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violations of the Call-Put Parity with the presence of
bid–ask spreads.

KEYWORDS
asset pricing, Call–Put Parity, Choquet and/or Šipoš pricing,
Discount Certificate–Call Parity, market frictions, no arbitrage,
Put–Call Parity

JEL CLASS IF ICAT ION
C71, D81, G12

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2024 The Authors.Mathematical Finance published by Wiley Periodicals LLC.

Mathematical Finance. 2024;1–21. wileyonlinelibrary.com/journal/mafi 1

https://orcid.org/0000-0001-9899-4178
mailto:lorenzo.bastianello@unive.it
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/mafi
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fmafi.12433&domain=pdf&date_stamp=2024-03-23


2 BASTIANELLO et al.

1 INTRODUCTION

Asset pricing models aim to associate to marketed securities, prices that are consistent with the
absence of arbitrage opportunities. Typically, these models assume a reference probability over a
state space and frictionless pricing rules, as done, for instance, in the seminal paper of Harrison
and Kreps (1979). As a result, assets are valued by a linear pricing rule, or, equivalently, as the dis-
counted expectation with respect to the so-called risk-neutral probability. However, both of these
assumptions are questionable. Since at least Ellsberg (1961), the decision theory literature suggests
a shift to (nonprobabilistic) uncertainty. A general framework without an objective probability
was already studied in Kreps (1981) and was studied more recently by Biagini and Cont (2007),
Riedel (2015), Cassese (2008), Cassese (2017), Cassese (2021), and Burzoni et al. (2021). Moreover,
substantial evidence of frictions in financial markets (transaction costs, taxes, bid–ask spreads)
has prompted the study of nonlinear pricing rules that can account for frictions, as in Garman
and Ohlson (1981), Prisman (1986), Ross (1987), Bensaid et al. (1992), and Jouini and Kallal (1995).
This article drops both assumptions of the existence of an objective probability and of the lin-

earity of pricing rules. More precisely, following the ideas first developed in Chateauneuf et al.
(1996), we consider Choquet pricing rules, that is, Choquet integrals with respect to a nonadditive
risk-neutral probability (also called risk-neutral capacity). Choquet pricing rules are not merely a
mathematical generalization of linear pricing rule. In fact, as Cerreia-Vioglio et al. (2015) showed
in a recent paper, Choquet pricing rules arise if a version of the parity between call and put options
is maintained. This result is surprising as it connects the Choquet integral with a parity between
call and put options, two apparently unrelated notions.
Our paper makes two main contributions to this stream of literature. First, in Section 3, we

study what happens when different parities between call and put options are considered. When
prices are nonlinear, as for Choquet pricing rules, there are several ways to define the price parity
between call and put options. We show that different parities characterize different pricing rules
with respect to nonadditive probability. Second, in Section 4, we impose a general nonarbitrage
condition and we analyze its implications on the nonlinear pricing rules that we characterized
in the first part of our article. The remainder of the introduction provides further details about
our findings.
Section 3 characterizes pricing rules using parities between financial options. As already

remarked in the seminal paper of Stoll (1969), there are several ways to replicate call and put
options. When prices are nonlinear, different replications strategies lead to different parities
between call and put options. One parity, deemed Put–Call Parity (PCP) was considered by
Cerreia-Vioglio et al. (2015), while another one, the Call–Put Parity (CPP) was analyzed by
Chateauneuf et al. (1996).
Our first contribution in Section 3 provides the formal relationship between the two parities.

We show that CPP of Chateauneuf et al. (1996) is a stronger assumption: it corresponds to PCP
of Cerreia-Vioglio et al. (2015) plus the absence of bid–ask spreads. Second, we improve the main
result of Cerreia-Vioglio et al. (2015). They proved that a pricing rule satisfies PCP, monotonicity,
and translation invariance if and only if it is a Choquet pricing rule. We show in Theorem 3.2 that
PCP andmonotonicity are enough for the characterization. Thuswe demonstrate that the connec-
tion between PCP and the Choquet pricing rule runs even deeper than suggested by the result of
Cerreia-Vioglio et al. (2015). Third, we study what happens when CPP replaces PCP. Theorem 3.3
characterizes CPP by a stronger version of Choquet pricing rules, called Choquet-Šipoš pricing
rules. These are pricing rules that are at the same time Choquet and Šipoš integrals. The Šipoš
integral is an integral with respect to a nonadditive measure that, in general, can differ from the
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BASTIANELLO et al. 3

Choquet integral, see Šipoš (1979). However, when CPP holds, the two coincide. For sake of com-
pleteness, in Appendix A.1, we characterize Šipoš pricing rules that are not also Choquet pricing
rules. To do so, we use discount certificates, which are well-known financial options that pay the
minimumbetween the value of an underlying asset and a fixed cap. TheoremA.1 shows that Šipoš
pricing rules are characterized by: (i) the parity between discount certificates and call options; and
(ii) the absence of bid–ask spreads. To the best of our knowledge, our paper is the first to provide
a justification for the use of Šipoš pricing rules for asset pricing.
In Section 4, we assume that pricing rules are either Choquet or Šipoš pricing rules, and we

analyze what happens when one imposes the absence of arbitrage opportunities. We say that the
market is arbitrage free (AF) if, whenever an agent can build a portfolio that pays a non-negative
amount of money at every state, then she has to pay a non-negative price. Parities between put
and call options are among the simplest and best understood no-arbitrage relations. However, in
general, neither Choquet nor Šipoš pricing rules guarantee that markets are AF. We study which
additional conditions one has to impose in order to eliminate arbitrage opportunities. Within this
section, Theorem4.3 contains two distinct results. The first one is that aChoquet pricing rule guar-
antees no-arbitrage if and only if there exists an additive risk-neutral measure which is smaller
than the risk-neutral capacity associated to the pricing rule. On the other hand, the second result
shows that a Šipoš pricing rule is AF if and only if it is linear. Therefore, Šipoš pricing rules cannot
take into account market frictions.
The implication of Theorem 4.3 is that, whenever markets do not allow arbitrage opportuni-

ties but bid–ask spread are observed, the strong parity CPP of Chateauneuf et al. (1996) must
be violated. This violation of CPP, in which the marketed price of put options is cheaper than
the theoretical one (i.e., the price of building a portfolio that replicates a put), was empirically
observed when puts were introduced in financial markets, see Klemkosky and Resnick (1979)
and Cremers and Weinbaum (2010). However, it is important to note that this violation of CPP
is consistent with the absence of arbitrage opportunities (and with PCP of Cerreia-Vioglio et al.
(2015)).
The rest of the paper is organized as follows. Section 2 introduces the framework and our nota-

tion. Section 3 studies PCP and CPP and characterizes Choquet and Choquet-Šipoš pricing rules.
Section 4 investigates AF Choquet and Šipoš pricing rules. While Section 3 justifies the investiga-
tions made in Section 4, we note that the two sections can be read independently. Readers with a
specific interest in arbitrage can proceed directly to the latter section. Finally, Section 5 concludes.
All proofs are gathered in the appendix.

2 THEMODEL

This paper considers the simple framework of a stochastic two-datemodel: 𝑡 = 0 (today) is known,
𝑡 = 1 (tomorrow) is uncertain. Uncertainty is represented by a setΩ (finite or infinite) of states of
nature, endowed with a 𝜎-algebra. One, and only one, state of nature will be realized tomorrow
and will be known. Note that we do not assume that there is a reference probability defined on
(Ω,).
A payoff, or contingent claim, is a bounded, real-valued, -measurable random variable 𝑥 ∶

Ω → ℝ (or, if Ω is finite, a vector 𝑥 ∶= (𝑥(𝜔))𝜔∈Ω ∈ ℝΩ) with 𝑥(𝜔) representing the payoff
(money) at 𝑡 = 1 if state 𝜔 prevails. We denote 𝐵(Ω,) the set of all contingent claims. We adopt
the convention that if 𝑥(𝜔) < 0, then |𝑥(𝜔)| is paid by the agent and if 𝑥(𝜔) > 0 then |𝑥(𝜔)|
is received. For every 𝐴 ∈ , we denote by 𝟏𝐴 the payoff in 𝐵(Ω,) defined by 𝟏𝐴(𝜔) = 1 if
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4 BASTIANELLO et al.

𝜔 ∈ 𝐴 and 𝟏𝐴(𝜔) = 0 otherwise. We set 𝟏∅ = 0. Note that 𝐵(Ω,) comes equipped with the usual
pointwise partial order, ≥, where 𝑥 ≥ 𝑦 if and only if 𝑥(𝜔) ≥ 𝑦(𝜔) for all 𝜔 ∈ Ω, and we define
𝑥 ∨ 𝑦 by (𝑥 ∨ 𝑦)(𝜔) ∶= max{𝑥(𝜔), 𝑦(𝜔)} for all 𝜔 ∈ Ω and 𝑥 ∧ 𝑦 by (𝑥 ∧ 𝑦)(𝜔) ∶= min{𝑥(𝜔), 𝑦(𝜔)}

for all 𝜔 ∈ Ω. Let 𝑥 ∈ 𝐵(Ω,), we denote 𝑥+ ∶= 𝑥 ∨ 0 its positive part and 𝑥− ∶= (−𝑥) ∨ 0

its negative part. Finally, we say that two contingent claims 𝑥, 𝑦 ∈ 𝐵(Ω,) are comonotonic if
(𝑥(𝜔) − 𝑥(𝜔′))(𝑦(𝜔) − 𝑦(𝜔′)) ≥ 0 for all 𝜔,𝜔′ ∈ Ω.
A pricing rule is a real-valued function 𝑓 ∶ 𝐵(Ω,) → ℝ that associates to every payoff

𝑥 ∈ 𝐵(Ω,) the price/cost 𝑓(𝑥) at 𝑡 = 0, for the delivery of the random payoff 𝑥 at 𝑡 = 1, with
the convention that |𝑓(𝑥)| is paid if 𝑓(𝑥) > 0 and received if 𝑓(𝑥) < 0. Hence 𝑓(𝑥) is the buying
(ask) price, the price one pays to buy 𝑥, and the (bid) selling price is then −𝑓(−𝑥), which is
the amount received if one sells 𝑥. This paper will take the pricing rule 𝑓 ∶ 𝐵(Ω,) → ℝ as
a primitive concept. Throughout the paper, 𝑓 will be assumed to satisfy monotonicity, that is,
𝑓(𝑥) ≥ 𝑓(𝑥′) for all 𝑥, 𝑥′ ∈ 𝐵(Ω,) such that 𝑥 ≥ 𝑥′.
A capacity 𝑣 on themeasurable space (Ω,) is a set function 𝑣 ∶  ↦ ℝ such that 𝑣(∅) = 0 and

which is monotone, that is, for all 𝐴, 𝐵 ∈ , 𝐴 ⊆ 𝐵 implies 𝑣(𝐴) ≤ 𝑣(𝐵). The capacity is said to
be normalized, also called nonadditive probability, if 𝑣(Ω) = 1. A capacity 𝑣 ∶  ↦ ℝ is concave,
also called submodular, if, for all𝐴, 𝐵 ∈ , 𝑣(𝐴 ∪ 𝐵) + 𝑣(𝐴 ∩ 𝐵) ≤ 𝑣(𝐴) + 𝑣(𝐵). A probability 𝜇 ∶

 ↦ ℝ is a normalized capacity which is (finitely) additive, that is,𝐴 ∩ 𝐵 = ∅ implies 𝜇(𝐴 ∪ 𝐵) =

𝜇(𝐴) + 𝜇(𝐵). The conjugate of the capacity 𝑣 ∶  ↦ ℝ is the capacity 𝑣∗ ∶  ↦ ℝ defined by
𝑣∗(𝐴) ∶= 𝑣(Ω) − 𝑣(𝐴𝑐) for all 𝐴 ∈  and we say that the capacity 𝑣 is auto-conjugate if 𝑣 = 𝑣∗.
Note that the capacity 𝑣 is auto-conjugate if and only if 𝑣(𝐴) + 𝑣(𝐴𝑐) = 𝑣(Ω) for all 𝐴 ∈ .
Consider a capacity 𝑣 on (Ω,). The function 𝑓 is said to be a Choquet pricing rulewith respect

to 𝑣 if

𝑓(𝑥) = ∫
𝐶

Ω

𝑥 𝑑𝑣 ∶= ∫
0

−∞

(𝑣({𝑥 ≥ 𝑡}) − 𝑣(Ω)) 𝑑𝑡 + ∫
+∞

0

𝑣({𝑥 ≥ 𝑡}) 𝑑𝑡 for all 𝑥 ∈ 𝐵(Ω,),

where {𝑥 ≥ 𝑡} = {𝜔 ∈ Ω|𝑥(𝜔) ≥ 𝑡}. The notation ∫ 𝐶 indicates that the integral is a Choquet inte-
gral (we drop the subscriptΩ from the integral whenno confusion arises).Wewill use the notation
∫ for the standard integral with respect to an additive capacity. Note that in this case, the pric-
ing rule 𝑓 is linear. We note that the capacity 𝑣 associated with the Choquet pricing rule 𝑓 is
uniquely defined, it satisfies 𝑣(𝐴) ∶= 𝑓(𝟏𝐴) for all𝐴 ∈ , and 𝑣 is called the risk-neutral capacity
(associated with the Choquet pricing rule 𝑓).
We say that 𝑓 is a Šipoš pricing rule with respect to 𝑣 if

𝑓(𝑥) = ∫
𝑆

Ω

𝑥 𝑑𝑣 ∶= ∫
𝐶

𝑥+ 𝑑𝑣 − ∫
𝐶

𝑥− 𝑑𝑣 for all 𝑥 ∈ 𝐵(Ω,).

Note that Choquet and Šipoš integrals coincide if 𝑥 ∈ 𝐵(Ω,) is non-negative. One fundamen-
tal difference between the two integrals is that the former satisfies translation invariance, that is,
𝑓(𝑥 + 𝑡𝟏Ω) = 𝑓(𝑥) + 𝑓(𝑡𝟏Ω) for all 𝑥 ∈ 𝐵(Ω,), all 𝑡 ∈ ℝ+, while the latter has no bid–ask spread,
that is, 𝑓(𝑥) = −𝑓(−𝑥) for all 𝑥 ∈ 𝐵(Ω,).
Finally, we say that 𝑓 is a Choquet–Šipoš pricing rule when the Choquet and Šipoš integrals

coincide with 𝑓 for the same capacity 𝑣, that is

𝑓(𝑥) = ∫
𝑆

Ω

𝑥 𝑑𝑣 = ∫
𝐶

Ω

𝑥 𝑑𝑣 for all 𝑥 ∈ 𝐵(Ω,).
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BASTIANELLO et al. 5

It turns out that 𝑓 is a Choquet–Šipoš pricing rule if and only if 𝑓 is a Choquet pricing rule with
respect to an auto-conjugate capacity 𝑣, see Proposition A.10 in Appendix A.5.
We end this sectionwith a remark. Suppose that𝑓 is anonzeroChoquet pricing rulewith respect

to the capacity 𝑣, then one checks that 𝑣(Ω) = 𝑓(𝟏Ω) > 0. Thus, we can normalize the capacity 𝑣,
by defining the nonadditive probability 𝑣 ∶  → ℝ by 𝑣(𝐴) ∶= 𝑣(𝐴)

𝑣(Ω)
for all 𝐴 ∈ , and obtain a

riskless interest rate 𝑟 > −1 uniquely defined by 𝑓(𝟏Ω) =
1

1+𝑟
. Then the nonzero Choquet pricing

rule 𝑓 can be written as

𝑓(𝑥) =
1

1 + 𝑟 ∫
𝐶

𝑥 𝑑𝑣 for all 𝑥 ∈ 𝐵(Ω,).

This (nonadditive) probabilistic formulation, taken from Cerreia-Vioglio et al. (2015), allows to
interpret the price/cost 𝑓(𝑥) of every payoff 𝑥 as the present value of its nonadditive expectation,
where the present value is calculated with the riskless interest rate. The same can be done for
Šipoš and Choquet–Šipoš pricing rules.

3 CHARACTERIZATION OF PRICING RULES THROUGH
FINANCIAL PARITIES

3.1 Call–Put Parity(ies)

This section characterizes the pricing rules that satisfy each of the two different parities between
prices of call and put options introduced by Chateauneuf et al. (1996) and Cerreia-Vioglio et al.
(2015).
A call option with strike 𝑘 ≥ 0 and expiration date 𝑇 is a financial contract that gives the option

buyer the right, but not the obligation, to buy a stock, bond, or commodity at price 𝑘 at time𝑇. The
stock, bond, or commodity is called the underlying asset. A call buyer profits when the underlying
asset increases in price. A put option gives the right, but not the obligation, to sell the underlying
asset at price 𝑘 at time 𝑇. In our two-period financial economy, given an underlying asset 𝑥 ∈

𝐵(Ω,), a call option with strike 𝑘 ≥ 0 and the related put option are defined, respectively, by

𝑐𝑥,𝑘 = (𝑥 − 𝑘𝟏Ω)
+, 𝑝𝑥,𝑘 = (𝑘𝟏Ω − 𝑥)+.

Clearly, for all 𝑥 ∈ 𝐵(Ω,), the following equation holds

𝑥 = 𝑐𝑥,𝑘 − 𝑝𝑥,𝑘 + 𝑘𝟏Ω, (1)

and it says that one can replicate every underlying 𝑥 by buying a call, selling a put, both with the
same strike 𝑘, and buying 𝑘 units of the bond. Given a pricing rule 𝑓, Cerreia-Vioglio et al. (2015)
used equality in Equation (1) to define the Put-Call Parity (PCP) by

𝑓(𝑥) = 𝑓(𝑐𝑥,𝑘) + 𝑓(−𝑝𝑥,𝑘) + 𝑓(𝑘𝟏Ω), (PCP)

for all 𝑥 ∈ 𝐵(Ω,). Obviously, the mathematical equality in Equation (1) can be rewritten as

𝑝𝑥,𝑘 = 𝑐𝑥,𝑘 − 𝑥 + 𝑘𝟏Ω. (2)
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6 BASTIANELLO et al.

for all 𝑥 ∈ 𝐵(Ω,). Hence a put with strike 𝑘 can be replicated buying a call with the same
strike, selling the underlying asset, and buying 𝑘 units of the bond. Chateauneuf et al. (1996) used
Equation (2) to define a different parity that they named Call–Put Parity (CPP)

𝑓(𝑝𝑥,𝑘) = 𝑓(𝑐𝑥,𝑘) + 𝑓(−𝑥) + 𝑓(𝑘𝟏Ω). (CPP)

for all𝑥 ∈ 𝐵(Ω,). If𝑓 is linear, PCP andCPPare clearly equivalent. The following result provides
the formal relationship between the two parities. It shows that CPP of Chateauneuf et al. (1996)
is stronger than PCP of Cerreia-Vioglio et al. (2015) as CPP is equivalent to PCP and the absence
of bid–ask spreads.

Proposition 3.1. Let 𝑓 ∶ 𝐵(Ω,) → ℝ be a pricing rule. Then (𝑖) ⇔ (𝑖𝑖).

(i) 𝑓 satisfies CPP;
(ii) 𝑓 satisfies PCP and no bid–ask spreads.

3.2 Choquet representation of pricing rules

When frictions are taken into account, the linearity of 𝑓 is no longer guaranteed. Choquet pric-
ing rules serve as examples of nonlinear pricing rules capable of explainingmarket frictions. They
have been considered first by Chateauneuf et al. (1996), see alsoWang et al. (1997), Castagnoli et al.
(2002), and Chateauneuf and Cornet (2018), Chateauneuf and Cornet (2022). A full characteriza-
tion using a financial parity has been given by Cerreia-Vioglio et al. (2015). The main theorem of
Cerreia-Vioglio et al. (2015) proves that a pricing rule 𝑓 satisfies PCP, monotonicity, and transla-
tion invariance, if and only if 𝑓 is a Choquet pricing rule. Their idea is extremely interesting as it
connects two apparently unrelated concepts: the well-known financial concept of PCP with the
Choquet integral. We generalize their result showing that translation invariance is redundant.

Theorem 3.2. Let 𝑓 ∶ 𝐵(Ω,) → ℝ be a monotone pricing rule. Then (𝑖) ⇔ (𝑖𝑖).

(i) 𝑓 satisfies PCP;
(ii) 𝑓 is a Choquet pricing rule.

Note that only monotonicity and PCP are required to pin down Choquet pricing rules. These
are very weak and desirable assumptions. This highlights the central role played by Choquet
pricing rules. From a mathematical point of view, our proof differs from that of Cerreia-Vioglio
et al. (2015). Their characterization is based on a representation result by Greco (1982). On the
other hand, our proof of Theorem 3.2 consists in showing that the parity PCP is equivalent to
the comonotonic additivity of the pricing rule 𝑓, that is 𝑓(𝑥 + 𝑥′) = 𝑓(𝑥) + 𝑓(𝑥′) for all 𝑥, 𝑥′ ∈
𝐵(Ω,) comonotonic, a familiar concept in decision theory. This in turns allows us to use the fun-
damental result of Schmeidler (1986) who characterized the Choquet integral by the comonotonic
additivity property.
A natural question arises however. What happens when one replaces PCP with CPP? A first

answer is given by Proposition 1 and Theorem 1, which imply that a monotone pricing rule 𝑓
satisfies CPP if and only if 𝑓 is a Choquet pricing rule with no bid–ask spread. The following
Theorem 3.3 shows that CPP (together with monotonicity) characterizes Choquet–Šipoš pricing
rules.1
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BASTIANELLO et al. 7

Theorem 3.3. Let 𝑓 ∶ 𝐵(Ω,) → ℝ be a monotone pricing rule. Then (𝑖) ⇔ (𝑖𝑖).

(i) 𝑓 satisfies CPP;
(ii) 𝑓 is a Choquet–Šipoš pricing rule.

Note that, if assets are priced through Choquet–Šipoš pricing rules, then there are no bid–ask
spreads. This was also noted in a recent paper of Lécuyer and Lefort (2021) who studied particu-
lar Choquet pricing rules given by (normalized) generalized neo-additive capacities (GNAC) (see
Chateauneuf et al., 2007). They show that if 𝑓 is a Choquet pricing rule, then there are no bid–ask
spreads if and only if 𝑣(𝐴) + 𝑣(𝐴𝑐) = 𝑣(Ω) for all 𝐴 ∈  (i.e., 𝑓 is Choquet–Šipoš, see Proposi-
tion A.10 in Appendix A.5). Moreover, if 𝑓 is a GNAC pricing rule, there are no bid–ask spreads if
and only if 𝑣(𝐴) + 𝑣(𝐴𝑐) = 𝑣(Ω) for at least one 𝐴 ∈ . See also Castagnoli et al. (2004).
To summarize, Section 3.2 characterizes Choquet pricing rules through PCP and Choquet–

Šipoš pricing rules throughCPP. Finally, TheoremA.1 inAppendixA.1 characterizes general Šipoš
pricing rules through the parity between discount certificates and call options.
While the parities between call and put options and discount certificate and call options are

some of the best known assumptions about the absence of arbitrage opportunities, the pricing
rules obtained in Theorems 3.2 and 3.3 (and TheoremA.1 in Appendix A.1), do not guarantee that
markets are AF. The following section defines arbitrage opportunities and shows how one can
eliminate them.

4 ABSENCE OF ARBITRAGE OPPORTUNITIES

In the characterizations given in Section 3, no property is stated about the capacity 𝑣 associated
with the pricing rule 𝑓. Without additional properties on 𝑣, Choquet and Šipoš pricing rules may
leave room for arbitrage opportunities.
Intuitively, a payoff 𝑥 ∈ 𝐵(Ω,) is an arbitrage opportunity if “it allows to make money from

nothing.”We recall that a subadditive pricing rule 𝑓 satisfies the property that 𝑓(𝑥 + 𝑥′) ≤ 𝑓(𝑥) +

𝑓(𝑥′) for all 𝑥, 𝑥′ ∈ 𝐵(Ω,) and it is said to be AF whenever 𝑓 is non-negative, that is, 𝑥 ≥ 0

implies that 𝑓(𝑥) ≥ 0, or, in other words, whenever there is no payoff 𝑥 ≥ 0 (with no loss at each
state tomorrow) such that 𝑓(𝑥) < 0 (with a gain today).
Without the subadditivity assumption on 𝑓, there is a need to eliminate other arbitrage oppor-

tunities. Consider for the moment buy & sell arbitrage opportunities, that is, payoffs 𝑥 ∈ 𝐵(Ω,)

for which 𝑓(𝑥) + 𝑓(−𝑥) < 0, thus leading to a zero stream of money tomorrow (𝑥 − 𝑥 = 0) and
an aggregate gain today in buying 𝑥 and selling 𝑥 (i.e., buying −𝑥). Note that the absence of buy
and sell arbitrage opportunities is equivalent to the property of 𝑓 having non-negative bid–ask
spreads.2 The following result provides several characterization properties of a Choquet pricing
rule for which there is no buy and sell arbitrage opportunity.

Theorem 4.1. Let 𝑓 ∶ 𝐵(Ω,) → ℝ be a Choquet pricing rule with respect to a capacity 𝑣. Then
the following assertions are equivalent.

(i) 𝑓 has no buy & sell arbitrage opportunities, or equivalently
𝑓 has non-negative bid–ask spreads, that is, 𝑓(𝑥) + 𝑓(−𝑥) ≥ 0 for all 𝑥 ∈ 𝐵(Ω,);

(ii) 𝑣 ≥ 𝑣∗, that is, 𝑣(𝐴) + 𝑣(𝐴𝑐) ≥ 𝑣(Ω) for all 𝐴 ∈ ;
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8 BASTIANELLO et al.

(iii) −𝑓(−𝑥) ≤ ∫ 𝑆
𝑥 𝑑𝑣 ≤ 𝑓(𝑥) for all 𝑥 ∈ 𝐵(Ω,).

Note that the previous theorem, part of which was proved when Ω is finite by Chateauneuf
and Cornet (2022), introduces the new property that the Šipoš pricing rule is an homogeneous
selection of the bid–ask spread interval, that is, ∫ 𝑆

𝑥 𝑑𝑣 ∈ [−𝑓(−𝑥), 𝑓(𝑥)] for all 𝑥 ∈ 𝐵(Ω,).
Pricing a new security𝑥 ∈ 𝐵(Ω,) so that the enriched pricing rule remains buy and sell arbitrage
free amounts to choose the price of the new security in the interval [−𝑓(−𝑥), 𝑓(𝑥)]. Thus, having
a canonical way to do it via the Šipoš pricing rule is interesting for both theoretical and practical
reasons, as the calculation of the Šipoš integral is standard.
The absence of buy and sell arbitrage opportunity for a pricing rule 𝑓 can be strengthened in

the spirit of Chateauneuf and Cornet (2022) as follows.

Definition 4.2. 𝑓 is arbitrage free (AF) if for all 𝑛 ∈ ℕ and all 𝑥1, … , 𝑥𝑛 ∈ 𝐵(Ω,)

𝑛∑
𝑖=1

𝑥𝑖 ≥ 0 ⇒

𝑛∑
𝑖=1

𝑓(𝑥𝑖) ≥ 0. (AF)

We say equivalently that there are no arbitrage opportunities, that the market is AF, or that a
pricing rule 𝑓 satisfies the AF condition. The interpretation of Definition 4.2 is as follows. Sup-
pose that an agent wants to construct an asset 𝑥 ≥ 0, splitting 𝑥 by buying 𝑛 securities 𝑥1, … , 𝑥𝑛
summing up to 𝑥. Then the pricing rule is AF if and only if the aggregate cost of buying separately
𝑥1, … , 𝑥𝑛 is non-negative. Thus, we can also interpret it as the absence of multiple buy and sell
arbitrage opportunities.
Note that Definition 4.2 is stronger than the standard definition (when 𝑓 is subadditive) that

𝑥 ≥ 0 implies 𝑓(𝑥) ≥ 0, and also stronger than assuming the absence of buy and sell arbitrage
opportunities. When 𝑓 is subadditive (hence when 𝑓 is linear too), then 𝑓 is AF if and only if it
is non-negative (i.e., precisely when 𝑥 ≥ 0 implies 𝑓(𝑥) ≥ 0). The fundamental theorem of asset
pricing famously characterizes linear and AF pricing rules as discounted expectation with respect
to a (additive) probability, see Harrison and Kreps (1979).
When frictions are taken into account, the linearity of 𝑓 is no longer guaranteed. In general,

nonlinear nonnegative pricing rules do not guarantee the absence of arbitrage opportunities. To
solve this issue, usually pricing rules are required to be sublinear, that is, to satisfy positive homo-
geneity and subadditivity, see Jouini and Kallal (1995), Castagnoli et al. (2002), Araujo et al. (2018),
Burzoni et al. (2021), and Chateauneuf and Cornet (2018). Choquet pricing rules satisfy positive
homogeneity, but are not subadditive in general. Subadditive Choquet pricing rules were consid-
ered by Chateauneuf et al. (1996) and are characterized by concave (submodular) capacities, see
also Chateauneuf and Cornet (2022), Cerreia-Vioglio et al. (2015) and Cinfrignini et al. (2023), Cin-
frignini et al. (2023) for the particular case of belief functions. Concavity of the capacity gives a
sufficient condition to guarantee the absence of arbitrage opportunities for Choquet pricing rules.
However, the condition is not necessary.
Theorem 4.3 provides a full characterization of Condition AF for both Choquet and Šipoš pric-

ing rules. For Choquet pricing rules, there are no arbitrage opportunities if and only if there exists
an additive non-negative set function 𝜇 below the capacity 𝑣. Formally, the anticore of a capacity 𝑣
(already considered in Gilboa and Lehrer and used in the context of pricing rules by Araujo et al.
(2012) is defined as

𝐴𝐶(𝑣) = {𝜇 ∶  → ℝ+, 𝜇 is additive, 𝜇 ≤ 𝑣, and 𝜇(Ω) = 𝑣(Ω)}. (AC)
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BASTIANELLO et al. 9

It is well known that if a capacity 𝑣 is concave, then the associated Choquet pricing rule
𝑓 is subadditive and 𝐴𝐶(𝑣) ≠ ∅. Theorem 4.3 shows that if 𝑓 is a Choquet pricing rule
with respect to 𝑣, then it is AF if and only if 𝐴𝐶(𝑣) ≠ ∅. A similar result was proved in
Chateauneuf and Cornet (2022) when Ω is finite. However, the proof for the case of Ω infinite is
different.
Finally, Theorem 4.3 provides also a characterization of AF Šipoš pricing rules that turns out

to be a negative result since a Šipoš pricing rule is AF if and only if it is linear. Therefore Šipoš
pricing rules that are also AF cannot take into account any friction.

Theorem 4.3. Let 𝑓 ∶ 𝐵(Ω,) → ℝ be a pricing rule. Then,

(i) If 𝑓 is a Choquet pricing rule, then 𝑓 satisfies AF if and only if 𝐴𝐶(𝑣) ≠ ∅.
(ii) If 𝑓 is a Šipoš pricing rule, then 𝑓 satisfies AF if and only if 𝑓 is linear.

Webriefly discuss the fact that stronger arbitrage opportunities such as 𝑥 ∶=
∑𝑛

𝑖=1
𝑥𝑖 ≥ 0, 𝑥 ≠ 0,

and
∑𝑛

𝑖=1
𝑓(𝑥𝑖) = 0, are not ruled out by our definition of AF. Since in the primitives of ourmodel,

there is no notion of null sets, it is not straightforward to deal with this case when the state space
Ω is infinite.3 Some authors, such as Burzoni et al. (2021) and Cassese (2021), replace null sets
with a strengthening of the pointwise order, which they include in the definition of the financial
market. Since in this section, we assumed that 𝑓 is Choquet (or Šipoš), we can define the partial
order >𝑣:

𝑥 >𝑣 0 ⇔ 𝑥 ≥ 0 and ∃𝜀 > 0 such that 𝑣∗(𝜔|𝑥(𝜔) ≥ 𝜀) > 0,

denoting 𝑣∗ the conjugate capacity of 𝑣. Note that, because of Theorem 4.1, we have 𝑣 ≥ 𝑣∗ and
therefore also 𝑣(𝜔|𝑥(𝜔) ≥ 𝜀) > 0. We require the existence of 𝜀 > 0 to avoid consideration of 𝜎-
additivity. Equipped with >𝑣, we can provide the following definition.

Definition 4.4. 𝑓 is strongly arbitrage free (AF*) if it satisfies AF and moreover, for all 𝑛 ∈ ℕ and
all 𝑥1, … , 𝑥𝑛 ∈ 𝐵(Ω,) one has

𝑛∑
𝑖=1

𝑥𝑖 >
𝑣 0 ⇒

𝑛∑
𝑖=1

𝑓(𝑥𝑖) > 0. (AF*)

Clearly AF* implies AF. Corollary 4.5 shows that the two notions are equivalent. Therefore,
when the payoff 𝑥 ∶=

∑𝑛

𝑖=1
𝑥𝑖 is strictly positive on a set of strictly positive “measure,” the agent

will pay a strictly positive price.

Corollary 4.5. Let 𝑓 be a Choquet or Šipoš pricing rule. Then AF* is equivalent to AF.

To summarize, this section has proved that, under the mild assumptions of monotonicity and
no-arbitrage, the unique parity, whichwould lead to frictions in accordancewith observed bid–ask
spreads, is PCP considered in Cerreia-Vioglio et al. (2015). We remark that under PCP, monotone
pricing rules are of the Choquet type. If, moreover, non-negative bid–ask spreads are present in
the market, then it turns out that 𝑓(𝑝𝑥,𝑘) ≤ 𝑓(𝑐𝑥,𝑘) + 𝑓(−𝑥) + 𝑓(𝑘𝟏Ω) for all 𝑥 ∈ 𝐵(Ω,), 𝑘 ≥ 0,
that is, a violation of CPP considered by Chateauneuf et al. (1996). This price violation says that
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10 BASTIANELLO et al.

it is cheaper to buy a put option with strike 𝑘 in the market, rather than “constructing” one by
buying a call, selling the underlying 𝑥, and buying 𝑘 units of the bond. This miss-pricing was
actually observed when put options were introduced in the markets, see Gould and Galai (1974),
Klemkosky and Resnick (1979), and Sternberg (1994).

5 CONCLUSION

The first part of our paper studies different formulations of the famous parity between call and
put options in a frameworkwhere pricing rules are nonlinear and not subadditive. Cerreia-Vioglio
et al. (2015) study a parity called PCP. They prove that PCP, together with translation invariance
andmonotonicity, characterizes Choquet pricing rules. Chateauneuf et al. (1996) study a different
parity, called CPP. Our first result studies the relationship between the two parities and shows
that CPP is equivalent to PCP and no bid–ask spreads. Our second result improves the character-
ization of Cerreia-Vioglio et al. (2015) as it shows that translation invariance is redundant. Third,
replacing PCP by CPP, we obtain Choquet-Šipoš pricing rules, which are pricing rules that are at
the same time Choquet and Šipoš pricing rules. For the sake of completeness, in Appendix A.1,
we characterize Šipoš pricing rules using the Discount Certificate–Call Parity and no bid–ask
spreads.
The second part of our paper studies the implications of an AF condition on pricing rules. We

show that, in general, Choquet and Šipoš pricing rules are not AF. If 𝑓 is a Choquet pricing rule
with respect to a capacity 𝑣, then the market is AF if and only if the anticore of 𝑣 is nonempty.
If 𝑓 is a Šipoš pricing rule, then 𝑓 is AF if and only if it is linear. Therefore, Šipoš pricing rules
that are also AF cannot take into account any friction. Finally, we characterize bid–ask spreads
as violations of CPP. This shows that, for pricing rules à la Choquet, one can observe at the same
time PCP, absence of arbitrage opportunities, and a violation of CPP (i.e., non-negative bid–ask
spreads).
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ENDNOTES
1A further characterization of Choquet–Šipoš pricing rules is given in Proposition A.10 in Appendix A.5 using the
risk-neutral capacity 𝑣 associated to 𝑓.

2Note that buy and sell arbitrage opportunities cannot arise for Šipoš and Choquet-Šipoš pricing rules since Šipoš
pricing rules satisfy no bid–ask spread.

3ForΩ finite, the counting measure is (implicitly) used, see Chateauneuf and Cornet (2022) and a characterization
of the absence of strong arbitrage opportunities is provided in terms of the anticore.

4See also Theorem 5 in Marinacci and Montrucchio (2004).
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APPENDIX
The appendix contains the proofs of the statements in the main text. We begin, however, with
Appendix A.1 in which we characterize Šipoš pricing rules through the use of the financial parity
between discount certificates and call options.
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A.1 Discount Certificate–Call Parity and Šipoš representation of pricing rules
In order to pin down Šipoš pricing rules we first introduce discount certificates. A discount cer-
tificate on an asset 𝑥 with cap 𝑘 ≥ 0, denoted 𝑑𝑥,𝑘, is a contingent claim that in state 𝜔 pays 𝑥 if
𝑥(𝜔) ≤ 𝑘 and pays 𝑘 if 𝑥(𝜔) > 𝑘, or equivalently,

𝑑𝑥,𝑘 = 𝑥 ∧ 𝑘𝟏Ω.

Noting that 𝑑𝑥,𝑘 = (𝑥 − 𝑘𝟏Ω) ∧ 0 + 𝑘𝟏Ω and recalling that 𝑐𝑥,𝑘 ∶= [𝑥 − 𝑘𝟏Ω]
+ = (𝑥 − 𝑘𝟏Ω) ∨ 0

one can conclude

𝑥 = 𝑐𝑥,𝑘 + 𝑑𝑥,𝑘. (A.1)

Therefore, asset 𝑥 can be replicated by buying the call 𝑐𝑥,𝑘 and the discount certificate 𝑑𝑥,𝑘.
Given a pricing rule 𝑓, Cerreia-Vioglio et al. (2015) used Equation (A.1) to define the Discount
Certificate–Call Parity (DCP) as follows:

𝑓(𝑥) = 𝑓(𝑐𝑥,𝑘) + 𝑓(𝑑𝑥,𝑘). (DCP)

for all 𝑥 ∈ 𝐵(Ω,). In their paper, they used DCP, monotonicity and translation invariance in
order to derive another characterization of Choquet pricing rules. The following Theorem A.1
shows that DCP and no bid–ask spreads pin down Šipoš pricing rules.

Theorem A.1. Let 𝑓 ∶ 𝐵(Ω,) → ℝ be a monotone pricing rule. Then (𝑖) ⇔ (𝑖𝑖).

(i) 𝑓 satisfies no bid–ask spreads and DCP;
(ii) 𝑓 is a Šipoš pricing rule.

Proof. The proof of Theorem A.1 is given in Appendix A.5. □

As we noted in Section 3.1, when pricing rules are nonlinear it is important to pay attention
to the replication strategy, as different strategies imply different parities. The same is true with
the Discount Certificate–Call Parity. In fact, Equation (A.1) can be rewritten as 𝑐𝑥,𝑘 = 𝑥 − 𝑑𝑥,𝑘.
Therefore, one can replicate a call by buying the underlying 𝑥 and selling a discount certificate.
This replication strategy would suggest defining the following parity:

𝑓(𝑐𝑥,𝑘) = 𝑓(𝑥) + 𝑓(−𝑑𝑥,𝑘). (DCP*)

for all 𝑥 ∈ 𝐵(Ω,), which may differ from DCP if 𝑓 is not linear. The following Proposition A.2
relates DCP and DCP* in the same way Proposition 3.1 was relating PCP and CPP. Thus, in
view of Theorem A.1, a monotone pricing rule is a Šipoš pricing rule if and only if it satisfies
DCP*.

Proposition A.2. Let 𝑓 ∶ 𝐵(Ω,) → ℝ be a monotone pricing rule. Then (𝑖) ⇔ (𝑖𝑖𝑖).

(i) 𝑓 satisfies no bid–ask spreads and DCP;
(iii) 𝑓 satisfies DCP*.
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14 BASTIANELLO et al.

Proof. The proof is similar to the one of Proposition 3.1 and it is, therefore, omitted. □

A.2 Summary of the properties of pricing rules
We gather here the properties of pricing rules used in the proofs and some abbreviations. Also,
recall that 𝑐𝑥,𝑘 = (𝑥 − 𝑘𝟏Ω)

+, 𝑝𝑥,𝑘 = (𝑘𝟏Ω − 𝑥)+ and 𝑑𝑥,𝑘 = 𝑥 ∧ 𝑘𝟏Ω. We will need the following
basic equalities:

(𝑥 − 𝑘𝟏Ω)
+ = 𝑥 ∨ 𝑘𝟏Ω − 𝑘𝟏Ω, − (𝑘𝟏Ω − 𝑥)+ = 𝑥 ∧ 𝑘𝟏Ω − 𝑘𝟏Ω, and 𝑥 ∧ 𝑘𝟏Ω = (𝑥 − 𝑘𝟏Ω) ∧ 0 + 𝑘𝟏Ω. (A.2)

1. Monotonicity: 𝑓(𝑥) ≥ 𝑓(𝑥′) for all 𝑥 ≥ 𝑥′.
2. Translation invariance (TI): 𝑓(𝑥 + 𝑘𝟏Ω) = 𝑓(𝑥) + 𝑓(𝑘𝟏Ω) for all 𝑥 ∈ 𝐵(Ω,) and all 𝑘 ∈ ℝ+.
3. Put–Call Parity (PCP): 𝑓(𝑥) = 𝑓((𝑥 − 𝑘𝟏Ω)

+) + 𝑓(−(𝑘𝟏Ω − 𝑥)+) + 𝑓(𝑘𝟏Ω) for all 𝑥 ∈ 𝐵(Ω,)

and all 𝑘 ∈ ℝ+.
4. Call–Put Parity (CPP): 𝑓((𝑘𝟏Ω − 𝑥)+) = 𝑓((𝑥 − 𝑘𝟏Ω)

+) + 𝑓(−𝑥) + 𝑓(𝑘𝟏Ω) for all 𝑥 ∈ 𝐵(Ω,)

and all 𝑘 ∈ ℝ+.
5. Discount Certificate–Call Parity (DCP): 𝑓(𝑥) = 𝑓((𝑥 − 𝑘𝟏Ω)

+) + 𝑓(𝑥 ∧ 𝑘𝟏Ω) for all 𝑥 ∈

𝐵(Ω,), all 𝑘 ≥ 0.
6. No bid–ask spread: 𝑓(−𝑥) = −𝑓(𝑥) for all 𝑥 ∈ 𝐵(Ω,).

A.3 Proof of Proposition 3.1
Proof. [(𝑖) ⇒ (𝑖𝑖)]We first prove that 𝑓 has no bid–ask spread. Note that 𝑓(0) = 0 is a consequence
of CPP (taking 𝑥 = 0 and 𝑘 = 0). Take now 𝑘 = 0 in CPP, we get

𝑓((−𝑥)+) = 𝑓(𝑥+) + 𝑓(−𝑥) + 𝑓(0) (*)

Replacing 𝑥 by −𝑥 in the above equation, we get

𝑓((−𝑥)+) = 𝑓(𝑥+) + 𝑓(−𝑥) + 𝑓(0) (**)

Consequently, from (*) and (**), using the fact that 𝑓(0) = 0, we get 𝑓(𝑥) = 𝑓(𝑥+) − 𝑓((−𝑥)+) =

−𝑓(−𝑥). Thus, 𝑓 has no bid–ask spread. We then deduce that PCP holds since

𝑓((𝑥 − 𝑘𝟏Ω)
+) + 𝑓(𝑘𝟏Ω) = −𝑓(−𝑥) + 𝑓((𝑘𝟏Ω − 𝑥)+) [from CPP]

= 𝑓(𝑥) − 𝑓(−(𝑘𝟏Ω − 𝑥)+) [since 𝑓 has no bid–ask spread]

[(𝑖𝑖) ⇒ (𝑖)] Clearly CPP holds since

𝑓((𝑥 − 𝑘𝟏Ω)
+) + 𝑓(𝑘𝟏Ω) = 𝑓(𝑥) − 𝑓(−(𝑘𝟏Ω − 𝑥)+) [from PCP]

= −𝑓(−𝑥) + 𝑓((𝑘𝟏Ω − 𝑥)+) [since 𝑓 has no bid–ask spread]

□

A.4 Proof of Theorem 3.2
The following lemmata will prove useful in the proof of Theorem 3.2.
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BASTIANELLO et al. 15

Lemma A.3. A pricing rule 𝑓 ∶ 𝐵(Ω,) → ℝ satisfies translation invariance (TI) if and only if

𝑓(𝑥 + 𝑘𝟏Ω) = 𝑓(𝑥) + 𝑘𝑓(𝟏Ω) for all 𝑥 ∈ 𝐵(Ω,) and all 𝑘 ∈ ℝ.

Proof. [⇒]We first prove that, for all 𝑥 ∈ 𝐵(Ω,) and all 𝑘 ∈ ℝ, 𝑓(𝑥 + 𝑘𝟏Ω) = 𝑓(𝑥) + 𝑓(𝑘𝟏Ω).
Indeed, for 𝑘 ∈ ℝ+, this follows from the TI of 𝑓. Moreover, by TI of 𝑓, we have 𝑓(0) = 0 (taking
𝑥 = 0 and 𝑘 = 0) and 0 = 𝑓(0) = 𝑓(−𝑘𝟏Ω + 𝑘𝟏Ω) = 𝑓(−𝑘𝟏Ω) + 𝑓(𝑘𝟏Ω) (taking 𝑥 = −𝑘𝟏Ω). Thus
𝑓(−𝑘𝟏Ω) = −𝑓(𝑘𝟏Ω) for all 𝑘 ∈ ℝ+. Finally, 𝑓(𝑥) = 𝑓(𝑥 − 𝑘𝟏Ω + 𝑘𝟏Ω) = 𝑓(𝑥 − 𝑘𝟏Ω) + 𝑓(𝑘𝟏Ω),
hence for all 𝑘 ∈ ℝ+

𝑓(𝑥 − 𝑘𝟏Ω) = 𝑓(𝑥) − 𝑓(𝑘𝟏Ω) = 𝑓(𝑥) + 𝑓(−𝑘𝟏Ω).

We complete the proof by showing that 𝑓(𝑘𝟏Ω) = 𝑘𝑓(𝟏Ω) for all 𝑘 ∈ ℝ. First, let 𝑛 ∈ ℕ and
𝑡 ∈ ℝ, then TI implies 𝑓(𝑛𝑡𝟏Ω) = 𝑓((𝑛 − 1)𝑡𝟏Ω + 𝑡𝟏Ω) = 𝑓((𝑛 − 1)𝑡𝟏Ω) + 𝑓(𝑡𝟏Ω) and by induc-
tion 𝑓(𝑛𝑡𝟏Ω) = 𝑛𝑓(𝑡𝟏Ω). Consequently, from the first part of the proof, 𝑓(−𝑛𝟏Ω) = −𝑛𝑓(𝟏Ω)

for all 𝑛 ∈ ℕ. Second, let 𝑞 =
𝑛

𝑚
∈ ℚ (with 𝑛 ∈ ℤ,𝑚 ∈ ℕ ⧵ {0}). Then by what we just proved

𝑛𝑓(𝟏Ω) = 𝑓(𝑛𝟏Ω) = 𝑓(𝑚𝑞𝟏Ω) = 𝑚𝑓(𝑞𝟏Ω). Thus 𝑓(𝑞𝟏Ω) =
𝑛

𝑚
𝑓(𝟏Ω) = 𝑞𝑓(𝟏Ω). Finally, let 𝑘 ∈ ℝ,

then there are two sequences (𝑞1𝑛)𝑛 ⊆ ℚ, (𝑞2𝑛)𝑛 ⊆ ℚ such that 𝑞1𝑛 ↑ 𝑘 and 𝑞2𝑛 ↓ 𝑘. By the first part of
the proof and bymonotonicity of𝑓, for all 𝑛, 𝑞1𝑛𝑓(𝟏Ω) = 𝑓(𝑞1𝑛𝟏Ω) ≤ 𝑓(𝑘𝟏Ω) ≤ 𝑓(𝑞2𝑛𝟏Ω) = 𝑞2𝑛𝑓(𝟏Ω).
Letting 𝑛 → ∞ shows that 𝑓(𝑘𝟏Ω) = 𝑘𝑓(𝟏Ω).
[⇐] The proof is immediate noticing that 𝑓(𝑘𝟏Ω) = 𝑘𝑓(𝟏Ω) for all 𝑘 ∈ ℝ. □

Lemma A.4. Let 𝑓 ∶ 𝐵(Ω,) → ℝ be monotone and translation invariant, let 𝑘 ∶= 𝑓(𝟏Ω), then

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑘‖𝑥 − 𝑦‖∞ for all 𝑥, 𝑦 ∈ 𝐵(Ω,).

Proof. For all 𝑥, 𝑦 ∈ 𝐵(Ω,), one has 𝑥 ≤ 𝑦 + ‖𝑥 − 𝑦‖∞𝟏Ω. Since 𝑓 is monotone and translation
invariant, we deduce that 𝑓(𝑥) ≤ 𝑓(𝑦 + ‖𝑥 − 𝑦‖∞𝟏Ω) = 𝑓(𝑦) + 𝑘‖𝑥 − 𝑦‖∞. Exchanging the role
of 𝑥 and 𝑦, we get 𝑓(𝑦) ≤ 𝑓(𝑥) + 𝑘‖𝑦 − 𝑥‖∞. Thus, |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑘‖𝑥 − 𝑦‖∞. □

Lemma A.5. A pricing rule 𝑓 ∶ 𝐵(Ω,) → ℝ satisfies PCP if and only if it satisfies TI and the
following Buy and Sell Additivity Property:

𝑓(𝑥) = 𝑓(𝑥 ∧ 0) + 𝑓(𝑥 ∨ 0) = 𝑓(𝑥+) + 𝑓(−(−𝑥)+) for all 𝑥 ∈ 𝐵(Ω,). (A.3)

Proof. [⇒] First, we have 𝑓(0) = 0 by PCP, taking 𝑥 = 0 and 𝑘 = 0.
Second, Equation (A.3) follows from PCP, taking 𝑘 = 0, since 𝑓(0) = 0.
We now prove that 𝑓 is translation invariant. Let 𝑥 ∈ 𝐵(Ω,) and let 𝑘 ≥ 0. Then one has

𝑓(𝑥) = 𝑓(𝑥+) + 𝑓(−(−𝑥)+) by (A.3)

= 𝑓((𝑥 + 𝑘𝟏Ω − 𝑘𝟏Ω)
+) + 𝑓(−(𝑘𝟏Ω − 𝑥 − 𝑘𝟏Ω)

+)

= 𝑓(𝑥 + 𝑘𝟏Ω) − 𝑓(𝑘𝟏Ω) by PCP.

Consequently, 𝑓 is translation invariant.
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16 BASTIANELLO et al.

[⇐] Fix 𝑥 ∈ 𝐵(Ω,) and 𝑘 ≥ 0. Then PCP holds since we have

𝑓((𝑥 − 𝑘𝟏Ω)
+) + 𝑓(−(𝑘𝟏Ω − 𝑥)+) = 𝑓(𝑥 − 𝑘𝟏Ω) from (A.3)

= 𝑓(𝑥) − 𝑓(𝑘𝟏Ω) from TI and Lemma A.3.

□

Lemma A.6. A monotone pricing rule 𝑓 ∶ 𝐵(Ω,) → ℝ satisfies PCP if and only if it is
comonotonic additive.

Proof. [(𝑖) ⇒ (𝑖𝑖)] The following steps prove that 𝑓 is comonotonic additive.

Step A.7. 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) for all comonotonic and positive step functions 𝑥, 𝑦 ∈ 𝐵(Ω,).

Proof. Let 𝑥, 𝑦 ∈ 𝐵(Ω,) be comonotonic and positive step functions. By comonotonicity, there
is a partition 𝐴1,… ,𝐴𝑛 of Ω such that

𝑥 = 𝑥1𝟏𝐴1
+⋯+ 𝑥𝑛𝟏𝐴𝑛

, with 0 ≤ 𝑥1 ≤ ⋯ ≤ 𝑥𝑛,

𝑦 = 𝑦1𝟏𝐴1
+⋯+ 𝑦𝑛𝟏𝐴𝑛

, with 0 ≤ 𝑦1 ≤ ⋯ ≤ 𝑦𝑛.

Equivalently, one can write

𝑥 =

𝑛∑
𝑖=1

𝑋𝑖, where 𝑋𝑖 = (𝑥𝑖 − 𝑥𝑖−1)𝟏𝐴𝑖∪⋯∪𝐴𝑛
, 𝑖 = 1, … , 𝑛 and 𝑥0 = 0,

𝑦 =

𝑛∑
𝑖=1

𝑌𝑖, where 𝑌𝑖 = (𝑦𝑖 − 𝑦𝑖−1)𝟏𝐴𝑖∪⋯∪𝐴𝑛
, 𝑖 = 1, … , 𝑛 and 𝑦0 = 0.

We first show that𝑓(𝑥) =
∑𝑛

𝑖=1
𝑓(𝑋𝑖),𝑓(𝑦) =

∑𝑛

𝑖=1
𝑓(𝑌𝑖), and 𝑓(𝑥 + 𝑦) =

∑𝑛

𝑖=1
𝑓(𝑋𝑖 + 𝑌𝑖). It

is enough to prove that for 𝑖 = 1, … , 𝑛 − 1,

𝑓(𝑋𝑖 + 𝑋𝑖+1 +⋯+ 𝑋𝑛) = 𝑓(𝑋𝑖) + 𝑓(𝑋𝑖+1 +⋯+ 𝑋𝑛).

For 𝑖 fixed 1 ≤ 𝑖 ≤ 𝑛, set Σ𝑖,𝑛 ∶= 𝑋𝑖 +⋯+ 𝑋𝑛. Then we have

Σ𝑖+1,𝑛 = (𝑥𝑖+1 − 𝑥𝑖)𝟏𝐴𝑖+1
+ (𝑥𝑖+2 − 𝑥𝑖)𝟏𝐴𝑖+2

+⋯ + (𝑥𝑛 − 𝑥𝑖)𝟏𝐴𝑛
,

𝑋𝑖 = Σ𝑖,𝑛 ∧ (𝑥𝑖 − 𝑥𝑖−1)𝟏Ω = [Σ𝑖,𝑛 − (𝑥𝑖 − 𝑥𝑖−1)𝟏Ω] ∧ 0 + (𝑥𝑖 − 𝑥𝑖−1)𝟏Ω and

Σ𝑖+1,𝑛 = Σ𝑖,𝑛 ∨ (𝑥𝑖 − 𝑥𝑖−1)𝟏Ω − (𝑥𝑖 − 𝑥𝑖−1)𝟏Ω = [Σ𝑖,𝑛 − (𝑥𝑖 − 𝑥𝑖−1)𝟏Ω] ∨ 0.

 14679965, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12433 by C
ochrane France, W

iley O
nline L

ibrary on [08/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BASTIANELLO et al. 17

Let us show that 𝑓(Σ𝑖,𝑛) = 𝑓(𝑋𝑖 + Σ𝑖+1,𝑛) = 𝑓(𝑋𝑖) + 𝑓(Σ𝑖+1,𝑛). Using Buy and Sell Additivity (A.3)
of 𝑓 and Lemma A.3, we get

𝑓(𝑋𝑖) + 𝑓(Σ𝑖+1,𝑛) = 𝑓([Σ𝑖,𝑛 − (𝑥𝑖 − 𝑥𝑖−1)𝟏Ω] ∧ 0 + (𝑥𝑖 − 𝑥𝑖−1)𝟏Ω) + 𝑓([Σ𝑖,𝑛 − (𝑥𝑖 − 𝑥𝑖−1)𝟏Ω] ∨ 0)

= 𝑓(Σ𝑖,𝑛 − (𝑥𝑖 − 𝑥𝑖−1)𝟏Ω) + 𝑓((𝑥𝑖 − 𝑥𝑖−1)𝟏Ω)

= 𝑓(Σ𝑖,𝑛) = 𝑓(𝑋𝑖 + Σ𝑖+1,𝑛).

By induction, it is easy to see that 𝑓(𝑥) =
∑𝑛

𝑖=1
𝑓(𝑋𝑖). Similarly, we prove that 𝑓(𝑦) =∑𝑛

𝑖=1
𝑓(𝑌𝑖), and 𝑓(𝑥 + 𝑦) =

∑𝑛

𝑖=1
𝑓(𝑋𝑖 + 𝑌𝑖).

To conclude the proof, we show that 𝑓(𝑋𝑖 + 𝑌𝑖) = 𝑓(𝑋𝑖) + 𝑓(𝑌𝑖) for all 𝑖. Note that 𝑋𝑖 = 𝑎𝟏𝐴,
𝑌𝑖 = 𝑏𝟏𝐴 with 𝐴 ∶= 𝐴𝑖 ∪⋯ ∪ 𝐴𝑛, 𝑎 ∶= 𝑥𝑖 − 𝑥𝑖−1 ≥ 0, 𝑏 ∶= 𝑦𝑖 − 𝑦𝑖−1 ≥ 0. Thus we only need to
prove that 𝑓(𝑎𝟏𝐴 + 𝑏𝟏𝐴) = 𝑓(𝑎𝟏𝐴) + 𝑓(𝑏𝟏𝐴). Indeed, if 𝑥 ∶= (𝑎 + 𝑏)𝟏𝐴 − 𝑎𝟏Ω = −𝑎𝟏𝐴𝑐 + 𝑏𝟏𝐴,
we have 𝑥 ∨ 0 = 𝑏𝟏𝐴, 𝑥 ∧ 0 = −𝑎𝟏𝐴𝑐 = 𝑎𝟏𝐴 − 𝑎𝟏Ω. Thus, using TI and Buy& Sell Additivity (A.3)
of 𝑓, we obtain

𝑓(𝑎𝟏𝐴 + 𝑏𝟏𝐴) + 𝑓(−𝑎𝟏Ω) = 𝑓(𝑥) = 𝑓(𝑥 ∨ 0) + 𝑓(𝑥 ∧ 0)

= 𝑓(𝑏𝟏𝐴) + 𝑓(𝑎𝟏𝐴 − 𝑎𝟏Ω) = 𝑓(𝑏𝟏𝐴) + 𝑓(𝑎𝟏𝐴) + 𝑓(−𝑎𝟏Ω).

Thus, 𝑓(𝑋𝑖 + 𝑌𝑖) = 𝑓(𝑎𝟏𝐴 + 𝑏𝟏𝐴) = 𝑓(𝑎𝟏𝐴) + 𝑓(𝑏𝟏𝐴) = 𝑓(𝑋𝑖) + 𝑓(𝑌𝑖). □

Step A.8. 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) for all positive and comonotonic 𝑥, 𝑦 ∈ 𝐵(Ω,).

Proof. Consider 𝑥, 𝑦 ∈ 𝐵(Ω,) such that 𝑥 ≥ 0 and 𝑦 ≥ 0. Define for all 𝑛 ∈ ℕ

𝑥𝑛 =

𝑛2𝑛−1∑
𝑖=0

𝑖

2𝑛
𝟏{ 𝑖

2𝑛
<𝑥≤ 𝑖+1

2𝑛

} and 𝑦𝑛 =

𝑛2𝑛−1∑
𝑖=0

𝑖

2𝑛
𝟏{ 𝑖

2𝑛
<𝑦≤ 𝑖+1

2𝑛

}.
Since 𝑥 and 𝑦 are bounded above, there exists 𝑁 ∈ ℕ such that 𝑛 ≥ 𝑁 implies

𝑥𝑛 ≤ 𝑥 ≤ 𝑥𝑛 +
1

2𝑛
𝟏Ω and 𝑦𝑛 ≤ 𝑦 ≤ 𝑦𝑛 +

1

2𝑛
𝟏Ω.

It is straightforward to check that 𝑥𝑛 and 𝑦𝑛 are comonotonic since 𝑥 and 𝑦 are comonotonic.
Therefore, Step A.7 implies 𝑓(𝑥𝑛 + 𝑦𝑛) = 𝑓(𝑥𝑛) + 𝑓(𝑦𝑛). Since 𝑓 is continuous for the sup norm
by Lemma A.4, passing to the limit when 𝑛 → ∞, one gets 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) □

Step A.9. For all 𝑥, 𝑦 ∈ 𝐵(Ω,) comonotonic, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦).

Proof. Let 𝑥, 𝑦 ∈ 𝐵(Ω,) be comonotonic. We can choose 𝑘 ≥ 0 such that 𝑥′ = 𝑥 + 𝑘𝟏Ω ≥ 0 and
𝑦′ = 𝑦 + 𝑘𝟏Ω ≥ 0. Since 𝑓 satisfies TI, we have

𝑓(𝑥′ + 𝑦′) = 𝑓(𝑥 + 𝑦 + 2𝑘𝟏Ω) = 𝑓(𝑥 + 𝑦) + 𝑓(2𝑘𝟏Ω) = 𝑓(𝑥 + 𝑦) + 2𝑓(𝑘𝟏Ω).
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18 BASTIANELLO et al.

By Step A.8, noticing that 𝑥′ and 𝑦′ are comonotonic, and using again TI, we have

𝑓(𝑥′ + 𝑦′) = 𝑓(𝑥′) + 𝑓(𝑦′) = 𝑓(𝑥) + 𝑓(𝑘𝟏Ω) + 𝑓(𝑦) + 𝑓(𝑘𝟏Ω).

Hence 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦). □

[(𝑖𝑖) ⇒ (𝑖)] Since 𝑓 is comonotonic additive, it satisfies Buy & Sell Additivity (A.3) and TI, that
is,

𝑓(𝑥) = 𝑓(𝑥+) + 𝑓(−(−𝑥)+) for all 𝑥 ∈ 𝐵(Ω,),

𝑓(𝑥 + 𝑘𝟏Ω) = 𝑓(𝑥) + 𝑓(𝑘𝟏Ω) for all 𝑥 ∈ 𝐵(Ω,) and all 𝑘 ∈ ℝ.

This follows from the facts that 𝑥+ and −(−𝑥)+ are comonotonic and 𝑥 and 𝑘𝟏Ω are also
comonotonic. Consequently 𝑓 satisfies PCP by Lemma A.5. □

Proof of Theorem 3.2. From Lemma A.6, 𝑓 satisfies PCP if and only if 𝑓 is comonotonic addi-
tive. From Schmeidler (1986), the comonotonic additivity of 𝑓 is equivalent to the fact that 𝑓 is a
Choquet pricing rule. □

A.5 Proofs of Proposition A.10, Theorem 3.3, Theorem 4.1, and Theorem A.1
We prove first Theorem 4.1 and we use it to prove Proposition A.10 and Theorem 3.3. Then we
prove Theorem A.1 (the statement is in Appendix A.1).

Proof of Theorem 4.1. [(𝑖) ⇒ (𝑖𝑖𝑖)] Note that Choquet pricing rules are Buy and Sell Additive, that
is, for all 𝑥 ∈ 𝐵(Ω,), ∫ 𝐶

𝑥 𝑑𝑣 = ∫ 𝐶
𝑥+ 𝑑𝑣 + ∫ 𝐶

−𝑥− 𝑑𝑣; indeed, from Schmeidler (1986), every
Choquet integral is comonotonic additive and, for all 𝑥 ∈ 𝐵(Ω,), 𝑥+ and−𝑥− are comonotonic.
Then we have

∫
𝐶

𝑥 𝑑𝑣 − ∫
𝑆

𝑥 𝑑𝑣 =

[
∫

𝐶

𝑥+ 𝑑𝑣 + ∫
𝐶

−𝑥− 𝑑𝑣

]
−

[
∫

𝐶

𝑥+ 𝑑𝑣 − ∫
𝐶

𝑥− 𝑑𝑣

]

= ∫
𝐶

𝑥− 𝑑𝑣 + ∫
𝐶

−𝑥− 𝑑𝑣 = 𝑓(𝑥−) + 𝑓(−𝑥−) ≥ 0 [by (𝑖)]

∫
𝑆

𝑥 𝑑𝑣 + ∫
𝐶

−𝑥 𝑑𝑣 = −∫
𝑆

−𝑥 𝑑𝑣 + ∫
𝐶

−𝑥 𝑑𝑣 ≥ 0 [from above]

[(𝑖𝑖𝑖) ⇒ (𝑖)] Immediate.
[(𝑖) ⇒ (𝑖𝑖)] Fix 𝐴 ∈  and consider 𝑥 ∶= 𝟏𝐴. Then (𝑖𝑖) holds since

0 ≤ 𝑓(−𝑥) + 𝑓(𝑥) = 𝑓(𝟏𝐴𝑐 − 𝟏Ω) + 𝑓(𝟏𝐴) [by (𝑖)]

= 𝑓(𝟏𝐴𝑐 ) − 𝑓(𝟏Ω) + 𝑓(𝟏𝐴) [from TI]

= 𝑣(𝐴𝑐) − 𝑣(Ω) + 𝑣(𝐴) .
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BASTIANELLO et al. 19

[(𝑖𝑖) ⇒ (𝑖)] Note that we are done as soon as we prove (𝑖) for 𝑥 ≥ 0 since 𝑓 is a Choquet integral
and therefore it satisfies TI. But, from (𝑖𝑖), we have 𝑣∗ ≤ 𝑣, and for 𝑥 ≥ 0, we get from standard
properties of the Choquet integral

−𝑓(−𝑥) = −∫
𝐶

(−𝑥) 𝑑𝑣 = ∫
𝐶

𝑥 𝑑𝑣∗ ≤ ∫
𝐶

𝑥 𝑑𝑣 = 𝑓(𝑥).

□

Proposition A.10. Let 𝑓 ∶ 𝐵(Ω,) → ℝ be a Choquet pricing rule with respect to 𝑣. Then the
following are equivalent:

(i) 𝑓(𝑥) + 𝑓(−𝑥) = 0 for all 𝑥 ∈ 𝐵(Ω,).
(ii) 𝑣 = 𝑣∗, that is, 𝑣(𝐴) + 𝑣(𝐴𝑐) = 𝑣(Ω) for all 𝐴 ∈ .
(iii) 𝑓 is a Choquet–Šipoš pricing rule.

Proof. [(𝑖) ⇔ (𝑖𝑖)] Define the pricing rule 𝑓∗ ∶ 𝐵(Ω,) → ℝ by 𝑓∗(𝑥) ∶= −𝑓(−𝑥). If 𝑓 is a Cho-
quet pricing rule w.r.t. 𝑣, then 𝑓∗ is a Choquet pricing rule w. r. t. 𝑣∗. Then Assertion (𝑖) holds if
and only if 𝑓(𝑥) + 𝑓(−𝑥) ≥ 0 and 𝑓∗(𝑥) + 𝑓∗(−𝑥) ≥ 0 for all 𝑥, hence if and only if 𝑣 ≥ 𝑣∗ and
𝑣 = (𝑣∗)∗ ≥ 𝑣∗ by Theorem 4.1. That is, 𝑣 = 𝑣∗.
[(𝑖) ⇔ (𝑖𝑖𝑖)] If 𝑓 is a Choquet–Šipoš pricing rule, then−𝑓(−𝑥) = − ∫ 𝑆

−𝑥 𝑑𝑣 = ∫ 𝑆
𝑥 𝑑𝑣 = 𝑓(𝑥)

for all 𝑥. Hence, (𝑖) is satisfied. Conversely, if 𝑓 is a Choquet pricing rule such that, for all 𝑥, 𝑓(𝑥) +
𝑓(−𝑥) = 0, then in particular, 𝑓(𝑥) + 𝑓(−𝑥) ≥ 0. By Theorem 4.1, ∫ 𝑆

𝑥 𝑑𝑣 ∈ [−𝑓(−𝑥), 𝑓(𝑥)] =

{𝑓(𝑥)} for all 𝑥. Thus 𝑓 is a Šipoš pricing rule. □

Proof of Theorem 3.3. By Proposition 3.1, 𝑓 satisfies CPP if and only if 𝑓 satisfies PCP and 𝑓(𝑥) +
𝑓(−𝑥) = 0 for all 𝑥. By Theorem 3.2, 𝑓 satisfies PCP, if and only if 𝑓 is a Choquet pricing rule. By
Proposition A.10, 𝑓 is a Choquet pricing rule and satisfies 𝑓(𝑥) + 𝑓(−𝑥) = 0 for all 𝑥 if and only
if 𝑓 is a Choquet–Šipoš pricing rule. Thus, (𝑖) is equivalent to (𝑖𝑖). □

Notation: Let us denote 𝐵+(Ω,) = {𝑥 ∈ 𝐵(Ω,) |𝑥 ≥ 0} and let TI+ (respectively, DCP+)
denote TI (respectively, DCP+) restricted to 𝐵+(Ω,).

Proof of TheoremA.1. [(𝑖) ⇒ (𝑖𝑖)] By taking 𝑘 = 0, DCP implies property A.3, that is, that 𝑓 is Buy
and Sell Additive. Moreover DCP implies TI+. For all 𝑥 ∈ 𝐵+(Ω,), 𝑘 ≥ 0, apply DCP to 𝑥 + 𝑘𝟏Ω
and 𝑘 to get

𝑓(𝑥 + 𝑘𝟏Ω) = 𝑓((𝑥 + 𝑘𝟏Ω) ∨ 𝑘𝟏Ω − 𝑘𝟏Ω) + 𝑓((𝑥 + 𝑘𝟏Ω) ∧ 𝑘𝟏Ω) = 𝑓(𝑥) + 𝑓(𝑘𝟏Ω).

Doing the same proof as in Step A.7, Step A.8 of Lemma A.6, we can show that 𝑓 satisfies
Comonotonic Additivity on 𝐵+(Ω,). Then by Schmeidler (1986), 𝑓 is a Choquet pricing rule
on 𝐵+(Ω,). Taking 𝑘 = 0, from DCP (first equality), and no bid–ask spread (third equality), we
deduce that for all 𝑥 ∈ 𝐵(Ω,)

𝑓(𝑥) = 𝑓(𝑥 ∧ 0) + 𝑓(𝑥 ∨ 0) = 𝑓(𝑥+) + 𝑓(−𝑥−) = 𝑓(𝑥+) − 𝑓(𝑥−).
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20 BASTIANELLO et al.

Since 𝑥+, 𝑥− ∈ 𝐵+(Ω,), and since 𝑓 is a Choquet integral on 𝐵+(Ω,)

𝑓(𝑥) = ∫
𝐶

𝑥+𝑑𝑣 − ∫
𝐶

𝑥−𝑑𝑣 = ∫
𝑆

𝑥−𝑑𝑣,

that is, 𝑓 is a Šipoš pricing rule.
[(𝑖𝑖) ⇒ (𝑖)] By Theorem 5(𝑖𝑖), in Šipoš (1979), the Šipoš integral ismonotonewhen 𝑣 is a capacity.

It is easy to see that a Šipoš pricing rule satisfies and no bid–ask spread. Only DCP is left to be
shown. Using and no bid–ask spread, we get for all 𝑥 ∈ 𝐵(Ω,)

𝑓(𝑥) = 𝑓(𝑥+) − 𝑓(𝑥−) = 𝑓(𝑥+) + 𝑓(−𝑥−) = 𝑓(𝑥 ∨ 0) + 𝑓(𝑥 ∧ 0),

that is, 𝑓 is Buy and Sell Additive.
We show that 𝑓 satisfies DCP+. Note that (𝑥 − 𝑘𝟏Ω)

+ and 𝑥 ∧ 𝑘𝟏Ω are comonotonic. Since 𝑓 is
a Šipoš integral, it is a Choquet integral on 𝐵+(Ω,) and therefore if satisfies comonotonic addi-
tivity on 𝐵+(Ω,). Using the fact that 𝑥 = (𝑥 − 𝑘𝟏Ω)

+ + 𝑥 ∧ 𝑘𝟏Ω, we get 𝑓(𝑥) = 𝑓((𝑥 − 𝑘𝟏Ω)
+) +

𝑓(𝑥 ∧ 𝑘𝟏Ω). Using Equation (A.2), we obtain

𝑓(𝑥 ∨ 0) = 𝑓((𝑥 ∨ 0) ∨ 𝑘𝟏Ω − 𝑘𝟏Ω) + 𝑓((𝑥 ∨ 0) ∧ 𝑘𝟏Ω) = 𝑓(𝑥 ∨ 𝑘𝟏Ω − 𝑘𝟏Ω) + 𝑓((𝑥 ∧ 𝑘𝟏Ω) ∨ 0)

since 𝑘 ≥ 0 implies (𝑥 ∨ 0) ∨ 𝑘𝟏Ω = 𝑥 ∨ 𝑘𝟏Ω and (𝑥 ∨ 0) ∧ 𝑘𝟏Ω(𝜔) = 0 = (𝑥 ∧ 𝑘𝟏Ω) ∨ 0(𝜔) if
𝑥(𝜔) ≤ 0 and (𝑥 ∨ 0) ∧ 𝑘𝟏Ω(𝜔) = 𝑥 ∧ 𝑘𝟏Ω(𝜔) = (𝑥 ∧ 𝑘𝟏Ω) ∨ 0(𝜔) if 𝑥(𝜔) ≥ 0. Also,

𝑓(𝑥 ∧ 0) = 𝑓((𝑥 ∧ 𝑘𝟏Ω) ∧ 0).

Replacing 𝑓(𝑥 ∨ 0) and 𝑓(𝑥 ∧ 0) in Equation (A.3) and applying Equation (A.3) once again, one
obtains

𝑓(𝑥) = 𝑓(𝑥 ∨ 𝑘𝟏Ω − 𝑘𝟏Ω) + 𝑓((𝑥 ∧ 𝑘𝟏Ω) ∨ 0) + 𝑓((𝑥 ∧ 𝑘𝟏Ω) ∧ 0) = 𝑓(𝑥 ∨ 𝑘𝟏Ω − 𝑘𝟏Ω) + 𝑓(𝑥 ∧ 𝑘𝟏Ω),

that is, DCP holds. □

A.6 Proofs of Theorem 4.3 and Corollary 4.5
Proof of Theorem 4.3. [Proof of the Choquet Part] [⇒]Assume that 𝑓 satisfies AF and is a Choquet
pricing rule (note that the proof of ⇒ works also if 𝑓 is a Šipoš pricing and will be needed in
the second part). Let 𝑣∗ be the conjugate of 𝑣. We prove that (𝑖) 𝑣∗ is balanced and (𝑖𝑖) 𝐴𝐶(𝑣) =
core(𝑣∗), hence core(𝑣∗) ≠ ∅ by Schmeidler (1968) that extends the result by Bondareva (1963) and
Shapley (1967) to infinite spaces Ω.4
We first prove that 𝑣∗ is balanced. Fix 𝑛 ∈ ℕ and let 𝑎1, … , 𝑎𝑛 ≥ 0 and 𝐴1,… ,𝐴𝑛 ∈  such

that
∑𝑛

𝑖=1
𝑎𝑖𝟏𝐴𝑖

− 𝟏Ω = 0. Then by AF,
∑𝑛

𝑖=1
𝑓(𝑎𝑖𝟏𝐴𝑖

) + 𝑓(−𝟏Ω) ≥ 0. Since 𝑓 is a Choquet or
a Šipoš pricing rule, 𝑓(𝑎𝑖𝟏𝐴𝑖

) = 𝑎𝑖𝑓(𝟏𝐴𝑖
) = 𝑎𝑖𝑣(𝐴𝑖) and 𝑓(−𝟏Ω) = −𝑓(𝟏Ω) = −𝑣(Ω). Therefore,∑𝑛

𝑖=1
𝑎𝑖𝑣(𝐴𝑖) ≥ 𝑣(Ω) and clearly

∑𝑛

𝑖=1
𝑎𝑖𝑣

∗(𝐴𝑖) ≤ 𝑣∗(Ω). Then by Schmeidler (1968), one gets

core(𝑣∗) ∶=
{
𝜇 ∈ ba() ∶ 𝜇(𝐴) ≥ 𝑣∗(𝐴) for all 𝐴 ∈  and 𝜇(Ω) = 𝑣∗(Ω)

} ≠ ∅.
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But 𝑣∗ is a capacity since 𝑣 is a capacity. Hence all 𝜇 ∈ core(𝑣∗) are non-negative. But the set
{𝜇 ∈ ba() ∶ 𝜇 ≥ 0, and 𝜇(Ω) = 𝑣(Ω)} is the set of positive, additive set functions onΩ such that
𝜇(Ω) = 𝑣(Ω). Therefore,

𝐴𝐶(𝑣) ∶= {𝜇 ∶  ↦ ℝ ∶ 𝜇 is positive, additive, 𝜇 ≤ 𝑣, and 𝜇(Ω) = 𝑣(Ω)} = core(𝑣∗) ≠ ∅.

[⇐] Assume 𝐴𝐶(𝑣) ≠ ∅ and let 𝜇 ∈ 𝐴𝐶(𝑣). Let 𝑥1, … , 𝑥𝑛 ∈ 𝐵(Ω,) such that 𝑥 ∶=
∑𝑛

𝑖=1
𝑥𝑖 ≥ 0.

Then ∫ 𝐶
𝑥𝑖 𝑑𝑣 ≥ ∫ 𝑥𝑖𝑑𝜇 for all 𝑖 (since 𝜇 ≤ 𝑣 and 𝜇(Ω) = 𝑣(Ω)). Since 𝑥 ≥ 0, one gets

𝑛∑
𝑖=1

𝑓(𝑥𝑖) ∶=

𝑛∑
𝑖=1

∫
𝐶

𝑥𝑖 𝑑𝑣 ≥
𝑛∑
𝑖=1

∫ 𝑥𝑖𝑑𝜇 = ∫ 𝑥𝑑𝜇 ≥ 0.

This proves that 𝑓 is arbitrage free. □

[Proof of the Šipoš Part] If a Šipoš pricing rule 𝑓 is linear, then it is clearly AF.
We now prove the converse implication. Suppose that 𝑓 is a Sipoš pricing rule that satisfies AF.

Then, there exists a capacity 𝑣 such that 𝑓(𝑥) = ∫ 𝑆
𝑥 𝑑𝑣 for all 𝑥 ∈ 𝐵(Ω,). For 𝑓 to be linear, it

is sufficient to prove that 𝑣 is additive since for 𝑣 additive one has 𝑓(𝑥) = ∫ 𝐶
𝑥+ 𝑑𝑣 − ∫ 𝐶

𝑥− 𝑑𝑣

(since f is a Šipoš pricing rule) hence 𝑓(𝑥) = ∫ [𝑥+ − 𝑥−] 𝑑𝑣 = ∫ 𝑥 𝑑𝑣 (since 𝑣 is additive). We end
the proof by showing that 𝑣 is additive. First note that 𝟏Ω − 𝟏𝐴 − 𝟏𝐴𝑐 = 0 = 𝟏𝐴 + 𝟏𝐴𝑐 − 𝟏Ω. Since
𝑓 is AF and 𝑓(−𝑥) = −𝑓(𝑥) for all 𝑥 ∈ 𝐵(Ω,) (as 𝑓 is a Šipoš pricing rule), one has

𝑣(Ω) − 𝑣(𝐴) − 𝑣(𝐴𝑐) = 𝑓(𝟏Ω) + 𝑓(−𝟏𝐴) + 𝑓(−𝟏𝐴𝑐 ) ≥ 0,

𝑣(𝐴) + 𝑣(𝐴𝑐) − 𝑣(Ω) = 𝑓(𝟏𝐴) + 𝑓(𝟏𝐴𝑐 ) + 𝑓(−𝟏Ω) ≥ 0.

Therefore, 𝑣(𝐴) + 𝑣(𝐴𝑐) = 𝑣(Ω), that is, 𝑣 is auto-conjugate.
Finally, from the first part of the theorem, 𝐴𝐶(𝑣) ≠ ∅. Let 𝜇 ∈ 𝐴𝐶(𝑣), then 𝜇(𝐴) ≤ 𝑣(𝐴) and

𝜇(𝐴𝑐) ≤ 𝑣(𝐴𝑐) for all 𝐴 ∈ . Since 𝑣 is auto-conjugate, neither of the previous inequalities can
be strict, otherwise, summing up, we would get 𝑣(Ω) = 𝜇(Ω) = 𝜇(𝐴) + 𝜇(𝐴𝑐) < 𝑣(𝐴) + 𝑣(𝐴𝑐) =

𝑣(Ω), a contradiction. Therefore, 𝜇(𝐴) = 𝑣(𝐴) for all𝐴 ∈ . This proves that 𝑣 is additive and the
Sipoš pricing rule 𝑓 is linear. □

Proof of Corollary 4.5. We only give the proof that if 𝑓 is a Choquet pricing rule, then AF
implies AF*. Since AF holds, by Theorem 4.3,𝐴𝐶(𝑣) ≠ ∅. Let 𝜇 ∈ 𝐴𝐶(𝑣) and consider 𝑥1, … , 𝑥𝑛 ∈

𝐵(Ω,) such that 𝑥 ∶=
∑𝑛

𝑖=1
𝑥𝑖 >

𝑣 0. Then ∫ 𝐶
𝑥𝑖 𝑑𝑣 ≥ ∫ 𝑥𝑖𝑑𝜇 for all 𝑖 (since 𝜇 ≤ 𝑣 and 𝜇(Ω) =

𝑣(Ω)). Since 𝑥 >𝑣 0, ∃𝜀 > 0 s.t. 𝑣∗(𝜔|𝑥(𝜔) ≥ 𝜀) > 0. Let 𝐴 = {𝜔|𝑥(𝜔) ≥ 𝜀}, one gets

𝑛∑
𝑖=1

𝑓(𝑥𝑖) ∶=

𝑛∑
𝑖=1

∫
𝐶

𝑥𝑖 𝑑𝑣 ≥
𝑛∑
𝑖=1

∫ 𝑥𝑖𝑑𝜇 = ∫ 𝑥𝑑𝜇 ≥ ∫ 𝑥𝑑𝑣∗ ≥ ∫ 𝜀1𝐴𝑑𝑣
∗ = 𝜀𝑣∗(𝐴) > 0.

The second inequality is true because 𝜇 ∈ 𝑐𝑜𝑟𝑒(𝑣∗). This proves that 𝑓 satisfies AF*. □
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