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Abstract

This supplementary material includes the detailed derivation of the posterior
distributions in Section A. The details of the real data investigated in the empirical
applications are presented in Section B. Section C reports additional results from the
application. Section D presents the model selection criteria. Section E describes the
settings in the simulation study. Finally, Section F analyses the residual correlation

of the SAR-SV model.

A Posterior full conditional distributions

The conditional distribution for 3 is standard and fast algorithms to sample from it are
used. In high-dimensional set-ups with numerous covariates, the introduction of global-
local shrinkage priors for 3 based on scale mixtures of Gaussian distributions (e.g., see
Bhadra et al., 2016) does not affect significantly the computational cost, as only draws
from standard distributions are required.

The main computational challenge concerns sampling the layer-specific weights, , and
the network weights, p;, since there is no distribution conjugate with the likelihood in eq.
(13). Adopting a Bayesian approach, we introduce the restrictions on the parameters &
and p discussed in Section 3 through an appropriate choice of the prior distributions in
eq. (14), which leads to non-standard posterior full conditional distributions.

Therefore, we sample each p; from its full conditional distribution using a slice sampler
algorithm (Neal, 2003). This approach allows us to sample from an arbitrary univariate
distribution (known up to a proportionality constant) via introducing an auxiliary (slice)

variable. Specifically, denoting by f the full conditional distribution of p; and p(-m)
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(m+1)

value at the mth iteration, we obtain a draw of p; as
m m m m+1 m m
a1~ U0, (™)), P ™ ~ U (A). (1)
where A(m+1) = {x : flz) > ugm)}. By sampling from univariate distributions, this

approach does not suffer from the tuning issue and possible low acceptance rate of tra-
ditional Metropolis-Hastings techniques. Also, any draw from this step belongs to the
interval (—1,1) by the (transformed) beta prior in eq. (14) incorporating this restriction.
For the layer-specific weights in the vector &, we ensure that A3 is satisfied by assuming
a Dirichlet prior in eq. (14), then jointly sampling the vector. Specifically, we design an
independent Metropolis-Hastings (iMH) algorithm with a Dirichlet proposal distribution
and use a preliminary short run of the MCMC algorithm to tune the hyperparameter.’
Below we report the detailed derivation of the posterior full conditional distribution

for each parameter.
Posterior full conditional distribution of 8 Recall that 8 = (o), vec(B)'), X; =

(1,, £ ® I,,), ¥; = diag(exp(h14),...,exp(hnt)), and y; = A;y:. Then the posterior full

conditional distribution of 3 is obtained as:
1 _
P(Bly,h, p,d) o exp {—§(ﬁ —p,)'S (B gﬁ)}
T
X exp {— Z Xt/B ( : — Xt/8>}
t=1

mexp{—%[ﬁ’zﬁlﬁ 26'S5'n, +Zﬁxz X8 — 26/X/%; y}}

DN | —

which is proportional to the Gaussian distribution Ny, (8[1zz, Xs) with

T T
— -1 —
So= (S XN = S(S e, + DXy,
t=1 =1

Posterior full conditional distribution of SV hyperparameters The hyperpa-
rameters driving the stochastic volatility processes, (. ;, ®n.j, 0,21’]-), foreach j =1,...,n,
are sampled from their full conditional distributions using the stochvol package in R
(Hosszejni and Kastner, 2019).

Posterior full conditional distribution of h; The path of the stochastic volatility
h; = (h;1,...,hjr), for each j =1,...,n, is sampled using a forward-filtering backward-

!The proposed method works well in both simulation studies and the real-data application. As the
number of network layers d increases, the acceptance rate of the iMH algorithm tends to decay, suggesting
the use of entry-wise updates (see Debarsy and LeSage, 2022, for a possible approach).



sampling approach using the stochvol package in R (Hosszejni and Kastner, 2019).

Posterior full conditional distribution of § For the layer-specific weights &, com-
bining the Dirichlet prior distribution with the multivariate normal likelihood in eq. (14)

yields:

d

T
P(8ly,3,h, p) (Héfi_l> X (H | Ay| exp {— %e;Zt_let}) ,
t=1

i=1

where A; = I,, — R(Z?Zl 0;W, ) and e, = Ay — X3 depend on §. We obtain draws from
this distribution by using an independent Metropolis-Hastings algorithm with a Dirichlet

proposal.

Posterior full conditional of p; The posterior full conditional distribution of the

country-specific network weight, p;, for each j =1,... n, is:

T
p+1 a,~1 p—i—l bp_l 1 _
Plrsly.po5o88) o (B5=) 7 (1= 25=) " x [T 4 esp { - Geiier)

where A; = I, — R(Z?Zl o;Wi.) and e, = Ay, — X8 depend on p. We obtain draws
from this distribution by using a slice sampler algorithm (Neal, 2003).

A.1 SAR-SV model with time-varying p;,

To introduce time-variation and temporal dependence in the country-specific network

weights, p;:, we consider the following prior structure

i1 R
Pj,t2 ‘(j,t—1 ~ Be (p]tT ‘Qp + Cjﬂ:_l, v+n— Cj,t—l) (2)
. -1+ 1
Ga—1lpji—1 ~ Bin (Cj,m \77, pﬁ%) (3)
pii+1 pia, +1
TNge(T’Qp,V . (4)

This choice is an adaptation of the proposal by Nieto-Barajas et al. (2012) and has the
advantage of constraining p;;, € (—1,1) at any period ¢t = 1,...,T, since marginally
%ﬂ ~ Be(a,,v). Conversely, Hauzenberger and Pfarrhofer (2021) used an unrestricted
model with p, € R and assumed a Gaussian random walk process to govern the temporal
evolution of this parameter. This choice allows for a minor computational advantage
but still calls for the use of a Metropolis-Hastings step to sample p; at each period
t. Conversely, we adopted the more conventional approach and imposed the constraint

pi+ € (—1,1). The main difference is that our specification grants the invertibility of the
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matrix A;, which is instead not guaranteed by allowing |p;;| > 1 as in Hauzenberger and

Pfarrhofer (2021).

Posterior full conditional distribution of p,,

o+ 1 41 Git—1 41 v+n—Cjt—1—1
P<pj7t |Cj7t7Cj,t—hytw@ahtvpfj,t)na V) X (L) 1-— p“%tT

2 2
R | Gt 4] n—Cj,t 1 B
X <p‘77tT) (1 — pj’tT> X |At| exp{ — 592275 1et}
. 1 Cj,t+<j,t—l+ﬂp_1 . 1 V+277_<j,t_<j,t—1_1 1
x <'Oj’t2+ ) (1 — %) | Ay exp{ — §e22t_1et}

pj1+1
P<]T|Cj,la Y1, /37 hl) p—j,lﬂ 7, V> X
) 1 Cj,lJer*l ) 1 v+n—Cj,1—1 1
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P(pj,T +1
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. 1 Js £ . ]_ 7> ].
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where A; = I, — Rt(Z?:1 ;Wiy), with R, = diag(pis,...,pne), and e, = Ay, — XuB.
Notice that, for every t = 1,2,...,T, the posterior full conditional distribution is of the
same type as the one in the constant p; case. Therefore, we can exploit the same slice

sampler approach to obtain draws of p;; for each t.

Posterior full conditional distribution of (;;

C',t 77—<j,t
n! Pjt+1>’ ( Pjt+1>
P(¢: ity Pit—1,M,V) X - 1— 7
(C.]zt|10.]7t p.]?t 1 T] ) Cj,t'(/r] — Cj,t)‘ < 2 2
. F(V + n + 1) (pj’t_i,-l 4 1>ijt—1 (1 B )Oj,t_i_l + 1>V+77_<j,t—1
LG+ DI +n—¢) 2 2

o~ 1 <(ﬂj,t + D(pjer1 +1) ) o
(G +1))2T(n — Ge + DT (v 41— CGie) \(1 = pje) (L= pjies1) ’

which can be evaluated by computing the (unnormalised) mass function for each (;+ =
0,1,...,n and rescaling. Then, (;, is directly sampled from the resulting discrete distri-

bution.



Posterior full conditional distribution of 7

b =1 n I(n+1)T(a, +v+n)
t=1 j=1 n— 7.t v n 7.t
1 n n
X H<_ 2 )(_ 2 ) < TPoi(lA, m"),
t=1 j=1
for n = ¢*,...,n" and (" = max jef1,.. 7-1}x{1,...n} Gjt- We evaluate the function for

each admissible 7, then renormalise and sample from the resulting discrete distribution.
The truncated (from above) Poisson distribution TPoi(n|A, n*) has the probability mass

function

Aexp(—A (7" +1],2)\ 1 .
p< _)X< (Ln J )) ) 7720717"‘7/’77

P(nlA,n") ==
! L ]!
where I'(z, y) is the upper incomplete gamma function and |z] is the floor function.

Posterior full conditional distribution of v Assuming a Gamma prior for v ~
Ga(v|1,1), where we use the shape-scale parameterization, we obtain the posterior full

conditional distribution
P(|p,¢) o v % exp(—v/b,)

I 25 T (-2

j=1 t=1

We use a random walk Metropolis-Hastings (RWMH) step to sample from this distri-
bution using a gamma proposal v* ~ Ga(v*|1, %)), where v is the value of v at the

current iteration s.

Posterior full conditional distribution of 4, 3, h;, the SV hyperparameters
For all these parameters, the posterior full conditional distributions are the same as in

the constant p; case, except that the matrix R in the definition of A, is now replaced by
Rt = diag(th, e 7pN7t)a that is At = In — Rt(Z?:1 (SZVV%t)

A.2 Model with constant volatility

In the special case of a constant volatility model, we assume an improper prior on the

country-specific log-variance, which results in a flat prior on 0]2.

(see also Dittrich et al.,
2017), P(0?) o o; 2. For adequately large samples and given the functional form of the

likelihood, the full conditional posterior is proper, and this prior is not influential on



posterior estimates. The set of all prior distributions for the parameters of the model is:

/BNng(/6|H67ZB>a 0-32' NIg(UﬂQa?l—DU)

i+ 1 + 1
d ~ Dir(d|c), %N[%('o];— a,b

_p7 —p

(5)
).

Let o2 ; denote all the elements of o?, respectively, except the jth. The MCMC algorithm

to sample from the posterior distributions is structured as:

1) sample Bly, a2, p,d from a Gaussian distribution;

2) sample 0]2~|y, a'2_j, B, p,d from an inverse gamma distribution;

3) sample 8|y, 3,02, p from P(d|y, 3,02, p) using an independent Metropolis-Hastings
(iMH) algorithm;

4) sample p;ly, p_;,8,0%, 8 from P(p;ly,p_;,8,07,8) using a slice sampler algorithm
(Neal, 2003).

The conditional distributions for 3, d, p; are the same discussed for the SV model (with
minor changes due to the use of ¢7 in place of hy).
The posterior full conditional distribution of the country-specific innovation variance,

2 - e
o;, for each j =1,...,n, is:

_ 1 _
P(0j|y,0'2,j,5,p, d) x (UJQ-)’(”%) exp(—l_)o.a?) X H |2 1/2 exp {— §e22 1et}

(=

sl

which is proportional to the inverse Gamma distribution ZG(
a, +T/2andb=b, + 3| €3,/2.

,b) with parameters @ =

B Additional Data description

In the following, we present complement information for the application’s control variables

and stock indices.

B.1 Control variables

For returns, we consider the OECD Business Confidence Index (BCI) and the OECD
Consumer Confidence Index (CCI) for the G7 area as control variables. The BCI offers
insights into future trends by drawing from surveys on production, orders, and inven-
tories of finished goods within the industrial sector. It can predict potential shifts in
economic activity. Readings above 100 signify heightened confidence in upcoming busi-

ness performance, while values below 100 indicate a more pessimistic outlook toward
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future performance. The CCI provides information on how households will approach
spending and saving in the future. It is based on their outlook on personal finances, the
overall economy, employment, and their savings ability. A reading above 100 indicates
increased confidence in the future economy, suggesting people are less inclined to save
and more likely to make significant purchases next year. Conversely, values below 100
suggest a negative outlook on the economy’s future, potentially leading to an inclination
to increase savings and reduce consumption.? We incorporate changes in the BCI and
CCI into the model as they measure shifts in expectations within both the business and
consumer sectors, which might contribute to explaining fluctuations in market prices
Figure 1 presents the BCI and CCI on the level and on the first difference over the

considered period.
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Figure 1: The OECD Business Confidence Index (BCI) and the OECD Consumer
Confidence Index (CCI) for the G7 area over the considered period. The top
panels show the indicators on the levels where readings above (below) 100 in the
red dashed line imply optimistic (pessimistic) business/consumer confidence in
future developments. The bottom panels show their first difference.

20ECD (2023), Consumer confidence index (CCI) (indicator). doi:10.1787/46434d78-en. OECD
(2023), Business Confidence Index (BCI) (indicator). doi:10.1787/3092dc4f-en.


doi: 10.1787/46434d78-en
doi: 10.1787/3092dc4f-en

B.2 Stock indices

Monthly logarithmic returns are shown in Figure 2. To highlight the presence of common
risk factors shared among the G7 nations, Table 1 presents the results of a Principal
Component Analysis (PCA) conducted on the returns of these stock indices. The first
principal component (PC1) accounts for a substantial portion of the variability, explain-
ing approximately 77.2%. This implies that a significant part of the overall variation
in the data can be attributed to a single systematic factor. Subsequent components like
PC2 and PC3 elucidate progressively smaller portions of the variance. Despite the dimin-
ishing explanatory power of each additional component, they still contribute to a better

understanding of the interconnections among these economies.
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Figure 2: Log returns of G7 stock indices over the considered period: Canada
(cyan), France (green), Germany (purple), Italy (magenta), Japan (blue), the
United Kingdom (orange), and the United States (red).

PC1 PC2 PC3  PC4  PGCH pPC6  PC7

Standard deviation 2.3250 0.7262 0.6601 0.4850 0.4415 0.3730 0.2518
Proportion of Variance 0.7720 0.0754 0.0622 0.0336 0.0278 0.0199 0.0091
Cumulative Proportion 0.7720 0.8474 0.9096 0.9432 0.9711 0.9909 1.0000

Table 1: PCA results for G7 stock market indices: standard deviations (first row),
variance proportions (second row), and cumulative proportions (third row).

Figure 3 presents the obtained realised volatilities.
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Figure 3: Realised volatilities of G7 stock indices over the considered period:
Canada (cyan), France (green), Germany (purple), Italy (magenta), Japan (blue),
the United Kingdom (orange), and the United States (red).

C Complementary results of the application

In this section, we present complement and additional findings based on the application

for the case of returns and volatilities.

C.1 The case of returns

We present the model outcomes after excluding the SAR component, a step taken to val-

idate the effectiveness of the control variables. The results reveal that, apart from ABCT

in Italy, all coefficients exhibit statistical significance, underscoring the effectiveness of

BCI and CCI as control variables in elucidating the dynamics of stock market indices.

. ABCI

cons US JP DE UK FR IT CA
3 0.0058 0.0460 0.0586 0.0409 0.0310 0.0440 0.0357 0.0536
CI25%  0.0041 0.0219  0.0213  0.0064 0.0049 0.0096 -0.0007 0.0278
CI97.5% 0.0074 0.0718 0.0964 0.0767 0.0575 0.0765 0.0743  0.0786

ACCT

US JP DE UK FR IT CA
3 0.0509 0.0437 0.0785 0.0345 0.0654 0.0845 0.0280
CI 2.5% 0.0250  0.0039  0.0422  0.0074 0.0326  0.0492  0.0022
CI 97.5% 0.0769  0.0838 0.1134 0.0616 0.0985 0.1185  0.0539

Table 2: Posterior mean B and 95% credible interval of the coefficients 3, for the
static model excluding the SAR component. Coefficients statistically significant

(i.e., such that the 95% credible interval does not include zero) are in bold.

Finally, we present the country-specific direct effects for each country over time for

returns. Figure 4 displays the distribution of country-specific direct effects on the left

panel, illustrating the average response across countries to shocks in stock market returns.



The right panel depicts the distribution of indirect spillover effects, which represent the
average response across countries resulting from interactions with other countries over
time. Additionally, Figure 5 displays the posterior mean of the country-specific direct

effects for the case of returns.
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Figure 4: Distribution (over time) of the country-specific direct (left) and indirect
(right) spillover effects.
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Figure 5: Posterior mean of the country-specific direct effects for each country j
over time for the case of the returns.
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Figure 6: Posterior mean of the country-specific indirect effects for each country
j over time for the case of the returns.
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C.2 The case of returns with fixed effects

The following subsection presents the results for fixed effects in the model, as reported
in Table 3, Table 4, and Figure 7.

const
US JP DE UK FR IT CA
B 0.0065 -0.0004 0.0026 -0.0000 -0.0004 -0.0023 0.0005

CI2.5% 0.0029 -0.0050 -0.0001 -0.0022 -0.0026 -0.0058 -0.0020
CI975% 0.0101 0.0042 0.0053 0.0023 0.0018 0.0011  0.0031

ABCI
US JP DE UK FR 1T CA
B 0.0408 0.0284 -0.0092 0.0002 -0.0013 -0.0053 0.0245

CI2.5% 0.0149 0.0008 -0.0250 -0.0136 -0.0135 -0.0248 0.0069
CI97.5% 0.0656 0.0552  0.0059 0.0140 0.0115 0.0131  0.0419

ACCI
US JP DE UK FR IT CA
B 0.0468 -0.0039 0.0248 0.0011 0.0142 0.0293 -0.0070

CI2.5% 0.0194 -0.0336 0.0093 -0.0136 0.0004 0.0107 -0.0242
CI97.5% 0.0746  0.0255 0.0403 0.0169 0.0288  0.0475 0.0104

Table 3: Data: G7 returns. Posterior mean (3) and 95% credible interval of
the coefficients 3. Statistically significant coefficients (those with a 95% credible
interval excluding zero) are in bold.

US JP DE UK FR IT CA

p 0.0770 0.7302 0.9942 0.7053 0.9886 0.9910 0.7017
CI2.5% -0.1050 0.5798  0.9728  0.6429  0.9538  0.9582  0.6300
Cro7r5% 0.2418 0.8740 1.0000 0.7656  1.0000  1.0000  0.7705

Table 4: Data: G7 returns. Posterior mean (p) of country-specific spatial weight
(p;) for each country j, along with the 95% credible interval. Statistically sig-
nificant coefficients (those with 95% credible intervals not including zero) are in
bold.
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C.3 The case of returns with t

ime-varying p;;

Figures 8-9-10 report the results for the empirical application using a time-varying net-

work weight, p;,. Specifically, Figure 8 show the estimated path (posterior mean) of each

p;t Then, Figure 9 plots the distribution of direct and indirect spillover effects, whereas

Figure 10 illustrates the pairwise cross-correlations of direct, indirect and overall effects.

0.00

Posterior mean of the country-specific network

weight, p; ., for each country j (solid black line), with temporal average (dashed

line) and 95% credible intervals (solid gray lines).

Figure 8: Data: G7 returns.
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Figure 9: Data: G7 returns.
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Figure 10: Data: G7 returns. Upper: pairwise cross-correlation of overall (grey), direct (blue),
and indirect (red) effects over time between any pair of countries. Stars denote significance

at 10% (*), 5% (**), 1% (***).

Diagonal: kernel density estimate of the distribution of direct

(blue) and indirect (red) effects over time for each country, visualised on the interval (—1.2,1.2).
Bottom: scatter of the bivariate distribution of direct (blue) and indirect (red) effects over time
for each pair of countries, visualised on the region (—1.2,1.2) x (—=1.2,1.2).
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C.4 The case of volatilities

In the alternative application, we consider the realised volatility as follows:

M
RVi, =Y 17, (6)
=1

where i ={CA, FR, DE, IT, JP, UK, US}, ¢ denotes the monthly time index, and M
represents the total number of market days in a given month ¢.

Table 5 presents the posterior mean and associated 95% credible intervals of the
realised volatility MSCI;_;. Findings reveal statistically significant coefficients for the
United States, Japan, Germany, and the United Kingdom. Figure 11 presents the pos-
terior distribution of the country-specific spatial weight (p,) for each country (j). Addi-
tionally, Figure 12 displays the posterior mean of each country’s time-varying volatility
throughout the period, showing pronounced spikes during specific country-related events.
This suggests structural changes in the parameters guiding the stochastic volatility model,
as shown in Grassi and de Magistris (2015).

Finally, we present the country-specific direct effects for each country over time, fo-
cusing on volatilities. Figure 13 displays the distribution of country-specific direct effects
on the left panel, illustrating the average response across countries to shocks in market
volatilities. The right panel shows the distribution of indirect spillover effects, depicting
the average response across countries resulting from interactions with other countries over
time. Furthermore, Figure 14 displays the posterior mean of the country-specific direct
effects for the case of volatilities. Finally, Figure 16 illustrates the cross-correlation of
overall (grey), direct (blue), and indirect (red) effects between pairs of countries over

time.

realised volatility MSCI;_

const— yyg P DE UK FR IT CA

Jé] 0.0063 0.6605 0.4268 0.0972 0.0351 0.0012 0.0093  0.0248
CI25% 0.0052 0.5238 0.2752 0.0461 -0.0215 -0.0480 -0.0750 -0.0444
CI97.5% 0.0073 0.8159 0.5671 0.1551 0.0896 0.0525 0.1064 0.0869

Table 5: Data: G7 volatilities. Posterior mean (B) and 95% credible interval of
the coefficients 3. Statistically significant coefficients (those with a 95% credible
interval excluding zero) are in bold.
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Figure 13: Distribution (over time) of the country-specific direct (left) and indi-
rect (right) spillover effects.
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Figure 14: Posterior mean of the country-specific direct effects for each country
j over time for the case of the volatilities.
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Figure 16: Upper: pairwise cross-correlation of overall (grey), direct (blue), and indirect (red)
effects over time between any pair of countries. Stars denote significance at 10% (*), 5% (**),

1% (***).

Diagonal: kernel density estimate of the distribution of direct (blue) and indirect

(red) effects over time for each country, visualised on the interval (—1.2,1.2). Bottom: scatter
of the bivariate distribution of direct (blue) and indirect (red) effects over time for each pair of
countries, visualised on the region (—1.2,1.2) x (—=1.2,1.2).
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C.5 The case of volatilities with fixed effects

The following subsection presents the results for fixed effects in the model, as reported

in Table 6, Table 7, and Figure 17.

const

Us JP DE UK FR IT CA

B -1.6692 -2.1695 -0.4267 -0.6649 -0.2573 -0.8365 -0.8312
CI25% -2.5849  -2.6781 -0.7201  -0.9893 -0.5405 -1.3077  -1.3269
ClI975% -0.8422 -1.6780 -0.1105 -0.3327 0.0167 -0.3852  -0.3731

realised volatility MSCI;_4

US JP DE UK FR IT CA
B 0.7012 0.0854 0.0632 0.0560 0.0412  0.0657  0.0741
-0.0093  -0.0141 0.0005

CI 2.5% 0.5455 0.0034 0.0126 0.0010
CI97.5% 0.8714 0.1678 0.1171 0.1143  0.0968  0.1515 0.1490

Table 6: Data: G7 volatilities. Posterior mean () and 95% credible interval of
the coefficients 3. Statistically significant coefficients (those with a 95% credible

interval excluding zero) are in bold.

US JP DE UK FR IT CA

p -0.0011 0.4889 0.8197 0.8577 0.8787 0.7516 0.8539
CI25% -0.2500 0.4067 0.7482 0.8031 0.8204 0.6509  0.7710

CIo97r5% 0.2144 0.5743 0.8810 0.8996  0.9283  0.8470  0.9244

Table 7: Data: G7 volatilities. Posterior mean (p) of country-specific spatial
weight (p;) for each country j, along with the 95% credible interval. Statistically
significant coefficients (those with 95% credible intervals not including zero) are

in bold.
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C.6 The case of volatilit

Figures 18-19-20 report the results for the empirical application using a time-varying

network weight, p, ;. Specifically, Figure 18 show the estimated path (posterior mean) of

each p;¢. Then, Figure 19 plots the distribution of direct and indirect spillover effects,

whereas Figure 20 illustrates the pairwise cross-correlations of direct, indirect and overall

effects.

Figure 18: Data: G7 volatilities. Posterior mean of the country-specific network
weight, p; ., for each country j (solid black line), with temporal average (dashed

line) and 95% credible intervals (solid gray lines).
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Figure 19: Data: G7 volatilities. Distribution (over time) of the country-specific

direct (left) and indirect (right) spillover effects.
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Figure 20: Data: G7 volatilities. Upper: pairwise cross-correlation of overall (grey), direct (blue),
and indirect (red) effects over time between any pair of countries. Stars denote significance at
10% (*), 5% (**), 1% (***). Diagonal: kernel density estimate of the distribution of direct
(blue) and indirect (red) effects over time for each country, visualised on the interval (—1.2,1.2).
Bottom: scatter of the bivariate distribution of direct (blue) and indirect (red) effects over time
for each pair of countries, visualised on the region (—1.2,1.2) x (—=1.2,1.2).
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D Model selection metrics

A likelihood-free measure of fitness for the SAR-SV model (and competitors) is the
MAE(y) for the observed data, defined as

~(0)
Yjt — y](t (7)

1 T
MAE;,(y = Z

t=1 j=1

where g)j(-?

Alternative model selection criteria include the marginal likelihood and the informa-

is the fitted value from model /.

tion criteria, and their computation for the proposed SAR-SV model is explained below.

D.1 Marginal likelihood

An alternative approach to model selection in a full Bayesian way relies on posterior
model probabilities obtained from the marginal likelihood (ML).* In contrast to non-
nested model tests that rely on model estimates and associated predictions. Since in
the presence of model misspecification the resulting estimates will be biased, it would
be desirable to perform model comparison and selection unconditional on the parameter
estimate (Debarsy and LeSage, 2018). The Bayesian approach via marginal likelihood
addresses this issue by integrating over all model parameters, which allow us to make
inference about the best model unconditional on any specific parameter estimate.

The ML is defined as:
plylM,) = / / Py b, 8, M.)p(h]8, M;)p(8]M;)dhd6 — / p(y10, M)p(OIM.)d0,  (8)

where M, denotes model ¢, 6 is the collection of all parameters and p(y|0, M;) is the
integrated likelihood of model i. Computing the marginal likelihood for models with
stochastic volatility is a nontrivial task since they are inherently mixture models. Fol-
lowing Chan and Eisenstat (2018), we design a two-step procedure to approximate the
marginal likelihood based on an improved cross-entropy method where the integrated like-
lihood is computed using importance sampling. In the following description, we remove
the conditioning on M; for notational simplicity.

First, we aim at minimising the Kullback—Leibler divergence between the ideal impor-
tance sampling density (i.e., the posterior density) and a candidate density, p*(0;v) € F,

indexed by a parameter vector v. We do this by solving the minimisation problem

| M
v = arg mvin i Z log (p*(a(m); V)),

m=1

3The higher the value of the marginal likelihood, the better the model’s performance.
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where 8% ..., 0™) are posterior draws of the parameters and the candidate density
p*(G(m); v) is defined as the product of densities:

p*(@,v) :pl(Ol;vl) X ... X pJ(GJ;VJ),

with J being the number of blocks of parameters. The main advantage of this approach is
the reduction in the computation time due to disentangling a high-dimensional problem
into a collection of B low-dimensional ones. Recalling that @ = (u}, ¢;,,0%,3,6", p'),

we exploit the natural blocking suggested by the SAR-SV model and consider the family

n
F = {Hf/\/(#h,j;%,l,vw) X N (@n,j5 V15 Vg,2) X fIG(U;%,j;Ua,h%z)

=1

X fn(B5vs1,va2) X fpir(6;vs) X HfBe(pT;vp,laUpQ) }
j=1

Having obtained the optimal density p*(8; v*), in the second step we draw £ = 1,... N

samples 0 ~ p*(0; v*) and approximate the marginal likelihood via the average

Sly) = L5~ P10)p(6%) 0
D Ve e (9)

where p(y|0) is an estimate of the integrated likelihood computed using the approach

previously described.

For a model without stochastic volatility, the marginal likelihood can be computed sim-
ilarly. In this case, first recall that p(y|@) is available in closed form as the observed
likelihood. Second, the integral over the parameters can be approximated numerically
using an importance sampling procedure analogous to the one described above.

In particular, we minimise the Kullback—Leibler divergence between the ideal impor-
tance sampling density (i.e., the posterior density) and a candidate density, p*(0;v) € F
by solving the problem

v = argmm—ZlOg O(m )),

m=1

where 80, ....0™) are posterior draws of the parameters and the candidate density
p*(B(m);V) is defined as the product of densities. We exploit the natural blocking sug-
gested by the SAR-SV model, thus obtaining the family

{f/\/(ﬂ,Vﬂ,hVﬁ 2) X fpir(0;Vs) X HfBe(p+ ! Up,h”m)}.
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Finally, we draw samples 0" ~ p*(@;v*), £ = 1,..., N, from the optimal density and

approximate the marginal likelihood via the average

N ) (0)
P =y G (10)

; V)

E Simulation study settings

This simulation study investigates the ability of the marginal likelihood (ML) to recover
the “true model” generating the data. We consider the following data generating processes
(DGPs):

1. a SAR model with a one-layer time constant network and homoskedastic innovations
(SAR-W);

2. a SAR model with a two-layer time-varying networks and homoskedastic innovations
(SAR-H);

3. the proposed model, with a two-layer time-varying networks and stochastic volatility

(SAR-SV).

For each DGP, we consider n = 7 response variables and p = 2 covariates, over T' = 1000
periods. At each time ¢, we generate the covariates by drawing from a uniform distribution
frt ~U(—2.0,2.0), for each k = 1,...,p, and the associated coefficients are drawn from a
standard Gaussian distribution, that is 5, ~ N(0,1), for each [ = 1,..., kg The network
weights are sampled as p; ~ U(0.50,0.999), for each j = 1,...,n, whereas the layer-
specific weights are set to d = (0.75,0.25). Concerning the structural variance, the
homoskedastic models draw ajz ~ 7G(4.0,3.5), for each j = 1,...,n, whereas the SAR-
SV model simulates the path of the log-volatility independently for each j = 1,...,n
using as hyperparameters (p, ¢n,07) = (—10.0, 0.98, 0.282). Finally, each layer of the
network at each time ¢ is generated by randomly drawing the entries from two uniform
distributions, that is Wiy, ~ U(0,1) in layer one and Wy, ~ U(0,0.5) in layer two,
for each I,k = 1,...,n. For the SAR-W model, a one-layer time constant network W
is obtained by first generating the two-layer sequence as above, then computing W =
13y Wiy — Wy

F Residual correlation

To validate the use of the proposed multi-layer time-varying spatial matrices as a tool to
capture the co-movements among the observables, we first compare the empirical corre-
lation among the observables y, and the correlation of the residuals from the proposed

SAR-SV model. To this end, Figure 21 and Figure 22 show the empirical correlation
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among y; and the estimated correlation for the residuals series, respectively. In either
case, the estimated value of the Spearman correlation is reported together with the as-

sociated p-value.
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Figure 21: Upper triangular: empirical Spearman correlation (r) and associated
p-value (p) among the observables y;. Lower triangular: pairwise scatterplots
of the observables (dots) and robust linear regression fit (solid line) and 95%
confidence interval (shade). Diagonal: kernel density estimate of the marginal
distribution of each obsevable.
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Figure 22: Upper triangular: empirical Spearman correlation (r) and associated
p-value (p) among the residuals from our SAR-SV model. Lower triangular:
pairwise scatterplots of the residuals (dots) and robust linear regression fit (solid
line) and 95% confidence interval (shade). Diagonal: kernel density estimate of
the marginal distribution of each residual series.
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We find that all correlations among the observed series are statistically significant at
any significance level. Conversely, almost every pairwise correlation among the residuals
from our model is not statistically different from zero. It is worth mentioning that in
two cases where the residual correlation is found nonzero, that is p(eq, e3) and o(es, e5),
the results are highly affected by few outliers. To better highlight this point, we report
on the left of Figure 23 the same scatterplots as in Figure 22, whereas on the right we
show the scatterplots, Spearman correlation and p-value for the same series without the
outliers. The results show that, once the outliers are removed, the correlation among
these residual series is not statistically different from zero.

Therefore, we conclude that the proposed SAR-SV model with multi-layer time-

varying spatial weights is able to capture the co-movements among the observed series.

0.1 00 0.1 005 0.00 0.05

Figure 23: In each plot, the black dots are the scatter of the corresponding series,
the solid line represents the robust linear regression fit, r is the estiamted Spear-
man correlation, and p the associated p-value. First row: pairwise scatterplot
of the residual e; against es, including outliers (left) and without the outliers
(right). Second row: pairwise scatterplot of the residual ez against ey, including
outliers (left) and without the outliers (right).
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