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Abstract

This article introduces a novel dynamic framework to Bayesian model averaging for time-
varying parameter quantile regressions. By employing sequential Markov chain Monte Carlo,
we combine empirical estimates derived from dynamically chosen quantile regressions,
thereby facilitating a comprehensive understanding of the quantile model instabilities. The
effectiveness of our methodology is initially validated through the examination of simulated
datasets and, subsequently, by two applications to the US inflation rates and to the US real
estate market. Our empirical findings suggest that a more intricate and nuanced analysis is
needed when examining different sub-period regimes, since the determinants of inflation and
real estate prices are clearly shown to be time-varying. In conclusion, we suggest that our
proposed approach could offer valuable insights to aid decision making in a rapidly changing
environment.

Keywords Bayesian model averaging - Dynamic model averaging - Markov chain Monte
Carlo - Quantile regression - Finance - Forecasting - Inflation

1 Introduction

The study of extremes, risks and quantiles of phenomena is a broad area of interest in
Operations Research, since large movements of variables are of great importance in many
fields related to natural disasters, namely geophysics (e.g. earth-quakes prediction Pisarenko
and Lyubushin, 1997), hydrology and environmental studies (such as floods, tsunami, severe
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droughts; e.g. Lin et al., 2018), bio-medecine (Huang et al., 2017) and, economics and finance
(see, e.g. Amédée-Manesme & Barthélémy, 2018; Benkraiem & Zopounidis, 2021; Bellini
et al., 2021), specifically when forecasting is the ultimate objective (see, e.g. Chalamandaris
& Vlachogiannakis, 2018; Tian et al., 2020; Candila et al., 2023).

Among the mobilized techniques related to extremes, quantile regressions (denoted QR,
hereafter) provide a simple way to model the conditional quantiles of a response variable with
respect to some covariates in order to have a more satisfactory representation of its conditional
distribution than one can have with traditional linear regression. Since the seminal works by
Koenker and Basset (1978) and Koenker (2005), QR has become popular in economics
and finance (Behr, 2010; Chun et al., 2012; Rockafellar and Royset, 2013; Candila et al.,
2023), especially in recent years (Lin et al., 2018; Ben Ameur et al., 2022; Tsionas, 2020; Ben
Bouheni et al., 2022; Tian et al., 2020), as a simple, robust and distribution free modelling tool.
More specifically, a QR approach is mostly appropriate not only when the underlying model
is non-linear, or the innovations are non-Gaussian, but also when modelling the distribution
tails is the primary interest of the analysis. See Koenker (2005), Lum and Gelfand (2012)
and Huang et al. (2017) for a review of the recent advances in QR modeling and inference.
However, two greatest challenges in predicting extreme events are the robustness of the
forecast accuracy in a changing environment and the correct representation of the statistical
features of the variable under studies, as explicated below.

One of the most crucial issues in QR analyses is, indeed, related to model specification. The
literature primarily focuses on shrinkage penalization approaches for simultaneous handling
of both the estimation and model selection. For instance, Wu and Liu (2009) examine the
properties of variable selection based on the least absolute shrinkage and selection operator
(LASSO) and smoothly clipped absolute deviation (SCAD) penalties for static models, while
Wang et al. (2012) investigate SCAD penalization for high-dimensional QR models. Noh
et al. (2012) advocate a model selection method for time-varying QR, based on coefficient
basis expansion and penalization. Lee et al. (2014) proposed instead a simpler alternative,
based on Bayesian information criterion. A concern in the QR estimation process emerges
from the fact that the objective function is not differentiable with respect to the parameters,
which makes the derivation of the asymptotics of QR estimators almost unfeasible. Thus, we
followed a Bayesian model averaging (BMA) approach to overcome these difficulties (see,
e.g. Jietal., 2012; Mamatzakis & Tsionas, 2021).

From a computational point of view, Bayesian model selection requires the estimation and
the post-processing of the 2Y models, where M € N being the number of regressors. Badly, it
is almostimpossible to be run as soon as M is even only moderately large. For this main reason,
acomputationally lighter version of the stochastic search variable selection (SSVS) by George
and McCulloch (1993), has been proposed for QR models in Meligkotsidou et al. (2009), Chen
etal. (2013) and Alhamzawi and Yu (2012). In this paper, we propose an alternative approach,
extending the Dynamic Model Averaging (DMA) by Raftery et al. (2010) to QR models.
Recently, DMA for linear models has gained significant attention in econometrics (Koop
and Korobilis, 2012, 2013; Koop and Tole, 2013). To the best of our knowledge, it remains
the only computationally feasible algorithm when handling a large number of regressors.
Several extensions of the DMA technique have already been proposed. McCormick et al.
(2012) introduced a DMA algorithm for binary outcome regression models. Belmonte and
Koop (2014) proposed an alternative model-based mechanism for the time-varying model
switching. However, an extension to more general models, such as QR models, is still absent
in the literature, primarily due to the computational cost associated with increased model
complexity. In this article, we demonstrate how this cost can be significantly reduced by
implementing the Sequential MCMC (SMCMC) algorithm recently proposed by Guhaniyogi
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et al. (2018), which is an efficient and self-tuning approach for simulating both parameters
and latent variables.

In summary, our novel Bayesian Dynamic Quantile Model Averaging (BDQMA) com-
bines three complementary overlays as an attempt for mitigating the specification and
estimation errors inherent to our operational research problem: (1) a time-varying parameter
QR setting (Koenker, 2005); (2) a BMA framework (Steel, 2020); and (3) a DMA approach
(Raftery et al., 2010) with the use of SMCMC (Guhaniyogi et al., 2018). The contribution
to the literature is manifolds. First, we extend the model selection procedure for QR models
by (Kim, 2007) to time-varying parameters QR models. Second, we extend the classical
DMA for linear models by Raftery et al. (2010) to conditionally linear models. Our article
makes a significant contribution also to the model combination literature Stone (1961); Hall
and Mitchell (2007); Billio et al. (2012); Fawcett et al. (2015); Gneiting and Ranjan (2013);
Bassetti et al. (2018); Casarin et al. (2013); Busetti (2017); Billio et al. (2013); Aastveit et
al. (2014, 2018); Casarin et al. (2023); McAlinn and West (2019).

We investigate the effectiveness of the time-varying parameter quantile regression model,
supported by a sequential estimation procedure, in extracting quantile signals from synthetic
datasets designed to replicate real-world features such as abrupt and smooth changes in
the relationship between the dependent variables and the covariates. This validation high-
lights the model’s robustness and applicability to dynamic financial and macroeconomic time
series, where capturing extreme quantiles and handling time-varying volatility are particularly
important. We illustrate further the potential of our methodology with an application to two
real-world datasets. Financial and macroeconomic time series are widely documented in the
literature as exhibiting distinctive features, such as heavy tails in the conditional distribution
and time-varying volatility (e.g. Engle, 1982; Bollerslev, 1986). Addressing these character-
istics is particularly important when the study focuses on extreme quantiles (e.g. Taylor, 2020;
2022; Bonaccolto et al., 2022; Bellini et al., 2022; Candila et al., 2023). Accordingly, our
first application examines inflation (following Koop and Korobilis, 2012), while the second
focuses on the U.S. real estate market (following Risse & Kern, 2016; Amédée-Manesme
and Barthélémy, 2018).

The rest of the article is structured as follows. Section 2 introduces our BDQMA approach.
Section 3 first underscores the effectiveness of our methodology using synthetic data. Sec-
tion4 and 5 provide two empirical applications, whilst Sect. 6 encapsulates our concluding
remarks.

2 Bayesian dynamic quantile model averating

The building blocks of our BDQMA approach are: (i) time-varying parameter quantile regres-
sion (QR) modelling within a Bayesian framework; (ii) dynamic model averaging (DMA)
within a Bayesian framework, and (iii) sequential Markov chain Monte Carlo (SMCMC) for
sequential estimation of model risk and prediction of extreme events. Figure 1 provides a
graphical illustration of the three blocks. In the following subsections, we provide a detailed
explanation of each building block and how they contribute to the overall methodology.

2.1 Time-varying quantile regressions

Regarding the first block, the dynamic QR model used in this paper extends the one
in Bernardi et al. (2015) to the case all the parameters evolve randomly over time. Let
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Fig. 1 The three main modeling and inference blocks (boxes) of our Bayesian Dynamic Quantile Model
Averaging (BDQMA) framework together with the main features of the blocks (circles)

x = (Lxo, ..., xM,,)T, t =1,2,..., T be the collection of M exogenous variables. The
dependent variable, y;, is a linear function of x;, and, as in Harvey (1989), the parameter
vector B8, follows a multivariate random walk:

y=x B, +& M
.Bt :ﬂtfl +&; ()
Bo ~ MVNy (Bojo, Pojo) » 3)
where&, ~ AL(7,0,0),t = 1,2, ..., T arei.i.d. variables with centred Asymmetric Laplace

(AL) distribution, with 7 € (0, 1) the quantile level, & € RT the scale parameter and
Bo € RM the initial state of the evolution of 8, defined by the transition Eq. (2). We assume
that B, € RM has null mean and diffuse variance-covariance matrix Pojo = «Iy, with
k — 400 and that the error terms ¢, ~ MVNy, (0, £2), are i.i.d. and independent of the
measurement equation errors &, V¢, s = 1,2, ..., T. Hereafter, MVNy; (-, -) denotes the M-
dimensional Gaussian random variable, while N(-, -) is exclusively reserved for representing
univariate Gaussian random variables.

The linear state space model introduced in Eq. (1-3) for representing time-varying
conditional quantiles deviates from Gaussianity due to the assumptions imposed on the
measurement innovation terms. Consequently, traditional optimal filtering techniques, such
as those relying on Kalman filter recursions, cannot be applied (see, Durbin and Koopman,
2012). Nonetheless, drawing upon the insights of Kozumi and Kobayashi (2011) and Bernardi
etal. (2015), it is possible to leverage the representation of the centered Asymmetric Laplace
probability density function, f (§ |, o), as alocation-scale continuous Normal mixture. This
approach yields:

o0
1 1 1 1
o) = - — )2t — ——owtdo, 4
raine = [ el a0t Sew |- tola, @
0
fort =1,2,...,T. Setting A = 11(1__2;) and § = ﬁ ensures that the t-level quantile

of the measurement error & becomes zero. Consequently, it becomes evident that our non-
Gaussian state space model admits the following conditionally Gaussian and linear state
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space representation:

iid
y,:x;rﬂt-{—)\wl-}-gt, StI’I"N(O,(Sth), )
iid
Bi=Bi—1+&, &, ~ MVNy (0, 2), (6)
Bo ~ MVNy (8110, Pijo) , 7
where oy, t = 1,2, ..., T, are i.i.d. with an exponential distribution of parameter o~ ! that

is w; ~ Exp (a -1 ) We further assume the following prior distributions for the parameters o
and 2:

o ~1G(ag, bo), £ ~IW (co, Co), 3)

which are Inverse Gamma and Inverse Wishart distributions, with probability density
(g M+1

functions p (oag, bg) a_(“o“)exp{—%‘)} and p (2]|co, o) x [Co|°|2] (C°+ 2 )

exp { —trace (Co22 ")}, respectively, where (ao, by, co, £20) are given hyperparameters.

2.2 Bayesian dynamic model averaging

For the second building block of our method, we propose a dynamic procedure for selecting
and combining dynamic quantile regression (QR) models. The challenge of determining
which regressors to include in the model can be addressed from two perspectives. One
approach is to use a variable dimension model (see, e.g. Marin and Robert, 2007). However,
in this study, we take a different route, opting for a model selection approach that requires
estimating all possible sub-models. Drawing inspiration from the seminal work of Raftery
et al. (2010), we implement a recursive model selection process over time to continually
evaluate model adequacy. Expanding on the framework introduced by Raftery etal. (2010), we
introduce a time-varying model index L, which takes values in {1, 2, ..., K}, representing
the selected model at each time point . We assume it has a Markov dynamics with transition
matrix

P(L; =1Ly = J) = mj, [, je{l,2,....K}. C))

Let xir = (1, X505+ -+ xim(k),)—r be the set of (m® + 1) variables in the model k, with
ijef(2,3,....MLj=1,....m% i; £ VI, jandm® € {0,1,..., M — 1}. Then, we
posit that each model can be expressed in the form of Eq. (1)-(3), where the dynamic regression
parameter vector 8 ,(k) and the covariate vector Xt(k) are unique toeachmodelk = 1,2, ..., M.
This assumption implies that at each time ¢ and for each model k = 1, 2, ..., K, the system
variables represented by the dynamic QR parameters B, and the model indicator variable
L;,1ie. { B L; }, move to a new state according to the transition matrix specified in Eq. (9)
and the transition kernel defined by the dynamics of latent states in Eq. (2). The updated
states comprise the vector of predicted values at time 7 + 1 for each model-specific quantile
regression parameter vector ,Bg?l and the updated time-varying probability nt(fl
with that model.

As anticipated in the Introduction, the dynamic quantile regression model specified in
Eq. (10) exhibits non-Gaussian characteristics, rendering the iterative application of the
linear Kalman filter and smoother impractical for obtaining updated estimates of the latent
dynamics over time. To address this limitation, we once again leverage the representation of
the Asymmetric Laplace error term in the measurement equation (Eq. (1)) as a location-scale

associated
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mixture of Normals. This representation hinges on the introduction of an additional latent

(k)

factor w,;’, unique to each model k&, following an i.i.d. Exponential distribution with shape

parameter o(k), i.e. a),(k) ~ Exp(1/o®), iid. V.
For the model selection purposes, we derive from Eq. (5-6) the following:

K
= Z ]l{k}(Lt)(X,(k) ® 410 + /860" e (k))
k=

(k) (k) (k)
t = —1 + f )

(10)

where e(k) ~ N(O 1)and ¢, (k) 1d- MVN41(0, Sl(k)) The parameters A, §, and t are defined
as above. The description of the model is completed by the prior specification for the initial
state given in Eq. (3).

2.3 Sequential Markov chain Monte Carlo

In the third block, we adopt a Bayesian approach to inference for QR models, and introduce
auxiliary variables to represent the original model in Eq. (1)-(3) as a conditionally Gaussian
and linear state space model. Let z;.; = (z1, Z2, .. ., ;) denote the sequence of vectors z,
up to time ¢. Then, the complete-data likelihood of the unobservable components B1.7 and
;.7 and all parameters y = (o, £2) is given by:

L(y.our,Brrlyir. xir) < f (yir|xir, Brr. @11, ¥) f (Brr. @irly) 7 (p)

T T
o [[f (ilBr o oox:) £ (@ilo) £ (B) [ ] £ (Bi1B—1. 2)

t=1 =2

1 o —x B,
o<1_[(0><a);) zexp[ s Z(y’ “);)t Xzﬂt)]

t=1

§
T T
X exp :—Z’? o1 ] exp [—Bl A }

T
x |82]” T eXp{ ;Z(ﬂt_ﬂz—l)Tﬂ_l(ﬂt_ﬁt—])]-

The Gaussian scale mixture representation poses challenges for sequential inference of latent
variables and parameters. In this model, the DMA approach introduced by Raftery et al.
(2010) may become computationally burdensome, as exact estimation of latent variables and
parameters across different models requires posterior approximation. Standard Markov chain
Monte Carlo (MCMC) schemes for posterior approximation are not feasible in such cases. To
address this issue, we propose combining a sequential MCMC procedure (SMCMC) (Yang
and Dunson, 2013) with the DMA approach to create a feasible sequential DMA procedure
for latent variable models. Additionally, we introduce enhancements to reduce computational
time. Firstly, we demonstrate how the forgetting factor, as introduced by Raftery et al. (2010)
for the state covariance, can expedite computations without compromising the validity of the
SMCMC procedure. Secondly, we illustrate that computing costs, which typically increase
linearly over time, can be stabilized using fixed-lag backward sampling within the SMCMC
transition kernel. Subsequent subsections present the SMCMC for the single-model sce-
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nario, its extension to the multi-model scenario, and strategies for mitigating computational
complexity.

2.3.1 Sequential model estimation

Let0; = (0, 2, w14, B m), t € N, denote the time series of augmented parameter vectors,
taking values in measurable spaces (R%, BB (Rd’)), where the dimension non-decreasingly
grows as d; = d;—1 + d, fort > 1. We assume that the augmented parameter vector can be
decomposed as 6, = (0,_ 1, r],), where 5, = (wt, ﬂ,) represents the latent variable vector of
dimension d associated with the observation y;.

The proposed quantile regression model with time-varying parameters possesses a prior
distribution ; (6;) =7 (y) 7 (w 1:fs ﬂm), which satisfies the compatibility condition:

i1 (0:) = /”t (ot, nt+])dnt+]a (11)
Rd

enabling a simplification of notation. Furthermore, we denote the posterior distribution
at time ¢, with respect to the Lebesgue measure of 0,, as 7;(0;) = m (0;]y;y)
7 (¥) L (¥, @14, B14I¥1:r, X1:). Henceforth, in the notation, we omit the conditioning on
the dependent variables y;.; and the covariates X;.; from the posterior.

In the SMCMC algorithm, L parallel inhomogeneous Markov chains are employed to
generate samples 0;1’1) with j =1,....my,l =1,...,Landt = 1,2,..., T from the
sequence of posterior distributions 7;, t = 1,2, ..., T. Each Markov chain within the pop-
ulation is defined by a sequence of transition kernels & (@, A), t € N, which are operators
from (]Rd'*l B (]Rd’*1 )) to (]Rd’ B (Rd’ )), such that IC; (@, -) is a probability measure for all
0 € R%-1 and K, (-, A) is measurable for all A € B (Rdf).

The kernel /C; (0, A) has stationary distribution 77; and results from the composition of a
jumping kernel, 7;, and a transition kernel, 7;, expressed as:

K0, 4) = 7,07 0.4 = [ 7 (0.40) 7" (0. 4).
Rt
where the fixed dimension transition is defined as:
"0, =T, 0T " 0,4 = / T,0,d6)T" ' (0, A), (12)
R
with m; € N, and 7° is the identity kernel. We assume that the jumping kernel satisfies

Ji+1(0:,0:41) = Ti41 (0t, 77;) 39, (01+1), (13)

where J;41 (0,, n,+1) = Ji+1 (0,, (0,, n,+1)). This condition ensures that the error propaga-
tion through the jumping kernel can be effectively managed across the iterations of SMCMC.
This result, presented in Theorem 1, is a straightforward extension of the findings established
in the L-norm by Guhaniyogi et al. (2018) and related works. Let us introduce the v-norm,
denoted as || (+)||, = sup | f| < v|u(f)|, where v : R” — [1, oo] and p represents a signed
measure (see Meyn and Tweedie, 1993, Ch.14).
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Theorem 1 For any probability density function p (-), and for @;_; € R%~1 the next inequal-
ity is met:

llme = Troplly = sup  |lm; (10:—1) — Tr(0r—1, Iy + 7rr — pllvs (14)
0;,|€Rdf71
where U = f v ((0;4, 17,)) dé;_.
Rdt—l
Proof See Appendix A. O

The following findings outlined in Guhaniyogi et al. (2018) demonstrate the convergence of
the chain with transition kernel 7; o 7™ towards the target distribution, under highly general
conditions.

Theorem 2 Let us assume the following conditions hold:

(1) (Geometric ergodicity) For each t, there exists a function V; : R — 1, o0), C >0
and p; € (0, 1) such that:

@ fra Vi 07 (6,)d6, < C;
) fra Ve 0> m:(n,10,)dn, = Vi_y (8,-1), where 8, = (8,—1,n,);
(c) forall8; € R, |T; (8;,-) — (s, < Vi (8;) pr.

(i) (Stationary convergence) The stationary distribution 1, of I; satisfies
o = 2*/EdH (7w, m—1) = 0,

where 1, is the marginal posterior of 0;_1 at time t.
(iii) (Jumping consistency) For a sequence of A, — 0 the following holds:

sup [T (Or—1,-) — 7 (10,—1) I3,

0,_1eR%—1

where Uy = [ v ((0, 1)) d8,_.
R4

Let &, = p;"". Then for any initial distribution m,

t t
Ko+ 0Kiom—milly, <) (Hsu) (@5 + ).

s=1 \u=s
Proof See Appendix A. O

Regarding the assumptions of geometric ergodicity and jumping consistency, several works
have investigated convergence rates of Gibbs samplers for Bayesian models. For instance,
Roman and Hobert (2012) establish geometric ergodicity for a range of improper priors in
Bayesian linear models. Additionally, studies by Jones and Hobert (2004) and Papaspiliopou-
los and Roberts (2008) are relevant in this context. In the present paper, as we employ a Gibbs
sampler for a conditionally linear and Gaussian model with proper conditionally conjugate
prior distributions, these assumptions are met in accordance with Roman and Hobert (2012).

To employ SMCMC, one must specify the transition kernel 7,41 and the jumping kernel
Jr+1 at the iteration 7 + 1. The transition kernel 7; at the iteration ¢ enables each parallel
chain to explore the sample space of dimension d; and generate samples @ ,([’] ) from the pos-
terior distribution 7;, given the previously generated samples. The collapsed Gibbs sampler
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Algorithm 1: Collapsed Gibbs sampler.

Data: y;.7, xy.7
1forr=1,2,..., T,andl =1,2,..., L do

2 draw o from f(o |Bil)t , Y1+, X1:+) marginalizing the Gibbs with respect to the @1.;;
3 draw wA('l) from f(wsla(l), 20, ﬁglz» Vi X)) s =1,2,....8

4 draw ﬂil), from f(B., \a(l), 20, wgl:)t, Y1:r» X1:¢) with a multi-move proposal distribution;
5 draw 2D from f(.QIﬂilz)t);
6 end

algorithm is detailed in Algorithm 1. Within this algorithm, we opt for a transition kernel
akin to a blocked (or multi-move) kernel.

The sampling strategy for the full conditional distributions is elaborated in Appendix B.1.
Leveraging the stochastic representation of the AL distribution in Eq. (4), we implement
a partially collapsed SMCMC strategy based on Gibbs-type updating with data augmen-
tation (Liu, 1994; Van Dyk and Park, 2008). The core concept of the complete collapsed
Gibbs-type simulation scheme is to avoid simulations from the full conditional distributions
of blocks of model parameters whenever possible by analytically marginalizing them out.
As demonstrated by Park and Van Dyk (2009), this approach offers several advantages over
systematic sampling, such as reduced computational time and enhanced convergence rate
of the sampler. In our scenario, we can only partially integrate out the latent variables a)gl)s,
fors = 1,2,...,t, from the full conditional of the scale parameters o® in the preceding
step 3, for/ = 1,2, ..., L, thereby reducing the algorithm to a partially collapsed Gibbs
sampler type move. Concerning the convergence of partially collapsed Gibbs moves, it is
notable that updating the parameters in the specified order ensures that the posterior dis-
tribution at each time point + = 1,2, ..., T corresponds to the stationary distribution of
the generated Markov chain. In fact, combining steps 1 and 2 produces sample draws from
n(a(l), w(ll)tlﬂgl)t Yiu,X14),fort =1,2,...,Tandl = 1,2, ..., L,i.e. the conditional pos-
terior distribution. The partially collapsed Gibbs sampler thus represents a blocked version
of the ordinary Gibbs sampler (Van Dyk and Park, 2008; Park and Van Dyk, 2009).

To initialize the Gibbs sampling, we begin by generating a random draw from the joint
prior distribution of the parameters defined in Eq. (8). Conditionally on this draw, we simulate
the initial values of the augmentation variables wgl) ,for/ =1,2,..., L. Subsequently, at
iteration ¢ + 1, the jumping kernel ;4 facilitates the transition of chains from a space
of dimension d; to one of dimension d;41. We designate the jumping kernel of the /-th
parallel chain as the transition kernel of a Gibbs sampler, characterized by the following full
conditional distributions:

l J
1. draw w,(.e_l from f (w41 lo®, ﬂ;.e_la Ve+1s Xr4+1)5
I ! !
2. draw ﬂf_f_l from f (B, |a(1), 20, /3; ), a)t(_i)_1 S Vit ls Xe41)-

The specifics of the sampling strategy for the full conditional distributions are detailed in
Appendix B.2. Thanks to the location-scale mixture representation of the AL distribution,
all the full conditional distributions involved in the transition and jumping kernels have a
known closed-form representation. This feature is especially advantageous when T is large
or when multiple models are estimated simultaneously, as in the current scenario, because the
availability of conditional sufficient statistics that can be tracked helps mitigate the increase
in storage and computational burden over time.
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2.3.2 Monitoring convergence

The number of iterations of the Sequential MCMC sampler at each time m; is determined
based on the cross-chain correlation (see Guhaniyogi et al., 2018). Specifically, we set the
number of iterations at time ¢, denoted as m;, to be the smallest integer s such that r; (s) <
1 — €, where r; (s) represents the rate function associated with the transition kernel 7; and
€ is a predefined threshold level. An upper bound for the rate function can be estimated by
the lag-s chain autocorrelation, which is calculated online using information provided by the
output of all the parallel chains. This estimation is performed as follows:

s+1,1,1 H(s+1, 12,1 51,
Z[L=] (0;T+ 0 Q;V+ l))(ej( Ll 9]( [))

7: () = max -, (15)

J=120p (L Lol (41, L L A, 2
(Sh i@ =gy (S ) - a10)2)

,is the j-th element of the vector 8 **"*) staking the fixed parameters y ) and the

El)l gli) by the [-th chain at the the s-th iteration.

Moreover, 6 = -1 Zle 9;.3"’1) is the average of the draws of the s-th iteration over the
L parallel chains.

where Gﬁs’t’l)

latent states generated up to time 7, i.e. (@

2.3.3 Sequential model selection

Consider scenarios where multiple models are evaluated and estimated simultaneously, espe-
cially when there is uncertainty about the correct specification of the data-generating process.
We proceed under the assumption that the entire array of models can be represented as in
Eq. (10), where the indicator variable L, € {1, 2, ..., K} has a Markovian transition kernel,
selecting the operative model at each time step t = 1, 2, ..., T. Furthermore, it is assumed
that the divergence among models primarily arises from the presence or absence of specific
explanatory variables within the predictor vector x;. Assuming there are M — 1 potential
explanatory variables, with the intercept being a constant across all models, the total number
of models becomes K = 2¥~!, Even with a moderate number of variables, such as M = 10,
the count of models can increases substantially, reaching, for instance, 1, 024, thereby making
the formulation of the transition matrix a formidable task. Following the approach outlined by
Raftery et al. (2010), we adopt a forgetting factor methodology, as described in the following.
Let 7.8, = P(Lip1 = klyr.x(0)) and 7.8y = P(Lip1 = klyniq1. X(5)), where
again y;; = (31, y2,...,¥:). The approximated Hamilton filter recursion involves the
following two steps. At each time point ¢, the first step predicts and updates the model
probabilities as follows:

(k1)

(g ) v
t(i’llf; S ul — ) vi=1,2,...,L, (16)
2 () v
L
k k.l k .l
nt(+)1|t+1 x Z”t(+1\)tf()’z+1|)’1:t7 Xz(+)1 Ly =k, “)t(+l))' an

=1

In Eq. (16), the exponent « serves as a forgetting factor, typically set close to one, while the
constant v > 0 is a small number introduced to mitigate rounding errors due to machine
precision, with v set to v = 0.001/K, following the methodology outlined in Raftery et al.
(2010).
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To circumvent the necessity of explicitly specifying and computing the entire transition
matrix of the Markov chain L, which comprises K (K —1) entries, we introduce the forgetting
factor . This factor allocates prior weight to information preceding time 7, with a higher
o parameter implying reduced weight assigned to subsequent observations at time ¢ + 1.
Essentially, higher values of « indicate less prior confidence in the informational significance
of new observations during the model probability update process.

As argued by Raftery et al. (2010), although this approach lacks an explicit specification
of the transition matrix, it does not pose a problem for inference in model probabilities as
long as the data provides sufficient information regarding which models better capture the
data dynamics. Regarding the updating of model probabilities in Eq. (17), it is obtained as the

Monte Carlo average of the approximated predictive distributions f(y,+1|y1:, Xt(ﬁ-)l’ L; =
(kD)

k, w, ") over the entire population of independent Markov chains, effectively marginalizing
out the simulated latent factor w; 1. The predictive distribution of the observable at time 7 + 1
is obtained as a by-product of the Kalman filtering updating equations for the approximated
Gaussian model:

k kD) k.l k.l
SOl X Le = ko) ~ Noea 5 VD, (18)
T
where ?I(iﬁ[ = kwt(’jr*i) + Xz(]jr)l ﬂ;ﬁl])l , s the predictive mean of y,;1 for the /-th chain
and model k € {1,2,..., K} and the variance-covariance matrix equal to Vt(ﬁ“ =
T _

(50 ®DopkD 4 xgkjl P;ii)‘ txt(i)l) ! from the Kalman filter recursion given in Appendix
B.1.

The updated model probabilities are normalised as follows:

(V)]

~kD) t+1e+1 -

A = o YI=L2...L, (19)
Zj:l T 141

T

to get a proper probability measure.

The second step involves updating the latent factors f8 z(l+kl) and wfg’_ﬁ), forl=1,2,...,L,
and this can be easily accomplished by running the SMCMC algorithm defined in the previous
section sequentially for each model k = 1, 2, ..., K. This process is then iterated as a new
sample observation becomes available. The sequence is initialized at t = 0, with the initial
model probabilities n(gfo’l) = % set uniformly for all the models k = 1,2, ..., K, and for
all the parallel chains of the SMCMC sampler [ = 1,2, ..., L. Static model parameters

(0 &, Sl(k’l)) are initialized by drawing from their prior distributions defined in Eq. (8).

2.3.4 Dynamic quantile averaging

Forecasting with SMCMC methods offers a streamlined approach to integrating parameter
uncertainty. The following steps delineate the process of generating one-step-ahead quantile
forecasts from all competing models at each time point #, and subsequently merging them
using updated model weights. These procedures are executed at the conclusion of each
SMCMC iteration within the sampling phase, leveraging the complete parameter set of the
model denoted as 0 ;k). Atevery time instance during the estimation period, an approximation
of the predictive mean for the 7-level quantile function ¢ (x, 8) = x' B, can be derived for
the k-th model, as follows:

~(k) (k) (k) (k) (k) (k) (k)
Dr 1 K Biiy) = El:q,(xl_H, B IVre, Xy 1::]
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k k k k
=x%," E[B i x B- (20)

k . S
Here, f +) 1= E[ﬂ;ﬁ_)] |y1~z, ) +1 ﬂ ] represents the mean of the marginal posterior distribu-

tion of the regression parameters for model &, i.e. ﬂ 1~ This can be obtained by numerically

marginalizing out the nuisance parameters (o, 2)*) and the latent factors a)ikt) 1 using the
population of chains:

k) k k k
Bii1= E<ﬁ§+)1|)’1:t,x£+)1,ﬂ( ))
L

1
o LS (B v AP 0 000 00). )
=1

In the right term, the expectation is analytically provided by the Kalman filter predictive Eq.
(S.6), averaged over the entire set of parameters (o %), &, a)glft’l)) 1L:1 generated by the
parallel chains, as follows:

k k k k.l k.l kD) (k,j
E <ﬁ§+)1|y1:tv z(+)1 /3( )) 2 Z <ﬂ§ 1)\t72 +Pt( l)\t 2Xi— 1Vz(72)”z(72])) ) (22)

where all elements of the expression are given in Appendix B.1. The resulting Rao-
Blackwellized estimate of the quantile function is more efﬁcient than a simple average over
the samples from the full conditional distribution of ﬁ 1+1» as argued by (Robert & Casella,
2004, pp. 130-134).

The model-averaged one-step-ahead t-level quantile prediction is then formed by com-
bining previous forecasts using the predicted model probabilities nt( e for each competing
modelk =1,2,..., K

ADMA (k) (k) (k)  ~(k) (k) (k)
97141 X1 Biyy) Z”t+l\tqrt+l X {1 Biiy) (23)
K (k)
_ (k) (k)
= mxiBit (24)
k=1

where the predicting model probabilities rrt +1|z’ fork =1, 2,..., K have been obtained by
averaging single model predictive probabilities defined in Eq. (16) over the L parallel chains:

L

1

) L&D

t+1|t_Z§ e Yk=1,2,..K, (25)
=1

and Eq. (24) can be obtained by substituting for the definition of the predicted model specific
t-level quantile in Eq. (20) into Eq. (23). The multi-model predictions of the t-level quantile
function of the response variable y; at time ¢ are obtained through a weighted average of

the model-specific T-level quantile predictions Ziﬁm ® ﬂ,(k)) These weights correspond

t+1|t’ derived as in Eq. (25).
(k.1

Furthermore, since model predictive probabilities in Eq. (25) are obtained by averaging 7,y ,
over the L independent parallel chains, we can provide approximated confidence intervals

to the posterior predictive model probabilities for sample z, 7!
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for the estimated probabilities by calculating their Monte Carlo variance as follows:
[ 2
(k) _ (kD) (k)
var (nt+1‘t> =77 Z (”t|t—1 — ”t|t—1> . (26)
=1

2.3.5 Reducing the computational complexity

Fixed-lag backward sampling is an effective approach to alleviate computational demands,
particularly when dealing with a large number of observations. This involves replacing the
fixed-interval backward smoothing algorithm outlined in Appendix B.3 with a fixed-lag
smoother. The fixed-lag smoothing procedure updates the dynamic latent states within a
specified lag & < ¢ surrounding the current observation y;, while keeping the remaining
states from 1 to 2 — 1 unchanged. At each iteration, the resulting sampling procedure only
simulates the quantile regression coefficient 8,_, at time 7, for a given lag & > 0. For further
details, refer to Anderson and Moore (1979) and Simon (2006).

Remark 1 The fixed-lag smoother can be viewed as a form of local-dynamic quantile regres-
sion, which extends the non-parametric approach introduced by Yu and Jones (1998).

3 BDQMA efficiency on simulated series

We now focus on simulated examples specifically designed to assess the effectiveness of the
SMCMC algorithm and the BDQMA approach in accurately recovering the true parameter
values of the underlying Data Generating Process (DGP). These simulations are designed to
reflect real-world challenges, such as abrupt and smooth changes in the relationships between
dependent variables and covariates. These simulations provide crucial insights into the robust-
ness and adaptability of the methods in handling complex dynamics, further validating their
performance in practical scenarios.

Throughout all simulated scenarios, the sample length remains fixed at T = 200 obser-
vations, aligning with the sample size of the real data examples presented in subsequent
sections. The covariates are generated from a uniform distribution on (—%, %), denoted as
xit ~ U (—%, %), iid.fori =1,2,..., M andt = 1,2,...,T. The innovation term
follows a Gaussian distribution, i.e. &; ~ N (O, v,z), independently fort = 1,2, ..., T, with
heteroskedastic variance. Furthermore, the true DGP is specified as a time-varying parameters
regression model:

i =x B +e, vi=1,2,...,T, (27)
where M = 2, x;, = (1, X1z, xz,,) and the quantile regression parameters dynamics g =
T
(ﬂl*,t, B s ,B;t) are defined as follows.
3.1 Smooth change in quantiles
We assume the true quantile parameters exhibit the following dynamics: the constant term

By , remains fixed at B} = —2.5, the coefficient 85, undergoes a change in slope at a specific
time point ¢ = 100, and the third parameter B3, follows a smooth, sinusoidal transition
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Fig.2 Posterior mean of the regression parameters f8; = (,61’,, Boes ﬂ3,,), t=1,2,..., T, for the simulated

data in Example 3.1 (left panel) and 3.2 (right panel), with quantile level T = 0.25 and N = 100 parallel
chains. In each plot: true parameters (red), posterior medians (dark) and 95% HPD regions (gray areas)

between two distinct levels:

0.4¢ 0.4¢
B3, = <0-6 - m)l(foo,loo](t) + <m — 0-2>]l(100,oo)(f)
. —c@2t—=T-2)1\"!
Bl =a+b(1+exp| —————>

v,2 = 1(—00,1001(t) + 0.251(100,00) (1),
fort =1,...,T,witha =0.2,b=1andc =5.
3.2 Abrupt change in quantiles

We assume an abrupt change at time = 100 in the constant term /31*, , and the coefficient
B3 ;» and a GARCH(1,1) dynamics for the conditional volatility of the innovation term v;:

BT = =21 (~c0.1001(t) + 21(100,00) (*)
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B3 = 1.61(—c0,1001(t) + 0.81(100,00) (*)

2 2 2
v =a+bvi_| +cey,

forr =1,...,200,and g5, =2,Vt = 1,2,..., T, witha = 0.05,b = 0.9 and ¢ = 0.05
and g9 ~ N(O, lf—b). It is worth noting that the relationship between the coefficients of the
DGP and the coefficients f, of the quantile regression is as follows: 81 ; = ﬂ]*y Tt v @~ (1),
Boi = B5,, and B3, = B3, where T represents the quantile level and @(-) denotes the
cumulative density function of a standard Normal distribution. The prior hyperparameter
settings are specified as follows: ag = by = 1073, ¢co = M + 1, and Cg = 0.0113, where I3
denotes the 3-dimensional identity matrix.

In Fig.2, we present the sequential estimates for the two simulated examples. The fig-
ure illustrates how the quantile regression model effectively captures both abrupt shifts and
smooth transitions in the intercept B ; (first row) in presence of both homoskedastic and
heteroskedastic observation noise (Panel 2a, b, respectively). Moreover, the second and third
rows demonstrate the ability of our BDQMA procedure to accurately detect both abrupt
changes (Panel 2c, d) and smooth changes (Panel 2e) in the relationship between the depen-
dent variable and the covariates.

4 Predicting US inflation when causality changes

Inflation has been a central concern for economists, as expectations around it play a critical
role in shaping the decisions of economic agents and significantly impact both the economic
and social development of nations (Phillips, 1958; Stock and Watson, 1999; Kumar and
Wesselbaum, 2024). Our empirical exercise serves two primary objectives: (1) to explore
the relevance of covariates beyond the unemployment rate and lagged inflation in predicting
current inflation at various quantile levels; and (2) to assess whether the predictors for “high”
and “low” inflation rates differ or remain consistent, as reflected by dynamically time-varying
inclusion probabilities, ”z(fuz' In this study, we use a slightly modified version of the dataset
presented in Koop and Korobilis (2012). Detailed descriptions of the dataset and initial
analyses can be found in Appendixes C and D of the supplementary materials.

4.1 A generalized phillips curve

We employ our BDQMA approach to select the best subset of predictors for forecasting US
inflation within a generalized Phillips curve framework. Our BDQMA approach is well-suited
to address these issues due to its ability to consider dynamically evolving linear relationships
between covariates and quantiles of the explained variable. Additionally, it can capture and
reproduce structural breaks commonly observed in the evolution of economic variables such
as inflation (see also Primiceri, 2005; Koop & Onorante, 2012; Stock and Watson, 2007).
Furthermore, focusing on quantiles of the predicted variable aids in identifying periods char-
acterized by different economic conditions, particularly those featuring low or high inflation
levels. Building on the conditionally Gaussian representation of the BDQMA model, and
drawing inspiration from the seminal works on inflation by Engle (1982) and Bollerslev
(1986), we incorporate a conditional heteroskedastic volatility error term. This modification
greatly enhances the model’s flexibility in capturing asymmetric conditional distributions.
Regarding the model specification, we extend the autoregressive model of order p with
exogenous covariates (ARX(p)) developed by Stock and Watson (1999), and previously
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Fig.3 US inflation data. Sequential estimates of the regression parameters by DMA (for the mean regression
f) and BDQMA (for the quantile regression a—e) for the CPIAUCSL (Consumer Price Index for All Urban
Consumers: All Items in U.S. City Average). For each quantile level 7 the corresponding figure only reports
those parameters having inclusion probability larger or equal to 0.7 for at least one quarter. See Table S.11 for
a summary of the relevant covariate. The shaded areas identify two significant periods: the US Great Financial
Crisis from 2007-Q4 to 2011-Q4 (blue), and the Russian-Ukraine crisis (red)

considered by Koop and Korobilis (2012), within our BDQMA framework. The quantile
model is therefore formulated as follows:

P
ar %0, B) =2 ¥ + Y divij, (28)

j=1

where B = (¥ ', 1, ..., (1),,)T is the parameter vector, y; represents inflation, defined as
the percentage logarithmic change of the price index P, thatis: y; = 1001log(P;/P;—1). The
covariate set X; includes lagged predictors z;_1, and lagged inflation, (y,_ Lo ones Vi p).
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Drawing from standard literature on quantile regression analysis, we concentrate on five
quantile levels: T = 0.10 and T = 0.25 for lower quantile analyses, T = 0.5 for median
analysis, and T = 0.75 and T = 0.90 for upper quantile analyses. These levels correspond
to five distinct inflation thresholds at each time step. Due to space constraints, we present in
Figs. 3, 4 the time-varying parameters and inclusion probabilities derived from our BDQMA
model for all the quantile levels T = (0.10, 0.25, 0.5, 0.75, 0.90), focusing solely on the
response variable CPIAUCSL. For comparison, we also include Figs. 3f and 4f, which display
the results for the Gaussian version of the BDQMA model. This Gaussian counterpart follows
the Dynamic Model Averaging (DMA) approach introduced by Raftery et al. (2010), while
incorporating the findings of Koop and Korobilis (2013) and Koop and Onorante (2012),
adapted to the updated dataset. Similar results have been provided for the response variable
CPILFESL are provided in Appendix D.4 of the supplementary materials (Fig. S.10 and
S.11). To maintain readability, we include in the figures only those variables relevant for
predicting the different conditional quantiles, i.e. those variables with inclusion probabilities
exceeding 0.7. For comparison, we present a summary of the coefficient values obtained
from a static mean and quantile regressions over the entire sample in Tab. S.4-S.5 and Tab.
S.6-S.10 of the Appendix D of the supplementary materials accompanying the paper.

The median analysis provides a robust version of the time-varying regression analysis
pioneered by Koop and Korobilis (2013) and Koop and Onorante (2012). Consistent with
their findings, our results (see Figs.3, 4, T = 0.5) show that coefficients of the regressors
and their probabilities of inclusion in the model change over time. Moreover, the level of
inflation persistence, indicated by the sum of the autoregressive coefficients (not reported), is
approximately 0.5, consistent with the findings of Koop and Korobilis (2013). The primary
disparity between mean regression and its robust related median version, extends beyond
the quantity of pertinent regressors to elucidate inflation; it also encompasses their efficacy.
Indeed, beyond the two regressors shared with the mean regression, i.e. the changes in the
NAPM commodities price index (PPIACO) and expectations on future inflation (MICH), the
significance of the remaining variables fluctuates over time in response to prevailing economic
conditions. For instance, the prominence of oil and gas prices in explaining heightened
inflation levels during the recent two years, catalyzed by the Russian-Ukraine crisis, contrasts
with their lesser relevance during the Great Financial Crisis. See Appendix D for a detailed
description of the results.

The analysis of lower and upper quantiles reveals significant variations in the coefficients
of the regressors, which bear important policy implications. Specifically, in the static quantile
regression, we observe that the autoregressive terms (¢1, ¢) (not reported) increase as we
move towards higher quantile levels. For instance, at low inflation levels (e.g. T = 0.10, see
Tab. S.4), the persistence is approximately 0.24, whereas for high inflation levels (e.g. T =
0.90, see Tab. S.4), we find evidence of higher persistence, reaching around 0.61. The dynamic
regression reveals a similar pattern toward the end of the period (not reported), indicating
greater inflation persistence at higher quantile levels. Notably, during the two inflation peaks
in 1975 and 1981, the parameter ¢, follows a predominantly negative trajectory, suggesting
a reduction in inflation persistence.

The imperative of adopting a time-varying parameters analysis becomes abundantly clear
upon scrutiny of Fig.4. Consider, for instance, if we were to exclusively rely on the findings
of a static regression model fitted across the entire sample, meticulously detailed in Tab. S.4.
Such an approach might lead us to erroneously conclude that six variables out of the total 18
(EC, HOUST, USPRIV, GS10, T10Y3MM, M1SL, and PMI) hold no relevance across any
inflation level at any given point in time (refer to Tab. S.4). While this assertion largely holds
true for most scenarios, even under the BDQMA framework, which consistently excludes
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Fig.4 US inflation dataset. Sequential update of the predicted inclusion probabilities 7|, by DMA (for the
mean regression (f)) and BDQMA (for the quantile regression a—e for the CPIAUCSL (Consumer Price Index
for All Urban Consumers: All Items in U.S. City Average). For each quantile level t the corresponding figure
only reports those parameters having inclusion probability larger or equal to 0.7 for at least one quarter. See
Table S.11 for a summary of the relevant covariate. The shaded areas identify two significant periods: the US
Great Financial Crisis from 2007-Q4 to 2011-Q4 (blue), and the Russian-Ukraine crisis (red)

HOUST, USPRIV, GS10, T1I0Y3MM, and PMI across all quantile levels and time spans (as
gleaned from the inclusion probabilities summary statistics in Tab. S.11), the same cannot
be said for EC and M1SL. Moreover, it becomes evident that money supply (M1SL) and
real personal consumption expenditures (EC) emerge as highly informative for quantiles
below the median and the median itself, respectively, and for the quantile exceeding the
median. In contrast, variables such as UNRATE, PRFI, TI0YFMM, and NAPMSDI, though
included in the static regression for at least one quantile, are consistently deemed irrelevant
by BDQMA. While the explanatory power of inflation by the NAPM vendor deliveries index
remains contentious in the literature, economic theory suggests that the remaining variables—
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encompassing investment, the spread of long-term government bonds, the federal funds rate,
and the unemployment rate—are pivotal determinants of inflation rates and are typically
integrated into the Phillips curve. To shed light on this discrepancy, it is worth noting that
for the static quantile regression, UNRATE and PRFI are relevant solely for the lower and
two lower quantiles, respectively. However, the interest rate on US short-term federal funds
(TB3MS) is included in both the static quantile regression and BDQMA for quantiles rang-
ing from 0.1 to 0.5, thereby tempering the impact of other variables associated with federal
funds interest rates. This nuanced analysis helps to unravel the complexity surrounding these
variables. While some exhibit sporadic relevance across different regression techniques and
quantiles, others, like the federal funds rate, consistently play a moderating role, highlighting
the intricate interplay of economic factors influencing inflation dynamics. To conclude our
exploration of the relevance of the proposed methodology in understanding the determinants
of inflation dynamics, let us juxtapose the results obtained from static and dynamic quantiles
for three pivotal variables: the growth rate of real GDP (GDPC1) and energy prices (OIL-
PRICE and GASPRICE). or a detailed discussion of the static quantile regression results,
please refer to Appendix D.2. These covariates, as dictated by economic theory, are over-
whelmingly relevant and are certainly included in both static and dynamic quantile estimates,
albeit for varying quantile levels. However, BDQMA outperforms its static counterpart by
a considerable margin in terms of efficacy and accuracy of results. BDQMA not only offers
insights into the presence of a relationship between the covariate and the response variable but
also illuminates the period during which this relationship is most pronounced. For instance,
in the case of energy prices, BDQMA reveals that GDP is influential during periods of low
inflation levels, particularly for quantiles T = 0.25 and t = 0.5, with the relationship being
strongest in the middle of the sample period. Conversely, for energy prices, the association
is more robust during the latter part of the sampling period (see Fig. 4).

Regarding the sign and magnitude of the impact of the most relevant regressors, as mea-
sured by the estimated coefficients in Fig. 3, the dynamic regression largely corroborates the
findings of the static regression for variables such as MICH, PPIACO, and energy prices.
However, notable deviations are observed, particularly in the case of TB3MS, where the
different impact is clearly evident when examining the results in Tab. S.4. Furthermore, a
crucial variable like money supply (M1SL), which was not included in the static regression,
displays a consistent negative sign across all periods and quantile levels equal to or below
the median. Notably, its impact exhibits an intriguing U shape, underscoring the pronounced
negative effect during the Great Financial Crisis. The dynamic regression results also reveals
a larger number of significant covariates for most or part of the period. More specifically,
some covariates, such as M1SL and TB3SL for instance, are relevant only for the first and
last quartile regressions.

4.2 Inclusion probabilities

One of the significant advantages of BDQMA over traditional static model selection meth-
ods lies in its dynamic updating of posterior inclusion probabilities 7;;—1. However, the
superiority of BDQMA extends beyond dynamic model selection. Effective model selection
procedures are also evaluated based on their ability to accurately describe the characteristics
of the response variable while maintaining simplicity. When model selection is conducted
for forecasting purposes, simplicity translates into avoiding overfitting and typically results
in smaller forecasted confidence intervals. As suggested by Koop and Korobilis (2012) for
dynamic model averaging (DMA), if the approach prioritizes models with fewer predictors, it
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Fig.5 US Inflation dataset. Expected number of predictors over time for each quantile confidence levels. The
quantiles are denoted as follows: T = 0.10 (gray dashed line), t = 0.25 (black dotted line), T = 0.50 (gray
solid line), t = 0.75 (black dotted line), T = 0.90 (gray dashed line), and the mean (black solid line). The
mean (Gaussian regression) is depicted by the black solid line. Additionally, the red line indicates the average
number of predictors across all quantiles. The shaded areas identify two significant periods: the US Great
Financial Crisis from 2007-Q4 to 2011-Q4 (blue), and the Russian-Ukraine crisis (red)

can preserve out-of-sample forecasting performance without compromising goodness-of-fit
properties. This emphasizes the importance of parsimony in model selection for forecasting,
where simpler models often yield more reliable predictions. The expected number of predic-
tors included by the BDQMA model selection procedure can be analytically evaluated using
the predicted inclusion probabilities nlk‘t_l, fort =1,2,...,Tandk =1,2,..., K, such
as:

K
E(s7) = xS0 (29)
k=1

The expected number of regressors E (S;), where S,k denotes the number of regressors included
inmodel k = 1,2,..., K at each point in time t = 1,2, ..., T, provides insight into the
average number of predictors included by BDQMA at time ¢. Figure 5 illustrates E (S;)
for all the quantile confidence levels © = (0.10, 0.25, 0.50, 0.75, 0.90). It is important to
note that the average number of predictors takes into account both significant and irrelevant
regressors, while Figs. 3, 4 only consider regressors that should be included at least once in
the dynamic regressor set. Hence, the expected value E (S;) tends to be slightly larger on
average than the number of relevant regressors included in Figs. 3, 4. Examining Fig. 5, we
observe that the shrinkage increases as the quantile levels deviate further from the median.
This observation aligns with intuition, indicating that the number of predictors relevant for
explaining higher and lower inflation levels is, on average, lower than those for the median.
Furthermore, we notice a noteworthy difference in the expected number of relevant predictors
(E (S,O's)) between median and mean regression for the same dataset and period. Specifically,
E (S;J '5) is considerably larger for the median regression. This disparity can be attributed to the
robustness properties of the median dynamic regression, which underweights observations
in the extreme tails, thereby reducing the variance that affects the Kalman filter predicting
equations. Consequently, the proposed probability estimates are expected to exhibit greater
efficiency compared to those derived from conditional mean regression. It is noteworthy that
for all considered quantile levels, E (SZO'25 ) varies over time and eventually converges to a
stable level after a few periods. This convergence underscores the dynamic nature of predictor
relevance and highlights the importance of considering temporal dynamics in regression
analysis. In conclusion, it is noteworthy that the average number of relevant predictors follows
a distinct pattern. It increases, reaching its peak around mid-2019, then begins to decline until
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Table 1 Backtesting results for

ucC CC D
the US inflation dataset. For each i Q
quantile level 0.10 0.07 0.11 0.63

T =(0.1,0.25,0.5,0.75,0.9),

the table reports the p-values for 0.25 028 044 0.61

three common back-testing 0.50 0.69 0.64 0.30

methods: the conditional 0.75 0.13 0.23 0.56
test of Kupiec, (CC),

coverage test of Kupiec, (CC) 0.90 0.07 0.14 0.60

the unconditional coverage test of
(UC) and the CaViaR test of
Engle and Manganelli (2004)
DQ)

the end of 2022, and subsequently rises again during the Russian-Ukraine crisis for all quantile
levels. Conversely, it remains relatively stable for the mean. This observation suggests that
the BDQMA method effectively captures the intricate dynamics of the relationships between
explanatory variables and the response variable over time, surpassing the capabilities of
traditional mean-based approaches.

The flexibility of the BDQMA method results in good forecasting performances. Table 1
presents the outcomes of three common backtesting procedures for one-step ahead quantile
forecasts of US inflation data. It is notable that both the conditional coverage and uncon-
ditional coverage, as well as the DQ test, fail to reject the null hypothesis of good quantile
forecast ability at the 5% significance level.

5 Real estate forecasting with time-varying market conditions

We now turn to a second application where we seek to explain the monthly values of the
REIT net-of-S&P500 return from January 1991 to September 2023, building upon the dataset
utilized in Ling et al. (2000). The REIT net-of-S&P500 return represents the difference
between the monthly NAREIT equity index return and the return to the S&P500 index for
that month. A detailed dataset description is provided in Appendix C of the supplementary
materials accompanying the paper.

5.1 A time-varying parameter prediction model

In this analysis, we employ the BDQMA model, e.g. a quantile-based dynamic regression
approach which substantially differs in several aspects from the static mean-regression anal-
ysis with macro fundamental and financial variables utilized by Ling et al. (2000). This
dynamic quantile regression method allows us to continuously update the sets of relevant
regressors for predicting future REIT levels. While Ling et al. (2000) employed a com-
bination of a rolling-window approach and a stochastic search variable selection method,
our approach offers a more dynamic and flexible framework for analyzing the relationship
between predictors and REIT returns.

Our analysis extends the work of Ling et al. (2000) in two key aspects. Firstly, we inves-
tigate the predictability of moderately large/low REIT returns. Secondly, we examine the
median return as a function of the same set of explanatory variables as utilized by Ling et
al. (2000). Intuitively, we anticipate that the determinants of high/low returns would exhibit
broad similarities, yet substantial differences across various sub-periods due to evolving
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Fig.6 US real estate data. Sequential estimates of the regression parameters by DMA (for the mean regression
f) and BDQMA (for the quantile regression a—e for the REITMKT (monthly NAREIT equity return in excess
of the monthly return on the S&P 500 stock index). For each quantile level t the corresponding figure only
reports those parameters having inclusion probability larger or equal to 0.7 for at least one quarter. See Table
S.11 for a summary of the relevant covariate. The shaded area identifies the period from 2022-02 to 2023-10
of the Russian-Ukraine crisis

market conditions, underlying mechanisms, and economic forces. Indeed, our approach is
inherently more robust and dynamic. In our BDQMA framework, the inclusion probabilities
of relevant variables are continuously updated over time, and the parameters of the regressors
follow a latent dynamic process. This dynamic updating of inclusion probabilities at different
quantile levels offers insights into how evolving economic conditions influence housing bub-
ble bursts, a phenomenon commonly observed in the market. The quantile regression model
we employ is defined in Eq. (28), with lagged endogenous variables excluded from the set of
covariates. This exclusion helps ensure the independence of current observations from past
values, maintaining the integrity of the analysis.
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Fig.7 US real estate data. Sequential update of the predicted inclusion probabilities 7;;—1 by DMA (for the
mean regression f12f) and BDQMA (for the quantile regression f12a—e) for the REITMKT (monthly NAREIT
equity return in excess of the monthly return on the S&P 500 stock index). For each quantile level t the
corresponding figure only reports those parameters having inclusion probability larger or equal to 0.7 for at
least one quarter. See Table S.11 for a summary of the relevant covariate. The shaded area identifies the period
from 2022-02 to 2023-10 of the Russian-Ukraine crisis

The outcomes of the initial static quantile model applied across the complete dataset
are showcased in Table S.13, Appendix E. Upon examination, it becomes apparent that
although numerous variables are pertinent for elucidating high returns, as anticipated, only a
select few delineate the conditional quantile above median confidence levels. Additionally,
it is noteworthy that only three variables, namely MKTYLD, MKTMOM, and REITMIN,
influence all quantiles. A visual inspection of Fig. 6 reveals compelling evidence of model
variations over time across all confidence levels. For instance, TBILL, which gauges the
opportunity cost of real estate investment, notably contributes to the prediction of lower real
estate returns surpassed only during the period spanning from late 2012 to early 2018 only
for the lowest quantile level (7 = 0.1), after which its relevance diminishes. This suggests a
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temporal aspect to its influence on real estate returns. At times, however, we observe that the
inclusion probability of a specific regressor exhibits a dynamic pattern that remains largely
consistent as we transition from lower to upper quantiles. This pattern is notably observed
with the two most influential regressors (REITMOM, MKTMOM), which consistently appear
across all quantile levels. These variables are also featured in the static quantile regression
in Tab. S.13 across all quantile levels, indicating their importance in explaining real estate
return dynamics.

From Fig. S.12, it becomes evident that certain variables, such as INFLAT (which mea-
sures the impact of inflation), are included as predictors solely for r = 0.50, indicating
their relevance primarily in scenarios where real estate returns are moderate. Conversely,
INFLAT_LFE (which measures inflation excluding food and energy prices) emerges as sig-
nificant in predicting high real estate returns, even extending to the third quartile (v = 0.75).
This observation suggests that accounting for price dynamics, particularly those related to
essential commodities, may not be crucial for forecasting future house price levels. This find-
ing prompts further inquiry into the underlying drivers of real estate returns and the factors
that shape their dynamics. It raises questions about the relative importance of macroeconomic
indicators versus specific inflation components in influencing housing market performance.
Moreover, it underscores the nuanced nature of predictive modeling in real estate economics,
where the inclusion of certain variables may vary across different quantiles, reflecting distinct
market conditions and dynamics. Overall, these insights contribute to a deeper understand-
ing of the complex relationship between economic factors and real estate returns, informing
more nuanced and effective forecasting models. By discerning the varying impacts of differ-
ent predictors across quantiles, researchers and policymakers can refine their strategies for
mitigating risks and maximizing opportunities in the dynamic real estate market landscape.

5.2 Inclusion probabilities

Figure 7 illustrates the predicted inclusion probabilities 7r;; 1 of the regressors across various
quantile levels. The dynamic progression of these probabilities elucidates the significance of
variables in forecasting future quantile levels of real estate returns at each time point ¢. Figure 7
exclusively portrays those regressors deemed relevant at least once over time, indicated
by a posterior inclusion probability of at least 0.7 for some date ¢. Unfortunately, Fig.7
contains an excessive number of regressors and considerable noise, making it challenging
to discern meaningful patterns. Therefore, we have chosen to present a smoothed version
in Fig. S.12 in Appendix E of the supplementary materials accompanying the paper, where
each inclusion probability has undergone local polynomial regression to mitigate noise and
improve interpretability.

Interestingly, two significant variables in Table S.13, REITYLD and MKTYLD, demon-
strate inclusion probability dynamics characterized by a sinusoidal shape with comparable
amplitude and frequency across quantiles, transitioning to lower levels as the quantile
increases. This sinusoidal behavior suggests a cyclical influence on real estate returns, war-
ranting further investigation into its underlying drivers. Overall, the smoothed version of the
inclusion probabilities provides a clearer understanding of the evolving dynamics of regres-
sors in predicting real estate returns across different quantile levels, shedding light on both
consistent influences and temporal variations in model predictors. Moreover, the percentage
change in the monetary base (MBASE), which is also linked to inflation, exhibits low levels
of inclusion probability across all quantile confidence levels. This suggests that the price
dynamics are largely independent of the real estate market.
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Another significant finding is that, BDQMA captured both gradual and abrupt changes
in inclusion probabilities. For example, there is an abrupt change in the inclusion probabil-
ity of the monetary base CUMSUM (which accounts for the growth rate of consumption
expenditures for nondurable goods) from nearly 0.2 to 0.8 for r = 0.75. However, it is
worth noting that there are also many instances where the inclusion probability of a specific
predictor evolves smoothly over time. Our findings underscore the importance of adaptive
policymaking strategies that are responsive to changing economic dynamics. Ultimately, the
dynamic selection of relevant predictors enhances the accuracy of real estate return forecasts
and provides invaluable insights for policymakers seeking to optimize their interventions in
alignment with evolving economic conditions.

6 Conclusion

In this article, we propose a new Bayesian Dynamic Quantile Model Averaging (BDQMA)
approach, which for the first time to our best knowledge, combines in a tractable way Bayesian
time-varying quantile regressions and dynamic model averaging. The approach dynamically
accounts for model risk and parameters uncertainty in the quantiles of the response vari-
able in presence of time-varying features such as heteroskedasticity and volatility clustering,
non-linearities, breaks and jumps, leptokurticity and unconditional non-normality. These
input-data features represent a major challenge when predicting the variable of interest. The
tractability of BDQMA relies on an original combination of the location-scale Gaussian mix-
ture representation of the quantile regression error terms, a conditionally Normal state-space
representation of the time-varying parameter model and a sequential Monte Carlo Markov
chain sampler for posterior approximation. We demonstrate that our proposed combination
of transition and jumping kernel, based on a series of Kalman filtering and smoothing steps,
enables convergence to the posterior distribution. This framework is further enriched by
incorporating an additional layer over the discrete space of regressors’ combinations. While
this resembles a conventional batch processing approach, it is typically impractical in its
classical form, especially for small samples.

After rigorous testing with various simulation experiments, our approach has demon-
strated effectiveness across different real-world data characteristics such as abrupt and smooth
changes in the relationship between response and explanatory variables, in presence of het-
eroschedasticity in the obervation errors. We illustrate the potential of BDQMA through an
application to predicting US inflation and real estate returns. In the two applications we found
evidence of disparity between mean regression and its robust median version. Indeed, beyond
the disparity in the coefficients of some regressors usually considered in the literature, the
impact of energy prices became significant in the recent years in explaining low and high
quantiles of inflation and real estates returns. Furthermore, comparing the results obtained
from static quantiles with those from BDQMA, for most of the relevant variables, the sig-
nificance, the magnitude and the sign of their coefficients fluctuate over time in response to
prevailing economic conditions. When compared with the mean results, BDQMA also returns
a larger number of significant covariates for a large part of the sample period. This disparity
can be attributed to the robustness properties of BDQMA, which dynamically underweights
observations in the extreme tails. The flexibility of the BDQMA approach results in good
forecasting performances as confirmed by standard backtesting procedures.

Finally, we may think about several extensions of our study. Relating to the method,
nontrivial interesting extensions include modelling and forecasting with multiple frequencies
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(Eric Ghysels and Valkanov, 2007; Candila et al., 2023), horizons (Shackleton et al., 2010;
Aastveit et al., 2014), and quantiles (Meng and Taylor, 2020; Taylor, 2022; Merlo et al.,
2021; Zhang et al., 2023). Furthermiore, BDQMA can be combined with an ex-ante “hair-
cut” correction (Boucher et al., 2014; Lazar and Zhang, 2019), in order to correct on an a priori
basis the output estimates in a Bayesian setting. Finally, Machine Learning techniques can
be used to embed textual media-news data (Huang et al., 2023) or to enhance the predictive
power of the models (Medeiros et al., 2021; Barkan et al., 2023; Lenza et al., 2023a,b).
Regarding the applications, other geographical areas, such as Europe, or markets, such as the
bond and stock markets, can be considered. Tackling the problem of predicting key economic
variables, namely for instance probability of financial distress and bankruptcies (Huang et
al., 2023) might be also of interest.
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