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Abstract

The problem of fair machine learning has drawn much attention over the last few years and the bulk of offered solutions are, in
principle, empirical. However, algorithmic fairness also raises important conceptual issues that would fail to be addressed if
one relies entirely on empirical considerations. Herein, I will argue that the current debate has developed an empirical frame-
work that has brought important contributions to the development of algorithmic decision-making, such as new techniques
to discover and prevent discrimination, additional assessment criteria, and analyses of the interaction between fairness and
predictive accuracy. However, the same framework has also suggested higher-order issues regarding the translation of fair-
ness into metrics and quantifiable trade-offs. Although the (empirical) tools which have been developed so far are essential
to address discrimination encoded in data and algorithms, their integration into society elicits key (conceptual) questions
such as: What kind of assumptions and decisions underlies the empirical framework? How do the results of the empirical
approach penetrate public debate? What kind of reflection and deliberation should stakeholders have over available fairness
metrics? I will outline the empirical approach to fair machine learning, i.e. how the problem is framed and addressed, and
suggest that there are important non-empirical issues that should be tackled. While this work will focus on the problem of
algorithmic fairness, the lesson can extend to other conceptual problems in the analysis of algorithmic decision-making
such as privacy and explainability.

Keywords Machine learning - Fairness - Empirical approach - Assessment of machine learning

Introduction

Since scoring and classification algorithms have been intro-
duced to support, if not replace, human decisions in contexts
as diverse as healthcare, insurance, employment and crimi-
nal justice, the problem of fairness has become a central
theme in the field of machine learning.

In machine learning, the problem of fairness is addressed
in the context of a policy prediction problem (Kleinberg
et al., 2015): a decision about the future of a subject is made
and the outcome should not be negatively affected by any
sensitive attribute or feature that is considered as irrelevant
for that decision. Often this situation can be modelled as
a binary decision, where the subject is judged to be eligi-
ble for a specific role or a service with a certain degree of
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confidence.' Thus, once the target is fixed, e.g. “students
graduating on time”, “low risk insurance applicants”, “high
risk offenders”, “vulnerable children”, “successful job can-
didate”, “low risk borrowers”, a fair prediction is the one
which is independent of any sensitive or irrelevant attributes.
In other words, we do not want to accept or reject a student
because of his/her race or social media posts.

The problem has been discussed from different angles:
there are those who have provided empirical evidence of
discrimination [see stories in media spotlight such as Pro-
Publica’s investigation (Angwin et al., 2016) or the MIT
study on facial recognition (Natasha, 2019)], while others
have addressed the problem of quantifying discrimination
and proposed specific heuristics to mitigate bias in classifi-
cation tasks, e.g. see (Zliobaite, 2015; Zemel et al., 2013).

The debate within the machine learning community
has been productive and has led to several meaningful
effects. Firstly, it raised awareness among researchers and

! Note that a decision can be categorical (e.g. “rejected” / “not
rejected”), but the same outcome can be achieved by using a numeri-
cal function computing a probability value or a score for each
instance and setting up a threshold for making the assignment.
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practitioners undermining the alleged objectivity of algo-
rithmic decisions (Hardt, 2014). Secondly, a machine learn-
ing approach enabled the study of fairness in a precise and
quantifiable way, i.e. by studying the statistical conditions
which determine the direct or indirect influence of a pro-
tected attribute on a particular decision outcome. Moreover,
the statistical framework has offered valuable tools to estab-
lish boundaries and assess possible trade-offs in a view to
help decision makers ponder solutions, pose constraints, and
establish protocols for action.

However, by and large, the ongoing discussion has moved
along empirical considerations, e.g. measuring the magni-
tude of discrimination or imposing constraints to existing
machine learning techniques. In other words, the setup of
the problem and the adequacy of proposed solutions were
mostly addressed as an internal discussion that only a few
people can access (e.g. those with the technical knowledge
and skills), while other relevant stakeholders, such as pol-
icy makers and users, remain outside. The consequences of
this prevailing attitude are several. In the first place, there
was a cultural change: a long-standing issue of our society
became a new attractive scientific puzzle that generated fur-
ther sub-problems of a strictly computational nature with
no substantial relations to the social context giving rise to
the scientific effort (Powles & Nissenbaum, 2018; Selbst
et al., 2019). In the second place, confining the issue of
algorithmic fairness to a computational problem hinder the
field of machine learning from assessing its own solutions
in the light of other disciplinary perspectives and the present
historical context. In short, it may cause the filed to miss
relevant conceptual questions that have nothing to do with
the capacity of algorithms to solve the problem of fairness
in the machine learning domain. Instead, conceptual prob-
lems put the field in front of higher-order questions, such
as: what kind of assumptions and decisions are implied by
the algorithmic account of fairness? How do the results of
the empirical approach penetrate public debate? What kind
of reflection and deliberation that the different stakehold-
ers, including citizens, may have over available metrics for
fairness? What considerations would we need to keep algo-
rithmic fairness tied to other human values (e.g. inclusion,
solidarity, freedom, etc.)?

In this paper, I will consider the problem-solving
approach to fairness from the perspective of the philoso-
phy of science. My starting point is the simple idea that,
like many other disciplines, machine learning attempts to
solve empirical problems, and, when it comes to fairness,
makes no exception. Nonetheless, empirical problems do
not exhaust the scope of intellectual activity. According to
the philosopher of science Larry Laudan, any discipline con-
fronts with conceptual difficulties which regard the theoreti-
cal constructs of a developed theory or solution (Laudan,
1977). Conceptual problems can refer to ambiguities or
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inconsistencies of the premises of a theory, conflicts with
other doctrines and tensions with entrenched values or
beliefs, among others.

I will argue that so far the debate on algorithmic fair-
ness has been too focused on empirical considerations and
less attentive to conceptual difficulties. Starting from three
claims of the empirical paradigm (see the section “Concep-
tual problems in fair machine learning”), I will provide some
stimuli to critically reflect on specific difficulties that affect
the empirical solutions and ultimately refer to the conceptual
dimensions of the problem.

This paper is structured as follows. In section “The empir-
ical and conceptual sides of a discipline”, I will sketch out
some key notions of Laudan’s philosophy of science that
would serve to frame the discussion on algorithmic fairness.
In section “The empirical account of fairness”, I will give an
overview of how machine learning is addressing the (empiri-
cal) problem of fairness. In section “Conceptual problems
in fair machine learning” I will introduce a few conceptual
difficulties that relate to theoretical assumptions or implicit
beliefs of the dominating empirical approach, and then con-
clude with some final remarks.

The empirical and conceptual sides
of a discipline

The idea that science is essentially a problem-solving activ-
ity is well grounded in the history and philosophy of sci-
ence.” However, in Larry Laudan’s view of science, the idea
of problem-solving is an authentic cornerstone that extends
far beyond scientific problems and may well reflect any intel-
lectual endeavor.’

According to Laudan, all intellectual disciplines aim at
solving problems and scientific theories follow the same
pragmatics: “Theories matter [...] insofar as [...] they pro-
vide adequate solutions to problems. If problems constitute
the questions of science, it is theories which constitute the
answers.” (Laudan, 1977, p. 13). So, from this point of view,
we may not see much difference between the role of a the-
ory and that of an algorithm since both attempt to provide
acceptable solutions to determined problems.

In his framework, Laudan identifies two types of prob-
lems: the class of empirical problems and the class of con-
ceptual problems. The former is probably the most intuitive

2 In addition to Larry Laudan, even Karl Popper acknowledged that:
“The activity of understanding is essentially the same as that of all
problem solving.” (Popper, 1972, p. 166).

3 Indeed, he does not believe “that “scientific” problems are funda-
mentally different from other kinds of problems (though they often
are different in degree).” (Laudan, 1977, p. 13).
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one since it deals with the “first order questions” of a disci-
pline, which spring from basic observations and arise in a
certain context of inquiry. For example, questions like “why
do people learn to process spoken language more easily than
they do with writing?” or “how do communication disorders
interfere with learning skills?”” can constitute genuine empir-
ical problems in linguistics. Likewise, if we turn to the field
of machine learning, empirical problems can originate from
questions such as: “what can be inferred from a set of obser-
vations?”’; “what class of functions best generalize beyond a
given set of examples?”’; “how many examples are needed to
learn to classify?”. Note, however, that empirical problems
must not be considered as pieces of unambiguous data found
in the real world.* On the contrary, they are always perceived
through the lens of the concepts and abstractions of the field
where they arise (Laudan, 1977). Thus, for example, it is
because of statistical assumptions and the inductive nature
of the problem at stake that the relation between the size of
the hypothesis space and the number of observed examples
is perceived as problematic in the field of machine learning.

The class of conceptual problems, on the other hand, is
less apparent than that of empirical problems, but its role
is anything but marginal. Conceptual problems are higher
order questions that concern the “adequacy of solutions
to empirical problems.” (Laudan, 1977, p. 15). Note that
the distinction between empirical and conceptual problems
does not relate to the naive polarization between abstract
versus verifiable observations. The key point is the locus
of intervention when solving a problem and assessing its
solution. When a researcher acts within the field of study
where the problem arose, his/her intervention is empirical
(first-order problems), regardless of the methods used in that
field (be those argumentation or experiments). When he/she
moves outside the contours of “his/her” field, the research
work rises up to a conceptual level, which does not neces-
sary imply that consideration will be more abstract. Indeed,
this move can create new problems (second-order problems)
which need interactions with different approaches and points
of view.

Conceptual problems can have an internal or an external
source. For example, a theory can suffer from terminological
ambiguity or circularity (e.g. Faraday’s model of electrical
interaction employed the same concept of action-at-distance
that he was actually supposed to eliminate). But a theory can
also conflict with other doctrines or extra-scientific beliefs.
Note that a theory, when confronted with external elements,

* Laudan stresses that empirical problems do not necessarily refer to
real world facts or unambiguous evidence. The history of science has
plenty of anecdotes of “fake” stories that were treated as they were
real problems, and examples of known phenomena that were not con-
sidered as a problem at all. Examples and more details can be found
in (Laudan, 1977, pp. 15-17).

can also deal with a body of knowledge which does not obey
the conventional canons of empirical or formal sciences such
as ethics, metaphysics or worldviews. Examples of such ten-
sions include the mismatch between Newtonian ontology
and the philosophical notions of “substance” and “proper-
ties” in the 18th century’ or the contrast between Darwin’s
theory of evolution and religious views or other social prac-
tices like altruism and love.

Laudan’s distinction between empirical and conceptual
problems is part of a framework whose goals go beyond
the purpose of this paper. However, the underlying intuition
invites us to open the assessment of a problem solution to a
broader set of considerations drawing on different discipli-
nary perspectives and more informal ways of thinking.® If
applied to the problem of algorithmic fairness, this translates
into concrete questions such as: “how do fairness metrics
relate to the various conceptions of justice?”’; “what kind of
assumptions do they presuppose?”’; “what type of reasoning
and decisions do they solicit?”.

Research moving in this direction already exists. For
example, Selbst et al. (2019) pointed out distinct “traps” that
occur when failing to acknowledge the wider social context
of fair decisions, while Heidari et al. (2019) proposed a con-
ceptual mapping between existing definitions of algorithmic
fairness and available notions of equality of opportunity in
political philosophy. However, since most of these contribu-
tions rest on approaches and languages that are distant from
those commonly used by the machine learning community,
one may consider them as marginal for making progress in
algorithmic fairness. On the other hand, people who are not
familiar with such languages and approaches could misun-
derstand the very contribution of fair machine learning, and
therefore under- or over-estimate the solutions offered by
the field. Laudan’s lesson is that we can fill these cultural
gaps by keeping the empirical and the conceptual problems
united, an idea that is rooted in a broad sense of rationality.’

5 In the 18th century Newtonians confronted with the conceptual
problem of reconciling the language of “substance” and “properties”
with the ideas of “bodies” and “forces”: “can bodies exert force at
points far removed from the bodies themselves? what substance car-
ries the attractive force of the sun through 90 million miles of empty

space so that the earth is pulled towards it?” (Laudan, 1977, p. 61).

% These would include also considerations which do not obey a spe-
cific method of inquiry (e.g. experimental method, philosophical
argumentation, archival study, etc.), but arise out of informal reflec-
tions and practical reasoning. Examples of these types of knowledge
are intuitions about social problems and practical rules learned from
repeated experiences.

7 Laudan’s conception of science extends the contours of rationality.
While several philosophers and sociologists of science undermined
the role of worldview difficulties — making them ‘“pseudo-problems”
or a sign of “irrationality” of a field — Laudan considers them as legit-
imate factors in the rational development of science. Motivated by
the fact that scientific theories cannot exhaust the domain of rational
beliefs, he suggests that worldview difficulties challenge both sides of
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In the end, my proposal is to take Laudan’s view of sci-
ence as an encouragement to expand the assessment of fair
machine learning and “cast our nets of appraisal sufficiently
widely” so as to “include all the cognitively relevant factors”
(Laudan, 1977, p. 128) which are present in our time. The
next sections can be therefore interpreted as an exercise of
this broad appraisal and an attempt to address non-trivial
conceptual difficulties in fair machine learning.

The empirical account of fairness

Before undertaking a discussion of conceptual issues that
affect algorithmic fairness, I want to outline the empirical
traits of the problem. In general, the goal of a fair algo-
rithm is to avoid unjustified discrimination.® This occurs, for
instance, when two individuals, who differ only in a sensitive
attribute (say gender), get different outcomes: one is hired
and the other is not hired. If undetected, biased decisions can
in fact amplify and systematize existing social inequities.

In the field of machine learning the problem of fairness is
statistical in nature: given a set of individuals described by a
series of legitimate and protected attributes the problem boils
down to quantifying the degree of independence between the
outcome (i.e. the target variable) and the protected features.
The problem can be easily stated in information-theoretic
terms. For example, if P(X) is the probability of “being a
woman” and P(Y) is the probability of “being hired,” the
objective is to measure the mutual information between the
two variables, I(X, Y), where I(X,Y) =0 < X and Y are
independent, i.e. P(X,Y) = P(X)P(Y). Therefore, the lower
the mutual information /(X, Y) the greater the independence
between the two variables and the probability of fair classi-
fication. Note that unfairness rarely derives from a deliberate
discriminatory design choice, it rather connects to data, and
not to the algorithm itself Menon and Williamson (2018).
Thus, in the field of machine learning scholars are more
familiar with “indirect discrimination” or “statistical dis-
crimination” Zliobaite (2015).

There exist many ways to formalize the notion of fairness.
If we consider a simple binary decision where Y € {0, 1}
is a binary, target variable, Z is the set of legitimate fea-
tures, X € {0, 1}1is a binary variable representing a protected

Footnote 7 (continued)

the conflict (scientific and extra-scientific) testing the quality of their
underlying assumptions and their ability to provide satisfactory solu-
tions.

8 A broad perspective on the problem of discrimination in data analy-
sis, including its legal and cultural underpinnings, is provided (Romei
& Ruggieri, 2014).
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attribute, and ¥ = f(X, Z) is the classifier’ we want to build,
three popular fairness criteria are:

— Statistical parity (Dwork et al., 2012): the probability
of receiving a positive/negative classification should
be the same in any group (or the proportion of positive/
negative predictions should be the same for each group).
The classification should be independent of the protected
attribute.

P =11X=1)=P¥ =1|X=0)

— Calibration (Kleinberg et al., 2017): the probability of
being a positive instance conditioned on the received
classification should be the same in any group, i.e. groups
with the same probability of being classified as a positive
instance should be in fact a positive instance.

PY=1Y=1,X=1)=P¥=1Y=1,X=0)

— Equalized odds and equality of opportunity (Hardt et al.,
2016): the probability of true positive and false positive
is equal across groups. When this criterion relates to the
advantaged outcome (e.g. X = 1 =“being hired”), it is
called “equality of opportunity”:

P=1Y=1,X=1)=PF =1Y=1,X=0)

Note that these fairness metrics, in the end, pose constraints
on how the classifier performs on different groups. For
example, calibration enforces equal precision,'® while equal-
ity of opportunity requires an equal, true positive rate [(for a
nice parallel between fairness and performance metrics see
Berk et al. (2018)]. Alternatives to isolating the effect of sen-
sitive attributes commit to different principles. In this regard,
Dwork et al. (2012) puts forward a theoretical framework
which rests on the assumption that “any two individuals who
are similar with respect to a particular task should be clas-
sified similarly” (Dwork et al., 2012, p. 1). Additionally, Jia
et al. (2018) proposes a method developed in the context of
domain adaptation to make predictions that are “right for the
right reason,” [(e.g. “gender of a subject in an image should
not be based on the background.” (Jia et al., 2018, p. 1)].
Other studies have highlighted different aspects of the
problem. For example, Menon and Williamson (2018) ana-
lyzes the optimal trade-off between fairness and predictive

° In short, a classifier is a function estimating the value of the target
variable, which can be a class label (e.g. “high risk”) or a numerical
value (e.g. the probability to give back money).

10 In information retrieval and machine learning, the notion of pre-
cision is a popular performance metric which represents the ratio
between true positive instances and instances classified as positive.
For a basic introduction see https://en.wikipedia.org/wiki/Precision_
and_recall.
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accuracy that is inherent in learning algorithms (with fair-
ness constraints). Other studies revealed impossibility results
(Chouldechova, 2017; Kleinberg et al., 2017) proving that
some fairness metrics are not compatible with one another.
This condition is also one of the reasons behind the dispute
surrounding COMPAS,!! a famous predictive tool which
turned out to be well-calibrated, but unsatisfactory with
respect to the error rate balance (e.g., false positive rates
were much higher for Afro-Americans compared to others).
Overall, empirical evidence has made it clear that when we
approach fairness in algorithmic decision making we need to
take important choices, for instance, as to whether maximiz-
ing accuracy or fairness, and, as for the latter, what metric
would make more sense in the context of application.

Conceptual problems in fair machine
learning

In the field of machine learning the empirical approach to
fairness is a natural option. The problem is tackled through
the lens of machine learning constructs and concepts, and
making use of optimization constraints, statistical assump-
tions and performance metrics, among others. This well
reflects the idea that algorithmic fairness can be considered
as a problem of the field, on par with over-fitting or lack of
data. However, as we said before, a scientific investigation
may also generate conceptual, i.e. non-empirical, problems,
a few of which are addressed in this section. In particular, I
will discuss three broad conceptual difficulties which con-
nect to the empirical account of fairness. Note that my aim
is not to solve these difficulties but to propose an exercise for
reflection that could stimulate a broader appraisal of empiri-
cal solutions.

Problem 1: Can fairness be engineered?

A first, quick answer would be ‘yes’ since many scholars
have suggested that fairness can be tested and measured
(Zliobaite, 2015). Notwithstanding, framing a complex
notion in terms of quantities and formal relations can be
highly problematic. Indeed, when we define a fairness cri-
terion we impose limits to the general understanding of the
concept. This is a natural consequence of any formal defini-
tion, which is supposed to retrieve (literally, “to pull away”)

"' On the one hand, Angwin et al. (2016) showed that COMPAS
generated unbalances between error rates based on ethnicity, i.e. the
algorithm wrongly flagged black defendants as high risk at almost
twice the rate as white defendants and mislabelled the latter as low
risk more often than black defendants. On the other hand, Flores et al.
(2016) showed that COMPAS’ performance is consistent with the
calibration criterion.

only the elements that are necessary and useful for the inves-
tigation. Accordingly, engineering fairness implies the selec-
tion of what counts most, where to direct attention, and, as a
consequence, introduces some level of simplification.

For example, Barocas et al. (2017) suggests that the
machine learning approach tends to focus on harms which
derive from unequal allocations of goods and opportuni-
ties (e.g. when certain groups are repeatedly excluded from
getting highly qualified jobs), while it ignores those harms
connected to unjust identity representations, such as search
engine results displaying racist or sexist prejudice (Snow,
2018).

Other simplifications arise when we consider two dif-
ferent concepts of discrimination: the comparative and
non-comparative ones (Hellman, 2016). The comparative
notion of discrimination determines if an outcome is fair by
making reference to other individuals (for example, when
a subject is treated worse than another one). Many defini-
tions of fairness, like the criteria introduced in the previous
section, build upon the same intuition, i.e. they are based
on the probability of a certain outcome with respect to dif-
ferent groups of people. However, there also exists a non-
comparative view of discrimination where justice consists
in treating “each individual as she is entitled to be treated.”
(Hellman, 2016).

A non-comparative conception of discrimination is inde-
pendent of other individuals. Instead, it needs some stand-
ards that specify which rights people are entitled to and
which criteria are relevant for a certain decision. Note that
this last conception of justice would be hardly applicable
in the context of algorithmic decision making. Indeed, the
majority of today’s machine learning applications mask the
relevant criteria for making a decision, and a fundamental
reason is that our best performing models do not need to
specify a decision rule. The criteria to take decisions are
often implicit, encoded into the masses of input-output rela-
tions available in the wild (Halevy et al., 2009) and used to
train the systems.

These observations do not only relate to the fact, already
stressed in the literature (Heidari et al., 2019), that fairness
criteria make assumptions about the notion of the equality
and justice they implement. They also suggest that engi-
neering fairness implies the translation of a complex notion
into a static, as well as partial, definition that might be then
applied to a variety of decisions with different implications
(e.g. advertisements, media treatments, school admissions,
etc.). As we establish measurements and formalization, we
enforce a certain (abstract) meaning and, with it, a mechani-
cal rule for action determining what is fair or unfair. While
formal definitions are essential to reduce subjective inter-
pretations and make fairness an operational requirement,
ambiguities and inconsistencies may not disappear. For
example, one may ask: “Who is responsible for setting such

@ Springer
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standards?” or “How may one decide which measures are
appropriate and which are not?”.

In addition, if we consider the variety of definitions and
metrics proposed in machine learning research (Verma and
Rubin, 2018), one may ask if there is a legal correlate or doc-
trine for each. However, even if such legal background were
available, the technical criteria could nonetheless fail to meet
the policy requirements they sought to satisfy. In particu-
lar, Lipton et al. (2018) showed that algorithmic solutions
which rest upon the doctrine of disparate impact,'? under
certain circumstances, can incidentally create situations of
treatment disparity, where, for example, people within the
same group are treated differently on the basis of irrelevant
features (Lipton et al., 2018). Finally, in case of multiple
criteria associated with the same legal concepts, there still
might be questions on how and why they technically differ.

Social sciences can provide some useful tools to explore
the theoretical constructs of fairness metrics and the choices
which motivated them. For example, drawing on quantita-
tive social science, Jacobs and Wallach (2021) introduces
the language of measurement modelling to clarify possible
mismatch between theoretical abstractions, which cannot be
directly measured, such as fairness and their operationaliza-
tions through observed data.'?

Problem 2: How to determine acceptable trade-offs
between fairness metrics and other relevant
variables?

Most of the studies conducted so far have suggested the
existence of possible trade-offs regarding either the fairness
criteria that can be simultaneously satisfied or the balance
one may achieve between accuracy and fairness (given a
specific fairness notion). However, there is no mathemati-
cal answer to the choice of an “acceptable” or “desirable”
balance. Once we have quantified the variables of interest,
be those for accuracy or fairness, the empirical framework
can help us identify the “best” possible compromises. But
the discussion on whether these are acceptable is left to
human deliberation. Indeed, machine learning scientists have

12 In United Sates, there are two main interpretations of discrimina-
tion law: disparate treatment and disparate impact. In short, the for-
mer is concerned with intentional discrimination and the latter with
apparent neutral decisions which negatively affect members of a pro-
tected class.

13 “Articulating the distinction between constructs and their opera-
tionalizations allows us to make assumptions explicit, identify the
source of existing fairness-related harms, and characterize and even
remedy potential harms. The language of measurement allows us to
negotiate and evaluate our constructs and operationalizations thereof,
providing a common framework to unite and clarify existing conflicts
in the fairness, accountability, and transparency in machine learning
community.” (Jacobs & Wallach, 2021, p. 2)

@ Springer

acknowledged that algorithms “are agnostic about what the
target outcome for fairness should be.” (Berk et al., 2018, p.
23) For example, a human decision maker may address ques-
tions such as: “what fairness criteria should be prioritized?”
and “to what extent may a loss of accuracy be acceptable?”.
At the same time, answering these and similar questions
requires moral and social skills that are as important as tech-
nical ones.

Discussing social issues is not just a matter of expressing
preferences or a decision policy that should be encoded into
an algorithm. It concerns the exercise of moral judgment
and a careful reflection on what serves human well-being
and common good in the particular context of algorithm’s
application. For example, in the domain of criminal justice
an often-quoted example of social dilemma is the decision as
to whether to reduce the crime rate or the jail population'*.
While such a decision is part of a wider political discussion,
it does not fit the layout of an optimization problem. The
discussion of social issues, such as justice, is articulated and
needs time to mature. For example, understating the value
(i.e., the “weight”) of mass-incarceration in a policy pre-
diction problem (e.g. bail decisions) can be hardly isolated
from broader considerations, such as the quality of prison-
ers’ life, the purposes of punishment, the rehabilitation of
the offender, etc. Moreover, the discussion can involve a
variety of actors, e.g. government, judges, citizens, correc-
tional agencies, etc. each of whom has a particular viewpoint
of the problem and reflects the needs and expectations of
people affected by algorithmic decision-making.

Understanding the social context where fairness issues
arise is also a matter of discretion and practical wisdom.
The application of abstract concepts and principles in par-
ticular cases profits not only from a technical understating
of those notions, but also from the practice of virtues and
responsible action. In ancient philosophy, virtues are atti-
tudes which come about as a result of habit and whose prac-
tice can guide individual and group decision-making even
in modern organizations [for an example of their application
to a big tech company see Neubert and Montafiez (2020)].
Although their number varies among philosophers and dif-
ferent accounts exist, classical tradition identified some vir-
tues that can still offer valuable guidance. These include, for
example, prudence, a disposition which deals with human

!4 Indeed, one of the reasons put forward to motivate the use of
machine learning and statistical tool in recidivism prediction is the
need to reduce jail population. For example, some policy simula-
tions have shown that a machine learning model can bring important
welfare gains in bail decisions: “either crime can be reduced by up
to 24.8% with no change in jailing rates, or jail populations can be
reduced by 42.0% with no increase in crime rates” (Kleinberg et al.,
2017).



Non-empirical problems in fair machine learning

709

foresight and consideration of long-term goals, and equity,
a virtue that closely relates to the notion of fairness.

Equity, like fairness, contributes to the realization of jus-
tice, but its meaning extends beyond the idea of impartiality
and connects to the ability of making tailor-made, particu-
larized judgments (Shiner, 1994). This virtue counterbal-
ances the effects of laws and, in particular, the deficiencies
caused by its mechanical application. It demands the use of
judgment in adapting the rules to particular situations where
the subject matter is true for the most part.'> This flexibil-
ity would be valuable even in the context of fair machine
learning, where compromises can vary depending on the
domain application - for example, a loss of accuracy could
be acceptable in a fraud detection application but it may not
be tolerable in a diagnostic tool for cancer. Moreover, the
exercise of virtues, like equity, allows to think out of the box
and discover hidden tensions, as well as identify which are
morally salient for the case at stake.

Human and social deliberation is a complex and, often,
arduous effort. Unfortunately, popular digital technologies,
in particular those enabled by Al and ML, rely upon a sim-
plified view of rationality,'® where decisions are reduced to
a value-maximizing equation. The influence of this intel-
lectual framework within the field of artificial intelligence
and machine learning has somewhat limited the knowledge
and adoption of different ways of thinking and approach-
ing decisions. As reported by some organizations of engi-
neers (IEEE, 2020), it is crucial to go beyond existing prac-
tices and to develop additional skills that can help artificial
intelligence developers engage with and address ethical
challenges. One way to move in this direction is to allo-
cate more time for generative discussion and debate within
and outside organizations (IEEE, 2020) as well as increase

15 For Aristotle, the subject matter justifies the precision and, hence,
the flexibility, that should be demanded to human judgment. In the
case of practical knowledge, judgment cannot be as precise as it is
in theoretical sciences, like math. Indeed: “noble and just actions,
which political science investigates, exhibit much variety and fluctua-
tion” (Aristotle, 2009, p. 1094b15). This flexibility is also described
through a metaphor which links equitable judgment to a mason’s rule
made of lead found on the island of Lesbos and used to reproduce
irregular curves: “For when the thing is indefinite the rule also is
indefinite, like the leaden rule used in making the Lesbian moulding;
the rule adapts itself to the shape of the stone and is not rigid, and so
too the decree is adapted to the facts.” (Aristotle, 2009, p. 1137b30).
So, like the leaden rule, equitable judgment reaches the goal of jus-
tice adapting a general law to a particular situation. For example, the
mechanical application of law forbidding stealing would fail to do
justice in the case of a man taking without permission a neighbor’s
garden water hose to fight a fire in his own house (Shiner, 1994).

16 Usually artificial intelligence and machine learning are based on
the concept of a rational agent defined as an individual that acts to
maximize expected utility (Russell, 2019).

the interactions with stakeholders.!” Further measures can
include changes in education and vocational training of Al
practitioners to support them in the development of ethical
skills [see for example Grosz et al., (2019)].

Problem 3: Can algorithmic fairness be fixed?

In the last few years the problem of fairness has become a
top priority. Documents put forward by governments and
organizations recommend fairness as a fundamental require-
ment while acknowledging the role of technical and organi-
zational measures. For example, the European Guidelines
for Trustworthy Al include the principle of fairness among
the four “moral imperatives” that should inspire the design
and deployment of artificial intelligence systems (HLEG-AI,
2019). Often, this effort translates into a by-design approach
which led the community to develop a large pool of methods,
ranging from algorithmic remedies to ad hoc testing and
audit processes. Note that most of these resources consist of
empirical solutions, i.e. they solve a well-structured defini-
tion of the problem in a specific scientific domain or culture.
However, this abundance raises conceptual issues that, more
or less implicitly, relate to the temptation of technological
solutionism (Morozov, 2013).

The possibility to encapsulate fairness into a mathemati-
cal formula or a procedure might hide the illusion that we
can isolate values and purse them separately. The market
of tech solutions has, in fact, increased in the last few years
with more and more organizations embracing the challenge
of algorithmic fairness.'® Unfortunately, this has also con-
tributed to a poor understating of the problem, and frag-
mented into a multitude of partial definitions and methods
that can operate independently or with few interrelations.

A conceptual difficulty which is inherent in the empirical
approach to fairness is the limited consideration of how fair-
ness issues connect to other human values. Contemporary
philosophy has presented fairness as an essential condition
to build a society of free and equal citizens (Wenar, 2017)
and in democratic societies we see it at work in the pursuit
of justice, inclusion, and solidarity. Additionally, fairness

17" Similar examples include initiatives promoting dialogue with citi-
zens and advancing public understanding of Al technologies such as
the Partnership on Al (https://www.partnershiponai.org), the Tactical
tech (https://tacticaltech.org), and the AI4EU Observatory (https://
www.aideu.eu/ai4eu-observatory). Others try to encourage mutual
understating among stakeholders and the dialogue with under-repre-
sented groups, such as the so-called “diverse voices” methodology
developed by the tech Policy Lab of Washington University.

18 There are several organizations which are thriving on the design of
fairness interventions. These can include for profit initiative such as
Unbiased (https://unbiased.cc/) and research projects such as Aequi-
tas, an open source toolkit developed by the University of Chicago
(http://aequitas.dssg.io/).
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operates in concert with other democratic principles, such as
transparency and accountability, to build trust within com-
munities. It is rare, if not impossible, to implement these
principles in isolation. One influences the other. We cannot
guarantee, for instance, fair elections, if we do not sustain
freedom of speech and association along with open and
transparent communication. Unfortunately, past elections in
Europe and United States have given us renewed evidence
on how micro-targeted advertising can erode all these princi-
ples and place our democracy under strain (Editorial, 2018).
Thus, implementing fairness safeguards without an overall
assessment of connected dimensions might not be sufficient
to fix the problem.

This interconnectedness also has practical consequences
on the attempts to implement fairness. As seen in the previ-
ous sections, most empirical solutions to algorithmic fair-
ness act on a set of elements identified as a part of the prob-
lem definition. Usually these include: personal data, proxy
variables, asymmetries in data sets, error rates disparities,
etc. However, there are other actions which, even if they fall
under the umbrella of other ethical requirements, would fit
for fairness as well. For example, the General Data Protec-
tion Regulation recommends the adoption of transparency
safeguards to avoid unfair processing. Specifically, articles
12-14 require anyone using an algorithm for automatic
decision-making to inform data subjects of the existence of
this processing and provide information about its purpose
and logic, as well as the significance and envisaged conse-
quences .'° Indeed, transparent communication would help
data subjects make use of their “right not to be subject to
a decision based solely on automated processing” (see art.
22 GDPR) and ask for human intervention, if necessary. In
a similar spirit, the OECD Al Principle of “‘Human-centred
values and fairness”?’ acknowledges other important prac-
tices such as impact assessments on human rights, human
oversight (i.e., a “human in the loop”), and codes of ethical
conduct.

In the end, considering fairness within a web of inter-
related values which contribute to the flourishing of human
society raises the question as to whether an ultimate solu-
tion really exists. If the notion of fairness has many facets
and relates to an indivisible set of human rights, including
freedom and human dignity, the remedy will look more like
a process rather than an empirical solution. If we look at

19 Further details on the implications of GDPR for algorithmic fair-
ness can be found in the letter of the European Data Protection Board
to the European Parliament: https://edpb.europa.eu/sites/edpb/files/
files/filel/edpb_letter_out2020_0004_intveldalgorithms_en.pdf.

20 The Organisation for Economic and Cooperative Development
published a set of principles promoting a human-centric approach to
Al in spring 2019. These principles are available online: https://oecd.
ai/ai-principles.
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fairness in the broader context of policy problems, Horst
Rittel and Melvin Webber would say that it is a wicked prob-
lem, originating from the obstinate attempt to follow the
same method of science (Rittel and Webber, 1973). Wicked
problems have no clear traits, no exhaustive formulation,
and, for this reason, they are never solved. “At best they are
only re-solved - over and over again.” Rittel and Webber
(1973). The characteristic of a wicked problem is to have no
stopping rule, meaning that the problem solver never knows
when he has terminated his job. The social nature of fairness
problems render any solution limited in time and scope since
any progress made toward a solution opens new issues in
need of further investigation. As Rittel and Webber (1973)
points out, the decision to release a certain solution to a
social problem is determined by reasons which are external
to the problem, such as lack of resources or time.

While Rittel and Webber (1973) points to the intrinsic
limits of human solutions to social problems, I would like
to emphasize the positive aspect. Specifically, I suggest to
shift the focus from solutions to processes. If solutions are
inherently incomplete, the process to achieve them is the
key to broaden our knowledge of the problem and keep the
search alive. In other words, the goal is the process, not
the solution. With regards to fairness, this would mean,
for example, that the effort made to gather and listen to the
needs of stakeholders and representatives of minorities is
even more important than the resulting outcome. It is the
process that creates the necessary culture and attitudes to
move the search forward and shape an entire field. A process
can create more value than a solution.

Concluding remarks

Herein, I gave an overview of the problem of fairness in the
context of machine learning. Based on Laudan’s account of
science I suggested two different levels of inquiry based on
the distinction between empirical and conceptual problems.
After outlining the empirical account of fair machine learn-
ing I discussed a few conceptual difficulties surrounding
three problems: (1) the definition of fairness in formal terms;
(2) the role of human deliberation in discussing conflicts and
balances between fairness metrics and other variables; and
(3) the expectation of definitive solutions.

Note that what I have discussed so far on fairness may
also hold for other problem domains which have raised
great attention within machine learning community, such
as privacy and transparency. Even in these fields empirical
solutions have being thriving and suggesting similar con-
ceptual issues addressed in this paper. For example, Giirses
(2014) acknowledged that engineering privacy could be an
ideal that misleadingly suggests we can engineer social and
legal concepts. In the field of explainable Al scholars are
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increasingly aware of the fact that explainability is a kaleido-
scopic problem and in some contexts powerful visualizations
tools are not enough to explain a prediction (Kuang, 2017).

Ultimately, this analysis has suggested that the assess-
ment of a field cannot be measured just by looking at the
empirical side of a discipline. The broad account of scientific
progress in Larry Laudan’s philosophy of science suggests
that the appraisal of machine learning is a multi-factorial
affair that involves distinct levels of answer, the confronta-
tion with different disciplines and the capacity to understand
the limits of a problem solution.

In recent times, the philosophy of technology has clearly
expressed the idea that technical artifacts are a powerful
vehicle of ideologies and moral values (van de Poel & Roy-
akkers, 2011). Technical artifacts do not only fulfill a spe-
cific task, they also shape the actions and experiences of
their users. For example, assessment platforms, like those
used for recruiting, mediate the relation between candidates
and the employer. On one hand, they influence the presenta-
tion of candidates through ranking and scoring, and on the
other, give incentives to meet certain standards of quali-
ties and success. Acknowledging the role of technology as a
moral mediator is an essential step to train engineering and
promote responsible design. In this regard, the analysis of
conceptual difficulties adds further insights. If it is true that
technical artifacts are the “bearer of moral values,” van de
Poel and Royakkers (2011) then it is also the case that we
need to go beyond them when addressing the social prob-
lems that they raise. Conceptual issues help us to realize that
redesigning the technological mediation is only part of the
solution, which lies in the road ahead.
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