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A B S T R A C T

The contribution of this paper is twofold. Firstly, it introduces novel regression models that combine two
important areas of the methodological development in panel data analysis, namely a varying coefficient
specification and spatial error dependence. The former allows relatively flexible nonlinear interactions; the
latter enables spatial correlations of the disturbance and thus differ significantly from the other random effect
models in the literature. To estimate the model, a new estimation procedure is established that can be viewed
as a generalization of the quasi-maximum likelihood method for a spatial panel data model to the well-known
conditional local likelihood procedure. Novel inference methods, particularly variable selection and hypothesis
testing of the parameter constancy, are introduced and are shown to be effective under the complex spatial
error dependence. Equally importantly, this paper makes a substantial contribution to the understanding of
financing and expenditure for health and social care. In particular, we empirically analyze and explain the
effects of political ideologies on the local fiscal policy in England, especially the expenditure on mental health
services.
1. Introduction

To analyze important phenomena in economics, many researchers
have recognized the need to exploit the rich information available
in panel data sets. While (Moscone et al., 2007) and Meng et al.
(2021) are excellent examples of studies in health economics, Fingleton
(2009), and Ihlanfeldt and Mayock (2010) are in urban economics.
In consequence, we have witnessed extensive development in var-
ious methodological aspects of panel data analysis in recent years
(see Sarafidis and Wansbeek (2021) for an excellent survey). This
paper contributes to this development in two important areas, namely
the varying-coefficient (VC) specification and spatial error dependence
(SED). Equally importantly, this paper makes a substantial contribution
to the understanding of financing and expenditure for health and social
care. In particular, we empirically analyze and explain the effects of
political ideologies on the local fiscal policy in England, especially the
expenditure on mental health services (MHS). We elaborate on these
points below.
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Even though the VC specification is the main focus of many method-
ological studies, recently varying-coefficient panel data (VCPD) mod-
els have also attracted much attention (see e.g., Feng et al. (2017)
and Dong et al. (2021)). However, recent extensions of the VCPD
models to spatial econometrics have concentrated mainly on the spatial
lag dependence (SLD). Some well-known examples of these works
are (Sun and Malikov, 2018), Zhang and Shen (2015), and Liang
et al. (2022) who estimate the SLD panel data model with functional
coefficients. Although the SLD specification is useful for modeling
the endogenous and contextual effects, which are important topics
in the social-interaction literature, its significance is diminished by
the inability to disentangle these effects. This is often referred to as
the ‘‘reflection problem’’ first discussed by Manski (1993) (see also
discussion in Anselin (2009)). Within the context of our VCPD model,
we argue that the VC specifications can help to model both these effects
(see Section 4 for more detail).

In our view, it is as important to study the SED as to study the SLD.
Measurement errors that spill across grid boundaries and unobservable
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latent variables (unaccounted for in a model) are only two examples of
many phenomenons that can lead to the SED. If they are not addressed,
these problems can hinder effective inferences, particularly variable
selection and specification testing. Moscone et al. (2007) provide the
empirical illustration of this issue in applied health economics. In
addition, Fingleton (2009) and Kim et al. (2023) show that these prob-
lems are common in studies of urban and environmental economics,
respectively.

This paper establishes a novel estimation procedure and inference
methods for VC short panel regression models with first-order Spatial
Autoregressive (SAR) disturbance terms, whose innovations have an
error component structure. Our specification of the disturbance allows
for spatial interactions of both the error and unit-specific components
and, therefore differs significantly from the other random effects mod-
els in the literature (see e.g., Baltagi et al. (2012), and Liu and Yang
2015)). Furthermore, our estimation procedure can be viewed as a
eneralization of the quasi-maximum likelihood (QML) method for
patial panel data models (see e.g., Lee and Yu (2010), and Liu and
ang (2015)) to the conditional local kernel-weighted QML method.
any previous studies considered the conditional likelihood methods

or estimating VC models (see Fan et al. (1998), Cai et al. (2000),
nd Fan and Zhang (2008) for details), but no existing work has done
o within the context of a panel data regression that allows for spatial
nteractions. In these aspects, our model and methods synergize directly
ith the geographically weighted regression (GWR) models with SLD
i.e., the so-called GWR-SAR model) discussed in Li et al. (2019). As

well as topics in health economics, these models have been applied
extensively to problems in applied urban economics (see e.g., Tomal
2020), Tomal and Helbich (2023)).

Moreover, we establish a novel procedure for variable selection
or our spatial VCPD model. In this regard, Wang and Xia (2009)
ntroduced the so-called Kernel Least Absolute Shrinkage and Selection
perator (KLASSO) technique. We show that this technique is ineffec-

ive when applied to panel data (especially under spatial interactions)
nd suggest an alternative procedure. We also extend our procedure to
andle the selection of a more complex specification known as the semi-
arying coefficient model in the literature. To ensure the theoretical
alidity of our procedures, we establish a set of asymptotic results
ased on the standard regularity conditions that are often used in
he semi- and nonparametric literature, particularly (Mack and Sil-
erman, 1982), Robinson (1988), Fan and Li (1999), Fan and Zhang
2000), and Robinson (2011). In conjunction with these results, we
onduct an extensive simulation exercise to illustrate the finite-sample
erformance and robustness of our proposed procedures.

In recent years, the mental health issue has become the emerging
ealth policy priorities in the UK from the point of view of healthcare
see Walker et al. (2019) for a comprehensive discussion) but the local
uthorities’ expenditure and financing are also the topics of heated
ebate. This paper empirically studies these issues by applying our
patial VCPD model and inference methods to analyze the funding
ecisions by the English local authorities during the UK’s fiscal squeeze.
o understand this paper’s contribution to the study of these topics, it is
seful to first note the difference between ‘‘variations in’’ and ‘‘disparities
n’’ MHS expenditure by the local authorities in England. A number
f studies have empirically investigated determinants of the local au-
horities’ MHS expenditure, particularly (Aziz et al., 2003), McCrone
nd Jacobson (2004), Moscone et al. (2007), Moscone and Tosetti
2010). Their empirical models are based on a traditional reduced-form
emand/supply framework, whereby the MHS expenditure is explained
y a set of risk factors of mental health needs such as population den-
ity, percentage of people aged under 14, and percentage of households
eaded by lone parent. In consequence, these models explain variations
n the MHS expenditure by a local government on the basis of the
ental health risk factors in which they merely analyze the marginal

ffects of those risk factors. On the contrary, we analyze the municipal
2

isparities in local governments’ MHS expenditures by allowing the
marginal effects of those risk factors to depend on the political ideology
(left-wing or right-wing) towards which voters in the respective local
authorities are leaning. An intuitive example behind this hypothesis
is the phenomenon in which the marginal effects of the percentage
of households headed by lone parent on MHS spending are larger in
left-leaning local authorities.

Within the context of the regression analysis, the most common
modeling strategy is to include a slope dummy variable or an interac-
tion term in order to incorporate the interaction effects. It is argued
that the VC specification considered in this paper is able to offer a
much more general framework for analyzing these disparities. More-
over, this paper illustrates how the spatial dependence brought about
by measurement errors that spills across boundaries and/or spatially
correlated unobservable latent variables can be captured by the SED
specification. In the context of the MHS spending in the UK, one
example of a factor that may lead to these types of spatial interactions
is the closure of a large psychiatric hospital, which serves patients
from various municipalities. Another example is the high number of
psychiatric hospital admissions in two or more neighboring authorities,
which may be caused by aviation impacting residential communities
close to airports by affecting community annoyance, sleep deprivation,
and mental health issues.

The remainder of this paper is structured as follows. Section 2
introduces the VCPD model with the SED specification, then establishes
the estimation procedure and inference methods. Section 3 presents and
discusses an extensive simulation exercise examining the finite sample
performances and robustness of our proposed procedures. Section 4
presents an empirical study of the determinants of MHS spending by
local councils in England, and whether different political preferences
of residents within the local authorities bring about the disparity that
can lead to unequal access to MHS. Section 5 concludes the paper.
Appendix A provides mathematical proofs of the main results in this
paper, and Appendix B discusses important technical points, which can-
not be included in the main sections. Tables and figures are presented
in Appendix C. Finally, additional discussion and results that cannot be
accommodated within the paper are presented in the supplementary
material.

2. Statistical model and methods

This section introduces the model specifications, then discusses
the estimation procedure and inference methods. Proofs and other
technical discussions are in the appendices.

2.1. Model specification

Let 𝑦𝑖𝑡 ∈ R1 be a response of interest, and let 𝑋⊤
𝑖𝑡 = {𝑋𝑖𝑡,1,… , 𝑋𝑖𝑡,𝐷}⊤

R𝐷 and 𝑍𝑖𝑡 ∈ [0, 1], which are referred to hereafter as the ‘‘regressors’’
nd ‘‘covariate’’, respectively. Moreover, let 𝛽0(𝑧) = {𝛽1,0(𝑧),… , 𝛽𝐷,0(𝑧)}⊤

R𝐷 be a vector of smooth nonparametric functions in 𝑧 and let
𝑖𝑡 ∈ R1 denote the error term of which 𝐸(𝑢𝑖𝑡|𝑋𝑖𝑡, 𝑍𝑖𝑡) = 0 almost surely
a.s.). This paper assumes that 𝑦𝑖𝑡 is generated by

𝑖𝑡 = 𝑋𝑖𝑡𝛽0(𝑍𝑖𝑡) + 𝑢𝑖𝑡, 𝑖 = 1,… , 𝑁 and 𝑡 = 1,… , 𝑇 . (2.1)

ere, 𝑇 is regarded as fixed hence, our asymptotic theory relies on 𝑁
iverging.

To specify the SED, we define 𝑢𝑁 = (𝑢11, 𝑢21,… , 𝑢𝑁1, 𝑢12,… , 𝑢𝑁2, 𝑢13,
, 𝑢𝑁𝑇 )⊤, whose elements are grouped by time periods rather than

patial units as is commonly done in the panel data regression liter-
ture. In addition, 𝑦𝑁 denotes an 𝑁𝑇 × 1 vector of 𝑦𝑖𝑡 and 𝑋𝑁 =
𝑋⊤

11, 𝑋
⊤
21,… , 𝑋⊤

𝑁1, 𝑋
⊤
12,… , 𝑋⊤

𝑁2, 𝑋
⊤
13,… , 𝑋⊤

𝑁𝑇 )
⊤ ∈ R𝑁𝑇×𝐷 with a similar

grouping as above. Accordingly, the model in (2.1) can be expressed in
matrix notation as follows
𝑦𝑁 = (𝐵0◦𝑋𝑁 )𝑒𝐷 + 𝑢𝑁 , (2.2)
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where 𝐵0 = {𝛽0(𝑍11), 𝛽0(𝑍21),… , 𝛽0(𝑍𝑁1), 𝛽0(𝑍12),… , 𝛽0(𝑍𝑁𝑇 )}⊤ ∈
R𝑁𝑇×𝐷, 𝑒𝐷 is a 𝐷 × 1 vector of 1s, and ‘‘◦’’ denotes the Hadamard
product. The 𝑁𝑇 × 1 vector of SAR disturbances 𝑢𝑁 is specified below

𝑢𝑁 = (𝐼𝑇 ⊗ 𝜌0𝑊𝑁 )𝑢𝑁 + 𝜀𝑁 , (2.3)

where ⊗ signifies the Kronecker product, 𝑊𝑁 is an 𝑁 × 𝑁 spatial
weights matrix, which is assumed to be nonstochastic, and 𝜌0 is a
scalar autoregressive parameter. Moreover, 𝜀𝑁 is an 𝑁𝑇 × 1 vector
of innovations assumed to follow a classical one-way error component
model as follows

𝜀𝑁 = (𝑒𝑇 ⊗ 𝐼𝑁 )𝛼𝑁 + 𝑣𝑁 , (2.4)

where 𝛼𝑁 denotes the vector of unit-specific error component, 𝑒𝑇 is a
𝑇 × 1 vector of 1s, and 𝑣𝑁 is an 𝑁𝑇 × 1 vector of independently and
identically distributed idiosyncratic errors.

Collectively, (2.2) to (2.4) specify the proposed VCPD model with
a first-order SAR disturbance term, whose innovation has an error
component structure. In this regard, we maintain a set of standard
regularity assumptions as follows.

Assumption A1. (i) 𝑊𝑁 is row-normalized, in which the elements in a
given row sum up to one, and is a nonstochastic spatial weights matrix
with zero diagonal elements. (ii) Let 𝑆𝑁 (𝜌) = 𝐼𝑁 −𝜌𝑊𝑁 for an arbitrary
𝜌 ∈  , where  is a compact parameter space, and 𝜌0 ∈ (−1, 1) is in the
interior of  , and 𝑆𝑁 (𝜌) is invertible for all 𝜌 ∈  . (iii) 𝑊𝑁 and 𝑆−1

𝑁 (𝜌)
are uniformly bounded in both row and column sums in their absolute
value.

Assumption A2. For all 𝑖𝑡 = 11,… , 𝑁𝑇 , (i) the idiosyncratic error
component 𝑣𝑖𝑡 ∈ 𝑣𝑁 has a zero mean, a variance of 𝜎2𝑣,0 and 𝐸(|𝑣𝑖𝑡|

2𝑚) <
∞, where 𝑚 > 2; (ii) the unit-specific error component 𝛼𝑖 ∈ 𝜶𝑁 has a
zero mean, a variance of 𝜎2𝛼,0 and 𝐸(|𝛼𝑖|

2𝑚) < ∞; and (iii) the processes
{𝑣𝑖𝑡} and {𝛼𝑖} are independent of each other.

These assumptions directly concern our model specifications and
are therefore explained below in some detail. Assumption A1(i) implies
that no unit is a neighbor to itself. Although the elements of 𝑊𝑁
are assumed to be independent of 𝑡, the number of neighbors that a
given unit has may depend on the number of cross-sectional units, 𝑁 .
Furthermore, Assumption A1 (iii) restricts the extent of the associations
between the cross-sectional units. In practice, these conditions are
satisfied, given that each unit is associated only with a limited number
of neighbors implying that the weighting matrix 𝑊𝑁 is sparse. Alterna-
tively, when 𝑊𝑁 is not sparse, the condition of Assumption A1 (iii) is
satisfied if its elements decline with a distance measure that increases
sufficiently rapidly as the sample size increases. The conditions in
Assumptions A1 and A2 are standard for a random effects model, and
are often used in the spatial econometric literature (see, e.g., Kapoor
et al. (2007) and Baltagi et al. (2012)). Finally, these assumptions
ensure that (2.3) can be rewritten as follows

𝑢𝑁 = [𝐼𝑇 ⊗ (𝐼𝑁 − 𝜌0𝑊𝑁 )−1]𝜀𝑁 . (2.5)

Expressions (2.4) and (2.5) suggest that our model specifications imply
spatial interaction for both the error components, 𝑣𝑖𝑡, and the unit
specific error components, 𝛼𝑖. This differs significantly from the other
available random effects models in the literature (see, e.g., Baltagi et al.
(2003, 2012)), and has the important benefit of obtaining the particular
pattern of the variance matrices of the overall disturbances, for which
the inverse can be relatively easier to compute.

2.2. Estimation procedure

The disturbances in (2.5) are such that the variance–covariance
matrix 𝐸[𝑢𝑁𝑢⊤𝑁 ] is as follows

𝛺0 = [𝐼 ⊗ (𝐼 − 𝜌 𝑊 )−1]𝛺0 [𝐼 ⊗ (𝐼 − 𝜌 𝑊 ⊤)−1]
3

𝑢,𝑁 𝑇 𝑁 0 𝑁 𝜀,𝑁 𝑇 𝑁 0 𝑁
in which 𝛺0
𝜀,𝑁 = 𝜎2𝑣,0𝑄0,𝑁 + 𝜎21,0𝑄1,𝑁 ≡ 𝐸[𝜀𝑁𝜀⊤𝑁 ], where 𝜎21,0 = 𝜎2𝑣,0 +

𝑇𝜎2𝛼,0,

𝑄0,𝑁 =
(

𝐼𝑇 − (𝐽𝑇 ∕𝑇 )
)

⊗ 𝐼𝑁 and 𝑄1,𝑁 = (𝐽𝑇 ∕𝑇 )⊗ 𝐼𝑁

with 𝐽𝑇 = 𝑒𝑇 𝑒⊤𝑇 denoting a 𝑇 × 𝑇 matrix of ones. In this regard, 𝑄0,𝑁
and 𝑄1,𝑁 are the standard transformation matrices used in the error
component literature, which are symmetric, idempotent and orthogonal
to each other.

Alternatively, the variance–covariance matrix of 𝑢𝑁 can be written
as 𝛺0

𝑢,𝑁 = 𝜎2𝑣,0
0
𝑁 , where 0

𝑁 =
[

𝐼𝑇 ⊗ (𝐼𝑁 − 𝜌0𝑊𝑁 )−1
] {

𝑄0,𝑁 + (1 + 𝜙0𝑇 )

𝑄1,𝑁
} [

𝐼𝑇 ⊗ (𝐼𝑁 − 𝜌0𝑊 ⊤
𝑁 )−1

]

and 𝜙0 = 𝜎2𝛼,0∕𝜎
2
𝑣,0. In this regard,

(

0
𝑁
)−1

̄0⊤
𝑁 ̄0

𝑁 for which

̄ 0
𝑁 =

{

𝑄0,𝑁 +
(

1 + 𝑇𝜙0
)−1∕2 𝑄1,𝑁

}

[

𝐼𝑇 ⊗ (𝐼𝑁 − 𝜌0𝑊𝑁 )
]

because of the orthogonality of 𝑄0,𝑁 and 𝑄1,𝑁 . In other words, 0
𝑁 =

1∕𝜎2𝑣,0)𝐸[𝑢𝑁𝑢⊤𝑁 ]. By defining �̈�0𝑁 = ̄0
𝑁𝑋𝑁 and �̈�0𝑁 = ̄0

𝑁𝑢𝑁 , the
ransformation is

̈0𝑁 = (𝐵0◦�̈�0𝑁 )𝑒𝐷 + �̈�0𝑁

hich can be viewed as the Cochrane-Orcutt-type random effects of the
eneralized least squares transformations of (2.2), where �̈�0𝑁 = ̄0

𝑁𝑦𝑁−
̄0
𝑁 (𝐵0◦𝑋𝑁 )𝑒𝐷 − (𝐵0◦̄

0
𝑁𝑋𝑁 )𝑒𝐷} to incorporate the VC specification.

For a given vector of parameters 𝛿 = (𝜙, 𝜌)⊤ ∈ 𝛥, where 𝛥
enotes a compact parameter space which is a necessary condition to
stablish the consistency of an QML estimator (see Amemiya (1985),
nd Newey and McFadden (1994) for a comprehensive treatment of the
xtremum estimation), these transformations enable the construction of
he conditional local kernel-weighted quasi-log-likelihood as follows

𝑧(𝛽, 𝜎2𝑣 , 𝛿) = −1
2
log{2𝜋𝜎2𝑣}

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

− 1
2𝑁𝑇

log{|𝑁 |}
𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

− 1
2𝜎2𝑣

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
{�̈�𝑗𝑠 − �̈�𝑗𝑠𝛽}2𝐾ℎ(𝑍𝑗𝑠 − 𝑧), (2.6)

here �̈�𝑗𝑠 and �̈�𝑗𝑠 are the 𝑗𝑠-th rows of �̈�𝑁 and �̈�𝑁 which are ar-
bitrary expressions of �̈�0𝑁 and �̈�0𝑁 , respectively. Similarly, 𝑁 and
̄𝑁 are arbitrary expressions of the terms defined above, whereas
𝐾ℎ(⋅) = 𝐾(⋅∕ℎ)∕ℎ, where 𝐾(⋅) and ℎ denote the kernel function and
the associated bandwidth parameter, respectively.

Observe that the local likelihood function in (2.6) is maximized at

𝛽(𝑧; 𝛿) =

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

𝑗𝑠�̈�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]−1 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

𝑗𝑠�̈�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧) (2.7)

nd

�̃�2
𝑣 (𝑧; 𝛿) =

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]−1 [ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
{�̈�𝑗𝑠 − �̈�𝑗𝑠𝛽(𝑧; 𝛿)}2𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]

.

(2.8)

hese suggest that we can formulate the concentrated log-likelihood,
articularly 𝓁𝑐

𝑧(𝛿) ≡ max
𝛽,𝜎2𝑣

𝓁𝑧(𝛽, 𝜎2𝑣 , 𝛿), then the global one is as follows

̃𝑐 (𝛿) = −1
2

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

[

log(2𝜋�̃�2𝑣 ) +
log |𝑁 |

𝑁𝑇
+ 1

] 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡),

(2.9)

where

̃ 2𝑣 = 1
𝑁
∑

𝑇
∑

�̃�2𝑣 (𝑍𝑖𝑡; 𝛿),
𝑁𝑇 𝑖=1 𝑡=1
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which complies with Assumption A2(i). Accordingly, 𝛿 that maximizes
̃𝑐 (𝛿) in (2.9) is the QML estimator of 𝛿0.

Establishing the uniform consistency of the proposed QML estimator
requires the following additional assumptions.

Assumption B1. (i) The higher-order kernel function 𝐾(𝑢) is absolutely
continuous and integrable on its compact support, where the order of
𝐾(𝑢) is 𝜚 > 2. Additionally, 𝐾2(𝑢) and (𝐾 ′(𝑢))2, where 𝐾 ′(𝑢) denotes
the first derivative of 𝐾(𝑢), are finite and integrable on its support. (ii)
The bandwidth parameter is any monotonic sequence of 𝑁 such that
lim

𝑁→∞
ℎ → 0 and lim

𝑁→∞
𝑁2𝜂−1ℎ → ∞, where 1

2 + 1
4𝜚 < 𝜂 < 1 − 1

𝑚 .

ssumption B2. For all 𝑖𝑡 = 11,… , 𝑁𝑇 , (i) 𝐸|𝑌𝑖𝑡|
2𝑚 < ∞, and (ii)

𝐸‖𝑋𝑖𝑡‖
2𝑚 < ∞.

Assumption B3. For all 𝑖𝑡 = 11,… , 𝑁𝑇 , (i) 𝛺(𝑧) = 𝐸(𝑋⊤
𝑖𝑡𝑋𝑖𝑡|𝑍𝑖𝑡 =

𝑧) is nonsingular and its higher-order derivative is bounded, and
𝐸(‖𝑋𝑖𝑡‖

2𝑚
|𝑍𝑖𝑡 = 𝑧) < ∞; and (ii) the higher-order derivative of 𝜎2𝑣 (𝑧) =

𝐸(𝑣2𝑖𝑡|𝑍𝑖𝑡 = 𝑧) is also bounded.

Assumption B4. For all 𝑖𝑡 = 11,… , 𝑁𝑇 , the higher-order derivative
of the marginal density 𝑓 (𝑧) of 𝑍𝑖𝑡 is bounded and inf

𝑧∈[0,1]
𝑓 (𝑧) > 0.

Assumption B5. For all 𝑑 = 1,… , 𝐷, the higher-order derivative of
𝛽0,𝑑 (𝑧) is continuous.

Assumption B1 to B5 are the standard regularity conditions often
used in the semi- and nonparametric literature, particularly by Mack
and Silverman (1982), Robinson (1988), Fan and Li (1999), Cai et al.
(2000), Fan and Zhang (2000), Xia et al. (2004), and Robinson (2011).
Since these are mainly technical conditions, their justification and
discussion are presented in Appendix B.

Furthermore, the identification condition of the QLM estimation
also requires the expected local log-likelihood function to have an
identifiably unique maximizer that converges to 𝛿0 as 𝑁 → ∞. In this
regard, Appendix A.1 in Appendix A shows that the lower bound of
𝐸(𝓁𝑐

𝑧(𝛿)) is

𝓁𝑐
𝑧(𝛿) ≡ −1

2

[

log{2𝜋} + log

{

𝜎2
𝑣 (𝑧)

tr[0𝑁 ̄⊤
𝑁 ̄𝑁 ]

𝑁𝑇

}

+
log |𝑁 |

𝑁𝑇
+ 1

]

𝑓 (𝑧),

(2.10)

where tr[⋅] denotes the trace of a matrix. Accordingly, we assume the
global identification condition as follows

lim sup
𝑁→∞

{

max
𝛿∈�̄�𝜖 (𝛿0)∩𝛥

𝓁𝑐
𝑧(𝛿)

}

≠ lim sup
𝑁→∞

𝓁𝑐
𝑧(𝛿0) (2.11)

for any 𝛿, where �̄�𝜖(𝛿0) is the complement of the 𝜖-neighborhood of
𝛿0. Such a condition is in line with the extremum estimation literature
(see Amemiya (1985), Newey and McFadden (1994), White (1996), Lee
(2004), and Liu and Yang (2015)). Theorem 2.1 below establishes the
uniform consistency of our proposed QML estimator.

Theorem 2.1. Let Assumptions A and B hold. Under the identification
condition in (2.11), 𝛿0 is uniquely identifiable and sup

𝑧∈[0,1]
‖𝛿 − 𝛿0‖ =

𝑂𝑃
(

(𝑁𝑇 )−1∕2
)

as 𝑁 → ∞.

Subsequently, an estimation of the unknown 𝛽0(𝑧) and 𝜎2𝑣,0(𝑧) can be
formulated as follows

𝛽(𝑧; 𝛿) =

[ 𝑁
∑

𝑇
∑

�̂�⊤
𝑗𝑠�̂�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]−1 𝑁
∑

𝑇
∑

�̂�⊤
𝑗𝑠�̂�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧), (2.12)
4

𝑗=1 𝑠=1 𝑗=1 𝑠=1
where �̂�𝑁 = ̂̄𝑁𝑋𝑁 (in which ̂̄𝑁 = {𝑄0,𝑁 + (1 + 𝑇 �̂�)−1∕2𝑄1,𝑁}[𝐼𝑇 ⊗
(𝐼𝑁 − �̂�𝑊𝑁 )]), and

̂ 2𝑣 (𝑧; 𝛿) =

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]−1 [ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
{�̂�𝑗𝑠 − �̂�𝑗𝑠𝛽(𝑧; 𝛿)}2𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]

.

nder the assumption that the variance of the idiosyncratic errors does
ot depend on the location of 𝑧, particularly Assumption A2(i), 𝜎2𝑣,0 can
e estimated by

̂ 2𝑣 = 1
𝑁𝑇

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
�̂�2𝑣 (𝑍𝑖𝑡; 𝛿). (2.13)

For the sake of notational simplicity, let 𝛽(𝑧) ≡ 𝛽(𝑧; 𝛿) and �̂�2𝑣 (𝑧) ≡
�̂�2𝑣 (𝑧; 𝛿), which are hereafter referred to as unpenalized estimators,
whose uniform consistency is established in Theorem 2.2.

Theorem 2.2. Under Assumptions A and B, we have

sup
𝑧∈[0,1]

‖𝛽(𝑧) − 𝛽0(𝑧)‖ = 𝑂𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

nd

sup
∈[0,1]

|

|

|

�̂�2𝑣 (𝑧) − 𝜎2𝑣,0(𝑧)
|

|

|

= 𝑂𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

,

here 𝜚 denotes the order of the kernel function, as 𝑁 → ∞.

2.3. SAREC-KLASSO method

This section generalizes the variable selection technique consid-
ered in Wang and Xia (2009) (see also (Hu and Xia, 2012)) to the
VCPD model discussed in Section 2.1, in which spatial interactions
are involved in both the error components. This generalized method
is referred to hereafter as the SAR-error-component kernel LASSO or
SAREC-KLASSO method. For all 𝑖𝑡 = 11,… , 𝑁𝑇 , we assume that there
is an integer 𝐷0 ≤ 𝐷 for which 0 < 𝐸{𝛽2𝑑,0(𝑍𝑖𝑡)} < ∞ for any
𝑑 ≤ 𝐷0 and 𝐸{𝛽2𝑑,0(𝑍𝑖𝑡)} = 0 for 𝐷0 + 1 ≤ 𝑑 ≤ 𝐷 without loss
of generality. This implies that there are 𝐷0 regressors that are truly
relevant, whereas the rest are not. Correspondingly, let us also define
𝑋⊤

𝑖𝑡𝑎 = {𝑋𝑖𝑡,1,… , 𝑋𝑖𝑡,𝐷0
}⊤ ∈ R𝐷0 and 𝑋⊤

𝑖𝑡𝑏 = {𝑋𝑖𝑡,𝐷0+1,… , 𝑋𝑖𝑡,𝐷}⊤ ∈
R𝐷−𝐷0 .

Let 𝐵 = {𝑏1,… , 𝑏𝐷0
, 𝑏𝐷0+1,… , 𝑏𝐷}, where 𝑏𝑑 = {𝛽𝑑 (𝑍11; 𝛿),… , 𝛽𝑑

𝑍𝑁𝑇 ; 𝛿)}⊤ ∈ R𝑁𝑇 is the 𝑑th column of 𝐵. In consequence, the last
𝐷−𝐷0) columns of 𝐵, which are associated with 𝑋𝑖𝑡𝑏, should be 0, and
he task of variable selection is equivalent to identifying these sparse
olumns in the matrix, 𝐵. Following the group LASSO idea of Yuan and
in (2006) (see also (Wang and Xia, 2009)), this identification can be
chieved by utilizing the penalized estimation as follows

̃𝜆 = argmin
𝐵∈R𝑁𝑇×𝐷

�̃�𝜆(𝐵; 𝛿)

n which

̃ 𝜆(𝐵; 𝛿) =
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
{�̈�𝑗𝑠 − �̈�𝑗𝑠𝛽(𝑍𝑖𝑡; 𝛿)}2𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡) +

𝐷
∑

𝑑=1
𝜆𝑑‖𝑏𝑑‖,

here 𝜆 = (𝜆1,… , 𝜆𝐷)⊤ ∈ R𝐷 is the vector of the tuning parameters
nd ‖ ⋅ ‖ signifies the usual Euclidean norm.

In this regard, the solutions for the penalized estimation are

̃𝜆 = {𝛽𝜆(𝑍11),… , 𝛽𝜆(𝑍𝑁1), 𝛽𝜆(𝑍12),… , 𝛽𝜆(𝑍𝑁𝑇 )}⊤

≡ (�̃�𝜆,1,… , �̃�𝜆,𝐷0
, �̃�𝜆,𝐷0+1,… , �̃�𝜆,𝐷).

Accordingly, the 𝑖𝑡-th row of �̃�𝜆 is defined as the transpose of

𝛽𝜆(𝑍𝑖𝑡; 𝛿) =

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

𝑗𝑠�̈�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡) +

]−1 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

𝑗𝑠�̈�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡),
(2.14)
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where  = diag(𝜆1∕‖𝑏1‖,… , 𝜆𝐷∕‖𝑏𝐷‖). In addition,

�̃�2𝜆,𝑣(𝑍𝑖𝑡; 𝛿) =

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡)

]−1

×

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
{�̈�𝑗𝑠 − �̈�𝑗𝑠𝛽𝜆(𝑍𝑖𝑡, 𝛿)}2𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡)

]

. (2.15)

These estimators are essentially the penalized counterparts of those
in (2.7) and (2.8). Consequently, they can be used for constructing
the concentrated log-likelihood in a similar manner to the method in
Section 2.2. In particular, we have

̃𝑐
𝜆(𝛿) = −1

2

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

[

log(2𝜋�̃�2𝜆,𝑣) +
log |𝑁 |

𝑁𝑇
+ 1

] 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡)

(2.16)

which is the penalized counterpart of (2.9). In this regard, maximizing
(2.16) leads to an alternative QML estimator of 𝛿0, which is denoted
hereafter as 𝛿𝜆 which signifies that its computation is based on the
penalized estimators of (2.14) and (2.15).

Finally, the penalized estimator of 𝐵0 is

�̂�𝜆 = {𝛽𝜆(𝑍11),… , 𝛽𝜆(𝑍𝑁1), 𝛽𝜆(𝑍12),… , 𝛽𝜆(𝑍𝑁𝑇 )}⊤

= argmin
𝐵∈R𝑁𝑇×𝐷

�̂�𝜆(𝐵; 𝛿𝜆) ≡
(

�̂�𝜆,1,… , �̂�𝜆,𝐷0
, �̂�𝜆,𝐷0+1,… , �̂�𝜆,𝐷

)

(2.17)

in which

�̂�𝜆(𝐵; 𝛿𝜆) =
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1

{

�̂�𝑗𝑠 − �̂�𝑗𝑠𝛽𝑖𝑡
}2 𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡) +

𝐷
∑

𝑑=1
𝜆𝑑‖𝑏𝑑‖.

(2.18)

In other words, the 𝑖𝑡-th row of �̂�𝜆 is defined as the transpose of

𝛽𝜆(𝑍𝑖𝑡; 𝛿𝜆) =

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̂�⊤

𝑗𝑠�̂�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡) +

]−1 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̂�⊤

𝑗𝑠�̂�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡).

To discuss the asymptotic properties of the penalized estimators
requires maintaining some additional conditions on the amount of
shrinkage being applied (see Wang and Xia (2009) and Hu and Xia
(2012) for more details) as follows.

Assumption C1. For 𝑎𝑁 = max{𝜆𝑑 ∶ 1 ≤ 𝑑 ≤ 𝐷0} and 𝑏𝑁 = min{𝜆𝑑 ∶

𝐷0 + 1 ≤ 𝑑 ≤ 𝐷}, assume that 𝑁
4𝜚+1
4𝜚 𝑎𝑁 → 0 and 𝑁

4𝜚+1
4𝜚 𝑏𝑁 → ∞, as

𝑁 → ∞.

Let 𝛽𝜆(𝑧) ≡ 𝛽𝜆(𝑧; 𝛿𝜆) for notational convenience and 𝛽𝜆(𝑧) =
𝛽𝜆,𝑎(𝑧), 𝛽𝜆,𝑏(𝑧)}⊤, where 𝛽𝜆,𝑎(𝑧) ≡ {𝛽𝜆,1(𝑧),… , 𝛽𝜆,𝐷0

(𝑧)}⊤ and 𝛽𝜆,𝑏(𝑧) ≡
𝛽𝜆,𝐷0+1(𝑧),… , 𝛽𝜆,𝐷(𝑧)}⊤. Corollary 2.1 suggests that the true model
an be consistently selected as long as the tuning parameters satisfy
ssumption C1. Since it is associated with 𝐷0, 𝛽𝑎(𝑧) can be viewed as

he oracle estimators. In this regard, Corollary 2.2 suggests that the
niform convergence of the penalized estimator can be achieved as long
s Assumption C1 is satisfied.

orollary 2.1. Assumptions A and B Let Assumptions A to C hold. Then
(

sup
𝑧∈[0,1]

‖𝛽𝜆,𝑏(𝑧)‖ = 0
)

→ 1 as 𝑁 → ∞.

orollary 2.2. Under Assumptions A to C, as 𝑁 → ∞,

sup
∈[0,1]

‖𝛽𝜆,𝑎(𝑧) − 𝛽𝑎(𝑧)‖ = 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

,

where

𝛽𝑎(𝑧) =

[ 𝑁
∑

𝑇
∑

�̂�⊤
𝑗𝑠𝑎�̂�𝑗𝑠𝑎𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]−1 𝑁
∑

𝑇
∑

�̂�⊤
𝑗𝑠𝑎�̂�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧).
5

𝑗=1 𝑠=1 𝑗=1 𝑠=1
To apply our method in practice, there remains some implemen-
tational issues that must be clarified. These are (i) selection of the
shrinkage parameters and (ii) a local quadratic approximation of the
penalty function.

Selection of shrinkage parameters
Selecting of up to 𝐷 shrinkage parameters, namely 𝜆1,… , 𝜆𝐷, is not

straightforward. To overcome this difficulty, we follow an idea used in
various studies, which is to specify

𝜆𝑑 =
𝜆0

(𝑁𝑇 )−1∕2‖�̂�𝑑‖
(2.19)

or which 𝜆0 > 0 and �̂�𝑑 is the 𝑑th column of �̂� = {𝛽(𝑍11),… , 𝛽(𝑍𝑁𝑇 )}⊤

R𝑁𝑇×𝐷 (see e.g., Zou (2006) and Wang and Leng (2007)). To
rovide some technical properties of 𝜆𝑑 , we put forward the following
tatements, which are obtained directly from the results of Section 2.2,

𝑁𝑇 )−1∕2‖�̂�𝑑‖ =

{

(𝑁𝑇 )−1
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
𝛽2𝑑 (𝑍𝑖𝑡)

}1∕2

→𝑃
{

𝐸[𝛽2𝑑 (𝑍𝑖𝑡)]
}1∕2 for 1 ≤ 𝑑 ≤ 𝐷0

(2.20)

nd
{

(𝑁𝑇 )−1
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
𝛽2𝑑 (𝑍𝑖𝑡)

}1∕2

= 𝑂𝑃 {(𝑁𝑇 )
1−2𝜚
4𝜚 } for 𝐷0 + 1 ≤ 𝑑 ≤ 𝐷.

(2.21)

hereas (2.20) suggests 𝜆𝑑 converges to a positive constant for 1 ≤
≤ 𝐷0,(2.21) implies that 𝜆𝑑 diverges for 𝐷0 + 1 ≤ 𝑑 ≤ 𝐷. Hence,

o maintain (𝑁𝑇 )
4𝜚+1
4𝜚 𝑎𝑁 → 0 and (𝑁𝑇 )

4𝜚+1
4𝜚 𝑏𝑁 → ∞ we require that

0(𝑁𝑇 )
4𝜚+1
4𝜚 → 0 and 𝜆0(𝑁𝑇 )

𝜚+1
2𝜚 → ∞, respectively.

Clearly, the specification in (2.19) helps us to reduce the original 𝐷-
dimensional problem of 𝜆 ∈ R𝐷 into a univariate problem of selecting
𝜆0 > 0. In practice, such a selection is done by minimizing the following
BIC-type criterion

BIC𝜆 = log{𝑅𝑆𝑆𝜆} + 𝑑𝑓 ×
log{(𝑁𝑇 )ℎ}

(𝑁𝑇 )ℎ
, (2.22)

here 𝑑𝑓 ≤ 𝐷 is the number of nonzero coefficients identified by �̂�𝜆,
and

𝑅𝑆𝑆𝜆 = (𝑁𝑇 )−2
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1

{

�̂�𝑗𝑠 − �̂�𝑗𝑠𝛽𝜆(𝑍𝑖𝑡)
}2 𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡). (2.23)

Let �̂��̂� denote a penalized estimator in (2.17), which corresponds
to �̂� = argmin

𝜆
BIC𝜆, �̂� represent the model identified by �̂��̂�, and

𝑇 = {1,… , 𝐷0} denote the true model. Corollary 2.3 below states that
the estimate of the tuning parameter �̂� selected by the BIC criterion is
able to consistently identify the true model.

Corollary 2.3. Let Assumptions A to C hold. Then, as 𝑁 → ∞,

𝑃 (�̂� = 𝑇 ) → 1.

Remark 2.1. A final point to clarify regarding the variable selection
procedure is the use of �̂�𝑖𝑡 and �̂�𝑖𝑡 in the calculation of 𝑅𝑆𝑆𝜆 in (2.23).
In this regard, the conceptual discussion in Section 2.2 suggests that
we can rely on the following steps: (i) computing the spatial estimates
of 𝛿 = (𝜙, 𝜌)⊤ by maximizing the concentrated log-likelihood under the
unpenalized estimation in (2.7) and (2.8), (ii) computing �̂�𝑖𝑡 and �̂�𝑖𝑡,
and then (iii) applying the SAREC-KLASSO method discussed in this
section.

Local quadratic approximation of the penalty function
This paper extends a local quadratic approximation of the penalty
function in the spirit of Hunter and Li (2005) to the VCPD model in
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Section 2.1. More specifically, in practice, the computation follows an
iterative algorithm where the loss function in (2.18) is approximated
locally by
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1

{

�̂�𝑗𝑠 − �̂�⊤
𝑗𝑠𝛽𝑖𝑡

}2
𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡) +

𝐷
∑

𝑑=1
𝜆𝑑

‖𝑏𝑑‖2

‖�̂�(𝑚)𝜆,𝑑‖

=
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

⎡

⎢

⎢

⎣

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1

{

�̂�𝑗𝑠 − �̂�⊤
𝑗𝑠𝛽𝑖𝑡

}2
𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡) +

𝐷
∑

𝑑=1
𝜆𝑑

𝛽2𝑑 (𝑍𝑖𝑡)

‖�̂�(𝑚)𝜆,𝑑‖

⎤

⎥

⎥

⎦

,

where �̂�(𝑚)
𝜆 =

{

𝛽(𝑚)𝜆 (𝑍11), 𝛽
(𝑚)
𝜆 (𝑍21),… , 𝛽(𝑚)𝜆 (𝑍𝑁𝑇 )

}⊤
≡

(

�̂�(𝑚)𝜆,1 , �̂�
(𝑚)
𝜆,2 ,… ,

�̂�(𝑚)𝜆,𝐷

)

, denoting the estimates obtained in the 𝑚th iteration. The result-
ing minimizer, which hereafter is denoted by �̂�(𝑚+1)

𝜆 , is such that its
𝑖𝑡-th row is defined as the transpose of

𝛽(𝑚+1)𝜆 (𝑍𝑖𝑡) =

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̂�⊤

𝑗𝑠�̂�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡) + ̂(𝑚)

]−1

×

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̂�⊤

𝑗𝑠�̂�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡)

]

≡ 𝛽(𝑚+1)𝑖𝑡 ,

where ̂(𝑚) = diag(𝜆1∕‖�̂�
(𝑚)
𝜆,1‖,… , 𝜆𝐷∕‖�̂�

(𝑚)
𝜆,𝐷‖). We discuss the evolution

of 𝛽(𝑚+1)𝜆 (𝑧) as 𝑚 → ∞ in Corollaries 2.4 and 2.5 below.

Corollary 2.4. Let Assumptions A to C hold and 𝛽(𝑚+1)𝜆,𝑏 (𝑧) = (𝛽(𝑚+1)𝜆,𝐷0+1
(𝑧),

… , 𝛽(𝑚+1)𝜆,𝐷 (𝑧))⊤. Then, 𝑃
(

sup
𝑧∈[0,1]

‖𝛽(𝑚+1)𝜆,𝑏 (𝑧)‖ = 0
)

→ 1 as 𝑁 → ∞.

Corollary 2.5. Let Assumptions A to C hold and 𝛽(𝑚+1)𝜆,𝑎 (𝑧) = (𝛽(𝑚+1)𝜆,1 (𝑧),

… , 𝛽(𝑚+1)𝜆,𝐷0
(𝑧))⊤. Then, sup

𝑧∈[0,1]
‖𝛽(𝑚+1)𝜆,𝑎 (𝑧) − 𝛽𝑎(𝑧)‖ = 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

as 𝑁 → ∞.

2.4. Constant coefficients in a semi-varying coefficient model

After performing the variable selection, it is useful to identify the
onstant coefficient(s) among those deemed to be associated with the
elevant regressors. Importantly, such an identification helps us to
eneralize the scope of our method from the VCPD specification to a
ore general one often referred to as the ‘‘semi-varying coefficient’’.
elow we discuss the procedure of testing the hypothesis of a constant
oefficient within the context of the spatial VCPD model. Let �̂� de-

note the number of relevant regressors identified by �̂��̂�, and 𝐶𝑑 be a
constant. Then the hypotheses can be written as follows

𝐻0 ∶ 𝛽𝑑,0(𝑧) = 𝐶𝑑 versus 𝐻1 ∶ 𝛽𝑑,0(𝑧) ≠ 𝐶𝑑 , 1 ≤ 𝑑 ≤ �̂�.

Before discussing the test statistic, we introduce a result that con-
cerns two unpenalized estimators, namely 𝛽(𝑧; 𝛿0) and 𝛽(𝑧; 𝛿), which
associate with the true spatial parameters and their QML estimates,
respectively. Recall that these are the estimators defined in (2.7) and
(2.12), respectively. Corollary 2.6 below ensures that the difference
between these two unpenalized estimators is uniformly negligible. This
result has at least two important implications.

Corollary 2.6. Under the conditions of Theorem 2.2,

sup
𝑧∈[0,1]

‖𝛽(𝑧; 𝛿) − 𝛽(𝑧; 𝛿0)‖ = 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

as 𝑁 → ∞.

Firstly, the uniform convergence that can be achieved by the for-
mer is also plausible for the latter. This suggests that most inference
methods for 𝛽(𝑧; 𝛿0) are also applicable for 𝛽(𝑧; 𝛿). In this section, we
make use a result obtained in Fan and Zhang (2000), which states
the asymptotic distribution of the maximized normalized-deviations
between the estimated coefficient functions and the true functions. In
6

particular:

𝑃
{

(−2 logℎ)1∕2
(

sup
𝑧∈[0,1]

‖{v̂ar(𝛽(𝑧))}−1∕2(𝛽(𝑧) − 𝛽0(𝑧) − b̂ias(𝛽(𝑧))‖ − 𝑑𝑁 )
)

< 𝑥
}

→ exp{−2 exp(−𝑥)}, (2.24)

where 𝑑𝑁 = (−2 logℎ)1∕2 + 1
(−2 logℎ)1∕2

log
{

1
4𝜅𝜋 ∫ {𝐾 ′(𝑢)}2𝑑𝑢

}

with 𝜅 =
𝐾2(𝑢)𝑑𝑢,

âr(𝛽(𝑧)) =
{

�̂�⊤
𝑁𝐾𝑁 �̂�𝑁

}−1 �̂�⊤
𝑁𝐾2

𝑁 �̂�𝑁
{

�̂�⊤
𝑁𝐾𝑁 �̂�𝑁

}−1 �̂�2𝑣

uch that 𝐾𝑁 = diag{𝐾ℎ(𝑍11 − 𝑧),… , 𝐾ℎ(𝑍𝑁1 − 𝑧), 𝐾ℎ(𝑍12 − 𝑧),… , 𝐾ℎ
𝑍𝑁𝑇 − 𝑧)} and �̂�2𝑣 is defined in (2.13), and

îas(𝛽(𝑧)) ≈
{

�̂�⊤
𝑁𝐾𝑁 �̂�𝑁

}−1 �̂�⊤
𝑁𝐾𝑁 �̂�𝑁

or �̂�𝑖𝑡 =
{

𝛽(𝜚+1)(𝑧)(𝑍𝑖𝑡 − 𝑧) + 𝛽(𝜚+2)(𝑧)(𝑍𝑖𝑡−𝑧)2

2

}

�̂�𝑖𝑡.
The result in (2.24) can be used for finding the null distribution of

the test statistic. That is

𝑇𝑑 = (−2 logℎ)1∕2
[

sup
𝑧∈[0,1]

|

|

|

{v̂ar(𝛽𝑑 (𝑧))}−1∕2(𝛽𝑑 (𝑧)) − �̂�𝑑 − b̂ias(𝛽𝑑 (𝑧))
|

|

|

− 𝑑𝑁

]

,

(2.25)

here v̂ar(𝛽𝑑 (𝑧)) = 𝑒⊤𝑗,𝑑 v̂ar(𝛽(𝑧))𝑒𝑗,𝑑 , b̂ias(𝛽𝑑 (𝑧)) ≈ 𝑒⊤𝑗,𝑑 b̂ias(𝛽(𝑧)), for
hich 𝑒𝑗,𝑑 denotes the unit vector of length 𝑑 with 1 at position 𝑗,
nd �̂�𝑑 = 1

𝑁𝑇
∑𝑁

𝑖=1
∑𝑇

𝑡=1 𝛽𝑑 (𝑍𝑖𝑡). In this regard, the 𝐻0 is rejected
when the test statistic exceeds the asymptotic critical value of 𝑐𝛼 =
− log(−0.5 log 𝛼). A similar argument and procedure were used in Fan
and Zhang (2000), and Wang and Xia (2009).

Furthermore, by using the procedure introduced in Section 2.2,
under the conditions of Theorem 2.2, Corollary 2.6 ensures that the
asymptotic behaviors of the coefficient constancy test statistic, in Fan
and Zhang (2000, 2008), are also valid for ours. In particular, the
power of our test is nontrivial and approaching one as the number of
observations increases, while the size approaches the significance level.
These asymptotic behaviors are stated more formally in Appendix B
in order to keep the discussion straightforward, and are empirically
illustrated in the next section.

3. Simulation studies

This section presents a simulation exercise that examines finite-
sample performances of the procedures considered in the previous
section. These procedures are (i) estimation of the spatial parameters
𝛿0 = (𝜙0, 𝜌0)⊤ based on the concentrated likelihood, (ii) estimation of
the coefficient functions 𝛽0(𝑧) = {𝛽0,1(𝑧),… , 𝛽0,𝐷(𝑧)}⊤ by applying the
npenalized and penalized estimations, (iii) variable selection by em-
loying the KLASSO and SAREC-KLASSO methods, and (iv) hypothesis
esting of the coefficient constancy.

Model I: 𝑦𝑖𝑡 = 2 sin(2𝜋𝑍𝑖𝑡)𝑋𝑖𝑡,1 + 2 cos(2𝜋𝑍𝑖𝑡)𝑋𝑖𝑡,2 + 𝑢𝑖𝑡 and
Model II: 𝑦𝑖𝑡 = 2 sin(2𝜋𝑍𝑖𝑡)𝑋𝑖𝑡,1+2 cos(2𝜋𝑍𝑖𝑡)𝑋𝑖𝑡,2+0.5𝑋𝑖𝑡,3+0.7𝑋𝑖𝑡,4+

𝑖𝑡.
The difference between these models lies in the fact that the for-

er includes no constant coefficients, whereas the latter includes two
onzero constant coefficients. Therefore, Model II is an example of what
nown in the literature as the semi-varying coefficient model.

For each component in these models, 𝑋𝑖𝑡,1 is set to 1, whereas
𝑋𝑖𝑡,2,… , 𝑋𝑖𝑡,7)⊤ and 𝑍𝑖𝑡 are generated from the multivariate normal
istribution with Cov(𝑋𝑖𝑡,𝑑1 , 𝑋𝑖𝑡,𝑑2 ) = 0.5|𝑑1−𝑑2| for any 2 ≤ 𝑑1, 𝑑2 ≤ 7,
nd from the uniform distribution 𝑈 [0, 1], respectively. Moreover, the
isturbance satisfies the spatial interactions implied by the specifica-
ions discussed in Section 2.1 with 𝜌0 = 0.3 and 𝜎2𝛼,0 = 𝜎2𝑣,0 = 1.
egarding the spatial weight matrices, we use matrices that differ in

heir degree of sparseness. As in Kelejian and Prucha (1999), we refer
o these as ‘‘𝑃 -ahead-and-𝑃 -behind’’, where the spatial association is
onstructed with three values of 𝑃 , namely 𝑃 = 2, 𝑃 = 5, and
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𝑃 = 8, which lead to 4, 10, and 16 nonzero elements in a given row,
espectively.

In the computation, we compute the inverse and determinant of
atrix 𝑁 based on

(

𝑁
)−1 = (1∕𝑇 )𝐽𝑇 ⊗ 𝐶−1

1 + {𝐼𝑇 − (1∕𝑇 )𝐽𝑇 }⊗ 𝐶−1
2

and |𝑁 | = |𝐶1‖𝐶2|
𝑇−1, respectively, where 𝐶1 = (1 + 𝜙𝑇 )𝐶2 and

2 = {(𝐼𝑁 − 𝜌𝑊𝑁 )⊤(𝐼𝑁 − 𝜌𝑊𝑁 )}−1. These follow the results of Magnus
nd Muris (2010) and can help to alleviate the serious computational
urden caused by repeated evaluations of a 𝑁𝑇 ×𝑁𝑇 matrix during the

optimization process. Moreover, we select the optimal bandwidth by
applying the leave-one-unit-out cross-validation method. Even though
the selection is done within the context of the unpenalized estimation,
the selected bandwidth is also used in the penalized estimation. A
similar leave-one-unit-out cross-validation method is also used in Li
et al. (2011), Chen et al. (2012), and Liang et al. (2022). Furthermore,
the optimal shrinkage parameter is selected based on the BIC criterion
introduced in (2.22), whereas the total number of iterations of the
iterative algorithm in Remark 2.1 is set at 15. In the simulation exercise
that follows, a total of 200 repetitions are conducted for each of the
model setups.

The results of simulation are summarized in Tables 1 to 3 in
Appendix C. Below, we discuss important findings for each of the
procedures in turn.

Spatial estimation: SAR parameter and variance ratio
In Tables 1 and 2, �̂�𝑜𝑟, �̂�𝑢𝑛 and �̂�𝜆 denote estimates of the spatial

parameter 𝜌0 computed by maximizing the concentrated log-likelihood
under the (i) oracle, (ii) unpenalized, and (iii) penalized estimations,
respectively. Similarly, �̂�𝑜𝑟, �̂�𝑢𝑛, and �̂�𝜆 are those of the variance ratios
of 𝜙0 = 𝜎2𝛼,0∕𝜎

2
𝑣,0. For the sake of comparison, two measures of accu-

acy, namely the mean absolute error (MAE) and root mean squared
rror (RMSE), are considered. Although the RMSE closely resembles
standard definition that is often seen in the literature, it is based

n quantiles, which exist with certainty, rather than moments (see
.g., Kapoor et al. (2007)). In particular, we compute

𝑀𝑆𝐸 =

{

bias2 +
(

𝐼𝑄
1.35

)2
}1∕2

,

where bias refers to the difference between the median of the estimates
and 𝜌0, 𝐼𝑄 is the inter quantile range of 𝑐1 − 𝑐2, in which 𝑐1 and 𝑐2 are
the 0.75 and 0.25 quantiles, respectively.

The results in the tables show that �̂�𝑜𝑟 and �̂�𝑢𝑛 perform almost
equally well when 𝑁 is small. Although MAE and RMSE for �̂�𝜆 converge
to zero as 𝑁 increases, the estimator does not perform as well as the
oracle and unpenalized based counterparts at small 𝑁 . However, all the
three estimators of the spatial parameter perform almost equally well at
larger 𝑁 . Regarding the estimators of the variance ratio, it is clear that
�̂�𝑜𝑟 performs the best. Unlike the estimators of the spatial parameter,
here, �̂�𝜆 performs much better than its unpenalized counterpart. These
results are not surprising, since the oracle and penalized estimations
provide much more accurate estimates of the coefficient functions, as
discussed below. At 𝑁 = 300, �̂�𝜆 performs almost as well as the oracle-
based counterpart. Furthermore, an increase in 𝑃 , which leads to a
higher number of nonzero elements in a given row of the weighting
matrix, provides less accurate estimation of both the spatial parameter
and variance ratio. However, the former seems to be more significantly
affected. Finally, similar results are obtained for both of the models.

Nonparametric estimation of the coefficient functions
To compare the accuracy of the penalized estimators with that

of its unpenalized and oracle counterparts, we compute the relative
estimation error (REE) as follows

𝑅𝐸𝐸 = 100 ×
∑𝐾

𝑘=1
∑𝑁

𝑖=1
∑𝑇

𝑡=1 |𝛽𝜆,𝑑 (𝑍𝑖𝑡) − 𝛽0,𝑑 (𝑍𝑖𝑡)|
∑𝐷 ∑𝑁 ∑𝑇 ,
7

𝑑=1 𝑖=1 𝑡=1 |𝜗𝑑 (𝑍𝑖𝑡) − 𝛽0,𝑑 (𝑍𝑖𝑡)| i
where 𝜗𝑑 (𝑍𝑖𝑡) is either the oracle or unpenalized estimator, namely
�̂�𝑟,𝑑 (𝑍𝑖𝑡) or 𝛽𝑑 (𝑍𝑖𝑡).

Table 3 presents the related simulation results. In the table, REE𝑜𝑟
nd REE𝑢𝑛 represent the REE measures when 𝜗𝑑 (𝑍𝑖𝑡) is 𝛽𝑜𝑟,𝑑 (𝑍𝑖𝑡) and
�̂� (𝑍𝑖𝑡), respectively. In all cases, it is clear that REE𝑜𝑟 converges to
ne, whereas REE𝑢𝑛 converges away from one as 𝑁 increases. This
mplies that the penalized based estimator performs at least as well as
he oracle estimator as 𝑁 → ∞, but definitely performs better than the
npenalized counterpart. Moreover, the penalized estimator performs
ell asymptotically for the models that involve zero coefficients. It
erforms even better for the model that involves a mixture of functional
nd constant coefficients. In fact, the penalized estimator is already
erforming as well as the oracle counterpart at 𝑁 as low as 300. Finally,
hese results are quite robust across 𝑃 .

ariable selection
We now discuss the finite-sample performance of the SAREC-KLASSO

rocedure for selecting relevant regressors. It is useful to note that the
ector of relevant regressors is 𝑋⊤

𝑖𝑡𝑎 = {𝑋𝑖𝑡,1, 𝑋𝑖𝑡,2}⊤ for Model I, whereas
t is 𝑋⊤

𝑖𝑡𝑎 = {𝑋𝑖𝑡,1,… , 𝑋𝑖𝑡,4}⊤ for Model II, so that 𝐷0 = 2 and 𝐷0 = 4,
espectively.

Table 4 presents the percentages of the simulation repetitions where
he SAREC-KLASSO procedure is able to obtain the correct number
f relevant regressors and is also capable of accurately selecting the
egressors in question. Importantly, these results illustrate that the
erformance of our procedure is not affected by the fact that Model
I contains constant coefficients. This finding paves the way for identi-
ying constant coefficients in a semi-varying coefficient model by using
he procedure introduced in Section 2.4. A higher number of nonzero
oefficients leads to better finite-sample performance at smaller 𝑁 .
onetheless, the results for the two models converge when 𝑁 increases

o 300. The finite-sample performance of our selection procedure seems
o worsen as 𝑃 increases, but only marginally. This likely reflects
he performance of the spatial estimation, which was discussed in the
revious section. Finally, it is imperative to note that the KLASSO pro-
edure is incapable of operating under models associated with spatially
orrelated error components.

ypothesis testing of the coefficient constancy
We now examine the finite-sample performance of two versions of

an and Zhang’s (2000) hypothesis testing procedure of the coefficient
onstancy, namely (a) their original version, and (b) our extension
ncorporating the spatial interactions and random effects in order to
btain efficiency gain. To allow an investigation into the ability of the
est to reject an untrue null hypothesis, we assume that 𝑦𝑖𝑡 is generated
n accordance with Model III below

Model III: 𝑦𝑖𝑡 = 2 sin(2𝜋𝑍𝑖𝑡)𝑋𝑖𝑡,1 + 0.5 cos(2𝜋𝑍𝑖𝑡)𝑋𝑖𝑡,2 + 0.5𝑍𝑖𝑡(1 −
𝑖𝑡)𝑋𝑖𝑡,3 + 𝑢𝑖𝑡,

where other details of the underlying data generating process are as
reviously specified.

Table 5 shows the percentage of correct rejections and non-rejections
n the 200 replications of the two testing methods, namely with and
ithout incorporating the spatial interactions and random effects. The
ull hypothesis of a constant coefficient is easily rejected for 𝛽0,1(𝑧),
here the percentages of rejections reach 100% even for 𝑁 = 100. For
0,2(𝑧) and 𝛽0,3(𝑧), addressing the SED and modeling the heterogeneity
ith random effects lead to efficiency gain which clearly helps to

mprove the percentages. These results suggest that the power values
f the test depend on two factors. The first is the degree of nonlinearity
f the coefficient functions. Note that 𝛽0,1(𝑧) in Model III demonstrates
much stronger nonlinearity than 𝛽0,2(𝑧) and 𝛽0,3(𝑧). Secondly, the SED
nd heterogeneity must be appropriately considered for the inference
ethods to work effectively. The impacts of these are evident at all lev-

ls of observations and numbers of nonzero elements in the weighting
atrices. On the contrary, the null hypothesis of a constant coefficient
s true when tests are implemented for 𝛽0,4(𝑧) to 𝛽0,7(𝑧). Hence, we
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can subtract the proportion shown in Table 5 from 100 results for the
size of the test. From Table 5, it is obvious that the size converges to
the 5% significance level in all cases. In addition, addressing the SED
and modeling the heterogeneity with random effects lead to significant
improvements.

4. Public expenditure on mental health in England

In this section, we analyze the determinants of the spending on
MHS by local councils in England. In addition, we investigate whether
different political preferences of residents within local authorities bring
about disparities that can lead to unequal access to MHS.

4.1. Introduction and motivation

The issue of mental health is one of the emerging policy priorities
in the UK. We begin by highlighting some notable facts, illustrating the
prevalence of the mental health problems in the UK.

∙ The 2014 survey of Mental Health and Wellbeing in England found
that 1 in 6 people aged 16+ had experienced symptoms of a common
mental health problem, such as depression or anxiety, in the past week
(see McManus et al. (2016) for more details). Women were more likely
than men to experience common mental disorders.

∙ Monitoring from the Office for National Statistics (ONS) found
that the prevalence of moderate or severe depressive symptoms among
adults in Great Britain have risen sharply in recent years. In surveys
taken between July 2019 and March 2020, the prevalence was 10%,
but this rose to 19% by June 2020 (see Leach et al. (2022) for more
details).

This section studies spending on MHS that is related to the primary
sources of support for mental health, namely nursing, accommodation,
direct payments, homecare, supported living, other long-term care, and
other short-term support. Note that the most local funding for MHS is
not ring-fenced, meaning that an each local National Health Service
(NHS) determines its own mental health budget from its overall funding
allocation. This was the result of the public health reforms that took
place in 2013, during which there was a significant transfer of respon-
sibility for commissioning and providing of public health services from
the NHS to the local authorities. In short, the government’s view was
that, To … avoid the problems of the past, we need to reform the public
health system. Localism will be at the heart of this system, with respon-
sibilities, freedoms, and funding devolved wherever possible (Department
f Health, 2010). This means that neither the government nor NHS
ngland determines exactly how much funding goes to MHS in local
reas.

Hence, an important question is what factors determine the MHS
xpenditure of the clinical commissioning group within a local author-
ty, how, and to what extent. The number of studies have investigated
he determinants of the local authorities’ MHS expenditure, particu-
arly (Aziz et al., 2003), Moscone et al. (2007), Moscone and Tosetti
2010). The empirical models in these studies are based on a traditional
educed-form demand/supply analysis in which the MHS expenditure
s explained by a set of risk factors of the need for MHS within the
anel data regression framework. In consequence, these models only
xplain variations in the local governments’ spending in accordance
ith changes in the risk factors of mental health, particularly the
arginal effects of those risk factors.

On the contrary, the VCPD specification enables us to analyze the
unicipal disparities in the local governments’ MHS expenditure specif-

cally by allowing the marginal effects of each of the risk factors to vary
nd be driven by some idiosyncratic characteristics of the respective
ocal authorities. In this section, we allow such variations to be driven
y the political ideology (left-wing or right-wing) towards which voters
n respective local authorities are leaning. An intuitive example behind
his idea is that some councils decide to give more weight to the elderly
8

hereas others give more to youth in terms of resources according
to their political beliefs, particularly about which political party or
ideology is in power. Studying these disparities in MHS expenditure
is important because they can lead to unequal access to MHS given
the current environment in which the austerity introduced by the UK
government in 2010 squeezes local council budgets, leading to financial
difficulties for the local councils.

Moreover, the spatial dependence brought about by measurement
errors that spill across boundaries and/or spatially correlated unob-
servable latent variables can be captured in our model via the SED
specification. In the context of MHS expenditure, one example of factors
that may lead to these features is the closure of a large psychiatric hos-
pital, which serves patients from various municipalities. High number
of psychiatric hospital admission in two or more neighboring authori-
ties may be caused by aviation, which impacts residential communities
close to airports by affecting community annoyance, sleep deprivation,
and other symptoms of a mental health problem. We shall elaborate on
these points and provide an empirical illustration in the next sections.

4.2. Empirical model and data

The study in this section focuses on 151 councils in England out
of 333 local authorities, who have responsibilities for social services.
However, two local councils, namely City of London and Isles of Scilly,
are excluded from our analysis because of their distinct socio economic
and demographic characteristics. In the time dimension, we focus on
the period between 2016/17 and 2019/20, which reflects our interest
on the impact of the government’s public health reform of 2013 and
the reduction in its spending on public health grants during the period.
Therefore, 𝑁 = 149 and 𝑇 = 4.

Our dependent variable is the MHS expenditure of a local authority
tandardized by the total population in each local authority. Fig. 1
resents a per capita measure of the standardized MHS expenditure for
ersons aged between 18 and 64 (𝑚ℎ𝑠 hereafter) for all the local author-
ties during 2016/17 and 2019/20. It is evident that 𝑚ℎ𝑠 tends to be
istributed in clusters, with the highest concentrations in metropolitan
reas such as Greater London and Manchester. We assume that the data
enerating process behind 𝑚ℎ𝑠 is as follows

ℎ𝑠𝑖𝑡 = 𝑋𝑖𝑡𝛽0(𝑍𝑖𝑡) + 𝑢𝑖𝑡, (4.1)

here 𝛽0(𝑧) is a vector of smooth functions and 𝑢𝑖𝑡 is the disturbance
upporting the types of spatial interactions, which are defined in details
n Section 2.1. We now discuss the regressors and covariate used in
odel (4.1).

Let us begin with 𝑋⊤
𝑖𝑡 = (𝑋1,𝑖𝑡,… , 𝑋𝐷,𝑖𝑡)⊤. The first proposition is to

et 𝑋1,𝑖𝑡 = 1, which implies that

ℎ𝑠𝑖𝑡 = 𝛽0,1(𝑍𝑖𝑡) +𝑋∗
𝑖𝑡𝛽

∗
0 (𝑍𝑖𝑡) + 𝑢𝑖𝑡, (4.2)

here 𝑋∗⊤
𝑖𝑡 = (𝑋2,𝑖𝑡,… , 𝑋𝐷,𝑖𝑡)⊤ and 𝛽∗0 (𝑍𝑖𝑡) = {𝛽0,2(𝑍𝑖𝑡),… , 𝛽0,𝐷(𝑍𝑖𝑡)}⊤.

n (4.2), 𝛽0,1(𝑍) captures the direct effect of 𝑍.
The remaining regressors are from two sources. Firstly, we select

he explanatory variables suggested in previous studies as area-level
haracteristics potentially linked to the need for MHS (see e.g., McCrone
nd Jacobson (2004), Aziz et al. (2003), Moscone et al. (2007)). Our
tudy explains the municipal disparity in 𝑚ℎ𝑠 on the basis of a set of
isk factors, namely (i) population density (𝑝𝑠𝑞), (ii) percentage of male
opulation (𝑝𝑚𝑝), (iii) percentage of population under 14 year of age
𝑝𝑢14), (iv) standardized mortality ratio (𝑠𝑚𝑟), (v) number of jobs in a
ocal area (𝑛𝑜𝑗), (vi) percentage of households headed by lone parent
𝑝𝑙𝑝), and (vii) number of unemployment benefit claimants (𝑛𝑢𝑐). In

addition, we include (ix) median house price (𝑚ℎ𝑝), and (x) median
weekly wage (𝑚𝑤𝑤) to control for the supply-side factors. Table 6
provides full descriptions and the sources of data, whereas Table 7
presents the descriptive statistics of all the variables and covariate used

in the model.
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The selection of these variables is in accordance with the evidence
found in the literature, which suggests their association with mental
health needs. In particular, 𝑝𝑠𝑞, 𝑛𝑢𝑐 and 𝑛𝑜𝑗 are indicators of general
living condition in a particular local authority, whereas 𝑠𝑚𝑟 is an
ndicator of general health conditions. In addition, 𝑝𝑚𝑝 is included
ecause of the evidence that the gender is highly correlated with use of
ental health care, whereas 𝑝𝑢14 and 𝑝𝑙𝑝 are included as it was shown

hat poorer mental health is associated with specific socio demographic
haracteristics, particularly a high proportion of old people and non
arried adults in the population. Although it is interesting to study

he effects of other factors such as discrimination/deprivation measures
nd the percentage of immigrants at local level, this is found to cause
he problem of multicollinearity that occurs when including variables
uch as deprivation indices, ethnicity, and the number of homeless
eople and refugees (see e.g., Moscone and Knapp (2005)). Hence,
hey are omitted in favor of a parsimonious model. Furthermore, the
ffects of immigration on MHS expenditures are not clear unless much
ore detailed information are available on the prevalence of health

onditions in migrants such as pre-migration experiences, experience
uring and after migration to the UK, education, socio economic status
nd ethnicity (see Jass and Massey (2004), Antecol and Bedard (2006),
nd Giuntella et al. (2018) for more details).

We now discuss the covariate within the coefficient function. In
he empirical work, we assume that British politics are essentially one-
imensional, so that political parties can be organized along a classical
eft–right axis. Accordingly, political endorsement is measured by the
ercentage of voters who voted for the parties that are traditionally
onsidered to be right-wing. Such a percentage is denoted hereafter
y 𝑣𝑜𝑡𝑒. In the UK, this can be quite safely defined as the percentage
f voters who have voted for the Conservative and UK Independence
arties in the local government elections (see Dunleavy et al. (2018)
or more details). Table 6 provides the descriptions and data sources.

The final item required to complete the empirical model is the
eight matrix. We argue that geographical-based weight matrices are

he most relevant to our analysis, since they help us to capture how
nd to what extent the MHS expenditure of a local authority depends
n that of its neighbors. This section considers a similar set of weight
atrices to that used in Section 3 so that we can analyze if and how

he results of the estimation change with weight matrices that differ in
heir degree of sparseness. In particular, we consider weight matrices
ased on (i) the 𝑘-nearest neighbors criterion, where 𝑘 is 4, 10, or 16;
nd (ii) sphere of influence, referred to hereafter as KW4, KW10, KW16,
nd SW, respectively. Section 3 of the supplemental material discusses
he spatial weight matrices in more detail.

.3. Estimation results

The steps taken in our empirical analysis are congruent with those of
he methodologies developed in Section 2. That is, we firstly estimate
he empirical model in (4.2) and perform variable selection by using
he proposed estimation procedure and the SAREC-KLASSO technique,
espectively. Once relevant regressors are identified, we drop those
onsidered to be irrelevant, then re-estimate the model and employ
he testing procedure discussed in Section 2.4 to check whether the
ssociated functional coefficients are constant. Below, we discuss some
mportant findings. The implications of these on the determinants of
nd disparity in MHS expenditure in England are discussed in the next
ection.

Table 8 presents the estimates of the autoregressive parameter,
hich increase as higher numbers of nearest neighbors are taken into
ccount. In addition, the outcome of the variable selection suggests
hat there are five regressors which are truly relevant, whereas the
est are not. This selection is robust across the spatial weight matrices.
imilarly, the outcomes of the coefficient constancy test remain largely
nchanged across different weight matrices. On the contrary, without
9

ncorporating the SAREC structure (a case that is denoted in the table
by 𝐾𝑊 0), the selection suggests that all of the variables except one
re relevant. This finding is in significant contrast to that based on the
AREC-KLASSO method. The test statistics of the coefficient constancy
est are also much larger compared with those associated with 𝐾𝑊 4,
𝑊 10, 𝐾𝑊 16, and 𝑆𝑊 . By applying the SAREC-KLASSO method,
e find that the intercept and four of the regressors are relevant in
xplaining the disparities in mental health spending by local councils in
ngland, namely the percentage of male population (𝑝𝑚𝑝), standardized
ortality rates (𝑠𝑚𝑟), median weekly wage (𝑚𝑤𝑤), and population
ensity (𝑝𝑠𝑞). Intriguingly, only the effect of 𝑝𝑚𝑝 is found to depend
onlinearly on 𝑣𝑜𝑡𝑒.

These findings are well supported by the estimates of the coefficient
unctions. Since the empirical results are robust to the different spatial
eight matrices, here we focus only on those in Fig. 2, which are based
n 𝐾𝑊 4 (see Section 4 of the supplemental material for the results
ased on other spatial weight matrices). In the figure, the red lines are
onfidence bands. The results of Corollary 2.6 and (2.24) suggest that
e construct these bands as follows

[

𝛽𝑑 (𝑧) − 𝛥(𝑧), 𝛽𝑑 (𝑧) + 𝛥(𝑧)
]

, (4.3)

here 𝛽𝑑 (𝑧) is the unpenalized estimate obtained after excluding the
rrelevant regressors,

(𝑧) =
{

𝑑𝑁 +
[

log 2 − log {− log(1 − 𝛼)}
]

(−2 logℎ)−1∕2
}

× 𝑆𝐷
{

𝛽𝑑 (𝑧)
}

.

ere, 𝛼 = 0.1 (i.e., 90% confidence level), and 𝑑𝑁 and 𝑆𝐷
{

𝛽𝑑 (𝑧)
}

are
efined in (2.24) and (2.25), respectively. Moreover, the broken blue
ine is computed as follows

̂𝑑 = 1
𝑁𝑇

𝑇
∑

𝑖=1

𝑇
∑

𝑡=1
𝛽𝑑 (𝑍𝑖𝑡). (4.4)

hese confidence bands suggest that the estimates of the functional
oefficients for 𝑠𝑚𝑟, 𝑚𝑤𝑤, and 𝑝𝑠𝑞 are statistically significant, and their
ffects are independent from 𝑣𝑜𝑡𝑒. These results are consistent with
hose in Table 8. The estimate of the functional coefficient for 𝑝𝑚𝑝 is
lso statistically significant, but (unlike the previous cases) its effect
epends nonlinearly on 𝑣𝑜𝑡𝑒. These results are less conclusive. Finally,
he estimates of the coefficient functions based on other spatial weight
atrices are similar to those presented in Figs. 3 and therefore are
resented in the supplementary material.

.4. Policy implications

This section discusses implications of our empirical findings on the
eterminants of and disparity in the MHS expenditure in England.

Independently from 𝑣𝑜𝑡𝑒, the percentage of male population does
ot have statistically significant effect on the MHS expenditure across
ocal councils. However, by conditioning its effect on political pref-
rence, it seems that 𝑝𝑚𝑝 has a positive (negative) impact on 𝑚ℎ𝑠 in
ouncils that are dominated by central-left (central-right) politics. This
uggests that the gender disparity exists in accessing MHS such that
eft-leaning and right-leaning councils react differently when facing

similar change in 𝑝𝑚𝑝. Since many previous studies suggested that
emales are more likely to be affected by mental health problems (see
.g., McManus et al. (2016)), a decrease in 𝑝𝑚𝑝 should lead to an
ncrease in 𝑚ℎ𝑠 to maintain a similar level of accessibility. Our results
uggest that only right-wing councils have made decisions accordingly.

Moreover, independently from 𝑣𝑜𝑡𝑒, the standardized mortality ratio
oes not seem to have a statistically significant effect on the MHS
xpenditure across councils. However, by conditioning its effect on
ritish local political preferences, it seems that 𝑠𝑚𝑟 contributes to
ositive effects on 𝑚ℎ𝑠 by councils that are dominated by central-left
olitics. Hence, for these councils the allocation of mental health grants
s linked more closely to the general indicators of deprivation and
ublic health conditions. This appropriately reflects the social welfare,
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public provision, and collectivism are important characteristics of the
left-wing political ideologies.

In addition, our results suggest that, irrespective of the political at-
mosphere within local authorities, the impact of population density on
MHS expenditure is positive and significant. In other words, authorities
generally anticipate higher demand for MHS in inner-city areas that
are more densely populated. This anticipation is in agreement with
empirical evidence found in many other studies (see e.g., Maconick
et al. (2021)). When we consider the coefficient function more closely,
it seems that political endorsement leads to some disparity in accessing
MHS. For example, if there is an increase in the population density,
right-leaning authorities tend to respond more generously. However, it
should be noted that this nonlinearity is not statistically significant.

Moreover, median weekly earnings are found to have positive
effects on MHS expenditure which is congruent with the findings
of Moscone et al. (2007). It is highly likely that higher income often
leads to a better living standard, which in turn helps to lessen other
problems within a local authority that require funding from the council.
This makes some extra funding available, which can be spent by the
local authority on MHS. We did not reject the null hypothesis of the
coefficient constancy and therefore conclude that there is no disparity
in spending on MHS because councils at both end of the political
spectrum behave similarly.

We now focus on the selection result which suggests that percentage
of lone parent, 𝑝𝑙𝑝, is irrelevant when allocating MHS expenditure. This
finding is quite alarming, particularly given the evidence that a person
who takes care of their child or children without a husband, wife, or
partner is more likely to require mental health support (see Moscone
et al. (2007) for details). In England, the number of lone parent families
has increased significantly in recent years (reaching 2.9 million families
in 2020, accounting for 14.7% of families in the UK (Office of National
Statistics, 2020)).

5. Conclusions

We introduced a regression model that combines two important
areas of methodological development in the analysis of panel data,
namely the VC and SED specifications. Whereas the former allows a
flexible nonlinear interaction, our SED enables the spatial interactions
involving both the error and unit-specific error components. This allows
the generalization that differs significantly from other random effects
models in the literature, and broaden the applicability of our models to
problems in health, urban and environmental economics.

Furthermore, we establish a novel estimation procedure. This can
be viewed as a generalization of the QML method for spatial panel
data models to the well-known conditional local kernel-weighted like-
lihood. Our main theoretical results are the uniform consistency of our
proposed estimators, which are established based on a set of standard
and primitive conditions. These results form the basis for establishing
our inference methods, particularly the SAREC-KLASSO procedure for
variable selection and hypothesis testing procedure for the parameter
constancy. Our theory suggests that these methods can be implemented
effectively even under the SED specification.

In addition, the empirical analysis has made some important con-
tributions. Firstly, we illustrate the practicality and applicability of
our model and statistical methods. To ensure their empirical validity
and relevance, we conduct an extensive simulation exercise in order to
examine their finite-sample performance and robustness. Our proposed
procedures are found to outperform existing methods, particularly
when a true data generating process involves spatially correlated errors.
Secondly, the empirical findings help to explain not only the determi-
nants of the MHS expenditure of local councils, but also whether the
political tendency of the local electorates bring about the municipal
disparity and hence unequal access to MHS. Intriguingly, our results
suggest that the gender disparity exists in accessing MHS. This is in
10

the sense that left-leaning and right-leaning councils react differently o
when facing a similar change in the percentage of male population.
Furthermore, general indicators of deprivation and public health con-
ditions seem to be given greater weight by left-leaning councils when
allocating MHS funding. These could also bring about the municipal
disparities and unequal access to MHS. Finally, the most concerning re-
sult suggests that (irrespective of the political ideologies), local councils
are inattentive to percentage of lone parent when allocating funding
for MHS; despite strong evidence that lone parents are more likely to
require mental health support, as shown in previous studies.
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Appendix A

This section consists of two subsections. Appendix A.1 presents a
set of technical lemmas that are required for the mathematical proofs
of the main theoretical results of the paper which are presented in
Appendix A.2.

A.1. Lemmas

We first derive the lower bound of the expected concentrated local
likelihood, more specifically 𝐸(𝓁𝑐

𝑧(𝛿)), which is denoted as 𝓁𝑐
𝑧(𝛿) in

(2.10).

Lemma A.1. Under Assumptions of Theorem 2.1,

𝓁𝑐
𝑧(𝛿) = −1

2

[

log{2𝜋} + log

{

𝜎2𝑣 (𝑧)
tr[0𝑁 ̄⊤

𝑁 ̄𝑁 ]
𝑁𝑇

}

+
log |𝑁 |

𝑁𝑇
+ 1

]

𝑓 (𝑧) ≤ 𝐸
(

𝓁𝑐
𝑧(𝛿)

)

(A.1)

as 𝑁 → ∞.

Derivation of Lemma A.1: By Jensen’s inequity, we have

𝐸
(

𝓁𝑐
𝑧(𝛿)

)

= −1
2

(

log{2𝜋} + 𝐸
(

log{�̃�2
𝑣 (𝑧)}

)

+
log{|𝑁 |}

𝑁𝑇
+ 1

)

𝑓 (𝑧) + 𝑜(1)

≥ −1
2

(

log{2𝜋} + log
{

𝐸(�̃�2
𝑣 (𝑧))

}

+
log{|𝑁 |}

𝑁𝑇
+ 1

)

𝑓 (𝑧),

here 𝐸
(

�̃�2𝑣 (𝑧)
)

= 𝜎2𝑣 (𝑧)
tr[0𝑁 ̄

⊤
𝑁 ̄𝑁 ]

𝑁𝑇 . By using the second order ap-
proximation of the expected ratio of two random processes,

𝐸
(

�̃�2𝑣 (𝑧)
)

≈
𝐸(�̃�2𝑁𝑈,𝑣(𝑧))

𝐸(�̃�2𝐷𝐸,𝑣(𝑧))
+ 𝑜(ℎ𝜚),

here �̃�2𝑁𝑈,𝑣(𝑧) and �̃�2𝐷𝐸,𝑣(𝑧) denote the numerator and denominator
f �̃�2(𝑧), respectively. It is straightforward to show that 𝐸(�̃�2 (𝑧)) =
𝑣 𝐷𝐸,𝑣
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𝑓 (𝑧) + 𝑂(ℎ𝜚). Now let us consider 𝐸(�̃�2𝑁𝑈,𝑣(𝑧)) as follows. By using the
Taylor expansion argument,

𝐸(�̃�2
𝑁𝑈,𝑣(𝑧)) = 𝐸

(

1
𝑁𝑇

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
{�̈�𝑗𝑠 − �̈�𝑗𝑠𝛽(𝑧)}2𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

)

= 𝐸

(

1
𝑁𝑇

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1

[

𝐵𝑁 (𝑧, ℎ𝑣)⊤�̈�⊤
𝑗𝑠�̈�𝑗𝑠𝐵𝑁 (𝑧, ℎ𝑣) + 𝑅𝑁 (𝑧)⊤�̈�⊤

𝑗𝑠�̈�𝑗𝑠𝑅𝑁 (𝑧) + �̈�2𝑗𝑠

− 2𝐵𝑁 (𝑧, ℎ𝑣)⊤�̈�⊤
𝑗𝑠�̈�𝑗𝑠𝑅𝑁 (𝑧) + 2𝐵𝑁 (𝑧, ℎ𝑣)⊤�̈�⊤

𝑗𝑠 �̈�𝑗𝑠 − 2𝑅𝑁 (𝑧)⊤�̈�⊤
𝑗𝑠 �̈�𝑗𝑠

]

𝐾ℎ(𝑍𝑗𝑠 − 𝑧)
)

𝐸(𝐹1,1) + 𝐸(𝐹1,2) + 𝐸(𝐹1,3) + 𝐸(𝐹1,4) + 𝐸(𝐹1,5) + 𝐸(𝐹1,6), (A.2)

where 𝐵𝑁 (𝑧, ℎ𝑣) = 𝛽(𝑧)(1)(ℎ𝑣) + ⋯ + 𝛽(𝑧)(𝜚)(ℎ𝑣)𝜚 + 𝑜(ℎ𝜚), 𝑅𝑁 (𝑧) =
�̈�⊤

𝑁𝐾𝑁 �̈�𝑁 )−1(�̈�⊤
𝑁𝐾𝑁 �̈�𝑁 ), under Assumption B5. Firstly, by using the

iterated expectation argument, the three terms above are as follows

𝐸(𝐹1,1) = 2ℎ𝜚𝜅𝜚𝑓 (𝑧)𝛽(𝜚−1)(𝑧)⊤𝛺(𝑧)
tr[0𝑁 ̄⊤

𝑁 ̄𝑁 ]
𝑁𝑇

𝛽(1)(𝑧) + 𝑜(ℎ𝜚) = 𝑜(1)

(A.3)

under Assumptions of B1, B3, B4 and because 0𝑁 and ̄⊤
𝑁 ̄𝑁 are

onstochastic, where 𝜅𝜚 = ∫ 𝑢𝜚𝐾(𝑢)𝑑𝑢,

(𝐹1,3) = 𝜎2𝑣 (𝑧)
tr[0𝑁 ̄⊤

𝑁 ̄𝑁 ]
𝑁𝑇

𝑓 (𝑧) + 𝑂(ℎ𝜚),

and 𝐸(𝐹1,5) = 0 𝑎.𝑠. because 𝐸(𝑢𝑖𝑡|𝑋𝑖𝑡, 𝑍𝑖𝑡) = 0 𝑎.𝑠. For the rest of the
terms in (A.2), the second order approximation of the expected ratio of
two random processes and the iterated expectation argument are used
again as follows

𝐸(𝐹1,2) =
1

𝑁𝑇ℎ
𝜅𝜎2𝑣 (𝑧)𝛺(𝑧)−1𝑓 (𝑧)−1

under Assumptions of B1, B3, and B4 because 𝐹1,2 = (�̈�⊤
𝑁𝐾𝑁 �̈�𝑁 )⊤

(�̈�⊤
𝑁𝐾𝑁 �̈�𝑁 )−1(�̈�⊤

𝑁𝐾𝑁 �̈�𝑁 ), and 𝐸(𝐹1,4) = 𝐸(𝐹1,6) = 0 𝑎.𝑠. due to
the similar argument to the case of 𝐸(𝐹1,5). Hence, 𝐸(�̃�2𝑁𝑈,𝑣(𝑧)) =

𝜎2𝑣 (𝑧)
tr[0𝑁 ̄

⊤
𝑁 ̄𝑁 ]

𝑁𝑇 𝑓 (𝑧) + 𝑜(1) and, subsequently, (A.1) follows. □
We now present the uniform consistency of the kernel estimations

hich will be subsequently used in the proofs of the main theoretical
esults.

emma A.2. Suppose (𝜉𝑖𝑡, 𝑍𝑖𝑡) are 𝑖.𝑖.𝑑. random vectors for all 𝑖𝑡 =
1,… , 𝑁𝑇 , where 𝜉𝑖𝑡s are scalar random variables. Under Assumptions of
|𝜉|𝑚 < ∞, sup

𝑧∈[0,1]
∫ |𝜉|𝑚𝑓 (𝜉, 𝑧)𝑑𝜉 < ∞, where 𝑓 (⋅, ⋅) denotes the joint

density of (𝜉,𝑍) and 𝑚 > 2, and the kernel function 𝐾(𝑢) is a symmetric
bounded positive function with a bounded support and Lipschitz continuous
on its support, then

sup
𝑧∈[0,1]

|

|

|

|

|

|

1
𝑁𝑇

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1

[

𝐾ℎ(𝑍𝑗𝑠 − 𝑧)𝜉𝑗𝑠 − 𝐸
{

𝐾ℎ(𝑍𝑗𝑠 − 𝑧)𝜉𝑗𝑠
}]

|

|

|

|

|

|

= 𝑂𝑝

(

(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

provided that 𝑁2𝜂−1ℎ → ∞, where 𝜂 < 1 − 𝑚−1.

Proof. The proof can be found in Mack and Silverman (1982). □

emma A.3. Under Assumptions of Lemma A.2, and the higher-order
ernel function, particularly Assumption B1, and if 𝑔(𝑧) = 𝐸(𝜉𝑖𝑡|𝑧) has the
higher-order bounded derivative, then

sup
𝑧∈[0,1]

|

|

|

|

|

|

1
(𝑁𝑇 )2

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1

[

𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡)𝜉𝑗𝑠 − 𝑓 (𝑍𝑖𝑡)𝑔(𝑍𝑖𝑡)
]

|

|

|

|

|

|

= 𝑂𝑝

(

ℎ𝜚 +

(

(

log(1∕ℎ)
(𝑁𝑇 )2ℎ

)1∕2
))

,

here 𝜚 > 2 and 1
2 + 1

4𝜚 < 𝜂 < 1 − 𝑚−1.

Proof. Under some additional regularity conditions, it should be clear
that Lemma A.3 is a corollary of Lemma A.2. □
11
A.2. Proofs of the main theoretical results

We firstly present the proofs of Theorems 2.1 and 2.2, then subse-
quently those of Corollaries.

A.2.1. Proofs of Theorems 2.1 and 2.2
Note that the first derivatives of the matrices, namely −1

𝑁 = ̄⊤
𝑁 ̄𝑁

and 𝑁 , are frequently used in the following proofs, hence they are
resented for the sake of convenience below
𝜕−1

𝑁

𝜕𝜌
= −2[𝐼𝑇 ⊗ (𝐼𝑁 −𝑊 ⊤

𝑁 )]{𝑄0,𝑁 + (1 + 𝑇𝜙)−1𝑄1,𝑁}[𝐼𝑇 ⊗ (𝐼𝑁 − 𝜌𝑊𝑁 )]

𝜕−1
𝑁

𝜕𝜙
= −2[𝐼𝑇 ⊗ (𝐼𝑁 − 𝜌𝑊𝑁 )⊤]

{

𝑇 ∕2
(1 + 𝑇𝜙)2

}

[𝐼𝑇 ⊗ (𝐼𝑁 − 𝜌𝑊𝑁 )]

𝜕𝑁

𝜕𝜌
= 2[𝐼𝑇 ⊗ (𝐼𝑁 − 𝜌𝑊 ⊤

𝑁 )−1][𝐼𝑇 ⊗ (𝐼𝑁 −𝑊𝑁 )][𝐼𝑇 ⊗ (𝐼𝑁 − 𝜌𝑊𝑁 )−1]

×{𝑄0,𝑁 + (1 + 𝜙𝑇 )𝑄1,𝑁}[𝐼𝑇 ⊗ (𝐼𝑁 − 𝜌𝑊 ⊤
𝑁 )−1]

𝜕𝑁

𝜕𝜙
= [𝐼𝑇 ⊗ (𝐼𝑁 − 𝜌𝑊𝑁 )−1]{𝑇𝑄1,𝑁}[𝐼𝑇 ⊗ (𝐼𝑁 − 𝜌𝑊𝑁 )−1].

Proof of Theorem 2.1. Theorem 2.1 can be proved in two main steps.
The uniform consistency of 𝛿 uniformly over 𝛿 ∈ 𝛥 is established, then
the unique identification of 𝛿0 is shown.

The uniform consistency over the compact parameter space can be
shown by the following two steps. It is established by firstly showing
that

sup
𝑧∈[0,1]

|

|

|

|

1
𝑁𝑇

̃𝑐 (𝛿) − 1
𝑁𝑇

̄𝑐 (𝛿)
|

|

|

|

= 𝑂𝑃
(

(𝑁𝑇 )−1∕2
)

,

where ̄𝑐 (𝛿) =
∑𝑁

𝑖=1
∑𝑇

𝑡=1 𝓁
𝑐
𝑍𝑖𝑡

(𝛿), then the uniform Lipschitz continuity
of |

|

|

1
𝑁𝑇 ̃

𝑐 (𝛿) − 1
𝑁𝑇 ̄

𝑐 (𝛿)||
|

over 𝛿 ∈ 𝛥 by establishing the stochastic
equi-continuity. Let us present the first step as follows

sup
𝑧∈[0,1]

|

|

|

|

1
𝑁𝑇

̃𝑐 (𝛿) − 1
𝑁𝑇

̄𝑐 (𝛿)
|

|

|

|

≐ sup
𝑧∈[0,1]

|

|

|

|

−1
2
(

𝐿1,1 + 𝐿1,2 + 𝐿1,3 + 𝐿1,4
)|

|

|

|

,

where

𝐿1,1 = 1
(𝑁𝑇 )2

log{2𝜋}
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡) − log{2𝜋}𝑓 (𝑍𝑖𝑡)

𝐿1,2 = 1
(𝑁𝑇 )2

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
log{�̃�2𝑣 (𝑍𝑖𝑡)}

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡)

− log

{

𝜎2𝑣 (𝑍𝑖𝑡)
tr[0𝑁 ̄⊤

𝑁 ̄𝑁 ]
𝑁𝑇

}

𝑓 (𝑍𝑖𝑡)

𝐿1,3 = 1
(𝑁𝑇 )2

log |𝑁 |

𝑁𝑇

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡) −

log |𝑁 |

𝑁𝑇
𝑓 (𝑍𝑖𝑡)

𝐿1,4 = 1
(𝑁𝑇 )2

𝑇
∑

𝑖=1

𝑇
∑

𝑡=1

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡) − 𝑓 (𝑍𝑖𝑡).

he uniform consistency of the three terms are similarly shown as
ollows sup

𝑧∈[0,1]
|

|

𝐿1,𝑘
|

|

= 𝑂𝑝
(

(𝑁𝑇 )−1∕2
)

, where 𝑘 = 1, 3, 4 by using the

imilar arguments in Lemma A.3. The last term, 𝐿1,2, is as follows

sup
∈[0,1]

|

|

|

|

|

|

�̃�2𝑣 (𝑍𝑖𝑡) − 𝜎2𝑣 (𝑍𝑖𝑡)
tr[0𝑁 ̄⊤

𝑁 ̄𝑁 ]
𝑁𝑇

|

|

|

|

|

|

= 𝑂𝑝

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

and

sup
∈[0,1]

|

|

|

|

|

|

1
𝑁𝑇

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡) − 𝑓 (𝑍𝑖𝑡)

|

|

|

|

|

|

= 𝑂𝑝

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

by using the same arguments as in Lemma A.2, under Assumptions of
B1, B3 and B4, and

sup ‖

‖

𝛽(𝑍𝑖𝑡) − 𝛽(𝑍𝑖𝑡)‖‖ = 𝑂𝑝

(

ℎ𝜚 +
(

log(1∕ℎ)
)1∕2

)

(A.4)

𝑧∈[0,1] (𝑁𝑇 )ℎ
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=

s

𝐿

w
{

{

𝑋

b
s
a

𝑧

a

𝑧

b



w
𝑋

𝑧
o
(

≐

E
a

𝑧

w

𝐿

H

e

c
C

𝓁

under Assumptions of B1 to B5, where

𝛽(𝑍𝑖𝑡) =

[ 𝑁
∑

𝜄=1

𝑇
∑

𝜏=1
�̈�⊤

𝜄𝜏�̈�𝜄𝜏𝐾ℎ(𝑍𝜄𝜏 −𝑍𝑖𝑡)

]−1 𝑁
∑

𝜄=1

𝑇
∑

𝜏=1
�̈�⊤

𝜄𝜏 �̈�𝜄𝜏𝐾ℎ(𝑍𝜄𝜏 −𝑍𝑖𝑡)

= 𝛽(𝑍𝑖𝑡) + 𝑅𝑁 (𝑍𝑖𝑡)

with

sup
𝑧∈[0,1]

‖

‖

‖

‖

‖

‖

𝑁
∑

𝜄=1

𝑇
∑

𝜏=1
�̈�⊤

𝜄𝜏�̈�𝜄𝜏𝐾ℎ(𝑍𝜄𝜏 −𝑍𝑖𝑡) −𝛺(𝑍𝑖𝑡)
tr[0𝑁⊤

𝑁𝑁 ]
𝑁𝑇

𝑓 (𝑍𝑖𝑡)
‖

‖

‖

‖

‖

‖

𝑂𝑝

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

, (A.5)

and by using the facts that (𝐴+ℎ𝐵)−1 = 𝐴−1−ℎ𝐴−1𝐵𝐴−1+𝑂(ℎ2) (see Fan
and Zhang (2000) for details),

sup
𝑧∈[0,1]

‖

‖

𝑅𝑁 (𝑍𝑖𝑡)‖‖ = 𝑂𝑝

(

ℎ𝜚
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
+
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)

)

(A.6)

because

sup
𝑧∈[0,1]

‖

‖

‖

�̈�⊤
𝑁𝐾𝑁,𝑖𝑡�̈�𝑁

‖

‖

‖

= 𝑂𝑝

(

(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

, (A.7)

where 𝐾𝑁,𝑖𝑡 = diag{𝐾ℎ(𝑍11−𝑍𝑖𝑡),… , 𝐾ℎ(𝑍𝑁𝑇 −𝑍𝑖𝑡)}. Then, by using the
imilar arguments as in Lemma A.3, sup

𝑧∈[0,1]
|𝐿1,2| = 𝑜𝑃 ((𝑁𝑇 )−1∕2). Hence,

sup
𝑧∈[0,1]

|

|

|

1
𝑁𝑇 ̃

𝑐 (𝛿) − 1
𝑁𝑇 ̄

𝑐 (𝛿)||
|

= 𝑂𝑃
(

(𝑁𝑇 )−1∕2
)

.

The next step is establishing the uniform stochastic equip-continuity
over 𝛿 ∈ 𝛥 as follows

sup sup
‖𝛿−𝛿∗‖<𝜖,𝑧∈[0,1]

‖

‖

‖

‖

1
𝑁𝑇

̃𝑐 (𝛿) − 1
𝑁𝑇

̄𝑐 (𝛿) −
{ 1
𝑁𝑇

̃𝑐 (𝛿∗) − 1
𝑁𝑇

̄𝑐 (𝛿∗)
}

‖

‖

‖

‖

≤ sup
𝑧∈[0,1]

‖

‖

‖

‖

1
𝑁𝑇

{̃𝑐 (𝛿)}(1) − 1
𝑁𝑇

{̄𝑐 (𝛿)}(1)
‖

‖

‖

‖

⋅ sup
‖𝛿−𝛿∗‖<𝜖

‖𝛿 − 𝛿∗‖ = 𝑜𝑃 (1),

where 𝛿∗ ∈ 𝛥 lies in an 𝜖-neighborhood of 𝛿 such that ‖𝛿 − 𝛿∗‖ = 0
as 𝜖 → 0, 𝛿 lies on the line segment of {𝜆𝛿 + (1 − 𝜆)𝛿∗; 𝜆 ∈ (0, 1)},
and {̃𝑐 (𝛿)}(1) and {̄𝑐 (𝛿)}(1) denote the gradients of ̃𝑐 (𝛿) and ̄𝑐 (𝛿),
respectively. Hence the uniform Lipschitz continuity over 𝛿 ∈ 𝛥 is
established by showing below

sup
𝑧∈[0,1]

‖

‖

‖

‖

1
𝑁𝑇

{̃𝑐 (𝛿)}(1) − 1
𝑁𝑇

{̄𝑐 (𝛿)}(1)
‖

‖

‖

‖

= 𝑂𝑃 (1).

Now, let us consider

sup
𝑧∈[0,1]

‖

‖

‖

‖

1
𝑁𝑇

{̃𝑐 (𝛿)}(1) − 1
𝑁𝑇

{̄𝑐 (𝛿)}(1)
‖

‖

‖

‖

≐ sup
𝑧∈[0,1]

‖

‖

‖

‖

−1
2
(

𝐿2,1 + 𝐿2,2
)‖

‖

‖

‖

,

where

𝐿2,1 = 1
(𝑁𝑇 )2

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1

{�̃�2
𝑣 (𝑍𝑖𝑡)}(1)

�̃�2
𝑣 (𝑍𝑖𝑡)

𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡) −
tr
[

0𝑁
𝜕−1

𝑁
𝜕𝛿

]

tr[0𝑁−1
𝑁 ]

𝑓 (𝑍𝑖𝑡)

2,2 = 1
(𝑁𝑇 )2

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1

tr
[

−1
𝑁

𝜕𝑁
𝜕𝛿

]

𝑁𝑇
𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡) −

tr
[

−1
𝑁

𝜕𝑁
𝜕𝛿

]

𝑁𝑇
𝑓 (𝑍𝑖𝑡)

ith {�̃�2𝑣 (𝑍𝑖𝑡)}(1) denoting the gradients of �̃�2𝑣 (𝑍𝑖𝑡). Let us consider
�̃�2𝑣 (𝑍𝑖𝑡)}(1) below

�̃�2
𝑣 (𝑍𝑖𝑡)}(1) =

[

1
𝑁𝑇

𝑁
∑

𝜄=1

𝑇
∑

𝜏=1
𝐾ℎ(𝑍𝜄𝜏 −𝑍𝑖𝑡)

]−1

×2

[

1
𝑁𝑇

𝑁
∑

𝜄=1

𝑇
∑

𝜏=1
{�̈�𝜄𝜏 − �̈�𝜄𝜏𝛽(𝑍𝑖𝑡)}

{

�̇�𝜄𝜏 − �̇�𝜄𝜏𝛽(𝑍𝑖𝑡) − �̈�𝜄𝜏
𝜕𝛽(𝑍𝑖𝑡)

𝜕𝛿

}

𝐾ℎ(𝑍𝜄𝜏 −𝑍𝑖𝑡)

]

,

where �̇�𝜄𝜏 and �̇�𝜄𝜏 are defined in the same manner as those of �̈�𝜄𝜏 and
̈ 𝜄𝜏 , respectively, with 𝜕̄𝑁

𝜕𝛿 instead of ̄𝑁 , and

𝜕𝛽(𝑍𝑖𝑡)
𝜕𝛿

= (�̈�⊤
𝑁𝐾𝑁,𝑖𝑡�̈�𝑁 )−1{(�̇�⊤

𝑁𝐾𝑁,𝑖𝑡�̈�𝑁 ) + (�̈�⊤
𝑁𝐾𝑁,𝑖𝑡�̇�𝑁 )}

− 2(�̈�⊤
𝑁𝐾𝑁,𝑖𝑡�̈�𝑁 )−1{(�̈�⊤

𝑁𝐾𝑁,𝑖𝑡�̈�𝑁 )⊤(�̇�⊤
𝑁𝐾𝑁,𝑖𝑡�̈�𝑁 )}(�̈�⊤

𝑁𝐾𝑁,𝑖𝑡�̈�𝑁 )−1

̇ ̇ ̇
12

≐ 𝑅𝑁,𝑋 (𝑍𝑖𝑡) + 𝑅𝑁,𝑈 (𝑍𝑖𝑡) − 2𝑁 (𝑍𝑖𝑡)
y using the argument of 𝛽(𝑍𝑖𝑡) = 𝛽(𝑍𝑖𝑡) + 𝑅𝑁 (𝑍𝑖𝑡) with �̇�𝜄𝜏 being
imilarly defined as �̇�𝜄𝜏 and �̇�𝜄𝜏 above. Then, by using the similar
rguments to (A.6),

sup
∈[0,1]

‖

‖

�̇�𝑁,𝑋 (𝑍𝑖𝑡) + �̇�𝑁,𝑈 (𝑍𝑖𝑡)‖‖ = 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

, (A.8)

nd

sup
∈[0,1]

‖

‖

̇𝑁 (𝑍𝑖𝑡)‖‖ = 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

(A.9)

ecause

̇ 𝑁 (𝑍𝑖𝑡) ≤
1

(�̂�min)2

(

‖

‖

‖

�̈�⊤
𝑁𝐾𝑁,𝑖𝑡�̈�𝑁

‖

‖

‖

2
)1∕2 (

‖

‖

‖

�̇�⊤
𝑁𝐾𝑁,𝑖𝑡�̈�𝑁

‖

‖

‖

2
)1∕2

,

here �̂�min = min{�̂�min
𝑖𝑡 } with �̂�min

𝑖𝑡 being the smallest eigenvalue of
̈ ⊤
𝑁𝐾𝑁,𝑖𝑡�̈�𝑁 and 𝑃 (�̂�min → 𝜆min

0 ) → 1 from (A.5) where 𝜆min
0 =

inf
∈[0,1]

𝜆min(𝑓 (𝑧)𝛺(𝑧)) with 𝜆min(⋅) denoting for the minimal eigenvalues
f an arbitrarily positive definite matrix. By using the results of (A.4),
A.8) and (A.9), {�̃�2𝑣 (𝑍𝑖𝑡)}(1)

�̃�2𝑣 (𝑍𝑖𝑡)
is given below

{�̃�2
𝑣 (𝑍𝑖𝑡)}(1)

�̃�2
𝑣 (𝑍𝑖𝑡)

=

[ 𝑁
∑

𝜄=1

𝑇
∑

𝜏=1
{�̈�𝜄𝜏𝐵𝑁 (𝑍𝑖𝑡, ℎ𝑣) + �̈�𝜄𝜏 + 𝑜𝑃 (1)}2𝐾ℎ(𝑍𝜄𝜏 −𝑍𝑖𝑡)

]−1

×

[ 𝑁
∑

𝜄=1

𝑇
∑

𝜏=1
{�̈�𝜄𝜏𝐵𝑁 (𝑍𝑖𝑡, ℎ𝑣)+�̈�𝜄𝜏+𝑜𝑝(1)}⊤{�̇�𝜄𝜏𝐵𝑁 (𝑍𝑖𝑡, ℎ𝑣)+�̇�𝜄𝜏+𝑜𝑃 (1)}𝐾ℎ(𝑍𝜄𝜏−𝑍𝑖𝑡)

]

𝐿2,1,1 + 𝐿2,1,2 + 𝐿2,1,3 + 𝐿2,1,4.

ach terms above are considered as follows. By using the similar
rguments to those of (A.3) and (A.6),

sup
∈[0,1]

‖𝐿2,1,1‖ = sup
𝑧∈[0,1]

‖

‖

‖

‖

[

1
𝑁𝑇

𝑁
∑

𝜄=1

𝑇
∑

𝜏=1
{�̈�𝜄𝜏𝐵𝑁 (𝑍𝑖𝑡, ℎ𝑣) + �̈�𝜄𝜏}2𝐾ℎ(𝑍𝜄𝜏 −𝑍𝑖𝑡)

]−1

×

[

1
𝑁𝑇

𝑁
∑

𝜄=1

𝑇
∑

𝜏=1
{𝐵𝑁 (𝑍𝑖𝑡, ℎ𝑣)⊤�̈�⊤

𝜄𝜏 �̇�𝜄𝜏𝐵𝑁 (𝑍𝑖𝑡, ℎ𝑣)}𝐾ℎ(𝑍𝜄𝜏 −𝑍𝑖𝑡)

]

‖

‖

‖

‖

= 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

,

and using the facts that 𝐸(𝑢𝑖𝑡|𝑋𝑖𝑡, 𝑍𝑖𝑡) = 0 𝑎.𝑠.,

sup
𝑧∈[0,1]

‖𝐿2,1,2 + 𝐿2,1,3‖ = sup
𝑧∈[0,1]

‖

‖

‖

‖

[

1
𝑁𝑇

𝑁
∑

𝜄=1

𝑇
∑

𝜏=1
{�̈�𝜄𝜏𝐵𝑁 (𝑍𝑖𝑡, ℎ𝑣) + �̈�𝜄𝜏}2𝐾ℎ(𝑍𝜄𝜏 −𝑍𝑖𝑡)

]−1

×

[

1
𝑁𝑇

𝑁
∑

𝜄=1

𝑇
∑

𝜏=1
{𝐵𝑁 (𝑍𝑖𝑡, ℎ𝑣)⊤�̈�⊤

𝜄𝜏 �̇�𝜄𝜏 + �̈�⊤𝜄𝜏 �̇�𝜄𝜏𝐵𝑁 (𝑍𝑖𝑡, ℎ𝑣)}𝐾ℎ(𝑍𝜄𝜏 −𝑍𝑖𝑡)

]

‖

‖

‖

‖

= 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

.

The last term is as follows

sup
𝑧∈[0,1]

‖

‖

‖

‖

‖

‖

‖

‖

‖

𝐿2,1,4 −
tr
[

0𝑁
𝜕−1

𝑁
𝜕𝛿

]

tr[0𝑁−1
𝑁 ]

‖

‖

‖

‖

‖

‖

‖

‖

‖

= 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

))1∕2
, (A.10)

here

2,1,4 =

[ 𝑁
∑

𝜄=1

𝑇
∑

𝜏=1
{�̈�𝜄𝜏𝐵𝑁 (𝑍𝑖𝑡, ℎ𝑣) + �̈�𝜄𝜏}2𝐾ℎ(𝑍𝜄𝜏 −𝑍𝑖𝑡)

]−1 [ 𝑁
∑

𝜄=1

𝑇
∑

𝜏=1
�̈�𝜄𝜏 �̇�𝜄𝜏𝐾ℎ(𝑍𝜄𝜏 −𝑍𝑖𝑡)

]

.

ence, sup
𝑧∈[0,1]

‖𝐿2,1+𝐿2,2‖ = 𝑜𝑃 (1). Consequently, the uniform stochastic

quip-continuity is established.
Lastly, the identification condition of 𝛿0 is presented. The identifi-

ation of 𝛿0 is established by showing the counter argument as follows.
onsider the Jensen’s inequality below

�̄�
𝑧(𝛿) − 𝓁𝑐

𝑧(𝛿0) = −1
2

(

1
𝑁𝑇

log
{

|𝑁−1
0𝑁 |

}

+ log

{

tr[0𝑁−1
𝑁 ]

𝑁𝑇

})

𝑓 (𝑧)

≤ 0.

The above inequality holds when 𝑁−1
0𝑁 = −1

𝑁 0𝑁 = 𝐼𝑁𝑇 . Hence,
𝛿 is not uniquely identified when there is a sequence such that 𝛿 ∈
0 𝑁
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w
r
a

𝐷

r

𝑧
a

𝑧

a

𝑧

𝜎

a

𝑧

b
a

𝑧

𝑧

w

𝛽

W

𝛽

T

𝐷𝜖(𝛿∗) converges to 𝛿∗ ∈ �̄�𝜖(𝛿0) ∩ 𝛥, where 𝐷𝜖(⋅) and �̄�𝜖(⋅) repre-
sent an open 𝜖-neighborhood and its complement, respectively, and
lim

𝑁→∞
𝑁 (𝛿∗) → lim

𝑁→∞
0𝑁 . Hence, the unique identification condition

requires (2.11), namely lim
𝑁→∞

(

max
𝛿∈�̄�𝜖 (𝛿0)∩𝛥

𝓁𝑐
𝑧(𝛿)

)

≠ 𝓁𝑐
𝑧(𝛿0) for any 𝛿. □

Proof of Theorem 2.2. Let us first introduce the Taylor expansion of
̂̄𝑁 as follows

̂̄𝑁 = ̄0
𝑁 +

𝜕̄0
𝑁

𝜕𝜌0
(�̂� − 𝜌0) +

𝜕̄0
𝑁

𝜕𝜙0
(�̂� − 𝜙0) + 𝑜𝑝((𝑁𝑇 )−1∕2) (A.11)

uniformly over 𝑧 ∈ [0, 1] using the result of Theorem 2.1. Then, by using
(A.11), 𝛽(𝑧) can be rewritten as follows

𝛽(𝑧) =

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

0,𝑗𝑠�̈�0,𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧) + �̇�𝑗𝑠(𝑧)𝑂𝑃
(

(𝑁𝑇 )−1∕2
)

+ 𝑜𝑃 ((𝑁𝑇 )−1∕2)

]−1

×

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

0,𝑗𝑠�̈�0,𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧) + �̇�𝑗𝑠(𝑧)𝑂𝑝
(

(𝑁𝑇 )−1∕2
)

+ 𝑜𝑃 ((𝑁𝑇 )−1∕2)

]

,

here �̈�0,𝑗𝑠 and �̈�0,𝑗𝑠 are defined similarly as those of �̈�𝑗𝑠 and �̈�𝑗𝑠,
espectively, with ̄0

𝑁 instead of ̄𝑁 , and �̇�𝑗𝑠(𝑧) = �̇�𝑗𝑧,𝜌(𝑧) + �̇�𝑗𝑧,𝜙(𝑧)
nd �̇�𝑗𝑠(𝑧) = �̇�𝑗𝑠,𝜌(𝑧) + �̇�𝑗𝑠,𝜙(𝑧) with

�̇�𝑗𝑧,𝜌(𝑧) = 1
𝑁𝑇

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̇�⊤

0,𝑗𝑠,𝜌�̇�0,𝑗𝑠,𝜌𝐾ℎ
(

𝑍𝑗𝑠 − 𝑧
)

̇ 𝑗𝑧,𝜙(𝑧) = 1
𝑁𝑇

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̇�⊤

0,𝑗𝑠,𝜙�̇�0,𝑗𝑠,𝜙𝐾ℎ
(

𝑍𝑗𝑠 − 𝑧
)

�̇�𝑗𝑠,𝜌(𝑧) = 1
𝑁𝑇

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̇�⊤0,𝑗𝑠,𝜌�̇�0,𝑗𝑠,𝜌𝐾ℎ

(

𝑍𝑗𝑠 − 𝑧
)

�̇�𝑗𝑠,𝜙(𝑧) =
1

𝑁𝑇

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̇�⊤0,𝑗𝑠,𝜙�̇�0,𝑗𝑠,𝜙𝐾ℎ

(

𝑍𝑗𝑠 − 𝑧
)

,

where �̇�0,𝑗𝑠 and �̇�0,𝑗𝑠 are defined similarly as those of �̈�𝑗𝑠 and �̈�𝑗𝑠,

espectively, with 𝜕̄0
𝑁

𝜕𝛿0
instead of ̄𝑁 . Notice that sup

𝑧∈[0,1]
‖�̇�𝑗𝑠(𝑧)‖ =

sup
∈[0,1]

‖�̇�𝑗𝑠(𝑧)‖ = 𝑂𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

by using the same arguments

s in Lemma A.2. Hence, it is the case that

sup
∈[0,1]

‖

‖

‖

𝛽(𝑧) − 𝛽0(𝑧)
‖

‖

‖

= 𝑂𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

by using the similar arguments to those of (A.5) and (A.7),

sup
𝑧∈[0,1]

‖

‖

‖

‖

‖

‖

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

0,𝑗𝑠�̈�0,𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧) −𝛺(𝑧)𝑓 (𝑧)
‖

‖

‖

‖

‖

‖

= 𝑂𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

nd

sup
∈[0,1]

‖

‖

‖

‖

‖

‖

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤0,𝑗𝑠�̈�0,𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

‖

‖

‖

‖

‖

‖

= 𝑂𝑃

(

(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

.

Now, let us consider the convergence of �̂�2𝑣 (𝑧). By using (A.11), �̂�2𝑣 (𝑧)
can be rewritten as

̂ 2𝑣 (𝑧) =

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]−1 ( 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1

{[

�̈�0,𝑗𝑠 + �̇�0,𝑗𝑠𝑂𝑝((𝑁𝑇 )−1∕2)
]

𝛽0(𝑧)

−
[

�̈�0,𝑗𝑠+�̇�0,𝑗𝑠𝑂𝑃 ((𝑁𝑇 )−1∕2)
]

𝛽(𝑧)+�̈�0,𝑗𝑠+�̇�0,𝑗𝑠𝑂𝑝((𝑁𝑇 )−1∕2)
}2

𝐾ℎ(𝑍𝑗𝑠−𝑧)
)

≐ 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 + 2𝑆5 + 2𝑆6 + 2𝑆7 + 2𝑆8 + 2𝑆9 + 2𝑆10,

where

sup
𝑧∈[0,1]

|

|

𝑆1 + 𝑆2 + 𝑆5
|

|

= sup
|

|

|

[ 𝑁
∑

𝑇
∑

𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]−1 [ 𝑁
∑

𝑇
∑

{𝛽0(𝑧) − 𝛽(𝑧)}⊤
(

�̈�⊤
0,𝑗𝑠�̈�0,𝑗𝑠
13

𝑧∈[0,1]| 𝑗=1 𝑠=1 𝑗=1 𝑠=1
+ �̇�⊤
0,𝑗𝑠�̇�0,𝑗𝑠𝑂𝑃 ((𝑁𝑇 )−1)+2�̈�⊤

0,𝑗𝑠�̇�0,𝑗𝑠𝑂𝑃 ((𝑁𝑇 )−1∕2)
)

{𝛽0(𝑧)−𝛽(𝑧)}𝐾ℎ(𝑍𝑗𝑠−𝑧)
]

|

|

|

|

= 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

by the uniform convergence result of 𝛽(𝑧) above and using the similar
rguments in (A.5),

sup
∈[0,1]

|

|

𝑆6 + 𝑆7 + 𝑆8 + 𝑆9
|

|

= sup
𝑧∈[0,1]

|

|

|

|

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]−1

×

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
2{𝛽0(𝑧) − 𝛽(𝑧)}⊤

(

�̈�⊤
0,𝑗𝑠�̈�0,𝑗𝑠 + �̈�⊤

0,𝑗𝑠�̇�0,𝑗𝑠𝑂𝑃 ((𝑁𝑇 )−1∕2)

+ �̇�⊤
0,𝑗𝑠�̈�0,𝑗𝑠𝑂𝑃 ((𝑁𝑇 )−1∕2) + �̇�⊤

0,𝑗𝑠�̇�0,𝑗𝑠𝑂𝑃 ((𝑁𝑇 )−1)
)

𝐾ℎ(𝑍𝑗𝑠 − 𝑧)
]

|

|

|

|

= 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

(A.12)

y the uniform convergence result of 𝛽(𝑧) above and using the similar
rguments in (A.7), and

sup
∈[0,1]

|

|

𝑆4 + 𝑆10
|

|

= sup
𝑧∈[0,1]

|

|

|

|

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]−1

×

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1

(

�̇�20,𝑗𝑠𝑂𝑃 ((𝑁𝑇 )−1) + 2�̈�0,𝑗𝑠�̇�0,𝑗𝑠𝑂𝑃 ((𝑁𝑇 )−1∕2)
)

𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]

|

|

|

|

= 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

by using the similar arguments in (A.10). Finally, it is

sup
𝑧∈[0,1]

|𝑆3| = sup
𝑧∈[0,1]

|

|

|

|

|

|

|

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]−1 [ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�20,𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]
|

|

|

|

|

|

|

= 𝜎2𝑣,0(𝑧) + 𝑂𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

. □ □

A.2.2. Proofs of Corollaries 2.1 to 2.6
For the proofs of Corollaries 2.1 to 2.6, the uniform negligibility of

the difference of using 𝛿 and 𝛿 is the main focus. Once the uniform
negligibility is established, the rest of the proofs can be found in Wang
and Xia (2009).

Proof of Corollary 2.1. In this proof, the uniform negligibility between
𝛽𝜆(𝑧) and 𝛽𝜆(𝑧) is shown as follows

sup
∈[0,1]

‖

‖

‖

𝛽𝜆(𝑧) − 𝛽𝜆(𝑧)
‖

‖

‖

= 𝑜𝑃 (1),

here

�̃�(𝑧) =

( 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

𝑗𝑠�̈�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧) + ̂

)−1 ( 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

𝑗𝑠�̈�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

)

.

e rewrite 𝛽𝜆(𝑧) by using (A.11) as follows

�̂�(𝑧) =

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

𝑗𝑠�̈�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧) + �̇�𝑗𝑠(𝑧)𝑂𝑃
(

(𝑁𝑇 )−1∕2
)

+ ̂

]−1

×

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

𝑗𝑠�̈�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧) + �̇�𝑗𝑠(𝑧)𝑂𝑝
(

(𝑁𝑇 )−1∕2
)

]

.

his leads to sup
𝑧∈[0,1]

‖

‖

‖

𝛽𝜆(𝑧) − 𝛽𝜆(𝑧)
‖

‖

‖

= 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

by using

the similar arguments in the proof of Theorem 2.2. The rest of the proof

can be found in Wang and Xia (2009). □



Regional Science and Urban Economics 106 (2024) 104009P. Wongsa-art et al.

w
𝛽

𝑧

g

P
g

𝑧

𝑜

t
i

A

B

s
t
(
a
t
s
h
t
T
a

(
i
a
e
t
o
l

𝑧
o
𝑂

{

Proof of Corollary 2.2. The proof of this Corollary can be established
by showing that

sup
𝑧∈[0,1]

‖𝛽𝜆,𝑎(𝑧) − 𝛽𝜆,𝑎(𝑧)‖ + sup
𝑧∈[0,1]

‖𝛽𝑎(𝑧) − 𝛽𝑎(𝑧)‖ = 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

,

here 𝛽𝜆,𝑎(𝑧) and 𝛽𝑎(𝑧) are defined in the same manner to those of
�̂�,𝑎(𝑧) and 𝛽𝑎(𝑧) with 𝛿 instead of 𝛿, respectively. Since it is

sup
∈[0,1]

‖𝛽𝜆,𝑎(𝑧) − 𝛽𝑎(𝑧)‖ ≤ sup
𝑧∈[0,1]

‖𝛽𝜆,𝑎(𝑧) − 𝛽𝜆,𝑎(𝑧)‖ + sup
𝑧∈[0,1]

‖𝛽𝑎(𝑧) − 𝛽𝑎(𝑧)‖

+ ‖ sup
𝑧∈[0,1]

‖𝛽𝜆,𝑎(𝑧) − 𝛽𝑎(𝑧)||,

where sup
𝑧∈[0,1]

‖𝛽𝜆,𝑎(𝑧) − 𝛽𝜆,𝑎(𝑧)‖ = sup
𝑧∈[0,1]

‖𝛽𝑎(𝑧) − 𝛽𝑎(𝑧)‖ = 𝑜𝑃
(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

, the proof is completed by using the similar ar-
uments to those in the proof of Corollary 6.1. □

roof of Corollary 2.3. In this proof, we establish the uniform negli-
ibility of the following

sup
∈[0,1]

|

|

|

𝑅𝑆𝑆 − 𝑅𝑆𝑆||
|

= 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

,

where 𝑅𝑆𝑆 is defines in (2.23) and

𝑅𝑆𝑆 = 1
(𝑁𝑇 )2

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1

{

�̈�𝑗𝑠 − �̈�𝑗𝑠𝛽𝜆(𝑍𝑖𝑡)
}2 𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡).

By using (A.11) and the result of Corollary 2.1, 𝑅𝑆𝑆 can be rewritten
below

𝑅𝑆𝑆 ≐ 𝑅𝑆𝑆 +𝑗𝑠,

where 𝑗𝑠 ≐ 1,𝑗𝑠 + 22,𝑗𝑠 with

sup
𝑧∈[0,1]

|

|

|

1,𝑗𝑠
|

|

|

= sup
𝑧∈[0,1]

|

|

|

|

1
(𝑁𝑇 )2

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1

×
{

�̇�𝑗𝑠 − �̇�𝑗𝑠𝛽𝜆(𝑍𝑖𝑡)𝑂𝑃 ((𝑁𝑇 )−1∕2)
}2 𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡)

|

|

|

|

= 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

,

and

sup
𝑧∈[0,1]

|

|

|

2,𝑗𝑠
|

|

|

= sup
𝑧∈[0,1]

|

|

|

|

1
(𝑁𝑇 )2

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

𝑁
∑

𝑗=1

𝑇
∑

𝑠=1

{

�̈�𝑗𝑠 − �̈�𝑗𝑠𝛽𝜆(𝑍𝑖𝑡)
}

×
{

�̇�𝑗𝑠 − �̇�𝑗𝑠𝛽𝜆(𝑍𝑖𝑡)𝑂𝑃 ((𝑁𝑇 )−1∕2)
}

𝐾ℎ(𝑍𝑗𝑠 −𝑍𝑖𝑡)
|

|

|

|

= 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

by using the similar arguments to those of (A.12). The proof is
completed. □

Proof of Corollary 2.4. Corollary 2.4 is established by showing that

sup
𝑧∈[0,1]

‖𝛽(𝑚+1)𝜆 (𝑧) − 𝛽(𝑚+1)𝜆 (𝑧)‖ = 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

,

where

𝛽(𝑚+1)𝜆 (𝑧) =

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

𝑗𝑠�⃛�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧) + ̂(𝑚)

]−1 [ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

𝑗𝑠�̈�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]

.

The above uniform negligibility is established by using the similar
arguments to those of Corollary 2.1 and the rest of the proof can be
found in (Wang and Xia, 2009). □
14
Proof of Corollary 2.5. The proof of Corollary 2.5 can be shown
similarly to that of Corollary 2.2 as follows

sup
𝑧∈[0,1]

‖𝛽(𝑚+1)𝜆,𝑎 (𝑧) − 𝛽(𝑚+1)𝜆,𝑎 (𝑧)‖ + sup
𝑧∈[0,1]

‖𝛽𝑎(𝑧) − 𝛽𝑎(𝑧)‖ = 𝑜𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

,

where

𝛽𝑎(𝑧) =

[ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

𝑎,𝑗𝑠�⃛�𝑎,𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]−1 [ 𝑁
∑

𝑗=1

𝑇
∑

𝑠=1
�̈�⊤

𝑎,𝑗𝑠�̈�𝑗𝑠𝐾ℎ(𝑍𝑗𝑠 − 𝑧)

]

. □

□

Proof of Corollary 2.6. The uniform negligibility, sup
𝑧∈[0,1]

‖𝛽(𝑧) − 𝛽(𝑧)‖ =

𝑃

(

ℎ𝜚 +
(

log(1∕ℎ)
(𝑁𝑇 )ℎ

)1∕2
)

, is shown by using the similar arguments to
hose of Corollary 2.1. Recall also that these are the estimators defined
n (2.7) and (2.12), respectively. □

ppendix B. Additional discussions

.1. Discussion and justification of conditions in assumption b

Assumptions B1 to B5 are standard regularity conditions in the
emi/nonparametric literature. Assumption B1(i) is required to achieve
he parametric convergence rate for estimating the finite coefficients
point parameters), and is commonly used in the semiparametric liter-
ture (see e.g., Robinson (1988), and Fan and Li (1999)). Additionally,
he order of the derivatives in Assumptions B3 to B5 is 𝜚 > 2 corre-
ponding to the order of the kernel function in Assumption B1. These
igher-order derivatives conditions are necessary in order to obtain
he parametric convergence rate for our proposed QML estimator.
herefore, it is that lim

𝑁→∞
𝑁ℎ2𝜚 → 0 and this higher-order condition

lso provides the lower bound for 𝜂, namely 1
2 + 1

4𝜚 < 𝜂, satisfying
lim

𝑁→∞
𝑁2𝜂−1ℎ → ∞ which is the necessary condition for the uniform con-

sistency of the nonparametric estimation (see e.g., Mack and Silverman
1982)). Furthermore, Assumption B2 to B5 are necessary conditions
n the varying coefficient literature (see e.g., Cai et al. (2000), Fan
nd Zhang (2000), and Xia et al. (2004)). In particular, Assumption B4
nsures that the observed index values are sufficiently dense implying
hat the maximal distance between two consecutive index variables is
nly of the order 𝑂𝑃

(

log𝑁𝑇
𝑁𝑇

)

. For an arbitrarily index value 𝑧 ∈ [0, 1],
et 𝑧∗ be the nearest neighbor among the observed index values, 𝑧∗ =

argmin
̃∈{𝑍𝑖𝑡∶11≤𝑖𝑡≤𝑁𝑇 }

|𝑧 − �̃�|. Assumption B5 imposes a smoothness condition

n the functional coefficients which implies that ‖𝛽0(𝑧) − 𝛽0(𝑧∗)‖ =

𝑃

(

log𝑁𝑇
𝑁𝑇

)

(see Xia et al. (2004) for full discussion).

B.2. Asymptotic behaviors of our test statistics

To formally state the asymptotic behaviors of our test statistic, we
write 𝐶 = (𝐶𝑑𝑒𝑁𝑇 )⊤, where 𝑒𝑁𝑇 is 𝑁𝑇 × 1 vector of ones, and 𝛽 =

𝛽𝑑,0(𝑋11),… , 𝛽𝑑,0(𝑋𝑁𝑇 )}⊤ ∈ R𝑁𝑇 . Also, let 𝐴𝐶𝑑
=

[

1
𝑁𝑇 ‖𝛽 − 𝐶‖

2
]1∕2

denote the normalized 𝑙2 distance, such that 𝐴𝐶𝑑
≥ 𝐶𝐴 if the 𝐻0 is

false, for some constant 𝐶𝐴 > 0. Under Assumptions A to C and the
procedure introduced in Section 2.2, Corollary 2.6 ensures that

lim
𝑁→∞

𝑃 (𝑇𝑑 > 𝑐𝛼) = 1.

In other words, the power of our test is nontrivial and approaching one
as the number of observations increases. Moreover, it is the case that

lim
𝑁→∞

𝑃 (𝑇𝑑 > 𝑐𝛼) = 1

under 𝐻0, i.e., the size value approaches the significance level.

Appendix C. Tables and figures

See Tables 1–8 and Figs. 1–3.



Regional Science and Urban Economics 106 (2024) 104009P. Wongsa-art et al.
Table 1
Spatial estimation (Model I).
𝑃 = 2 𝑁 = 100 𝑁 = 200 𝑁 = 300

�̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆
𝑀𝐴𝐸 0.063 0.068 0.075 0.044 0.045 0.046 0.037 0.039 0.038
𝑅𝑀𝑆𝐸 0.078 0.086 0.090 0.055 0.056 0.059 0.047 0.048 0.048

�̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆
𝑀𝐴𝐸 0.221 0.253 0.245 0.172 0.203 0.189 0.113 0.159 0.141
𝑅𝑀𝑆𝐸 0.269 0.303 0.291 0.207 0.241 0.228 0.146 0.195 0.178

𝑃 = 5 𝑁 = 100 𝑁 = 200 𝑁 = 300

�̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆
𝑀𝐴𝐸 0.090 0.081 0.099 0.064 0.066 0.073 0.054 0.055 0.059
𝑅𝑀𝑆𝐸 0.109 0.103 0.128 0.081 0.083 0.092 0.068 0.072 0.077

�̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆
𝑀𝐴𝐸 0.214 0.252 0.241 0.173 0.203 0.190 0.115 0.162 0.143
𝑅𝑀𝑆𝐸 0.265 0.300 0.288 0.208 0.241 0.230 0.148 0.197 0.181

𝑃 = 8 𝑁 = 100 𝑁 = 200 𝑁 = 300

�̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆
𝑀𝐴𝐸 0.096 0.092 0.123 0.078 0.078 0.096 0.063 0.065 0.074
𝑅𝑀𝑆𝐸 0.120 0.116 0.151 0.095 0.099 0.119 0.082 0.084 0.098

�̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆
𝑀𝐴𝐸 0.213 0.254 0.238 0.173 0.204 0.190 0.115 0.162 0.144
𝑅𝑀𝑆𝐸 0.265 0.303 0.287 0.209 0.243 0.231 0.148 0.198 0.182

Note: Estimates computed based on maximizing the concentrated log-likelihood
(i) under the unpenalized estimation, �̂�, (ii) under the penalized estimation, �̂�𝜆 , and (iii) under the oracle estimation, �̂�𝑜𝑟 .
Table 2
Spatial estimation (Model II).
𝑃 = 2 𝑁 = 100 𝑁 = 200 𝑁 = 300

�̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆
𝑀𝐴𝐸 0.068 0.068 0.079 0.044 0.046 0.048 0.038 0.039 0.039
𝑅𝑀𝑆𝐸 0.083 0.086 0.096 0.056 0.056 0.061 0.047 0.048 0.050

�̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆
𝑀𝐴𝐸 0.236 0.254 0.257 0.170 0.203 0.191 0.123 0.159 0.155
𝑅𝑀𝑆𝐸 0.283 0.303 0.304 0.206 0.241 0.229 0.157 0.195 0.190

𝑃 = 5 𝑁 = 100 𝑁 = 200 𝑁 = 300

�̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆
𝑀𝐴𝐸 0.095 0.081 0.102 0.066 0.066 0.075 0.054 0.055 0.061
𝑅𝑀𝑆𝐸 0.119 0.103 0.129 0.084 0.083 0.098 0.070 0.072 0.080

�̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆
𝑀𝐴𝐸 0.232 0.252 0.252 0.171 0.203 0.194 0.125 0.162 0.157
𝑅𝑀𝑆𝐸 0.279 0.300 0.301 0.207 0.241 0.232 0.159 0.198 0.193

𝑃 = 8 𝑁 = 100 𝑁 = 200 𝑁 = 300

�̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆
𝑀𝐴𝐸 0.095 0.092 0.121 0.080 0.078 0.096 0.063 0.065 0.075
𝑅𝑀𝑆𝐸 0.119 0.116 0.148 0.098 0.099 0.121 0.082 0.084 0.099

�̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆 �̂�𝑜𝑟 �̂� �̂�𝜆
𝑀𝐴𝐸 0.232 0.254 0.253 0.170 0.204 0.194 0.125 0.162 0.158
𝑅𝑀𝑆𝐸 0.279 0.303 0.301 0.207 0.243 0.232 0.159 0.198 0.193

Note: �̂�, �̂�𝜆 , and �̂�𝑜𝑟 are defined as in Table 1.
Table 3
Nonparametric estimation of the coefficient functions.

Model I 𝑁 = 100 𝑁 = 200 𝑁 = 300

REE𝑜𝑟 REE𝑢𝑛 REE𝑜𝑟 REE𝑢𝑛 REE𝑜𝑟 REE𝑢𝑛
𝑃 = 2 1.278 0.391 1.079 0.357 1.032 0.350
𝑃 = 5 1.289 0.393 1.075 0.354 1.032 0.350
𝑃 = 8 1.291 0.394 1.074 0.354 1.030 0.349

Model II N = 100 N = 200 N = 300

REE𝑜𝑟 REE𝑢𝑛 REE𝑜𝑟 REE𝑢𝑛 REE𝑜𝑟 REE𝑢𝑛
𝑃 = 2 1.048 0.608 1.011 0.604 0.998 0.599
𝑃 = 5 1.057 0.611 1.014 0.605 0.998 0.601
𝑃 = 8 1.057 0.609 1.013 0.604 0.997 0.600
15
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Table 4
Variable selection.

Model 𝑃 = 2 𝑁 = 100 𝑁 = 200 𝑁 = 300

I KLASSO 0.020 0.167 0.533
SAREC-KLASSO 0.353 0.800 0.960

II KLASSO 0.007 0.053 0.340
SAREC-KLASSO 0.627 0.880 0.967

Model 𝑃 = 5 𝑁 = 100 𝑁 = 200 𝑁 = 300

I KLASSO 0.027 0.200 0.560
SAREC-KLASSO 0.360 0.820 0.960

II KLASSO 0.007 0.067 0.353
SAREC-KLASSO 0.613 0.860 0.960

Model 𝑃 = 8 𝑁 = 100 𝑁 = 200 𝑁 = 300

I KLASSO 0.027 0.213 0.580
SAREC-KLASSO 0.367 0.867 0.967

II KLASSO 0.007 0.087 0.387
SAREC-KLASSO 0.593 0.833 0.967

Table 5
Hypothesis test of the coefficient constancy.
𝑃 = 2 𝑁 = 100 𝑁 = 200 𝑁 = 300

Null Hypothesis 𝑤𝑖𝑡ℎ 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑤𝑖𝑡ℎ 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑤𝑖𝑡ℎ 𝑤𝑖𝑡ℎ𝑜𝑢𝑡
𝐻0 ∶ 𝛽1(𝑧) = 𝐶1 100 100 100 100 100 100
𝐻0 ∶ 𝛽2(𝑧) = 𝐶2 65 60 84 75 94 84
𝐻0 ∶ 𝛽3(𝑧) = 𝐶3 67 69 81 77 85 77
𝐻0 ∶ 𝛽4(𝑧) = 0 74 69 85 83 89 84
𝐻0 ∶ 𝛽5(𝑧) = 0 76 64 84 77 83 81
𝐻0 ∶ 𝛽6(𝑧) = 0 72 70 83 74 84 77
𝐻0 ∶ 𝛽7(𝑧) = 0 81 66 82 77 88 83

𝑃 = 5 𝑁 = 100 𝑁 = 200 𝑁 = 300

Null Hypothesis 𝑤𝑖𝑡ℎ 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑤𝑖𝑡ℎ 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑤𝑖𝑡ℎ 𝑤𝑖𝑡ℎ𝑜𝑢𝑡
𝐻0 ∶ 𝛽1(𝑧) = 𝐶1 100 100 100 100 100 100
𝐻0 ∶ 𝛽2(𝑧) = 𝐶2 67 63 81 79 94 85
𝐻0 ∶ 𝛽3(𝑧) = 𝐶3 69 65 77 76 80 76
𝐻0 ∶ 𝛽4(𝑧) = 0 74 67 85 79 90 86
𝐻0 ∶ 𝛽5(𝑧) = 0 73 66 85 77 83 79
𝐻0 ∶ 𝛽6(𝑧) = 0 73 72 82 74 83 79
𝐻0 ∶ 𝛽7(𝑧) = 0 81 67 83 78 88 84

𝑃 = 8 𝑁 = 100 𝑁 = 200 𝑁 = 300

𝐻0 ∶ 𝛽1(𝑧) = 𝐶1 100 100 100 100 100 100
𝐻0 ∶ 𝛽2(𝑧) = 𝐶2 65 63 81 81 94 85
𝐻0 ∶ 𝛽3(𝑧) = 𝐶3 66 65 77 75 80 75
𝐻0 ∶ 𝛽4(𝑧) = 0 75 70 83 79 90 85
𝐻0 ∶ 𝛽5(𝑧) = 0 73 66 85 77 82 77
𝐻0 ∶ 𝛽6(𝑧) = 0 74 72 83 71 83 77
𝐻0 ∶ 𝛽7(𝑧) = 0 81 68 83 75 88 85

Note: The table shows percentages of correct rejections and non-rejections obtained by
applying the Fan and Zhang’s (2000) testing procedure with and without spatial error
dependence being addressed and the random effect being utilized in order to obtain
efficiency gain.
16
Fig. 1. Per capita measure of MHS spending for persons age between 18 and 64 (𝑚ℎ𝑠).

Fig. 2. Estimates coefficient function of the intercept: 𝑍 represents 𝑣𝑜𝑡𝑒.
Note: The red solid curves are 90% confidence bands defined in (4.3). The blue broken
line is �̂�𝑑 in (4.4).
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Table 6
Our data and its sources.

Symbols Descriptions

𝑣𝑜𝑡𝑒 Percentage of voters with right-wing ideology
Source: Percentage of voters that have voted for the Conservative and UK Independence
Parties in local government elections available at www.electionscentre.co.uk

𝑡𝑝ℎ Population-standardized total public health by local authority
Source: Reported in the DCLG’s Revenue Outturn, Social Care and Public Health data
available at www.ons.gov.uk

𝑚ℎ𝑠 Per capita measure of standardized MHS for persons age between 18 and 64
Source: Reported in the DCLG’s Revenue Outturn, Social Care and Public Health data
available at www.ons.gov.uk

𝑛𝑢𝑐 Claimants of unemployment-related benefits on Benefits Agency Administrative System
Source: Regional labour market Claimant Count by unitary and local authority
available at www.ons.gov.uk

𝑝𝑚𝑝 Percentage of male population by local authority
Source: Estimates of the population for the UK available at www.ons.gov.uk

𝑝𝑢14 Percentage of population under 14 year of age
Source: Estimates of the population for the UK available at www.ons.gov.uk

𝑠𝑚𝑟 Age-standardized mortality rates for 2016 to 2019 standardized to the 2013
European Standard Population expressed per 100,000 population
Source: Deaths registered by area of usual residence available at https://data.gov.uk

𝑛𝑜𝑗 Number of jobs is measured by the Labour Force Survey as the sum of employee jobs;
self-employment jobs, and government-supported trainees
Source: Regional labour market available at https://data.gov.uk

𝑝𝑙𝑝 Percentage of households headed by lone parent by local authority
Source: Estimated number of households by household types, local authorities in England
available at www.ons.gov.uk

𝑚ℎ𝑝 Median house price paid by local authority
Source: Median house prices for administrative geographies available at www.ons.gov.uk

𝑚𝑤𝑤 Median weekly wage-gross (£) for all employee jobs by local authority in England
Source: Earnings and hours worked, place of residence by local authority
available at www.ons.gov.uk

𝑝𝑠𝑞 Population density defined as population per square kilometer
Source: Estimates of the population for the UK available at www.ons.gov.uk
Table 7
Descriptive statistics.

Mean StD Min Max

𝑡𝑝ℎ 65.793 24.372 29.739 172.647
𝑚ℎ𝑠 13.265 7.163 0.100 53.710
𝑛𝑢𝑐 5,169.98 4,228.38 105.00 48,145.00
𝑝𝑚𝑝 0.495 0.009 0.473 0.553
𝑝𝑢14 0.172 0.020 0.135 0.247
𝑠𝑚𝑟 967.366 131.461 583.100 1345.800
𝑛𝑜𝑗 202,926 175,994 19,000 2,130,000
𝑝𝑙𝑝 0.107 0.028 0.042 0.216
𝑚ℎ𝑝 274,133 173,263 105,000 1,425,000
𝑚𝑤𝑤 469.094 77.396 332.100 784.400
𝑝𝑠𝑞 2823.152 3367.706 63.000 16 425.320
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Table 8
Estimation results.
𝑍 is defined as percentage of right-wing voters (𝑣𝑜𝑡𝑒)

𝑊 𝜌 𝜙 �̂� 𝑖𝑛𝑐𝑡 𝑛𝑢𝑐 𝑝𝑚𝑝 𝑝𝑢14 𝑠𝑚𝑟 𝑛𝑜𝑗 𝑝𝑙𝑝 𝑚ℎ𝑝 𝑚𝑤𝑤 𝑝𝑠𝑞

KW4 0.16 1.77 5 ✖ ⋅ × ⋅ × ⋅ ⋅ ⋅ × ×
3.83 ⋅ 2.56 ⋅ 2.28 ⋅ ⋅ ⋅ 0.15 0.72

KW10 0.21 1.78 5 ✖ ⋅ ✖ ⋅ × ⋅ ⋅ ⋅ × ×
3.74 ⋅ 3.42 ⋅ 2.14 ⋅ ⋅ ⋅ 0.45 1.18

KW16 0.27 1.81 5 ✖ ⋅ ✖ ⋅ × ⋅ ⋅ ⋅ × ×
3.27 ⋅ 3.45 ⋅ 1.87 ⋅ ⋅ ⋅ 0.13 1.24

SW 0.21 1.75 5 ✖ ⋅ ✖ ⋅ × ⋅ ⋅ ⋅ × ×
3.63 ⋅ 3.75 ⋅ 2.34 ⋅ ⋅ ⋅ 0.37 0.75

KW0 ⋅ ⋅ ⋅ ✖ ⋅ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖

13.07 ⋅ 8.76 4.96 10.85 10.743 6.547 4.292 9.829 8.58

Note: ‘‘×’’ signifies variables (i) which are selected to be relevant and (ii) whose associated functional coefficients are statistically tested to be
constant functions at 5% level. ‘‘✖’’ signifies variables (i) which are selected to be relevant and (ii) whose associated functional coefficients are
statistically tested to be non-linear functions at 5% level.
Fig. 3. Estimates coefficient functions based on KW4: 𝑍 represents 𝑣𝑜𝑡𝑒.
Note: The red solid curves are 90% confidence bands defined in (4.3). The blue broken
line is �̂�𝑑 in (4.4).
18
Appendix D. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.regsciurbeco.2024.104009.
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