shows
an increased robustness when compared to alternative approaches in the literature.
Moreover, we designed a simple alignment procedure to correct the displacement of
the extracted skeleton with respect to the true underlying medial surface. This is an
issue that stems from the voxelization of the shape itself, and to our knowledge the
proposed approach is novel.

Chapter [4)introduced the problem of learning a generative model which is able to
capture the relations and observation probabilities of the nodes of a set of observed
graphs. In order to describe the structural variations of the training set, we made the
naive assumption that the observation of each node and each edge was independent
of the others, but we allowed correlations to pop up by actually learning a mixture of
models. When learning a structural model, a common mistake is that of assuming a
maximum likelihood estimation, or simply a single estimation for the set of node cor-
respondences. We showed how to eliminate the bias resulting from a single estimation
by averaging over the set of all possible correspondences. Given the super-exponential
growth of this set, however, we decided to approximate the computation using an im-
portance sample strategy to select a limited number of correspondences. Finally, we
adopted a classical MML approach to penalize complex models and select which mix-
ture components and nodes required pruning. In addition to this, later in the Chapter
we proposed a novel information-theoretic framework for model selection which re-
lied on the maximization of the capacity of a suitably defined communication channel.

Although the generative model of Chapter [4| proved effective in a number of com-
puter vision related classification tasks, due to the complexity of efficiently sampling
the hidden correspondences and estimating the observation probabilities, its use is re-
stricted to graphs with a limited number of nodes. Moreover, it is known that generally,
although lacking the flexibility of generative approaches, deterministic approaches can
lead to higher classification performances. For these reasons, in Chapter [5| we intro-
duced a novel graph kernel which works both on unattributed and attributed graphs.
After observing that the dynamics of quantum walks on graphs are greatly influenced
by the presence of symmetrical structures, we designed a simple yet effective way to
measure the similarity between two graphs. In particular, we proposed to let two suit-
ably defined continuous-time quantum walks evolve on a union of the two graphs, and
we computed the divergence between the respective quantum states. To this end, we
made use of the quantum Jensen-Shannon divergence, a measure which has recently
been introduced as a means to compute the distance between quantum states [94,86].
Although we were unable to prove the positive definiteness of this kernel, we carried
out an extensive experimental evaluation to show that our kernel can easily outper-
form alternative graph kernels. We also proposed a way to enhance the performance
of the kernel by computing a low-dimensional embedding where the different classes
are better separated. The idea stemmed from the observation that the multidimen-
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sional scaling embeddings on this kernel showed a strong horseshoe shape distribu-
tion, a pattern which is known to arise when long range distances are not estimated
accurately. We hence proposed to use Isomap to embed the graphs using only local
distance information onto a new vectorial space with a higher class separability and
carried out an extensive experimental evaluation to show the effectiveness of the ap-
proach.

The final Chapter built on the quantum-mechanical framework introduced in Chap-
ter[5|to develop a set of novel algorithms for the analysis of graph structure. Given the
close connection between structural symmetries and destructive (constructive) inter-
ference of quantum walks, we decided to design a simple algorithm to measure the
degree of approximate axial symmetries possessed by a graph. Not only our approach
is completely novel, but this also turns out to be an extremely hard task, since approx-
imate symmetries are by definition hard to characterize. In other words, it is not clear
how to enumerate the number of approximate symmetries of a graph, and thus it is
difficult if not impossible to establish a ground truth. However, we designed a series of
experiments to carefully evaluate the properties of our algorithm, and we showed that
itis indeed able to capture the structural difference between a symmetrical graph and
an Erdos-Rényi random graph, even in the presence of moderate Erdos-Rényi noise, as
well as to distinguish between different random graph models. Moreover, we proved
that when the graph possesses a symmetry, our measure, which is based again on the
quantum Jensen-Shannon divergence, achieves its maximum value. We then proposed
a way to explicitly detect approximate axial symmetries by performing a semi-classical
analysis of the quantum walk interference and we tested our approach both on syn-
thetic and real-world data. Finally, in an attempt to relate the importance of a vertex
to its influence on the interference patterns emerging during the quantum walk evo-
lution, in last part of Chapter [6| we proposed a novel node centrality measure which
is once again based on evaluating the quantum Jensen-Shannon divergence between
two suitably defined quantum states.

Future Work

There are a number of open research questions that were not addressed in this thesis,
and will be the subject of future work. Given the skeleton of a 3D object, rather than
describing the adjacency relation between the medial sheets in terms of an undirected
graphs, one may use a richer structure such as a hypergraph, i.e., a generalization of
a graph where a hyperedge can contain an arbitrary number of nodes. In this case, a
hyperedge would naturally encode the adjacency relation between a set of intersect-
ing medial sheets. Alternatively, one may adopt a medial scaffold representation as in
Chang et al. [39,40].

The generative model of Chapter 4| could be extended to learn the occurrence of
repeating substructures in a graph. In this setting, the input would be a single large
graph, or a few instances of it, where a given module that we intend to learn is re-
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peated a number of times, with possible structural variations. This clearly requires
rendering the sample one-to-many such that the same model node can map to multi-
ple nodes in the graph, or on multiple graphs. Moreover, the external node should now
account for all those graph nodes which are not part of the substructure that we intend
to model, rather than simply noise. Thus, the model should be redefined in order to
avoid penalizing external nodes too much. Note also that a critical step would be the
initial assignment estimation, as we would need a way to estimate the location of all
the occurrences of the model in the larger graph.

Finally, Chapter [5|leaves a lot of room for improvement and further study. In this
thesis we were unable to prove the positive semidefiniteness of the QJSD kernel, how-
ever we observed that both empirical and theoretical evidences suggest that it might
be. Moreover, it would be interesting to study in a more systematical way the role of the
time parameter. In fact, while we proposed to let T — oo, we also noted that on a syn-
thetic dataset the best classification accuracy was achieved for a finite value of T. To
conclude, we should explore the possibility of applying alternative and more sophisti-
cated manifold learning techniques on the kernel. It is known, in fact, that Isomap suf-
fers from several shortcomings, so further work should focus on experimenting with
more robust manifold learning techniques.
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