
Energy Economics 136 (2024) 107650

A
0
n

Contents lists available at ScienceDirect

Energy Economics

journal homepage: www.elsevier.com/locate/eneeco

Learning from experts: Energy efficiency in residential buildings
Monica Billio a, Roberto Casarin a,∗, Michele Costola a, Veronica Veggente b

a Department of Economics, University Ca’ Foscari Venezia, Venezia, Italy
b Department of Finance, Imperial College Business School, London, UK

A R T I C L E I N F O

JEL classification:
C10
C53
C50

Keywords:
Energy efficiency
Energy performance certificate
Machine learning
Tree-based models
Big data

A B S T R A C T

Reducing energy consumption is a key policy focus for mitigating climate change. This study investigates the
determinants of residential building energy efficiency, leveraging expert insights from Energy Performance
Certificates (EPCs) to develop a machine learning prediction framework. Datasets from countries at distinct
latitudes, the UK and Italy, are analyzed to identify potential regional variations in the factors influencing
energy efficiency. Findings reveal the crucial role of factors related to heating systems and insulation materials
in the determination of the building’s efficiency. Also, there is evidence of the superior ability of non-linear
machine learning models to capture complex relationships between building characteristics and efficiency.
A scenario analysis further demonstrates the cost-effectiveness of policies informed by machine learning
recommendations.
1. Introduction

The increase in greenhouse gas emissions has a relevant impact on
global warming as extensively documented in the literature (e.g., see
Lashof and Ahuja, 1990; Shine et al., 2005; Hijioka et al., 2006;
Yoro and Daramola, 2020). Commercial and residential buildings are
responsible for more than 40% of the world’s resource and energy
consumption and around 33% of the total CO2 emissions (Baek and
Park, 2012). Energy efficiency is receiving increasing attention from
government and international institutions and represents one of the key
policy actions for mitigating global warming and fossil fuel usage (see,
e.g. Danish et al., 2019). As an example, in March 2024, the EU Par-
liament approved the revised Energy Performance Buildings Directive,
also known as the ‘‘EU Green Homes Directive’’, aimed at decreasing
the environmental impact of Europe’s building stock, with targets for
zero-emission new residential buildings by 2030 and climate neutrality
for all buildings by 2050. The directive emphasizes the significance of
financing extensive renovations, encouraging member states to allocate
resources to initiatives that guarantee minimal energy savings. Conse-
quently, member states must enact measures to achieve a reduction of
at least 16% in average primary energy consumption by 2030 and a
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E-mail addresses: billio@unive.it (M. Billio), r.casarin@unive.it (R. Casarin), michele.costola@unive.it (M. Costola), v.veggente23@imperial.ac.uk

(V. Veggente).
1 Please refer to https://www.europarl.europa.eu/news/en/press-room/20240308IPR19003/energy-efficiency-of-buildings-meps-adopt-plans-to-decarbonise-

the-sector for more information.

reduction of at least 20 to 22% by 2035 in residential buildings.1 There-
fore, policymakers aim to reduce greenhouse gas emissions to decrease
the environmental impact of production and consumption activities at
the national level and meet the treaties’ targets. In this context, green
building has emerged as a relevant goal to alleviate the impacts of
the building stock on the environment, society, and the economy. The
four pillars of green building include minimizing impacts on the envi-
ronment, improving occupant health conditions, preserving the return
on investment for owners and the community, and accounting for the
life cycle in the planning and development process. Energy efficiency
and greenhouse gas emission reduction represent the key drivers of
the environmental impact, along with water efficiency and resource
efficiency (Zuo and Zhao, 2014; Robichaud and Anantatmula, 2011).

Along with the environmental impact, reduced energy consumption
has relevant consequences also in financial risk management. First,
greenhouse gas emissions are one of the main drivers of transition
risk (see Basel Committee on Banking Supervision, 2021, for a detailed
description of physical and transition risk drivers). Second, recent find-
ings on the mortgage credit market have shown that energy-efficient
buildings are associated with a lower solvency risk (Billio et al., 2022;
Guin et al., 2022; Ferentinos et al., 2023).
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The present study aims to identify the key factors representing the
necessary technical interventions that could reduce energy
consumption in residential buildings. Several definitions of energy
efficiency have been provided by policymakers and public policy insti-
tutes (Semple and Jenkins, 2020). The European Union defines energy
efficiency as ‘‘the ratio of the output of performance, service, goods
or energy, to the input of energy’’. The Environmental and Energy
Study Institute (EESI) defines energy efficiency as ‘‘using less energy to
perform the same task – that is, eliminating energy waste’’.2 Within the
Energy Performance Certificate (EPC) framework, the quantification of
a building’s energy efficiency is contingent upon its utilization of non-
renewable energy sources. In essence, the lower the consumption of
non-renewable energy, the higher the level of efficiency attributed to
the building.

In the European Union, the EPC mechanism was introduced with
the Energy Performance of Buildings Directive (EPBD) to monitor the
building stock, and in 2010 new requirements were further added to
improve the usability of EPCs in the real estate market.3 As noted
in Schuller (2021), EPC procedures differ across countries and are
crucial in measuring the energetic performance of buildings by as-
signing an overall grade based on the characteristics of the services
installed. EPCs contain specific information on the structural charac-
teristics of buildings and services installed, such as heating systems,
cooling systems, and domestic water production, with energy sources
and consumption measures. Furthermore, it is widely recognized that
the opinions about energy efficiency and the effect of hypothetical
retrofitting can vary consistently across experts issuing EPCs, even
within the same country (Tronchin and Fabbri, 2012).

Recently, the usage of big data in building energy efficiency has
been applied to (i) forecast energy demand in residential and com-
mercial buildings (Gómez-Omella et al., 2021; Skomski et al., 2020;
Grolinger et al., 2016), (ii) forecast energy efficient enhancement on
buildings (Mehmood et al., 2019; Fan et al., 2018), and (iii) eval-
uate the effectiveness of retrofitting measures (Guzhov and Krolin,
2018) also taking into account the thermal comfort of environmentally
friendly constructions (Barbeito et al., 2017).

We investigate the determinants of energy efficiency in residential
buildings, proposing a flexible approach to expert opinion analysis,
with the aim of establishing an effective predictive framework. Specif-
ically, we consider two geographical areas from the mid-latitude zone
(35◦–55◦) but with different thermal gradients: (i) the Lombardy region
in Italy and (ii) the Great London region in the UK. The two areas are
expected to experience different extreme climate conditions, such as
an increase in the number of hot days and tropical nights, according
to most recent climate projections (see, e.g. Carvalho et al., 2021).
The public availability of big datasets for the two areas constitutes
a unique opportunity to study the effectiveness of machine learning
techniques in predicting energy efficiency and providing support to
public policies aimed at climate change adaptation and mitigation. The
first dataset is the Italian EPCs data, also known as APE (Attestato
di Prestazione Energetica) and focuses on the Lombardy Region that
has made publicly available the CENED (Certificazione ENergetica
EDifici) database. Beyond energy ratings, the information available in
the CENED database relates to the location of certified buildings, the
energy demand associated with the services present in the building, the
characteristics of buildings, energy systems, and the use of renewable
energy sources. The second dataset considers the UK EPCs data, focuses

2 Further information can be found in the following sources:
ttps://www.europarl.europa.eu/RegData/etudes/BRIE/2015/568361/
PRS_BRI(2015)568361_EN.pdf and https://www.eesi.org/topics/energy-
fficiency/description.

3 For an in-depth discussion on the implementation of the Buildings Di-
ective, refer to 2002/31/EC1 and 2010/91/EU, and the EPCs framework in
2

urope (Arcipowska et al., 2014).
on the London area’s residential buildings, and includes information
such as average energy efficiency ratings, energy use, carbon dioxide
emissions, location, and characteristics of the buildings.

Understanding the relationships between building features and po-
tential energy efficiency improvements is challenging, given the large
number of variables involved. In this respect, we employ a compre-
hensive set of linear and non-linear approaches to delve into these
relationships and enhance our understanding of the factors influenc-
ing energy efficiency. Among the nonlinear and nonparametric meth-
ods, we explore three tree-based models: Bayesian Additive Regression
Tree (Chipman et al., 2010), Random Forest (Breiman, 2001), and
Extreme Gradient Boosting (Chen and Guestrin, 2016). These non-
linear models are widely used to capture non-linear relationships and
interactions between variables. In addition, a comparison with bench-
mark linear models is considered, which includes Lasso (Tibshirani,
1996), Ridge (Hoerl and Kennard, 1970), and Elastic Net (Zou and
Hastie, 2005). These models have demonstrated their effectiveness in
handling high-dimensional datasets, making them suitable candidates
for examining the relationship between building features and energy
efficiency potential.

Our findings demonstrate non-linear relationships between building
features and efficiency improvements. Specifically, we provide evi-
dence that a set of interventions, such as installing internal or exterior
insulation and improving heating systems, as well as the characteristics
of buildings, can lead to an improvement in the energy efficiency of
a property. We discuss the results obtained from variable importance
and partial dependence analyses for Italy and the UK and compare
the determinants identified in both cases. The findings of the study
reveal that tree-based models exhibit superior predictive performance
compared to linear models. The better accuracy in forecasting poten-
tial efficiency improvements is attributed to the tree models’ ability
to capture non-linear relationships between efficiency and building
characteristics. Among the tree-based models employed, the Extreme
Gradient Boosting model consistently outperforms its counterparts in
both in-sample and out-of-sample analyses for the Italian and UK cases.

We conduct a scenario analysis to assess the costs associated with
achieving potential energy efficiency, considering two alternative green
policies. The first policy leverages technical suggestions generated by
the Extreme Gradient Boosting model, selected for its demonstrated
superior forecasting capabilities. The second policy is intentionally
structured without a specified order of preferences for the recommen-
dations, prioritizing the enhancement of energy efficiency in residential
buildings by implementing all provided suggestions outlined in the
EPC. To gauge policy effectiveness, we examine payback periods for
implemented recommendations in the Italian case and direct costs in
the UK case. The results indicate that, in both the Italian and UK
contexts, the machine learning-recommended policy shows a greater
ability to produce cost-efficient and economically viable outcomes in
achieving energy efficiency improvements. In the Italian case, the
machine learning policy features an average payback period that is
19.41% lower than that of the alternative policy, while in the UK case,
it results in a reduction in carbon dioxide emissions nearly 2.5 times
greater. These findings underscore the relevance of machine learning
approaches for the formulation and implementation of policies within
the realm of energy efficiency initiatives.

The remainder of the paper is organized as follows: Section 2
outlines the variable of interest, and Section 3 introduces tree-based
and linear models. Section 4 presents empirical analyses for Italian and
UK cases, including discussions on variable selection and non-linear
dependencies. Section 5 focuses on scenario analysis for green energy
financing policies, and the final section concludes.

2. Modeling energy efficiency

In this section, we present the predicted variable that measures
the potential energy efficiency gain following the implementation of
the recommendations in the EPC reported by the technicians who
conducted the inspection to release the energy certificate. Specifically,
the variable of interest is built as described in Section 2.1.

https://www.europarl.europa.eu/RegData/etudes/BRIE/2015/568361/EPRS_BRI(2015)568361_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2015/568361/EPRS_BRI(2015)568361_EN.pdf
https://www.eesi.org/topics/energy-efficiency/description
https://www.eesi.org/topics/energy-efficiency/description
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2.1. Definition of efficiency improvement

Energy efficiency is commonly measured using numerical perfor-
mance indicators of energy consumption, which are then converted into
ratings for enhanced interpretability, as exemplified by scales like A-G.
Let EE_POT𝑗 denote the potential final energy performance indicator
expected after interventions and EE𝑗 denote the initial energy perfor-
mance indicator for building 𝑗, where 𝑗 = 1,… , 𝑛. An improvement in
energy efficiency implies 0 < 𝙴𝙴_𝙿𝙾𝚃𝑗 ≤ 𝙴𝙴𝑗 < ∞, reflecting a decrease
n energy consumption requirements. Note that if no interventions are
equired, signifying that the house has reached its maximum potential,
e have 𝙴𝙴_𝙿𝙾𝚃𝑗 = 𝙴𝙴𝑗 .

Since the constraint 𝙴𝙴_𝙿𝙾𝚃𝑗 ≤ 𝙴𝙴𝑗 is always satisfied, small values
of 𝙴𝙴_𝙿𝙾𝚃𝑗 may be attributed to small values of 𝙴𝙴𝑗 , indicating a
high initial efficiency level. To mitigate reliance on initial conditions
inherent in the efficiency evaluation process, we consider the energy
variation 𝙴𝙴_𝙿𝙾𝚃𝑗∕𝙴𝙴𝑗 , which falls within the range of (0, 1). The closer
he value is to zero, the greater the energy efficiency enhancement.

In order to obtain a variable defined on (−∞,+∞), we apply the
logistic transform and define:

𝑌𝑗 = 𝜑−1(𝙴𝙴_𝙿𝙾𝚃𝑗∕𝙴𝙴𝑗 ), (1)

where 𝜑−1(𝑣) = log(𝑣) − log(1 − 𝑣) is the inverse logistic. Hence, the
response variable 𝑌𝑗 measures the potential variation of the energy
performance index, defined as:

𝑌𝑗 = log(𝙴𝙴_𝙿𝙾𝚃𝑗 ) − log(𝙴𝙴𝑗 − 𝙴𝙴_𝙿𝙾𝚃𝑗 ). (2)

The target variable may exhibit large values under two scenarios: when
the building potential energy is low (i.e., the variable 𝙴𝙴𝑗 takes large
values), or when the efficiency improvement is modest (i.e., the differ-
ence 𝙴𝙴𝑗 − 𝙴𝙴_𝙿𝙾𝚃𝑗 takes small values). In summary, a high (low) value
for 𝑌𝑗 is indicative of generally poor (good) energetic performance or
potential improvement.

3. Methods

Motivated by the intricate relationships that may exist between the
building features and the potential energy efficiency increase, we em-
ploy a comprehensive set of linear and non-linear modeling techniques.
This approach allows us to gain a deeper understanding of the energy
efficiency determinants and facilitates more accurate predictions of
the potential energy efficiency increase. Among the linear models, we
consider Lasso (Tibshirani, 1996), Ridge (Hoerl and Kennard, 1970),
and Elastic Net (Zou and Hastie, 2005), which have demonstrated their
effectiveness in handling high-dimensional datasets.

Lasso utilizes 𝓁1 regularization and allows for feature selection,
resulting in sparse models. Ridge, employing 𝓁2 regularization, special-
izes in addressing correlated features. Elastic Net combines both 𝓁1 and
𝓁2 regularization, achieving an approach that considers feature selec-
tion and exploits feature correlation. Among the non-linear models, we
investigate three tree-based models, namely Bayesian Additive Regres-
sion Tree (Chipman et al., 2010), Random Forest (Breiman, 2001), and
Extreme Gradient Boosting (Chen and Guestrin, 2016), known for their
ability to capture non-linear relationships and interactions in the data.

Let 𝑌𝑗 be the dependent variable measured for the statistical unit 𝑗,
with 𝑗 = 1,… , 𝑛, that is, the energy efficiency increase for the 𝑗th build-
ing in the sample presented in Section 2, and let 𝐱𝑗 = (𝑥1𝑗 ,… , 𝑥𝑚𝑗 ) ∈
R𝑚 be a vector of covariates, that are the building and intervention
features. The following relationship is assumed

𝑌𝑗 = 𝑓 (𝐱𝑗 ) + 𝜀𝑗 , 𝜀𝑖
𝑖𝑖𝑑∼ (0, 𝜎2), (3)

where 𝑓 (⋅) is an unknown and possibly nonlinear function. In many
applications, the function 𝑓 (⋅) may not be smooth, but it could exhibit
discontinuities in certain regions of its support.
3
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3.1. Lasso, ridge and elastic net

These are linear parametric models that are 𝑓 (𝐱) = 𝛽0 + 𝛽1𝑥1 +
⋯ + 𝛽𝑚𝑥𝑚, with a penalization that shrinks the coefficients estimates
to reduce the overall model complexity (Tibshirani, 1996). Lasso sets
a subset of coefficients to zero using an 𝓁1 penalization, Ridge reduces
the impact of the features on the response variable, using an 𝓁2 penal-
ization, and Elastic Net combines 𝓁1 and 𝓁2 penalizations. In particular,
consider the general minimization problem:

‖𝐲 − 𝛽0 −𝑋𝛽‖22 + 𝜆
[

𝛼‖𝜷‖1 + (1 − 𝛼) 1
2
‖𝜷‖22

]

, (4)

where 𝐲 = (𝑌1,… , 𝑌𝑛) and 𝑋′ = (𝐱′1,… , 𝐱′𝑛) are the collections of the
target variables and features, respectively. 𝛽0 is the constant, 𝜷 is the 𝑚-
vector of the regularized coefficients, 𝜆 is the regularization parameter,
𝛼 ∈ (0, 1) represents the weight for the Lasso component, and 1−𝛼, the
weight for the Ridge one. We employ glmnet R-package (see Friedman
et al., 2010)4 to fit three different specifications: (i) Lasso (𝛼 = 1); (ii)
Ridge (𝛼 = 0); and (iii) Elastic Net (𝛼 = 0.5). As suggested in Krstajic
et al. (2014), 𝜆 is validated using the largest value for which the error
is within one standard error of the minimum found for 𝜆.

3.2. Bayesian additive regression tree (BART)

The BART model is a flexible inference framework that combines
non-parametric regression and ensemble learning (Chipman et al.,
2010). BART is a probabilistic framework that captures possible non-
linear relationships and interactions among covariates and accounts for
uncertainty in the estimates and prediction. The model uses a set of
random trees 𝑗 , 𝑗 = 1,… , 𝐽 to define a flexible functional form for
the conditional mean of the variable 𝑌𝑖. The regression function 𝑓 (⋅) is
given by a sum of 𝐽 piece-wise constant functions, 𝑔𝑗 (⋅), called simple
functions:

𝑓 (𝐱) =
𝐽
∑

𝑗=1
𝑔𝑗 (𝐱). (5)

The simple functions 𝑔𝑗 (⋅) = 𝑔(⋅; 𝑗 ,𝑗 ) are parametrized by a random
tree 𝑗 and a set of tree-specific coefficients 𝑗 = {𝜇𝑗1,… , 𝜇𝑗𝐿𝑗

}:

(𝐱; 𝑗 ,𝑗 ) =
𝐿𝑗
∑

𝑙=1
𝜇𝑗𝑙I(𝐱 ∈ 𝑗𝑙), (6)

here I(𝑥 ∈ 𝐴) is the indicator function, which takes the value 1 if 𝑥
s in the set 𝐴 and 0 otherwise, and 𝑗𝑙 ∈ R𝑚.

Each random tree 𝑗 contains a set of internal and terminal nodes
leaves). Each internal node is associated with a binary splitting rule
uch that the node is connected to two child nodes: a left node when
he 𝑘th variable is below a threshold 𝑐𝑗 , that is 𝑋𝑖𝑘 ≤ 𝑐𝑗 and a right
ode when the 𝑘th variable is above, that is 𝑋𝑖𝑘 > 𝑐𝑗 . A leaf node, say
, has no splitting rule and is assigned to a parameter 𝜇𝑗𝑙. The tree is
andom since the choice of the splitting variable and the value of the
arameter at the terminal nodes are random, which adds flexibility to
he model.

Each tree generates a partition 𝑗1,… ,𝑗𝐿𝑗
of the covariate space

𝑚 such that 𝑗𝑙∩𝑗𝑙′ = for 𝑙′ ≠ 𝑙 and 𝑗1∪⋯∪𝑗𝐿𝑗
= R𝑚. In the BART

odel, the parameter 𝜇𝑗𝑙 represents the contribution given by the 𝑗th
ree to the conditional expected value of 𝑌𝑖 when 𝐗𝑖 in the 𝑙th element
f the partition, given the random partition induced by the 𝑗th tree.

The specification of the BART model includes the prior distribution
n the tree structures, the leaf parameters, and the variance of the error
erm

(1,… , 𝐽 ,1,… ,𝐽 , 𝜎
2) = 𝜋(𝜎2)

𝐽
∏

𝑗=1
𝜋(𝑗 |𝑗 )𝜋(𝑗 ). (7)

4 The glmnet R-package, developed by Trevor Hastie and Rob Tibshirani,
s available for download at https://cran.r-project.org/web/packages/glmnet.

https://cran.r-project.org/web/packages/glmnet


Energy Economics 136 (2024) 107650M. Billio et al.
Fig. 1. Geographic distribution of the initial (left) and the potential (right) energy efficiency in the Lombardy region of Italy (top) and in the Greater London area of the UK
(bottom). In each plot: the color indicates the efficiency level from high (green) to low (red), and the gray lines provide the limits of the administrative units in longitude (horizontal
axis) and latitude (vertical axis) coordinates. The red area in the UK map refers to the ward of Darwin, where around 6% of the postcode areas have lower energy efficiency than
the average of the least efficient 0.001% postcode areas in Greater London. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
We consider here the choice for 𝜋(𝑗 ), which is given by the product
of the following prior distributions: (i) a prior distribution 𝛼(1 + 𝑑)−𝛽

for the depth 𝑑 ∈ {0, 1, 2,…} of the tree with 𝛼 ∈ (0, 1) and 𝛽 ∈
[0,∞); (ii) independent normal distributions  (𝑚𝜇 , 𝜎𝜇) for the leaf
parameters 𝜇𝑗𝑙; and (iii) the conjugate scaled inverse Chi-square prior
distribution 𝜈𝜆2(𝜈) for 𝜎2. Regarding the splitting rule, at each internal
node, each splitting covariate has an equal prior probability of being
chosen, i.e. 1∕𝑛 (see, for instance, Chipman et al., 2010; Pratola, 2016;
Linero, 2018). The posterior distribution is not tractable and following
the standard practice in Bayesian analysis, it has been approximated
numerically via a Markov Chain Monte Carlo (MCMC) algorithm that
generates samples from the parameter and tree posteriors and from the
posterior predictive. In the application we considered the following
hyper-parameter setting: 𝛼 = 0.95, 𝛽 = 2, 𝑚𝜇 = 0 and 𝜎2𝜇 = (𝑦max −
𝑦min)∕(2𝑘

√

𝐽 ), 𝑘 = 2, 𝜈 = 3, and 𝜆 = 0.1468, where 𝑦min = min{𝑦1,… , 𝑦𝑛}
and 𝑦max = max{𝑦1,… , 𝑦𝑛}. See also (Sparapani et al., 2021) for further
discussion on the prior choice. We use the R implementation of the
MCMC algorithm included in the packages BayesTree (Chipman and
McCulloch, 2016) and BART (Sparapani et al., 2021). To select the
number of trees 𝑘, we perform a cross-validation exercise as reported
in 3.

3.3. Random forest

This nonparametric model can capture non-linearity in predicting
the energy efficiency gain. Similarly to BART, it relies on the notion of
a decision tree given in the previous section. The Random Forest model,
introduced by Breiman (2001), is based on a combination of single
decision trees trained in parallel on random subsets of the data. At each
node, a subset of the total number of features is selected as candidates
4

to define the splitting rule. This ensures that the model can handle the
correlation between features and grows somewhat uncorrelated trees.
See Casarin et al. (2021) for an introduction to random forests with
applications.

We employ the randomForest R-package (Liaw and Wiener,
2002)5, setting the number of trees equal to 150, and leaving all other
parameters to the default values. In the application to the full sample,
we set the maximum number of nodes equal to 500 for computational
reasons. We do not restrict this parameter in the application to the
subsample.

3.4. Extreme gradient boosting (XGBOOST)

The second model we consider is an ensemble model based on a
collection of decision trees 𝑗 , 𝑗 = 1,… , 𝐽 , a collection of functions
𝑔𝑗 ( ⋅ ; 𝑗 ), 𝑗 = 1,… , 𝐽 with 𝑔𝑗 ∈  and the additive regression function
in Eq. (5), where  =

{

𝑔(𝐱) = 𝑤𝑞(𝐱), 𝑞 ∶ R𝑚 → 1,… , 𝐿,𝑤 ∈ R𝐿} is the
space of regression trees and 𝐿 is the number of leaves. The main
difference compared to BART is that trees, in this case, are grown
sequentially on a modified version of the original dataset. At the
iteration 𝑡, given a set of trees 𝑔1,… , 𝑔𝐽 , a new tree 𝑔(𝐱) ∈  is included
to obtain a new regression function

𝑓 (𝐱) = 𝑓 (𝐱) + 𝑔𝐽+1 (𝐱) . (8)

5 The randomForest R-package, developed by Andy Liaw and Matthew
Wiener, is available for download at https://cran.r-project.org/web/packages/
randomForest.

https://cran.r-project.org/web/packages/randomForest
https://cran.r-project.org/web/packages/randomForest
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Fig. 2. The case of Lombardy (Italy). The initial non-renewable energy performance index EE (horizontal axis) versus the final index EE_POT (vertical axis, top left), the
expected performance difference EE - EE_POT (vertical axis, top right), the expected performance ratio EE_POT/EE (vertical axis, bottom left), and the response variable
𝑌 = log(𝙴𝙴_𝙿𝙾𝚃) − log(𝙴𝙴 − 𝙴𝙴_𝙿𝙾𝚃) (vertical axis, bottom right). The entire sample involves 205,049 buildings (gray dots) and a subsample of 10,000 buildings (red dots).
The newly added tree 𝑔𝐽+1 is chosen based on the errors produced by
the trees of the previous iteration (Chen and Guestrin, 2016). This algo-
rithm is designed to learn slowly from the data, which helps avoid over-
fitting. For the estimation, we utilize the xgboost R-package (Chen
and He, 2023)6 and cross-validate the value for the maximum number
of iterations, using both the full sample and a subsample of 10,000
observations.

4. Empirical analysis

In this section, we apply the presented models to the EPC data
for the two geographical areas with different latitudinal temperature
gradients and climate conditions: the Lombardy region in the north of
Italy and the Greater London area in the UK.

To predict the potential increase in energy efficiency, we lever-
age the technical specifications outlined in the EPC, coupled with

6 The xgboost R-Package, developed by Jiaming Yuan, can be down-
loaded from https://cran.r-project.org/web/packages/xgboost/index.html.
5

the expert-recommended interventions derived from the assessment
process. Illustrated in Fig. 1, the spatial distribution delineates the
energy efficiency measure across both datasets. The left column por-
trays the current energy-efficient status, while the right column projects
the potential energy efficiency level, factoring in the proposed expert
interventions. This visual representation highlights the substantial en-
hancements achievable through the implementation of expert-guided
recommendations.

In the first part of each country analysis, we present and compare
results obtained between tree-based and linear models. The models
are applied to predict the energy efficiency potential improvement,
leveraging on granular information on the initial characteristics of the
stock of buildings, their energy services, and the interventions recom-
mended by technicians. In order to ensure a comprehensive analysis,
we conduct the applications on both the full sample and a subsample of
the data by selecting a random sample without replacement of 10,000
observations (see, for instance, García et al., 2015). On one hand, the
inclusion of the full sample allows us to capture the overall trends
and patterns present in the dataset, providing a broader perspective on
the relationship between the predictors and the target variable. On the

https://cran.r-project.org/web/packages/xgboost/index.html
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other hand, the subsample analysis is particularly valuable in making
the data-driven framework computationally feasible and applicable to
real-time decision-making scenarios. By examining a smaller subset
of the data, we can ensure its robustness and evaluate its ability to
generalize across different data distributions.

In the second part, we focus on the variable importance to gather
a comprehensive understanding of how the two modeling methods
assign significance to the different features and expert opinions under
scrutiny.

4.1. Data source and description

Variables of interest in the EPC databases can be grouped as follows:
(a) initial characteristics of the building, its services, and consumption
levels; (b) current energy efficiency; (c) suggested interventions; (d)
potential energy efficiency once the interventions are implemented.

1. Initial characteristics: these include data related to the (i)
general characteristics of the building (such as intended use,
location, age of the building, size of the real estate unit, number
of real estate units in the building,. . . ); (ii) energetic services
installed in the building such as heating system, cooling system,
production of domestic water;

2. Current energy efficiency: consumption and energetic perfor-
mance, expressed using a number of different indicators such
as thermal efficiency, global energetic performance of renew-
able and non-renewable energetic sources, consumption level for
different fuel types, energetic class, and similar;

3. Suggested interventions: in the EPC, experts are required to
report one or more possible interventions to increase the energy
efficiency level of the building;

4. Potential energetic performance: variables summarizing the
estimated potential energy class given the initial conditions of
the building and the implementation of one or more suggested
interventions.

In the analysis, features falling in the first and third categories are
sed as predictors to forecast the potential increase in energy efficiency.
s described in Section 2, the measure is computed using energy per-

ormance indicators included in the second and fourth categories and
s obtained from Eq. (2). The two datasets for different geographical
reas are the CENED+2 dataset for Lombardy (Italy) and the EPBD
K dataset (UK). The former pertains to EPCs issued for buildings in

he Lombardy region from January 1, 2015.7 The EPBD dataset for the
K encompasses Energy Performance Certificate (EPC) data issued for
omestic buildings in England and Wales from January 1, 2008.8

.2. The Italian case

In the original Italian dataset, energy efficiency is measured through
he energy performance indicator of all the non-renewable sources used
n a building. Panel C in Table A1 presents the original Italian labels for
nitial (EE) and potential (EE_POT) energy efficiency and a description
f the indicator.

The response variable 𝑌 , as defined in Section 2, exhibits an inverse
elationship with the enhancement in energy efficiency and solely
aptures positive enhancements. In simpler terms, the value of (EE -
E_POT) is non-negative. Thus, a high value for 𝑌 signifies a minimal
nhancement rather than a decline in energy efficiency (refer to the

7 The full dataset ‘‘CENED+2 Database – Certificazione ENergetica degli EDi-
ici’’ is publicly available at https://www.dati.lombardia.it/Energia/Database-
ENED-2-Certificazione-ENergetica-degli-E/bbky-sde5 and can be used under
he Creative Commons Licence Zero (CC0 1.0 universal).

8 The full dataset ‘‘Energy Performance of Buildings Data: England and Wales’’
6

s publicly available at https://epc.opendatacommunities.org/. p
Table 1
Labels for recommendation identifiers in the Italian dataset, presented in both the
original Italian and translated English forms.

IMPROVEMENT_ID English description Italian description

1 Opaque shell Involucro Opaco
2 Transparent shell Involucro Trasparente
3 Heating System Impianto climatizzazione Inverno
4 Cooling System Impianto climatizzazione Estate
5 Other Systems Altri Impianti
6 Renewable Sources Fonti Rinnovabili

upper-left panel in Fig. 2). Intriguingly, buildings with lower energy
efficiency are anticipated to experience more substantial improvements
(as evident from the lower limit in the upper-right panel of Fig. 2).
This observation implies that when a building’s initial energy efficiency
is exceedingly low, any proposed intervention is likely to yield some
degree of enhancement. Conversely, highly efficient buildings cannot
exhibit significant performance increments.

Generally, the maximum potential improvement in energy effi-
ciency tends to decrease as the initial energy efficiency of the building
increases, as depicted in the upper bound of the upper-right panel of
Fig. 2. Interestingly, the upper bound in the bottom-left panel of Fig. 2
highlights that when EE is approximately below 450 kWh/m2, the
attainable improvement remains below 1. This underscores a technolog-
ical constraint within the building that hinders a complete elimination
of inefficiency, preventing it from reaching the highest energy class.

Table 1 provides an overview of the six distinct structural interven-
tions that experts can recommend for improving a building’s energy
efficiency within the context of the Italian EPC. These recommen-
dations encompass a range of areas including the building’s shell,
heating and cooling systems, other systems, and renewable sources.
The focus is solely on EPCs containing at least one recommendation
from technicians, as each recommendation implies a potential increase
in energy efficiency.

From the initial dataset, we exclude observations that do not pertain
to private residential, single-unit, and non-publicly used buildings.9
It is worth noting that EPC information is manually reported in the
CENED2+ database, introducing the possibility of typos and incon-
istencies. Consequently, we remove outlier observations with initial
r potential EE values below the 1st or above the 99th percentile.
imilarly, we exclude buildings with null potential energy efficiency
ncreases or a potential overall decrease in energy class. Hence, records
ith null or negative potential improvements in energy efficiency are
eemed irrelevant or erroneous to the purpose of the study.

A comprehensive description of the database can be found in the
nline Appendix A1. The dataset used in subsequent predictive analysis
omprises 205,049 complete observations and 42 covariates in total,
escribed in Panel A of Table A1.10 Histograms depicting the compo-
ition of the full dataset and the subset of complete cases in terms of
nitial energy efficiency, construction period, year of EPC issuance and
limatic area can be found in Figures A2 and A3.

As discussed in the previous section, we also consider a subsample
o reduce computational costs in real-time scenario analyses. Working
n a subsample allows for a relevant decrease in execution time and
omputational costs leading to almost unchanged results in terms of
redictive accuracy.11 Consequently, results on the entire dataset are

9 The analysis focuses on residential buildings classified as E.1(1) and
.1(2) according to the DPR classification. Additional information is available
n the Gazzetta Ufficiale, https://www.gazzettaufficiale.it/eli/id/1993/10/14/
93G0451/sg.
10 For a detailed overview of the dataset, please refer to https:
/www.dati.lombardia.it/Energia/Database-CENED-2-Certificazione-
Nergetica-degli-E/bbky-sde5.
11 In the Online Appendix A4, we delve into the execution time of the

roposed model specifications on both the full sample and the subsample.

https://www.dati.lombardia.it/Energia/Database-CENED-2-Certificazione-ENergetica-degli-E/bbky-sde5
https://www.dati.lombardia.it/Energia/Database-CENED-2-Certificazione-ENergetica-degli-E/bbky-sde5
https://epc.opendatacommunities.org/
https://www.gazzettaufficiale.it/eli/id/1993/10/14/093G0451/sg
https://www.gazzettaufficiale.it/eli/id/1993/10/14/093G0451/sg
https://www.dati.lombardia.it/Energia/Database-CENED-2-Certificazione-ENergetica-degli-E/bbky-sde5
https://www.dati.lombardia.it/Energia/Database-CENED-2-Certificazione-ENergetica-degli-E/bbky-sde5
https://www.dati.lombardia.it/Energia/Database-CENED-2-Certificazione-ENergetica-degli-E/bbky-sde5
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compared with the one obtained in the subsample (about 4.9% of the
whole sample). In both sampling schemes, the whole and the thinned
sample, we split the dataset into a training set (in the sample, 70% of
the observations) and a test set (out-of-sample, 30%).

4.2.1. Forecasting results in the Italian case
The comparison of predictive performance between tree-based re-

gression models and linear models, including LASSO, RIDGE, and ELAS-
TIC NET, is depicted in Table 2. In terms of the correlation between
the predicted and actual 𝑌 indicator, the tree-based regression model
consistently outperforms the linear models for both the full sample and
subsample. This improvement in correlation is observed across the in-
sample and out-of-sample analyses. In the full sample, the tree-based
regression models demonstrate a correlation above 0.71 (0.68) for the
out-of-sample in the full sample (subsample), whereas the linear mod-
els exhibit correlations around 0.63 (0.57). Notably, while RANDOM
FOREST and XGBOOST models show slightly better performance in the
out-of-sample results, the correlation levels of the tree-based regression
model remain consistently aligned.

The table presented here offers an insightful comparison of predic-
tive model performance, focusing specifically on the Mean Square Error
(MSE) and Mean Absolute Error (MAE) metrics. For the full sample, we
observe interesting patterns in terms of MSE and MAE values.

In both in-sample and out-of-sample scenarios, linear models – such
as LASSO, RIDGE, and ELASTIC NET – exhibit varying levels of per-
formance, indicating a consistent alignment between the two samples.
In the out-of-sample case, LASSO and ELASTIC NET produce nearly
identical MSE and MAE values, with MSE at 0.779 and MAE at 0.6755.
RIDGE exhibits slightly higher MSE (0.8552) and MAE (0.7139) values.
Transitioning to the subsample analysis, we observe a continuation of
consistent trends. Here, the performance of the linear models remains
steady, with both LASSO and ELASTIC NET displaying similar values
of MSE and MAE, both of which outperform the RIDGE case. This
observation emphasizes the stability of these models, particularly in the
context of the subsample.

The tree-based models, specifically BART, RANDOM FOREST, and
XGBOOST, demonstrate remarkable performance superiority in both
the full and subsample datasets compared to the linear models. Within
the full sample, XGBOOST showcases the highest accuracy in terms of
MSE and MAE, trailed by the BART and RANDOM FOREST models. In
the subsample, the performance of XGBOOST and BART remains the
highest but experiences a noticeable decline between in-sample and
out-of-sample scenarios, while RANDOM FOREST maintains greater
stability in its performance across the two situations. Given its con-
sistently superior performance in both in-sample and out-of-sample
analyses within the full - and sub-samples, XGBOOST emerges as the
preferred choice for predicting energy efficiency improvements.

The divergence in performance between linear and tree-based mod-
els can be attributed to the non-linearities inherent in the EPC data
incorporating the building characteristics, the energetic performance,
and technicians’ recommendations to reduce the building’s energy con-
sumption. The ability of tree-based models to better accommodate these
complexities underscores their utility in accurately representing and
predicting energy efficiency improvements.

4.2.2. Most relevant variables for the Italian case
Variable importance holds a crucial significance in comprehending

the individual contributions of features to the predictive outcomes of
machine learning models. Within the context of EPCs, this analysis as-
sumes even greater relevance as it sheds light on the relative influence
of each feature, encompassing building characteristics and technician
recommendations, in predicting energy efficiency improvements.

Table 3 presents the ranking of variable importance, including the
bar chart weights for the top 15 variables, across the considered range
of models encompassing linear methods (LASSO, RIDGE, and ELASTIC
7

NET), as well as tree-based approaches (BART, RANDOM FOREST,
Table 2
The Italian case. Correlation (top panel), Mean Square Error (mid panel), and Mean
Absolute Error (bottom panel) between actual and predicted values estimated by Lasso,
Ridge, Elastic Net, BART, Random Forest, and XGBoost. In-sample and out-of-sample
results for the whole sample (first and second column) and a random subsample (third
and fourth column).

Full sample Subsample

In sample Out of sample In sample Out of sample

Correlation

LASSO 0.6351 0.6364 0.6150 0.6135
RIDGE 0.6219 0.6231 0.4927 0.4951
ELASTIC NET 0.6354 0.6367 0.6111 0.6113
BART 0.7259 0.7139 0.7236 0.6766
RANDOM FOREST 0.7028 0.7052 0.6879 0.6831
XGBOOST 0.7705 0.7292 0.7976 0.6684

Mean Square Error

LASSO 0.7732 0.7795 0.7998 0.8350
RIDGE 0.8471 0.8552 1.2682 1.3210
ELASTIC NET 0.7729 0.7792 0.8095 0.8429
BART 0.6125 0.6415 0.6085 0.7197
RANDOM FOREST 0.6583 0.6613 0.6716 0.7087
XGBOOST 0.5275 0.6126 0.4778 0.7347

Mean Absolute Error

LASSO 0.6731 0.6755 0.6867 0.7057
RIDGE 0.7096 0.7139 0.8794 0.9049
ELASTIC NET 0.6730 0.6755 0.6912 0.7102
BART 0.5956 0.6071 0.5997 0.6524
RANDOM FOREST 0.6184 0.6197 0.6251 0.6413
XGBOOST 0.5513 0.5914 0.5315 0.6580

and XGBOOST).12 These models encompass selected variables derived
from both building characteristics and technician recommendations,
denoted by the label ‘‘R_:’’. Notably, the preeminent variable across
all models is the ‘‘R1: Opaque Shell’’ recommendation, representing
one of the six potential suggested implementations. This recommen-
dation involves applying insulating materials to the solid structural
components, aimed at enhancing the building’s thermal performance
by reducing heat loss in colder periods and heat gain in hotter pe-
riods. This practice significantly contributes to energy efficiency by
diminishing the necessity for heating and cooling systems, resulting in
decreased energy consumption and utility bills. Another feature consis-
tently present in all models, albeit with varying levels of importance, is
the number of recommendations. The interpretation is straightforward:
the greater the count of suggested interventions proposed by experts,
the greater the potential enhancement in energy efficiency. Other build-
ing characteristics encompass factors such as ‘‘EE_WINTER’’ (Energy
fficiency in Winter) and ‘‘AGE_BAND’’ (Construction period). When
xamining the tree-based models, in addition to R1 and the number of
ecommendations, it becomes clear that frequently chosen variables in-
lude ‘‘THERMAL_EFFICIENCY’’, ‘‘SV_RATIO’’ (Surface/Volume ra-

tio), and ‘‘CURRENY_ENERGY_EFFICIENCY_REN’’ (Current energy
efficiency for renewables) which further emphasizes the significance
of current structural attributes in determining a building’s potential
energy efficiency gain. Regarding other recommendations made by the
experts in the EPC, ‘‘R2: Transparent Shell’’ is selected both

12 Feature importance is obtained for each model as follows: (i-ii-
iii) LASSO, RIDGE, and ELASTIC NET: (caret::varImp) – the ab-
solute value of the t-statistic for each model parameter; (iv) BART:
(BART::wbart$varcount.mean) – mean of the total count of the num-
ber of times that a variable is used in a tree decision rule (over all
trees); (v) RANDOM FOREST (randomForest::importance) – total de-
crease in node impurities from splitting on the variable, averaged over
all trees, measured by the residual sum of squares; and (vi) XGBOOST:
(xgboost::xgb.importance) – the fractional contribution of each feature
to the model determined by the cumulative gain from the splits involving that
particular feature.
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Table 3
The Italian case. Variable importance rankings, displaying bar chart weights for the top 15 variables across LASSO, RIDGE, ELASTIC NET, BART, RANDOM FOREST, and XGBOOST
models.

Linear models

LASSO RIDGE ELASTIC NET
R1: Opaque Shell R1: Opaque Shell R1: Opaque Shell
Domestic Water System Main Heating System Main Fuel Domestic Water System
Surface/Volume Ratio Main Heating System Number of Recommendations
R6: Renewables Main Heating System Year Surface/Volume Ratio
Number of Recommendations Number of Recommendations R6: Renewables
Winter Energy Efficiency Winter Energy Efficiency Winter Energy Efficiency
Age Band Transaction Type Age Band
Cooling System Flag Domestic Water System Year Cooling System Flag
Transaction Type Goods and People Transport System Flag Transaction Type
Main Heating System Age Band Summer Energy Efficiency
R4: New Cooling System Domestic Water System Main Heating System
Summer Energy Efficiency R6: Renewables R4: New Cooling System
Domestic Water System Energy Efficiency R4: New Cooling System Domestic Water System Energy Efficiency
Domestic Water System Year Solar Photovoltaic Flag Domestic Water System
Thermal Efficiency Domestic Water System Main Fuel Domestic Water System Main Fuel

Tree-based models

BART RANDOM FOREST XGBOOST
R1: Opaque Shell R1: Opaque Shell R1: Opaque Shell
R3: Heating System Number of Recommendations Number of Recommendations
Thermal Efficiency Thermal Efficiency Thermal Efficiency
Number of Recommendations Age Band Surface/Volume Ratio
R6: Renewable Sources CO2 Emissions Winter Energy Efficiency
Surface/Volume Ratio Difference of EE with Similar Building when New Thermal Transmittance
R2: Transparent Shell Surface/Volume Ratio Heating System Efficiency
Winter Energy Efficiency Thermal Transmittance Cooling System Flag
Domestic Water System Main Fuel Dispersing Surface CO2 Emissions
Solar Heating Flag Heating System Efficiency Difference of EE with Similar Building when New
Cooling System Flag Effective Heated Surface Number of Residential Units
Age Band Natural Gas Consumption Current Energy Efficiency Renewable
Current Energy Efficiency Renewable Domestic Water System Efficiency Dispersing Surface
Main Heating System Current Energy Efficiency Renewable Domestic Water System Efficiency
Summer Energy Efficiency R2: Transparent Shell Age Band
Table 4
The Italian case. Rank correlation between variable importance ranking across LASSO, RIDGE, ELASTIC NET, BART, RANDOM FOREST, and
XGBOOST models.

LASSO RIDGE ELASTIC NET BART RANDOM FOREST XGBOOST

LASSO –
RIDGE 0.42 –
ELASTIC NET 0.86 0.51 –
BART 0.09 0.08 0.18 –
RANDOM FOREST −0.10 −0.02 0.02 0.69 –
XGBOOST 0.02 −0.08 0.13 0.60 0.80 –
by the RANDOM FOREST and the BART models. Transparent shells
impact energy consumption through several mechanisms. Firstly, they
allow natural light to penetrate indoor spaces, reducing the need for
artificial lighting during daylight hours. This contributes to energy
savings and decreases electricity consumption. Secondly, transparent
shells influence the thermal performance of a building. While they
allow solar radiation to enter, they can also lead to heat gain, especially
during warmer periods. To mitigate this, advanced glazing systems
with low solar heat gain coefficients are often employed, diminishing
the influence of solar radiation on indoor temperatures and cooling
systems. Efforts to enhance energy efficiency in buildings encompass
the utilization of double or triple glazing, low-emissivity coatings,
and insulated frames to curtail heat transfer through windows and
mitigate thermal bridging. The BART model selects two additional
recommendations, namely the ‘‘R3: Heating System’’ and ‘‘R6:
Renewable Sources’’. The former typically involves upgrading or
optimizing components such as boilers, radiators, and heat pumps to
8

reduce heat loss during colder months, improve heat distribution, and
enhance overall energy performance. The latter entails harnessing solar
energy, wind power, hydropower, and geothermal energy to generate
electricity or heat, thereby reducing reliance on non-renewable energy
sources.

Additionally, the rank correlation presented in Table 4 provides
valuable insights into the consistency of variable importance rankings
among different machine learning models. This analysis sheds light on
the robustness and stability of the feature selection process, offering a
deeper understanding of which variables consistently contribute to the
predictive performance across diverse modeling techniques. Notably,
the linear models – LASSO, RIDGE, and ELASTIC NET – exhibit a vary-
ing correlation with each other, with values ranging from 0.42 to 0.86.
The highest correlation for linear models is in the case of LASSO and
ELASTIC NET. On the other hand, the tree-based models – including
BART, RANDOM FOREST, and XGBOOST – show correlation values
ranging from 0.60 to 0.80. This suggests that these models consistently
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Fig. 3. Partial Dependence Plots (PDPs) in the Italian case for the ‘‘THERMAL_EFFICIENCY’’ characteristic across LASSO, RIDGE, ELASTIC NET, BART, RANDOM FOREST, and
GBOOST. For each model, the plot illustrates the relationship between thermal efficiency (measured in kWh∕m2) on the 𝑥-axis and the predicted potential variation of energy
erformance on the 𝑦-axis. The limits of the latter are set by series min–max values.
gree on the relative importance of variables for predicting energy
fficiency improvement Comparatively, the linear and tree-based mod-
ls show almost no correlation, indicating a lack of commonalities in
he feature importance rankings. The highest correlation values are
bserved in the case of ELASTIC NET with XGBOOST and BART, having
alues of 0.13 and 0.18, respectively.

The previous findings highlight the inherent non-linear nature of
he data, which makes tree-based models more effective at revealing
atterns that linear models cannot capture. A valuable tool for fur-
her exploration of this point is the Partial Dependence Plot (PDP),
erived from the partial dependence function (Friedman, 2001), which
llustrates the dependency of the potential variation of energy per-
ormance on a specific building’s characteristics. As an illustrative
xample, Fig. 3 provides for each considered model the PDP for the
‘THERMAL_EFFICIENCY’’ characteristic which measures in kilowatt-
ours per square meter (kWh/m2) how efficiently a building can be
eated during the winter. Tree-based models reveal a negative non-
inear relationship and suggest that the potential improvement in en-
rgy efficiency plateaus beyond 200 kWh/m2. As a reference, we also
nclude in the figure the PDP for the linear models, which is indeed
inear. This inherent non-linearity is a key factor contributing to the
uperior forecasting abilities of tree-based models. Buildings exhibit in-
ricate relationships between their characteristics and potential energy
fficiency improvements. This complexity appears to be better captured
y tree-based models compared to linear models.

.3. The UK case

In the analysis, we focus on residential buildings in the London area
local area codes from E09000001 to E09000033) and consider EPCs
ssued between 2015 and 2021.13 We select the current and potential
nergy efficiency indicators, CURRENT_ENERGY_EFFICIENCY and
OTENTIAL_ENERGY_EFFICIENCY, which account for the cost of
nergy required for space and water heating and lighting multiplied by
uel costs.14 This indicator considers the cost of energy and is expressed
n £/m2/year, where cost is derived from kWh.

13 For a detailed description of the variables, the reader can refer to
he guidance page available at https://epc.opendatacommunities.org/docs/
uidance.
14 See Table A6 in the online Appendix A1 for a description of the variables

ncluded in this analysis.
9

Importantly, it should be noted that in the context of Italy, a
higher value of the energy efficiency indicator is indicative of lower
energy efficiency. Conversely, in the UK, large values of the energy
efficiency index correspond to heightened energy performance. For
consistency of the two cases, we consider the inverse of the above
indicators, i.e. 𝙴𝙴 = (1∕𝙲𝚄𝚁𝚁𝙴𝙽𝚃_𝙴𝙽𝙴𝚁𝙶𝚈_𝙴𝙵𝙵𝙸𝙲𝙸𝙴𝙽𝙲𝚈) ⋅100 and 𝙴𝙴_𝙿𝙾𝚃 =
(1∕𝙿𝙾𝚃𝙴𝙽𝚃𝙸𝙰𝙻_𝙴𝙽𝙴𝚁𝙶𝚈_𝙴𝙵𝙵𝙸𝙲𝙸𝙴𝙽𝙲𝚈) ⋅ 100 to compute the target variable
as in Eq. (2).

Table 5 shows 63 structural interventions that experts can recom-
mend for improving a building’s energy efficiency. The recommenda-
tion identifiers in the table have been re-encoded to address duplicates
in the dataset (shown in bold) and ensure that the labels accurately
represent each unique intervention. For instance, improvement IDs 11,
12, 13, 14, 15, 17, and 18 were consolidated into a single intervention
labeled ‘‘Upgrade heating controls’’, which emphasizes the same
recommended action of enhancing heating controls across multiple
instances. Other examples of re-encoded recommendations include ‘‘Re-
place boiler with new condensing boiler’’ (IDs 20 and 21) and ‘‘Wood
pellet stove with boiler and radiators’’ (IDs 23 and 39), reflecting the
consolidation of similar interventions under standardized labels. The
total number of interventions after the re-encoding process is 41.

In contrast to the Italian dataset, which encompasses a more limited
set of 6 recommendations, the UK dataset exhibits a higher level of
granularity and diversity in the types of interventions such as upgrading
heating controls, insulation enhancements for different building compo-
nents, replacement of heating systems with more efficient alternatives,
installation of renewable energy sources like solar panels and wind
turbines, as well as improvements in lighting and glazing.

Finally, we consider a record complete when data points are pro-
vided for all 82 features involved.15 The dataset initially contains
1,041,806 rows, which is reduced to 445,661 complete records after
cleaning. Histograms showing the composition of the full dataset and
the subset of complete cases in terms of construction period, year
of EPC issuance and initial energetic class can be found in Figures
A5 and A6. A subsample of 10,000 units is randomly selected from
this complete set, mirroring the approach undertaken in the Italian
case. The comprehensive description of the database can be found

15 To handle missing values, we remove all the records including ‘‘NA’’, ‘‘N
A’’, ‘‘N/A’’, ‘‘N/A’’, ‘‘N/A’’, ‘‘NO DATA!’’, ‘‘INVALID!’’, ‘‘Not recorded’’,
‘‘Not applicable’’, or empty data points.

https://epc.opendatacommunities.org/docs/guidance
https://epc.opendatacommunities.org/docs/guidance
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Table 5
Original (first column) and re-coded (second column) recommendation identifiers, along with detailed descriptions of the interventions (third
column), in the context of the UK dataset. Duplicates are highlighted in bold.

Improvement ID New improvement ID Description

1 1 Insulate hot water cylinder with 80 mm jacket
2 2 Increase hot water cylinder insulation
3 3 Add additional 80 mm jacket to hot water cylinder
4 4 Hot water cylinder thermostat
5 5 Increase loft insulation to 270 mm
6 6 Cavity wall insulation
7 7 50 mm internal or external wall insulation
8 8 Replace single glazed windows with low-E double glazing
9 9 Secondary glazing to single glazed windows
10 10 Draughtproof single-glazed windows
11 11 Upgrade heating controls
12 11 Upgrade heating controls
13 11 Upgrade heating controls
14 11 Upgrade heating controls
15 11 Upgrading heating controls
16 12 Time and temperature zone control
17 13 Upgrade heating controls
18 13 Upgrade heating controls
19 14 Solar water heating
20 15 Replace boiler with new condensing boiler
21 15 Replace boiler with new condensing boiler
22 16 Replace boiler with biomass boiler
23 17 Wood pellet stove with boiler and radiators
39 17 Wood pellet stove with boiler and radiators
24 18 Fan assisted storage heaters and dual immersion cylinder
30 18 Fan assisted storage heaters and dual immersion cylinder
25 19 Fan assisted storage heaters
31 19 Fan-assisted storage heaters
26 20 Replacement warm air unit
27 21 Change heating to gas condensing boiler
29 21 Change heating to gas condensing boiler
32 21 Change heating to gas condensing boiler
34 22 Solar photovoltaic panels, 2.5 kWp
35 23 Low energy lighting for all fixed outlets
36 24 Replace heating unit with condensing unit
37 25 Install condensing boiler
38 25 Install condensing boiler
40 26 Change room heaters to condensing boiler
41 26 Change room heaters to condensing boiler
42 27 Replace heating unit with mains gas condensing unit
28 28 Condensing oil boiler with radiators
43 28 Condensing oil boiler with radiators
44 29 Wind turbine
45 30 Flat roof insulation
46 31 Room-in-roof insulation
47 32 Floor insulation
48 33 High performance external doors
49 34 Heat recovery system for mixer showers
50 35 Flue gas heat recovery device in conjunction with boiler
56 36 Replacement glazing units
57 37 Suspended floor insulation
58 38 Solid floor insulation
59 39 High heat retention storage heaters and dual immersion cylinder
61 39 High heat retention storage heaters and dual immersion cylinder
60 40 High heat retention storage heaters
62 40 High heat retention storage heaters
63 41 Party wall insulation
in the online 1. The dataset used in subsequent predictive analysis
comprises 445,661 complete observations and 82 covariates in total,
described Panel A of Table A6. All other aspects not addressed in this
paper adhere to the guidelines provided by the data owner without
modification.16

16 See https://epc.opendatacommunities.org/docs/guidance.
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4.3.1. Forecasting results in the UK case
As for the Italian case, we evaluate linear and tree-based models in

terms of correlation, MSE, and MAE, as detailed in Table 6. Beginning
with the correlation analysis, the table illustrates the degree of linear
association between predicted and actual values. For both the full
sample and subsample scenarios, the models consistently exhibit robust
correlation values, surpassing those observed in the Italian case. In the
out-of-sample scenario, linear models display correlation coefficients

https://epc.opendatacommunities.org/docs/guidance
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Table 6
The UK case. Correlation (top), Mean Square Error (mid), and Mean Absolute Error
(bottom) between actual and predicted values estimated by LASSO, RIDGE, ELASTIC
NET, BART, RANDOM FOREST, and XGBOOST. In-sample and out-of-sample results for
the whole sample (first and second column) and a random subsample (third and fourth
column).

Full sample Subsample

In sample Out of sample In sample Out of sample

Correlation

LASSO 0.9226 0.9222 0.9241 0.9218
RIDGE 0.9196 0.9192 0.9211 0.9185
ELASTIC NET 0.9227 0.9223 0.9230 0.9211
BART 0.9681 0.9661 0.9686 0.9555
RF 0.9469 0.9462 0.9405 0.9411
XGBOOST 0.9816 0.9745 0.9880 0.9565

Mean Square Error

LASSO 0.1635 0.1650 0.1630 0.1771
RIDGE 0.1706 0.1721 0.1705 0.1860
ELASTIC NET 0.1633 0.1647 0.1655 0.1789
BART 0.0690 0.0735 0.0689 0.1026
RF 0.1166 0.1185 0.1393 0.1478
XGBOOST 0.0402 0.0556 0.0268 0.1000

Mean Absolute Error

LASSO 0.3085 0.3092 0.3112 0.3192
RIDGE 0.3151 0.3160 0.3172 0.3269
ELASTIC NET 0.3083 0.3090 0.3139 0.3213
BART 0.1895 0.1945 0.1961 0.2302
RF 0.2497 0.2514 0.2697 0.2768
XGBOOST 0.1383 0.1613 0.1177 0.2231

hovering around 0.92, whereas all tree-based models demonstrate even
stronger correlation, notably XGBOOST, and BART, with correlation
coefficients ranging from 0.96 to 0.97. This pattern persists across the
MSE and MAE metrics in all the investigated cases. Once more, BART
and XGBOOST stand out by achieving the lowest MSE and MAE values,
underscoring their robust prediction accuracy. When scrutinizing per-
formance within model types, it becomes clear that tree-based models
outperform their linear counterparts across all metrics. This reaffirms,
for the UK case as well, that the inclusion of non-linear character-
istics captured by the tree-based models significantly enhances their
predictive capabilities in comparison to the linear models.

4.3.2. Most relevant variables for the UK case
The comparison of variable importance rankings across different

machine learning models provides valuable insights into the signif-
icance of the top 15 features for predicting energy efficiency im-
provements, as demonstrated in Table 7. As for the Italian case, this
discussion focuses on the similarities observed within linear models,
the tree-based models, and the selection of features between linear and
non-linear models.

Starting with the linear models, there is a consistent emphasis on
factors related to heating systems, particularly the recommendation of
using dual-fuel systems and the incorporation of ‘‘High Heat Re-
tention Storage (HHRS)’’ heaters with dual immersion cylinders.
t is noteworthy that several recommendations made by technicians
re included in the most important selected features. For instance,
pgrading heating controls and changing to gas-condensing boilers also
merge as important features across all three linear models. These simi-
arities underscore the agreement of linear models on energy efficiency
mprovements as shown by the rank correlation in Table 8. Specifically,
ASSO and ELASTIC NET provide approximately the same variable
election as reported by the correlation value of 0.98.

In contrast, the tree-based models exhibit a broader range of vari-
bles in their top importance rankings. As for the Italian case, all
he considered models include a recommendation for wall insulation.
11
Specifically, recommendation ‘‘R7: 50 mm internal or external
wall insulation’’ entails the application of insulation materials to
either the interior or exterior walls of a building with a thickness of 50
mm. This practice aims to enhance the energy efficiency of the building
by reducing heat loss through its walls. Insulating walls can lead to
improved thermal comfort and lower energy consumption for heating
and cooling, as it helps maintain a more stable indoor temperature.

While there is some overlap with the linear models, the tree-based
models exhibit a higher degree of complexity and granularity in iden-
tifying relevant features. Notably, the tree-based models place a strong
emphasis on variables related to the current environmental impact,
energy efficiency of heating systems, and heating costs. Additionally,
these models highlight the significance of factors such as low-energy
lighting and hot water energy efficiency, which were not as promi-
nently featured in the linear models. Interestingly, BART, RANDOM
FOREST, and XGBOOST models incorporate the ‘‘number of rec-
ommendations’’ feature made by technicians. As observed for the
Italian case, this inclusion underscores the idea that a greater number
of suggested interventions corresponds to a potentially higher level of
energy-efficient improvement.

When comparing the feature selection process between linear and
non-linear models, it becomes evident that tree-based models tend
to encompass a broader spectrum of variables within their feature
importance rankings. This observation is substantiated by the rank
correlation values, which exhibit lower scores (ranging from 0.58 to
0.73) for the tree-based models in contrast to the linear models (ranging
from 0.79 to 0.98). Additionally, the correlation between the linear
and non-linear models is more varied in the Italian case, ranging from
0.07 to 0.49. Notably, the highest correlation for the linear models is
observed with BART and RIDGE, exhibiting a correlation of 0.49.

Similarly to the Italian case, Fig. 4 provides an illustrative example
of the Partial Dependence Plot (PDP) using the ‘‘WALLS_ENERGY_
EFF’’ characteristic, which pertains to the energy efficiency rating of a
building’s walls. This rating is categorized as ‘‘very poor’’, ‘‘poor’’,
‘‘average’’, ‘‘good’’, or ‘‘very good’’, and is typically represented on
energy certificates using a one to five-star scale. This assessment helps
evaluate the energy performance of the building’s walls, contributing
to efforts aimed at enhancing energy conservation. Interestingly, the
RANDOM FOREST and XGBOOST models reveal a skewed U-shaped
non-linear trend, where the most substantial improvement occurs from
the ‘‘poor’’ to the ‘‘average’’ category, and a slight decline in the
potential energy efficiency improvement is observed from the ‘‘very
poor’’ to the ‘‘poor’’ category. The BART model exhibits a simi-
lar trend, with the most significant improvement occurring from the
‘‘average’’ to the ‘‘good’’ category, and a minor decline from the
‘‘poor’’ to the ‘‘average’’ category. The unexpected trend of de-
creasing potential energy efficiency gains in buildings with improved
‘‘WALLS_ENERGY_EFF’’ ratings from the lowest categories might be
attributed to the potential miscategorization of the two types that could
be very close from a technical standpoint. If this is the case, an overlap
between categories could blur the distinction between them, potentially
leading to instances of incorrect classification.

5. Scenario analysis of Green energy financing policies

In this section, we conduct a scenario analysis aimed at testing two
alternative green policies to increase energy efficiency in residential
buildings within the considered geographical areas.17 The first policy
builds upon the technical recommendations made by the experts iden-
tified by the machine learning model, as discussed in Section 4. In this
regard, we have selected XGBOOST as the reference model due to its
demonstrated superior forecasting abilities in both Italian and UK cases

17 We are grateful to an anonymous reviewer for their valuable suggestions.
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Table 7
The UK case. Variable importance rankings, displaying bar chart weights for the top 15 variables across LASSO, RIDGE, ELASTIC NET, BART, RANDOM FOREST, and XGBOOST
models.

Linear models

LASSO RIDGE ELASTIC NET

Main Fuel Main Fuel Main Fuel

R39: HHRS heaters - dual immersion cylinder R39: HHRS heaters - dual immersion cylinder R39: HHRS heaters - dual immersion cylinder

R21: Change heating to gas condensing boiler R21: Change heating to gas condensing boiler R21: Change heating to gas condensing boiler

R40: High heat retention storage heaters Construction Period R40: High heat retention storage heaters

R13: Upgrade heating controls R40: High heat retention storage heaters R13: Upgrade heating controls

R26: Change room heaters to condensing boiler R26: Change room heaters to condensing boiler R26: Change room heaters to condensing boiler

R7: 50 mm internal or external wall insulation R7: 50 mm internal or external wall insulation R7: 50 mm internal or external wall insulation

R30: Flat roof insulation R30: Flat roof insulation R30: Flat roof insulation

Construction Period R20: Replacement warm air unit Construction Period

Solar Water Heating Flag Solar Water Heating Flag Solar Water Heating Flag

Transaction Type R9: Secondary glazing to single glazed windows Transaction Type

R20: Replacement warm air unit Transaction Type R12: Time and temperature zone control

R12: Time and temperature zone control R13: Upgrade heating controls R20: Replacement warm air unit

R1: Insulate hot water cylinder with 80 mm jacket R12: Time and temperature zone control R1: Insulate hot water cylinder with 80 mm jacket

R6: Cavity wall insulation R31: Room-in-roof insulation R6: Cavity wall insulation

Tree-based models

BART RANDOM FOREST XGBOOST

Current Environmental Impact Current Environmental Impact Current Environmental Impact

R30: Flat roof insulation Number of Recommendations Number of Recommendations

R7: 50 mm internal or external wall insulation Current Heating Cost Main Heating System Energy Efficiency

Main Heating System Energy Efficiency Current Energy Consumption Current Heating Cost

Current Heating Cost Local Authority Label R23: Low energy lighting for all fixed outlets

Number of Recommendations Main Heating System Energy Efficiency R7: 50 mm internal or external wall insulation

R40: High heat retention storage heaters R7: 50 mm internal or external wall insulation Current Energy Consumption

R39: HHRS heaters - dual immersion cylinder Current CO2 Emissions Main Heating System Environmental Efficiency

Walls Energy Efficiency Walls Energy Efficiency R30: Flat roof insulation

R5: Increase loft insulation to 270 mm Hot Water Energy Efficiency Walls Energy Efficiency

R15: Replace boiler with new condensing boiler Walls Environmental Efficiency Hot Water Energy Efficiency

R6: Cavity wall insulation Current Cost Hot Water System Current Cost Hot Water System

Current Cost Hot Water System Construction Period R39: HHRS heaters - dual immersion cylinder

Main Heating System Environmental Efficiency R23: Low energy lighting for all fixed outlets R34: Heat recovery system for mixer showers

Current CO2 Emissions Low Energy Lighting Low Energy Lighting
Table 8
The UK case. Rank correlation between variable importance ranking across LASSO, RIDGE, ELASTIC NET, BART, RANDOM
FOREST, and XGBOOST models.

LASSO RIDGE ELASTIC NET BART RANDOM FOREST XGBOOST

LASSO –
RIDGE 0.79 –
ELASTIC NET 0.98 0.80 –
BART 0.32 0.49 0.35 –
RANDOM FOREST 0.18 0.23 0.19 0.67 –
XGBOOST 0.07 0.27 0.12 0.73 0.58 –
(see Tables 2 and 6, respectively).18 We label this strategy as the ‘‘ML
Recommendations Policy’’. The second policy is based on a ‘‘Bottom-
Up’’ approach, aiming to finance the improvement of residential build-
ings starting from the lowest EPC class in each country. In the latter
case, energy efficiency improvement is attained by implementing all the
provided recommendations by technicians for each EPC of a building
within that EPC class, with the observation that the policymaker lacks
a specific order of preferences for the suggested recommendations. A
direct application of the Bottom-Up policy involves selecting the lowest
EPC class and funding all recommended interventions to enhance the
energy efficiency of all buildings within that class.

To evaluate the effectiveness of the presented policies, we utilize
specific metrics available in the datasets, considering the latest avail-
able EPC for each building. In the Italian case, we analyze the payback
periods for the implemented recommendations, while in the UK case,
we focus on the direct cost.

18 Additionally, Table D1 in the online Appendix indicates that XGBOOST
outperforms other non-linear models in terms of execution time when applied
to both the full sample and the subsample.
12
5.1. The Italian case scenario analysis

In the Italian case, the ML Recommendations Policy is devised based
on interventions identified by the XGBOOST model with the highest
variable importance, as detailed in Table 3. Consequently, we formulate
the policy, where the government subsidizes intervention ‘‘R1 Opaque
shell’’, the sole recommendation appearing in the top 15 variables.19

In contrast, the Bottom-Up policy allocates funds to all recommended
interventions for buildings in lower EPC classes, effectively targeting
the least efficient units in the residential building stock.

To ensure comparability in terms of policy preferences for so-
cial welfare, the scenario analysis has been structured in a manner
whereby the policy actions target an equivalent number of buildings in
both strategies. In the ML Recommendations policy, the policymaker
subsidizes the implementation of opaque shells for all buildings that
received that recommendation in the EPC, totaling 164,210 buildings.

19 The feature ‘‘R1 Opaque shell’’ demonstrates a fractional contribution
of 34% to the total gain, noticeably surpassing the 2.81% cumulative weight
of the other 5 recommendations.
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Fig. 4. Partial Dependence Plots (PDPs) in the UK case for the ‘‘WALLS_ENERGY_EFF’’ characteristic across LASSO, RIDGE, ELASTIC NET, BART, RANDOM FOREST, and XGBOOST.
For each model, the plot illustrates the relationship between the rating of a building’s wall efficiency on the 𝑥-axis and the predicted potential variation of energy performance on
he 𝑦-axis. The limits of the latter are set by series min–max values.
ifferently, the Bottom-Up policy focuses on buildings with initial
nergy classes E, F, and G, subsidizing all interventions suggested by
he technician during the inspection, accounting for 167,333 buildings.
he difference in size between the two groups is less than 2%.

The Italian dataset includes information on expected energy ef-
iciency improvements and associated payback periods (measured in
ears) for each recommended intervention in a given residential build-
ng.20 The significance of the payback period parallels that of financial
uration, as it represents the duration influenced by intervention costs
nd technical efficiency. This metric depends on the accumulation of
onetary savings over time, gradually offsetting the initial investment.
onsequently, it emerges as a pivotal indicator encapsulating the eco-
omic viability and efficiency of an investment endeavor. In Table 9, it
s observed that under the ML Recommendations policy, out of a total
f 164,210 subsidized buildings (second column), the average payback
eriod for the funded interventions is 12.04 years (third column). In
ontrast, the Bottom-Up policy, covering 167,333 buildings, exhibits
n average payback period of 14.94 years. The ML Recommendations
olicy features an average payback period that is 19.41% lower than
hat of the Bottom-Up policy, demonstrating the ML model’s ability to
elect the most effective recommendations.

Finally, the Average 𝛥 EE (last column in the table) showcases the
verage increase in energy efficiency per intervention in kWh/m2 per
ear. This is calculated as the average reduction in the EE indicator
ollowing subsidized interventions under each policy. Results show that
he ML Recommendations policy achieves a superior increase in energy
fficiency at 83.31 kWh/m2 compared to the Bottom-Up policy’s 59.44
Wh/m2, representing a boost of 40.16%.21

.2. The UK case scenario analysis

The UK dataset provides detailed information on the cost of each
echnician-recommended intervention, accompanied by an assigned
ost band indicative of the associated intervention expenses. Analo-
ously to the Italian case, the ML Recommendations Policy in the UK
elies on interventions identified by the XGBOOST model, as outlined
n Table 7. The recommendations include: (i) ‘‘R23: Low energy

20 The specific feature is denoted as PAYBACK_PERIOD_n, and its
escription can be found in Panel C of Table A1 within the online Appendix.
21 The result also holds when considering the median payback period.
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lighting for all fixed outlets’’; (ii) ‘‘R7: 50 mm internal
or external wall insulation’’; (iii) ‘‘R30: Flat roof insu-
lation’’; (iv) ‘‘R39: High heat retention storage heaters
and dual immersion cylinder’’; and (v) ‘‘R34: Heat recovery
system for mixer showers’’.22

Considering the selection of multiple recommendations by XG-
BOOST, we have structured the policy to assign weights to each
intervention based on their respective relevance identified by the
variable importance.23 Then, we determine the number of interventions
that can be funded within the allocated budget, along with the esti-
mated cost per intervention. Finally, for each building recommended
with a given intervention, we estimate the expected increase in energy
efficiency and reduction in CO2 emissions. In contrast to the Italian
scenario, where the two policies targeted a comparable number of
buildings due to the only available payback period information, in the
UK case, both policies have been allocated a monetary budget, as the
implementation costs of the recommendations are provided.

Specifically, we assume that the government allocates a budget of
£10 million. The Bottom-Up policy targets class-G buildings (i.e., the
least efficient), with the total expenditure to implement all recommen-
dations for these low-class properties estimated at £109 million. With
a budget limit of £10 million, the government can cover approximately
9% of the expenses. Therefore, the ML Recommendations policy subsi-
dizes 115,742 interventions, while the Bottom-Up policy targets 2868
actions.

Table 10 shows that the average cost of renovations (second col-
umn) subsidized under the ML Recommendations policy is approxi-
mately 97.52% lower than those financed under the Bottom-Up policy.
Interestingly, the first recommendation proposed by the ML model is
the replacement of lighting systems (R23), which account for 42% of
the budget, proving to be a relatively low-cost action with a substantial
impact on overall energy efficiency improvements. In terms of energy
efficiency (third column), the performance at the aggregated level is
measured as the reduction in the ENERGY_CONSUMPTION indicator,

22 Also for the UK case, the cumulative weight of the remaining 36
recommendations is negligible since it represents the 2.44% of the total gain.

23 Weights allocated to recommendations are subsequently normalized to
fulfill the budget constraint. Specifically, the following weights are assigned:
R23 = 0.42, R7 = 0.31, R30 = 0.12, R9 = 0.08, and R34 = 0.07.
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Fig. 5. The UK case. Total energy efficiency increase (in kWh/m2 per year) resulting from the ML Recommendations Policy (left figure), and the Bottom-Up subsidizing interventions
for buildings with energy class G only (right panel).
Table 9
The Italian case. Results for the ML Recommendations and Bottom-Up policies include the number of
subsidized buildings (second column), the average payback period of funded interventions in years (third
column), and the average energy performance increase per intervention in kWh/m2 per year (last column).
The last row indicates the percentage deviation of the ML Recommendations policy from the Bottom-Up
policy.

Policy N. Average payback period Average 𝛥 EE

ML Recommendations 164,210 12.04 years 83.31 kWh/m2

Bottom-Up 167,333 14.94 years 59.44 kWh/m2

Percentage deviation −1.87% −19.41% 40.16%
Table 10
The UK case. Results for the ML Recommendations and Bottom-Up policies based on the average cost
per intervention in £ (second column), the average energy performance increase at aggregate levels (third
column) in kWh/m2 per year, and aggregate reduction in CO2 emissions in tonnes per year (fourth column).
The last row indicates the percentage deviation of the ML Recommendations policy from the Bottom-Up
policy.

Policy (Budget £10M.) Average cost Average 𝛥 EE Average 𝛥 CO2

ML Recommendations £86.40 1,043,702.06 kWh/m2 10,512.95 tonnes
Bottom-Up £3486.34 196,651.2 kWh/m2 2982.71 tonnes

Percentage deviation −97.52% +469.26% +252.46%
expressed in kWh/m2 per year.24 Also in this case, interventions subsi-
dized by the ML Recommendation policy prove to be more effective
in improving the energy efficiency of residential buildings, exhibit-
ing a remarkable increase of 469.26% compared to the Bottom-Up
policy. Based on the available CO2_EMISSIONS information in the
UK dataset, the ML Recommendation policy achieves better results,
yielding a reduction in carbon dioxide emissions nearly 2.5 times
greater than the reduction achievable under the Bottom-Up policy, as
can be seen in the last column of the table.

Finally, with the same allocated budget for the two potential gov-
ernment actions, we illustrate in Fig. 5 the improved energy perfor-
mance associated with both the ML Recommendations Policy (left)
and the Bottom-Up approach (right). Notably, the energy efficiency
gains stemming from the ML-based policy are higher and exhibit a
more balanced spatial distribution across locations, contrasting with
the outcomes of a policy solely focused on improving low-efficiency
buildings. While the ML Recommendations Policy targets a mix of
renovations and impacts across the entire Greater London area, the

24 The average increase in energy efficiency is obtained as the sum of
energy efficiency increases due to the financed interventions, considering the
budget constraint, the weights associated with each code, and the unitary
energy efficiency enhancement resulting from the implementation of each
intervention code. The latter is calculated as the average potential energy
efficiency increase of buildings for which only the specific intervention code
was recommended.
14
Bottom-Up approach only influences zones with a high concentration
of properties exhibiting poor energy efficiency levels.

6. Conclusion and policy implications

This study investigates the determinants of residential building en-
ergy efficiency, leveraging extensive datasets of EPCs from Lombardy,
Italy, and London, UK. The focus is on the identification of key factors
influencing efficiency and forecasting potential improvements based on
building characteristics and EPC recommendations.

The findings demonstrate the superior ability of tree-based models
to capture the complex, non-linear dependencies inherent in EPC data.
These approaches outperform the capabilities of traditional linear mod-
els, with the XGBOOST, in particular, achieving the highest accuracy in
identifying relationships between predictors and target variables across
both countries. We believe that our study may provide valuable insights
for policymakers and stakeholders aiming to enhance energy efficiency
within the residential building sector. In this respect, we conducted a
scenario analysis to assess the costs of achieving potential efficiency
improvements under two alternative green policies. The first policy pri-
oritized expert technical suggestions derived from the XGBOOST model,
selected for its superior forecasting abilities. The second policy aimed to
enhance energy efficiency by implementing all recommendations out-
lined in the EPCs without prioritizing interventions. Results consistently
demonstrate that the machine learning-recommended policy delivers
more cost-efficient outcomes for energy efficiency improvements in
both Italy and the UK.
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Overall, this framework has direct applications for legislators and
interested parties seeking to develop effective, sustainable strategies
for enhancing residential building energy efficiency by designing cost-
effective policies tailored to achieve desired outcomes. In advancing
targeted energy efficiency policies, machine learning approaches can
support informed decision-making and accelerate progress toward the
climate goals, as required by the EU Green Homes Directive.
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