UNIVERSITA CA’ FOSCARI DI VENEZIA

DIPARTIMENTO DI INFORMATICA
DOTTORATO DI RICERCA IN INFORMATICA

PH.D. THESIS: 800961

Casanova: a language for game development

Giuseppe Maggiore

SUPERVISOR SUPERVISOR

Michele Bugliesi Pieter Spronck

PuD COORDINATOR

Antonino Salibra

December, 2012

Author’s Web Page: http://casanova.codeplex.com/wikipage?title=Giuseppe%20Maggiore

Author’s e-mail: giuseppemag@gmail.com

Author’s address:

Dipartimento di Informatica
Universita Ca’ Foscari di Venezia
Via Torino, 155

30172 Venezia Mestre — Italia
tel. +39 041 2348411

fax. +39 041 2348419

web: http://www.dsi.unive.it

To my wife, my daughter, my family. Only you give meaning to all of this.

Abstract

In this work we present Casanova, a programming language. Its novelty lies in the
fact that it was designed with an exclusive focus on making games.

The goal of Casanova is to change the landscape of game development, by show-
ing how programming languages, and not game engines and game development sys-
tems, are the real frontier to explore in order to make game development truly
easier.

In this work we do not just show Casanova. We also present an extensive eval-
uation of our own experience in using the current implementation of Casanova in
order to build games and simulations.

We conclude that Casanova is not just capable of making games, but that it also
makes it easier to create games and to avoid bugs and common pitfalls.

Acknowledgments

To all who helped during a very long path of education: thank you for shaping,
encouraging, supporting during all these years.

To prof. Cortesi for his unending support.

To prof. Pelillo and Torsello for introducing me to the world of research.

To prof. Bugliesi for changing the way I think about programming.

To prof. Orsini for his patience and encouragement.

To prof. Spronck for opening new perspectives.

I stand on the shoulders of giants.

Contents

(1__Introductionl 1
(1.1 Games, board games, and video games| 1
(1.2 The challenge of game development| 2
[L3 Problem statement] 4
(1.4 Research questions and process| 4

(1.4.1 A new programming languagel 5
[1.o Structure of IT'his Workl 6

2 Requirements of a game)| 9
2.1 The game loop| oo 10
2.2 State machines| oo 15
2.3 Drawing 18
2.4 Summary| 19

[3 Available game development systems and languages| 21
[3.1 Systems vs languages|o 21
[3.2 Systems for making games|o 22

[3.2.1 Relevant game systems| 23
[3.2.2 Our choice of systems|. 24
B23 Game Makerl 24
[3.3 Languages for making games|. 0L 28
B31 Simula 67 28
3.3.2 Inform| 30
................................ 32
[3.4 Motivating a new programming language] 33
[3.4.1 Flexability| o 34
3.4.2 Correctnessl e 35
[3.4.3 Efficitency| o 37
[3.5 Creating new languages for making games| 37

4 Design of Casanoval 39
[4.1 The RSD pattern| 00 o 39
[4.2 Motivation for a new language|o 40
[4.3 Design Goals| 41

[4.4 Informal design| 41

ii Contents

5 Syntax of Casanoval 45
.1 Grammarl 45
(5.2 Type System| 47

B2T Ruled. oo 48
(.22 Coroutinesl. 49

6__Semantics of Casanoval 51

6.1 Informal Semanticsl oo 51
6.1.1 Performancel o 52
6.1.2 Correctnessl e 52
[6.1.3 Bouncing Balls| 54

6.2 Formal Semanticslo 56
[6.2.1 Types Translation|. o7
6.2.2 Rulesl. 58
[6.2.3 Scripts| Lo 61
B2A Drawl. oo 62

[Implementation of Casanoval 65
[.1 _Rule Containers| 66
[7.2 Generating the Update and Draw Functions| 67

[[2.1 Nailve traversall 68
[7.2.2 'Traversal with CPS cachingl 69

[7.3 Scripts and coroutines| Lo 72
[7.3.1 A DSL for Scripting]o 76
[7.3.2 Scripting in Games| 79

[8 Making games in Casanoval 89
81 Gameoflife] o 89
[8.2 Making games with Casanova] 9
[8.3 Player avatar and shooting stuftf 95
[8.4 Game map and monsters with AIl 98
[8.5 Active map entities and selection-based mput| 100
[8.6 Recombining the samples|., 102
[8.7 Hand written optimizations| 103

9 Evaluation of Casanoval 105
[9.1 Supported Features| L oo 105
0.2 Features to Learnl 107

921 Remarks 109

[9.3 Quantitative assessment|o 110
[9.3.1 Coroutines in games| 110

0.4 Casanova in educationl L 111

[9.4.1 High school students| 112

Contents iii
9.4.2 Master studentsl L oL 112

(10 Discussion| 115
(10.1 Original research questions| 115
(10.2 Extension opportunities for Casanoval 116
(10.2.1 Rendering| 117

(10.2.2 Standard library| L. 117
MO23TDEl . . . o oo e e e 117

(10.2.4 Networking| 118
................................. 118

(10.2.6 AAA games| 119

(10.3 Shortcomings of Casanoval 119
(10.3.1 Low-level optimizations|. 119

(10.3.2 Imperative mindset shift| 120

(10.3.3 Unusual syntax| 120

(10.3.4 Advanced rendering|. 120

(10.3.5 Other languages|. 120

(11 Conclusions| 123
[Bibliography| 127
[A Building a Menu System| 139
(B Networking in Casanoval 143
[B.1 Networking and games| 143
B.2 Common solutions, 144
[B.3 Networking in Casanoval 145
B4 Fatureworkl 146

[C A General-purpose Al for Casanoval 149
[C.1 Activitiesl e e 149
[C.2 Agent stats| 150
[C.3 Naive GOAPl 152
(C.4 Heuristic pruning|o 153
[C.5 Acting out plans| o 154
[C.6 Layered GOAP| 154
[C.7 Learning Expected Costs and Benefits] 156
(C.7.1 Learning Whole Plans| 157

|C.7.2 Learning and Layers| 158

[(C.7.3 Implicit Social Interactions|. 158

[C.7.4 Explicit Social Interactions|. 159

[C.8 Assessmentl 159
[C.9 Missing and implemented|. 161

iv Contents

D _Casanova and Data-bases 163
[D.1 The Game Worldl 163
[D.2 Persistency, Saving Games |

[and Multiplayer Games|., 165

[EE Casanova 1n Other Languages| 167
[E.1 Haskell and type classes| 167

E.1.1 Overviewl e e e e e e 168
[E.1.2 Advancedused. L 168
[F. 1.3 Casanova in Haskell, a sketch| 169
[E.2 C-++ and partial template specialization| 171
E21 Casanovarules 172
[E.2.2 Casanova scripts| 174
[F.2.3 Asteroids game| 176
[FE24 Remarkso 179

[F' A Brief Introduction to F+# 181
(.1 letand funl. 181
[F.2 Lists and sequences| oL 183
[F.3 Basic type definitions| L. 184
(.4 Variablesl. 185
[E.5 Units of measurel 186

G A Brief Introduction to Monadsl 189

197

[About the author] 199

List of Figures

3.1 Game Maker in actionl L oo 25
[3.2 Unity in action] 26
3.3 XNA in actionl.o 27
[>.1 Coroutine typing rules| oo oo 50
BRI The Game of Tifel 90
B2 Asteroids shooterl 90
B3I RPG . . . o o 91
8.4 RTS e 91
8.0 Galaxy Wars| 92
[B.1 Networking sample] 147
|C.1 Four layers planner|o 0oL 155
(C.2 Casestudy|l. 159
|C.3 Shipstats| 160

(C.4 Shipgoals| 161

Vi

List of Figures

List of Tables

3.1 Systems vs languages|o 38
(1 Traversal FPS 71
[7.2 Scripting combinators|. Lo 77
9.1 Number of features per tooll L. 107
9.2 Samples length| o oo oo 111
9.3 Samplesspeed|.o 111

4 M r n luation| 113

viii List of Tables

1

Introduction

1.1 Games, board games, and video games

Video games have seen growing adoption among users in the last decade [50]. Games
have recently reached (and surpassed) other major entertainment industries such as
the movies and the music industries [§8]. This fact alone makes games worthy of
study, because a better understanding of games would yield benefits to the many
people who make or use games in their lives.

Even though games are centered on entertainment, there are other fields of ap-
plication which feature them prominently. There are opportunities to make use
of games in serious contexts. Such contexts may be industries like defense, edu-
cation, scientific exploration, health care, emergency management, city planning,
engineering, religion, and politics. This provides a further motivation, in addition
to traditional game development tools and techniques, on the interest of games from
a research standpoint.

The ease of adapting games to other activities beside entertainment is not diffi-
cult to explain. Games are, at their core, an activity among two or more independent
decision-makers seeking to achieve their objectives in some limiting context [144]. In
some sense games can be seen as a simulation of the way human beings experience
reality, even though with differences such as simplifications or unrealistic elements.
This stems from the fact that humans are accustomed to making decisions in a lim-
ited context in order to achieve some goal. Decisions range from “when to shoot”, to
“where to go”, to “which items to buy”. The limited context consists of the fact that
decisions must be made to allocate limited resources or sometimes with incomplete
knowledge about the game world. Goals may vary; games have goals that range
from prolonged survival, to defeat of the opponents, to maximization of some of the
game resources, etc.

There are multiple types of games. In this work we focus on video games, which
are a digital adaptation to an earlier form known as board games. Board games are
games played in the real world and which involve physical counters or pieces moved
or placed on a pre-marked surface or “board”, according to a set of rules. There are
multiple types and styles of board games, and multiple themes and representations
of real-life situations. For example, chess features a simplified representation of
a battlefield, while tic-tac-toe features no inherent theme. Rules can range from
simple, as in checkers, or very detailed, as in Dungeons & Dragons. Dungeons &

2 1. Introduction

Dragons specifically is a role-playing game, where the board is secondary to the
game and is only used to help visualize the game scenario.

The definition of the actions allowed by the game and the objective to achieve
determines whether or not the game is a serious one or not, and how amusing it
can be playing it. For example, survival in daily life can be fun as long as it is
challenging, fast paced, and the consequences of actions are exaggerated. The same
setting, but with slower actions, limited consequences, and in real time could be far
less interesting for a game but may offer some educational insight to the players.
Survival in a challenging environment can either be fun or enlightening for the player,
as long as he gets the right tools to overcome the challenge in some way.

The use of games for serious purposes has been known for a long time. There
are well-documented instances of the use of games in educational circles since the
1900s [117].

Video games feature many of the same characteristics of board games, with the
important exception of being digital. This means that the rules of the game and the
coherency of the game world with said rules is maintained automatically by software.
Video games are often in real-time, since the program may incorporate actual time
in the decisions and the visualization of the game world. Video games may also
feature bigger and more complex sets of rules than those of board games. This is
made possible by the assistance provided by a program in handling those sets of rules:
players do not need to learn all the rules before playing, but can instead start playing
right away and learn the rules through in-game tutorials, experimentation, and even
trial-and-error. The real-time aspects such as a high-quality visual simulation, and
the larger rule-sets make games an excellent candidate for the representation of
many simulations, with multiple degrees of realism.

Video games can be built according to many different philosophies. The biggest,
commercial games, commonly referred to as AAA games, often cost in the order of
tens of millions of dollars to be developed, and require the focused efforts of tens of
professionals during several years of development. Other games may be developed
by a smaller team and with a smaller budget, and in this case they are referred
to as indie games (or independent games) [31]. Another genre of games, which
development is closer to indie games than to AAA games, is that of serious games
[93]. Serious games are those games which are not built for the entertainment of the
player but rather for his enlightenment, education, or training.

1.2 The challenge of game development

The costs associated with making games are always high because of the technical
challenges involved, and while this is obviously true for AAA games, it is also true
(due proportions given) for indie-games and serious-games.

The adoption of modern computers in the 1980s renewed the movement of educa-
tional games with the introduction of educational video games. This genre of games

1.2. The challenge of game development 3

is labeled edutainment [35], a portmanteau of education and entertainment. Notable
games used for the purpose were Oregon Trail, Math Blaster, and Number Munchers
[27]. Serious games encountered strong issues from the very beginning: they contin-
uously failed to prove profitable. The technological hurdles associated with making
games put makers of serious games in the difficult position of risking a large invest-
ment for little chances of profit. This has led to the search for different purposes
to which apply serious games [124]. In 2002, the movement called serious games
movement was born from the Woodrow Wilson International Center for Scholars,
which aimed at studying the use of serious games outside the educational sector
and in more profitable venues. Among the main users and producers of such games
is the United States Army, with notable titles such as America’s Army and Full
Spectrum Warrior that were also diffused among regular players who used them for
entertainment purposes. Interestingly, military officers have been using non-digital
war games in order to train strategic skills for a long time. One early example of
such game is the 19th century Prussian military training game Kriegsspiel.

Similar problems are faced by indie-games [118]. Indie-games are typically sold
below the 10$ mark (or are based on advertisement), and are often played in
browsers, smart-phones and tablets. These games are full-fledged games from all
points of view, but they are built with a smaller scope than major titles [142].

Smaller development efforts paradoxically encounter more difficulties than big
studios. This happens because big studios have many more resources to employ
in order to tackle the problem, and thus can create huge and complex games with
sheer brute-force. Such luxury is rarely afforded by indie and serious developers.
This issue has spurred the growth of substantial interest in research on principled
design techniques and on cost-effective development technologies for game architec-
tures. Our present endeavor makes a step along the directions of studying disciplined
models for game development. This is fueled by the observation of the higher cre-
ative freedom that these games afford, which leads them to explore new forms and
concepts with less risk for losing capital when compared with AAA games. Also,
innovation in serious games could have a significant impact in new forms of educa-
tion, a lofty goal that could provide widespread and long-term benefits. The impact
of lower-cost development strategies for making indie and serious games would be
an increase in pace in the innovation in the field. This leads us to observe the sig-
nificance of indie and serious games, and is the reason why our research will focus
on indie and serious games rather than AAA games.

The goal of this thesis is to mitigate the risks incurred when making a game,
by reducing the technological hurdles associated with game development. We aim
at doing so through the introduction of the Casanova game development language
which eliminates many game development patterns and activities that often recur in
games. Of course our approach does not aim at solving all failure causes of games.
Specifically if the art, design, or chosen algorithms are not of sufficient quality, then
the game will fail even if the technology it used simplified some of its coding.

4 1. Introduction

1.3 Problem statement

We can state the general problem that we tackle in this work as follows: indie and
sertous games are powerful vectors for innovation both in and out of the field of
games; they are also costly to build and maintain, and thus this innovation happens
with difficulty as many of those games either fail to finish development or fail to
achieve profitability.

1.4 Research questions and process

Our research will be aimed at the reduction in cost and complexity of the effort of
game development. Our goal is to allow smaller teams with less resources (such as
a research group in education) to tackle the development of complex and advanced
games with increased chances of success.

The process of game development that we aim at simplifying is the central focus
of this work. To achieve this simplification, we start by reasoning on how games are
usually created. Games are made by creating and reusing components which are
called game engines [64]. Game engines are large and powerful tools that are hard
to maintain and modify incrementally [64]. Also, the changing landscape of gaming
consoles and platforms forces the obsolescence of many such systems after a few
years. For this reason, game developers tend to follow the cycle of building a game
engine, and then use it as long as possible to release various games based on that
engine (incrementally fixing its bugs and adjusting it slightly) [28]. This process
has the evident shortcomings that games based on the same engine tend to be very
similar to each other; for example, subsequent games in the Halo series, such as Halo
3 and Halo ODST, or Halo Reach and Halo Anniversary, look and feel very similar
to each other and "only" feature new levels, weapons, scenarios, and stories. A less
evident shortcoming is that, since building an engine is a costly and risky effort,
engines tend to be similar to each other and to their previous incarnations. Game
development is a risky enough endeavour already, and so engines are built only
around proven game concepts and genres such as sports game, real-time-strategy
game (RTS), role playing game (RPG), first-person-shooter (FPS), and so on.

The specific problem that we wish to solve then is that modern game develop-
ment employs game engines and traditional software engineering. The programming
languages and techniques used for making games are intended for other purposes,
namely representing and manipulating data that is transformed from some input
into some output. Most computer programs are still related to the early models of
computation [46], that is performing mathematical computations that require little
to no user intervention. Interactivity is an aspect of computer programming that has
emerged only in recent times. We argue that using languages and abstractions de-
signed for the specific purpose of building games and interactive simulations, rather
than using general purpose ones, can reduce the difficulty and economical risks of

1.4. Research questions and process 5

making games. We also argue that currently available tools and techniques have
shaped an industry that is excessively risk averse and which does not easily create
games that are truly innovative in terms of gameplay, Al, story-telling, etc. As an
informal proof of this last statement, we believe that the similarity between a large
number of commercial games illustrates how averse to exploring new avenues the
industry is: from football simulators, to street-car racing games, to World War II
simulators, to endless sequels, the number of games that expand the horizon of game
development with true innovation is limited.

We believe that the solution to the problem of game development cost and com-
plexity is that of studying a language that is tailored specifically to game making.
We argue that a language for making games should be: (%) simple, because the lan-
guage itself should not be an obstacle to the developer; (ii) useful across all game
development tasks, because otherwise it would not support all aspects of game de-
velopment but only specific portions of it; (7i) general in that it does not constrain
the kind of games that are built with it, because otherwise it would not support
game development in general but only the building of certain games; and (iv) fully
composable, that is all reasonable combinations of its features should be possible,
because otherwise the developer would be burdened with learning all kinds of (some-
times unintuitive) internal compatibilities and exceptions F_:]

The research questions that we propose to answer in this thesis are:
requirements | what are the general requirements
common across development of
most games?
exploration what are the most representative
game development systems and
languages?
design what is a general and simple to
use programming language that
fulfills the game development re-
quirements?
evaluation Does such a language work for
making games in practice? How
does such it compare to other
game development systems?

1.4.1 A new programming language

We conclude this section by stating that building a new language is a useful exercise
when facing problems in a complex domain. We do not only argue that games are
a complex domain in its own right that should be treated separately from other

'Such desire for simplicity is inspired by works such as lambda calculus, which shows how few
but composable primitives may express anything computable [49]

6 1. Introduction

programming areas. We note that most programming systems, languages, and even
software engineering disciplines are adapted to games but are not designed with
them in mind. This leads us to the conviction that a new language that lends itself
to all game development activities, by automating what is repetitive and by leaving
freedom as needed, is an important step in reducing the burdens of game developers.
We finally note, in passing, that languages for games are not the only tool that is
lacking, and more general research in the direction of finding the optimal systems
and development strategies for games would offer important benefits.

1.5 Structure of This Work

In this work we explore the creation and implementation of a novel language for
making games, Casanova. Casanova generalizes our knowledge of the common pat-
terns and techniques for making game into a programming language which syntax
and semantics are centered around game development activities. Expressing many
aspects of game development can be shorter and clearer in Casanova than it can be
in traditional, general purpose programming languages, since Casanova already has
many relevant primitives built-in.

Casanova is also the name of a .Net framework for game development that we
have built around the F# language. Using an existing language and its tool-chain
yields important benefits such as a debugger, a profiler, code-completion, and more.
The framework is a limited version of the language, since using an existing language
allows for less freedom when adding syntactic constructs; this means that while the
framework is more usable in practice, it also loses some of the theoretical advantages
that the language could offer.

We start by describing the requirements that many modern real-time games share
in Chapter 2] We then overview the existing systems for making games in Chapter
Bl

We move on to the design, semantics, and implementation of Casanova in Chap-
ters [4 [l [6) and [7} In Chapter [/l we also discuss the implementation trade-offs, that
is those disadvantages that come from implementing Casanova as an F# library
rather than as its own set of tools.

We evaluate the feasibility of Casanova by studying how easy it is to make
games in it in Chapter [8| and by comparing it with existing languages and systems
for making games in Chapter [9]

We conclude with a discussion of the limitations and future work in Chapters
and

In the Appendices [A] and [B] we describe some of the features of Casanova that
are "almost there": a menu system and automated networking support for multi-
player games. We also describe how a goal-oriented planning Al could act as a
general-purpose Al system for Casanova in Appendix [C] In Appendix [D] we discuss
how databases offered an interesting set of inspirations that ultimately shaped up

1.5. Structure of This Work 7

Casanova in its current form. In appendix [E| we sketch how Casanova could be
implemented with different, well-known languages such as Haskell and C++. In the
final appendices, [F] and [G] we offer a brief introduction to F#, the language we used
to build the Casanova framework, and monads, an important tool from Category
Theory and functional programming that we heavily used in the construction of
Casanova.

1. Introduction

2

Requirements of a game

Developing a game almost invariably offers the same set of "core challenges" that
routinely arises at least once in all games. We now study these challenges, so that
they may act as requirements to fulfill in the rest of this work.

Games are (soft) real-time applications that simulate a virtual environment that
the user can manipulate through some actions. Modern games achieve interactivity
through their main structure, which is known as the game loop; the game loops
keeps invoking the functions that perform the game logic and then draw the game,
and if the game loop is fast enough then the user has the feeling of a real-time
interaction. Games compute a numerical integration of the game state; this inte-
gration is steered by the stream of user input, the physics of the game world, and
the artificial intelligence (AI) and behaviors of the logical entities. Al and much of
the logic of the game is modeled in terms of state machines, in order to implement
timers, loops, and much more. The game draws the game world on the screen so
that the user may see a representation of the game entities that is up to the last few
hundredths of a second.

Among the biggest challenges that game developers encounter, we observe that:
(i) games need to run smoothly on common hardware, thus requiring specialized
technical knowledge in the field of algorithmic optimizations; (i) multiplayer in
games also requires reliable synchronization across a network, within the constraints
of real-time communication; (i77) games also comprise a (rather large) creative por-
tion that is performed by designers [146], who rarely are well-versed in advanced
computer programming: for this reason the architecture of a game must be flexible
and easily modifiable so that designers can quickly build and test new iterations of
game-play; (iv) the simulation of the game world and its entities must be complex
and believable; and (iv) the visual aspects of the game must be realistic, believable,
and detailed. This list of challenges is not complete; rather, it is a series of com-
monly encountered challenges that are discussed often in game development, and as
such are discussed in seminal texts such as [95] 64, B7]. As was predictable, these
items have come to our attention through direct experience while developing games.

Moreover, the costs for making a game are increasing as generations of hardware
unlock new possibilities such as real-time multiplayer games, advanced graphics,
advanced physics, bigger environments, smart opponents and characters, and so on

OThis chapter is partially derived from our experience, both with game development [9] and
research in multi-media and programming [86], [83].

10 2. Requirements of a game

[109]. This is due to the ever more increased interactions between complex compo-
nents of the game. Consider a small example that illustrates how the complexity
of a portion of a game grows because the other portions have grown as well. When
the game is small and simulates only a few objects with simple physics, then it is
relatively straightforward to build an effective Al so that non-playing characters in
the game can interact with the player and the game world. As the game grows more
complex, the number of items and physical interactions that an AT must consider
grows exponentially; building an Al that has the same effectiveness as before is now
harder.
In the following we discuss how these features are realized in a modern game.

2.1 The game loop

The game loop (interchangeably and often referred to as main loop), is responsible
for updating the internal data structures that represent the game world, either
according to the game world logical rules (such as physics or AlI), or because of
user input. Together with updating the game world, the game loop [[] also needs to
re-draw the game world to the screen. Drawing uses immediate mode rather than
retained mode [80], meaning that the content of the screen at the beginning of a
draw call are erased and the game world is rendered anew. Contrast this to retained
mode, where only the parts of the scene that have changed on screen are re-drawn,
in order to save processing power. The use of immediate mode is motivated by
the consideration that entities in real-time games change and move a lot across the
screen during the most intense gameplay sessions, so the process of tracking which
entities to re-draw at each frame would only amount to a lot of useless overhead,
since most of the screen would have to be re-drawn during each frame anyway.

A simple implementation of the game data structure (in pseudo-ML) could con-
tain just an update and a draw function; the update function takes as input the
delta time between its own last invocation, so that it knows for how much time it
has to compute the world update P|[F}

type Game = {
Update : float -> Unit
Draw : Unit ->Unit

We can now define the game loop as a function that takes as input the game

!Note that, in the following chapters, we will refer to an iteration of the game loop with the
term frame.

2We remind the C-minded reader that Unit has a similar role, in ML, as the void datatype,
with a minor difference: Unit is a proper datatype with only one value, (), and as such it can
be used as a parameter for generic datatypes; void, on the other hand, is just syntactic sugar for
defining procedures with the same syntax as functions.

3For a more detailed discussion on the syntax used, see Appendix

2.1. The game loop 11

and runs a loop that invokes the update and draw functions of the input game,
in sequence, at every iteration. Update also gets as input the delta (difference) of
the time between the current and the last iteration of the game loop. This way it
can correctly compensate for the time elapsed by integrating all its entities by the
appropriate amount of time:

let game_loop (game:Game) =
let rec loop (t:Time) =
let t’ = getTime ()
let dt =t - ¢t
do game.Update dt
do game.Draw ()
do loop t’
do loop (getTime ())

Indeed, games can be seen as a big numerical integrator that approximates the
following integral for all times T of the game:
t=T" dw,
e t=0 dt dt
with numeric methods, where w; denotes the state of the world at time t. For
example, consider the world defined as a single ship which has a position, a velocity,
and an acceleration:

type World = {
ShipPos : Vector2
ShipVel : Vector?2
ShipAcc : Vector2
by

integrating the world means that we compute (and then draw to the screen) the state
of the world at time ¢t =0, ¢t = 1/n, t = 2/n, etc. for a game that runs at n frames
per second. Of course instead of computing the integrated game world at a certain
time from scratch every frame, we make an incremental computation so that we only
have to perform the "missing part of the integration"; this means that, since the
integral mentioned above is usually impossible to compute analytically, instead of
recomputing the integral for every time ¢ of the game starting from w,, we compute
wy from w;_4 whenever dt seconds elapse in the game. E] The integration for the
above definition would then be:

let update (world:World) (dt:float) =
{

4The choice of dt depends on the computing power of the machine, since updating and drawing
the game world takes time, and so the dt may never be smaller than the time required in order to
perform the computations for a single frame. Of course we may insert waiting statements to slow
down the loop on a very fast machine.

12 2. Requirements of a game

ShipPos = world.ShipPos + world.ShipVel * dt
ShipVel world.ShipVel + world.ShipAcc * dt
ShipAcc world.ShipAcc

i

with a simple Euler integration. E] Since precision in this integration may be im-
portant, and framerate may be lower than we wish on certain machines with little
power, it may sometimes happen that integration with the Euler method actually
fails and accumulates odd errors. To avoid this it is possible to use a more precise
numerical integration method, such as Ralston’s:

let update (world:World) (dt:float) =
let f(v,x) = (world.ShipAcc,v)

let k1 = f(world.ShipVel, world.ShipPos)
let k2 = f((world.ShipVel,world.ShipPos) + 0.5 * dt * k1)
let k3 = f{((world.ShipVel ,world.ShipPos) + 0.75 * dt * k2)

let (v?,p’) =
(world.ShipVel ,world.ShipPos) +
(2.0 / 9.0) * dt * k1 + (1.0 / 3.0) * dt * k2 +
(4.0 / 9.0) * dt =* k3

{

ShipPos = p’

ShipVel = v’

ShipAcc = world.ShipAcc
+

The above update function is more precise than its Euler counterpart when it
comes to bouncing objects and collision detection, and the approximation errors,
dithering effects, etc. are small enough to be below the perception threshold of the
user. Unfortunately, this method performs more operations per frame per entity,
and is more difficult to write and maintain, so it is not always the best solution: in
certain cases the simpler version may suffice or even be better. This is an example
of one of the many trade-offs between run-time speed and numerical accuracy that
games must make. Usually the choice is made so that accuracy is reduced as much as
possible but not so much that visible artifacts occur, in order to maximize execution
speed. Exceptions may be made for games that feature simulations such as realistic
flight simulators.

The game world used in the last two samples is a simple game world with only
a physical simulation. For this reason it appears obvious how to apply numerical
methods to compute its continuous integral. A simple Al on the other hand, can
be integrated as well, even though it must be treated as a hybrid system (with both
continuous and discrete aspects). For example, we could have a world defined as:

5Note that { L1 = el; ...; Ln = en } invokes the constructor for the record with labels L1,
.., Ln.

2.1. The game loop 13

type World = {
Self : Character
Enemy : Character

b

which integrates the enemy by choosing to hide or attack depending on the relative
strength of the player:

let update (world:World) (dt:float) =
let self’ = ... // update pos, vel, life, etc.
let enemy’ = ... // update pos, vel, life, etc.
let enemy’’ =
if enemy’.Health > self’.Health &&
distace (self ,enemy) < 100.0 then

{ enemy’ with Velocity = towards enemy’ self’ }
else
{ enemy’ with Velocity = away enemy’ self’ }

{ Self = self’; Enemy = enemy’’ }

The enemy in the implementation above is a simple reflex agent which, depending
on some condition, will perform some action. The implementation above suffers from
dithering, that is if the player is chasing the enemy, and the distance condition keeps
changing from true to false, then the agent will keep switching between the fleeing
and chasing behaviors. To avoid this, the enemy also needs a fleeing timer so that as
soon as it starts fleeing then the timer is reset and the enemy will keep its flight until
at least the timer ends. More elaborate solutions can of course be implemented, but
are beyond the scope of this presentation. The important aspect to realize is the
presence of discrete components in the game world integration that usually are part
of the AT or input systems; the more discrete in nature, the more complex it will be
to define the numeric integral.

The game loop is not as straightforward as presented above. To avoid wasting
computational power, it is not needed to update all the game world at every tick of
the update function. While certain aspects of the simulation, such as the physics or
the animations modules must update the world at every tick (otherwise the entities’
movement may be "hicky", or the integrations may lose precision), other aspects
such as Al or user input can be updated with much lower frequency; for example,
Als may safely be run at 5 frames per second, since they do not need the ability
to make much more than five decisions per second, and input may safely be run at
20 frames per second, in order to perfectly capture the user’s physical input which
runs on the order of 10 Hz. This technique also improves the game responsiveness
by reducing its computational load, because in a single unit of time, for example
1 second, at 60 frames per second, instead of computing 60 physical updates, 60
input updates, and 60 Al updates, we have computed 60 physical updates, 20 input
updates and 5 AT updates, and this has no effect that the user can perceive.

14 2. Requirements of a game

To accommodate different update frequencies, though, we need to complicate
the game loop as presented above, and we must complicate our definition of game
world as well:

type Game = {
UpdateInput : float -> Unit

UpdateAl : float -> Unit
UpdatelLogic : float -> Unit
Draw : Unit -> Unit

¥

the game loop will now run three different loops: one for the input, one for the Al
of the game entities, and one for the logic and the drawing of the game. These can
either be run with explicit timers, or on separate threads. A multi-threaded loop
could be defined as follows:

let game_loop (game:Game) =
let rec loop f t dt =
while (getTime () - t < dt) sleep(0);
do £ dt
do loop f (t+dt)
let logic_draw_loop() =
loop (fun dt -> game.Update dt; game.Draw dt)
getTime ()
(1.0/60.0)
let AI_loop() =
loop game.UpdateAI (1.0/5.0)
let input_loop() =
loop game.UpdateInput (1.0/20.0)
run_thread [logic_draw_loop; AI_loop; input_loop]

In the code above we define a generic loop function which performs an operation,
f, with a certain time delta of dt between successive invocations; we then use this
function to launch three loops: the logic loop, the Al loop, and the input loop, which
are then run in three separate threads.

Multi-threading is also desirable because it provides a performance boost in
the presence of multiple cores. Each thread could run on a different core, thereby
evaluating different portions of the game loop in parallel.

Multi-threading unfortunately has some serious shortcomings. In particular, if
all the loops access the same world data (which they do!), then we will need to
insert some synchronization mechanism such as locks or monitors. The high latency
associated with these synchronization mechanisms though makes them unattractive
for game developers, and under unfortunate circumstances we may even suffer from
starvation of one of the threads, with disastrous effects for the game experience.

We can address this shortcoming by explicitly alternating the calls to the various
update functions in a single loop which explicitly keeps track of the time since

2.2. State machines 15

the last invocation of each, effectively building a software scheduler on a single
thread, or we could use lock-less threading [29], a complex technique that allows for
efficient synchronization of multiple threads. Unfortunately the first solution loses
the performance advantages of true multi-threading, while the second solution is
more complex to build.

2.2 State machines

The second, very common activity that games perform is that of maintaining state
machines. State machines come into play for timing, input management, Als, and
many more scenarios in games, to the point that a simple web search shows hundreds
of tutorials and manuals on the single topic of creating a state machine for a game;
also, state machines for games are described in many books and articles: [106], [62]
48, 96).

Let us consider the simple example where we want to wait for a specific event to
happen before doing something else; in particular, we wish to wait for the user to
press a key, and then another, within a certain amount of time from each other, in
order to activate some weapon.

We could, naively, code this as a piece of the update function which does some
polling:

while(is_key_up(keyl)) do sleep(0)
let t = getTime ()
while(is_key_up(key2)) do sleep(0)
let dt = getTime() - t
if dt < 0.3f then

do shoot_super_weapon ()

Unfortunately, we cannot run this code inside the update function, because this
would lock the game loop into spin-waiting until the user presses the keyl key,
thereby completely freezing all the game animations, responses to other input, and
drawing. We could run such an event detection on a separate thread, but the
number of threads we would need would be at least equal to the number of possible
concurrent, spin-waits to do: one for each game entity, one for each input event, etc.
This would allocate too many threads, squandering too much memory and CPU
execution time for context switching between threads; also, some synchronization
strategy is needed in order to make sure that the various threads correctly work on
the shared game world. Ultimately, this technique results to be not feasible for a
game, both because it is very complex and because it can run very slowly.

The usual solution is to build a state machine which tracks explicitly where in
the execution of the above snippet of code we are. We then define a step function
which updates the state of the state machine by checking its current state and the
various transition conditions. The above state machine could be defined as an ML

16 2. Requirements of a game

discriminated union [

type StateMachine =
| Waitil
| Wait2 of float
| Success
| Failure

The states of this state machine are waiting for the first key, waiting for the
second key (for a certain amount of time), and then either success or failure. The
state machine is updated as follows:

let update_SM (sm:StateMachine) (dt:float) =
match sm with
| Waitl ->
if is_key_down(keyl) then Wait2(0.3f)
else Waitl
| Wait2(t) ->
if t <= 0.0f then Failure
elif is_key_down(key2) then Success
else Wait2(t-dt)

the general pattern for a state machines with states s, so, ..., s, transition matrix ¢;;
(that defines the conditions for going from state s; to state s;), and s;; initialization
matrix (that stores the input of the new state after a transition), we can define the
state machine as:

type StateMachine =
| S1 of s1
| S2 of s2
I ...
| SN of sn

The transitions are defined as:

let transition (sm:StateMachine) (dt:float) =
match sm with
| S1(s1) ->
if t11 then S1(il1l)
elif t12 then S2(il12)

elif tin then Sn(iiln)
else S1(s1)

| S2(s2) ->
if t21 then S1(i21)
elif t22 then 82(i22)

6For a further discussion on these, see Appendix

2.2. State machines 17

elif t2n then Sn(i2n)
else S2(s2)

| Sn(sn) ->
if tnl then S1(in1l)
elif tn2 then S2(in2)

elif tnn then Sn(inn)
else Sn(sn)

Unfortunately the above approach yields code that is complex to write correctly,
complex to read, and complex to maintain. This complexity stems from the fact
that the behavior that we want is described as a simple sentence such as "press
key1, then press key2 before 0.3 seconds", but the corresponding code does barely
resemble this at all and being able to translate the two concepts requires focus, effort,
and experience. This issue is slightly worsened by the fact that a state machine is
modeled in the ML language (and in our samples above) more easily than in an
imperative, struct- or class- oriented language. Such languages, for example C++
or C#, are some of the most used in game development, adding relevance to the
above statement. This happens because state machines represent a series of mutually
exclusive states each of which contains certain parameters, and discriminated unions
are a datatype that is created explicitly to model a series of mutually exclusive values
each with its own parameters. Contrast the use of discriminated unions with the
typical imperative implementation of an enum plus the union of all the arguments:

class SM {
enum State {
Waitl,
Wait2,
Success,
Failure

State state;
float t;

void Transition(float dt) {
switch(state) {
case Waitl:
if (is_key_down (key1l)) {
state = Wait2;
t = 0.3f;
}

case Wait2:

18 2. Requirements of a game

if(t <= 0.0f) {

state = Failure;

} else if(is_key_down(key2)) {
state = Success;

} else

t =t - dt;

Note that a parameter, such as t, may be accessed in any state of the machine,
even those (such as Wait1, Success, and Failure) where it may not make any sense
to do so: the developer is forced to follow certain rules by hand on pain of commit-
ting hard-to-debug mistakes. Notice that we could partially emulate discriminated
unions with inheritance and the visitor pattern [59], but the complexity of using
such pattern can be elevated.

2.3 Drawing

The logic of the game gives life to the interactive simulation, where the game world
and its entities are updated according to their internal logic, AI, and physics while
the user can modify and influence them with his input. Of course though, the user
needs a way to know the state of the game world in order to sensibly plan and apply
his input.

Letting the user know the state of the game is done by drawing the entities to
the screen; drawing is mostly done with textures or 3D models, but some notable
(though not very common) exceptions simply write a text description of the current
state of the game world to the screen which the user then reads. Such games,
usually referred to as "text adventures", are not our main focus. This said, our
work on Casanova could be adapted to them since they just require most of the
game rendering to be done by writing text.

Drawing is done in a manner that the screen of the PC (or the TV, or the phone
screen, etc.) behaves as a window over the game world through which the user
watches the game entities in real-time.

We draw the game world after every update, so that each time the picture that
appears on the screen reflects a slightly changed game world, where entities are
moving and interacting, animations are progressing, and so on. The logical entities
are usually mapped to visual entities that can either be pictures (also called textures),
fonts, or 3D models. There is a one-to-many mapping from logical entities to visual
entities; for example, a logical entity may be drawn with a 3D model, plus some
icons and text, but it may also be that an entity such as a collision entity which
represents a collision between physical objects does not require any rendering and
fulfills its role only by storing and updating internal information.

2.4. Summary 19

It is important to notice that most of the richness and complexity of a modern
game does not come from having more kinds of drawable entities; drawables are
almost always [1| either (i) text; (ii) textures; or (iii) 3D models. To distinguish
different entities, such drawables are drawn with different special effects such as
advanced lighting models and post-processing. These post-processing effects are
mostly implemented in terms of shaders and render targets that store previously
rendered scenes which are then fed back into the processing pipeline in order to create
effects like motion blur, deferred shading, refractions, and many others [57, 112} TOT].

2.4 Summary

In the previous sections we have identified the core requirements that a game has,
and we sum them in the following:

1. handling of the game loop
2. handling input management
3. supporting state-machines

4. drawing the scene

It is important to notice that the highest-grade commercial games (often known
as "AAA games") also have further needs. Large games have lots of assets produced
by artists and designers, and so they need tools that support transferring those
assets into the game engine. Designers also produce game scripts that customize
some behaviors of the game entities, which require a data-centric engine architecture
so that scripts may customize large parts of the game without direct access (a
complex task) and re-compilation (a surprisingly lengthy task [56]) of the main
sources. Sometimes the effort of rebuilding all aspects of a game from scratch is
deemed excessive, and pre-existing libraries and components may be leveraged from
previous titles or other companies; integration of these libraries is not a trivial effort.

In this thesis we will not focus on these details of AAA games, and instead we
will focus only on those smaller games, such as indie games, research games, and
serious games, where the requirements and the development effort are smaller, but
still significant enough that optimizing it may yield tangible gains. This means that
we will limit the discussion on how Casanova focuses on coding the game logic and
the drawing of a game from scratch, including input management and Al.

"With some rarely encountered exceptions such as voxels [77, §1].

20

2. Requirements of a game

3

Available game development
systems and languages

In this chapter we compare a choice of game development systems and programming
languages. We start by giving a background on systems and languages, and we
compare the two according to their general advantages and disadvantages. We
discuss the pragmatic reasons behind the adoption, by most developers, of systems
instead of languages. We then discuss in more detail some notable game development
systems, and we choose three of them for their significance and current adoption.
We do the same for programming languages, that is we pick three of them that we
deem particularly relevant for comparison and inspiration. From our survey and
our previous discussions, we conclude that there is a need for more exploration of
specialized languages for game development, as these can give significant advantages
that are currently not exploited by game developers.

3.1 Systems vs languages

A game development system is a collection of libraries and tools that are used to
build games. A game development system mainly features pre-built functionality
that the developer instances in those places where he needs them. For example,
by using an editor, the developer may drag the functionality for moving something
around with mouse and keyboard onto a model, which then becomes controllable
with the user input. Game development systems often feature some customizability
by supporting user-defined scripts. Such scripts are small programs that modify
limited aspects of the game, for example the formulas that compute the damage
of specific weapons, custom triggers and timers, etc. Scripts do not modify the
core services of the system. Some game development systems are mostly focused
on libraries, which are then accessed through a programming language. Pre-built
functionality is then leveraged by invoking the library functions or instancing the
library data-types. Such libraries are accompanied by tool support, for example
custom project settings for popular development environments.

A game development language is a programming language that is used to build
games. A game development language mainly features syntactic constructs that
directly map to abstract aspects of the game. For example, a game development
system may have a specialized syntax to support drawing the game world or reading

22 3. Available game development systems and languages

the user input. A game development language focuses on a new expressive paradigm
rather than leveraging existing knowledge or using intuitive interfaces.

Systems and languages are the two ends of the continuum of software devel-
opment. Software development represents a continuum because some development
systems may feature custom programming languages for limited scripting, or new
programming languages may feature exotic editors to accompany them. Despite this
continuum, the main philosophies behind systems and languages differ significantly.
Systems tend to be conservative towards developer effort, in that they try to reduce
the amount of notions that the developer has to express in order to build the game
by reducing the amount of code written, and by allowing the exploration of func-
tionality through visual interfaces. Languages, on the other hand, focus on how the
developer approaches the problem, and are design to offer the maximum possible
expressive power by reducing obvious or repetitive code.

Both systems and languages offer advantages over one another, and both have
some disadvantages. In general, systems represent a safe investment where we lever-
age high-quality components built by others, while taking advantage of existing
technical knowledge to the fullest. Systems often have limitations in their expres-
sive power. These limitations come in many forms. It may be that all games built
from a system are similar in some manner, or that specific, advanced tasks cannot
be changed at all or at least easily. Language, on the other hand, represent a risky
investment where we spend a lot of learning effort in order to gain new abilities
on how to express the various solutions to the issues encountered while building
games. These abilities empower the developer to build games quicker, with less
mistakes, and with clearer and simper code. Languages for making games do not
trade expressive power for simplicity, but are harder to learn because of their novel
approaches.

Systems are safer to use, and as such most companies use game development
systems rather than game development languages. The rise of many high-quality
commercial game development systems in the last decades means that there are
lots of available game development systems of proven worth. Game development
languages, on the other hand, have not been developed much outside the academia,
and even in it there are only few significant efforts in this direction. Commercial
adoption of game development languages, thereby, is insignificant.

3.2 Systems for making games

A discussion of all existing game-development systems is beyond the scope of this
work, as it could be the subject of an entire thesis all by itself. Existing game-
development systems cover a large variety of game scenarios: there exist multiple
engines for first person shooters, multiple engines for role-playing games, multiple
engines for flight simulators, and so on for many genres of games and simulations.
This happens because games represent an interactive virtual reality. Virtual reality

3.2. Systems for making games 23

is any simulation that flows in real-time with its rules, its logic, its goals, and its
means of interaction. Such a virtual reality may be similar to actual reality in some
aspects, but it may also depart from realism significantly. The number of ways that
a virtual reality may be designed is large: any aspect, from physics, to rendering,
to the introduction of fantasy elements and interaction schemes may be changed at
will. This implies that there is a large space of possible games, with an important
consequence: for many games it can be difficult to find existing systems that fully
meet, their creative needs, and sometimes an existing system that seems to meet
the initial specification may fail to accommodate the evolving needs of the game,
because the designers may decide half-way during development to add some new
features that are not well supported by the system. This situation arises from the
fact that game development systems only support specific scenarios in terms of the
type of games they can build. There exist systems that support first-person-shooter
games with a focus on physics and high-quality rendering of few characters in smaller
environments, systems that allow rendering a racing track with cars running at very
high speeds (the physics and rendering of high-velocity entities offer a challenge all
of their own), systems that focus on rendering few characters at a time in third-
person for role-playing-games, systems that focus on rendering large armies that
clash in large-scale strategic battles, and many others. In the following, we list some
game development systems that are relevant either because of historical reasons,
or because of their widespread adoption. We then pick three relevant systems for
further study.

3.2.1 Relevant game systems

There are many other game development systems and engines. The earliest examples
of game engines built for use in multiple games include several 2D game creation
systems built in the 1980s. Among these, Pinball Construction Set [I8], Adventure
Construction Set [1], Garry Kitchen’s GameMaker [12], Wargame Construction Set
[25], Shoot’Em-Up Construction Kit [22], Arcade Game Construction Kit [2], and
most popularly ASCIT’s RPG Maker engines which are still being released at regular
intervals [20]. The 1990s saw the first generation of graphics engines: BRender
from Argonaut Software [3], Renderware from Criterion Software Limited [120], and
RenderMorphics’ Reality Lab [19] (which eventually turned into Direct3D [7]).

The term "game engine" was adopted starting from the mid-1990s, especially
in connection with FPS games. In particular, the Doom and Quake games were so
popular that other developers licensed portions of those games code in order to build
their own games by just designing the games content (levels, graphics, etc.). Later
incarnations of games were designed with this approach in mind, to the point that
games such as Quake III arena and Unreal (and their successors) were built with the
goal of licensing their engines [13], 24]. Game engines were adopted in other genres;
for example, the Gamebryo engine [119] was used both in the Morrowind and Dark
Age of Camelot RPG games.

24 3. Available game development systems and languages

The short list of systems just presented only covers some game-genres, but there
are many other genres such as adventure games, platformers, flight simulators, etc.,
all with their own systems and engines that solve their specific requirements. In
short, most existing systems do not accommodate all possible game designs, since
they are built with a specific boundary in supported games. Games that are not
supported by existing systems either need new systems or they need heavy modifi-
cations of existing systems in order to fulfill their special needs.

Among the most notable systems we also find lower level frameworks such as
DirectX [45] or OpenGL [145], which simply offer a set of libraries plus some addi-
tional tools such as debuggers or profilers, to be used from existing programming
languages and IDEs.

3.2.2 Our choice of systems

Three interesting representatives of the current trends: (i) Game Maker [65] is a
game development system which focuses on the simple philosophy of "less is more",
and by doing so it allows even complete beginners to be able to make articulated
games. Game Maker is a visual environment that limits the user to 2D games based
on "rooms" with 2D sprites representing objects, characters, etc. interacting in
them; (i) Unity [43], on the other hand, is a powerful and flexible game development
tool which offers the possibility of building 3D games in a visual environment; with
a system of generic components that can be activated on each entity to make it
respond to physics, input, etc., it allows to express many different scenarios; we
will also discuss (i) XNA [115], a modern framework that is oriented to coding
indie games and which supports many common tasks of game development with
.Net languages such as C#, VB .Net, and F#.

The systems we consider are chosen to represent both game engines and game
libraries. We deem them particularly relevant because they are widely adopted
among indie game developers, serious game developers, and even in educational
circles. We exclude engines such as UDK and Quake, not because of their quality
(which is extremely high), but because they are applied to specific game development
tasks (AAA games) which are not those this thesis focuses upon (indie and serious
games).

3.2.3 Game Maker

GameMaker is an IDE that allows users to easily develop computer games without
the requirement of prior computer programming experience, while also allowing
advanced users to create complex applications with its built-in scripting language.
GameMaker’s primary development interface is based on a drag-and-drop system.
The available menus allow the creation and organization of a hierarchical structure
of sprites which represent the rooms where the game takes place and the entities that
will inhabit the game world. Available icons represent the most common actions that

3.2. Systems for making games 25

] Shothe ol f st

Figure 3.1: Game Maker in action

are interesting in a game, such as movement, basic drawing, and simple control-flow
idioms that allow the definition of reactions such as collision detection.

Since dragging and dropping may allow the definition of simple games but is
limiting when advanced users wish to express things like Al, pathfinding, etc.,
GameMaker contains a built-in scripting programming language called the Game
Maker Language (GML). GML can access and modify most of the game entities val-
ues, it can perform loops, and in general is a fully fledged programming language.
GML is interpreted, with its interpreter being embedded in stand-alone GameMaker
games.

GameMaker primarily uses 2D graphics, with all the additional functionality
expected beyond simple drawing of sprites, such as alpha adjustments and blending
settings. In latest versions GameMaker started supporting more advanced graphics
functions, among which a limited ability to use 3D graphics. Note that this feature
is intended exclusively for the most advanced users of GameMaker.

Game Maker can be seen in action in Figure 3.1

Unity 3D

Unity 3D is an asset-centric game-development system. This means that Unity tries
to keep the game developer as much as possible into the visual editor, dragging new
game objects into the scene hierarchy, modifying the game objects properties to
customize their appearance or behavior along certain predefined ways. The editor
also maintains a live preview of the game. Unity 3D supports high quality 3D
rendering through support of normal maps, shadows, full-screen post processing,
and more.

The underlying architecture is based on components. Components are properties
of a game entity that allow a certain entity to follow certain rules. Components may
be the ability to follow physics rules, to respond to input commands, and so on.
When the developer selects an entity in the editor, he then attaches components to

26 3. Available game development systems and languages

Figure 3.2: Unity in action

the entity so that it will perform the desired actions.

As in GameMaker, not everything for a moderately complex game can be ex-
pressed in a visual editor. Unity supports the execution of custom game scripts via
Mono, the open-source implementation of the .NET Framework. Scripts may be
written in UnityScript (a custom language inspired by JavaScript), C#, or the Boo
programming language [36].

A screenshot of Unity is shown in Figure [3.2]

XNA

Both GameMaker and Unity pragmatically include a scripting system so that game
objects can be manipulated with user-written scripts. These scripts track some
logical aspects of the game state, such as score, lives, re-spawning, Als, etc., and
may either be run in response to certain events, or during every tick of the simulation.
This may seem in contrast with the visual nature of those editors, which offer many
options to create games in a "mostly code-free" fashion. What this ultimately means
is that game development is inextricably tied to coding, no matter how powerful
visual environments are used. Visual environments can help reduce the need to
write code, but the number of useful game functions that may be defined is simply
so large that expressing it without having to type them in a programming formalism
is very hard. For example, consider the number of Al algorithms in existence: state
machines, neural networks, fuzzy logic, planning system, genetic algorithms, etc.
Furthermore, new algorithms are constantly under study and get published every
year. This means that for a game system to support this large amount of algorithms,
simply pre-programming all of them is not feasible: they are too many, and new ones
are added all the time.
In short, game development requires coding.

3.2. Systems for making games 27

Beginner

r
1.| 5:44.94
i

/.
2.} 6:15.84

3.' 6:35.48
4. 6:58.95
5. 7:00.59

Figure 3.3: XNA in action

For this reason we also discuss the XNA framework. XNA is a code-centric tool
for making games based on the .Net framework. XNA can be used from any .Net
language: from C#, to F#, to VB.Net. It offers classes that cover most areas of game
development. Such classes represent an efficient and easy to use implementation of
those small building blocks that are found in virtually all games. XNA starts by
supporting the game loop with the Game and GameComponent classes, which manage
the creation of the game window, and the invocation of the tick functions of the game
loop at the appropriate times. Input is supported by polling the mouse, keyboard,
and XBox 360 gamepad. To ease building collision detection and physics, a series
of bounding volume classes are supported such as boxes, spheres, planes, etc. that
may be checked for intersection with each other. XNA also offers rendering facilities
so that the developer can quickly add 2D rendering of alpha-blended sprites and 3D
rendering of simple models. Rendering may also use shaders, render targets, and
similar advanced features in conjunction with the simple drawing primitives: this
makes it possible to create advanced visual effects. Audio is supported with music,
positional 3D sounds, and even pre-mixed audio effects created with the XACT
audio editor. Networking is, unfortunately, supported only on the XBox with a
UDP library that also includes functionality for lobby, friends, invites, and all those
features that support some of the more social aspects of multiplayer.

XNA does not offer any visual framework or helper, and instead requires coding
all a game, often with a large amount of code.

The XNA "Racing Car Starter Kit" shows the potential of the framework in
Figure [3.3

28 3. Available game development systems and languages

3.3 Languages for making games

Game development can also be done with special-purpose programming languages.
Game-development languages are not many, and the possible reasons are multiple:
(1) building a language is complex and requires specialized knowledge about compil-
ers, parsers, and type-systems, all in addition to knowledge in the specific domain
(in our case games) to which the language applies; (77) game development systems
compensate their lack of expressive power through the integration of scripting lan-
guages; (1) the game development industry is very slow to adopt new programming
languages when compared to the I'T industry in general, and this has resulted in a
very slow progression in the last decades from assembly to C and finally to C++;
this is partly due to huge existing code-bases of C/C++ code that is still being used
in production, and from the fact that a shift in language would require extensive
retraining.

Outside the gaming industry some researchers have experimented with building
languages for making games, while the industry mostly focused on libraries for C,
C-++ or, in later years, C# as well. The languages built by researchers have all
focused on specific aspects of game development, resulting in a very diverse, albeit
slightly small, set of specialized languages. The game-specific languages that we will
discuss in the following of this chapter are: (i) Simula [I07], an old language built
for simulations where many innovations in programming languages were born; (%)
SGL |140], a recent language from Cornell University which unified the definition of
a game loop with a series of heavily optimized SQL-style queries on a global table
that stores all the game entities; and (i7) Inform 7 [L16], a programming language
which only focuses on a small group of games, that of textual adventures, but allows
to write them in plain English instead of a traditional, structured and symbolic
programming language.

3.3.1 Simula 67

The first language we discuss is the Simula language, in particular the Simula 67
version (there are two versions: Simula I, and Simula 67, the second being more
advanced). Simula is quite an old language, and was one of the precursors of modern
object-oriented languages. It was born in 1967, and it focused strongly on building
simulations, as the name aptly suggests. In particular, Simula featured objects,
inheritance, and a notion of cooperative multi-threading through coroutines. Simula
ships with a simulation package that allows building discrete event simulations.
Simula is also a historically relevant language, in that its object system laid the
groundwork for the implementation of objects that is now found in languages such
as C++, Java, and C#. Moreover, Simula made heavy use of coroutines, which
are now widely used in modern programming languages to define generators to
create collections interactively; coroutines are notably making a comeback in the
C+# language in the form of the async and await keywords. Moreover, before

3.3. Languages for making games 29

async and await, Mono and Unity introduced a customized version of coroutines
with the yield statement.

Let us now consider an example of the simulation capabilities of Simula. Sam,
Sally, and Andy are shopping for clothes. They have to share one fitting room. Each
one of them is browsing the store for about 12 minutes and then uses the fitting
room exclusively for about three minutes, each following a normal distribution. A
simulation of their fitting room experience is as follows:

Simulation Begin
Class FittingRoom; Begin

Ref (Head) door;

Boolean inUse;

Procedure request; Begin

If inUse Then Begin

Wait (door);
door .First.0Out;

End;
inUse:= True;

End ;

Procedure leave; Begin
inUse:= False;
Activate door.First;

End;

door:- New Head;

End;

Procedure report (message); Text message; Begin
OutFix (Time, 2, 0); OutText (":," & message); OutlImage;
End;

Process Class Person (pname); Text pname; Begin
While True Do Begin
Hold (Normal (12, 4, u));
report (pname & ",is,requesting,the fitting, room");
fittingrooml.request;
report (pname & " has entered_ the fitting,room");
Hold (Normal (3, 1, u));
fittingrooml.leave;
report (pname & " has_ left, they fitting, room");
End;
End;

Integer u;
Ref (FittingRoom) fittingRooml;

fittingRooml:- New FittingRoom;

30 3. Available game development systems and languages

Activate New Person ("Sam");
Activate New Person ("Sally");
Activate New Person ("Andy");
Hold (100);

End ;

The Simulation keyword at the beginning of the listing enables the use of sim-
ulations. The fitting room object uses a queue called door that arbitrates access to
it. If someone requests the fitting room while it is in use, then they must wait in
the queue with the Wait (door) statement. When the fitting room is emptied, the
first person in the queue is activated with Activate door.first and removed from
the queue door.First.Out. A person is modeled as a Process and its activity is
described using the Hold statement that suspends the process to simulate browsing
the store and being in the fitting room. The person process uses the request and
leave methods to obtain and release access to the fitting room.

The main program initializes and activates the various entities of the simulation,
which is then run for 100 minutes of simulated time before the program terminates.

Simula pioneered the use of many constructs for building simulations. Even to-
day, programming languages have not managed to achieve the same level of expres-
sive power for simulations that Simula programmers enjoyed. The example above,
for instance, would be harder to write in a general-purpose programming language
such as C++, given the lack of first-class support for cooperative multi-thread,
queues, etc.

3.3.2 Inform

The Inform 7 language is the latest incarnation of Inform, a programming language
and design system for interactive fiction originally created in 1993 by Graham Nel-
son. Inform 7 is a peculiar programming language, in that it addresses a "niche-
within-a-niche" of the domain of computer programming. Inform exclusively allows
the building of interactive text adventure games, that is those kind of games where
the game world is presented to the user with a textual description, and the input
that the user gives is, again, with textual commands. This makes Inform’s scope
extremely specific.

The most advanced feature of the Inform programming language is that it allows
the programmer to write a game in plain English, albeit with certain grammatical
limitations. The language allows the description of the game as a series of objects
with properties, together with a series of scenes that the user interacts with. The
parsing facilities offered by Inform are indeed very powerful, and they are used
to parse the user’s input and the programmer’s code both expressed in natural lan-
guage. Inform features a simple object system that allows only for single inheritance
and polymorphism; the language is also statically and strongly typed, in order to
allow the programmer to reuse some code, but without adding complex notions such

3.3. Languages for making games 31

as abstraction, so that the concepts that come into play are always as simple as pos-
sible. This means that some traditional programming activities are supported by
the language, but all constructs are declarative and highly readable.

A sample Inform 7 program could be:

"Hello Deductible" by "I.F._ Author"
The story headline is "An,Interactive_ Example".

The Living Room is a room. "A,comfortablyyfurnishedylivingy
room." The Kitchen is north of the Living Room. The Front
Door is south of the Living Room. The Front Door is a door.

The Front Door is closed and locked.

The insurance salesman is a man in the Living Room. "Any
insuranceysalesmanyinyagtackyypolyesterysuit. Heyseemsy
eagertoyspeak, toyyou." Understand "man" as the insurance
salesman.

A briefcase is carried by the insurance salesman. The
description is "A_slightlyyworn,yblack briefcase."
Understand "case" as the briefcase.

The insurance paperwork is in the briefcase. The description
is "Pageafter,page,ofysmall legalese." Understand "papers"
or "documents" or "forms" as the paperwork.

Instead of listening to the insurance salesman for the first
time:

say "The,salesmanyboresyyouywithyag,discussiongyoflifey
insurancepolicies. From hisybriefcasehe,pulls, some
paperwork,which he hands_ to,you."; move the insurance
paperwork to the player.

Inform does not feature many of the constructs that would be necessary to build a
complex, real-time simulation: there is no notion of a main loop, nor is the language
designed to define real-time actions or describe rendering methods besides text.
From the point of view of making games in general it is woefully under-powered,
but when it comes to interactive fiction it is, quite literally, a unique experience to
use.

Multiple games have been built with Inform. Curses, by Graham Nelson, was
the first game ever written in the Inform programming language. So Far, by Andrew
Plotkin, won the first XYZZY Award for Best Game winner in 1996. Galatea, by
Emily Short, is considered to have the most complex interaction systems for a non-

32 3. Available game development systems and languages

player character in an interactive fiction game. Muystery House Possessed, again
by Emily Short, was the first Inform 7 game released to be public. Emily Short’s
Floatpoint won the Interactive Fiction Competition, and the 2006 XYZZY awards
for Best Setting and Best NPCs.

3.3.3 SGL

The final language we discuss is the SGL language. SGL, as the name suggests,
is a language that descends from the widely known SQL language for expressing
declarative queries on databases.

SGL is based on the idea of defining the game world as a large table of entities,
where an entity is a row with a union of all the attributes possible for all entities;
all the attributes that are irrelevant to a specific entity are then set to null values.
The dynamics of the game, such as physics, damage, grouping, etc. are then defined
in terms of a huge query that transforms all entities from one time-step of the
simulation into another.

For example, an SGL game could define a unit in a virtual army as:

class Unit {
State:

number unit_id;
number player;
number command;
number pos_x, pos_y;
number health;
Set <number > squad;

Effects:
number move_x : AVG;
number move_y : AVG;
number damage : SUM;

Set <number > joined : UNION;
Set<number> left : UNION;

Update:
pPOS_X = pos_xX + move_X;
pos_y = pos_y + move_y;
squad = squad UNION joined SETMINUS left;

health = health - damage;

The state encodes a description of the entity with a set of attributes. The effects
define a series of queries (similar to Casanova rules) that are further specified as
described below. The update specifies how the state of the entity changes at every
tick of the game loop.

Queries that move units towards enemy clusters may be defined with SQL-style
aggregations such as:

3.4. Motivating a new programming language 33

let enemies = (all u in Units where u.player != me.player);
let centroid_x = AVG(enemies.x_pos);

let centroid_y = AVG(enemies.y_pos);

let me.move_x = (me.pos_x - closest.pos_x)/norm;

let me.move_y = (me.pos_y - closest.pos_y)/norm;

SGL games retain most of the readability of SQL queries, that is, even though
an SGL game will not be as simple and pleasant to read as an Inform code listing
(few programming languages can boast such feature), it is still far simpler to read
than equivalent low-level code. The high-level semantics at which SGL games are
expressed allows the SGL engine to know more about what computations the game
performs; SGL, for example, will be able to understand that we wish to compute a
certain Cartesian product between certain lists, and it will be able to automatically
create a support index to turn the evaluation of this product from the O(n?) com-
plexity of the naive implementation into the much lower O(nlogn) of a balanced
search tree. The complex algorithmic optimizations made by SGL are usually done
by hand in traditional game development (often many times in the same game) by
developers, and with lots of effort. In this sense SGL allows a developer to create a
game without worrying about performance but obtaining the run-time performance
that results from the use of hand-written, specialized, complex algorithms.

SGL also assumes the presence of other game engine modules such as a render-
ing module, an input module, and even pathfinding facilities. From this point of
view SGL is not a fully-fledged game programming language, but it allows building
efficiently the core module of a modern game.

3.4 Motivating a new programming language

Creating a new programming language may be seen as a fruitless endeavor. Specif-
ically, there are many programming languages that have been created as part of
research efforts. Very rarely such languages have seen widespread adoption, and
virtually all of them have been confined to research labs.

It should be noticed that the purpose of such research has never been that of
creating industrial-grade tools that are used by many. Rather, the purpose of pro-
gramming languages research is to shed new light on the best practices by exploring
unknown possibilities [14]. Indeed, many defunct research languages actually paved
the way for innovations in future languages [114] and even tools and systems that
are now wide-spread (for a recent example, see [132]). Also, programming language
research has often automated lessons from the field of Software Engineering, as de-
scribed in [I2I]. Sometimes there have even been decades of difference in terms of
time between invention and adoption. One need only realize that research in pro-
gramming languages has yielded benefits that range from sub-routines [141], to data
structures [123], to objects [32], to delegates and callbacks [100], to generics [114],

34 3. Available game development systems and languages

to compile-time meta-programming [135], to garbage collection [91], and so on.

The motivation for choosing to create a programming language rather than try-
ing to engineer (yet another) game development system, is also grounded in the
observation that there exist many game development systems. From top-of-the-line
game engines such as ID’s engines, CryTek, Aurora, etc. to simpler tools aimed at
hobbyist or indie developers such as Unity, GameMaker, XNA, and others, most
existing systems either fall short in generality (it is rare that an FPS engine works
well for other genres, such as RTSes, and vice-versa), they fall short in expressive
power, or the do not offer a significant advantage to developer besides a few handy
facilities.

Additionally, as game development tools and systems are a heavily explored field,
we argue that designing a language for making games is a welcome departure from
traditional approaches, and it may lead to novel insights and understanding in the
field.

it is a possible source of novel insight to study how the problem of game devel-
opment can be tackled by language design.

In general, building a programming language offers relevant advantages over de-
signing a system. Ever since the dawn of computer science, programming languages
have flourished. Despite Church and Turing’s insights that all programming lan-
guages are born equal, new programming languages keep on being invented, each
with its own strengths and weaknesses.

In the following we explore some of the strengths afforded to programming lan-
guage designers. We do not claim that the list of items discussed below is complete,
nor do we claim that it is our own invention and discovery. What follows is dis-
tilled from a survey of the literature, with particular focus on seminal works such
as 32 127, 114, 97, 121, 53], as highlighted by our our own experience. From this,
we observe that languages are primarily: (i) syntactic abstraction mechanisms that
reduce repetitive code; (i) thought shapers that induce a paradigm shift in how one
should structure software; (iii) simplifiers that boil down an existing paradigm to
just its essential parts, often to increase understanding and insight; (iv) law enforcers
that make sure important invariants hold, to increase correctness, performance, or
other properties.

We now discuss how a programming language affects the (i) flexibility, (4i) cor-
rectness, and (iii) efficiency of the programs written in it. We describe why and
how each of these three aspects is important for games and briefly note the rele-
vance of each item with respect to game-development. We also explain how game
development systems and languages fare in that regard.

3.4.1 Flexibility

Software is flexible when it is easy to understand, modify, and extend. This is
achieved through structuring the program well, but a programming language can
help with the structuring.

3.4. Motivating a new programming language 35

Games are modified and tuned up to the very end of their development cycle,
and sometimes even beyond [122]. This means that flexible architectures for making
games are of importance for game developers.

Game development systems are usually designed with a series of predefined sce-
narios in mind, and depending on the system it may well be impossible to push
it beyond its originally intended boundaries, even if it is sometimes needed. This
makes such systems not truly flexible.

Flexibility depends on abstraction [127, 1T4], which allows to reuse code and
define general solutions that can be reused across similar problems that arise multiple
times.

Abstraction

The ability to create hierarchies of libraries makes it possible for a developer to
capitalize on the work done by others before him. Programming languages allow
the definition of reusable units: procedures and functions allow avoiding duplicating
code, data abstraction allows to reuse "similar" but otherwise different data-types
in the same context without rewriting the same operation many times, and entire
modules can be abstracted with design patterns.

Games feature huge code bases [44] that we argue could be greatly reduced in
size if some forms of abstraction were used to avoid re-writing large similar parts.
Game engines are a relevant example of this process in action.

Abstraction is impossible (or much harder to achieve) with systems where the
user only has a GUI to perform actions. This happens because even though action
sequences can be recorded, it is hard to make the recorded sequence parametric so
that with a simple change in some parameter then we obtain a different (but similar)
sequence of actions.

3.4.2 Correctness

Software is always supposed to achieve a certain task under certain requirements of
correctness. Programming languages can help establish certain degrees of correctness
by offering ways to specify and check important properties [102].

In game development, correctness constraints could be specified so that, for ex-
ample, the language ensures the correct dimensional analysis for physics quantities,
the correct generation of state machines, etc.

Systems that are well-designed and well-tested often offer strong correctness
guarantees, since they force the user to interact with the project only according to
a predefined set of rules and by sanitizing his input so that only safe operations are
performed.

Correctness depends on: (i) memory safety to ensure that the program does
not manipulate nonsensical values; (i7) concurrency control to arbitrate accesses to
shared resources; and (7ii) testing to find bugs, or exclude them to a certain degree.

36 3. Available game development systems and languages

Memory Safety

Accessing unallocated memory, jumping to data-addresses, or in general carelessly
manipulating memory addresses can result in catastrophic, hard to debug errors.
By using a static type-system that ensures that all data manipulated and passed
to procedures is of the correct type ensures that memory accesses are always prop-
erly aligned [97]. Static type systems have no run-time overhead, that is after the
program is type-checked at compile time the produced assembly code has no trace
of the types used during compilation. Garbage collection also helps ensuring such
safety [91].

Games manage large numbers of objects with unpredictable, highly dynamic
lifetimes. This makes a reliable memory system useful because thanks to it the
developer does not have to manually track the life-cycle of an entity to deallocate its
representation by hand; such a technique risks to maintain references to a deallocated
entity, or to not deallocate some entities that are not references anymore and which
thus occupy memory for no reason.

Game systems achieve correctness through extensive testing [122], and often
make use of unsafe memory manipulation techniques [54]. As such, they only offer
empirical guarantees (through extensive testing [55]) about the memory safety of
games, and moreover they never exclude the possibility of memory leaks or similar
mishaps since running the game may encounter conditions which did not occur
during testing.

Concurrency Control

Languages often operate on shared resources accessed by concurrent processes.
This is particularly relevant in a game, where many entities operate concurrently
on the game world [41], and they must be synchronized in order to guarantee that
the logical invariants of the game are respected.
A system can have a predefined, monolithic system for managing concurrency,
while a language can define a paradigm that (to various degrees) arbitrates access
to shared resources [70].

Bug finding

Most software development is spent on testing, rather than writing code [38]. By
forcing certain properties on a program (or on parts of it), such as the absence of
side-effects in functions, it becomes easier to test a program in a bottom-up fashion.
The absence of side-effects allows testing smaller pieces of the program in isolation
first, and then testing their composition until most of the program is tested properly.
In contrast, programs where many functions read and write on lots of global values
requires testing one’s program against all combinations of function call sequences
and initial values of the shared state: such a task may be nigh impossible.

3.5. Creating new languages for making games 37

The number of possible configurations in a game world is very large, given that
many entities in the game can move, change their internal statistics, etc. The very
large space that must be tested in games allows them to benefit significantly from
a bottom-up testing strategy in the absence of side effects, since this would reduce
the number of tests to be performed while being assured that composing the smaller
parts of the game that have been tested preserves correctness.

Game systems usually allow the definition and concurrent manipulation of global
game variables, and in general suffer the issue where the insertion in the game of an
apparently innocent and (locally) correct procedure may suddenly break something
else (which may even appear to be unrelated).

3.4.3 Efficiency

Software efficiency is measured by the amount of resources it uses to accomplish
its task. A variety of resources can be considered, from time and space to network
bandwidth, power, and databases. When resources are constrained, a language’
constructs and compiler can be made aware of these resources and even of the
possible optimization strategies [34]. A language can make it easier to express
efficient algorithms by supporting efficient data structure declaration and traversal;
for example, we can observe that building a balanced binary tree is simpler F_:] to do
with union types (see Appendix [F]) in the style of ML rather than with C structures
and pointers. A compiler or interpreter such as those used for SQL can also heavily
elaborate the input program and insert the appropriate optimizations so that the
user does not have to do so by hand (and sometimes without even being aware of
them) and still get an efficient program [99].

In game development CPU time is a crucial resource, since if the game runs slowly
then the gaming experience will fail to be immersive and the game will have missed
its mark. A language that is aware of the needs of a game can help by ensuring that
any code written for the game will be optimized automatically, for example running
certain portions of the game logic in parallel or optimizing Cartesian products with
the use of spatial partitioning indices.

Game development systems usually provide a series of commonly used under-
lying services such as rendering, input management, and physics, which are highly
optimized; they then rely on the game developer to not write code that will slow
down the game excessively.

3.5 Creating new languages for making games

As a conclusion, we note that game development, even with the most advanced sys-
tems, still requires a significant amount of programming. Unfortunately, this is not

LOr at least much closer to its definition in mathematical notation, and relatively far from the
technical details of a computer.

38 3. Available game development systems and languages

Systems Languages
easier to use from the start harder to use from the start

leverage existing technical knowledge | obtain new knowledge
write small amounts of code write large amounts of code

leverage high quality components done | leverage high quality components done
by others by others

obtain good results with little effort | obtain good results with little effort af-
right away ter the learning phase

games from a system look similar to one | games can vary a lot between one an-
another other

expressive power is limited expressive power is absolute
complex tasks that are not pre-built | all complex tasks are supported

have no support or even awkward sup-
port

Table 3.1: Systems vs languages

done with special-purpose programming languages; such languages would yield sig-
nificant benefits (as discussed in the previous section) to game developers, and such
benefits are currently ignored completely by game development companies. More-
over, game development systems have shortcomings which are often just worked
around by game developers, as outlined in the comparison of Table There-
fore, from the next chapter on we will introduce the Casanova language, designed
exclusively for making games. Our objective is not that of designing and building
the ultimate game development language. Our aim is less ambitious: we will simply
show the benefits of adopting a game development language, as long as it is properly
designed.

4

Design of Casanova

In this chapter we describe the informal design of Casanova, that is how Casanova
came to be in its current shape. We start by describing our realization of a funda-
mental design pattern that kept recurring in games, which we called rule-script-draw
(or RSD in short). We then state the reason why we decided to build a whole new
language instead of trying to capture RSD in an object-oriented library, as is often
down for design patterns. We then give our design goals, which is a statement of
the overall objective that we prefix ourselves with for Casanova. We conclude the
chapter with an informal presentation of the Casanova language.

4.1 The RSD pattern

RSD is a game development concept which captures the definition of a game com-
pletely. Through our direct experience in game development, and through a survey
of the informal (such as blogs, websites, and discussion boards) and formal litera-
ture of game making, we have come to the realization that game development always
touches upon some fundamental concepts. These are the three main components of
games, and their interactions.

The game is made up of its game logic, and its drawing. The game logic is, in
turn, made up of regular aspects of the game, such as physics equations and other
continuous parts of the numerical integration of the game, and #rreqular aspects
of the game, such as timers, Al, state machines and other discrete parts of the
numerical integration of the game. Finally, many aspects of the logic are drawn to
the screen for the user to see. These three aspects are the cornerstones of the RSD
pattern:

e rules, the regular aspects of the game logic
e scripts, the irregular aspects of the game logic

e drawing, the drawing of the game to screen

Unfortunately, most games are built without explicit awareness of these compo-
nents. This means that efforts to capture these so that building new games in them
requires less time and expenditure of resources are not well focused if they do not

OThis chapter is partially derived from the paper [87].

40 4. Design of Casanova

consider such aspects. For example, frameworks such as XNA or DirectX UT offer
(limited) support to rules and drawing, but no support whatsoever to scripts. More
advanced systems such as Unity, on the other hand, offer further support for scripts
through coroutines.

Development of Casanova started as an effort towards capturing the RSD pat-
tern. We started by trying to build a library in the usual spirit of design patterns,
but ended realizing a language when we understood that a library would not be
sufficiently pervasive to capture all we needed.

We observe that some work has been made towards identifying recurring patterns
in game development, for example [42] [128], but these efforts often take for granted
some underlying basic patterns (such as RSD) that they rely upon, and offer highly
articulated (and often complex) solutions. These patterns require large amounts
of focus on the part of the developer, who is required to perform the functions of
a “human compiler”. We believe that complex design patterns such as those cited
above are often an indication of language issues [129], and they reinforce our belief
in the need for a specific game development language.

4.2 Motivation for a new language

RSD is a very abstract design pattern that is hard to represent because of its
high-granularity. Capturing it with mainstream tools such as an object-oriented
library proved hard. For example, defining how to evaluate rules over fields of
data-structures requires induction over the fields themselves, and access to their
type. Such meta-programming constructs are not readily available in commonly
used programming languages such as C# or C++, and when they are their use is
unfortunately quite awkward (see Appendix . Moreover, using tools such as in-
heritance also gave us trouble because of an excessive number of virtual calls, which
disrupts performance in a way that results incompatible with game development.
For this reason, we decided to pursue the definition of a whole new language, in
order to be free from the representation and performance constraints given by exist-
ing languages. We believe that such a language, in addition to faithfully representing
the RSD pattern, must offer two fundamental features. On one hand, the language
must be flexible enough so that a developer can use it effectively to build any kind
of game or simulation. The language should never lose expressive power, even when
tackling scenarios that were not directly foreseen by its developers. On the other
hand, the language must be optimized for the domain of games and simulations.
It should not require the developer to specify too many details. Specifically, the
language should require from the developer only the relevant details for the game.
The language compiler and its run-time facilities should then fill in the blanks by
adding all the additional boilerplate code that takes care of the various needs of the
game. The developer should not focus his efforts on the game loop, reading input,
hand-crafting state machines, and other menial tasks; this does not diminish the

4.3. Design Goals 41

role of the developer at all: instead, it frees him to pursue other tasks that are more
complex and interesting, such as building a better game logic, modeling Als with
stronger algorithms, applying procedural generation to levels and stories, and so on.
There really are no boundaries to the complexity of a game or a simulation, so the
more powerful the tools the more difficult goals may become achievable.

4.3 Design Goals

We sum up the targets that we have for the design of Casanova in the following
table. These targets describe both the requirements of the RSD pattern, and also
additional requirements about the expressive power and simplicity of the language.
1. | Allow a developer to build games without explicit
limitations in terms of genre or creativity
2. | Support common game development tasks of han-
dling the game logic, game Als, state machines,
drawing, and input
3. | Be concise, in particular when compared with tra-
ditional programming languages used for the same
games
4. | Be efficient, supporting fast runtime execution
of the game and common optimizations such as
multi-threading or query optimizations
5. | Be simple to read, supporting syntactic idioms
that are grounded in logic and mathematics rather
than aping the syntax of widespread programming
languages
6. | Contain as few features as possible, that is the
language should be built on top of few orthogonal
[72] constructs that each serve a clear purpose and
that mix well together

These goals, if fulfilled, will result in a simple, expressive, and efficient language
that is suitable for creating games and simulations. We will refer to these goals in
the final evaluation of the language.

4.4 Informal design

Casanova models a game by defining: (i) the model of the world, that is what entities
and values we track to represent the game world; (ii) the physical and logical rules
that the game entities obey; (iii) the state machines that handle irregular game logic
that would be difficult to express in terms of game rules; (iv) the visual appearance
of the game entities; and (v) the initial state of the world when the game is launched.

42 4. Design of Casanova

As an example, let us consider a very simple pseudo-game that simulates a bunch
of bouncing balls. We will use a pseudo-Casanova language before diving into the
proper syntax. The model for our game world will simply define the world as:

World = a series of balls

A ball would then be defined as:

Ball =
current position of the ball
current velocity of the ball
a picture of a ball

We now define the logical and physical rules of the world and its entities, that
is we specify how each entity updates its fields. The rules for the world state that:

World rules =
when a ball exits the screen then it is not considered
anymore in the state

The rules for the ball are slightly more complex, since we have to simulate some
simple bouncing physics and we also have to update the sprite data:

Ball rules =
the position is the numerical integration of the velocity
the velocity is the numerical integration of gravity, but
when the position touches the ground then the velocity 1is
turned upside-down
the sprite position is the same as the ball position

With the information provided above we now have a simplistic simulation that
runs by updating some bouncing balls which are then "forgotten" from the game
state whenever they leave the screen. We wish the simulation to be made marginally
more interesting, and to achieve this result we will spawn balls automatically so that
there is an endless supply of moving things on the screen. We model this behavior
with a script:

wait between one and three seconds
add to the world a random ball
repeat

Finally, we define the initial state of the world, that is what happens when the
world is first activated as the game is launched:

Initial world =
an empty collection of balls

As we can see, the above description of the balls game is clear and simple, but
we are not leaving behind any important details about what the game will do.

4.4. Informal design 43

Compared with a traditional game development library, though, there is no mention
of the game loop, neither for updating the world nor for rendering, and drawing is
implicit in the presence of an appearance inside the ball definition; also, the creation
of new balls is defined as a simple, sequential process where the various operations
are expressed in a top-down sequence instead of a traditional state machine. Also
notice that we are not assuming the presence of prefabricated entities to have physics
or timed operations, that is we have described everything ourselves.

In the following we will describe how the Casanova language is defined to make it
possible to express the above logic in an equally simple and straightforward manner,
and how this description is turned into an actual, executable specification for a fast-
enough game.

44

4. Design of Casanova

D

Syntax of Casanova

In this chapter we give the syntax of the Casanova language. The syntax of the
language is an abstract definition of all the valid strings that are part of the language.
The most common tool to give the syntax of a language is, of course, a formal
grammar. Since Casanova is a statically typed language, the grammar is insufficient
to capture all the valid programs. Some programs for which typing is incorrect
would be accepted by the grammar, but would not be valid Casanova programs.
For example, consider the following simple expression:

if a < b then O else "zero"

The expression above can be generated by the grammar of Casanova, but it
would be rejected by its type system since it is not possible to unify the types int
and string of the two branches. To give the full syntax of Casanova we must also
know the typing rules, which in fact we give together with the grammar.

5.1 Grammar

The grammar of Casanova states that a valid program starts with a series of mutually
recursive type definitions; mutual recursion means that the definition of a type may
use any other type defined in the program, regardless of the fact that the referenced
type definition happens after the definition of the current type.

Type definitions also contain rules, which are special methods that cannot be
used by the developer explicitly, but only by the framework; rules are associated
with exactly one attribute, and one attribute may be associated to at most one rule.
Rules define declaratively what the value for an attribute will be at the next iteration
of the game loop, and a rule can access the previous values of the game world and
the entity of which it is performing a partial update. Rules cannot have side-effects
beyond their implicit one, that is a rule is not allowed to write variables or modify
anything. Its only side-effect comes from the fact that its result will become part of
the game world at the next iteration of the game loop.

The program then contains a definition of the initial value of the game world.

Finally, the program must have a main script that defines the process that will
handle the high-level game logic, plus a series of input scripts. All scripts are defined
through coroutines.

OThis chapter is partially derived from the paper [87].

46

5. Syntax of Casanova

The grammar that describes the syntax of a Casanova program then is:

<p> ::= <type-decls> <initial-world> <scripts>

<type-decls>

<type-decl> | <type-decl> <type-decls>

<type-decl> ::= ‘type’ <id> ‘=’ <type-body>
<type-body> = <record-body> | <union-body>
<record-body> = ¢{? <labels> ‘}’ <rules>
<labels> = <label> | <label>‘;’ <labels>
<label> = <id> <type -expr>

<type-expr>
<tuple -type -expr>

<intrinsic-type-expr>

<rules>
<rule>
<rule-id>
<union-body>

<type-init>

<tuple-init>
<list-init>

compr> ¢]°
<list -compr>
<expr-list>
<record-init>
<labels-init>

¢;? <labels-init>
<union-init>
<intrinsic-type-init>

<type-dest>
>

<id> | <tuple-type-expr>
<intrinsic -type-expr>

<type -expr>

<type-expr> ‘x’ <tuple-type-expr>
‘Var<’<type-expr>*>’
‘Ref<’<type-expr>*‘>’
‘List<’<type-expr>‘>’
‘Coroutine<’<type-expr>*‘>’

float | int | Vector2 |

empty | <rule> <rules>

‘rule’ <rule-id> ‘=’ <expr>

<id> | <id>¢.’<rule-id>

<id> | <id> ‘of’ <type-expr>

<id> ‘|’ <union-body>

<id> ‘of’ <type-expr> ‘|’ <union-
body >

<tuple-init> | <list-init>
<record-init> | <union-init>
<intrinsic-type-init>

<expr> | <expr>, <tuple-init>
‘[’ <expr-list> ‘1 | ‘[’ <list-

‘for’ <id> “in’ <expr> ‘do’ <expr>
€7 | <expr> ¢;’ <expr-list>

‘{’ <labels-init> “}’

<id> ‘=7 <expr> | <id> ‘=’ <expr>

<id> | <id> <tuple-init>
‘ref’ <expr> | ‘var’ <expr>
‘Vector2(’ <expr> “,’ <expr> ‘)’ |

“let’ <ids> ‘=’ <expr> | <match-case

<match-1list> | <id> ¢.? <id>

5.2. Type System

47

<ids> = <id> | <id> ¢,’ <ids>
<match-case> = ‘match’ <expr> ‘with’
<pattermns> = <pattern> | <pattern>
<pattermn> = <id> | <ids> | <id> ¢(

args> ‘)
<pattern-args>
pattern-args>

<pattern-arg> |

<pattern-arg> ,

<patterns>
cI;

’ <pattern-

¢)

<pattern-arg> = <id> | <const>
<match-list> ‘012 | <id> ‘::? <id>
<id-decl> = <id> | <id> ¢:’ <type-expr>
<expr> ::= <id> | <const>
| ‘let’ <id> ‘=’ <expr> ‘in’ <expr>
| ¢if’ <expr> ‘then’ <expr> ‘else’ <expr>
| <type-init> | <type-dest>
| <co-expr> |
<co-expr> ::= ‘co{’ <co-expr> ‘}’ | <expr> | ‘return’ <expr>
| “let!’ <id> ‘=’ <expr> ‘in’ <expr>
| “do!’ <expr> ¢;’ <expr>
| <expr> ‘||’ <expr> | <expr> ‘&&’ <expr>
| <expr> ‘=>’ <expr> | ‘repeat’ <expr>
| ‘yield’
<id> 1= (* an alphanumeric string *)
<const> = (¥ a constant value *)

=

‘let world
<main-script> <input-script>
‘let main =’ <expr>
‘let input =’ <expr>

<initial -world>
<scripts>
<main-script>
<input -script>

<expr>

<patterns>

<

We have omitted some of the grammatical structures which are best known from
the literature (see, for one example, [114]): (i) the full list of supported intrinsic
types (strings, matrices, 3D and 4D vectors, etc.); (ii) the initialization syntax
for the intrinsic types; and (7i) expressions may assume a very large number of
shapes, from arithmetic operations such as expr + expr, to function calls, function

definitions, library functions such as List.length, etc.

5.2 Type System

The type system for Casanova contains the standard functional type system of F+#;

this means that we have the usual rules such as:

48 5. Syntax of Casanova

I'Et1:U, Dx: UtV '+ cond : bool,t : Uty : U
I'+1let z=t; in ty:V ' if cond then t; else ty: U
'ef:U—->Vit:U Cht: Al Tyl Ty oy - T}

'k ft:Vv I'Etl: T;

and so on. For a complete treatment of the rules of a programming language
with this kind of this type system, there are many excellent sources such as [114].

The most unusual and novel aspects of Casanova’s type system are two: rules,
and coroutines. We are now going to explain them in detail.

5.2.1 Rules

Rules are functions that take as input the game world, the current entity the rule
belongs to, and the delta time since the last evaluation of this rule; the rule type
has range equal to the type identified by its name, treated as a record label. A rule
is well-defined if the following holds for all rules:

type ID = { 11:T1; 12:T2; ... 1ln:Tn }
rule 1i = (ei:World * ID * float<s> -> Ti)

For example we could write:

type Ball = { P:Vector2<m>; V:Vector2<m/s> }
rule P(world:World,self:Ball,dt:float<s>) =
self.P + self.V x dt

We could also write the very same definition where the method body is defined
as a function value as:

type Ball = { P:Vector2<m>; V:Vector2<m/s> }
rule P = fun (world:World,self:Ball,dt:float<s>) ->
self.P + self.V x dt

Rules may also refer to the fields inside the value of an attribute. For example,
a rule may define how attribute kj of attribute 11i is updated as in the following:

type ID = { 11:T1; ...; 1i:{k1:V1; k2:V2; ... km:Vm} 1n:Tn }
rule 1i.kj = (eij:World * ID * float<s> -> Vj)

For example we could only update the Y field of the ball position as:

type Ball = { P:Vector2<m>; VelY:float<m/s> }
rule P.Y(world:World,self:Ball,dt:float<s>) =
self .P.Y + self.VelY *x dt

Longer chains are handled in a similar fashion.

5.2. Type System 49

5.2.2 Coroutines

The second novel aspect of Casanova is that it uses a rare E] feature of type sys-
tems that assigns a type to mutable computations. Mutable computations are all
those statements that have side-effects such as modifying the memory through an
assignment, sending data across the network, drawing to the screen, etc. For this
reason mutable computations are also referred to as effectful. For example, in a tra-
ditional imperative language such as C, Java or others, assigning a variable is just a
statement with type void. The same holds true for F# as well, which types these
effectful computations as Unit, which behaves essentially like void. In Casanova,
on the other hand, effectful computations are all typed in terms of coroutines in
order to clearly delimit their usage. For example, assignment has type:

'ty :var<T> 15 : T
'+t := 1ty : Co<Unit>

where we used the Co abbreviation for Coroutine. Reading a variable, on the other
hand, does not cause any side-effects and so it is not typed in terms of coroutines:

I'Et:Var<T>
TRt T

The main point of coroutines is that they are the only place where the developer
can put all the side-effects he needs, in a "safe place" where those side effects will
not interact in undesired ways between each other. Containing side-effects enables
us to safely perform optimizations that would otherwise be impossible because side-
effects would break the invariants needed for such optimizations. Coroutines may
only be invoked by other coroutines, excluding the main coroutine and the input
coroutines which are run as appropriate by the Casanova runtime. Coroutines pre-
vent a developer from performing dangerous mutation operations from inside the
body of rules, and they force all imperative operations to happen either inside the
main script or inside the input scripts (or else there will be a compiler error!).

Coroutines are not just ways to encapsulate stateful computations: coroutines are
also, and mainly, a tool for controlling how the (possibly imperative) operations of
a sequential process are mixed with the game loop. The simplest coroutine possible
is the one which finishes its job by invoking return on its result. We sequentialize
coroutines together with the let! and do! operators. Coroutines may also be
combined together according to a series of operators which mirror the fact that
coroutines can be seen as threads that can: be run in parallel together until they
both finish (A); be run concurrently until the first terminates, discarding the other
(V); be run in cascade but only when the first terminates with a certain positive

lrare in applied work on programming languages as compared to theoretical research

50 5. Syntax of Casanova

'Fx:T ['Ftl:Co<U>I",x : Uk t2: Co<V>
I' - return z : Co<T> I'Flet! 2=tl1 in ¢2: Co<V>
I' - t1: Co<Unit>,t2 : Co<V>) _ ['+t:float<s>
F yield : Co<Unit> - _
I'Edo' ¢1; t2: Co<V> I' - wait t: Co<Unit>
'~ tl : CO<U>, tg : Co<V> '+ tl . CO<U>, t2 : Co<V>
I'=1¢; && o : Co<UxV> I'=4¢; || t9: Co<Either<U,V»
I' =1 : Co<bool>, ty : Co<V> [' F ¢y : Co<Option<Uy,ty : U — Co<V>
'ty => &9 : CokV> I'¢; => 9 : Co<kV>
I'-t: Co<Unit> 't :Var<T>,t5 : T
I' - repeat t: Co<Unit> 'ty :=ty : Co<Unit>

Figure 5.1: Coroutine typing rules

result (=); be repeated indefinitely (). A coroutine may also wait for a certain
amount of seconds, or it may wait for a single tick of the simulation (also known as
yield-ing). The typing rules that govern how coroutines may be combined together
are listed in Figure p.1

6

Semantics of Casanova

In this chapter we describe the semantics of Casanova. We start by giving the
intuition behind the way Casanova works. We then specify the formal semantics
by defining translation functions that turn Casanova programs into equivalent F#
programs.

6.1 Informal Semantics

Informally, the semantics of Casanova can be described in terms of how the world is
updated during a tick of the game loop. The main difference between the semantics
of Casanova and the way a game is traditionally built is that in Casanova there is
no world that is updated in-place as we would get in an imperative system; rather,
Casanova behaves as if an infinite stream of game worlds was created, one per frame,
by applying all rules in parallel and then by running all active scripts in sequence
until they all reach either a yield or wait statement. After updating the world,
Casanova draws all drawable entities. In pseudo-code, we could say:

let update world =
let world’ = apply_rules world
let world’’ = tick_scripts world’
do draw world’’
update world?’’

The apply_rules function would recursively explore all entities and, for each
rule, evaluate that rule and insert it into the next value of the world, which is then
populated. Non-rule values would simply be copied over E] The tick_scripts
function would run all active scripts, which are arranged in a dependency graph
thanks to the and, or, and guard operators which chain them together. Each script
is run, and it performs a mixture of control flow operations and assignments before
pausing itself. Each variable assignment :=is set in a new instance of the game world
where all rules have been applied already; this new instance of the game world then
becomes the current game world for subsequent scripting operations. Finally, the

UThis chapter is partially derived from the paper [S§].

Inotice though that copying here may also refer to the much cheaper copy of references, and not
values; also, if we have the guarantee of immutability on the various data structures of the game
world, we can reuse old entities when possible since they are immutable and thus do not change

52 6. Semantics of Casanova

world is traversed one last time and all its drawable entities are grouped together
according to their drawing layer, and the layers in the game world are rendered in
the order they are found in the world.

When an entity is stored in the game world twice, for example because it is
stored both in the world directly and inside another entity that uses it for reference
purposes, then it risks being updated twice. If entities reference each other circularly,
then they may trigger an infinite loop of updates. To stop these updates, Casanova
offers the Ref generic data-type, to signal that one of two instances is just a pointer
to something that is updated elsewhere in the game world. The update of the game
world will then not update references. References in Casanova can be seen in the
same light as foreign keys in relational databases.

Drawing in Casanova simply requires an underlying layer of computation that
understands 2D and 3D vectors; upon satisfying these very light requirements, any
rendering engine or technology can be employed. For this reason the precise se-
mantics of rendering are left nebulous in our work: they are highly interchangeable,
there is no restriction on the library that is used for rendering, and this allows us to
easily support multiple platforms.

The semantics of Casanova are defined this way to ensure fast run-time speed,
and correctness (by stopping certain bugs from happening altogether).

6.1.1 Performance

Run-time performance is a fundamental concern addressed by Casanova. Rules of-
fer us two important optimization opportunities: (i) evaluating rules in parallel, in
different threads; and (ii) optimizing queries on lists that perform Cartesian prod-
ucts with some condition. While we will discuss the details of such optimizations
in the following, for now it will suffice to say that, without forbidding unrestricted
mutation of the game world, neither of these optimizations could be done safely, and
implementing them automatically would risk side-effects or outright wrong results.
Other optimizations include the frequency of updates of the rules and the scripts of
the game world. For example, the frequency at which rules and scripts are updated
can be customized; this means that certain operations that do not need to be per-
formed at every frame, such as Al decisions, may be computed with lower frequency,
while rules and scripts which govern visible animations must be updated at every
frame in order to maintain the visual appearance of smoothness.

6.1.2 Correctness

Correctness in Casanova depends from the way rules are evaluated and how their
result is then written into the game world. If the game world were modified in-place
after the evaluation of each rule, then it would represent a "dirty" game state that
is neither in the previous time-step, nor in the next. Such a game world would risk
breaking some of the logical invariants that the developer may take for granted when

6.1. Informal Semantics 53

designing some rules or scripts. As a simple example, consider the case of collision
detection between asteroids and projectiles in a shooter game where the game world
is updated as soon as we find a collision between an asteroid and a projectile; in an
imperative style we could write:

for a in asteroids do
if 3 p € projectiles : p collides with a then
remove a from asteroids
add asteroid explosion a
increment score by 1
for p in projectiles do
if 3 a € asteroids : p collides with a then
remove p from projectiles

Let us say that we have three asteroids and two projectiles. An asteroid collides
with a projectile. We would get the following evaluation steps:

lal;a2;a3], [pl;p2]
lal;a3], [pl;p2] // remove a2 as it collides with pl
[al;a3], [pl;p2] // pl is not removed because a2 was removed

While this particular bug is simple to find, it is a particular instance of the
following general problem: updates that assume they are acting on a world with
invariants temporarily broken by the evaluation of other local updates.

Casanova deals with this problem by storing the result of all updates in tempo-
rary locations, in a manner that is similar to a big transaction. After all rules have
been evaluated on the current value of the game world, then their results are all
applied simultaneously.

Correctness and language constraints Forbidding mutation and the high-level
at which Casanova games are implemented have downsides as well. The two most
evident downsides are data-types that reference themselves, and cooperative update
operations that span multiple entities. This is motivated by the fact that guar-
antees of correctness have always been a central design goal in Casanova. In this
light we chose to partially limit the expressive power of the language, in order to
exclude dangerous constructs that do not always work correctly, but instead require
discipline, effort, and attention on the part of the developer.

Recursive instances of recursive data-structures, such as a circular chain of en-
tities or a cyclic graph of entities, cannot be represented directly. For example,
consider the case where we wish to represent a (cyclic) graph of vertices; we cannot
represent a vertex as:

type Graph = { Vertices : List<Vertex> }
type Vertex =
{ Content : T;
Neighbors : List<Ref<Vertex>> }

54 6. Semantics of Casanova

because vertices are immutable, and thus a vertex needs to be initialized after
all its neighbors have been created, but if there are cyclic relationships there is no
initialization order that respects this requirement. The alternative lies in using maps
that connect entities, thereby breaking the recursive relationship:

type Graph =
{ Vertices : List<Vertex>;
Edges : Map<Ref<Vertex>,List<Ref<Vertex>>> }
type Vertex = { Content : T }

Similarly, we have to re-think (with respect to their imperative implementation)
certain cooperative update operations such as collision detection or battles. For
example, consider the case of balls bouncing on the screen and with each other.
When two or more balls collide together, then they need to be updated together
and not separately; this means that the following world structure is not sufficient
because a single ball may only update itself:

type World = { Balls : List<Ball> }

The developer could, for example, represent balls as two separate kinds of balls:
those that are flying, and those that are in a collision block:

type World = { Balls : List<Ball>;
CollisionBlocks : List<CollisionBlock> 17
type CollisionBlock = { Balls : List<CollidingBall> }

Note that a collision block updates all of its list at the same time, and the single
CollidingBall performs no physical update since it would be unable to modify
itself correctly without knowing the other balls colliding with it.

As a side note, it is important to notice that the way Casanova handles writing
to the game world does not create issues with complex scenarios. In particular,
networking, which requires unlimited read and write access to the game world, can
be expressed in Casanova and can even be automated, as explained in Appendix [B]

6.1.3 Bouncing Balls

Now that the a first description of the language has been given, we can show a
first example so that the remaining discussion may be reinforced by having seen
Casanova in action. We go back to considering the bouncing ball games, but with a
twist: when the user presses the space bar, then a ball is created. This way we can
see user input in action as well.

The game entities and their rules implement removal of balls that exit the screen,
update of each ball position and velocity according to a simple Euler integrator, and
finally update of the sprite position with the current ball position, converting the
units of measure to pixels:

6.1. Informal Semantics 55

type World = { Balls : Var<List<Ball>> }
rule Balls(world:World,dt:float<s>) =
[for b in world.Balls do
if b.Position.X <= ScreenSize.X then
yield b]

type Ball = { Position : Vector2<m>; Velocity : Vector2<m/s>;
Sprite : DrawableSprite }
rule Position(self:Ball,dt:float<s>) =
if self.Position.Y >= 0.0<m> then
self .Position + self.Velocity * dt
else
self .Position * Vector2(1.0,0.0)
rule Velocity(self:Ball,dt:float<s>) =
if self.Position.Y >= 0.0<m> then
self .Velocity + Vector2<m/s~2>.UnitY * 9.81 = dt
else
self .Velocity * Vector2(1.0,-0.8)
rule Sprite.Position(self:Ball) =
self .Position * Vector2<pixel/m>.0ne

The initial state of the game is then a simple empty world with no balls:

let world = { Balls = [] }

The main script which creates new random balls is a simple repetition of waiting
before creating a new ball:

let create_random_ball() = { ... }

let main =

repeat
co{
do wait (random 1.0<s> 3.0<s>)
do world.Balls := create_random_ball() :: world.Balls
}

The input scripts are only two: one that waits for pressure (and then timed
release) of the space bar, and another that waits for pressure of the escape key.
Pressing space creates a new ball, while pressing escape closes the game:

let input =
[
co{ return is_key_down(Keys.Escape) } =>
co{ do exit() }
co{
do wait_condition(is_key_down (Keys.Space))

56 6. Semantics of Casanova

do wait_condition(is_key_up(Keys.Space)) || wait 0.2<s>
return true } =>
world.Balls := create_random_ball() :: world.Balls

]

The scripts above are used to implement detection of key pressure. Key pressure
is detected when the user presses a key, and then either releases it or holds it for
more than a certain amount of time. Key pressure is needed to avoid firing an event
all the frames of the game during which the key is held. The code that implements
this is the following;:

do wait_condition(is_key_down (Keys.Space))
do wait_condition(not(is_key_down(Keys.Space))) || wait 0.2<s>

It is important to notice that to support this event with a traditional game
development system, the developer would need to build by hand a state machine
such as:

type KeyPress = WaitPress | WaitRelease of float | Finished

let transition key_press dt =
match key_press with
| WaitPress ->
if is_key_down (Keys.Space) then
WaitRelease 0.0
else
WaitPress
| WaitRelease t ->
if is_key_up(Keys.Space) || t >= 0.2 then
Finished
else
WaitRelease (t+dt)

6.2 Formal Semantics

We now formalize the actual behavior of a Casanova program, so that we know
exactly what to expect from a game written with the language. The formalization
of the semantics of a language is one of its most important aspects, since it lays the
foundations upon which the actual implementation is built.

The formal semantics of a language can be described in many ways [143]. The
simplest way to define a language semantics is in terms of a translation in a simpler
language. Indeed, in the following we give a translation semantics from Casanova
in terms of F#. The advantage of this approach is that we do not have to worry
about generating assembly code nor building a virtual machine, and we may take

6.2. Formal Semantics 57

advantage of most of the readily available capabilities of the F# compiler, such as
optimizations, tail recursion, and portability through Mono.

We will give the semantics for: (i) translating Casanova type definitions into F#
equivalent definitions; (7i) defining the update function which implements rules;
(111) implementing scripts through coroutines; and (iv) defining the draw function.
Notice that the last three points discussed are the RSD pattern.

Even though the present discussion is heavily focused on translating semantics
into F#, it should be noted that the shape of the solution is the same that we
used in alternative, experimental implementations into both the C++ and Haskell
languages (see Appendix [E)).

6.2.1 Types Translation

Types are translated from Casanova into F# in a straightforward fashion. We
recursively traverse the type definitions that make up the world and its entities,
and we encode them into a series of mutually recursive F# type definitions with
the same exact shape. The only difference is for the treatment of rules for records,
which are encoded with two special data-types, which are Rule<T> for single values
and RuleList<T> for list values.

The translation function is the following, and it is given in a syntax that is
reminiscent of pattern matching in Haskell. The matching on types, though, is
intended to be at compile-time, while the dynamic portion of the code (that which
operates on values and not types) is executed at run-time:

translate_types []1 = O

translate_types type::types =
translate_type type
translate_types types

translate_type Primitive(type) = type

translate_type Var<type> = Var<translate_type type>

translate_type List<type> = List<translate_type type>

translate_type Union{(cases) = Union([translate_case case |
case in cases])

translate_type Tuple(types) = Tuple([translate_type type |
type in types])

translate_type Record(labels,rules) = Record([translate_label
label rules | label in labels])

translate_case UnionCase(case,types) = UnionCase(case, [
translate_type type | type in types])
translate_label Label(name,type) rules =
if exists(rule.Name = name) in rules then
if type = List<type’> then
Label (name ,Rulelist<translate_type type’>)

58 6. Semantics of Casanova

else
Label (name ,Rule<translate_type type’>)

Basically, translating types recursively turns all types into their F#/ equivalent
(primitive types in primitive types, tuples in tuples, and so on). Records, which
can have rules, are turned into almost identical records, but all the fields with an
associated rule are turned into the Rule or RuleList data type. For example, the
following type, which represents a physical entity with a position vector P and a
velocity vector V:

type MyEntity = { P : Vector2<m>; V : Vector2<m/s> }
rule P(self,dt) = self.P + self.V *x dt

would be transformed into a similar data-type that uses the Rule container for the
position (since it has a rule associated with it), and where the field P is now looked
up explicitly with the (!) operator, which acts as a dereference operator that looks
up the current value of the rule. Also, the rule is now transformed into a static
member which name ends in Rule:

type MyEntity = { P : Rule<Vector2<m>>; V : Vector2<m/s> 1}
static member PRule(self,dt) = !self.P + self.V * dt

Notice that we are slightly abusing our notation, assuming that, when the trans-
lation function is invoked on a type declaration (the name of a type), then this is
automatically looked up and replaced with the body of the type.

The rule data types are double-buffered containers. This means that each rule
data is stored twice: one for the current value, and the other for the next value.
During the update function, the current value is read-only, and the next value is
write-only. The Rule data-type is defined as follows:

type Rule<’T> = {
mutable current : ’T;
mutable next : ’T }

let (') r = r.current
let (:=) r v’ = r.next <- v?

6.2.2 Rules

Rules are triggered in the update function. The update function is defined, similarly
to the type translation functions just presented, as a function that takes as input
some types and which returns the corresponding F# operations to perform in ac-
cordance to the type to be processed. Intuitively, it may be seen as a large switch
operation that checks the input type and which then runs some operations on that
type. This function is called polytypic, that is its actual behavior changes depending

6.2. Formal Semantics 59

on the type of its input. Since F# lacks polytypic abilities (at least the compiler
does, but we will emulate such behavior through reflection) we use an intermediate
notation; we denote the type parameters that the function switches on by surround-
ing them with square brackets, and regular F# parameters will always be the last
ones (that is, we lay the groundwork for removing the polytypic behavior without
needing the actual parameters, at compile time, through Currying E[)

The update function will explore the game world, one field at a time: whenever
a rule is encountered, it is evaluated; after all rules are evaluated, the frame counter
is incremented so that rules all are committed to the game world at the same time.
This way rules that are evaluated do not affect the evaluation of other rules in the
same frame:

update_world [World] (world:World) (dt:float<s>) =
update_entity [World] [World] world world dt
frame_index <- frame_index + 1

update_entity [World] [Primitive(T)]
(world:World) (v:T) dt = ()
update_entity [World] [T1 * T2 * ... x Tn]
(world:World) (x1:T1, x2:T2, ..., xn:Tn) dt =
update_entity [World] [T1] world =x1 dt
update_entity [World] [T2] world x2 dt

update_entity [World] [Tn] world =xn dt
update_entity [World] [Var<T>]
(world:World) (v:Var<T>) dt
update_entity [World] [T] (world:World) !v dt
update_entity [World] [Ref<T>]
(world:World) (v:Ref<T>) dt
update_entity [World] [List<T>]
(world:World) (l:List<T>) dt =
for x in 1 do update_entity [World] [T] world x dt

O

update_entity [World] [T=UnionCase(C1(T11 * ... * Tinl),
C2(T21 * ... = T2n2), ...,
Cn(Tnl * ... * Tnnn)))]

(world:World) (c:T) dt =
match ¢ with
| C1(x1,...,xnl) ->
update_entity [World] [T11] world x1 dt
update_entity [World] [T12] world x2 dt

2Currying is the process by which, given a function that takes two parameters, for example fun
X y -> x + y, we can pass it one parameter but not the other; passing the parameter yields us a
function where that parameter is set already, for example passing 10 to the function described before
gives us back fun y -> 10 + y. In some sense, Currying is a form of specialization reminiscent
of inheritance.

60 6. Semantics of Casanova

update_entity [World] [Tinl] world xnl dt
| ¢c2(x1,...,xn2) ->

update_entity [World] [T21] world x1 dt

update_entity [World] [T22] world x2 dt

update_entity [World] [T2n1] world xn2 dt

| Cn(x1l,...,xnn) ->
update_entity [World] [Tnl] world =x1 dt
update_entity [World] [Tn2] world x2 dt

update_entity [World] [Tnnn] world xnn dt
update_entity [World] [T=Record(11:T1,12:T2,...,1n:Tn,
ri=rbl,r2=rb2,...,rm=rbm)]
(world:World) (r:T) dt =
update_entity [World] [T1] world r.1l1 dt
update_entity [World] [T2] world r.1l2 dt

update_entity [World] [Tn] world r.ln dt

r.rl := rbl(world, r, dt)
r.r2 := rb2(world, r, dt)
r.rm := rbm(world, r, dt)

The essence of the update function is thus to traverse the game state inductively,
and then to apply all rules to their fields. After traversal is done, rule updates are
committed. Notice a peculiarity about Casanova semantics: whenever the update
function encounters a reference to a value, this reference is not explored further.
References are used to break recursive relationships inside the game world, in order
to avoid infinite loops during traversal. Also notice that rules with names such as
Labell.Label2. ... Labeln may be defined. This allows for polymorphism in
rules, because an entity may define (and override) rules for data-types it contains.
For example, suppose we have an entity and that we wish to build other entities
that contain the original one but which also modify the way it updates; we could
then use nested rules to write:

type E = { £ : F; ... }
type E? = { e : E; ... }
rule e.f =

type E’?> = { e : E; ... }
rule e.f =

This technique allows for rules that behave similarly to abstract methods in

6.2. Formal Semantics 61

object-oriented programming, thereby having entities whose behavior varies depend-
ing on how the entity is extended. A common application of this system is to define
how the attributes of drawable entities are updated. For example, consider a mov-
ing spaceship that must update its sprite position depending on its current physical
position and the current camera settings:

type Ship {

Position : Vector2<m>
Sprite : DrawableSprite
+
rule Sprite.Position(world,self,dt) = world.Camera.Transform(

self .Position)

6.2.3 Scripts

The semantics of Casanova scripts almost fully coincides with their implementation,
as described in Chapter [7] This happens because our scripts are defined in terms
of monads, and monads are a convenient meta-programming technique to represent
complex control flow constructs, stateful computations, and many other functional-
ities. Monads are described in depth in Appendix [G]

Casanova scripts represent imperative computations that may be suspended. For
this reason, they are designed in order to support both stateful computations, thanks
to the state monad, but also suspensions thanks to a variation of the continuation
monad.

Recall the state monad as the one used for expressing imperative computations
that may modify the state of the program (also known as effectful computations),
and that may also return an additional result. The state monad is defined as follows:

State s a = s — (a,s)

This means that an instance of the state monad will take as input the current
state, of type s, and it will return both a result, of type a, together with the new
state.

Two instances of the state monad may be chained together by feeding the output
of the first into the second so that the initial state is modified in the right sequence
by the first and then the second:

sl >>= 82 =

As —
let x,8’ = 81 s
s2 x s’

Note that the state monad defined this way runs all the chained operations
together, one after the other, with a single application. To support interruptible

62 6. Semantics of Casanova

computations, we modify the original definition so that after modifying the state
after one step, the monad either performs a break and returns the new state together
with the next steps to perform (the continuation), or it returns the final result of
the computation. The resulting monad is similar to the original state monad, except
for a different return type:

Script s a = s — Either (a,s) (s, State s a)

We bind scripts together by trying to run the first script. If it ends, then we
feed its result to the second script, which is returned with the new state as the
continuation. If the first script does not terminate, then we bind its continuation
with the second script, and return their binding as the continuation together with
the new state:

sl >>= g2 =
As —
match sl s with
| Left(x,s’) — Left(s’,s2 x)
| Right(s,s1’) — Right(s,(s1’ >>= s2))

A suspension statement, which we will call yield, is simply a statement which
performs no operation on the state, but suspends once before returning () as a
result:

yield = As — Right(s, (As — (),s))

The semantics of all the scripts currently active in the system is simply to pass
the current state of the game to each script, store its continuation (if there is any)
in place of that script, and use the returned state as the current state of the game.

6.2.4 Draw

The draw function is defined in a very similar manner to the update function. Like
the update function, the draw function explores the game state (stopping at primi-
tive types and references) and draws all drawable entities found during the traversal.
Drawing is not completely straightforward though: drawable entities are grouped
into layers which act as containers and which specify a set of rendering options such
as the current shader, alpha blending, and so on. Layers are then rendered in the
order they are found. Layers may be sprite layers, but also cameras for 3D entities,
or even custom containers built in other libraries:

draw_world [World] (world:World) =
mutable layers = []
draw_entity [World] world
for layer in layers do
layer.Draw ()

6.2. Formal Semantics

63

layer.Clear ()

draw_entity [Primitive(T)]
(v:T) (layers:List<Layer>) = ()
draw_entity [T1 * T2 * ... * Tn]

(x1:T1, x2:T2, ..., xn:Tn) (layers:List<Layer>)

draw_entity [T1] x1 layers
draw_entity [T2] x2 layers

draw_entity [Tn] xn layers
draw_entity [Var<T>]
(v:Var<T>) (layers:List<Layer>)
draw_entity [T] tv layers
draw_entity [Ref<T>]
(v:Ref<T>) (layers:List<Layer>)
draw_entity [List<T>]
(1:List<T>) (layers:List<Layer>) =
for x in 1 do draw_entity [T] x layers
draw_entity [T=UnionCase(C1(T11 * ... x Tinl),
C2(T21 * ... * T2n2),
Cn(Tnl * ... * Tnnn)))]
(c:T) (layers:List<Layer>) =
match dt with
| C1(x1,...,xnl) ->
draw_entity [T11] x1 layers
draw_entity [T12] x2 layers

O

draw_entity [Tinl] =xnl layers
| ¢c2(x1,...,xn2) ->

draw_entity [T21] x1 layers

draw_entity [T22] x2 layers

draw_entity [T2nl1l] xn2 layers
| Cn(x1l,...,xnn) ->
draw_entity [Tnl] x1 layers

draw_entity [Tn2] x2 layers

draw_entity [Tnnn] xnn layers

draw_entity [T=Record(11:T1,12:T2,...,1n:Tn,rules)]

(r:T) (layers:List<Layer>) =
draw_entity [T1] r.11 layers
draw_entity [T2] r.12 layers

draw_entity [Tn] r.ln layers

64 6. Semantics of Casanova

draw_entity [Drawable(T)]
(d:T) (layers:List<Layer>)=
d.Layer.Add (d)
draw_entity [Layer(T)]
(1:T) (layers:List<Layer>) =
layers.Add (1)

As it can be noticed, we have built a certain flexibility in our draw semantics.
Beyond the fact that rendering operations must be grouped into layers [} and single
drawables are anything that can be rendered with polygons and textures, nothing
is set. This allows integrating Casanova with many different rendering engines,
instead of marrying Casanova to a very specific mindset. Of course the difficult
in integrating a rendering engine may range from trivial to substantial, depending
on how close the underlying architecture of the engine is from that of Casanova
rendering.

3In current GPU architectures, a layer would contain all rendering options such as the shader
and the current GPU settings: from alpha blending to the current scissor rectangle to more exotic
options such as the stencil buffer. A similar strategy is employed for example in DirectX where
constant buffers and effect techniques reduce the number of parameters that are separately sent to
the GPU [108, 103].

7

Implementation of Casanova

Casanova is a member of the ML family of programming languages. In particular,
it is related to the F+# variant of OCAML, given that the two languages are similar
enough to each other, but F# has access to a very large codebase of useful libraries
for real-time rendering, audio playing, input management, and networking; among
these, Casanova relies heavily on the MonoGame library. Casanova also takes ad-
vantage of F# multi-platform support, and thus can run on anything that F# can
run on, thanks to the Mono run-time. F## is a "pragmatic" functional programming
language that belongs to the .Net framework. It is pragmatic in the sense that,
together with functional idioms, it also allows inter-operation with all other .Net
languages (most notably C#) and their libraries, and it also allows mutation and
imperative constructs with almost no limitations. F# also supports some advanced
meta-programming constructs that allow to extend it, for example monads (albeit
renamed computational expressions in the language documentation).

Casanova has a working implementation that can be accessed in two different
ways: (i) as an F# library in any development environment that supports the
language; (ii) or through our specialized IDE. The current implementation relies on
input and rendering primitives implemented as part of the MonoGame framework,
which runs on both .Net under Microsoft operating systems, and Mono on all major
operating systems from Windows to Android and to iOS. The implementation is
already usable and fully open source [6].

The implementation unfortunately cannot be expressed in idiomatic F#. This
happens because the update and draw functions are defined inductively on the type
of their input parameters. This kind of expressivity (known as the ability to define
polytypic functions) is unfortunately quite rare. Two languages that support it are
C++ with heavy use of partial specialization of templates, and Haskell with its
type-classes.

The main reasons for choosing a statically typed functional language like F# are
multiple: (i) dynamic languages such as Python are slower than F# by an order of
magnitude, especially with highly dynamic code and coroutines; (i) dynamic lan-
guages offer less static type checking, and thus gives developers less help when one
misuses the functionality from a different module, for example by passing a function
the wrong arguments; (%) dynamic languages have less support for IDE assistance
tools, for example autocompletion, refactoring, or similar. Unfortunately, the evi-

OThis chapter is partially derived from the paper [84].

66 7. Implementation of Casanova

dence we have is partially conjectural in nature, since only with a fully optimized
implementation and appropriate user studies it would be possible to give a con-
clusive answer to the problem of choosing an underlying implementation platform.
Still, partial benchmarks are available in Chapter [9]

In conclusion, we pick F# because: (i) it is a functional language and readily
supports many of the constructs needed for Casanova; (ii) it is less insular than
Haskell or OCaML in terms of supported libraries and development environments;
(i) it is far simpler than C++ in terms of low-level details the user must be aware
of and can be used by beginners and advanced users alike; (iv) it is faster than
Python and other dynamically typed languages.

Casanova in F# presents three essential differences from pure Casanova: (i) rules
require a specialized data-type for storage; (i7) the update and draw functions that
apply rules are defined through reflection instead of generating assembly code at
compile-time; and (%ii) coroutines are implemented through F# monads.

We now discuss these three aspects of the implementation in detail.

7.1 Rule Containers

Rules in Casanova modify a field according to a fixed logic stored in the rule itself.
Since Casanova rules are implemented through double-buffering, but F+# fields are
by default a single, immutable value of the given type, we use two specialized data-
types for storing fields that are modified through rules. Single values upon which a
rule is applied are defined as Rule<’a>, while RuleList<’a> contains lists that are
modified through rules. The logic of rules is represented as a static method that has
the same name of the field it acts upon, followed by the word Rule. Also, to signal
F+# that we wish a specific data-type to be traversed by the Casanova engine, we
must annotate it with the CasanovaEntity attribute. For example, the following
Casanova type definition:

type MyEntity = {
I : int
L : List<int>
} rule I(world, self, dt)
rule L(world, self, dt)
[for x in self.L do yield x + 1]

self.I + 1

would be translated as:

Il
~

type [<CasanovaEntity>] MyEntity
I : Rule<int>
L : Rulelist<int>
} static member IRule(world, self, dt)
static member LRule(world, self, dt)
[for x in !self.L do yield x + 1 1]

!'self. I + 1

7.2. Generating the Update and Draw Functions 67

Note that, since the fields of rules are now of type Rule<’a> (or RuleList<’a>)
instead of simply ’a (or List<’a>), we must dereference rules with the (!) operator
[which returns the current value of the rule.

Initializing a rule value requires some care. There are three ways to initialize
a rule value: (i) with a single value type that is copied to both the current and
next values of the rule; (%) with two, different reference values that are used for
the current and next values; and (7ii) with a single collection which is copied into
the current list while the next list is initialized to the empty list. It is important to
notice that, if both the current and next values are used to store the same reference
value, then a rule is no more than a convoluted way to represent that single reference
value and does not exhibit the expected semantic properties anymore.

Rules are defined as double buffers that contain two versions of a value. For
example, a possible implementation for a rule could be the following, which contains:
(i) an array of two values of type ’a that are initialized in the constructor; (ii) a
series of properties that allow to get and set the current and next values; and (i)
a swap method that exchanges the current and next value:

type Rule<’a> =

struct
val mutable vl : ’a
val mutable v2 : ’a

new (vi:’a,v2:’%a) = { v1 = v1; v2 = v2 }
member this.Value with get() = vi
member this.SetValue v’ = v2 <- v?
member this.ImmediateValue = v2
member this.Swap() =
let x = vi
vl <- v2
v2 <- X
end

7.2 Generating the Update and Draw Functions

Drawable entities in Casanova are meant to be highly customizable; this, paired
with the ability to import .Net or Mono libraries for functionalities such as physics
and AI, makes Casanova highly extensible. Drawable entities are simply data-types
marked with the DrawableEntity attribute and which have two methods: Clear
and Draw. This simple definition allows us to change or extend the implementation
of Casanova rendering without any further modification to the system or to existing
games. Drawable entities are of two kinds: batches and primitives. Batches contain

L(1) is akin to the dereference operator (*) in C/C-++, which extracts the value from its
pointer or container; the only difference is that (!) also chooses, from inside a rule, the current
value

68 7. Implementation of Casanova

a list of primitives, which add themselves to their batch whenever they are drawn.
When a batch is drawn, at the end of the draw method, then it renders all its
primitives according to some ordering. Batching [I12] can yield very high speedups
when compared with straightforward rendering, for example through the use of
instancing or other advanced techniques. Moreover, if a batch is, for example,
a camera, then other optimizations such as visibility culling (frustum culling or
occlusion culling) to remove primitives that are not visible on the screen can yield
further speedups.

We now describe how rules are applied to the game world (i.e., the update
function), and how drawables are rendered (i.e. the draw function). The first,
naive, implementation of the update and draw functions in F# through reflection
simply performs reflection at every tick of the game loop.

7.2.1 Nalve traversal

The backbone of all the traversal functions we present here is that the type of the
world, and subsequently the type of all entities, are traversed by using reflection.
When a type is traversed, then its components (its attributes, properties, union
cases, etc.) are all traversed in turn. We use active patterns to perform pattern
matching on all the types that the Casanova run-time understands. When we en-
counter types that contain other values, such as a list, a var, an option, etc. then
we traverse its contents recursively. When we encounter a Casanova record, ei-
ther in the form of a drawable entity or a user-defined entity, then we invoke the
on_casanova_record function which performs some operation on the fields of that
record. The operation will either be the evaluation and application of rules for
the update function, or the invocation of the draw methods for the draw function.
What follows is the traversal function that uses F# active patterns [30, 6] to hide
the reflection operations under pattern-matching:

let rec traverse_entity
(t_self : Type)
(world:’world) (self:obj) (dt:float<s>)
on_casanova_record =
match t_self with
| RefType(arg) -> ()
| VarType(arg) | RuleType(arg) ->
do traverse_entity arg world !self dt on_casanova_record
| ListType(list_arg) ->
for x in self do
do traverse_entity list_arg world x dt
on_casanova_record
| UnionType(cases) ->
let case, parameters = get_case self
for parameter ,parameter_type in parameters do

7.2. Generating the Update and Draw Functions 69

do traverse_entity parameter_type world parameter dt
on_casanova_record
| CasanovaDrawable ->
do on_casanova_record world self dt
| CasanovaEntity () ->
do on_casanova_record world self dt
for field,field_type in get_record_fields self do
do traverse_entity field_type world field dt
on_casanova_record

- -> O

The execution of the code above results in lots of run-time inspections of the game
entities types, and with a relatively low number of entities the cost of reflection ends
up becoming higher than the cost of the actual operations of the game, to the point
that the run-time of reflection overshadows the run-time of the game itself, which
appears much slower than it should be. Every time we perform reflection operations
such as pattern-matching the type of an entity, getting its properties, etc. we suffer
a noticeable performance hit.

7.2.2 Traversal with CPS caching

The first optimization that we can apply is that of pre-computing, just once, all
the operations that explore the types of the entities. To do so, we just need the
type of the world, which we explore recursively; for each entity accessible from the
world we add a new node to an anonymous function that is built and which takes
in its closure the function pointers to the various class members to invoke to apply
rules and to draw drawable entities. This amounts to a form of continuation passing
style (CPS, see [51]) which builds a continuation that will then perform the actual
exploration of the game world. This way the pre-traversal performs all the slower
reflection operations, pre-computing their results and caching these values, without
ever touching the actual game world or its entities. The result of this operation is
the update function, which gets the game world as input and passes it to the cached
reflected operations, which are then invoked dynamically:

let rec traverse_entity
(t_self:System.Type)
(k:Ref<’world -> obj -> ’b -> Unit>)
on_casanova_record =
match t_self with
| RefType(arg) -> O

| VarType (arg) | RuleType(arg) ->
let k_aux = ref (fun w s dt -> ())
do traverse_entity arg k_aux on_casanova_record
type_predicate

70

7. Implementation of Casanova

let k_aux = !'k_aux
let k? = 'k

let value = t_self.GetProperty("Value")
let value_get = value.GetGetMethod ()

do k := fun world self dt ->
k’? world self dt
let f = value_get.Invoke(self,[|1])
do k_aux world f dt

ListType(list_arg) ->

let k_aux = ref (fun w s dt -> ())

do traverse_entity list_arg k_aux on_casanova_record
type_predicate

let k_aux = !'k_aux
let k? = 'k
do k := fun world self dt ->

k? world self dt
for x in self do
do k_aux world x dt
UnionType (cases) ->
let tag_reader = precompute_tag_reader (t_self)
let union_readers =
[l for case in cases do yield pre_compute_reader(case)

1]
let parameter_traversals =
Cl
for case in cases do
yield
L
for parameter in case.Parameters do
let k_aux = ref (fun w s dt -> ())
do traverse_entity parameter k_aux
on_casanova_record type_predicate
yield !k_aux
]
1]
let k’ = !k
do k := fun world self dt ->

k’ world self dt
let tag = tag_reader self
let parameters = union_readers.[tag] self

7.2. Generating the Update and Draw Functions 71

for p,k in Seq.zip parameters
parameter_traversals.[tag] do
k world p dt

| CasanovaDrawable ->
do on_casanova_record t_self k

| CasanovaEntity(fields) ->
do on_casanova_record t_self k
for field in fields do
let k_aux = ref (fun w s dt -> ())
do traverse_entity f_type k_aux a type_predicate

let k_aux = !'k_aux
let k’> = 'k
do k := fun world self dt ->

k> world self dt
let f = field.Get(self)
do k_aux world f dt

I - -> O

Dynamic invocation of reflected operations is faster than naively re-computing
them every frame, but it is still slower than directly invoking methods without
reflection or other indirection mechanisms. For this reason we are currently building
an approach that may be even faster. Instead of building the continuation with
dynamic invocations, this new system builds a continuation by emitting directly
the assembly operations that will traverse the game world. This final approach
makes the Casanova run-time a kind of self-modifying program that directly outputs
assembly code to obtain the highest possible run-time performance, beyond which
only micro-optimizations could yield further improvements.

City no CPS | City CPS | RTS no CPS | RTS CPS
0.2 |30 | 10 | 58

Table 7.1: Traversal FPS

CPS Speedup As we can see from Table [7.I] the average performance of these
approaches in two test games (a city simulation and a space RTS) shows the expected
differences in resulting framerate. Using the CPS version of the traversal yields a
large performance increase, and in the case of the virtual city, where the game world
contains a very large number of elements, it even reaches two orders of magnitude.
These improvements are very important, since the obtained speedups would have
only been spurious computational costs coming from insufficient optimization on the
side of the Casanova runtime libraries and not on the game itself. Indeed, one of
the central tenets of Casanova is ease of use, and this implies that the user will not

72 7. Implementation of Casanova

have to worry too much about lower level matters concerning performance details
(of course a proper selection of algorithms is something that the developer will still
have to do).

7.3 Scripts and coroutines

In this section, we describe a statically typed game scripting language based on a
monadic domain-specific language (DSL) built on top of F#. Our DSL combines
with the benefits of strong, static typing the flexibility of programming abstractions
comparable to those offered by commonly used game-scripting languages such as
LUA. In addition, our DSL language supports a smooth integration between the
execution model of the simulation engine, based on discrete-time updates of the
game state, and the logic implemented by the scripts, which typically encode actions
that span multiple update time-slots. As it happens in other scripting languages,
this integration is achieved by equipping our DSL with coroutines, which we encode
within the monadic operators for binding and return.

The advantages of this approach are multiple: (i) our DSL offers greater flexibil-
ity over coroutines which are wired inside the virtual machine itself such as those in
LUA and Python; (i) this flexibility makes it possible to tailor our scripting system
precisely around the requirements of the game; (7i) encapsulating coroutines inside
a monad effectively makes them transparent to the developer; (iv) the additional
flexibility comes with very limited overhead: indeed, our scripts run faster than
LUA’s or Python, and at least as fast as C# scripts, as detailed in Chapter [9

Central to our present concerns is the update function of the game loop, which
implements all the functionalities that modify the game state. As discussed earlier,
most of these functionalities, typically the physics of the various entities (such as
forces, collision detection, etc.) and the interaction with the input/output/other
devices are coded as rules. On the other hand, higher-level aspects of the game,
related to gameplay, are typically left outside the code of the update function, and
can be modified quite often during the design of the high-level aspects of the game
logic. Such aspects are commonly called scripts, and they are encoded as coroutines.

The most important function of these scripts is to model the behaviors of the
computer characters and of the other in-game objects. To illustrate a scenario where
this comes into play, consider the following pseudo-code which describes the behavior
of a prince in a role playing game:

prince
princess = find_nearest_princess ()
walk_to (princess)
save (princess)
take_to_castle (princess)

The main problem in coding this behavior with a script is to achieve a smooth

7.3. Scripts and coroutines 73

interaction between the discrete-time structure of the game animation implemented
by the simulation engine, and the behavior implemented by the script, which spans
multiple time slots of the simulation engine. Specifically, in order to guarantee a
smooth user experience, each script must be interruptible, so that at each discrete
step of the simulation engine the script performs a finite number of operations and
then suspend itself: failing to do so would at best slow down the simulation steps,
hence the resulting framerate of the game would decrease, thereby reducing the
player immersion, and at worst it would just freeze the game in a single iteration of
the game loop, thereby breaking the game outright.

The problem is traditionally addressed by coding -by hand- scripts as state ma-
chines (SMs), which execution gets interrupted at each state transition. However,
while SMs represent a viable design choice for simple scripts, they are far less effec-
tive for modelling objects with complex behavior, as their structure grows easily out
of control and becomes rather hard to maintain. Modern scripting languages adopt
coroutines as a mechanism to build state machines implicitly, by way of their (the
coroutines’) built-in mechanisms to suspend and resume execution. With coroutines
the code for a SM is written linearly, one statement after another, but each action
may suspend itself (an operation often called yield) many times before completing.
The local state of the state machine is stored as part of the continuation of the
coroutine. Some of the most used scripting languages, which are Lua, Python and
C#, all offer some suspension mechanisms similar to coroutines that game develop-
ers use for scripting; for a detailed discussion of couroutines in these languages, see
[16, 12, 2].

Instead of using those suspension mechanism, which often result in ad-hoc solu-
tions that scale poorly because of their inadequate generalization, we use monads.
Monads can be used for many purposes. Indeed, monads allow us to overload the
bind operator, in order to define exactly what happens when we bind an expression
to a name, thereby earning the name of programmable semicolons. We will use this
capability of monads to implement a DSL for coroutines that allows to chain corou-
tines together with the binding operator. The monad we define will suspend itself
at every bind and return its continuation as a lambda. The monadic type is:

type Script <’a> = Unit -> Step <’a>
and Step <’a> = Done of ’a | Next of Script <’a>

Notice that the signature is very similar to that of the regular state monad,
but rather than returning a result of type ’a it returns either Done of ’a or the
continuation Next of Script<’a>. The continuation stores, in its closure, the local
state of a suspended script, plus the game world if needed; this way our scripts will
be able to read, write or modify the main state of the game to interact with the
processing performed by the game engine. Since the game world is mutable, given
that its rules and variables may be assigned inside scripts, we do not use the classical
signature of the state monad for an immutable state. The immutable version of the
state monad would return the new state after every operation, but in our case all

74 7. Implementation of Casanova

modifications of the game world will be directly in-place.

Returning a result in this monad is simple: we just wrap it in the Done con-
structor since obtaining this value requires no actual computation steps. Binding
together two statements is more complex. We try executing the first statement; if
the result is Done x, then we perform the binding and we continue with the rest of
the program with the result of the first statement plugged in it. If the result is Next
p’, then we cannot yet invoke run on the second coroutine of the binding. This
means that at the next execution step we will continue the execution of the first
coroutine from where it stopped (that is p?).

let return (x:’a) : Script <’a> =
fun () -> Done x

let rec bind (p:Script <’a>, k:’a->Script <’b>) =
fun OO ->
match p () with
| Done x -> k x ()
| Next p’ -> Next (bind (p’,k))

We now define the coroutine that forces a suspension, by wrapping Done () into
a Next contructor:

let yield : Script <Unit> =
fun () -> Next (fun () -> Domne ())

In the following we assume the standard F# syntactic sugar. This convention
means that let! x = scriptl in script?2 will be translated into bind (scripti,
fun x -> script2) and return x will be translated into return(x), but only in-
side blocks delimited by co{...}. For example the monadic code:

m{
do! s1
let! x = s2
if p x then
return a
else
return b

3

would be translated into:

m.Bind(sl, fun () ->
m.Bind(s2, fun x ->
if p x then
m.Return a
else
m.Return b))

7.3. Scripts and coroutines 75

Let us now see a small, self-contained example of our scripting system in action.
Coroutines can be used in many ways to achieve various results; what we are mostly
interested in is using coroutines as a means to perform long and complex computa-
tions asynchronously inside the main loop of an application. We wish to build an
application that computes a very large Fibonacci number, but does so while con-
tinuously writing on the console that it is still alive and responsive. The coroutine
version of the Fibonacci function is very similar to a regular implementation of the
Fibonacci function, with the only difference being that we use monadic binding to
recursively invoke the function itself. Each time we recurse, the coroutine suspends:

let rec fibonacci n : Script<int> =
co {

match n with

| O -> return O

| 1 -> return 1

| n ->
do! yield
let! n1 = fibonacci (n -1)
let! n2 = fibonacci (n -2)
return nl+n2

by

An interesting aspect of monads is that, when they are defined properly, they
support a series of operators in the form of higher-order functions that automate
combining coroutines in different fashions. For example, we could define a lifting
operator that takes as input a function on values and transforms it into a function
on coroutines that return those values:

let (') x op ¥
co{
let! x_res
let! y_res
return op x y

X
y

¥

The last portion of the Fibonacci function can now be re-written in the more
concise (and usual) form of:

return! ! fibonacci(n-1) (+) fibonacci(n-1)

Notice the use of the return! t operator, which by F# convention is equivalent
to let! x = t in return x. In general, lifting operations can be defined on all
arieties of functions, in order to support unary, binary, ternary, and in general n-
ary functions. Moreover, this ability to embed other functionalities and existing
libraries into a monad without modifying their code is one of the greatest strengths
of monads.

76 7. Implementation of Casanova

Running the Fibonacci function now requires many steps of our scripting monad;
for this reason we can safely invoke this function with the knowledge that it will run
for a short time before returning either the final result with Done or its continuation
with Next. We can define the main loop of our application as follows:

let main_loop () =
let rec main_loop (f: Co<int>) =
do printf "Ipam,,alive,.\n"
match f () with
| Done result ->
do printf "The,resultyis,\%d\\n" result
| Next £’ ->
main_loop £’
do main_loop (fibonacci 1000000)

The main loop above can be seen as a simplification of the game loop we have
seen previously. Of course, in a game, the application would perform its full update
and draw operations instead of just printing a string on the screen. This said, adding
the above pattern matching to each iteration of the main loop of the game is all that
is required to integrate our scripting system with an existing game engine, which is
clearly a trivial addition.

7.3.1 A DSL for Scripting

When we augment a monad with a series of additional operators that implement
complex combinators, then those operators and the underlying monad can be con-
sidered as a DSL [125]. The script monad can be seen as the runtime core of our
DSL by virtue of its binding and return functions that automate or simplify common
operations for the DSL developers.

Our objective is to provide the foundation for other developers to add to our
monad with their own specific DSLs, to implement additional monadic patterns
that perform message-passing synchronization of scripts, game-level script helpers,
networking scripts, etc. This goal comes from the realization that the best set of
operators for a scripting DSL is strongly dependent upon the kind of game to be
scripted. In this Section we describe a general-purpose set of operators that make up
a basic calculus of coroutines, but we would expect that other game developers would
define additional operators that are a tighter fit to their games. The operators of
our calculus of coroutines take as input one or more coroutines and return as output
a new coroutine, and they are listed in Table

We show here the implementation of these combinators with our monadic system:

let rec (&&) (p:Co<’a>) (q:Co<’b>) : Co<’a * ’b> =
match p(), gq() with
| Done x, Done y -> Done(x,y)
| Next p?’, Next g’ -> Next (p’ && q’)

7.3. Scripts and coroutines 77

Table 7.2: Scripting combinators

parallel (sl A s2) executes two scripts in parallel
and returns both results
concurrent (sl V s2) | executes two scripts concurrently
and returns the result of the first
to terminate

guard (sl = s2) executes and returns the result of
script s2 only when script s1 eval-
uates to true

repeat (T s) keeps executing a script over and
over

atomic ({ s) forces a script to run in a single
tick of the discrete simulation en-
gine

| Next p’, Done y -> Next(p’ && return y)
| Done x, Next g’ -> Next(return x && q°)

let rec (Il) (p:Co<’a>) (q:Co<’b>) : Co<Choice<’a,’b>> =
match p(), q() with
| Done x, _ -> Done(ChoicelDf2 x)
| _, Done y -> Done(Choice20f2 y)
| Next p’, Next q’ -> Next (p’ ||l q?)

let rec (=>) (p:Co<0Option<’a>>) (g:’a->Co<’b>) : Co<’b> =
co{
let! x = p
match x with
| Some v -> return! q v
| None -> return! p => q

}
let rec repeat (p:Co<Unit>) : Co<Unit> =
co{
do! p
return! repeat p
}
let rec atomic (p:Co<’a>) : Co<’a> =

match p() with
| Done x -> return x
| Next p’ -> atomic p’

We can now present another self-contained example that shows a producer and a

78 7. Implementation of Casanova

consumer running in parallel; the two coroutines will share a single, mutable memory
cell which they can read or write. This cell will have a function similar to that of
to the game state in an actual game. We define some additional helper functions
to access the state. A good software engineering rule of thumb is that, the more
complex is the state, the less should coroutines directly access it, in order to keep
the definition of scripts and the definition of the game state as loosely coupled as
possible. When the state grows complex, we can define a series of additional accessor
functions that help us manipulating the various aspects of the state:

let set_buffer cell v =
cell := Some v
let is_buffer_empty cell () =
!cell = None
let reset_buffer cell () =
cell := None
let get_buffer cell () =
match !cell with
| Some v -> v
| _ -> failwith "cannot,get,from empty buffer"

We now define the producer and the consumer in a parameterized fashion so
that the actual production and consumption is done through other coroutines that
depend on the application:

let producer_consumer (produce_value:Co<’a>)
(consume_value:’a->Co<Unit>) :Co<Unit> =
let cell = var None
let set_buffer
let is_buffer_empty
let reset_buffer
let get_buffer

set_buffer cell
is_buffer_empty cell
reset_buffer cell
get_buffer cell

let rec wait_buffer_predicate p =

coi
if p(is_buffer_empty()) then return ()
else
do! yield
do! wait_empty_buffer
}

let wait_empty_buffer = wait_buffer_predicate 1id
let wait_full_buffer = wait_buffer_predicate not

let rec producer =
co{
do! wait_empty_buffer
let! v = produce_value

7.3. Scripts and coroutines 79

do set_buffer v
do! producer

let rec consumer =
co{
do! wait_full_buffer
let v = get_buffer ()
do reset_buffer ()
do! consume_value v
do! consumer

producer && consumer

The example above illustrates how to build two coroutines which separately
access a shared state. The overall behavior of the whole program is then given
by stepping through these coroutines in the main loop of the application, possibly
interspersed with some other logic (for example, visualization, logging, etc.). Such
a scenario is similar to a simplified game, since we can draw a parallel between: (i)
the game world and the shared state; (ii) the main loop of the game and the main
loop of the application; (i) the rules of the game and the additional logic that
the main loop performs (which are not shown here as they are not central to our
discussion on scripts); (iv) the scripts of the game and the producer and consumer
coroutines.

7.3.2 Scripting in Games

In the following we outline how we have built most of the game logic of the RTS
game Galaxy Wars (released as open source software) with the scripting system just
presented. In this game the players compete to conquer a series of star systems by
sending fleets to reinforce their systems or to conquer the opponent’s.

Thanks to our general combinators we can define a small set of recurring game
patterns; by instantiating these game patterns one can build the actual game scripts
with ease. These patterns may be adapted for the specific domain of a game, or new
patterns may be created altogether in order to fit another game better.

The first game pattern we see is the most general, and for this reason it is called
game_pattern. This pattern initializes the game in a single tick, then performs the
main logic of the script (that which is active while the game is not over) and finally,
after the main logic of the script has finished, it performs the ending operation
before returning some result. The initialization is performed by the init script,
which returns a result of a generic type ’a; this result is the state of the script,
and it contains data that may be helpful for tracking additional information that
is useful to our scripts but which is not stored in the game state. The logic of the

80 7. Implementation of Casanova

various game entities, such as their Al, is then performed, repeatedly, by the logic
script. While the logic script is run, the game_over script continuously checks to see
if the game has been won or lost and thus must be terminated; when the termination
condition is met, the ending script is invoked. Such a script may show a recap of
the game that has just ended, some animation sequence, etc. The game pattern is
then implemented as follows:

let game_pattern
(init : Script <’a>)
(game_over :’a -> Script <bool>)
(logic :’a -> Script <Unit>)

(ending :’a -> Script <’c>) : Co<’c> =
co{
let! x = init
let! (Choicel0f2 y) = (game_over x => ending x) || repeat(
logic x)
return y
b

The game pattern above is very general, but not all scripts always need all of
its parameters. We can build less general game patterns by assuming standard
(null) values for many of those parameters; for example, we may build a game
pattern that has no initialization, logic or ending sequence; such a game pattern
would implement the case of a game script whose sole responsibility is to check the
termination conditions for a game (those that trigger the game over screen):

let wait_game_over (is_game_over:Co<bool>) : Co<Unit> =
let null = co{ return () 7
game_pattern
null
(fun () -> is_game_over)
(fun () -> null)
(fun () -> null)

Writing a script for the Galaxy Wars game then consisted of instantiating one
game pattern with specialized scripts as its parameters; these scripts will alternate
accesses to the state of the game with invocations of combinators from the calculus
seen above.

Let us now see a sample Galaxy Wars script. In the game, the state consists of
a series of star systems, fleets, players, and various other data:

type GameState = {
StarSystems : List<StarSystem>
Fleets : Var<List<Fleet>>
Players : List<Player>

7.3. Scripts and coroutines 81

The basic mode of the game uses our scripting system to determine the winner
of the game; as long as there is more than one team standing, the script returns
None. This script computes the union of the set of active fleet owners with the set
of system owners; to save processing power, we do not compute this right away, but
instead we wait for half a second (a player will most certainly not resurrect after
being killed, but this way we perform the check twice per second instead of sixty
times per second, and we obtain a small performance gain):

let is_basic_game_over world =
co{
do! wait 0.5<s>
let fleet_owners =
[for £ in !'world.Fleets do yield f.0Owner] |> Set.
ofList
let star_system_owners =
[for s in world.StarSystems do yield !s.0Owner] |> Set.
ofList
let alive_players =
Set.union fleet_owners star_system_owners
let alive_teams =
alive_players |> Set.groupBy (fun p -> p.Team)

if alive_teams.Count = 1 then
return Some(alive_teams.[0].Key)
else

return None

}

The main task of our script is to wait until the set of active teams has exactly
one element; when this happens, that team is returned as the winner; we create the
full game script by writing simply:

let basic_game_mode = wait_game_over (is_basic_game_over world

)

The two short snippets above are all there is to the main game mode.

There are many variations of the game; from Invasion, to Timed mode based
on score, to networked multiplayer. All of these variations have been implemented
with the same simplicity of the scripts above, i.e. by instancing one game pattern
with appropriate scripts which are built with a mix of combinators interspersed with
accesses to the game state.

Another large subsystem where we have used our scripting system is input man-
agement. Input is divided into a series of pairs of scripts. Fach pair of scripts is
separated by a guard: the first script performs an event detection, while the second
performs an event response. Each pair of scripts is repeated forever, in parallel
with all the other scripts. As an example, consider the following script that decides
whether to launch or not ships against a target:

82 7. Implementation of Casanova

cof{
if left_mouse_clicked() then
let mouse_position = get_mouse_position ()
match all_planets |> Seq.tryFind (close_enough
mouse_position) with
| Some clicked -> return Some clicked
| None -> return None
else
return None
} => fun selected_planet -> co{ return world.SourcePlanet :=
Some p }

co{
if right_mouse_clicked() && world.SourcePlanet <> None then
let mouse_position = get_mouse_position ()
match all_planets |> Seq.tryFind (close_enough
mouse_position) with
| Some clicked
when !clicked.Owner <> world.LocalPlayer ->
return Some(clicked,!world.SourcePlanet)
| _ -> return None
else

return None
} => fun (source, target) -> co{ return mk_fleet world source
target 7

A distinct advantage of this technique is that it allows us to cleanly separate
the code that reads the actual user input from the code that performs something
meaningful on the game world with such input. By parameterizing the code above
with respect to the input detection scripts, we could make it possible to support
different controller types (game pad, touch panel, mouse, keyboard, etc.) without
changing the event response scripts. Moreover, this input detection style (where
the event detection script reads from the actual input devices and returns all the
context needed by the response script to perform its response) also allows us to
easily transfer information about a client’s local actions through the network and
into the server, since all the host needs to know is which response to run and with
which parameters, and then it can run the response as the client would have done.

The only small difference between the presentation given above and the actual
implementation lies in the fact that we used yield_ with a trailing underscore in-
stead of yield, since the latter is a reserved F# keyword. For reasons of homogene-
ity, we also used a trailing underscore for all other coroutine combinators. Operators
such as (&&) and (| |), have been renamed to (.&&) and (. |[|) respectively, in order
to avoid overriding the binary and and or operators. Moreover, when performing
the parallel or concurrent execution of two scripts that return Unit, to avoid ob-

7.3. Scripts and coroutines 83

taining the meaningless result of Unit * Unit or Choice<Unit,Unit>, we can use
the automated ignore operators (.&&>) and (.| [>) that simply return Co<Unit>.

The list of active coroutines is stored in a global, private list; another list contains
the pending coroutines that have just been added with the run_script function.
At each tick of the game loop, coroutines are ticked with the following code:

active_scripts <-
L
for s in active_scripts do
match s() with
| Done () -> O
| Yield s’ -> yield s’
for s in pending_scripts do
yield s
]

pending_scripts <- []

The code above ticks all active coroutines, removes those that have terminated,
and adds the pending coroutines so that, starting from the next frame, they will
be run too. Note that there are three separate lists of coroutines: those that are
updated every frame, those that are updated ten times per second, and finally those
that are updated once per second, according to the same logic described in Chapter
6]

Optimization A great deal of development effort in modern games is spent edit-
ing the game source, but, rather than adding new and useful features, the same
code is tuned until it is efficient enough, by applying various optimizations such as
visibility culling (to reduce the number of rendered models) and other techniques.
One of the original design goals of Casanova is to save developers time and effort by
automatically performing several of those optimizations that would otherwise have
to be hand-written.

A lot of game optimization effort goes into optimizing quadratic queries; many
games feature lots of searches to compare all pairs from two collections: collision
detection, visibility, interaction, etc. For example, we may wish to compute the
auras that different magical units in an RPG apply to each other, or we may wish to
find all the asteroids that collide with plasma projectiles: computing this query with
naive nested loops would have an O(N?) complexity. By using a spatial partitioning
index on the involved entities (such as asteroids, projectiles, magical units, etc.), it
becomes possible to solve this query in a much shorter time. If the index is a tree,
such as a quad-tree, oc-tree, or k-d-tree, then each lookup in the tree will have cost
O(log N). The resulting complexity for the optimized query becomes O(N log N). In
case of a sparsely populated indexing tree, we could even use a hash table for spatial
partitioning; accesses to the hash table, on average, are O(1), and the complexity
of the whole query then becomes as low as O(N).

84 7. Implementation of Casanova

The Casanova translation semantics works as follows. Whenever we encounter a
query that performs a Cartesian product with some predicate on the generated pairs,
then: (1) we add to the game state an index that makes resolution of a superset
of this predicate faster; (i) at the beginning of the update function we clear and
re-fill the index so that it is up-to-date with the current game state; (%ii) instead of
naively computing the original query, we look up the index to reduce the number
of elements to which we apply the original predicate. By default Casanova uses a
hash table as an index for all query optimizations. The specifics of this technique
are well known from the database literature, and can be found in [99].

Another important optimization that can speedup the Casanova implementation
is that of avoiding the rule swapping routine at the end of the update function. This
is done by storing the current and next values of a rule inside an array of length
2, and by using a (private) global index to identify current and next. A simplified
implementation of the container for rule values is:

let private mutable rule_index = O
let private current() = rule_index % 2
let private next() = (rule_index + 1) % 2

type Rule<’a> = { Values : ’al] }
member this.Current with get() = Values.[current ()]
member this.Next with set v’ = Values.[next()] <- v’

With this implementation, swapping the various current and next values inside
all the rules of the game simply requires incrementing the rule_index reference.

Collections inside rules can be optimized as well with a similar, simple modi-
fication. Instead of creating new collections at each tick of the update function,
collection rules are optimized by pre-allocating two mutable collections (the F#
data-type is ResizeArray). When computing the new value of the collection rule,
the Next collection is cleared and the values of the new collection are added to it.
Let us consider a simple example:

type R = {
Xs : list<int>
} with rule Xs(self,dt) = [x + 1 | x <- self.Xs]

Without optimization, the code above would generate a new list at each tick of
the update function with the desired value. This would weigh heavily on the garbage
collector, and would waste the space already allocated inside the next value which
instead would be discarded. With our optimization, we do not allocate a new list of
values at each frame but rather we reuse the space allocated for the same collection,
and we allocate new space only when it is needed. Moreover, instead of allocating
a list as the return value for the rule function, we return a sequence, which is a
lazy list that only contains the iterator for the values and does not allocate the list
itself. This is obtained in F# by replacing the square brackets with the sequence

7.3. Scripts and coroutines 85

comprehension delimiters seq{ ... }. We define the rule container for lists as:

type RuleTable<’a> = { Values : ResizeArray<’a>[] }
member this.Current with get() = Values.[current ()]
member this.Next with set (v’:Seq<’a>) =

let next = Values.[next ()]

do next.Clear ()

for x in v’ do next.Add x

Another important optimization that becomes very useful when the game world
is very large, is to avoid traversing sub-trees of the game state for drawing or for the
application of rules when the sub-tree does not contain anything to draw or update
(that is, datatypes without drawable fields, without rules, or that only contain
references that are thus ignored). This simply requires modifying all recursive steps
of the update function with invocations to:

update_entity_if_needed [World] [T] (world:World) (v:T) dt =
if contains_updateables [T] then
update_entity [World] [T] world v dt

instead of to update_entity. The contains_updateables function simply tra-
verses the game world in search for rules:

contains_updateables [Primitive(T)] = false

contains_updateables [T1 * T2 * ... x Tn] =
contains_updateables [T1] ||
contains_updateables [T2] ||

contains_updateables [Tn]
contains_updateables [Var<T>]
contains_updateables [T]

contains_updateables [Ref<T>] = false
contains_updateables [List<T>] =
contains_updateables [T]
contains_updateables [T=UnionCase(C1(T11 * ... % Tinl), C2(T21
* ... % T2n2), ..., Cn(Tnl * ... * Tnnn)))] =

contains_updateables [T11] ||
contains_updateables [T12] ||
contains_updateables [Tin1] ||
contains_updateables [T21] ||
contains_updateables [T22] ||
contains_updateables [T2n1] ||

contains_updateables [Tn1] ||
contains_updateables [Tn2] ||

86 7. Implementation of Casanova

contains_updateables [Tnnn]
contains_updateables [T=Record(l11:T1,12:T2,...,1n:Tn,rl=rbl,r2
=rb2,...,rm=rbm)] =
contains_updateables [T1] ||
contains_updateables [T2] ||

contains_updateables [Tnl]

Notice also that the contains_updateables function does not depend on any
dynamic value such as world, v, or dt. For this reason, it is memoized (that is,
precomputed in a table [33]), thereby speeding up the execution of the game further.

The same kind of optimization may be applied to drawing. There is no point in
drawing an entity which does not (recursively) contain anything drawable: instead
of traversing sub-trees that will not produce any visible results, we can save perfor-
mance for more useful and interesting tasks. For this reason we use the following
draw traversal function:

draw_entity_if_needed [World] [T] (world:World) (v:T) =
if contains_drawables [T] then
draw_entity [World] [T] world v

where the contains_drawables is implemented almost exactly as its update coun-
terpart. Again, the function may be memoized in order to achieve better run-time
performance.

Another important optimization that is performed by Casanova is parallel eze-
cution. Since at each iteration of the update function there are no rules that write
the same memory location (given that each rule reads the Current value of the
other rules but only writes its own Next value), rules may be evaluated (and their
results written to the state) in parallel. It is important though to avoid spawning
threads or other excessively expensive constructs for each rule, since doing so would
result in a higher maintenance cost for creating the threads, running (too many of)
them and allocating their stacks. Indeed, creating one thread for each rule is an
overkill that in the end reduces performance, since threads are not beneficial at a
granularity level of hundreds or even thousands of entities. A better solution is the
use of a thread pool of preallocated threads, to which tasks are allocated; these
tasks spawn entire blocks of entities at the world level, and, even though they may
not be perfectly balanced, at least their cost is negligible to the point that we will
certainly not waste performance in running them, and often we will obtain benefits.
The same optimization can be applied to updating and drawing, which may be run
in parallel.

The last optimizations regard the frequency of application of rules, the main
script, and input scripts. Since not all rules require the same update frequency, we al-
low the user to specify the frequency to which each rule will be updated by adding an
annotation in the form of an F# attribute. There are only three frequencies allowed

7.3. Scripts and coroutines 87

for updating rules: (i) the default of every frame, RuleUpdateFrequency (EveryFrame);
(1) interactive framerate, which is equivalent to 10 frames per second and which is
applied by default to input scripts, RuleUpdateFrequency(InteractiveFramerate);
and (4ii) low frequency, which is equivalent to once per second, RuleUpdateFrequency (
LowFrequency). These attributes may be applied either to the entire entity (and
thus all its fields will inherit its update frequency) or to the single rules.

Specifying a lower frequency than every frame, for example for less important
update operations, will invoke such operations less. To compensate the lesser number
of invocations, these operations will also be invoked with a higher dt. The end result
will be less frequent updates which all cover longer time spans each: this will save
performance, but without affecting the dynamics of the game world.

An example of such a rule would be a rule that updates the life of battling
units; it is not important that battles happen at a frequency of 60 or more frames
per seconds, and instead the life of the various units could go down (or up) about
once per second. On the other hand, increasing the frequency, for example for input
scripts, would yield a higher precision of the computation but with increased polling.
Mouse movements could benefit from such a framerate, while key-presses could still
be acceptable at the default of 10 polls per second.

88

7.

Implementation of Casanova

8

Making games in Casanova

In Chapters [4] and [6] we defined the language structure and its semantics. We can
now move onto one of the fundamental questions of this thesis (see Chapter [1)): is
Casanova suitable for making games?.

Unfortunately, fully assessing with scientific rigor the quality of a programming
language is very difficult. What we will do to answer such question is the following;:
we will identify a series of general, orthogonal, common tasks in game development
(creating a player avatar, creating an active scenario, creating a monster with an Al
etc.) and we will show how to build them in Casanova; these tasks are inspired from
different sample games that we have implemented in Casanova. We believe that
showing how to build these pieces of games acts as a strong indicator of the feasi-
bility of Casanova for making games. Moreover, by comparing these snippets across
different languages, we get an assessment of how Casanova fares when compared
with alternate frameworks.

First we will give an overview of a small game, the Game of Life, to see all the
components of Casanova in action. Then we will show the various game development
tasks.

8.1 Game of Life

The Game of Life [60], depicted in Figure is a good starting example because
it allows us to see all of the relevant features of Casanova in a very simple scenario.

The "game" is a zero-player game, meaning that its evolution is determined by
its initial state, requiring no further input. One interacts with the Game of Life by
creating an initial configuration and observing how it evolves.

The game is a zero-player game that takes an initial configuration of an orthogo-
nal grid of square cells, and then evolves automatically. The player simply observes
such evolution. Each cell is in one of two possible states: alive or dead. The state
of a cell changes according to the state of its eight neighbors. At each iteration of
the game, all cells transition in state according to the following simple rules: (i) any
live cell with fewer than two live neighbors dies; (i7) any live cell with two or three
live neighbors remains alive; (iii) any live cell with more than three live neighbors
dies; and (iv) any dead cell with exactly three live neighbors becomes alive.

OThis chapter is partially derived from the paper [89].

8. Making games in Casanova

90

Figure 8.1: The Game of Life

Figure 8.2: Asteroids shooter

8.1.

Game of Life

91

Figure 8.4:

RTS

92 8. Making games in Casanova

Figure 8.5: Galaxy Wars

A Casanova game begins with the definition of a series of data structures, which
are the world and its entities. The updates of an entity are contained in its rules, a
series of methods that take the same name of the field they update at each tick; a
rule is invoked automatically for each entity of the game, and it receives as input the
current state of world, the current state of the entity being updated, and the time
delta between the current frame and the previous frame. The result of computing a
rule is stored in the game world only after all rules of all entities of the world have
been computed successfully, that is, rules do not interfere with each other and can
be computed in parallel. This avoids inconsistencies deriving from the state being
only partially updated: the state is either at a time step or at the next, but no
in-between representations are allowed. Entities may also have drawable fields such
as text, sprites or 3D models; these fields are updated through rules as well, and
at each tick all drawable entities are grouped into layers (layers specify blocks of
drawable entities and the draw settings to use with them) which are then drawn.

We start by defining the state of the game as a matrix of cells; the state also
contains a boolean variable which will trigger the update of the cell matrix once per
second. The world does not feature a sprite layer because for games that use only
one sprite layer Casanova provides the developer with a predefined one that is called
default_layer:

type World = {
Cells : List<List<Cell>>
UpdateNow : Var<bool>

b

Each cell contains a value (which is 1 when the cell is alive and 0 when the cell
is dead) and a list of its neighbors marked as Ref. The neighbors of a cell are just
references to those cells, which are stored elsewhere in the game state. We inform

8.1. Game of Life 93

Casanova of this fact by using Ref, thereby preventing Casanova from updating and
drawing those cells every time they are reached from the game world. The value of
the cell is updated every time an update is triggered (rather than at each tick), by
summing the value of the neighbors and applying the rules mentioned above. The
color of the cell sprite is updated to reflect its current value.

type Cell = {
NearCells : List<Ref<Cell>>
Value : int
Sprite : DrawableSprite 7
rule Value(world,self,dt) =
if state.UpdateNow then

let around = sum [for ¢ in self.NearCells do yield c.
Value]

match around with

| 3 -> 1

| 2 -> self.Value

| _ -> 0

else self.Value
rule Sprite.Color(world,self,dt) =
if self.Value = 0 then
Color.Black
else
Color.White

The initial state of the game creates the matrix of cells and initializes their
neighbors. Each internal cell has exactly eight neighbors. The sprites layer and the
cell sprite are also setup for each sprite. We omit only this listing as it is rather
straightforward. The rules of the game are fired at every frame of the game that is
roughly 60 times per second. Changing the entire matrix of cells this often would
yield a chaotic result; for this reason we have defined the UpdateNow field in the
game state, so that we can control when the rules are fired. The main script of the
Game of Life simply waits for a second before toggling the UpdateNow value, and
then it suspends itself until the next iteration of the update loop. When the script
is resumed, it toggles UpdateNow again and finally it repeats.

let main world =
repeat cof{
do! wait 1.0<s>
world.UpdateNow := true
do! yield
world.UpdateNow

false 7}

We could also add some basic interactivity by defining an input script which
toggles updates when the user performs some input action.

let input = [

94 8. Making games in Casanova

cofq
do! wait_condition is_mouse_clicked
do! wait_condition is_mouse_released
return true } =>

co{
world.UpdateNow := true
do! yield
world.UpdateNow := false 7

]

This way the game of life will tick at one step per second, no matter the framerate
of the simulation, or when the user clicks the mouse. This is all there is to such a
simple game.

8.2 Making games with Casanova

To assess the effectiveness of Casanova as a game development language we have
undertaken two parallel development initiatives. The first initiative is [6], where we
have built a series of small samples that are easy to understand and manipulate;
these samples are three different real-time games, chosen so as to see Casanova in
action in different sub-domains of the real-time game genre, which we argue to be
currently the most widespread. The second initiative is the game [9], where we have
used Casanova to build a much bigger game in order to test how well the language
scales.

The small samples are an asteroid shooter game (Figure [8.2), an action/adven-
ture game (Figure , and a strategy game (Figure . We will not present the
full samples themselves, which are available online. Instead, we will focus on a series
of fundamental "development activities" that we believe to be nicely exemplified by
our samples; these activities cover some of the most common and important pieces
that can be customized, combined and extended into almost any game: (i) defining
a player avatar, handling his input and his shooting; (ii) spawning obstacles ran-
domly; (i7) handling collisions between projectiles and obstacles; (iv) representing
the properties of a static map (cave) divided in rooms and cells; (v) handling mon-
sters and their AI (albeit a rudimentary one); (vi) active entities such as bases or
buildings that produce units; (vii) selection-based input mechanisms. We show (i),
(7), and (iii) from the asteroid shooter; (iv) and (v) are taken from the action/ad-
venture game; finally, (vi) and (vii) are shown from the RTS game.

By showing how to build these primitives in relative isolation from each other,
we are effectively giving a library [[] that allows to create games where a player avatar
may interact with obstacles in arbitrary rooms, and where some objects are shot
by the players, others simply store useful properties of the map, others move and

LOr rather a cookbook.

8.3. Player avatar and shooting stuff 95

have some Al, and others spawn units or manipulate the game world. From our
experience, we note that many games can be built recombining such components.
Since the games we present are simplified (it would be prohibitively difficult to
build three large-scale games in this context) it is important to notice that these
games represent just starting points that could be extended into full-blown games
with more time and effort. An example of the extension process in action can be seen
in [9] (Figure [8.5]), an upcoming (commercial) strategy game that is derived from
the RTS sample and that we built as an extended study of how to create non-trivial
games with Casanova. Notice that the samples shown below simply are some of the
most representative snippets, that is the omitted entities (for example asteroids and
projectiles) are not significantly more complex than those shown in the following.
Galaxy Wars is not the only project where Casanova has been used as a means
rather than an end, even though it is the biggest. Casanova has also been used to
build: (i) two virtual city simulators that act as a testbed for Al techniques as part
of a separate research effort; (i) an experimental Al for real-time planning; (i) a
platform for building RTS games for both teaching and a Master Thesis; and (iv) a
serious game that teaches players cooperation in order to make a virtual organization
survive. All of these examples can be accessed from the Casanova website [6].

8.3 Player avatar and shooting stuff

The asteroid shooter game is a simple shooter game where asteroids fall from the
top of the screen towards the bottom. The player aims the cannon and shoots the
asteroids to prevent them from reaching the bottom of the screen. In this game we
will describe how to define: (i) the player avatar, his movement and shooting; (i)
the spawning of obstacles such as asteroids; and (74i) detection of collisions between
asteroids and projectiles. The game world contains a list of projectiles, asteroids,
the cannon, the current score, plus sprite layers for the main scene and the game
UIP] The game world removes asteroids and projectiles when they exit the screen
or collide with each other, and it handles the current score (which is the number of
destroyed asteroids).

type World = {
Sprites : Spritelayer
UI : Spritelayer

StarsSprite : DrawableSprite
ScoreText : DrawableText

Asteroids : Var<List<Asteroid>>
Projectiles : Var<List<Projectile>>

2Compared to the Game of Life sample, here we need different sprite layers, and so we cannot
rely on the default layer but instead we must declare our own.

96 8. Making games in Casanova

Cannon : Cannon
Score : int }
rule Asteroids(world,dt) =
[for a in state.Asteroids do
if a.Colliders.Length = 0 && a.Position.Y < 100.0<m>
then
yield a]
rule Projectiles(world,dt) =
[for p in state.Projectiles do
if p.Colliders.Length = 0 && p.Position.Y > 0.0<m> then
yield p]
rule Score(world,dt) =
world.Score +
sum [for a in state.Asteroids do
if a.Colliders.Length > O then
yield 1]
rule ScoreText.String(world,dt) =
"Current score,=," + world.Score.ToString()

The player is represented by a cannon (similarly it might be represented by a
moving ship) as an entity that contains a sprite, an angle, and a movement flag set
from the input script that determines the variation of the angle and which is reset
to 0 at every tick; the rotation of the sprite is taken from the current angle of the
cannon:

type Cannon = {
Sprite : DrawableSprite
Angle : float<rad>
Movement : Var<float> }
rule Angle(world,self,dt) =
self.Angle + self.Movement * dt
rule Movement (world,self,dt) = 0.0
rule Sprite.Rotation(world,self,dt) = self.Angle

The input script that modifies the rotation of the cannon simply checks if the
appropriate key is currently pressed, and if so the cannon movement value is set:

co{ return is_key_down Keys.Left 1} => co{ state.Cannon.

Movement := 1.0 };
co{ return is_key_down Keys.Right } => co{ state.Cannon.
Movement := -1.0 I};

Similarly, projectiles are spawned whenever the space key is pressed; contrary to
movement, though, after a projectile is spawned the script waits either the release
of the space key or one-tenth of a second to ensure that projectiles are not shot with
a frequency of one per frame as long as the user keeps pressing the space bar.

8.3. Player avatar and shooting stuff 97

It is worth noticing that such a simple activity would require a timer-based
event infrastructure that can be quite tedious to write in a traditional language;
for example, a timer to wait after the spawning of a projectile would need to be
stored, declared, and consulted manually at each tick. Instead of writing that, in
Casanova we just write the following code that automatically handles the creation
and management of invisible timer variables:

co{
do! wait_condition (is_key_down Keys.Space)
do! wait_condition (is_key_up Keys.Space)
[l wait 0.1<s>
return true } =>

co{
state.Projectiles.Add
{ Sprite = { Path = "projectile.jpg"; Layer = world.
Sprites }
Position = Vector2(50.0<m>, 0.0<m>)

Velocity Vector2(cos(state.CannonAngle) ,sin(state.
CannonAngle))
Colliders = []1 } }

Asteroids are generated with a simple recursive script that waits a random
amount of time and then adds the asteroid to the game world before looping:

repeat co{
wait (random(1.0<s>,3.0<s8>))
state.Asteroids . Add
{ Sprite = { Path = "asteroid.jpg" Layer = world.Sprites
b
Position vector2(random (0.0<m>,100.0<m>) ,0.0<m>)
Velocity = vector2(0.0<m/s>,random(5.0<m/s>,20.0<m/s>)
)
Colliders = [] } }

Collision detection is simple as well: both asteroids and projectiles compute the
list of colliders against themselves; this list is then used in the query shown above
in the definition of the game world to cull away asteroids that are hit by projectiles:

type Asteroid = {
Colliders : List<Ref<Projectile>> }

rule Colliders(world,self ,dt) =
[for x in world.Projectiles do
if distance(self, x) < 10.0f then
yield ref xl]

98 8. Making games in Casanova

8.4 Game map and monsters with Al

The action/adventure game features a player-controlled character that moves be-
tween various rooms fighting monsters and drinking health-increasing potions. In
the game we see how to handle: (iv) a game world comprised of rooms and cells,
where each room is divided into cells; and (v) monsters who fight against the player
with some Al

The game state contains, among other entities (such as the player) and sprite
layers (to draw the game entities and the UI) the current room the player is in. A
room is defined as a series of cells and a list of monsters; monsters are removed from
a room whenever they are killed when fighting against the player:

type Room = {
Cells : List<List<Cell>>
Monsters : list<Monster> }
rule Monsters(world,self,dt) =
[for m in self.Monsters do
if m.Health > O then
yield m]

Each cell contains, most notably, a nullable reference to the room it leads to in
case it is a portal, a list of neighboring cells, a boolean value that determines if the
player is in the cell, plus a sprite for drawing it:

type Cell = {

Position : Vector2<m>

Sprite : DrawableSprite
HasPlayer : bool

Door : Option<Ref<Room>>

Neighbours : list<ref<Cell>> }
rule HasPlayer (world,self,dt) =
world.Player .Position = self

Monsters are one the most important entities of the game. A monster contains
fields to describe its position (the cell it’s currently in), its target (the cell it’s
traveling to), the delta of its position between the current cell and the target cell,
its sprite (for drawing it) and its current health. The monster rules update all of
its fields; its health is updated when the player is in the same cell, the current cell
is changed when the target cell is reached (and the target cell is set to null to stop
the movement), and so on:

type Monster = {

Position : Var<Ref<Cell>>
Sprite : DrawableSprite
Health : int

Damage : Var<int>

MoveTarget : Var<Ref<0Option<Cell>>

8.4. Game map and monsters with Al 99

PositionDelta : Vector2 }
member Movement (world,self ,dt,on_arrived,on_moving) =
match self.MoveTarget with
| Some target
when distance(self.Position + self.PositionDelta,
target.Position) < 0.1 ->
on_arrived target
| Some target -> on_moving ()
| None -> on_moving()
rule Health(world,self,dt) =
if self.Position.HasPlayer && world.UpdateNow then
self .Health - world.Player.Damage * random(1,4)
else self.Health
rule Position(world,self,dt) =
Movement (world,self ,dt,id,
fun () -> self.Position)
rule MoveTarget (world,self ,dt) =
Movement (world,self ,dt,fun () -> None,
fun () -> self.MoveTarget)
rule PositionDelta(world,self,dt) =
Movement (world,self ,dt,
fun () -> self.PositionDelta +
dt * normalize(target.Position -
self .Position.Position),
fun () -> self.PositionDelta)
rule Sprite.Position(world,self,dt) =
self .Position + self.PositionDelta

Two things in particular should be noted in the listing above. We used higher-
order-functions [[| to abstract away the boilerplate pattern of evaluating something
when the monster is moving, and something else when the monster is still; we do
so in the Movement method, which takes as input the on_arrived and on_moving
functions and then invokes them as appropriate. We use the Movement method
in the Position, MoveTarget, and PositionDelta rules, instead of repeating the
almost identical code every time. Also, we make use of a global boolean variable,
world.UpdateNow, which is ticked by a script and which is used as a guard to
compute rules such as those for the monsters battles; this boolean is similar to the
UpdateNow boolean that we have seen in the Game of Life.

Monsters also have a rudimentary AI which chooses a destination cell for the
monster to travel to, and which keeps doing so until the player is in the current
room. This allows monsters to not weigh computationally when the player cannot
interact with them, since he is in a different room.

let monster_AI (monster : Monster) =

3Higher-order-functions are those which take as some of their input parameters other functions.

100 8. Making games in Casanova

repeat cof
if monster.Health > O then
if world.UpdateNow && random(0O, 20) < 1 &&

monster .MoveTarget = None then
let target_cell =
do monster.MoveTarget := Some target_cell) 7}

|l co{ wait_condition (fun () ->
world.CurrentRoom <> monster.Position.Room)

Notice the use of the (||) operator which runs two scripts concurrently, that is
until either of the scripts has completed; its use in this scenario allows us to stop
the repeating script as soon as the current room changes: this disables the script for
the monsters in the previous room, thereby avoiding to accumulate wasteful running
scripts for rooms visited previously.

8.5 Active map entities and selection-based input

The strategy game features a series of planets that produce ships, which can then
be sent to conquer other planets. In this game we see: (vi) active entities, such as
planets, that represent complex components of the game scenario; and (vii) complex
selection-based input mechanisms based on the selection of game entities and the
interaction with the selected entities.

We represent the game world as a series of planets, ships, plus the currently
selected planet; the game world also contains sprite layers for rendering the game
entities and UI, plus a boolean that (in the same spirit of the UpdateNow field in the
Game of Life) allows the game battles to tick at fixed time intervals rather than at
each tick of the game:

type World = {

Sprites : Spritelayer

Ul : Spritelayer
Planets : List<Planet>
Fleets : Var<List<Fleet>>
TickBattles : Var<bool>

SourcePlanet : Var<Option<Ref<Planet>>> }
rule Fleets(world,dt) =
[for f in self.Fleets do
if f.Alive && (not(f.Arrived) || f.Fighting) then
yield f£]

Planets manage the battles in their orbit (to determine the owner of the planet)
and ship production; in addition to their other fields, planets store the current
owner, the number of allied ships stationed on the planet, and the percentage of
production for the next ship; furthermore, a planet maintains a list of the fleets that
are attacking or defending it:

8.5. Active map entities and selection-based input 101

type Planet = {

Owner : Player

Armies : Var<int<Ship>>

FractionalArmies : float<Ship>

AttackingFleets : List<Ref<Fleet>>

ReinforcingFleets : List<Ref<Fleet>>
i

rule Owner (world,self,dt) =
if self.Armies <= 0 && self.AttackingFleets.Length > 0
then
self .AttackingFleets [0].Owner
else
self .Owner
rule Armies(world,self,dt) =
if self.Armies <= 0 then
sum [for a in self.AttackingFleets do
if a.Owner = self.AtackingFleets[0].Owner then
yield a.Armies]
else
let damages = sum[for f in self.AttackingFleets do
yield random(1,3)] * state.
TickBattles
let reinforcements = sum[for f in self.ReinforcingFleets
do
yield f.Armies]
self .Armies + int(self.FractionalArmies) - damages +
reinforcements
rule FractionalArmies(world,self,dt) =
self .FractionalArmies + (dt * self.Production) - floor(
self .FractionalArmies)
rule AttackingFleets(world,self,dt) =
[for f in state.Fleets do
if f.Target = self && f.0Owner <> self.Owner && f.
Arrived then
yield f£]
rule ReinforcingFleets(world,self ,dt) =
[for f in state.Fleets do
if f.Target = self && f.Owner = self.Owner && f.Arrived
then
yield f£]

Input scripts manage the selection of a new planet by waiting for a left click of
the mouse and then setting the SourcePlanet field of the game world:

co{ do! wait_condition mouse_clicked_left
do! wait_condition mouse_released_1left

102 8. Making games in Casanova

let clicked =
[for p in world.Planets do
if distance(p.Position ,mouse) < 10.0 &&
p.0Owner = Human then
yield pl
if clicked <> [] then
return Some(clicked.[0])
else
return None } =>
fun p -> co{ return world.SourcePlanet := Some(p) }

Similarly, when the user right clicks then if there is an active selection some ships
are sent:

co{ do! wait_condition (mouse_clicked_right &&
world.SourcePlanet <> None)
do! wait_condition mouse_released_left
let mouse = mouse_position()
let clicked =
[for p in world.Planets do
if distance(p.Position ,mouse) < 10.0 then
yield pl
match clicked with
| clicked::_ ->
return Some(clicked.[0] ,world.SourcePlanet.Value)
I 1 ->
return None } =>
fun (source,target) -> co{ return mk_fleet source target }

8.6 Recombining the samples

The samples just shown are simple but significant snippets extracted from existing
games. They represent fundamental activities in game development, since virtually
all games feature at least some of these aspects; we have shown how to implement
a user-controlled player that moves and shoots, we have shown how to create active
obstacles with some intelligence that make the game interesting to play, and we
have shown how to define static objects that are part of the scenario and that
interact with the player. The samples above have indeed been recombined in the
Galaxy Wars [9] game, an Open Source commercial game developed in parallel with
Casanova and used as a testbed for Casanova techniques. Galaxy Wars has been
built as an extended study of how to create non-trivial games with Casanova. More
projects, which mostly feature research simulations, have used Casanova as their
framework: from virtual cities for Al research to teaching tools and even to serious
games, Casanova is being put to the test extensively.

8.7. Hand written optimizations 103

8.7 Hand written optimizations

The presented samples show no algorithmic optimizations in place, relying entirely
on the runtime to provide sufficient performance. A note must be added on the fact
that Casanova easily supports any algorithmic optimizations that a game developer
may need to add. The least sophisticated way to add such an optimization would
very simply be to use a variable to store some optimized data structure in the game
world, and then using a script to update this structure in a loop. The resulting code
would have the following structure:

type World = {

OptimizedStorage : Var<OptimizedStorage>
i

repeat
co{
do world.OptimizedStorage := update_optimized_storage
world
do! yield
b

This techniques simply replicates a traditional game loop inside Casanova itself,
in order to maintain an updated data structure that stores optimized lookup tables
or other similar helps to the computation. An advantage that Casanova offers at no
additional cost is that if the update of the optimized data structures of the game
world is expensive, then its computation may be easily split across multiple ticks,
further improving the game performance:

repeat

co{
let stepl = update_optimized_storagel world
do! yield
let step2 = update_optimized_storagel world step2
do! yield
do world.OptimizedStorage := update_optimized_storagelN

world stepN

do! yield

}

Of course, rules may also be used to implement such a system without scripts
and mutability. A significant difference between using rules rather than scripts is
that for the results of rules to propagate to other rules then it takes multiple ticks,

104 8. Making games in Casanova

and so rules force the developer to implement the second snippet of the two shown
above. If the optimized data structure must be computed entirely in one frame, and
must be updated at every frame, then scripts are the most effective solution.

9

Evaluation of Casanova

In this chapter we evaluate how well Casanova works for making games. We will
discuss, in turn: (i) what features are supported by the various approaches; (ii) the
set of features to be learned in order to make games with each tool; (i) some bench-
marks that partially quantify the strengths of Casanova; and (iv) some experiences
in using Casanova with students that amount to preliminary user studies.

Our work is focused on smaller-scale games, ranging from commercial games such
as indie-games to research and serious games. For this reason we compare Casanova
to systems that are intended to build this kind of games: Unity 3D, Game Maker,
and XNA. We remind that Casanova focuses on these kinds of games as well, and
is not aimed at large scale, triple-A games build with great availability of resources.
The studios that build such large games do not have any issue with using expensive,
low-level tools since they have the resources to tackle more expensive development
efforts in order to achieve total control over performance, and to obtain results of
the best possible quality.

9.1 Supported Features

We start with describing how well Casanova and other systems actually support the
requirements of games identified in Chapter [2|

The main requirement of a game development tool is its support for the game
loop:

Casanova Unity 3D Game Maker XNA

Rules on enti- | Scripts with | Scripts with | Game and

ties Update Update func- | GameComponent
function; tion; auto- | classes
auto-update | update of
of entities entities

Casanova supports the main loop implicitly, by having rules that represent the
transformation of entities over time across the game world. Unity 3D supports the
main loop implicitly in the form of entities which are dragged-and-dropped into
the game and which are updated automatically; Unity also supports the game loop
explicitly with its scripts which expose the ticks of the game loop. Game Maker
supports the main loop implicitly in that, like Unity, it allows dragging and dropping

OThis chapter is partially derived from the papers [89, 87, 84, 88].

106 9. Evaluation of Casanova

sprites onto the game area which are then updated automatically; Game Maker
also exposes its main loop through scripts that can be ticked at every iteration
of the game loop. XNA supports the main loop explicitly, in that it offers the
Game and GameComponent classes of which the developer must override the Update
method. Update will then be invoked at every tick of the main loop. XNA hides
only certain low level details of the main loop, such as the exchange of messages
with the underlying OS or the initialization and life-cycle of the graphics device. All
the rest of the game is left to the developer to implement.

Input management is the second requirement, since it defines how interactivity
is programmed into the game:

Casanova Unity 3D Game Maker XNA

Coroutines Explicit polling | Explicit polling | Device.

with event- | in scripts; | in scripts; | GetState ()

response ready-made ready-made method
components components

Input in Casanova is handled with pairs of scripts where one script detects an
input event, and another performs the response to that event. Scripts are based on
coroutines, so event detection and response may perform complex flow-control oper-
ations such as waiting for key releases or even key-chords. Unity and Game Maker
handle input in very similar ways. Scripts may explicitly poll input devices, while
ready-made components and activators offer support for common input operations.
Unity also supports coroutines, while Game Maker does not. XNA only supports
explicit polling of input devices inside the main loop.

The third requirement is state machines, because they are the foundation that
is used to build large portions of games: Als, network protocols, level activators,
timers, etc:

Casanova Unity 3D Game Maker XNA
Coroutines Limited corou- | Explicit scripts | Explicit classes
tines

Casanova fully supports coroutines, which are a powerful technique to create
state machines by using regular flow-control constructs which semantics are slightly
altered to fit that of coroutines. Casanova coroutines are also particularly flexible,
since the monadic definition of coroutines is actually left open so that additional
operators may be added by library developers. Unity offers a limited form of corou-
tines. Unity coroutines are limited since they do not support returning values,
concurrency control patterns, or programmability like other coroutine systems do
(including Casanova). Game Maker and XNA offer no support for state machines.
Any need related to building state machines in those systems will have to be met
with explicit classes with an explicit Update method.

The final requirement is the support given to drawing entities to the screen:

Casanova Unity 3D Game Maker XNA
Drawable enti- | Drawable com- | Drawable sprite | Explicit classes
ties ponent and calls

9.2. Features to Learn 107

Casanova supports drawing with drawable entities. Such entities are rendered
automatically, and remain synchronized with their logical representation through
rules. Unity supports drawing by adding visual components to its entities. Entities
with visual components simply appear on screen. Components may communicate
with each other to share data so that, for instance, the visual component is updated
to reflect the results of the logical scripts and the logical components of that entity.
Game Maker supports drawing by attaching sprites to logical entities. XNA supports
drawing by explicitly offering drawable entities in certain classes. These entities
represent models, text, or sprites, and their draw method must be called explicitly
inside the game loop.

9.2 Features to Learn

The size of each of the compared system affects how difficult it is to learn and master.
In particular, the more features there are in a system the harder it is to use it to its
full power, and the longer and steeper its learning curve becomes.

We now discuss the amount of concepts that need to be learned in order to
master Casanova, Unity, Game Maker, and XNA. We argue the size of each system
to be correlated to its learning complexity. Unfortunately, this does not help towards
assessing the shape of the learning curve for a system, given that the learning curve
depends heavily on the order in which the features are learned and their perceived
difficulty that may vary for differing users. Table lists the size of the various
systems, as determined by their respective documentations.

C# Unity Game Game XNA Casanova
Maker Maker
Language
13 major, | 6 major, | 3major,20 | 10 major, | 9 major, | 5 major, 44
330 minor | 210 minor | minor 96 minor 186 minor | minor

Table 9.1: Number of features per tool

C# is a complex language. Its specification [4] contains more than 18 major con-
ceptual categories such as classes, interfaces, structs, statements, etc. These major
categories are then subdivided in more than 500 individual concepts. The specifica-
tion covers all aspects of the language, but we only considered those features of the
language that are most commonly used and which are required in order to properly
interface with and use Unity and XNA classes and data structures. The resulting
size of the language is somewhat reduced: 13 major features, counting basic lan-
guage concepts, types, variables, conversions, expressions, statements, namespaces,
classes, structs, arrays, interfaces, enums, and exceptions. These major features are
then further subdivided in 330 minor concepts.

108 9. Evaluation of Casanova

The visual editor as described by the Unity reference manual 23] is slightly
smaller in size than the C# language. We excluded from consideration some func-
tionality sets which we deem to be too advanced for most developers, namely custom
shaders and the internals of the Unity deferred shader. We also did not count the
terrain engine and the tree creator, since these are only used in specific games and as
such many developers will simply skip these areas because they do not need them.
The result is that Unity features 6 major areas of functionality, namely components,
animations, GUI, networking, built-in shaders, and scripting concepts. These areas
are further subdivided in 210 minor features. Notably, more than half of these
features are related to components: a long list of possible behaviors that can be
attached to game objects, and which can only be learned one by one.

Game Maker, as described in [10], offers very little primitives, especially when
compared with Unity. Game Maker only has 3 main groups of functions, which are
the basic game entities, basic game logic, and "advanced" functionality attached
to entities and logic. These aspects are further expanded in as little as 20 minor
capabilities, which together form the entirety of the functionality of the tool.

The same documentation for Game Maker shows Game Maker Language to be
a small language, just like its host editor. Even though it is small, and thus quick
to learn, it is an example of ad-hoc designs that has received criticism for its odd
limitations. For example, arrays cannot be held by variables and passed as input to
scripts, and all variables may only be strings or floating point numbers. Also, the
language requires explicit deallocation of its "advanced" data structures (such as
stacks, lists, maps, etc.), which is at odds with the objective of extreme simplicity
that is touted by GameMaker. The language counts 10 major features, which are
the core language constructs, the interface with the game entities, input handling
primitives, graphics, sound, pop-up screens, resource management, "advanced" data
structures, particle systems, and multiplayer. These features are further subdivided
for a total of 96 minor items to master in order to learn how to use the language.

XNA is a comprehensive framework for developing games with .Net languages.
It is mostly centered around the C# language, but it may be accessed by any .Net
language, ranging from VB .Net and F# to dynamic languages such as IronPython.
The XNA reference [26] lists the large set of functionality of the framework. The 9
major areas of functionality are basic math and game loop support, graphics, input,
audio, asset (referred to as content in XNA) loading, XBox Live! gamer services,
media access, networking, and storage access. These areas are then subdivided in
186 further items.

Casanova is by far the smallest of all these tools, as determined by its grammar
and its semantics in Chapters [4] and [6] Tt features 8 major areas, which are the
basic language concepts, type definitions, input management, coroutines (and their
combinators), and rendering. These major features are then subdivided in as little
as 44 minor items. The fact that the language is small was indeed part of our
initial goal, and a direct consequence of this is that the effort required to learn the
various concepts is less oriented toward memorizing a long list of details, but rather

9.2. Features to Learn 109

assimilating a series of fundamental ideas and learning to combine them into games.
One side effect is that some aspects of Casanova require effort in order to be learned
to proficiency. For example, mastering coroutines or learning how to reason on rules
without side-effects can be challenging.

9.2.1 Remarks

We argue that the biggest disadvantage of Unity is that by using general-purpose
programming languages for its scripts it asks intermediate users to learn new and
complex concepts that seem unrelated to those in the visual editor. This means that
the learning curve for a system like Unity (and to a lesser extent like Game Maker)
may be welcoming for beginner users who limit themselves to the visual editor and
very simple scripts; as soon as the user wishes to do something more advanced then
he is faced with a sudden steepening of the learning curve, since he now has to
learn C# programming. We also argue that many of the missing features of Game
Maker make Unity more complete, that is as much as Game Maker is smaller it
is also less expressive. For example, when compared to Unity then Game Maker
lacks features for animations, 3D rendering, visual effects, and more. Finally, we
note that even though XNA does not feature a visual editor, supporting common
game development tasks by libraries alone (and not by a new set of semantics as
done by Casanova) yields a very big framework that can only be learned with study
and effort. An unfortunate side-effect of XNA is that, for beginners, it has a steep
learning curve from the start: beginners must learn C# first, and only after that
can they move on to basic game programming tasks.

We have built Casanova with the aim of a small and uniformly steep learning
curve. Learning Casanova requires little concepts, and from the very beginning the
user will be able to make games instead of learning the language in the abstract.
Also, the advanced tasks that Casanova may support are built upon the same simple
primitives that the user learns right away. Of course, advanced tasks will still require
more effort, mostly because of their being advanced. Also, by making game coding
easier and more focused on game development tasks, we leave control where it should
always remain: with the developer. We do not provide simplicity by ready-made
components such as Unity’s physics or rendering facilities. The user of Casanova
is always free to reuse existing libraries, but he can also re-write them as he sees
fit with no penalties. Unity (and Game Maker) do not make it simple to change
the underlying components that are assumed to be of general interest, and when
they allow such changes they do so by requiring significant efforts [17]. XNA fares
poorly under similar aspects as well, that is going beyond the basic tasks that are
well-supported requires substantial programming effort that is assisted very little
by the framework. For example, suppose we wish to render many XNA primitives:
beyond a few hundred draw calls per frame the game may get noticeably slower.
Solving the problem may require batching or instancing [112], techniques which are
hard to implement and which require advanced knowledge of graphics programming.

110 9. Evaluation of Casanova

As a final note, Casanova is designed to offer other features that the other systems
do not. Casanova games have additional correctness properties guaranteed by its
semantics model and its type system: (i) the mechanism through which rules are
all applied at the same time makes it harder to build errors related to wrong update
orders or interferences between multiple updates of as shared value from different
entities; (4) coroutines ensure that all state machines are generated and accessed
properly; and (i) units of measure ensure no physics errors deriving from mixing
different quantities wrongly (m + mis ok, asism + m / s * s, but m + s results
in a compiler error).

9.3 Quantitative assessment

We now offer some limited benchmarks to assess the performance and terseness of
Casanova games. Our benchmarks are limited because a direct comparison across
different systems would be meaningless, since performance would also involve ren-
dering performance. Also, systems such as Unity use a large set of C++ libraries
that make it appear that Unity games require less code, while in reality they are
leveraging large, pre-written libraries which seem trivial to use only because they
are used through a visual interface. As much as these libraries are fast, they also
trade flexibility for performance and ease of use.

In short, it is hard to find a meaningful comparison index between heterogeneous
systems such as Casanova, Unity, Game Maker, and XNA. We also argue that this
is perfectly fine, since the various systems have different original designs and under-
lying philosophies and as such comparing them quantitatively is not a significant
research effort. For this reason, we have picked another comparison which we deem
interesting. Coroutines are a complex piece of software, and larger games may rely
on them heavily in order to build difficult algorithms such as Als; coroutines in a
game development system must be easy to use and fast to run. For this reason we
have chosen to assess the quality of our implementation of coroutines against other
modern implementations which are widely used in games.

9.3.1 Coroutines in games

We now compare Casanova coroutines with those found in C#, LUA, and Python.
This way we get an idea on the verbosity and performance of building coroutines
in a statically typed, mainstream programming language such as C+#, but also in
dynamically typed languages such as LUA and Python which are often used as
scripting languages in games. For a more detailed discussion of the mechanisms of
coroutines in Lua, Python and C# see [5] [T}, 21], 53].

LUA, Python and Casanova offer roughly the same ease of programming, given
that: (i) scripts are approximately as long and as complex; (ii) there are no ex-
plicit types, thanks to dynamic typing in LUA and Python, and type inference in

9.4. Casanova in education 111

Casanova.

It is important to notice that, since Casanova is a statically typed language, it
offers a relevant feature that dynamically typed languages do not have: static type
safety. This means that more errors will be catched at compile time and correct
reuse of modules is made easier.

To measure speed, we have run three benchmarks on a Core 2 Duo 1.86 GHz
CPU with 4 GBs of RAM. The tests are two examples of scripts computing large
Fibonacci numbers concurrently plus a synthetic game where each script animates
a ship traveling across a game level. The tests have been made with Windows 7
Ultimate 64 bits. Lua is version 5.1, Python is version 3.2 and .Net is version 4.0.

Table 9.2: Samples length

Language | Test 1 Test 2 Test 3
Casanova 21 21 35
Python 24 29 48
LUA 30 39 52
C# 51 o8 59

Table 9.3: Samples speed
Language | Test 1 Test 2 Test 3
Casanova | 7.6 5.8 4.0

Python 1.1 1.1 0.9
LUA 1.5 1.4 0.8
C# 7.1 4.2 4.1

We have measured the total length of each script, listed in Table to give a
partial assessment of the expressiveness of each solution, plus the number of yields
per second, listed in Table in order to assess the relative cost of the yielding
architecture; more yields per second implies more scripts per second which in turn
implies more scripted game entities and thus a more complex and compelling game-
play.

It is quite clear that Casanova offers the best mix of performance and terseness.
Also, it must be noticed that Python and Lua suffer a noticeable performance hit
when accessing the state, presumably due to lots of dynamic lookups; this prob-
lem can only become more accentuated in actual games, since they have large and
complex states that scripts manipulate heavily.

9.4 C(Casanova in education

Another venue of evaluation of Casanova has been the adoption of the framework
as an educational tool for teaching computer programming to high school students,

112 9. Evaluation of Casanova

and to teach advanced game development constructs to master students.

9.4.1 High school students

High school students were faced with the task of programming snippets of game code
with the Casanova framework. The tasks presented to them were very simple, in
particular they built a bouncing ball, a set of bouncing balls, and a set of asteroids
with gravitational forces. The tasks took one full day of work with instructors
present. Most of the students had no previous programming experience.

We assessed the results of the experience by observing the progress of the class
in finding the solutions, and also by asking the students questions on the interest
and value of the learning experience. Interestingly enough, all students were able to
build the final solutions; some students managed to do so in a very short time and
with no help whatsoever, while others needed the whole day and some assistance
from the lab instructors (especially regarding syntax rules and compiler errors).

From an informal survey, the students described the experience as relevant,
formative, and interesting. We used their evaluation to strengthen the idea that
Casanova is simple enough to allow complete beginners with no experience in pro-
gramming to build small simulations with little help.

9.4.2 Master students

We also used Casanova as part of the course on High Level Game Programming at
the Master in Game Development of the University of Verona. Casanova was used
to offer students a different take on game development techniques. The objective
was to foster understanding of the general patterns behind game development. A
secondary objective was to challenge their preconceptions on how to make games,
often coming from previous programming experience.

To do so, we organized assignments around the construction of hybrid systems
where Casanova was used to provide the main logic for a game, while XNA was used
for the remaining components of the game (namely rendering, audio, and low-level
input detection).

As an assessment of the course, we provide in Table the table of evaluations
(between 0 and 30) of the students work with respect to the some of the tasks given.
We show the evaluation of the students with respect to the completeness and quality
of: (i) their definition of the game world; (ii) their definition of the game rules; and
(1) their definition of the game scripts. Notice that the last column, the final mark,
also depended on other factors related to the rest of the game, and not only on the
Casanova-centered parts of the assignment.

Interestingly, even though a large group of students passed with full flying col-
ors all the Casanova-related tasks, a small group of students encountered strong
difficulties. Discussion with the students in trouble suggested that they had prob-
lems mapping their imperative mindset to the declarative/functional tools offered

9.4. Casanova in education 113

Student | World definition Rules Scripts Final mark
1. 30 30 30 30
2. 27 30 30 30
3. 30 30 25 30
4. 30 30 30 30
5. 30 30 30 30
6. 30 30 30 30
7. 30 30 25 30
8. 30 30 30 30
9. 30 30 25 30
10. 30 30 30 30
11. 30 30 30 30
12. 27 30 30 30
13. 25 25 20 24
14. 30 30 0 22
15. 27 30 30 28
16. 15 15 0 14
17. 0 0 0 0

Table 9.4: Master students evaluation

by Casanova, while students from the successful group enjoyed a different way to
think about games and quickly handed their (good) assignments.

114 9. Evaluation of Casanova

10

Discussion

In this section we sum up the content of this work, with particular focus on: (i) how
Casanova answers the original questions of this thesis; (ii) what are the limitations
of Casanova that may be solved with small extensions; (iii) what are the limitations
of Casanova that may be solved with a major design effort or not at all.

10.1 Original research questions

The research questions studied by this work are listed in Chapter [I but we sum
them up here again:

requirements | what are the general requirements
common across development of
most games?

exploration what are the most representative
game development systems and
languages?

design what is a general and simple to
use programming language that
fulfills the game development re-
quirements?

evaluation Does such a language work for
making games in practice? How
does such it compare to other
game development systems?

We have identified a set of requirements by observing which are the most common
tasks performed by game developers while making a game. These are tasks that allow
the simulation of a virtual world that is updated in real-time, steered by the user
input, while providing a real-time visual representation of the virtual world. We
have identified these requirements through our experience with game development,
by studying the architectures of multiple game development tools and libraries, and
by a survey of the fundamental literature of game development which all mentions
these constructs. Even though we believe to have identified a set of universal, core
requirements of games, we are also certain that further important requirements
exist that we are not considering. We also believe that the requirements we consider
here are the first that should be tackled, since considering more exotic issues would

116 10. Discussion

require that these are solved first.

A preliminary study of the available game development systems yielded dozens
of powerful systems, engines, and frameworks, plus various languages. As game
development is a complex activity, so game development tools are large and difficult
to learn. To narrow our focus we started by restricting ourselves to only those tools
that are aimed at making the same kind of games that Casanova supports, namely
serious, research, and indie games. Secondly, we picked the three systems that seem
the most popular in terms of available books, tutorials, documentation, and sample
projects. Choosing game development languages on the other hand was simpler,
since there are not many available. We picked three languages that exemplified
that language design does not need to be a derivative effort that yields yet another
imperative language with objects; we picked languages that show provocative new
semantic and syntactic structures.

We designed Casanova around the identified requirements for games, by choosing
the design philosophy of less-is-more. We tried to find the smallest set of orthogonal
syntactic primitives that would allow the expression of the desired semantics. We
built Casanova semantics in order to express game concepts of input, drawing, time
flow, state machines, and few other primitives. We used our type system to support
useful correctness enforcers such as dimensional analysis. We built an implementa-
tion that optimizes run-time by taking advantage of the semantics of the game, for
example by adding multi-threading automatically where it is safe to do so.

We evaluated Casanova by showing how actual game snippets can be produced in
it, and by identifying exemplar game development tasks such as defining an avatar,
interacting and moving in a virtual environment with entities representing objects
and monsters, and so on. We then proceeded to a comparison of Casanova with
existing game development systems in order to assess complexity. We also offered
some benchmarks that quantified certain indicators of performance and verbosity.
These benchmarks compare coroutine systems across multiple scripting languages
commonly used in games, in order to assess how well Casanova stacks against them
in one of its most complex (and computationally intensive) sub-systems. Finally,
we performed some user studies with students ranging from complete beginners
in Computer Science, to advanced programmers learning the finer points of game
development.

10.2 Extension opportunities for Casanova

We now discuss some of the aspects of Casanova that could be improved upon. We
explain how rendering could be made more powerful, how we are building a standard
library of components ready for reuse, how we are creating an IDE for supporting
the Casanova language directly, and how we are extending the language in order to
support general-purpose networking and Al facilities. We conclude with a note on
the applicability of Casanova to AAA games.

10.2. Extension opportunities for Casanova 117

10.2.1 Rendering

Rendering in Casanova is the weakest aspect of the current implementation and
design. On one hand we believe that rendering is almost not an open problem
anymore, and that much of the current research on rendering is actually focused
on technical, engineering, and approximation efforts [57, 112 10T] rather than on
fundamental understanding of photo-realistic lighting models [76]. Since we aim at
solving fundamental issues with game development in general, we have chosen to
create a first rendering system that allows testing of the rest of Casanova, with the
objective to integrate some other rendering engine, possibly even Unity itself (or any
other engine that supports .Net/Mono bindings), when the framework is sufficiently
mature that the current drawing facilities become inadequate.

10.2.2 Standard library

Casanova also lacks a standard library. A standard library for a system such as
Casanova would provide sets of entities that cooperate with each other in order to
provide some pervasive game functionality like physics, or even whole game skeletons
for different genres. Such a library would allow us to inject past experience in
making certain games into Casanova, thereby further reducing the difficulty of game
development with the framework; unfortunately, building such a library requires
a substantial engineering effort, and is partially beyond the current scope of this
work. Still, we are slowly increasing the size of the Casanova library of utilities by
generalizing the various portions of the games we build when we see components
that may be of broader utility.

10.2.3 IDE

The current IDE for Casanova is also a major source of future work. On one hand the
implementation is lacking all the code-completion technologies that many program-
mers are used to, and which make coding much simpler as it allows to keep track of
the source code structure automatically. Code completion also helps greatly when
getting confidence with new and unknown libraries, since it makes it possible to
interactively explore them without reading lots of documentation before hand. The
lack of a proper compiler currently requires developers to write Casanova embedded
in F#. While this does not have many significant shortcomings, the language used
this way loses in simplicity and power. One important disadvantage of the lack of
a compiler though is that query optimizations are not active at the moment, be-
cause they require syntactic transformations that are hard to encode from F#. Also,
some small syntactic improvements (especially, but not limited to, the declaration
and lookup of rules) would improve code readability.

Further extensions that a proper language could support include a better code
generator for state machines from coroutines. The current implementation instances

118 10. Discussion

multiple anonymous functions, namely one for each binding operation. This means
that coroutines allocate memory that is often used for a very short time. Garbage
collection of Casanova programs could then benefit from an optimization that uses,
for example, pooling of the coroutine continuations to reduce generated garbage.
Such a modification would yield a very small improvement on those implementations
of the runtime that employ a modern, generational garbage collector [90]. The gains
could be much bigger on platforms such as the XBox or tablet PCs where garbage
collection uses a slower implementation [66].

10.2.4 Networking

Networking is a major extension that is currently under construction for Casanova.
A prototype implementation is sketched in Appendix [B] Our goal is to build a system
that is general, robust, and efficient. We are building such a system which, at its
core, is a distributed synchronization mechanism that implements an eventually
consistent serialization and deserialization of the game world from the host to the
client. The eventual consistency arises from the fact that transferring the game
world from the host is done many times per minute, and so information lost during
one transfer will simply be expected in a future transfer. Also, the client will have
to send the input events to the host in order for it to propagate the input responses
to the remaining clients.

One major concern of our networking system is also performance and responsive-
ness. For this reason, we are building incremental transfers, data compression, and
even local prediction techniques on the client side in order to minimize bandwidth
and perceived delays.

10.2.5 AI

We are studying how to build a general system for Al as described in Appendix [C|
We believe that planning may be a good candidate technique for games in general,
given that the simplest and most common technique for Al in games (finite state
machines) is already supported with coroutines, and planning is the foundation for
many reasoning systems, from path-finding to more complex decision-making. In
particular, we are integrating a technique known as Goal-Oriented Action Planning
[104] which allows agents to quickly find, thanks to heuristic search, action plans in
order to satisfy all the preconditions that are required in order to satisfy a goal. The
technique is already giving promising results in our systems, it easily incorporates
path-finding, and it yields agents that seem deliberate and logical in their actions,
which all contribute to reaching the final goal.

10.3. Shortcomings of Casanova 119

10.2.6 AAA games

An important issue with Casanova is that, for obvious constraints of time and re-
sources, we have never developed a AAA game with it. It is understandable that
AAA developers may have many reasons for not using Casanova. After all, a AAA
studio has a team of programmers trained in traditional tools and languages, large
libraries of existing code that should be leveraged as much as possible, and even a
certain aversion to risking a big investment by using something that is not time-
tested. This said, it is important to realize that Casanova helps development of
games regardless of their scale. Whether they are tiny games built in a few hours,
larger indie-games built in a few months, or huge AAA games that take years to de-
velop, the same advantages of correctness, convenience, and expressive power would
stand. For this reason we conclude that large development studios should at least
consider the lesson of Casanova in order to take advantage of its most useful aspects
within (or at least close to) the boundaries of their active development practices.

10.3 Shortcomings of Casanova

Casanova also has some shortcomings which determine what games it cannot be
used to build. The main shortcomings that we have identified are: (i) the inability
to do low-level optimizations; (7i) the required mindset shift for imperative program-
mers; (iii) the rarely-seen ML syntax; and (iv) the difficulty of expressing complex
rendering tasks such as shaders.

10.3.1 Low-level optimizations

Most games, especially (but not limited to) larger titles, are sometimes faced with
a need for optimization at a very low level, for example in order to run on less
powerful hardware such as tablets or smartphones, or to support complex scenarios
that require making use of all the available computational power.

Low-level optimizations may include control over memory allocations and deallo-
cations, doubly-linked lists to quickly move an object from one group to another, and
even re-writing some central portions of the inner loop in assembly. Unfortunately,
these optimizations come at a cost: very little can be said (or controlled) about such
portions of code, which would possibly break all the other semantic structures of
the language. We argue that supporting low-level optimizations should be done only
if we can at the same time retain all the properties of the system. Alternatively,
we believe that better automated optimizations could further remove the need or
desire to perform such optimizations. In the end though, Casanova is explicitly not
aimed at AAA games, which are the only ones employing such aggressive optimiza-
tions techniques; for this reason Casanova emphasizes high-level abstraction at the
expense of low-level optimization.

120 10. Discussion

10.3.2 Imperative mindset shift

Casanova is a hybrid language that uses declarative/functional primitives for a large
part of the game (namely, rules). The fact that rules may not affect any entity
excluded the one they are operating on may cause some difficulties in programmers
used to imperative operations that allow them to potentially modify any entity in
the program from virtually any place in the code. This form of programming though
may encounter difficulties in scaling with larger projects, since complex side-effects
may get out of hand and break invariants that are otherwise assumed. Learning
a declarative/functional way of thinking about programs can be a valuable skill
in that it allows to cleanly split functionality in such a way that testing may be
easier, and also that reasoning on the program may be easier as well. This said,
programmers coming from an imperative background may require a larger initial
effort than people with no background in programming at all, as we have discussed
in Chapter [9

10.3.3 Unusual syntax

Similarly to the issues with the declarative/functional style of programming, the
syntax of Casanova is based on the lesser known syntax of ML and F#. This syntax
is widely used nowadays, but not as much as that of other imperative languages
such as C, Java, C#, or Python. Building an alternate syntactic front-end would
not change the underlying semantics or possibly even the backend implementation of
our system, but it would still require substantial work in both design and implemen-
tation. Using a more common syntax, though, may reduce the perceived steepness
of the learning curve of Casanova and thus remains a desirable feature.

10.3.4 Advanced rendering

Programming complex rendering operations is, as of now, delegated to the underly-
ing rendering mechanisms of the graphics engine used by Casanova. We argue that
it would be desirable to be able to express complex rendering operations in Casanova
itself, for example by defining shaders, render target, etc. with separate syntactic
abstractions. Unfortunately this would require a major design and implementation
effort, and as such it must be relegated to our future intentions.

10.3.5 Other languages

As our implementation language, we picked F#. The choice of F# was motivated
by its balance of performance, game development libraries, IDE support, and meta-
programming through monads and reflection. Even though our experience in using
our own libraries confirms F# to be a good choice, there are multiple aspects that
could not be translated from the Casanova language.

10.3. Shortcomings of Casanova 121

Powerful languages such as C+-+ and Haskell are a good fit for a game de-
velopment system such as Casanova. Interestingly, neither of them is capable of
expressing Casanova constructs easily, and both require significant effort. Haskell
would need an extension to the language (namely Generic Haskell [G8]), while the
degree of meta-programming used in C++ creates problems with the type inference
of template parameters and often results in incomprehensible error messages.

Haskell type-classes, in particular, allow us to code advanced meta-programming
constructs, while still retaining some degree of assistance from the compiler in terms
of meaningful error messages, partial compilation (to speed up compile-times for
large programs), and other similar advantages. Of course, modern pragmatic lan-
guages such as C#, F#£, Java, and the like allow the exploration of types at run-time
with dynamic, unsafe operations known as reflection. This allows these languages
to retain high levels of expressivity for complex patterns (such as dependency injec-
tion), but with the penalty of lower run-times and no validation from the compiler
(programs that use reflection may encounter unforeseen and catastrophic failures if
used naively). Thanks to reflection and monads, Casanova is currently implemented
as an embedding into F#.

We make one final remark about the choice of F# instead of a dynamic lan-
guage that would not have required the "contorsions" of reflection to implement
rules. For example, in Python, invoking rules would have been much simpler and
would not have used reflection; moreover, Python (partially) supports coroutines
and suspension mechanisms with its feature of generators.

These difficulties in adapting existing languages to Casanova suggests that Casanova
15 indeed a novel solution that offers significant features that are orthogonal to those
present in existing languages.

We leave as a challenge the successful implementation of Casanova inside other
existing languages.

122 10. Discussion

11

Conclusions

The growing diffusion of video games in the last decade means that games are now
as widespread as movies and pop-music, and in some cases even more.

Games are mainly aimed at the entertainment of users, but fun is not their
exclusive aim. Games are also used in other, serious contexts that range from
the defense industry, to education, scientific exploration, health care, emergency
management, and many more.

Making games though is an expensive activity. This, paired with the technical
complexities of game development (physics, Al, rendering, networking, all in real-
time on a variety of consumer grade hardware), means that games have difficulty
in turning into profitable enterprises. This applies even more so to those kinds
of games that by nature have less commercial appeal, such as indie, serious, and
research games. This economic difficulty is the main reason behind the search for
better targets for serious games such as the industries mentioned above.

Serious games are not the only ones facing such problems. Indie games, which
are those low-cost games (below the 10$ mark, and sometimes even ad-based) often
played in modern smartphones and tablets, share the same difficulties.

The costs associated with making games are indeed very high, no matter the
games developed. Moreover, the costs for making a game are increasing as new gen-
erations of more powerful hardware unlock new possibilities such as real-time mul-
tiplayer games, advanced graphics, advanced physics, bigger environments, smart
opponents and characters, and so on. This increase in costs seems to be exponential
because of the increasing interactions between increasingly complex components
of the game. For example, increasing the complexity of the physics system also
increases the complexity of the AI which now must consider more aspects of the
environment, even if the objective is only to achieve the same tasks as before.

The cost for making large scale games is very high as well, but as of now large
studios seem to be ignoring the problem, largely by using brute-force efforts with
great expenditure of resources. For this specific reason our work does not focus
on AAA games, even though we strongly argue that the lesson learned through
Casanova would translate there as well. We focus exclusively on research, serious,
and indie games mostly because of the difficulty in performing experiments that
involve the construction of AAA games.

The interest in game-development has already spurred the growth of substantial
interest in research on principled design techniques and on cost-effective development
technologies for game architectures. Our present endeavor makes a step along the

124 11. Conclusions

directions of studying disciplined models for game development. The breadth of
adoption of games means that a better understanding of them would have tangible
benefits on all who build (or even use) games.

The general problem that we tackled in this work is the following: games offer
a unique blend of complexity, optimization, and need for customization
by non-programmers; this makes games costly to build and maintain,
and it also makes it hard but desirable to simplify the process of game
development.

The specific problem that we wish to solve then is that modern game development
is done with game engines and traditional software engineering. The programming
languages and techniques used for making games evolved far from the interaction
needs of games and simulation. Instead, most modern programming languages used
for making games were creating for representing and manipulating data that is trans-
formed from some input into some output. Most computer programs are still related
to the early models of computation, that is performing mathematical computations
that require little to no user intervention. Interactivity is an aspect of computer
programming that has emerged only in recent times. We argue that using languages
and abstractions designed for the specific purpose of building games and interac-
tive simulations in general, can reduce the difficulty and economaical risks of making
games. We also argue that currently available tools and techniques have shaped an
industry that is excessively risk averse and which cannot easily create games that
are truly innovative in terms of gameplay, Al, story-telling, etc.

A proper language for making games should be: (i) simple; (i) useful across all
game development tasks; (i) general in that it does not constrain the kind of games
that are built with it; and (4v) fully composable, that is all reasonable combinations
of its features should be possible.

The specific research questions that we propose to answer in this thesis are related
to: (i) identifying the common problems of game development; (i) identifying the
common solutions to such problems; (iii) defining a programming language that
makes it simpler to implement such solutions; (iv) evaluating such a programming
language to find if it solves the original problems and to compare it to the commonly
used tools and techniques.

We determined (i) in Chapter [2| with a study of the literature on game devel-
opment, and also thanks to our direct experience. We identified (ii) in Chapter
by studying existing game development tools and techniques. We devoted the
remaining Chapters, [4] [6] [7] and [7] to (4i) with the design, formal description, and
implementation of the Casanova language. Finally, we performed the evaluation (iv)
in Chapters [§] and [9, where we put Casanova to the test by using it extensively and
comparing it to other tools.

At the end of this process, we believe that Casanova answers the original research
questions, that is it enables developers to build games with less cost and less diffi-
culty. We argue that Casanova works as intended thanks to its level of abstraction,
which is sufficiently far from the underlying hardware as to free the developer from

125

excessively low-level considerations. Also, the use of constructs, both syntactic and
semantic, that are tailored specifically for games is responsible for most of the power
of Casanova.

We conclude with an observation. Creating a programming language is a contro-
versial practice. In particular, there exist many research languages that have never
seen any real commercial adoption, leading to the belief that research in language
development may not be a useful activity. We argue that the purpose of such re-
search (and ours as well) is not that of creating commercial tools for widespread
usage. Rather, we look for the best practices already used by many and we try to
formalize them in a clear setting, without additional idioms and constructs that,
as much as they may be useful, would hamper our understanding of our object of
study. Moreover, we do not just look for a language that solves the original problem,
we look for the simplest such solution that remains expressive enough.

We motivate this goal with a quote from the great scientist Albert Einstein:
"Everything should be made as simple as possible, but no simpler.".

126 11. Conclusions

1]

2]

3]
4]

5]

(6]
7]
8]
19]
[10]
[11]

[12]

[13]
[14]
[15]
[16]

[17]
[18]

Bibliography

Adventure construction set. http://en.wikipedia.org/wiki/Adventure_
Construction_Setl

Arcade game construction kit. http://en.wikipedia.org/wiki/Arcade_
Game_Construction_Kitl

Brender. http://en.wikipedia.org/wiki/BRender#BRender.

C+# specification. http://msdn.microsoft.com/en-us/library/ms228593.
aspx.

C# yield (reference). http://msdn.microsoft.com/en-
us/library /9k7k7ct0(v=vs.80).aspx.

Casanova website. http://casanova.codeplex.com/.

Direct 3d. http://en.wikipedia.org/wiki/Microsoft_Direct3D.
Entertainment software association. http://www.theesa.com.
Galaxy wars source code. http://vsteam2010.codeplex.com/.
Game maker manual. http://gamemaker.info/en/manual.

Games using lua as a scripting language.
http://en.wikipedia.org/wiki/Category:Lua-scripted video games.

Garry kitchen’s game maker. http://en.wikipedia.org/wiki/Garry_
Kitchen’s_GameMaker.

Id tech engines. http://en.wikipedia.org/wiki/Id_Tech.
Lambda the ultimate weblog. http://lambda-the-ultimate.org/papers.
Lidgren library. http://code.google.com/p/lidgren-network-gen3/.

Maggiore, g., bugliesi, m., orsini, r., et al.: Casanova papers. http://
casanova.codeplex.com/wikipage?title=Papers.

Ogre 3d for game maker. http://code.google.com/p/gmogre3d/.

Pinball construction set. http://en.wikipedia.org/wiki/Pinball_
Construction_Setl

http://en.wikipedia.org/wiki/Adventure_Construction_Set
http://en.wikipedia.org/wiki/Adventure_Construction_Set
http://en.wikipedia.org/wiki/Arcade_Game_Construction_Kit
http://en.wikipedia.org/wiki/Arcade_Game_Construction_Kit
http://en.wikipedia.org/wiki/BRender#BRender
http://msdn.microsoft.com/en-us/library/ms228593.aspx
http://msdn.microsoft.com/en-us/library/ms228593.aspx
http://casanova.codeplex.com/
http://en.wikipedia.org/wiki/Microsoft_Direct3D
http://www.theesa.com
http://vsteam2010.codeplex.com/
http://gamemaker.info/en/manual
http://en.wikipedia.org/wiki/Garry_Kitchen's_GameMaker
http://en.wikipedia.org/wiki/Garry_Kitchen's_GameMaker
http://en.wikipedia.org/wiki/Id_Tech
http://lambda-the-ultimate.org/papers
http://code.google.com/p/lidgren-network-gen3/
http://casanova.codeplex.com/wikipage?title=Papers
http://casanova.codeplex.com/wikipage?title=Papers
http://code.google.com/p/gmogre3d/
http://en.wikipedia.org/wiki/Pinball_Construction_Set
http://en.wikipedia.org/wiki/Pinball_Construction_Set

128 Bibliography

[19] Reality lab. http://en.wikipedia.org/wiki/Reality_Lab.
[20] Rpg maker. http://www.rpgmakerweb.com/.

[21] Scripting in unity. http://unity3d.com/support/ documentation/ScriptRefer-
ence/index.Coroutines 26 Yield.html.

[22] Shoot ’em-up construction kit. http://en.wikipedia.org/wiki/Shoot’
Em-Up_Construction_Kit.

[23] Unity reference manual. http://docs.unity3d.com/Documentation/
Components/.

|24] Unreal engines. http://en.wikipedia.org/wiki/Unreal_Engine.

[25] Wargame construction set. http://en.wikipedia.org/wiki/Wargame_
Construction_Set!.

[26] Xna reference. http://msdn.microsoft.com/en-us/library/bb203940.
aspx.

[27] Educational videogames. http://en.wikipedia.org/wiki/Educational_
video_game, 2012.

|28] Game engines. http://en.wikipedia.org/wiki/Game_engine, 2012.

[29] Lockless programming considerations for xbox 360 and microsoft win-
dows. http://msdn.microsoft.com/en-us/library/windows/desktop/
€e418650(v=vs.85) .aspx, 2012.

[30] Visual f#£. http://msdn.microsoft.com/en-us/library/dd233154(v=vs.
110) .aspx, 2012.

|31] The smartphone & tablet games summit at gde 2013. http://www.gdconf .
com/conference/gdcsmartphone.html, 2013.

[32] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1st edition, 1996.

|33] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective memoization.
In In Proceedings of the 30th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 14-25. ACM Press, 2003.

[34] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles,
techniques, and tools. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1986.

http://en.wikipedia.org/wiki/Reality_Lab
http://www.rpgmakerweb.com/
http://en.wikipedia.org/wiki/Shoot'Em-Up_Construction_Kit
http://en.wikipedia.org/wiki/Shoot'Em-Up_Construction_Kit
http://docs.unity3d.com/Documentation/Components/
http://docs.unity3d.com/Documentation/Components/
http://en.wikipedia.org/wiki/Unreal_Engine
http://en.wikipedia.org/wiki/Wargame_Construction_Set
http://en.wikipedia.org/wiki/Wargame_Construction_Set
http://msdn.microsoft.com/en-us/library/bb203940.aspx
http://msdn.microsoft.com/en-us/library/bb203940.aspx
http://en.wikipedia.org/wiki/Educational_video_game
http://en.wikipedia.org/wiki/Educational_video_game
http://en.wikipedia.org/wiki/Game_engine
http://msdn.microsoft.com/en-us/library/windows/desktop/ee418650(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee418650(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dd233154(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd233154(v=vs.110).aspx
http://www.gdconf.com/conference/gdcsmartphone.html
http://www.gdconf.com/conference/gdcsmartphone.html

Bibliography 129

[35] Khaled Ayad and Dimitrios Rigas. Learning with edutainment: a multi-
platform approach. In Proceedings of the 11th WSFEAS international con-
ference on Mathematical methods and computational techniques in electrical
engineering, MMACTEE’09, pages 220-225, Stevens Point, Wisconsin, USA,
2009. World Scientific and Engineering Academy and Society (WSEAS).

[36] R. Barreto de Oliveira. The boo programming language. http://boo.
codehaus.org/.

[37] T. Barron. Multiplayer Game Programming. Prima Tech’s Game Develop-
ment. Prima Tech, 2001.

[38] Kent Beck. FEztreme programming explained : embrace change. Addison-
Wesley, us ed edition, October 2001.

[39] Jean-Philippe Bernardy, Patrik Jansson, Marcin Zalewski, Sibylle Schupp, and
Andreas Priesnitz. A comparison of ¢4+ concepts and haskell type classes. In
Proceedings of the ACM SIGPLAN workshop on Generic programming, WGP
‘08, pages 37-48, New York, NY, USA, 2008. ACM.

[40] Y Bernier. Latency compensating methods in client/server in-game protocol
design and optimization. In In Game Developers Conference, 2001.

[41] Micah J. Best, Alexandra Fedorova, Ryan Dickie, Andrea Tagliasacchi, Alex
Couture-Beil, Craig Mustard, Shane Mottishaw, Aron Brown, Zhi Feng
Huang, Xiaoyuan Xu, Nasser Ghazali, and Andrew Brownsword. Searching
for concurrent design patterns in video games. In Proceedings of the 15th In-

ternational Euro-Par Conference on Parallel Processing, Euro-Par '09, pages
912-923, Berlin, Heidelberg, 2009. Springer-Verlag.

[42] S. Bjork and J. Holopainen. Patterns In Game Design. Game development
series. Charles River Media, 2005.

[43] S. Blackman. Beginning 3D Game Development with Unity: All-in-one, multi-
platform game development. Apresspod Series. Apress, 2011.

[44] Jonathan Blow. Game development: Harder than you think. Queue, 1(10):28-
37, February 2004.

[45] David Blythe. The direct3d 10 system. In ACM SIGGRAPH 2006 Papers,
SIGGRAPH ’06, pages 724-734, New York, NY, USA, 2006. ACM.

[46] G.S. Boolos, J.P. Burgess, and R.C. Jeffrey. Computability and Logic. Cam-
bridge University Press, 2007.

[47] A Botea, M Miiller, and J Schaeffer. Near optimal hierarchical path-finding.
Journal of Game Development, (1):7-28, 2004.

http://boo.codehaus.org/
http://boo.codehaus.org/

130 Bibliography

|48] David M. Bourg and Glenn Seemann. AI for Game Developers. O'Reilly
Media, Inc., 2004.

[49] Alonzo Church. A Set of Postulates for the Foundation of Logic. Annals of
Mathematics, 2(33):346-366, 1932.

[50] R. W. Crandall and J. G. Sidak. Video Games: Serious Business for America’s
Economy.

[51] Olivier Danvy and Andrzej Filinski. Representing control: a study of the cps
transformation, 1992.

[52] A. Davies. Async in C# 5.0. O’Reilly Media, 2012.

[53] Bruce Dawson. Game scripting in python. http://
www.gamasutra.com/features/ 20020821/dawson pfv.htm, 2002. Game
Developers Conference Proceedings.

[54] M.A. DeLoura. Game Programming Gems 2. Game Programming Gems
Series. Charles River Media, 2001.

[55] E. Dijkstra. Classics in software engineering. chapter The humble programmer,
pages 111-125. Yourdon Press, Upper Saddle River, NJ, USA, 1979.

[56] D.H. Eberly. 8d Game Engine Architecture: Engineering Real-time Applica-
tions With Wild Magic. Morgan Kaufmann Series in Interactive 3D Technol-
ogy. Morgan Kaufmann, 2005.

[57] Randima Fernando. GPU Gems: Programming Techniques, Tips and Tricks
for Real-Time Graphics. Pearson Higher Education, 2004.

[58] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2(3-4):189-208,
1971.

|59] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

|60] Martin Gardner. Mathematical Games: The fantastic combinations of John
Conway’s new solitaire game “life”. Scientific American, pages 120123, Oc-
tober 1970.

|61] Michael P Georgeff, Barney Pell, Martha E Pollack, Milind Tambe, and
Michael Wooldridge. The belief-desire-intention model of agency. In Intel-
ligent Agents V, Agent Theories, Architectures, and Languages, 5th Interna-
tional Workshop, (ATAL 98, pages 4-7. Springer.

Bibliography 131

62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

Sunbir Gill. Visual finite state machine ai systems. http://www.gamasutra.
com/view/feature/2165/visual_finite_state_machine_ai_.php, 2004.

Douglas Gregor, Jaakko Jarvi, Jeremy Siek, Bjarne Stroustrup, Gabriel
Dos Reis, and Andrew Lumsdaine. Concepts: linguistic support for generic
programming in c¢++. SIGPLAN Not., 41(10):291-310, October 2006.

Jason Gregory. Game engine architecture. Taylor & Francis Ltd., 1 edition,
2009.

Jacob Habgood and Mark H. Overmars. The game maker s apprentice - game
development for beginners. Apress, 2006.

S. Hargreaves. Twin paths to garbage collector nirvana.
http://blogs.msdn.com/b/shawnhar/archive/2007/07/02/
twin-paths-to-garbage-collector-nirvana.aspx.

Ralf Hinze. Polytypic values possess polykinded types. In Proceedings of the
oth International Conference on Mathematics of Program Construction, MPC
'00, pages 227, London, UK, UK, 2000. Springer-Verlag.

Ralf Hinze and Johan Jeuring. Generic haskell: practice and theory. In In
Generic Programming, Advanced Lectures, volume 2793 of LNCS, pages 1-56.
Springer-Verlag, 2003.

H Hoang, S Lee-Urban, and Munoz-Avila. H.: Hierarchical plan representa-
tions for encoding strategic game ai. In Marina del Ray, CA, 2005.

Liyang Hu and Graham Hutton. Towards a Verified Implementation of Soft-
ware Transactional Memory. In Peter Achten, Pieter Koopman, and Marco
Morazan, editors, Trends in Functional Programming volume 9. Intellect, 2009.
Selected papers from the Ninth Symposium on Trends in Functional Program-
ming, Nijmegen, The Netherlands, May 2008.

Paul Hudak, John Peterson, and Joseph Fasel. A gentle introduction to haskell
98, 1999.

Andrew Hunt and David Thomas. The pragmatic programmer: from journey-
man to master. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

Graham Hutton and Erik Meijer. Monadic parser combinators, 1996.

A K Jain, R Duin, and J Mao. Statistical pattern recognition: A review. IEEE
Transactions on Pattern Analysis and Machine Intellgence, (22):4-37, 2000.

http://www.gamasutra.com/view/feature/2165/visual_finite_state_machine_ai_.php
http://www.gamasutra.com/view/feature/2165/visual_finite_state_machine_ai_.php
http://blogs.msdn.com/b/shawnhar/archive/2007/07/02/twin-paths-to-garbage-collector-nirvana.aspx
http://blogs.msdn.com/b/shawnhar/archive/2007/07/02/twin-paths-to-garbage-collector-nirvana.aspx

132 Bibliography
|75] J.Orkin. Three states and a plan: The ai of f.e.a.r. Proceedings of the Game
Developer’s Conference (GDC), 2006.

[76] James T. Kajiya. The rendering equation. In Proceedings of the 15th annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’86,
pages 143-150, New York, NY, USA, 1986. ACM.

|77] A. Kaufman and E. Shimony. 3D scan-conversion algorithms for voxel-based
graphics. In Proceedings of 1986 Workshop on Interactive 3D Graphics, pages
45-75, 1986.

|78] Oleg Kiselyov, Ralf Lammel, and Keean Schupke. Strongly typed heteroge-
neous collections. In Haskell 200/: Proceedings of the ACM SIGPLAN work-
shop on Haskell, pages 96-107. ACM Press, 2004.

[79] Oleg Kiselyov, Simon Peyton, and Jones Chung chieh Shan. Fun with type

[80]

[81]

[82]

[83]
[84]

[85]

[36]

[87]

functions, 2010.

Peter J. Kovach. The Awesome Power of Direct3D/DirectX - DirectX 5 Ver-
ston. Manning Publications Co., Greenwich, CT, USA, 1998.

E. Lengyel. Game Engine Gems, Volume One. Jones & Bartlett Learning,
2010.

Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain rendering
using nested regular grids. ACM Trans. on Graphics, (23):2004.

G. Maggiore and G. Costantini. Friendly F7.

Giuseppe Maggiore, Michele Bugliesi, and Renzo Orsini. Monadic scripting in
f# for computer games. In Proceedings of the 5th International Workshop on
Harnessing Theories for Tool Support in Software (TTSS), 2011.

Giuseppe Maggiore, Renzo Orsini, and Michele Bugliesi. On casanova and
databases or the similarity between games and dbs. In Nicola Ferro and Letizia
Tanca, editors, SEBD, pages 271-276. Edizioni Libreria Progetto, Padova,
Italy, 2012.

Giuseppe Maggiore, Fabio Pittarello, Michele Bugliesi, and Mohamed Abbadi.
A compilation technique to increase x3d performance and safety. In Proceed-
ings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12,
pages 969-974, New York, NY, USA, 2012. ACM.

Giuseppe Maggiore, Alvise Spano, Renzo Orsini, Giulia Costantini, Michele
Bugliesi, and Mohamed Abbadi. Designing casanova: A language for games. In

H. Jaap van den Herik and Aske Plaat, editors, ACG, volume 7168 of Lecture
Notes in Computer Science, pages 320-332. Springer, 2011.

Bibliography 133

[88] Giuseppe Maggiore, Alvise Spano, Renzo Orsini, Michele Bugliesi, Mohamed
Abbadi, and Enrico Steffinlongo. A formal specification for casanova, a lan-
guage for computer games. In Proceedings of the 4th ACM SIGCHI symposium
on Engineering interactive computing systems, EICS 12, pages 287-292, New
York, NY, USA, 2012. ACM.

[89] Giuseppe Maggiore, Pieter Spronck, Renzo Orsini, Michele Bugliesi, Enrico
Steffinlongo, and Mohamed Abbadi. Writing real-time .net games in casanova.
In ICEC, pages 341-348, 2012.

[90] R. Mariani. Garbage collector basics and performance hints.
http://msdn.microsoft.com/en-us/library /ms973837.aspx.

[91] John McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine, part i. Commun. ACM, 3(4):184-195, April 1960.

[92] Wolfgang De Meuter. Monads as a theoretical foundation for aop. In In
International Workshop on Aspect-Oriented Programming at ECOOP, page 25.
Springer-Verlag, 1997.

[93] David R. Michael and Sandra L. Chen. Serious Games: Games That Educate,
Train, and Inform. Muska & Lipman/Premier-Trade, 2005.

[94] Markus Michelbrink. A direct translation of the simply typed lambda cal-
culus into c+-+-templates. http://www.cs.nott.ac.uk/types06/slides/
michelbrink_types_06.pdf, 2006.

[95] 1. Millington. Game Physics Engine Development. The Morgan Kaufmann
series in interactive 3D technology. Morgan Kaufmann Publishers, 2007.

[96] Tan Millington. Artificial Intelligence for Games (The Morgan Kaufmann Se-
ries in Interactive 3D Technology). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2006.

[97] Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348-375, 1978.

[98] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55—
92, July 1991.

[99] Hector G. Molina, Jennifer Widom, and Jeffrey D. Ullman. Database System
Implementation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

[100] Joel Moses. The function of function in lisp or why the funarg problem should
be called the environment problem. SIGSAM Bull., (15):13-27, July 1970.

[101] Hubert Nguyen. Gpu gems 3. Addison-Wesley Professional, first edition, 2007.

http://www.cs.nott.ac.uk/types06/slides/michelbrink_types_06.pdf
http://www.cs.nott.ac.uk/types06/slides/michelbrink_types_06.pdf

134

Bibliography

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

Michael Oneppo. Hlsl shader model 4.0. In ACM SIGGRAPH 2007 courses,
SIGGRAPH 07, pages 112-152, New York, NY, USA, 2007. ACM.

J. Orkin. Agent architecture considerations for real-time planning in games.
Artificial Intelligence, 38(4):105-110, 2005.

Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell.
O’Reilly Media, Inc., 1st edition, 2008.

K. Pallister. Game Programming Gems 5. GAME PROGRAMMING GEMS
SERIES. Charles River Media, 2005.

J. Palme. SIMULA 67: An advanced programming and simulation language.
Publication. Norsk regnesentral, 1970.

Craig Peeper and Jason L. Mitchell. Introduction to the directx 9 high level
shading language. In Wolfgang Engel, editor, ShaderX2: Introduction and
Tutorials with DirectX 9. Wordware, Plano, Texas, 2003.

Steve Peterson. Next-gen consoles mean increased devel-
opment costs. http://www.gamesindustry.biz/articles/

2012-04-03-next-gen-consoles-mean-increased-development-costs,
2012.

Simon Peyton Jones et al. The Haskell 98 language and libraries: The revised
report. Journal of Functional Programming, 13(1):0-255, Jan 2003. http:
//www.haskell.org/definition/.

Simon L. Peyton Jones and Philip Wadler. Imperative functional program-
ming. In Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL 93, pages 71-84, New York, NY,
USA, 1993. ACM.

Matt Pharr and Randima Fernando. GPU Gems 2: Programming Tech-
niques for High-Performance Graphics and General-Purpose Computation
(Gpu Gems). Addison-Wesley Professional, 2005.

Michael Philippsen, Bernhard Haumacher, and Christian Nester. More effi-
cient serialization and rmi for java, 2000.

Benjamin C. Pierce. Types and programming languages. MIT Press, Cam-
bridge, MA, USA, 2002.

http://www.gamesindustry.biz/articles/2012-04-03-next-gen-consoles-mean-increased-development-costs
http://www.gamesindustry.biz/articles/2012-04-03-next-gen-consoles-mean-increased-development-costs
http://www.haskell.org/definition/
http://www.haskell.org/definition/

Bibliography 135

[115]

[116]

[117]

[118]

[119]
[120]
[121]
[122]
[123]

[124]

[125]

[126]

[127]

[129]

[129]

A. Reed. Learning XNA J.0. O’Reilly Series. O'Reilly Media, Incorporated,
2010.

Aaron Reed. Creating Interactive Fiction with Inform 7. Course Technology
Press, Boston, MA, United States, 1st edition, 2010.

John Rice. Assessing Higher Order Thinking in Video Games. Journal of
Technology and Teacher Education, 15(1):87-100, January 2007.

Jason Della Rocca, Hank Howie, Steve Meretzky, Joe Minton, Kent Quirk,
and Tracy Rosenthal-Newsom. In the trenches: game developers and the quest
for innovation. In Proceedings of the 2006 ACM SIGGRAPH symposium on
Videogames, Sandbox ’06, pages 9-11, New York, NY, USA, 2006. ACM.

J. Russell and R. Cohn. Gamebryo. Book on Demand, 2012.
J. Russell and R. Cohn. Renderware. Book on Demand, 2012.

Barbara G. Ryder, Mary Lou Soffa, and Margaret Burnett. The impact of
software engineering research on modern progamming languages. ACM Trans.
Softw. Eng. Methodol., 14(4):431-477, October 2005.

C.P. Schultz, R. Bryant, and T. Langdell. Game Testing All in One. Game
Development Series. Thomson/Course Technology, 2005.

C.A. Shaffer. A practical introduction to data structures and algorithm anal-
ysis. Prentice Hall, 1997.

Peter Shea. Review of 'the complete guide to simulations & serious games’ by
clark aldrich. eLearn, 2009(11), November 2009.

Tim Sheard, Zine-el-abidine Benaissa, and Emir Pasalic. Dsl implementation
using staging and monads. In Proceedings of the 2nd conference on Domain-
specific languages, DSL "99, pages 81-94, New York, NY, USA, 1999. ACM.

Jeremy Siek and Walid Taha. A semantic analysis of c++ templates. In
Proceedings of the 20th European conference on Object-Oriented Programminyg,
ECOOP’06, pages 304-327, Berlin, Heidelberg, 2006. Springer-Verlag.

W. Stevens, G. Myers, and L. Constantine. Classics in software engineering.
chapter Structured design, pages 205-232. Yourdon Press, Upper Saddle River,
NJ, USA, 1979.

Chris Stoy. Game object component system. In Michael Dickheiser, editor,
Game Programming Gems 6, pages 393-403. Charles River Media, 2006.

Gregory T. Sullivan. Advanced programming language features for executable
design patterns "better pattern through reflection", 2002.

136

Bibliography

[130]

131]

[132]

[133]

[134]

[135]

[136]

137]

[138]

[139]

[140]

R S Sutton and A G Barto. Reinforcement learning: An introduction, 1998.

Qing Tang and Jesse S. Jin. Compressed video transmission over digital net-
works: analysis and design. In Selected papers from the 2002 Pan-Sydney
workshop on Visualisation - Volume 22, VIP ’02, pages 97-100, Darlinghurst,
Australia, Australia, 2002. Australian Computer Society, Inc.

Mads Torgersen. Querying in c¢#: how language integrated query (linq) works.
In Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy
L. Steele Jr., editors, Companion to the 22nd Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada, pages
852-853. ACM, 2007.

Todd L. Veldhuizen. C++ templates are turing complete. Technical report,
2003.

Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40-44, January
2009.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’89, pages 60-76, New York, NY, USA, 1989.
ACM.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’89, pages 60-76, New York, NY, USA, 1989.
ACM.

Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM
conference on LISP and functional programming, LFP ’90, pages 61-78, New
York, NY, USA, 1990. ACM.

Philip Wadler. The essence of functional programming. In Proceedings of
the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL 92, pages 1-14, New York, NY, USA, 1992. ACM.

Gerhard Weikum and Gottfried Vossen. Transactional information systems:
theory, algorithms, and the practice of concurrency control and recovery. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

Walker White, Christoph Koch, Johannes Gehrke, and Alan Demers. Better
scripts, better games. Commun. ACM, 52(3):42-47, March 2009.

Bibliography 137

[141] Maurice V. Wilkes, David J. Wheeler, and Stanley Gill. The Preparation of
Programs for an Electronic Digital Computer, with Special Reference to the
EDSAC and the Use of a Library of Subroutines. Addison-Wesley, 1951.

[142] Jason Wilson. Indie rocks! mapping independent video game design. Media
International Australia Incorporating Culture € Policy, (115), 2005.

[143] Glynn Winskel. The formal semantics of programming languages: an intro-
duction. MIT Press, Cambridge, MA, USA, 1993.

|144| L. Wittgenstein. Philosophical Investigations. Basil Blackwell, Oxford, 1953.

[145] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Program-
ming Guide: The Official Guide to Learning OpenGL, Version 1.2. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition, 1999.

[146] E. Yiskis. Finite-state machine scripting language for designers. AI Game
Programming Wisdom 2, 2003.

138 Bibliography

A

Building a Menu System

In this appendix we discuss how Casanova may be extended in order to support a
menu system. Menus are ubiquitous in games, since they allow the player to perform
choices about the way they wish to play the game. Menus often contain at least
options such as starting a single player or multi-player game, creating a new game
or continuing a saved one, and editing the game settings.

Menus in Casanova could be defined already with no modification, as described
in the following. The game world only contains the current page of the menu:

type World = {
CurrentPage : Var<GamePage>
+
member this.ActualWorld =
match this.CurrentPage with
| Game(w) -> w
| _ ->
failwith "Cannot,getygameyworld, from menu,pages."

type GamePage =
| Pagel of MenuPagel
Page2 of MenuPage?2

PageN of MenuPageN

|
[
|
| Game of ActualWorld

The various menu pages can set each other in the game world from their scripts,
until the actual game is activated which runs the actual simulation. Since most of
the game entities will then need to access the game world, we provide an unsafe
property in the game world which assumes that the game is in session and which
returns the actual game world for ease of access. This is unsafe, since accessing the
game world from any menu page and not from the game page itself would result in
an exception and then a crash of the game.

Similarly, we could declare the game world as:

type World = {
CurrentPage : GamePage

+

rule CurrentPage =

140 A. Building a Menu System

Where the CurrentPage rule checks if the current page needs to be changed
without recurring to scripts.

This system is sufficiently expressive to create menus of any kind, but it has two
severe shortcoming: (i) it requires matching on the game world to obtain the actual
game world, for each rule of each entity that uses it; this is an expensive operations
that should be avoided, and which may even cause bugs if the current page is not
the game page; (i1) it does not support pause menus that can suspend and resume
the game without significant effort by the developer.

We can define a new system that supports arbitrarily nested menus and which
makes it transparent to the developer the fact that some game pages are stacked
(like the pause menu), and that when they are closed then the previous page must
be restored.

Instead of defining directly the start_game function that instances the game
world, its scripts, and runs, we now define a series of "smaller games", one for each
page of the menu and one for the game itself. The various pages can of course
communicate between each other in order to jump from one page to the other or in
and out of the game. Each page now has a start_page function that acts almost
exactly as the start_game function, but with one major difference: it may take
additional parameters that are specified by the other pages when they instance the
current one. Each page also contains its own definition of the game world (for that
page), its own scripts, and its own input management routines (which may be shared
through a common library when sufficiently similar). Different files may be used to
split the various pages in the project. For example, in a game where

type Pagel = { ... }
let start_pagel

type Page2 = { ... }
let start_page?2

type Page3 = { ... }
let start_page3

type World = { ... }
let start_game =

We then define a series of mutually recursive scripts that represent the whole
menu; these scripts are mutually recursive because each script needs to be able to
invoke the others in order to navigate pages. Page navigation is done with new
Casanova functions that implement most of the menu system. These functions all
take as input a start_page function, and they are: (i) set_page to set the current
page; (ii) push_page to add a new page to the stack of active pages, suspending the

141

evaluation of the scripts of the previous page; (iii) pop_page to remove the current
page and restore the previous one. By using currying on the start_page functions,
it becomes possible to make the various pages communicate with each other, for
example passing to each page some parameters that specify different operations to
perform, or even passing them whole scripts that recursively activate other pages.

As an example, consider the simplistic case of a game with a main menu which
launches the game, which can be paused by the user. We define the start_page
functions so that they take as input the coroutines that perform the menu transi-
tions, and nothing else since there is no further information that any menu page
needs from the others. The main script of the game, which is run at the launch of
the game, instantiates the main menu to which it passes the script that starts the
game:

let rec main_menu =
co{
do set_page (start_main_menu game)

¥

and game =
coq
do set_page (start_game main_menu pause_menu)

}

and pause_menu =
co{
do push_page start_pause

}

Notice that the start_pause function does not takes as input any scripts, since
when the pause menu is closed it just invokes the pop_page function which then
restores the game page.

Pushing and restoring is performed easily enough by saving the world, the update
function, the draw function, and the running scripts of the current page. One
important detail to consider though is that all the timer functions must now be
made aware of the fact that time was suspended for a page, so the pushing back of a
page also requires saving the current total time of that page, instead of relying on a
global timer. If this is not done, then problems may arise if a page is restored after
a long wait. For example, waiting operations would poll the current global timer
of the program right after the page is resumed, but the amount of time elapsed
between the last tick of those scripts and the current one would risk being too high
and the waits would terminate right away and continue into their next statements.
The game would thereby behave as if the pause was just a very long tick of the game
loop, and not the freezing of the game that the user expects.

142 A. Building a Menu System

B

Networking in Casanova

In this appendix we describe the Casanova extension that allows supporting net-
worked games. This appendix starts by identifying the problem of creating net-
worked games, it then describes how games solve the problem, and finally it outlines
our solution.

Note that in the following we assume a host-client architecture where an author-
itative host maintains the most updated version of the game world, and clients rely
on the host to send them the updated game world at regular intervals.

B.1 Networking and games

Networking in games is a difficult problem to solve [37]. Multiplayer requires the
ability to synchronize the players game states so that they all see the same game in
action, within the following set of requirements: (i) synchronization has to happen in
real-time; (7i) communication cannot be blocking and synchronous or the player will
have the feeling that the game has frozen during blocking calls, for example to send
local input to the game host; (7ii) reliable channels cannot be employed because they
use too much bandwidth; (iv) old information often needs to be discarded, because
entities update so quickly that their status is transmitted multiple times.

We define the problem of networking in terms of a known problem called eventual
consistency [134]. We are not interested in creating a game where at every instant
of the game all distributed players see exactly the same thing. Rather, we wish for
the game instances to all work correctly, with minimal errors, but also with appar-
ently immediate responses and smooth working. From this point of view then, it
is not crucial that synchronization is perfect, and local predictions are allowed and
even desirable. We must leave room for imprecise synchronization with periodic cor-
rections, instead of designing and inflexible and low-performance mechanism which
ensures perfect synchronization.

Networking code also presents further problems. A general-purpose solution
to creating multiplayer games has not, as of now, been presented. We argue this
to be due to the fact that such a solution is heavily dependent on how the game
world is actually represented, its layout, and its semantics. Without some degree of
understanding of the game world structure it is very hard to create a networked game
automatically. The best efforts in this direction are not related to games, and use
reflection in order to wholly and reliably transfer a data structure across a network

144 B. Networking in Casanova

[113]. These solutions are not feasible for games since they are low-performance,
they use too much bandwidth in ensuring that all the data comes through, and they
do not account for the fact that the same datum will be transmitted again very
soon, or that it was transmitted some time before and thus parts of the previous
transmission should be reused.

Our experience also shows that networking code also pollutes the game sources,
hindering their readability. The game logic and rendering, which maintain useful
properties about our entities, often need to be accompanied by data about the
networking protocol. Networking related data will often contain at least: (i) a
unique ID to identify the entity across the various distributed instances of the game;
(7i) the amount of time since the last transfer of a value in order to decide when
to send it in full again; (i73) whether or not an entity has been received by the
last transmission for the occasional reliable transmission such as very important
game events. Over time, networking attributes become many, and even with careful
encapsulation they end up adding noise to the rest of the game code, which loses
maintainability and readability.

B.2 Common solutions

The general architecture of networked games is the following [37]: (i) the host
maintains the game state by locally updating it as if it were a single player game;
(77) the client periodically receives updates so that its game state matches the host;
(7ii) the client sends input commands to the host, which applies them to its local
game world, and which will then send the resulting changes as part of the next
updates.

The most common techniques that are used in games are related to the two main
problems of lag compensation and bandwidth reduction [37].

Lag is described as the amount of time between a value changes on the host and
the client being able to witness that change, and vice-versa. Lag is compensated with
interpolation and extrapolation. Extrapolation amounts to predicting, for example
with splines, where the host entities will be based on their local history. Interpolation
on the other hand purposefully maintains the client behind so that the interpolation
is done between values of the entities that the host confirmed as valid; this means
that updates from the host are not incorporated all of a sudden, trading immediate
synchronization for a smoother experience. Lag is also compensated by predicting
the result of an action locally on the client. For example, when shooting an enemy,
we could send the shot to the host which then sees if the shot impacts an enemys;
verifying a hit that appeared on the client is then unlikely if the enemy was moving,
since the delay between the actual shot and the check done by the host often implies
that the target is not anymore where the client saw him when he shot. To avoid
this, the client sends to the host not only the shots, but also the local hits, and the
host simply verifies that the target is not too far away to avoid cases of excessive

B.3. Networking in Casanova 145

lag for the player who is shot, who in extreme cases may even feel as if he is being
hit through cover.

Bandwidth in networked games is often a problem, since there may be a lot
of entities (such as in an RTS game), or there may be few entities that move and
change state very often (such as in a shooter, a racing game, etc.). Bandwidth can be
reduced with a few techniques for data compression. Simplistic forms of compression
involve for example sending normals as two floating-point values instead of just one,
or sending integers as single bytes when we can be sure that the values are sufficiently
small. Bandwidth can also be saved by incremental transfers. Since the world is
synchronized in real-time, we can be certain that some information does not change
entirely; we can thus skip re-sending data that does not change often enough, or
that can be predicted accurately enough on the client. By sending the full world
only at large intervals, and then synchronizing the difference between the last full
version of the world and the current one, we could reduce bandwidth even more [[]

B.3 Networking in Casanova

Our objective is that of automating, as much as possible, the generation of network-
ing code for multiplayer games. For example, starting from an entity such as:

type Ball = {

Position : Vector2<m>
Velocity : Vector2<m/s>
Sprite : DrawableSprite
} rule Position(self,dt) = self.Position + dt * self.Velocity
rule Sprite.Position(self) = self.Position * 1.0<pixel/m>

We would like the system to automatically infer that: (i) when the entity is
created it needs all the information about the ball, such as initial position, velocity,
and sprite properties; (i) the ball may be safely updated by the clients, with an
occasional sanity check from the host that overrides the predicted local values with
the most up-to-date values; (iii) the sprite may be updated fully locally, that is the
host does not need to send any value apart from the initial ones.

We absolutely do not wish for our entities to change their definition, so we do
not accept the addition of a new field or new rules only for rendering. We accept
that some rules or fields may need to be marked with attributes and meta-data, so
for example we could make the ball predict locally but also synchronize all of its
attributes, excluded the sprite, by writing:

[<Predict; SynchEvery(3.0s)>]
type Ball = {
Position : Vector2<m>

I This technique is very similar to video compression with I-frames (sending the whole game
world) and P-frames (sending only the delta) [131].

146 B. Networking in Casanova

Velocity : Vector2<m/s>
[<PredictOnly >]

Sprite : DrawableSprite
} rule Position(self,dt) = self.Position + dt * self.Velocity
rule Sprite.Position(self) = self.Position * 1.0<pixel/m>

The above listing does not require these annotations, unless the developer wishes
to change the default behavior which is the safest to assume (no prediction, syn-
chronization every 0.1 seconds). With these annotations the developer may control
all parameters regarding the transfer of values across instances of the game, without
having to write them himself.

The main scripts are not synchronized, because the host scripts modify its game
world which is then synchronized to the various clients. The client scripts do not run
locally, since they would risk creating undesired interference with the host script.
The input scripts, on the other hand, need to run on both the host and the client.
Each input pair of scripts is marked as either local, synchronized, or both. Local
input scripts are run only on the local machine, the host or the client, without
synchronization. The synchronized scripts are run locally on the host, but when
their event detection script is triggered on the client then instead of running the
response on the client itself the host is notified and it runs the response remotely;
the results of the response will appear on the client through the synchronization of
the game world. Finally, certain scripts will run their responses both on the host and
on the client whenever they happen, in order for example to allow faster response
times on the client.

We have built a prototype implementation that shows this approach in action.
We use the Lidgren networking library [15] to handle connections and low-level de-
tails such as sending primitive values (integers, floating point numbers, etc.) across
these connections. The developer simply specifies which instance of the game is the
host and which other instances are clients. Upon connection, the host starts sending
the game world to the clients at regular intervals. The clients, on the other hand,
receive the game world, run their local prediction scripts and rules, and send the
input events to the host.

The prototype is currently working. Figure shows the bouncing balls sample
in action, where we see that blue balls are generated by the client input, the red
balls are generated by the host input, and the white balls are generated by the host
script.

B.4 Future work

Networking in Casanova is part of an appendix rather than the main work mainly
because it is still incomplete. The implementation of the networking framework
is still underway, and there is still not enough data to draw some conclusions and
perform comparisons with other systems. Networking still requires an in-depth study

B.4. Future work 147

Figure B.1: Networking sample

148 B. Networking in Casanova

of how to perform faster exploration of the game world with reflection (as discussed
in Chapter . Also, further optimizations such as updating some fields upon local
update only, probabilistic updates from the host that take into account expected
reliability of transmission to estimate which clients need what data, and a tracking
server to move networked games on the Internet instead of limiting ourselves to local
networks are being worked on.

C

A General-purpose Al for
Casanova

A general Al for games is difficult to build. This difficulty stems from the fact that
game Als have different requirements, from very tight performance constraints, to
the ability to deal with rapidly changing situations, and even to the need of looking
smart and challenging while at the same time being beatable by the player.

Current technology is such that most non-playing characters are little more than
"animated wallflowers", with the inability to autonomously engage the player or
achieve their own goals.

We believe that there is now the opportunity to create simulations of realistic
agents showing complex and unpredictable (though always reasonable) behaviors
through Goal Oriented Action Planning. We believe GOAP to be a general-purpose
technique that enables agents that, while being smart enough to deal with in-game
situations in unpredictable ways, can still be controlled by setting their goals as the
designer wishes.

In the remainder of the appendix we show how we have used Goal Oriented Ac-
tion Planning (GOAP) [104] to create agents that exhibit rational-looking planning.
GOAP is a planning architecture designed for controlling autonomous characters
in games, originally used in games for F.E.A.R. by Monolith Productions [75] but
coming from the even older work STRIPS [58].

GOAP presents some important challenges when applied to more than a very
small set of actions to be planned, given the combinatorial explosion of the search
space of the main algorithm. Our main contribution is to show how the use of a
layered system of GOAP planners (which we have aptly named LGOAP) can give
rise to coherent plans that span long periods of game time, and which effectively
plan dozens of actions for reaching the final goal. We also discuss how modifications
can be added to this basic LGOAP in order to enable agents to learn from their
environment, deal with incorrect assumptions, refine subsequent planning sessions
and enable the emergence (and active planning) of cooperative behaviors.

C.1 Activities

The virtual world contains a series of objects. Objects are the backbone of the
simulation, since they define the set of available actions for a user. An object is

150 C. A General-purpose Al for Casanova

defined as a location, its available activities, and the agents that are using it at the
moment.

The location of the object is, of course, where it is (at the moment: some objects
may move, such as trains, bikes, groceries, etc.). The activities of an object are
a series of actions that may be performed by an agent. For example, if a certain
workplace only opens between 08:00 and 17:00 for its workers, but cleaners may
clean it in the evening, then we may have the following activities:

{ (work,(mon,08:00,9h),(tue,08:00,9h),...)
(clean,(mon,18:00,2h),(tue,18:00,2h),...) 1}

Activities have preconditions and consequences. Preconditions are defined as a
series of predicates that must be verified in order to perform the action; the agent will
have to build plans such that each precondition is met before performing the desired
action. Preconditions may be about the agent statistics, location, or certificates.
Example preconditions for performing the work action at the office may be:

health is good; works at office; is at office

Post-conditions represent changes to the agent statistics or certificates. For ex-
ample, the work activity may leave the agent with more money, but also more
stressed, hungry, and tired:

money := money + 100,stress := stress +

0.1,
hunger := hunger - 0.2,sleep := sleep - 0.1

C.2 Agent stats

An agent is modeled after the traditional BDI paradigm of beliefs, desires, and
intentions [6I]. The beliefs of an agent mirror the agent’s understanding of the
consequences of an action, particularly with regard to expected costs and benefits.
Scenarios that require learning can be built such that the agent plans are non-
optimal because of wrong beliefs. An agent desires to maximize his happiness and
well-being, while minimizing the costs associated with doing so. Happiness is defined
by the system designer, and can include anything ranging from prolonged survival,
to performing certain actions, or reaching a goal. The agent’s intentions are rep-
resented by his planned sequence of future actions. Intentions may be dynamically
adapted and revised in order to react to a changing scenarios.

In this section we mostly discuss the desires of the agent as represented by a
series of internal statistics. Beliefs are discussed in Section [C.7] since beliefs are
represented by the agent’s learned responses of the environment. Intentions are
discussed in Section since planning and then executing one’s plan is the very
definition of having intentions.

Formally, an agent is defined as a location, statistics, and certificates:

C.2. Agent stats 151

<agent> ::= <location>,<stats>,<certs>

Location simply defines where the character is located in the virtual world, that
is his current x and y coordinates. Statistics define a series of internal values that
change as the character performs actions, and which represent a continuous descrip-
tion of the general status of the agent. A statistic is defined as a value, a series of
thresholds, and a series of responses. The value is simply a number between 0 and
1 that represents for example how hungry the character is, with 0 meaning starved
and 1 meaning full. Agents are not all the same, and have different thresholds of
attention for each statistic, and also different costs and benefits obtained from per-
forming certain activities. Thresholds are used to transform the continuous value of
statistics into discrete predicates which are then used by the planner. For example,
a user who gets hungry easily may define his thresholds to hunger as:

{ 95% — good; 50% — ok; 25} — bad }

Responses represent how much more (or less) than the agents’ standard responses
an agent obtains benefits or incurs penalties when performing an activity. For
example, an agent who dislikes working in general but who likes working as a teacher
could have responses for the stress statistic such as:

{ work — 200%; work.teach — 25Y% 1}

The above means that if the agent is merely performing some work, then he will
suffer twice the stress of a regular character, but if he teaches then his stress will go
as low as one-quarter of the default amount. Of course having a stress statistic and
a work activity is just an example, since stats and activities are highly dependent
on the simulation.

Responses and thresholds may radically change how an agent plans. Plans will
always be correct, in that if a plan exists such that it allows the agent to reach
the goal then the planner will find it; the planner though will first explore those
plans that are "liked" by the agent, and so thresholds and responses may change
the solution found.

Finally, certificates are a series of tokens that represent ownership of virtual
objects, such as weapons, a home, money, etc. Some activities require that the agent
owns the appropriate certificate in order to be performed, and the planner will have
to take care of planning the actions to obtain a given certificate before performing
the actions that require it. For example, eating may require the ownership of food,
working may require having a job, traveling to a distant star-system may require
knowledge of the right warp coordinates, and so on.

Agents represent their social relationships as a series of additional statistics, one
for every other agent to model a relationship with; an agent may also have certificates
that represent special relationships such as married to, boss of, and so on which
define discrete modifiers for certain social interactions.

152 C. A General-purpose Al for Casanova

C.3 Naive GOAP

We start with a description of the naive version of the GOAP algorithm. The
algorithm requires only a queue of partially explored action plans that are expanded
by adding available actions to them until a plan that satisfies the original goals is
found. An action is only added to the working queue when the previous actions in
the queue verify its preconditions. Satisfactory plans are then added to the solutions
queue, which is then used to extract the best plan at the end of the algorithm. The
algorithm in pseudo-ML could be described as:

compute_best_plan() =
Q = [a | a <- empty_plan.next_available_actions ()]
S = [1
while Q <> [] do
plan = Q.dequeue ()
if plan.satisfies_goal() then
S.add plan
else
for a in plan.next_available_actions() do
Q.enqueue(a::plan)
if S = [] then
return null
else
return S.dequeue ()

The queue S stores solutions in decreasing order according to a metric that
represents the (expected) distance from the final goals. If the actions monotonically
decrease the distance from the goals, then we can sort solutions in Q according to
distance from the goals, and the algorithm can simply return the first solution it
encounters:

compute_best_plan() =
Q = [a | a <- empty_plan.next_available_actions ()]
while Q <> [] do
plan = Q.dequeue ()
if plan.satisfies_goal() then
return plan
else
for a in plan.next_available_actions() do
Q.enqueue(a::plan)
return null

In our case though, we do not have a definite goal except the maximization of
stats. This means that a reasonable metric could simply be the cost-to-benefit ratio:

plan.value () =
benefit = mul [a.benefit() | a <- plan]

C.4. Heuristic pruning 153

cost = mul [a.cost() | a <- plan]
benefit / cost

The benefit of an action is computed as the weighted sum of all the stats that
increase as a consequence of that action, while the cost is computed as the weighted
sum of all the stats that decrease times the duration of the action. Notice that
instead of multiplying costs and benefits, which would yield approximation errors,
we use a log-sum to increase numerical precision.

C.4 Heuristic pruning

The complexity of the algorithm as described above is very high; if we have a
maximum number N of actions that we are planning for, or if we know that there
is a satisfactory plan of N actions, the complexity is O(N*) where k is the number
of available actions at each step. Planning for the long term may require dozens or
even hundreds of actions, and the resulting search space would simply be too big to
be explored in real-time.

Just like human beings do not consider absurd plans, though, plans that only
accumulate actions with very high costs and no benefits at all after many actions
do not really need to be considered. For this reason, before adding a new plan into
the queue we check if it is reasonable according to a heuristic that removes plans
that are either deadly or which have an excessive cost. Deadly plans are defined as
those plans that take one or more statistics below the death threshold, for example
because of starvation. Excessively costly plans are defined as those that take more
than a certain number of actions M (to avoid pruning too early) and which value is
smaller than a minimum value e:

plan.reasonable () =

cost = mul [a.cost() | a <- planl]
return not_dead(self.stats + cost) &&
(plan.length <= M || plan.value() > ¢€)

This way even though we risk pruning some plans that incur too many costs in
the beginning, we greatly reduce the size of the plan space by removing plans that
feature only travel or pointlessly long repetitions of costly actions. Also, we may
explicitly prune plans that "run in circles", that is we may add a boredom stat to
agents such that agents refuse to consider plans that require very long sequences
of "uninteresting" actions. This trims loops and other useless plans on which the
planner would waste a lot of exploration effort.

154 C. A General-purpose Al for Casanova

C.5 Acting out plans

After planning, we define how a character follows his plan. A plan is a sequence of
actions, where each action has certain requirements. During planning we assumed
the consequences of our actions to be predictable, so that we could put the actions
in the right sequence to unlock the requirements for desirable future actions with
past actions. Unfortunately planning cannot foresee perfectly what the responses of
the world will be (unless the simulation is completely deterministic and there are
no other agents), and so the same conditions that must be verified for planning are
verified before (and in some cases during) the execution of every action. When an
action preconditions are not met, then the planner is run again in order to create
a new plan that takes into account the unexpected situation. Also, by storing the
expected costs and benefits (or a likely range of values) of each action in the plan then
we can compare this estimate with the actual results; when the actual results are
outside the expected values, both too bad and too good, we trigger a new planning
phase to avoid acting out plans that were too optimistic, and thus may lead to bad
consequences, or too pessimistic and thus wasteful.

C.6 Layered GOAP

The goals of our agents are long-term. To give our characters the ability to correctly
plan for the long term we must be able to reduce the search space far more than
what can be done with simple heuristics: the longer the plans, the harder it gets to
efficiently find plans or (perhaps as importantly) to stop searching when no adequate
plan is found. Moreover, aggressive pruning often forces the agent into local minima.
To address the problem, we have built a framework that combines multiple layers
of GOAP, which we have christened LGOAP (Layered GOAP); each layer restricts
the search space for successive layers, but plans at a lower granularity. The system
may use as many higher-level layers for planning up to (virtual) months or years
ahead as needed. Each layer creates a plan roughly of the same size as more precise
layers, but it covers a different time span. The last layer plans precise actions in
detail, but only for a very short time-span (it may be a few hours in a simulation,
or it may be a few minutes in a game where the scenario changes in real-time very
quickly such as a fighting game or a shooter). Similar hierarchical approaches have
been seen in computer graphics [82], path-finding [47], and even Al itself [69].

This means that the full planner is defined as a series of layers. The first layer
plans for the longest span of time, while successive layers recursively refine its plan
until finally then n-th layer (the last one) finds the concrete plan. Each layer contains
an instance of the GOAP algorithm and a time-span for which to build the plan.
Layers successive to the first also have a series of constraints that come from the
previous layer(s); constraints are a pair in the form of an overall goal for the plan,
and a series of allowed action-sets to which the search is restricted for the various

C.6. Layered GOAP 155

layer1 goal

layer4

Planningtime

Figure C.1: Four layers planner

time slots. A goal is simply a series of weights that are used to compute the benefit
and the cost of an action. An example four-layered architecture is shown in Figure
[C.T} the first layer compute the steps until the final goal, but each step cannot be
acted out directly and requires more planning; the second and third layers computes
the steps that cover only part of the overall plan, but these steps are more specific
and realize multiple steps of the overall plan; the final layer computes the actual
sequence of actions that the agent performs, but these actions only cover a short
time span. Fortunately, the short time span of the concrete planner are coherent
with the overall plan thanks to the layered system.

Higher layers thus do not plan in detail; they simply plan a series of requirements
that successive layers must take into account when performing their planning. Re-
quirements steer the planning by modifying the weight of certain statistics, in order
to make the planner more aware of certain statistics that change. For example, if
the weights from a previous planner are:

<money=0>,<f00d=0.1>,<stress=3.0>

Then an action plan that makes the character spend a lot of money but decrease
his stress level a lot will be perfectly acceptable, since the higher-level planner has
instructed successive layers to ignore the costs associated with decreasing the amount
of money. We can refine our model further by specifying two different weights, one
for the benefits and one for the costs.

This way we are still accepting plans that increase money or reduce hunger, but
if we get a chance to decrease stress at the expense of either hunger or money then
the plan will have a very high score. Weights are determined because the actions
that the higher-level planner decides for can yield a wide range of benefits, but the
planner will decide exactly what benefits are relevant and which actions are allowed
only because they may be needed by the lower-level planners to create a working
plan.

Higher-level planners also have the chance to restrict the set of available actions
for successive plans. This restriction states the sets of allowed actions for each time
slot, so that successive planners will have to restrict their search to combinations

156 C. A General-purpose Al for Casanova

of these actions. For example it may be reasonable to have the following block of
actions:

walk ,take-bus,drive,take-train ,work,eat,chat

The lower-level planner can then combine them in a sequence where the user
walks to the bus station, then takes the bus, then walks to work, then does his
workday, and then leaves work:

walk ,take-bus,walk ,work,chat ,work,eat,
work ,chat ,work ,walk,take-bus,walk

All these restrictions are actions that are designed by hand for the appropriate
layer. When a planner cannot find a working plan that supports the requirements
of the higher-level plan, then the higher-level layer re-plans by taking into account
the new situation it has to plan from.

C.7 Learning Expected Costs and Benefits

The simulation is intended to be partially unpredictable, in order to provide unex-
pected situations to the agents. For example, the take-train activity may have
probabilistic pre-conditions that represent the fact that the train may be late; also,
the train may not take any more passengers if more than 100 people have boarded
it already. The pre-conditions for taking the train may then be:

money > 10,p > 0.99, passengers < 100

Surprises then emerge from the simulation, for example traffic jams or trains
and buses that are too full, thereby creating unpredictable situations that should be
learned by the agents in order to obtain a more effective behavior.

To make agents resilient to change, we give them the ability to learn. Learning
means that an agent stores a table of statistical models for actions in general, and for
the same actions when performed with specific conditions (such as time or location).
These statistical models store some distribution of the expected results of actions,
in order to be able to better estimate the most likely range of the benefit and cost
of an action for accurate planning. A very simple estimator for learning costs and
benefits simply records the actual cost and benefit of an action and stores them in
a rolling average and variance:

avg’ = a * x + (1.0 - «a) * avg
var’ = a * (x - avg) * (x - avg’) + (1.0 - a) * var

More complex estimators could use a wealth of traditional statistical and machine
learning techniques such as [130, [74], etc.

With this new definition, agents can learn that an apparently valid action that
often incurs in a penalty should be recorded as having a higher cost than expected,

C.7. Learning Expected Costs and Benefits 157

since it has a bigger chance of failing. For example, an agent who often arrives
among the last agents to board a full train can learn that this specific train, only
for him, does not yield the expected benefit. He may then plan to board a different
train at a different time, or to use some other means of transportation.

Similarly, we can define agents that model no-knowledge in terms of worst- (or
best-) case scenarios, creating initial tentative plans that are then tried and refined
while learning useful notions for re-planning.

The learning system means that while planning, each action yields a range of
expected results. This means that we have cost and benefit as the two ranges
respectively ¢, ¢, for the cost and b;, b, for the benefit. We have multiple ways to
combine these ranges into a ratio: (i) the pessimist algorithm simply takes the worst-
case ratio of f—f of the lowest benefit and the greatest cost; (i) the optimist algorithm
takes the best-case ratio of %‘; (i1i) the average algorithm takes the average ratio

of lc)‘ﬂ, where by,y = % (and similarly for the cost); and (iv) the distribution
avg

algorithm that maintains the joint distribution of costs and benefits in case we used

some form of statistical learning technique, or to merge intervals in a new interval

that uses (i) and (i) as its bounds.

C.7.1 Learning Whole Plans

Our framework supports agents capable of forming habits by storing whole plans
that they executed in the past. When a plan is built and performed, then we
compare its expected benefits with the actual benefits. We discard plans that do
not have a sufficiently high reliability, that is even if a plan performs great but in
an unexpected way (that is within more than a ¢ value within the expected gains
or losses) then we will not save this as a good plan; of course we still use our new
knowledge as described above to steer the planner towards the actions of this plan,
but the whole plan is not considered successful. We maintain a working memory
of old, successful plans with their associated resulting benefits. Before planning for
a certain set of goals and limitations, we check the working memory to find the
best known plan that realizes the goals and stays within the required limitations
as dictated by the higher-level layers. If there is one or more plans that fill these
needs, then we pick the best one and we skip the whole planning phase, otherwise
we plan as usual. Since planning is done in real-time, this gives us agents that can
create habits through which they get much faster planning whenever they can avoid
re-thinking the same plan.

After an old plan is executed then we can compute a rolling average (or some
other, more accurate estimation) of its reliability; this gives us a way to maintain the
reliability of plans in a changing environments. It is important to pick a technique
that does not suffer too much from the presence of a rare occurrence (which should
be treated as statistical noise), but which is capable of adapting to trends in the
game world events.

158 C. A General-purpose Al for Casanova

C.7.2 Learning and Layers

Higher-level plans need a way to specify the sets of actions allowed for a certain time
block, in order to give freedom to the lower-level planners to combine these allowed
actions sets into more specific sequences. The action-sets may be designed by those
who build the concrete system, but doing so risks forcing the system to behave
along some predefined "rails" when the action-sets are not expressive enough. If
this happens, then the higher-level layers would be too much constrained, and they
would not be able to reach good plans, but instead they would force the lower-level
layers along their same constraints and sub-optimal strategies. Alternatively, we
can let the system sort out the most useful action-sets by storing the actions that
happen together most often. This amounts to an ulterior form of learning, since
the agents will learn how to plan at a higher-level; moreover, this makes it possible
to have characters who start by only planning for a few days at a time, but who
gradually learn how to plan for a longer time-span.

C.7.3 Implicit Social Interactions

The learning system steers social interactions because as actions are performed, the
learning abilities of an agent learn the social consequences of the various actions.
For example, an agent may learn that since another agent he likes is often present
at work on Monday morning, then Monday mornings are learned to also give a
boost to social interactions for no additional costs. This steers the planner towards
going to work at that time slot even if it may be possible to do so at other times,
because going to work in that time slot is also beneficial to social interactions. Social
interactions may also make a character avoid performing actions in certain places
and at certain times because doing so would be learned to be associated with meeting
disliked agents that would then result in a cost for the social statistics.

To represent social relationships, a matrix of each pair of agents is maintained
by the system. The matrix, which is sparse because many agents do not know
each other, contains the relationship between two agents. The relationship between
agents is an index that goes from -1 (dislike), through 0 (neutral), to 1 (like). The
relationship index is used to compute a multiplier for the social costs or benefits of
an action. Characters automatically develop a social index by performing actions
together and in vicinity. The initial social compatibility can be determined by a
function on the agents personal attributes, which are their tolerance thresholds and
their responses from their environment, or by different forms of defining an agent
profile. Social compatibility may be defined as similarity or dissimilarity, and may
even be defined by an initial randomization of likes and dislikes among agents.

C.8. Assessment 159

Figure C.2: Case study

C.7.4 Explicit Social Interactions

When characters like each other enough, that is more than a certain threshold, then
they may choose to do some social activity together. The social activity is added to
the higher-level planner at a slot that is compatible for both agents. Compatibility
is measured as a positive weight for social interactions (that is in that slot it is
desirable to have social interactions), and expected geographical distance. If the
social interaction fails, then the relationship index is decreased; in case of a successful
meeting, on the other hand, the relationship index is increased significantly.

C.8 Assessment

To test our system, we devised a case study that offers a challenging environment for
our agents. The system is still under construction and it is currently missing some
important features, in particular learning and social actions. The most relevant part
of our method though, layered planning, has been implemented and put to the test
with satisfactory results.

In our game (depicted in Figure a pirate ship has to leave the pirate lair
to raid the surrounding planets. These planets have different strengths and yield a
different reward (loot). Not all planets can be reached right away: before traveling
through some planets the ship needs to raid other planets that contain star charts
required to reach the goal. The case to be solved is constructed in such a way that
the ship will have to go back to the pirate lair to repair and upgrade as it progresses,
and will have to refuel frequently at an ulterior location.

The actions available to our pirate ship are move, raid, repair, upgrade, and
refuel. The number of actions for a plan that can reach the goal are approxi-
mately 100, even for such a deceptively simple scenario, yielding a search space of
approximately 100° possible plans, given that at every step there are on average 5
available actions that may be taken next. We have tested successfully more difficult

160 C. A General-purpose Al for Casanova

12

® ® o o
v T "
0.8 77 : R
Defenses
0.6
Fuel
04 :: E :. E N ‘:- Loot
o ; :) Health
i seeeneees i B *— Power-ups
02 ! 4
rs AVAVA VL. ¥
0 e e e T

99 :
106
113
12057
127

p)
29
36
IEE
50 -
57
64
7
78
85
9 -

15

Figure C.3: Ship stats

scenarios that require even more overall actions because of the higher number of
planets arranged in a much-larger grid, but we believe that the case presented here
is already sufficiently challenging.

Each action has strict requirements, such as having enough fuel and the required
star charts for moving to a planet, having enough loot to upgrade and so on. This
still leaves many exploration options intact though, especially with regard to when
to refuel, repair, and upgrade.

The current system uses two layers. The first layer plans the order in which to
attack the most important planets (refueling stations and star chart owners), and
the required upgrades that are needed in order to attack those planets when they
are too powerful for the ship. The second layer realizes these plans to obtain these
goals in the required order.

The performance of the planner is such that it is possible to perform planning
in real-time. Plans are computed in less than one frame (at 60 frame per second)
on a 1.8Ghz Intel Core Duo, given that plans compute few actions at a time thanks
to the layering system.

The scenario offered in our case study is challenging because to reach the goal
there is no single monotonically increasing stat or utility value that the ship can
use to steer itself. Additionally most of the stats change in a chaotic fashion during
the execution of a successful plan. Although keeping these stats high may appear
desirable (for example health, fuel and loot) sometimes these must be sacrificed for
long periods of time in order to reach well-defended, distant planets.

In Figure [C.3] it is possible to see the graph of the different stats associated
with the spaceship during the simulation. The health ("Defenses") and fuel stats
are continuously sacrificed to reach planets and do battle; defenses also gradually
increase as the pirate ship performs upgrades ("Health power-ups"), as evidenced
with the dotted vertical lines. Loot is accumulated but also spent in order to buy
power ups. The first and third power ups are single, while the second and fourth
are double and thus yield an even stronger increase in statistics.

C.9. Missing and implemented 161

12

0.8

F’ = Defeated bases
0.6
I_r' == == Owned star-charts
0.4 | Max defenses
j_’_ -_ =1
0.2 !

0)
SO ~NUL M A AN NN M

Figure C.4: Ship goals

In Figure it is possible to see the global goals, as achieved by the higher-level
layer. This layer is the one responsible for planning long-term actions, and in fact
we can see that the number of defeated bases, the number of owned star charts, and
the defensive abilities of the ship are increased monotonically. Most notably, the
success in achieving global goals is quite slow, and many actions could easily but
wrongly be classified as useless by other Al systems since they do not yield a visible
global advantages but they yield significant immediate disadvantages.

Finally, by lowering or increasing the agent thresholds we generate plans that
are still valid (those that kill the ship are always rejected), but where the ship is
ruthless and aggressive and accepts to remain damaged and under-fueled for long
periods of time, or very conservative and repairing and refueling very often.

As a final loose note it is interesting to observe that the resulting behavioral
pattern is very similar to that of a human player playing an RPG game, where the
player alternates exploration/combat sessions with resting sessions at the closest
town. The very same behavior automatically emerges from our system, thereby
giving us added confidence in the quality of the technique, since we did not give any
hints whatsoever that this was the desired result, instead letting the system deduce
its usefulness.

C.9 Missing and implemented

Our system will be extended with two major additions that we were unable to imple-
ment in time for this work: learning and adaptive planning and social interactions
between agents. Learning would equip our agents with the ability to adjust their
planning by including feedback from the execution of earlier plans, thereby creating
an adaptive planning system able to deal with incomplete knowledge. Layers them-
selves could be learned, for example by finding common sequences of actions that
occur often in lower-level layers that can then be grouped and considered a single

162 C. A General-purpose Al for Casanova

action. Social interactions would make it possible for our agents to plan actions
to perform together when it is advantageous to do so. Such interactions could also
include coordinating group actions such as team fighting. Such a social framework
could also make use of a layering system for handling groups of agents that must
each behave reasonably but in a coordinated fashion. Additionally the ability to
mix this planner with more traditional control structures for Als, such as decision
trees, neural networks, finite state machines, etc. would make it possible to have
agents capable of more convincing local reactions to unexpected situations, such
as a "fight-or-flight" reflex that does not leave the agent vulnerable to immediate
dangers while planning for a full response.

Last bu not least, as soon as the planner reaches a definitive shape it will be
added to Casanova in the form of a library, an extension to the language, or both.

D

Casanova and Data-bases

In this appendix we present a novel observation: many game development problems
may be already solved in a field which, at a first glance, may appear utterly unre-
lated: databases. The field of databases already contains a large body of relevant
research works which simply needs to be studied and adopted by game developers.
Casanova indeed draws much inspiration from modern database systems and tries to
apply some of their wisdom to game making. The language aims at offering a series
of abstractions and optimizations that allow a developer to specify only certain core
aspects of a game logic and visualization, without concerning himself too much with
boilerplate code such as state traversal or query optimizations, exactly in the spirit
of a modern relational DBMS.

Interestingly enough, Casanova is not alone in its effort. There is at least one
other research effort of linking database research with game development; this work
has yielded the SGL language [140], an experimental game development language
which uses SQL queries to define the way the various entities of the game world
are updated at each time-step of the simulation. SGL may be unsuitable for larger
scale problems, since it offers no techniques to model the game world and entities,
but the underlying optimizations and expressivity of the framework are undeniably
powerful and require virtually no effort on the part of the game developer in order
to obtain important speedups.

D.1 The Game World

The logical simulation of a game starts at the first step of the creation of a new
database: modeling (or conceptual schema definition). A game consists, at its core,
of a series of concepts and their relationships. These describe the semantics of a
game world and represent a series of assertions about its nature. Specifically, these
concepts describe the things of significance to the game, about which we are inclined
to collect information, and characteristics of (attributes) and associations between
pairs of those entities (relationships). Most entities are in the plural, and thus
require being stored in tables or collections.

After defining the data model of the game world, game developers must define
the dynamics of the game, that is how each game entity is updated at every tick of
the game loop. The game dynamics are, at the core, a series of rules that define how

OThis chapter is partially derived from the paper [85].

164 D. Casanova and Data-bases

each entity (or, better, each attribute of each entity) is updated during each tick. A
major point of difference between games and databases lies in the frequency of the
dynamics of the system: the game world is updated about once every sixtieth of a
second to achieve a smooth simulation, instead of waiting for user-initiated events;
indeed, a large number of changes in the game world are entirely automated and

occur even without direct user interaction over time, for example because of physics
or AL

Some of the game dynamics simply require to update "small" values, such as a
position and a velocity from a velocity and acceleration respectively. Other game
dynamics require more sophistication. For example, rules may be used to popu-
late lists or other composite data-structures according to complex, deeply nested
computations.

Certain attributes of a Casanova game entities store "pointers" to other game
entities. These attributes are marked as ref, thereby representing referential con-
straints (foreign keys) [99] between different entities; with references we define at-
tributes which contents are not to be updated during a tick.

Rules are treated as transactional operations [I39] in order to ensure the con-
sistency of the game world. This means that all rules are evaluated on the game
world at a certain time-step and then all their results are written, at the same time,
into the new game world. This way all rules behave in a predictable way and no
rule ever "sees" the game world halfway between different ticks of the simulation.
Moreover, this enables a very important optimization: evaluating rules in parallel
with different threads so as to speed up the simulation, thus freeing computational
power to animate more entities or use more complex algorithms.

Rules that recompute lists or collections also present an additional optimiza-
tion opportunity on operations that compute a Cartesian product between two lists,
which if it were naively computed would have quadratic complexity. By using op-
timization techniques such as a hash-join or similar the complexity becomes much
lower. Our benchmarks [16] suggest improvements of an order of magnitude in the
run-time efficiency of the entire simulation when applying query optimization tech-
niques. Moreover, this process of optimization could be entirely optimized, whereas
game developers still write such faster algorithms by hand every time they encounter
the problem [95].

Rules and queries are not always the best abstraction to represent the way a game
world evolves itself over time. For this reason we have added to Casanova a scripting
system, which is decidedly akin to a system of triggers and stored procedures (where
triggers may also be timers or user actions).

D.2. Persistency, Saving Gamesand Multiplayer Games 165

D.2 Persistency, Saving Games
and Multiplayer Games

A game world requires some persistency. Persistency comes into play both in single-
player games and multi-player games. Single-player games require persistency be-
cause the overall playing experience of a game takes longer than a single play session,
and so the game state requires serialization on persistent memory. This process,
known as save and load allows a player to suspend the current state of the game
on disk, in order to be able to resume playing the game later without losing his
progress.

A more complex case where the game world is persistent is that of multiplayer
games. Multiplayer games have two different sets of problems to tackle: (i) syn-
chronizing the game world in real-time between different clients; and (i) reliably
storing a persistent world and all the players’ data.

Synchronization of the game world between many clients and the game server (or
host) must happen in real-time, but each client needs a responsive experience. For
this reason most modern games employ client-side prediction and lag-compensation
algorithms [40], that is all operations that need to modify the host’ game world but
which are initiated locally by a client always appear to succeed on the client but are
instead sent to and then validated by the host. This amounts to a form of eventual
consistency [134], given that temporary misalignment is tolerated between host and
client, but we offer guarantees that eventually such a misalignment will be fixed by
the system.

The problem of storing a persistent, huge world for many players (massively
multiplayer games such as EVE or World of Warcraft feature up to tens of thou-
sands of concurrent active players) requires hybrid in-memory/on-disk databases
with very quick access and supporting up to hundreds of thousands of concurrent
accesses. To reduce the scope of these technical challenges the game world is some-
times segmented into different copies of the world, grouping players by geographical
region, but other games such as EVE Online feature different techniques such as a
hierarchical structure of distributed servers to avoid segmentation and offer a single
persistent game world.

166 D. Casanova and Data-bases

E

Casanova in Other Languages

In this appendix, we discuss the conceptual prototypes that we used to define the
Casanova semantic model. The ideas presented here could also be adapted in order to
bring Casanova to other systems that feature similar meta-programming capabilities.

We start by introducing Haskell type classes [71], which we used to understand
how to explore data-types inductively to generate functions. We then outline how we
could have used those for implementing Casanova, a project that we never finalized
in practice because of the lack of (as perceived by us) high quality gaming libraries
for Haskell. We then discuss C+-+ partial template specialization [126], a meta-
programming feature that we have used to build a working prototype of Casanova
in C+-+, together with a sample game for testing purposes.

At a first glance, it may appear peculiar that C+-+ templates and Haskell type
classes are lumped together in the same appendix. Interestingly though, there is
evidence [39] that the expressive power of Haskell type classes may be matched by
that of C+-+ templates with partial specialization. The biggest difference between
the two may be that C++ templates do not offer a way to name the predicates that
a type parameter must satisfy in order to be used in a given class (concepts [63]
were proposed but then removed from the latest standard of the language). From
our point of view this means that C++ offers a less constrained version of the same
functionality, with more freedom to express complex patterns E], but also with more
problems associated to unforeseen interactions between different libraries.

E.1 Haskell and type classes

Type classes are constraints that are added to type variables in parametric poly-
morphic types. Such constraints are in the form C a, where C is a type class and a
is a type variable. The constraint is such that all the operations that C defines must
be supported by any type a that is used to instantiate the polymorphic type. This
amounts to a form of ad-hoc polymorphism [136].

A very simple usage of type classes, and historically one of their first uses in
the Haskell programming language, was that of implementing overloaded arithmetic
and equality operators without recurring to ad-hoc implementations such as the

lwithout resorting to complex type-system hacks such as some auxiliary type predicates as used
in [78] (which is a brilliant piece of work notwithstanding)

168 E. Casanova in Other Languages

"eqtypes" of Standard ML. Type classes are now used in many different contexts
beyond their original uses [110].

E.1.1 Overview

A type class is defined as a set of function or constant declarations, in the form of
name and type pairs. The type class then represents a set of actual types that all
support at least those functions and constants.

For example, we know that the equality class requires that a certain type supports
the (==) equality operator. We define such class as:

class Eq a where
(==) :: a -> a -> Bool

We could define integers as belonging to the equality type class by instancing
the type class on the integer data-type and providing an implementation for the
equality operator that explicitly uses the integer equality function:

instance Eq Integer where
X ==y = 1integerEq x y

Type classes may also be used inductively; for example, given the definition for a
binary tree, we may define equality for a tree in terms of the equality of its elements:

instance (Eq a) => Eq (Tree a) where

Leaf a == Leaf b = a ==
(Branch 11 r1) == (Branch 12 r2) = (11==12) && (ri==r2)
== = False

This ability to define type classes for parametric types in terms of the same
classes applied to their parameters proves crucial in implementing Casanova.

E.1.2 Advanced uses

Type classes may operate on types of any kind E], not just *. For example, the
monad type class works on types of kind * -> * such as List, Maybe, etc. which
all expect exactly one type parameter:

class Monad m where
(>>=) :: ma -> (a ->mb) ->mbd
return :: a -> m a

Type classes can also be used with multiple type parameters, in order to define
relations on types. For example, consider the definition of an algebraic multiplication

2In type theory, a kind is the type of a type constructor. A kind system is essentially a simply
typed lambda calculus "one level up", endowed with a primitive type, denoted * and called "type",
which is the kind of any data type. [114]

E.1. Haskell and type classes 169

system, where we want to support the following multiplication operations between
matrices, vectors, and numbers:

(*) :: Matrix -> Matrix -> Matrix
(*) :: Matrix -> Vector -> Vector
(*) :: Matrix -> Int -> Matrix
(*) :: Int -> Matrix -> Matrix

We may define a type class for this scenario as follows:

class Mult a b ¢ where
(¥*) :: a ->b -> ¢

instance Mult Matrix Matrix Matrix where

{- ... -}

instance Mult Matrix Vector Vector where

{- ... -}

Unfortunately we are missing an important aspect of the multiplication operator:
the third parameter is determined by the first two, without ambiguity. We can state
this in Haskell by specifying the dependencies between the type parameters:

class Mult a b ¢ | a b -> ¢ where
(¥x) :: a ->b -> ¢

Similarly, type families [79] allow us to define type-level computations that are
performed at compile time. This may be used by a Casanova implementation to
define the decorated version of the user-provided type for the game world with
additional attributes for rendering, networking, etc.

E.1.3 Casanova in Haskell, a sketch

Casanova requires us to apply functions such as update and draw generically to
all data types. This requires a uniform representation of data types. Except for
basic predefined types such as Float, I0, and ->, every data type can be viewed
as a labeled sum of possibly labeled products [67]. We can thus define a series of
data-types for this encoding that distinguish between sums and products of types
with the possible addition of labels:

data a :+: b = Inl a | Inr b

data a :x: b = a :*%: b
data Unit = Unit
data Con a = Con a

data Label a = Label a

170 E. Casanova in Other Languages

Notice that in Haskell a type constructor may be in operator form, so the above
has defined two new parametric data types which are named :+: and :*:. We can
now define arbitrary data-types in terms of the above definitions; for example, we
may write lists or trees as:

type List’ a = Con Unit :+: Con (a :*: (List a))
type Tree’ a = Con Unit :+:

Con a :+:

Con (Tree a :*: (a :*: Tree a))

The set of types that can be defined with explicit structure-representation is iso-
morphic [67] to the set of types, as witnessed by a so-called embedding-projection
pair that is capable of converting values of a type into values of its structure-
representation type and vice-versa. The embedding projection functions are the
inverse of each other.

For example, for the List data type we can define the conversion functions as:

fromList :: List a -> List’ a
fromList Nil = Inl (Con Unit)
fromList (Cons a as) = Inr (Con (a :*: (fromList as)))

tolList :: List?’ a -> List a
tolList (Inl (Con Unit)) = Nil
toList (Inr (Con (a :*: as))) = Cons a (to List as)

Variants of Haskell, such as the Generic Haskell compiler, can automatically
generate the translation of a type to its structure-representation type, together with
the corresponding embedding-projection pair [68].

We can use instances on the structure-representation constructors to define, for
example, the update function in Casanova so that the world is traversed one field at
a time, treating separately Casanova references and rules. The world is represented
by type parameter w, while entities are represented by type parameters that begin
with e:

update{lw :: x|}
(update{lel}) => w -> e -> float -> e

update{|Unit |} w Unit dt = Unit
update{|lInt|} w x dt = x
update{lChar|} w ¢ dt = ¢
update{|Rule el} w (Rule e r) dt =

Rule ((r w (update{lel} w e dt) dt) r)
update{|Ref el} w (Ref e) dt = Ref e

update{lel :+: e2|} w (Inl el) dt
Inl (update{lel|} w el dt)
update{lel :+: e2|} w (Inr e2) dt

E.2. C++ and partial template specialization 171

Inr (update{le2|} w e2 dt)

encodeq{lel :*x: e2|} w (el :*: e2) dt =
update{|lel|} w wl dt :*: update{le2|} w w2 dt

update{|Label 1 el|} w (Label e) dt =
update{lel|} w e dt

update{|Con c el} w (Con e) =
update{lel|} w e dt

Notice that in the above, the update function takes as input the game world and
the current entity to be updated. The concrete update function is chosen first by
the type of the entity (this choice happens statically at compile time), and secondly
by the value of the entity in those cases where it may have multiple shapes, thus
most notably when e is a sum type. When we encounter a rule, then we apply the
function associated with that rule to the world (which is recursively passed on to all
leaves) and to the update version of the current rule value itself.

Similarly we can define the draw function, which we omit as it is almost identical,
the main difference being that instead of applying rules it stores the list of active
layers, to which it adds the various entities. The list of layers found in the game
world is then drawn to screen.

Noticeably, Casanova scripts can be implemented in Haskell with the very same
monadic structure that we have described in the main work. We omit this one as
well, in this case not because of its triviality (we argue monadic coroutines to not
be trivial at all), but because the monad presented in F# can be easily translated
into its Haskell equivalent.

E.2 C++ and partial template specialization

Partial template specialization is used to specialize only some arguments in a class
template. Alternatively, partial specialization may refer to the ability to specialize a
class for certain values or shapes of some type arguments. This is opposed to explicit
specialization of all arguments at the same time. The choice of which specialization
of a class to consider is done through pattern matching on the known arguments,
choosing the more specific specialization possible at every step.

Partial specialization is solved recursively; this means that templates may im-
plement arbitrarily complex control flow structures such as conditionals, recursion,
etc. Templates are so expressive that they form a Turing Complete programming
language that is wholly executed at compile time [133]. Interestingly, the language
they represent is a pure functional language with no side effects [94].

For example, we could define a simple class that, through partial specialization,
computes at compile time the factorial of a number (specified at compile time):

T

172 E. Casanova in Other Languages

template <int N> struct
Factorial {
static const int value = N * Factorial<N - 1>::value;

3
// Base case via template specialization:

template <> struct
Factorial<0> {
static const int value = 1;

};

In general partial template specialization may be used to recursively explore
types with pattern matching on their shape. The exploration results in methods,
values, and even new data-types that are generated. All of this happens at compile-
time and thus has no cost on run-time efficiency.

E.2.1 Casanova rules

Casanova in C+-+, at its core, makes heavy use of partial template specializa-
tion to explore recursively the data-types that make up the world. The explo-
ration is done by three different classes through mutual recursion: EntityUpdater,
FieldsUpdater, and RuleApplier. The entity updater recursively invokes itself
on the entities contained inside the current entity. For example, when a pointer is
encountered, then the entity updater dereferences the pointer and recurses on the
pointed value:

template<class W, class E>
struct EntityUpdater<W, ptr<E>>

{
static void Update(W &w, ptr<E> &e, float dt)
{
EntityUpdater<W,E>::Update(w, *e, dt);
b
}s

When the entity updater encounters a list or a tuple, then it recurses on all the
values contained inside the list or the tuple:

template<class W, class E>
struct EntityUpdater<W, list<E>>
{
static void Update(W &w, list<E> &e, float dt)
{
for(auto i = e.begin(); i !'= e.end(); ++1i)
EntityUpdater <W,E>::Update(w, *i, dt);

E.2. C++ and partial template specialization 173

}
};

template<class W, class El1, class E2>
struct EntityUpdater<W, tuple2<E1l,E2>>

{
static void Update(W &w, tuple2<E1,E2> &e, float dt)
{
EntityUpdater<W,E1>::Update(w, e.iteml, dt);
EntityUpdater<W,E2>::Update(w, e.item2, dt);
}
};

Upon encountering a type that must not be explored anymore, for example a
primitive type or a reference, then the entity updater simply does not recur:

template<class W, class E>
struct EntityUpdater<W,Reference<E>>
{
static void Update(W &w, Reference<E> &e, float dt) {}
3

template<class W>
struct EntityUpdater<W, int>
{ static void Update(W &w, int e, float dt) {} };

When the entity updater encounters a rule, then the current rule value is looked
up and updated:

template<class W, class E>
struct EntityUpdater <W,Rule<E>>

{
static void Update(W &w, Rule<E> &e, float dt)
{
EntityUpdater <W,E>::Update(w, *e, dt);
}
};

Finally, if the entity updater cannot match the current entity with any of the
cases above, then e is assumed to have a general case with a single field of the entity
called fields which is in a structure-representation format similar to that described
above. The fields of the entity are then updated with the fields updater class:

template<class W, class E>

struct EntityUpdater

{
static void Update(W &w, E &e, float dt)
{

174 E. Casanova in Other Languages

FieldsUpdater<W,E,decltype(e.fields) >::Update(w, e, e.
fields, dt);
b
};

It is the responsibility of the FieldsUpdater class to check if the fields of the
entity have a rule associated, and if so to invoke the appropriate rule functions to
apply the rules of the entity. Then the fields updater invokes the entity updater on
the (now updated) fields. For example, the update for pairs is implemented as:

template<class W, class E, class X, class Y>
struct FieldsUpdater<W,E,tuple2<X,Y>>
{
static void Update(W &w, E &e, tuple2<X,Y> &f, float dt)
{
RuleApplierO<X,W,E,tuple2<X,Y>>:: ApplyRule(w,e,f,dt);
RuleApplier1<Y,W,E,tuple2<X,Y>>::ApplyRule(w,e,f,dt);
EntityUpdater<W,X>::Update(w, f.iteml, dt);
EntityUpdater<W,Y>::Update(w, f.item2, dt);
b
};

The rule applier simply checks the type of the field that it has to apply. If the
field type is Rule<X> for some X, then the corresponding rule function is invoked,
otherwise the fallback case is invoked which simply does nothing:

template<class X, class S, class E, class Y>
struct RuleApplierO<Rule<X>,S,E,tuple2<Rule<X>,¥>> {
static void ApplyRule(S &s, E &e, tuple2<Rule<X>,Y> &f,
float dt)
{
f.iteml = e.RuleO(s,e,dt);
}
};

template<class X, class S, class E, class F>
struct RuleApplierO {

static void ApplyRule(S &s, E &e, F &f, float dt) {}
};

E.2.2 Casanova scripts

Coroutines are implemented with separate classes for each operator supported: from
return, to yield, to parallel and so on. All such classes also implement an
interface that represents a generic script so that different scripts may also be lumped
together by casting them to a common base type; if static information is available

E.2. C++ and partial template specialization 175

though, script execution is inlined by the compiler, sometimes resulting in better
run-time performance.

The common interface is name IEventually and represents a generic computa-
tion that may, eventually, return a result of type A after repeated invocations of its
Step method. The computation may be restarted with the Reset method, which is
used for example for defining loops in order to repeat the execution of the statements
that make up the body of the loop:

template<class A>

struct IEventually {
virtual Option<A> Step() = 0;
virtual void Reset () = 0;

};

We return a result with the Result class, which simply stores the result to return
that is then given back with the Step method:

template<class A>
struct Result : public IEventually<A> {
typedef A Returmned;

A x;
Result () {}
Result (const A& x) : x(x) {}
virtual Option<A> Step() { return Option<A>(x); 7}
virtual void Reset () {}
};

Similarly, Yield returns a result of type unit, but requires exactly two separate
invocations of the Step method to do so; the first step simply sets a boolean flag that
is used to determine if the first step has been performed. When the step function
is invoked for the second time, then the step function will signal completion to its
caller:

struct Yield : public IEventually<Unit> {
typedef Unit Returmned;

bool done;
Yield() : domne(false) {7}
Option<Unit> Step() {
if (!done) {
done = true;
return Option<Unit>();
} else return Option<Unit>(Unit ());
}

virtual void Reset() { done = false; }

176 E. Casanova in Other Languages

Most of the work done by our coroutine system though is performed by the
sequentialization operator, called Combine (a variation of bind). Combine takes as
input two coroutines, prog of type P and cont of type K. When stepping, if prog is
not finished then we invoke its step function; otherwise, we invoke the step function
of cont:

template<class A, class B, class P, class K>
struct Combine : public IEventually {
typedef B Returmned;

bool prog_done;

P prog;

K cont;

Combine () {3}

Combine (const P& prog, const K& cont) : prog_done(false),
prog(prog), cont(cont) {}

virtual Option<Returned> Step() {
if (prog_done)
return cont.Step();
else {
auto res = prog.Step();
if (res.HasValue)
{
prog_done = true;
return Step();
} else
return Option<Returned>();

virtual void Reset ()
{
prog_done = false;
prog.Reset () ;
cont .Reset () ;
b
s

E.2.3 Asteroids game

The world definition for the asteroids game defines all entities in terms of a field,
called fields, which contains a single value of one of the predefined types such
as tuple, rule, list, etc. This field is essentially the structure-representation of the
entity itself. We then define properties with readable names to access the fields in a

E.2. C++ and partial template specialization 177

more programmer-friendly manner. Rules are named incrementally Rule0, Rulel,
etc. and are referred to the fields inside field. For example, the asteroid entity is
defined as:

struct Asteroid {
tuple3<Rule<Vector2>, Vector2, Rule<ref<list<weak_ptr<
Projectile>>>>> fields;
ptr<DrawableModel <PositionRule, CameraRule>> appearance;

static Vector3 ModelPosition(AsteroidsGameState& world,
Asteroid &a, float dt);

static ptr<IDrawableCamera> ModelCamera(AsteroidsGameState&
world, Asteroid &a, float dt);

const GetRuleProperty<Vector2>
Position;
const GetTupleFieldl<Rule<Vector2>,
Vector?2,
Rule<ref<list<weak_ptr<Projectile>>>>>
Velocity;
const GetRuleProperty<ref<list<weak_ptr<Projectile>>>>
Colliders;

static Vector2 RuleO(AsteroidsGameState
&s, Asteroid &e, float dt);

static list<weak_ptr<Projectile>> Rule2(AsteroidsGameState
&s, Asteroid &e, float dt);

Asteroid(Vector2 position, Vector2 velocity);

T

The main script is constructed (quite verbosely) in stages, since putting all the
listing together created type-inference problems with the compiler; this happened
because our prototype was built under an early version of the Microsoft C+-+ com-
piler for Visual Studio that did not support all the features of C+-+11, since the
standard was (at the time) still under construction.

We define the asteroid creation script, and then the projectile creation script,
and we run them together in parallel in the entities_creation script. We then
define the user input scripts and run them in parallel, and the input scripts plus the
entities creation scripts, when run in parallel, finally become the main script for the

game [}

’auto asteroids_creation =

3Notice that, inline with the Haskell tradition and to save from writing too many combine
operations by hand, we have redefined the »= operator so that it takes as input a coroutine and a
lambda function that returns its continuation coroutine to which the first is bound.

178 E. Casanova in Other Languages

repeat (
wait_rand (0.1f, 1.0f) >>= *x([=]1() {
world->AddAsteroid(
ptr<Asteroid>(
new Asteroid(
Vector2(((rand () % 800 - 400) / 25) #* 25, 400),
Vector2(0,-50 - rand() % 50)))); }));

auto projectiles_creation =
repeat (
wait_condition ([=]1() { return !KeyboardState::IsKeyDown (
VK_SPACE); 1}) »>>=
wait_condition ([=]() { return KeyboardState::IsKeyDown (
VK_SPACE); }) >>= x[=1() {
world->AddProjectile(
ptr<Projectile >(
new Projectile(
Vector2 (world->Cannon()->X(), -200),
Vector2(0,200 + rand () % 200))); });

auto entities_creation = parallel(asteroids_creation,
projectiles_creation);

auto cannon_move_left =
repeat (
wait_condition ([=]() { return KeyboardState::IsKeyDown (
VK_LEFT); }) >>= *[=]1(0) {
world ->Cannon () ->MoveLeft (); });

auto cannon_move_right =
repeat (
wait_condition ([=]1() { return KeyboardState::IsKeyDown (
VK_RIGHT); }) >>= *x[=10) {
world ->Cannon () ->MoveRight (); });

auto cannon_movement = parallel(cannon_move_left,
cannon_move_right);

return parallel(
entities_creation,
cannon_movement))) ;

E.2. C++ and partial template specialization 179

E.2.4 Remarks

The implementation of Casanova in C++ works in practice, can be run and tested,
and even achieves acceptable performance. It can be found in the C++ folder under
the sources in the Casanova implementation [6].

This said, it is important to notice that the implementation is absolutely not
intended as a high-quality implementation. We argue that easier, cleaner, and more
idiomatic ways could be found that use template meta-programming to achieve the
same goal we did. We remark that this implementation served us for the single
purpose of answering the question "Can it be done?", rather than to offer code that
could be used in practice. For this reason we have not implemented, among others,
support for integer template parameters instead of hard-coded numbers for rules
and tuples, we have not supported discriminated unions, etc.

Even though the library is merely intended as a proof of concept, it could also
be used as a stepping stone for a better implementation which we plan to build in
the future.

180 E. Casanova in Other Languages

F

A Brief Introduction to F#

Since game development is traditionally done with imperative programming lan-
guages belonging to the mainstream, that is C+-+, Java, C#, Python, etc., we in-
clude here a brief introduction to the syntax and constructs underlying the Casanova
language. This way we gently introduce unfamiliar readers with these underlying id-
ioms. Casanova is based on a syntactic and semantic extension to the F# language,
so this introduction is valid both for Casanova basic concepts and F# itself.

The F# language [30] is a pragmatic functional language that guides (rather than
forces, as other functional languages do) the developer towards functional idioms
while still allowing him to use imperative constructs. This guidance is provided
by offering shorter and cleaner syntactic constructs for immutable values, inline
functions, and functional-style data-types, while variables, classes, inheritance, and
other constructs are accessible but with a more verbose syntax.

In Casanova we also rely heavily on an advanced feature of F# that is known
as monads to define cooperative multi-threading and coroutines. This feature is
explained by itself in Appendix [G]

F.1 let and fun

The main construct for defining values and functions in F# is let. We can bind
values to names by writing let ID = EXPR, where EXPR may be anything ranging
from an integer, a list, a function, etc. F# can also define expressions of function
type with the syntax fun ID -> EXPR, and function expressions may be bound to
identifiers to declare functions with the same let construct:

let x = 5 // x is an integer

let y = "string" // y is a string

let 1 = [1..10] // 1 is a list of integers

let £ = fun x -> x + 1 // £ is a function from int to int
let z = f 10 // z is an integer, namely 11

There is also a shortcut for defining functions that shortens function declaration
and binding by merging them with just one let:

let g x =x + 1

F+# is a functional language. This means that functions may be passed as pa-
rameters to other functions just like any other parameter. For example, we could

182 F. A Brief Introduction to F#

write a function that takes as input another one which is then integrated across an
interval:

let rec integrate f 1 u h =
if 1 >= u then 0.0
else f(1) + integrate f (1+h) u h

Note in the above that the integrate function is considered to be a higher order
function, or HOF, because it takes as input a parameter of function type. Also, no-
tice that the parameters of the integrate function are separated with spaces, instead
of commas. This is known as Currying, and it allows the passing of parameters one
at a time. For example, we could define the unitary increment by only passing the
1 parameter to the add function:

let add x y = x + ¥y
let incr = add 1

Sometimes, when we wish for all the parameters of a function to be passed
together, then we use the familiar tuple-notation:

let add(x,y) = x + y

Scoping in F# is achieved through indentation; for example, we could define a
choice function with conditionals as:

let choose x =
if x = 0 then '"zero"
elif x = 1 then "one"
elif x = 2 then "two"
else
if x % 2 = 0 then "an_even_ number"
else "an_odd_ number"

which performs a cascading series of checks to return a string from an integer.

Notice that, even though F# does not require type annotations, it is not a
dynamically typed language. Type annotations are inferenced by the compiler, so
that the developer does not need to constantly tell the language obvious information
on the types of symbols. This process is known as type inference. Sometimes, for
very complex programs, it may be needed to add type annotations, either because
type inference fails or as a form of documentation. Type annotations take the form
of let ID : TYPEEXPR = EXPR, and the compiler verifies that EXPR is compatible
with the declared type expression TYPEEXPR. For example, we could say:

let x : int = 20
let £ : int -> int = fun a -> a *x 2
let g (b:int) : int = b + 1

The compiler will check type annotations in order to ensure correctness. For
example, the code below would result in a compiler error:

F.2. Lists and sequences 183

let x : int = "20"

F.2 Lists and sequences

F+# offers first-class support to lists and sequences. Lists are declared by listing a
series of values between square brackets. The list that contains the integers ranging
from 1 to 3 is usually defined as:

let 1 = [1;2;3]
let 1 [1..3]

Lists in F# may also be constructed with list comprehensions. List comprehen-
sions allow us to define one or more loops that invoke the yield statement. Yielding
adds a new value to the list. For example, we could create a list of even numbers as
follows:

let evens 1 u =
[for x = 1 to u do
if x % 2 = 0 then
yield x 1]

List comprehensions are a great way to consume other lists; for example, we
could create the Cartesian product between two lists as follows:

let cartesian 11 12 =
[for x in 11 do
for y in 12 do
yield x,y 1

Similar to lists are sequences; sequences are declared and used in the very same
way as lists (writing seq{ ... } instead of [1), but with the important difference
that they are lazy and thus their elements are not stored anywhere all together. For
example, consider the following code:

let cartesian_seq 11 12 =
seq{ for x in 11 do
for y in 12 do
yield x,y 2

Invoking printf "%A" (cartesian 11 12) has the same complexity as invok-
ing printf "YA" (cartesian_seq 11 12), but the first version also allocates all
the elements before printing them, while the second version does not and thus, for
very long input lists, it is faster, starts printing sooner, and uses less memory.

Lists and sequences may also be manipulated with the functions of the List and
Seq modules respectively. These modules contain functions that transform, filter,

184 F. A Brief Introduction to F#

zip, test predicates on, etc. the elements of input lists. For example, we may check
if a list contains a value with the exists function:

[1..10] |> List.exists (fun x -> x >= 5) // evaluates to true
[1..10] |> List.exists (fun x -> x > 15) // evaluates to false

We refer to the official F# documentation for the comprehensive set of such
operators [30].

F.3 Basic type definitions

F+# allows the developer to group data together in tuples and lists. It commonly
happens, though, that the data manipulated by a program is more structured than
what can be captured by lists, tuples, and primitive types alone. For example,
if we treat a 2D vector as a pair of floating point numbers, it may happen that
a distracted developer swaps the two components of the pair, thereby using the
y instead of the x and vice-versa. This can give way to very hard to find bugs.
These problems are solved by correctly naming the portions of our data structures
so that code becomes easier to read. Such a data structure is known as a record,
and is a simple but crucial data structure for organizing the thought around a piece
of functionality. We declare a record as a type name and a series of labels, each
with its own type: type ID = ID1 : TYPEEXPR; ID2 : TYPEEXPR; ... IDn
TYPEEXPR . For example, we could define a record to store a ball as:

type Ball = {

Position : Vector2;
Velocity : Vector2;
Sprite : DrawableSprite;

by

We define an expression of record type as ID1 = exprl; ID2 = expr2;
IDn = exprn. For example, we can create a ball as:

let my_ball =
{
Position = my_position
Velocity = my_velocity
Sprite my_sprite
i

We then access the items of a record with the dot operator, for example by
writing my_ball.Position to access a ball position.

Records are little more than organized tuples where the items of a tuple are
named. Sometimes it may be needed to define a datatype which can assume different
shapes according to the information it represents. As an example, consider a building
in an RTS which may either be a factory, an energy plant, or a research center.

F.4. Variables 185

We model this in F# as a discriminated union, that is a single data type that
may assume the value specified by one of its constructors. Discriminated unions
are declared as type ID = Consl of TYPEEXPR | Cons2 of TYPEEXPR | ... |
ConsN of TYPEEXPR. We could define our building data type as:

type Building =
Factory of UnitKind
| ResearchCenter of Research
| PowerPlant of int

Where UnitKind and Research are custom data-types that further specify what
units or what research a building produces. We create an expression of a discrimi-
nated union type by writing the name of its constructor followed by the parameters
for that constructor. For example, assuming that Soldier is a proper value of the
UnitKind data-type, we could instance a building as:

let my_building = Factory(Soldier)

We use discriminated unions by pattern matching them to see their shape. Pat-
tern matching is done with the match EXPR with construct, which is similar to
a switch statement but which applies to more than just elementary data types.
For example, we could define a function which determines the energy output of a
building as follows:

let energy_yield building =
match building with
| Factory u -> -10
| ResearchCenter r -> -2
| PowerPlant y -> y

F.4 Variables

F+# allows the definition of values with the mutable keyword, that is we could define
an integer variable and modify it with the <- operator as follows:

let mutable x = 100 // x has type integer
x <- 10 // x has now value 10

Record (and class) fields may also be made mutable by writing them as:

type Record = {
11 : T1
mutable 12 : T2
}

Mutable values are somewhat limited. For example, if we pass a mutable value
to a function then the function will receive it as a regular, non-modifiable value.

186 F. A Brief Introduction to F#

Also, mutable values are allocated locally (on the stack or inside the data structure
where they are declared) and never as pointers or references. This means that
mutable values will not be captured by closure inside a function, or that when we
create a list of mutable values then the list will simply copy their contents inside its
various elements, which then are not mutable anymore. To be able to pass variables
around and still let them retain their mutability, we can encapsulate them inside the
specialized Ref datatype, which contains a single mutable value that is looked up
with the ! operator and assigned with the := operator as in the following example:

let x = ref 100 // x is a Ref<int> now, not just an integer
print "%d" !'x // print the value of x, that is 100
x := 10 // x is now assigned to 10

Note that Casanova references are not variables, but rather pointers to other
portions of the game world, and the same function of F# references is performed by
variables that use the Var data-type.

F.5 Units of measure

One last, important, feature of F# is units of measure. Datatypes may be designed
so as to be taggable with a unit of measure that is then used to validate arithmetic
operations with dimensional analysis. This comes useful in games, since many quan-
tities represent physics-related data such as meters, meters per seconds, etc., and
it also comes in handy to distinguish between the current value of an indicator (for
example the health of a character) versus values that represent changes over time
(for example the damage of a weapon expressed in health per second). Units of
measure can be used on any type supporting them, and they are based on the same
syntax used for generic type parameters:

let x = 10.0<m> // x is in meters
let v = -2.0<m/s> // v is in meters per second
let dt = 0.1<s> // dt is in seconds

let x’ = x + v * dt // x’ is in meters
let y = x + v // COMPILER ERROR: cannot add meters and meters
per second

Units of measure may be very useful, especially (but not exclusively) when work-
ing with physical quantities. For example, the Casanova library contains a definition
of vectors that uses units of measure that make it impossible to perform physically
meaningless operations such as adding a vector in meters to a vector in seconds.

New units of measure may be defined in F# as new datatypes with no definition:

[<Measure >]
type mm

F.5. Units of measure 187

The same attribute used for defining units of measure can be used to define
regular datatypes with a unit of measure; for example, we could give a definition of
2D vectors with a unit of measure as:

type Vector2<[<Measure>] ’u> = { X : float<’u>; Y : float<’u>

+

Units of measure must be converted with explicit conversion operations; for
example, we could convert a value in meters into one in kilometers as:

let m_to_km x = x * 0.001<km/m>

where type inference would actually infer that the input value x is a floating
point number in meters.

188 F. A Brief Introduction to F#

G

A Brief Introduction to Monads

In this Appendix we present the meta-programming technique known as monads
[08]. Monads are used to express different ways of interpreting computations,
and their adoption is fueled by their expressive power. Monads are so flexible as
to be able to represent very different computational constructs, ranging from list
comprehensions, to exception handling, to I/0O, to concurrent computations, etc.
[I11, 138, 137]. It may be useful to notice that even though the term "monad"
derives from category theory, the usage of monads in computer science is slightly
different and is more closely related to the concept of strong monad in category
theory [105]. As a side-note, the use of monads has been pioneered in functional
programming languages, but imperative programming languages are starting to use
them, as is the case with C# LINQ [I32] and async/await [52].

Monads are data structures that represent computations instead of just data;
in addition to the monad type, a programmer also defines operations that chain
(or "bind") instances of that type together. Since monads represent computations,
chaining monad instances creates pipelines of data processing. Each chaining action
is decorated with additional rules provided by the monad, so that the programmer
may be saved from the effort of having to write boilerplate code by those processing
rules that are inserted automatically in the pipeline. The granularity of monadic
chaining operations is such that monads are sometimes described in terms of a
"programmable semicolon", that is monads redefine the semantics of a programming
language statement [105].

Purely functional programming languages such as Haskell have pioneered the
use of monads to define sequenced operations such as 10O, stateful memory with
variables, flow control with exceptions, or concurrency. Monads are also used in
languages that already feature the above mentioned constructs, in order to simplify
handling complex operations such as parsing 73|, nondeterminism, continuations,
list processing, and more. In both cases, monads are used to extend a language
without significant changes to the original semantics of the language. Moreover,
since monads can add operations that are centered on the program’s domain logic,
they can be seen as a form of aspect-oriented programming [92].

Formally, a monad is defined as a type-constructor M<’a>, a chaining operation
bind : M<’a> * (’a -> M<’b>) -> M<’b>, and an initialization operation (that
creates instances of a monad) return : ’a -> M<’a>. In most contexts, and in
Casanova coroutines as well, a monad can be seen as an action that will (eventually)
return a value of type ’a. The return operation takes a values from a plain type ’a

190 G. A Brief Introduction to Monads

and inserts it into a monadic container of type M<’a>. The bind operation chains a
monadic value where the final action is chosen based on the result of the previous
actions.

Monad sample We now consider a few standard, basic monads: maybe, list, and
state.

The first sample is the maybe monad, which encapsulates operations that manip-
ulate option types. This automates checking for null values and chaining operations
that may return null results in case of an error or an unhandled case. The maybe
monad is defined simply as type Maybe<’a> = Just of ’a | None. Creating a
value of the maybe monad invokes the Just constructor as follows:

let return x = Just x

Chaining two operations together checks if the first one has returned a null result.
In this case, then the chain cannot proceed and the monad will just propagate the
null value; otherwise, the chain will pass the result of the first computation into the
second and return the seconds’ result:

let bind(p:Maybe<’a>, k:’a->Maybe<’b>) :Maybe<’b> =
match p with
| None -> Nomne
| Some x -> k x

In the following, we will be using the let! notation of F#, that simply translates
into an invocation of the bind operator:

let! x = p in g = bind(p, fun x -> q)

With the let! notation, instead of writing long chains of nested invocations to
the bind and return operators, we can simply use a sequence of monadic bindings.
Such a sequence will often look as if the language supported the monadic construct
as a first class construct, but without necessitating a whole extension to the language
syntax and semantics.

Thanks to the maybe monad we can define chains of operations that may fail
at any time, without having to explicitly check for failure because the monad auto-
matically does so for us. For example, suppose we wish to find an allied ship that is
under attack, and to send one of our ships to the rescue: we need to check if indeed
there are allied ships in distress, and if we have ships available to send. With the
maybe monad, we do not perform any check, and we just write:

maybe{
let! under_attack = allied_ships |> Seq.tryFind
is_under_attack
let! closest_friendly = own_ships |> Seq.tryMinBy (distance
under_attack)

191

do closest_friendly.Target := under_attack.Attackers |> Seq.
head

where Seq.tryFind has signature (’a -> bool) -> Seg<’a> -> Option<’a>,
that is it returns the first item that respects a given predicate, or if no such item
exists then it returns None.

Another common monad is the list monad, which relevance is increased by the
fact that it acts as the foundation for list comprehensions and sequence genera-
tors. The list monad abstracts away those operations that generate a list combining
other lists together. The list monad datatype is the inductive list definition: type
List<’a> = ’a :: List<’a> | [1. The return operator simply creates a list
with a single element:

let return x = [x]

The binding operator takes an input list and an operation that creates a list for
every element of the input list. It applies the operation to all the elements in the
input list, obtaining a list of lists (of type List<List<’b>>). Finally, it returns the
concatenation of all those lists, which is the desired result of type List<’b>:

let bind(l:List<’a>, k:’a->List<’b>):List<’b> =
List.map k 1 |> List.concat

With the list monad, it is very simple to define operations that generate lists
starting from other lists, and other operations. For example, suppose we wish to
transform all the elements of a list by incrementing them by one:

let add_one 1 =
list{
let! x =1
return x + 1

by

Similarly, we could filter away all the elements that do not satisfy a certain
predicate (such as even numbers) from a list:

let remove_even 1 =
list{
let! x =1
if x \% 2 = 0 then
return x + 1

by

The list monad also allows us to easily create Cartesian products, for example
to find all the pairs of colliding asteroids and plasma balls:

let find_colliders asteroids plasma_balls =

192 G. A Brief Introduction to Monads

list{
let! a asteroids
let! p = plasma_balls
if distance(a,p) < 25.0<m> then
return (a,p)

¥

In languages such as F#, the list monad acts as the foundation for list compre-
hensions, a form of syntactic sugar to create lists with easily readable code. For
example, the code above could be rewritten into:

let find_colliders asteroids plasma_balls =
L
for a in asteroids do
for p in plasma_balls do
if distance(a,p) < 25.0<m> then
yield (a,p)
]

With list comprehensions, instead of 1et! ID = EXPR in EXPR we write for
ID in EXPR do EXPR, and instead of return we write yield (see also Appendix
).

List comprehensions also act as the foundation for techniques that evaluate se-
quence operations on a database (LINQ), or in parallel on multiple cores (PLINQ).

The final monad we consider is the state monad. The state monad, which is
quite similar to our coroutine monad, allows us to handle a series of computations
that all access the same global state, without the need to pass this state around
explicitly. The state monad data-type is defined as a function that takes as input
the state, performs some operations on it, and finally returns the new state (which
could be unchanged). The state is returned paired with the result of the stateful
computation:

type State<’s,’a> = ’s -> ’a x ’g

The return operation creates a computation that just returns a certain value;
this operation simply ignores the state received as input:

let return x = fun s -> (x,s)

The bind operator takes as input two stateful computations: one that returns a
value of type ’a, and the other that takes as input the returned value of the first
before performing its own computation:

let bind(p:State<’s,’a>, k:’a->State<’s,’b>) :State<’s,’b> =
fun s ->
let sl,a = p s
in k a s

193

Consider building a small virtual machine that performs certain computations
on its own stack of integers, and where the stack is implicit and is the state of a
state monad:

type CPUState = State<Stack<int>, Unit>

let nop = return()
let push x = fun s -> x::8,()
let pop =

fun (x::s) -> s,()

let add = fun (x::y::8) -> (x+y)::
let sub = fun (x::y::s8) -> (x-y)::
let mul = fun (x::y::8) -> (xxy)::
let div = fun (x::y::8) -> (x/y)::

n n n n

We now have a small interpreter capable of running assembly programs like:

stateq
do! push 10
do! push 5
do! push -3
do! add
do! div

¥

The state monad by itself is of little use in a language that already supports
writing variables and other imperative operations. It becomes far more interesting
when binding or return operations that access the state do so in some "useful"
manner, for example, pausing the computation, adding some synchronization logic
across different threads, and so on.

An important property of monads is that they may be mixed together. The
above sample for the state monad requires that the developer does not perform op-
erations on an empty stack. Such steep requirement, which may lead to unhandled
exceptions, may be relaxed by using a combination of the state and maybe mon-
ads. This way, combining the two monads we may handle exceptions in imperative
computations:

type MaybeState<’s,’a> = ’s -> Maybe<’a * ’s>

The return operation creates a computation that just returns a certain value.
This operation simply ignores the state it receives as input:

let return x = fun s -> Just(x,s)

The bind operator takes as input two stateful computations: one that returns a
value of type ’a, and the other that takes as input the returned value of the first
before performing its own computation. The second computation is invoked only if
the first result is not null:

194 G. A Brief Introduction to Monads

let bind (p:MaybeState<’s,’a>, k:’a->MaybeState<’s,’b>):
MaybeState<’s,’b> =
fun s ->
match p s with
| Just(sl,a) -> k a s
| None -> Nomne

Formal definition Formally, a monad is an embedding of the monadic type sys-
tem (that is, roughly, all types M<’a>) into the underlying type system of the host
language. The monadic type system preserves the significant aspects of the un-
derlying type system, while adding specific features that depend on the monad
implementation.

The monad itself is defined in terms of its Kleisli triple of monadic type construc-
tor, a binding operator, and a unit operator: M, M<’a>->(’a->M<’b>)->M<’b>,
>a->M<’a>. The monadic type constructor is simply the polymorphic monad data-
type. The unit operator maps a value from the underlying type system into the
monadic type system, while decorating the underlying value with the least possi-
ble additional information, thereby creating the "smallest" monadic value that still
preserves the original value. The bind operator usually is explained in terms of four
stages: (i) the monad-related structure is unpacked, generating some (zero, one, or
more) values of the underlying type; (ii) the given function is applied to all those
values, obtaining new instances of the resulting monad; (i) these values are also
unpacked, exposing all the transformed values; (iv) finally, the monad is reassembled
over all the final results, and the final instance of the monad is returned.

Monads are also characterized by two axioms. These axioms guarantee the well-
formedness of a monad, but monads may find use in practice even if the axioms are
not respected. The first axiom concerns the neutrality of the return operator with
respect to bind:

bind ((return x),f) = f x
bind(m,return) = m

The second axiom states that, when binding, then the order of association does
not matter:

bind (bind(m, f),g) = bind(m,(fun x -> bind(f x,g)))

Conclusion To sum up, monads are a powerful meta-programming construct that
allows to extend a language with new features. The granularity of monads means
that the extensions they provide is often smoothly integrated with the host lan-
guage. Moreover, monads can be combined together in order to reap the benefits of
multiple monads in one. Finally, monads are a programming construct that is well-
grounded in theoretical Computer Science. Theoretical studies tell us what axioms

195

a monad should respect in order to be well formed, but they also offer further inspi-
ration. Such inspiration comes in the form of ulterior abstraction mechanisms that
can guide and inspire developers who are building even more general and abstract
mechanisms.

196 G. A Brief Introduction to Monads

Summary

Making video games is made too expensive by the use of inadequate programming
languages that were intended for different uses. Designing proper programming lan-
guages and abstractions for making games would enable cheaper and easier game
development, thereby allowing more teams to build games, enabling existing devel-
opers to make games with less effort, and even making it possible to build games in
a larger scope than before. In this thesis we explore the creation of a novel language
for making games, which we called Casanova. This language allows a developer to
express any aspect of games, as confirmed by our direct experiments.

Game development is an important activity. Its importance stems from multiple
factors, which we describe in Chapter [I} on one hand we have the sheer size of the
entertainment industry, which is comparable to the movie and music industries; on
the other hand we have a large (and growing) list of educational, training, and in
general serious games that have a purpose beside that of diversion. Unfortunately,
game development is very expensive. This has shaped an industry that is
often conservative (many games are just sequels that look almost exactly
like their predecessors) and where only a few players can successfully
complete their games and make a profit (to the expense of innovation
and exploration of serious game mechanics).

Before solving the issue of making game development less expensive, we must
study how it is done and find the common issues that game developers face routinely.
We explore these issues in depth in Chapter 2, where we identify those central aspects
that must be addressed by a game development system or programming language.
These issues will be referenced throughout the remainder of the thesis and will
provide the basis for the evaluation of our work.

Of course there are plenty of existing solutions to the problem of better support-
ing game development. We discuss the most relevant game development systems,
tools, and languages in Chapter (3] where we also discuss their adoption. We com-
pare game development systems and languages, and we argue that new languages
would offer the industry benefits which are currently ignored. This provides the
basis of our motivation to create a new game development language: showing one
way (of many possible) to reap these benefits.

From our experience in game development, and from the requirements identified
previously, we designed the Casanova language. Its design and the motivation for
such design are presented in Chapter [4] which sets the tune for our own solution.

We formally explore the Casanova language in its details. The syntax (gram-
mar and type system) of the language is detailed in Chapter |5l The semantics (by
translation into F#) of Casanova are described in Chapter [Finally, the imple-

198 Summary

mentation of the language and the trade-offs between the design of the language and
the pragmatics of programming (IDE, debugger, etc.) are explained in Chapter .

Having a game development language ready and usable, we explore the possi-
bilities it offers us in Chapter || where we put Casanova to the test by building a
series of games in it. We use metrics taken from these samples, an analytic com-
parison between Casanova and existing game development tools, and also classroom
experience to provide an evaluation of Casanova in Chapter [9} This evaluation ev-
idences that Casanova is easy to learn (especially for beginners), powerful (in that
it fully supports game development), and also that it offers a novel perspective on
game development that allows it to offer significant advantages over existing game
development tools.

Casanova is, first and foremost, a research project. This means that its devel-
opment could continue in new directions, in order to study how to integrate it into
existing tools and systems. These directions for extension are described in Chapter
where we also explain which other extensions would not be easy to integrate into
Casanova.

We conclude our presentation with Chapter where we sum up the contribu-
tions of this thesis.

About the author

Giuseppe Maggiore was born in Mirano (Venice), on 2/3/1985. He attended sec-
ondary school at Liceo Scientifico G. Bruno, where he received his Maturita Sci-
entifica in 2003. During his high school years he discovered Computer Science and
game development thanks to the International Olympiads in Informatics.

To continue learning about Computer Science, Giuseppe attended a B.Sc. in
Computer Science at Universita Ca’ Foscari di Venezia. During his bachelor years,
he discovered research thanks to the AI and Computer Vision group lead by Prof.
Marcello Pelillo at Ca’ Foscari. At the same time, he found out the joys and pains of
teaching by assisting various courses, most notably Software Engineering with Prof.
Agostino Cortesi. In the meantime, Giuseppe joined the ranks of the Microsoft Stu-
dent Partners, traveling across [taly to speak at various universities about Game
Development with Microsoft platforms. This way he could pursue game develop-
ment, learning new technologies, and applying research (or at least trying to) all
together. His thesis was a formal proof on the convergence of discrete replicator
dynamics when applied to game theoretical scenarios.

After his B.Sc., Giuseppe went on to pursue his M.Sc. in the same university.
During his M.Sc. studies, thanks to a great course in Functional Programming held
by Prof. Michele Bugliesi, he found out that programming languages could come
in many forms and shapes and that they could have incredible expressive power
beyond that of “regular” mainstream computer languages. This was the start of a
great passion that would drive the next years of his game development efforts. In
a fortunate twist of fate, at the same time Microsoft was developing and releasing
its F# functional language, thereby giving Giuseppe an even stronger motivation,
now as a consultant for Microsoft, to explore the technology. Giuseppe helped
shaping the introductory course to programming by using F# and tutoring, under
the supervision of Prof. Sabina Rossi. His M.Sc. was concluded with a thesis on
functional programming and parallel computation on the GPU with Prof, Bugliesi.

The same fascination for games that propelled Giuseppe forward in his studies,
now mixed with interest towards programming languages, was alive and kicking even
after his M.Sc. This led to the start of a Ph.D. in game development and functional
languages under Prof. Bugliesi, and with great help and support from Prof. Renzo
Orsini, a veteran of language research. During the ACG 13 conference in Tilburg,
Giuseppe met Prof. Pieter Spronck. After a heated discussion on the relevance of
Casanova, the two started working together toward the completion of Giuseppe’s
Ph.D.

While finishing his Ph.D., Giuseppe moved to The Netherlands in order to work
closer to Prof. Spronck, in the city of Breda. There, at NHTV University, he found

200 About the author

an opening at the prestigious IGAD institute of game development and architecture,
where he is currently working as a researcher and a lecturer.

Giuseppe is really curious to see what will happen next in his research and work.
But one thing is certain: game development will be a part of it.

	Introduction
	Games, board games, and video games
	The challenge of game development
	Problem statement
	Research questions and process
	A new programming language

	Structure of This Work

	Requirements of a game
	The game loop
	State machines
	Drawing
	Summary

	Available game development systems and languages
	Systems vs languages
	Systems for making games
	Relevant game systems
	Our choice of systems
	Game Maker

	Languages for making games
	Simula 67
	Inform
	SGL

	Motivating a new programming language
	Flexibility
	Correctness
	Efficiency

	Creating new languages for making games

	Design of Casanova
	The RSD pattern
	Motivation for a new language
	Design Goals
	Informal design

	Syntax of Casanova
	Grammar
	Type System
	Rules
	Coroutines

	Semantics of Casanova
	Informal Semantics
	Performance
	Correctness
	Bouncing Balls

	Formal Semantics
	Types Translation
	Rules
	Scripts
	Draw

	Implementation of Casanova
	Rule Containers
	Generating the Update and Draw Functions
	Naïve traversal
	Traversal with CPS caching

	Scripts and coroutines
	A DSL for Scripting
	Scripting in Games

	Making games in Casanova
	Game of Life
	Making games with Casanova
	Player avatar and shooting stuff
	Game map and monsters with AI
	Active map entities and selection-based input
	Recombining the samples
	Hand written optimizations

	Evaluation of Casanova
	Supported Features
	Features to Learn
	Remarks

	Quantitative assessment
	Coroutines in games

	Casanova in education
	High school students
	Master students

	Discussion
	Original research questions
	Extension opportunities for Casanova
	Rendering
	Standard library
	IDE
	Networking
	AI
	AAA games

	Shortcomings of Casanova
	Low-level optimizations
	Imperative mindset shift
	Unusual syntax
	Advanced rendering
	Other languages

	Conclusions
	Bibliography
	Building a Menu System
	Networking in Casanova
	Networking and games
	Common solutions
	Networking in Casanova
	Future work

	A General-purpose AI for Casanova
	Activities
	Agent stats
	Naïve GOAP
	Heuristic pruning
	Acting out plans
	Layered GOAP
	Learning Expected Costs and Benefits
	Learning Whole Plans
	Learning and Layers
	Implicit Social Interactions
	Explicit Social Interactions

	Assessment
	Missing and implemented

	Casanova and Data-bases
	The Game World
	Persistency, Saving Games and Multiplayer Games

	Casanova in Other Languages
	Haskell and type classes
	Overview
	Advanced uses
	Casanova in Haskell, a sketch

	C++ and partial template specialization
	Casanova rules
	Casanova scripts
	Asteroids game
	Remarks

	A Brief Introduction to F#
	let and fun
	Lists and sequences
	Basic type definitions
	Variables
	Units of measure

	A Brief Introduction to Monads
	Summary
	About the author

