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A B S T R A C T

The paper investigates the existence and the nature of quantum indeterminacy in a particular realist interpretation
of quantum mechanics, that is, the Modal Hamiltonian Interpretation (MHI)—together with an ontology of
properties for quantum systems. In doing so, it serves a twofold purpose. First, it advances the debate on quantum
ontology by showing precisely how and why indeterminacy arises in a quantum world—as described by the MHI.
Second, it offers a naturalistic example of genuine metaphysical indeterminacy, an example coming from our best
physics.
Metaphysical indeterminacy is, roughly, indeterminacy in the world as
opposed to indeterminacy in our knowledge or representation of it. Until
recently, the philosophical consensus was that there cannot be meta-
physical indeterminacy. As Russell wrote in an unforgettable passage:

Apart from representation (…), there can be no such thing as vagueness
(…); things are what they are, and there is an end of it (Russell, 1923:
85, italics added).

Famously Dummett and Lewis thought that metaphysical indetermi-
nacy was simply unintellegible.1 And in the wake of Evan's and Salmon's
arguments many agreed.2 Things changed when detailed accounts of
metaphysical indeterminacy were put forward.3 Still, there is no
consensus as to what constitutes a clear case of indeterminacy in the
world. Candidates include—but are not limited to—objects with fuzzy
boundaries, future contingents, and, finally, quantum cases. Indeed, it is a
substantive question whether quantum mechanics, in any of its (realist)
interpretations, offers examples of metaphysical indeterminacy. There is
no agreement that this is in fact the case. Given the suspicion and
skepticism that surrounded the very notion until very recently, one may
feel motivated to find formulations of quantum theory that rule out
metaphysical indeterminacy. An argument that starts from a realist
interpretation of quantum theory and shows how this is committed to
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there being indeterminacy in the world would then serve a significant
twofold purpose. On the one hand, it would provide a clear and precise
reason of how and why metaphysical indeterminacy arises in quantum
physics. On the other hand, it would provide a naturalistic example of
genuine metaphysical indeterminacy as suggested by one of our best
scientific theories. This is what the paper aims to do.

It argues that there is metaphysical indeterminacy according to a
particular realist interpretation of quantum mechanics. In effect, the
paper presents the first thorough investigation of quantum metaphysical
indeterminacy (QMI) in the so-called Modal Hamiltonian Interpretation
(MHI). In particular, it focuses on a recent proposal of an ontology of
properties for the MHI, an ontology where physical systems are consti-
tuted by—if not identified with—“collections” of quantum observables.4

It is not the aim of the paper to defend the MHI. Rather, the focus of the
paper is on the interaction between the MHI and QMI, so to speak.5 On
the one hand, QMI provides a metaphysical framework that sheds light
on crucial details of the MHI. On the other hand, MHI provides a sig-
nificant example of a realist quantum interpretation that allows—if not
outright requires—QMI. The rest of the paper is structured as follows. In
x1 I provide a brief introduction to the MHI and to an ontology of
properties. I then move on to discuss QMI and a particular account of it,
the Determinable-Based Account (x2).6 In x3 I discuss thoroughly QMI in
d Torza (2021).
l. (2013), Lombardi and Dieks (2016), and Lombardi (2019).
lational interpretation, see Calosi and Mariani (2020).
ing arguments. Yet, they do not provide an exhaustive picture. The interested
1) for the MHI, and to Calosi and Mariani (2020) for QMI.
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the context of the MHI. In the conclusion (x4) I consider some implica-
tions and developments of the main arguments in the paper.

1. Modal interpretations of quantum mechanics

In general, modal interpretations of quantum mechanics distinguish
between the dynamical state and the value state of a quantum system. The
former is represented by the usual quantum state, and describes the
properties the systemmight have—hence the term “modal”. The quantum
state always evolves unitarily, hence there is no collapse. By contrast, the
latter describes the definite value properties the system does have. This is
the main insight shared by all modal interpretations. It traces back to the
original proposal in van Fraassen (1972, 1974).7 The main difference
between modal interpretations boils down exactly to the ascription of the
value state. That is, different modal interpretations differ as to how they
ascribe a set of actualized definite value properties to a physical system
without violating quantum constraints given by no-go theorems such as
e.g., the Kochen-Specker theorem. This general characterization of the
main insight of modal interpretations already provides some details
about this class of interpretations which will be crucial later on:

REALISM: Modal interpretations are realist (no-collapse) interpretations
of quantum mechanics.

“IF” EEL: According to modal interpretations a quantum system can
have an actualized definite value property even if the system is not in an
eigenfunction of the corresponding operator. That is, the modal in-
terpretations only retain one direction—the “if” direction—of the
Eigenvalue-Eigenfunction Link (EEL)8;

LIMITS TO JOINT EXISTENCE: According to the modal interpretations, non-
commutativity of quantum observables, and in general no-go theorems
such as the Kochen-Specker theorem,9 impose serious constraints on the
joint existence of definite valued properties that belong to the value state.

1.1. The Modal Hamiltonian Interpretation

As we saw, modal interpretations differ as to how they assign a value
state to a given quantum system. Indeed, different interpretations single
out a different preferred contexts for such an assignment.10 Three such
contexts are particularly significant:

QUANTUM STATE ALONE: The preferred context for the assignment of
definite value properties in the value state is given by the quantum state
alone. That is, the value state depends solely from the dynamical
(quantum) state of a system.11

PRIVILEGED OBSERVABLES: The preferred context for the assignment of
definite value properties in the value state is given by a set of privileged
observables that always have a definite value, independently of the
physical situation.12

HAMILTONIAN: The preferred context for the assignment of definite
value properties in the value state is given by the Hamiltonian of the
7 For the most detailed account by van Fraassen, see in particular, van
Fraassen (1991: 279).
8 In context, this is a formulation EEL: A system s is in an eigenfunction of Ô

that corresponds to v iff s has in the value state a definite valued property that
corresponds to the eigenvalue v of Ô.
9 This is a rough formulation of the theorem: in a Hilbert space H with

dimension � 3 it is impossible to assign definite value properties to all quantum
observables while preserving the functional relations between commuting ob-
servables. The original paper is Kochen and Specker (1967). For an accessible
introduction and references see Held (2018).
10 I borrow the terminology from da Costa et al. (2013).
11 These are known as Biorthogonal-decomposition and spectral-
decomposition modal interpretations. They are usually associated with the
work of Simon Kochen and Dennis Dieks. For an introduction and complete list
of references, see Lombardi and Dieks (2021).
12 Bub (1997) goes as far as claiming that Bohmian mechanics is really a modal
interpretation where the set of privileged observables is the set of positions.

178
system. That is, the Hamiltonian fixes the preferred context in that it
determines all the observables that will acquire definite values—thus
figuring in the value state.13

The endorsement of HAMILTONIAN above yields exactly the MHI. Ac-
cording to such an interpretation one has the following FIRST ACTUALIZATION

RULE
14:
FIRST ACTUALIZATION RULE: Let s be a system with Hamiltonian Ĥ. Then,

the definite valued properties of s are Ĥ and all and only the properties that
commute with Ĥ.15

It is worth noting that the MHI provides a (viable) solution to the
measurement problem, and is also able to account for many physical and
chemical phenomena. As Lombardi (2019) writes:

Besides the free hydrogen atom and the Zeeman effect, the MHI
was applied to many other physical situations, leading to the re-
sults expected from a physical viewpoint; e.g., the free-particle
with spin, the harmonic oscillator, the fine structure of atoms,
the Born-Oppenheimer approximation (see Lombardi & Cas-
tagnino, 2008: section 5). Recently, the interpretation was applied
to solve the problem of optical isomerism (Fortin, Lombardi, and
Martinez Gonzalez 2018), which is considered one of the deepest
problems for the foundations of molecular chemistry (Lombardi,
2019: 38).

In the light of the above, I submit, the MHI deserves to be taken
seriously, and its metaphysical implications should be carefully
considered.
1.2. An ontology of properties for the MHI

An interpretation of quantum mechanics may admit of several on-
tologies.16 Recently, ontologies of properties and collections thereof have
been explored for a number of interpretations, i.e., the relational inter-
pretation championed by Rovelli17 and the MHI. Let O be the space of
self-adjoint operators acting on a Hilbert space H. Then, for simple
quantum systems there are a number of options available when setting
forth an ontology of properties. For instance one may think of a system s
as a “bundle” b of properties/observables Ôi⊂O, and (some) eigenvalues
of Ôi. Oldofredi (2021), as I read it, comes close to this view. In their
development of the MHI, da Costa et al. (2013) claim that a quantum
system is represented by < O; Ĥ >, where Ĥ is the time-dependent
Hamiltonian. To be as general as possible, I will take a quantum system

s to be represented by a collection of observables C ¼ fÔi ⊂Og and the set
of (some of) its possible values foijg—that is, oij represents a possible value

of Ôi. This choice of notation will be clear shortly. A system s can be thus

taken to be represented as follows: < C ¼ fÔi ⊂Og; foijg >. I will also

say—abusing terminology—that < C; foijg > “constitutes” quantum
13 One should note that it does not fix which value they will take. There is a
clear sense in which HAMILTONIAN provides a list of privileged observables—as
PRIVILEGED OBSERVABLES does. The main difference is that the privileged observ-
ables in HAMILTONIAN change with the physical situation—apart from the
Hamiltonian itself. By contrast, at least in some proposals, the privileged ob-
servables of Privileged OBSERVABLES are independent of any physical situation. If
one agrees with the diagnosis in Bub (1997), perhaps the best example of this
view would be Bohmian Mechanics. Thanks to an anonymous referee here.
14 See e.g., da Costa et al. (2013: 3675), Lombardi (2019: 35), and Lombardi
and Dieks (2021: x9).
15 There is also a symmetry requirement to the point that commuting observ-
ables have at least the same symmetries of Ĥ. I will leave it aside, as this
requirement does not play a role in what follows—and it is satisfied in the ex-
amples I shall use.
16 For a recent critical discussion about this point and its consequences, see Egg
(2021).
17 See e.g., Oldofredi (2021).
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system s.18 To wit, this raises the substantive question about the nature of
this “constitution” relation. Arguably, the two candidates that have
attracted the most attention in the literature are compresence, and mer-
eological composition. One could also take constitution as a new sui generis
primitive.19 No matter how “constitution” is spelled out, the crucial thing
to note here is that this is not just a representation relation. It is a building
relation that constructs quantum systems out of properties, so to speak.
Let me then provide some crucial details of an ontology of properties for
the MHI. I will mostly follow the most-developed proposal in the litera-
ture, namely da Costa et al. (2013). However, my formulations are
(sometimes) slightly different, and go beyond the original one, for rea-
sons that will be obvious in due course. We are particularly interested in
three claims. I will focus on two of them first20:

EXISTENCE OF “TYPE PROPERTIES”: There are “type properties” [A], [B],
[C], (…), that have countless instances [Ai], [Bi], [Ci], (…);

EXISTENCE OF “CASE PROPERTIES”: There are “case properties” ½aij�; ½bij�; ½cij�;
ð…Þ, that correspond to definite values of instances of “Type Properties”

thinsp; [Ai], [Bi], [Ci], (…);

I take it that, in “metaphysical” jargon, type property [A] stands for a
universal rather than a trope, in that it is a repeatable property. Indeed, as
EXISTENCE OF “TYPE PROPERTIES” explicitly acknowledges, type properties
have countless instances.21 We don't need to take a deep dive into the
metaphysics of properties. We can just simply look, in our discussion, to
instances of type properties. Consider now a particular quantum system s

constituted by < C ¼ fÔi ⊂Og;foijg >. It will have type properties [A1],

[B1], (…), [H1] each of which will have possible values ½a1i �;½b1j �;ð…Þ;½ω1
k �.

A type property [A1] is represented by Â1⊂O, and the case property ½a1j � is
represented by the jth eigenvalue of Â1. That is, for type property [A1]
and one of its case properties ½a1j � the classical eigenfunction equation
holds—with self-evident notation:

Â1ja1j 〉¼ a1j ja1j 〉 (1)

All of this is actually silent on which properties of the relevant
quantum system are actual, that is, in the terminology of x1, which def-
inite value properties belong to the value state of a system s at a given
time. For this we need another rule:

SECOND ACTUALIZATION RULE: For any [Ai], among its possible case
properties ½aij� at most one becomes actual (at a given time), i.e., figures in
the value state of s at a given time.

The two actualization rules for the MHI give us the definite valued
properties of the value state of system s at a given time: these are the case
properties of type properties that commute with the Hamiltonian (First
Rule). Of all the possible case properties of a given type property that
commute with the Hamiltonian only one case property goes in the value
state (Second Rule). Now, suppose that there is a type property [O] that
does not commutewith the Hamiltonian. By the first rule, the system s does
not have any case property of that type property. da Costa et al. (2013)
write:

[A]n instance [Ai] of the universal type-property [A] may or may not
actualize [i.e., acquire a definite value]. This is a consequence of the
18 This is an abuse of terminology insofar as < C ¼ fÔi ⊂Og; foijg > contains
only mathematical objects. Strictly speaking, the mathematical objects—at least
some of them—represent properties, and these properties constitute quantum
systems.
19 The choice between these alternatives is a substantive metaphysical issue
that goes well beyond the scope of the present paper. I used the deliberately
vague, general notion of “constitution” to signal that I do not want—nor
need—to commit to a precise constitution relation.
20 They correspond to “Proposition 1–3” in da Costa et al. (2013).
21 Which I take to be identical, hence universals.

179
Kochen-Specker theorem, which establishes one of the central dif-
ferences between the quantum world and the classical world: in the
quantum case, omnimode determination does not hold22 (da Costa et al.,
2013: 3676, italics added).

Let me now introduce a simple formal notation whose usefulness will
become evident. Let A1(x) stand for “quantum system x has type property
[A1]”.23 Similarly a1j ðxÞ abbreviates “quantum system x has definite

value case property ½a1j � of type property [A1]”. Then, using higher-order
quantification, we are interested in the universal closure of the following
principles24:

‘Quantum’ Requisite Determination OiðxÞ → 9oijðoijðxÞÞ (2)

‘Quantum’ At Most One Determination oijðxÞ ^ oikðxÞ → oij ¼ oik (3)

‘QUANTUM’ REQUISITE DETERMINATION requires that all type-properties
have a corresponding definite value property. I take that this is da
Costa et al. (2013)'s Omnimode Determination. ‘QUANTUM’ AT MOST ONE

DETERMINATION requires that actual definite value properties of a given
type property in the value state are—if there are any—unique.25

Before we move on to (alleged) quantum examples of metaphysical
indeterminacy, I should note that, as of now, the account is silent as to
which “type properties”—beside the Hamiltonian—figure in the consti-
tution of a quantum system. Perhaps some “type properties” are indeed
essential to physical systems—that is, very roughly, properties a system
has necessarily throughout its existence. Perhaps some are not, and can
be gained or lost. As we shall see shortly, this will turn out to be
important.26

2. Determinable quantum metaphysical indeterminacy

As I noted already, metaphysical indeterminacy is indeterminacy in
the world, as opposed to our representation or knowledge of it.27

Recently, the quantum failure of value definiteness has been investigated
as one—if not the—paradigmatic example of metaphysical indetermi-
nacy.28 This is what is usually referred to as QMI. There are several ac-
counts of quantum indeterminacy. In this paper we shall focus on one
such account, namely the so-called determinable based account.

In a nutshell—and slightly abusing terminology—according to the
determinable based account, there is metaphysical indeterminacy when
an object instantiates a determinable property but no unique determinate
of that determinable property (at some level of determination).29

This traces back to Wilson (2013), and has been developed for the
quantum domain in e.g., Bokulich (2014), Wolff (2015), Calosi andWilson
(2018, 2021), Mariani and Torrengo (2021), Mariani (2021, Forth-
coming), and Schroeren (2021) to mention a few. There are different
reasons for this restriction. The first and foremost is that, as I will argue in
x3, there is a significant parallel between determinable based indetermi-
nacy and the MHI. Indeed, I will argue that the proposal for an ontology of
himself to Bernoulli and Kant. See Lombardi and Dieks (2016).
23 That is to say, A1 is a predicate whose semantic value is a property [A1]
represented by operator Â1.
24 I chose the following terminology for the analogy with principles of deter-
mination that will be introduced in the next section.
25 This formulation actually hides some subtleties about the logic of the rele-
vant determination relation. See Calosi (Forthcoming).
26 Thanks to an anonymous referee for pressing me on this point.
27 See e.g., Barnes (2010).
28 See, among others, Darby (2010), Skow (2010), Calosi and Wilson (2018,
2021), Darby and Pickup (2019), Torza (2020), Mariani (Forthcoming), and
Schroeren (2021). For a critique see e.g., Glick (2017).
29 I will provide more details shortly.
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properties in the MHI developed in x2 provides an example of QMI ac-
cording to the determinable based account. Second, one of the most widely
held alternative accounts, namely metaphysical supervaluationism, at least
in its original formulation,30 seems to run afoul of no-go theorems such as
the Kochen-Specker theorem.31 But modal interpretations in general take
the conclusions of the no-go theorems extremely seriously, as witnessed by
LIMITS TO JOINT EXISTENCE in x1.32

As I pointed out already, determinable based indeterminacy boils
down to a particular pattern of instantiation of determinable and deter-
minate properties. As Wilson (2017) writes,

[D]eterminables and determinates are in the first instance type-level
properties that stand in a distinctive specification relation: the
“determinable determinate” relation (for short, “determination”). For
example, color is a determinable having red, blue, and other specific
shades of color as determinates; shape is a determinable having rect-
angular, oval, and other specific (including many irregular) shapes as
determinates; mass is a determinable having specific mass values as
determinates (Wilson, 2017: 1).

The determination relation is a primitive relation,33 whose behavior is
regimented by different principles.34 Two different principles will be of
interest to us, namely REQUISITE DETERMINATION, and AT MOST ONE DETERMI-

NATION. According to the former, everything that has a determinable
property has a determinate (at each level) of that determinable. According
to the latter, no thing has more than one determinate (at the same level).
Implicit in these formulations is the thought that determinables admit of
different levels of determination, so that the characterization of a property as
determinable and determinate is relative to levels. By way of illustration,
red is a determinate of “color” but a determinable of “scarlet”. To keep
things manageable, I will assume that there are no intermediate levels of
determination. That is, I will restrict my attention to two levels of deter-
mination. Thus, I will only consider maximally unspecific determinables
(MUD) and maximally specific determinates (MSd). A maximally unspecific
determinable is a determinable property that is not a determinate of any
other property. Conversely, a maximally specific determinate is a determi-
nate property that is not a determinable of any other property. Let now
Di(x) abbreviate “x has the maximally unspecific determinable property
[Di]”, and let dijðxÞ abbreviate “x has the maximally specific determinate

property ½dij� of [Di]”. Then, using higher order quantification once again,
the two principles of determination we are interested in are given by the
universal closure of the following:

Requisite Determination DiðxÞ → 9dijðdi
jðxÞÞ (4)

At Most One Determination dijðxÞ ^ dikðxÞ → dij ¼ dik (5)

These principles are interesting for two reasons. The first one will be
explored here, and the second one will be explored in the next section.
The reason to be explored here is that these are exactly the principles that
take center stage in the characterization of determinable based indeter-
minacy. In the words of Wilson:
30 See e.g., Barnes and Williams (2011). For a development focusing on
quantum indeterminacy see Mariani, Michels and Torrengo (Forthcoming).
31 See e.g., Darby (2010), and Skow (2010). Very roughly, the argument is that
metaphysical supervaluationsim requires all quantum observables to have a
definite value at all times. And this is exactly what the Kochen-Speker theorem
precludes.
32 Note also that recent objections to the determinable based account in
Fletcher & Taylor (Forthcoming) do not apply in the present context. This is
because they rely on the full strength of the EEL. And we saw already that modal
interpretations do not subscribe to the full force of the EEL.
33 Indeed, one can construct the entire space of determinable and determinate
properties out of determination alone. See Calosi (Forthcoming).
34 See Wilson (2017)—from which I borrow the terminology.
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What it is for a state of affairs to beMI in a given respect R at a time t is
for the state of affairs to constitutively involve an object (more
generally, entity) O such that (i) O has a determinable property P at t,
and (ii) for some level L of determination of P, O does not have a
unique level-L determinate of P at t (Wilson, 2013: 366).

Abusing terminology once more, I will say that for x to be inde-
terminate—with respect to a given property—is for x to have a maxi-
mally unspecific determinable without having a unique maximally
specific determinate of that determinable. Given the restriction about
two levels of determination, there are two ways some x can have a
determinable without having a unique determinate of that determin-
able. Either it has no determinate—Wilson calls this case gappy inde-
terminacy—or it has more than one determinate—Wilson calls this case
glutty indeterminacy.35 This makes it clear why I focused on REQUISITE

DETERMINATION and AT MOST ONE DETERMINATION above. Cases of gappy in-
determinacy correspond to violations of REQUISTE DETERMINATION, whereas
cases of glutty indeterminacy correspond to violations of AT MOST ONE

DETERMINATION.

3. Modal determinable indeterminacy

In this section I will argue that the ontology of properties for the MHI
developed in x1 provides us with an example of determinable based in-
determinacy, in particular of gappy indeterminacy. I will then go on to
investigate some features of said indeterminacy (x3.2). Before I am able
to do that, I need a systematic way to compare claims about type prop-
erties and case properties on the one hand, and claims about determin-
able and determinate properties on the other. This is addressed in the
next section (x3.1).
3.1. Translation

The ontology of properties for MHI in x1 mentions type and case
properties, whereas determinable based indeterminacy mentions deter-
minable and determinate ones. Luckily enough, translations between the
two languages are easy. That is because in standard presentations of
quantum mechanics (maximally unspecific) determinables are repre-
sented by self-adjoint operators and (maximally specific) determinates
are represented by eigenvalues. Physics textbooks that feature such
standard presentation include—but are not limited to—Baym (1969:
59–62), Gillespie (1970: 42–47), Beltrametti and Cassinelli (1981:
14–29), and Norsen (2017: 33–36). Among the texts in philosophy of
physics one can mention Hughes (1989: 60), Albert (1992: 40-43), Lewis
(2016: 72-74), and Maudlin (2019: 62-69). By way of illustration,
consider the spin-operator in an arbitrary direction φ (for a spin 1

2-par-

ticle), Ŝφ ¼
�

z x � iy
x þ iy �z

�
with eigenvalues �1

2,
36 or the momentum

operator P̂ ¼ �iℏ ∂

∂x with eigenvalues p ¼ ℏk.
Determinables are represented by instances of the self-adjoint oper-

ator Ŝφ ¼
�

z x � iy
x þ iy �z

�
and the self-adjoint operator P̂ ¼ � iℏ ∂

∂x,

whereas determinates are represented by eigenvalues �1
2 and p ¼ ℏk

respectively. Fig. 1 above sums up such determination structure—where
determination goes downward along the lines.37
35 One needs to be reminded that advocates of glutty indeterminacy are crystal
clear that the different determinates are either had relative to a given
perspective, or to a different degree. That is, they are not had simpliciter. As it
will be clear shortly this will play nor role in the paper.
36 One gets a different operator for each direction φ. For a substantive dis-
cussion of different metaphysical options see Corti and Sanchioni (2021).
37 Note that the figure is not intended to provide a complete, detailed graphic
representation of the determination structure. Rather, it is supposed to provide a
tentative visualizable guide.



Fig. 1. Quantum determinables and determinates.

Table 1
The translation table.

Mathematics Physics Metaphysics1 Metaphysics2

Self-adjoint Operator Ô
i Observable Type property [Oi] Maximally Unspecific Determinable [Oi]

Eigenvalue oij Definite-valued property Case Property ½oij� Maximally Specific Determinate ½oij�
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Now, recall that self-adjoint operators and eigenvalues are exactly the
mathematical objects that represent type and case properties. Therefore,
it stands to reason to simply identify type properties with (maximally
unspecific) determinables, and case properties with (maximally specific)
determinates, as in Table 1 below.38

Indeed, quantum type properties are but an example of determinables,
and quantum case properties are but an example of determinates. With this
in hand, it is easy to see the usefulness of the simple formal notation I used
to phrase principles (2)–(5). This is because it is clear upon inspection that
QUANTUM REQUISITE DETERMINATION (2) is but an example of REQUISITE DETER-

MINATION (4), and that QUANTUM AT MOST ONE DETERMINATION (3) is an example
of AT MOST ONE DETERMINATION (5). One obtains the quantum examples by
restricting the higher-order variables of the general principles (3) and (5)
to quantum observables and their eigenvalues. This is important not only
on its own. It also gives us a way to translate determinable indeterminacy
in the context of the MHI. Here is my proposal:

QUANTUM METAPHYSICAL INDETERMINACY—for MHI: A quantum system s is

metaphysically indeterminate with respect to observable Ôj iff < C ¼
fÔi ⊂Og; foijg > constitutes s, and < C ¼ fÔi ⊂Og; foijg > contains the

type property [Oj] but no unique case property ½ojk� of [Oj].
In general, even in this case there are two ways a system s can fail to

have a unique case property ½oij� of type property [Oi]: either it has no case
property, or it has more than one. Given our translation scheme, these
correspond to violations of QUANTUM REQUISITE DETERMINATION and AT MOST

ONE DETERMINATION respectively. Going back the quote from da Costa et al.
(2013) in x1.2, one sees that they expect violations of QUANTUM REQUISITE

DETERMINATION, but endorse AT MOST ONE DETERMINATION. Indeed, the latter
follows from SECOND ACTUALIZATION RULE. This rules out cases of glutty QMI.
By contrast, if we could find violations of the former, there would be
quantum indeterminacy of the gappy variety. I am going to argue next
that this is in fact the case.
39 See e.g., Calosi and Mariani (2021).
40 The FIRST ACTUALIZATION RULE entails that the Hamiltonian itself is always
determinate, that is determinate for any instant t. Yet, nothing in the MHI entails
that it is determinate which value the Hamiltonian will have at a time t* later
than t. One might push the point that this represents another form of indeter-
minacy, closely related to future-contingent indeterminacy. It is a substantive
question whether determinable-based indeterminacy can account, in general, for
future-contingent indeterminacy.
41 The claim is defended in e.g., Calosi and Wilson (2021): x4.2). As for another
3.2. Gappy indeterminacy in the MHI

One of the most common argument in favor of the existence of QMI
crucially depends on the “only if” part of the EEL. Very roughly the
argument has it that, given the “only if” part of the EEL, a quantum
system has a definite value property O ¼ v only if its state is an eigen-
function of Ô that corresponds to value v. Thus, when the state is not such
38 The first three columns in Table 1 are similar to Lombardi and Castagnino
(2008: 397) and da Costa et al. (2013: 3674).
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an eigenfunction the system, so the thought goes, is metaphysically
indeterminate with respect to O.39 But, as we saw in “IF EEL”, the “only
if” part is exactly the part of the EEL that is jettisoned in the MHI.
Therefore, the EEL-argument in favor of the existence of QMI is not
available in the present context. I contend that the key to argue in favor of
the existence of QMI in the MHI is the FIRST ACTUALIZATION RULE. According
to such a rule the only definite valued properties—that is, maximally
specific determinate properties in the value state—are the ones that
commute with the Hamiltonian.40 The argument is best appreciated by
focusing on an example. Consider the commutator of the Hamiltonian
and the Momentum operator:

½Ĥ; P̂� ¼
"
P̂
2

2m
þ V ; P̂

#
¼ iℏ

∂V
∂x

(6)

Given (6), in any case in which the potential V does not depend on x,
Ĥ and P̂ commute, as ∂V

∂x ¼ 0. Let me now consider one simple such case,
that of a quantum free particle—for which one simply sets V(x)¼ 0. In this
case plane waves

ψðxÞ ¼ eikx∕ℏ (7)

are eigenfunctions of both the Momentum and the Hamiltonian operator.
Quantum mechanics now dictates that the Hamiltonian does not commute
with the Position operator X̂. It follows then from the FIRST ACTUALIZATION RULE

that the particle does not have any definite value position property. That is,
it does not have any case-maximally specific determinate position.

It remains to be seen that the particle has the type-maximally un-
specific determinable property of position, that is, it is somehow located
somewhere in space.41
example, consider the following passage from Schroeren (2021):[T]he thesis
that particles which are not in an eigenstate of position nonetheless instantiate a
determinable of position is a natural way to cash out the claim that the particles
are in space despite lacking precise positions (Schroeren, 2021: x5.4).



46 Many such details go way beyond the scope of the paper, and I will rest
content with a very general picture.
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One possible argument in favor of that claim is simply that this is
actually definitional of material objects such as particles. The philosophical
pedigree of such a view is nothing short of impressive. It is a central tenet
of e.g., both Descartes's and Hobbes's metaphysics of material objects. In
contemporary philosophy the view is endorsed in Quine (1976), and has
been recently defended in Markosian (2000), Hudson (2005) and
Schaffer (2009) to mention just a few.42

However one may be unconvinced by the previous argument, partic-
ularly because it rests upon a very broad and general metaphysical view.
But there are other arguments available—interestingly related to that one.
For instance, suppose one defines an operator Ô that projects onto the
subspace of Hilbert space associated with a location anywhere in space.
One could then use the argument before to actually claim that the particle
determinately has the property represented by that operator. Granted. But
now, suppose we define a set-theoretic partition over spatial regions. That
is, we divide the entire space into disjoint regions that sum up to the entire
space. In fact, let us define a partition—idealizing just slightly—into
“minimal regions”, regions ri such that the particle cannot occupy any
proper subregion of any ri. Thewe could define operators P̂i such that every
P̂i projects onto the subspaces associated with region ri.43 Now, the
different projection operators P̂i seem to qualify as determinates of the
determinable Ô.44 To see that, note that they are specific ways of “being
anywhere in space”—exactly as the determinate “red” is a specific way of
being colored. Moreover, the construction guarantees that for any i 6¼ j, P̂i
and P̂j project onto orthogonal subspaces. That is, they represent incom-
patible properties—exactly as determinates at the same level of determi-
nation represent. Recall that the free-particle Hamiltonian does not
commute with X̂. Hence, it does not commute with any of the P̂i-s either.
Thus, the particle does not have any specific position-location associated
with any P̂i—and their eigenvalues. We already granted that the particle
has the property represented by Ô. Thus, the particle has the property
represented by the determinable Ô but no unique determinate of it at the
level of the P̂i-s—and their eigenvalues. The desired conclusion now fol-
lows: according to QUANTUM METAPHYSICAL INDETERMINACY—for the MHI, a
quantum free particle is metaphysically indeterminate with respect to X̂
ðÔÞ. In particular, this is an example of gappy indeterminacy, in that it
provides a counter-example to QUANTUM REQUISITE DETERMINATION.45

Let us look at another example. Equation (6) also tells us that any
Hamiltonian where the potential V depends non-trivially on x—and
indeed, for any potential V that is not invariant under translations—does
not commute with the momentum operator P̂. Now, suppose a particle is
moving in such a non-trivial potential V. Then, it follows from the FIRST
ACTUALIZATION RULE that it has no determinate eigenvalue of P̂. But it is
definitional of moving particles that they have momentum. As we saw, P̂
and its eigenvalues are the paradigmatic examples of determinable-
determinate properties. This is yet another case in which a system has
a determinable and no (unique) determinate of that determinable ac-
cording to the MHI. We can actually provide a specific example of such a
quantum system. Consider the simple quantum harmonic oscillator. The
Hamiltonian is given by:
42 On certain views about essence and definition this translates into the claim
that it is essential to a material object to have a certain maximally unspecific
position—that is location in spacetime.
43 Indeed, Whitman (1962) shows how to construct X̂ out of such projection
operators. For a contemporary construction along these lines, see Pashby
(2016).
44 Nothing so far entails that they are maximally specific determinates. The
following argument does not require this further step. If one were to be nit-
picking one would have to formalize different axioms of determination quan-
tifying over levels of specifications, and modify formulations accordingly. See
Calosi (Forthcoming) for the logical details.
45 And a fortiori, a counterexample to REQUISITE DETERMINATION (4).
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Ĥ ¼ P̂
2

þ VðxÞ ¼ P̂
2

þ 1
mω2X̂

2
(8)
2m 2m 2

The potential in (8) is not invariant under spatial translations and thus
the Hamiltonian does not commute with P̂. Hence the system does not
have any precise eigenvalue of momentum according to the MHI, given
its FIRST ACTUALIZATION RULE. Yet, the system is surely in motion. These is
because the allowed energies are given by:

En ¼
�
nþ 1

2

�
ℏω n ¼ 0; 1; 2; 3; ð…Þ (9)

These are all greater than 0, the energy ground-state E0 included. This
provides a clear physical example of a quantum system that has the
determinable momentum P̂—given that, as we saw, it moves—but no
precise determinate eigenvalue of momentum—because the Hamiltonian
does not commute with P̂. The same conclusion we drew for the free-
particle holds for the quantum harmonic oscillator as well. According
to QUANTUM METAPHYSICAL INDETERMINACY—for the MHI, a quantum har-
monic oscillator is metaphysically indeterminate with respect to P̂. In
particular, this is an example of gappy indeterminacy, in that it provides a
counter-example to QUANTUM REQUISITE DETERMINATION.

Once the existence of QMI has been established, an interesting
question arises as to whether this indeterminacy is fundamental or de-
rivative. This arguably depends on subtleties about the notion of funda-
mentality.46 There are (at least) two views on fundamentality that are
relevant here. According to the first view, the fundamental entities
determine (or fix) everything else.47 I shall refer to this view as the All
Determining view of fundamentality. According to the second view, the
fundamental entities are not determined (or fixed) by anything else. I
shall refer to this second view as the Undetermined view of funda-
mentality.48 Under the first view, the All Determining view, the indeter-
minacy inMHI is arguably fundamental: one needs to fix which collection
of properties constitute quantum systems (and which do not) to deter-
mine (or fix) everything else. And we saw that some such collections
display indeterminacy. Under the second view, the Undetermined view,
there is more leeway to argue that indeterminacy is derivative. This is
because one can insist that whether a particular collection of properties
constitutes a given quantum system is (at least partially) determined (or
fixed) by the existence of type/determinable properties and case/deter-
minate properties in the collection. In any event, what seems clear is that
the indeterminacy at hand is not eliminable. Indeterminacy is a conse-
quence of one of the constitutive rules for property attribution to quan-
tum systems. Indeed, it is a consequence of the very metaphysical
constitution of quantum systems in the first place.49 This is important
because it provides a challenge to a recent argument due to Glick. Glick
(2017)—but see also Glick (Forthcoming)—argues that realist in-
terpretations of quantum mechanics do not feature fundamental inde-
terminacy. And that derivative indeterminacy is eliminable. Glick focuses
47 I used a deliberately vague notion of “determining” or “fixing” for I don't
want to commit to specific relations such as supervenience, grounding, onto-
logical dependence, and the like.
48 For a discussion of these two notions of fundamentality, see e.g., Bennet
(2017). Note that the two notions can come apart. See e.g., Leunberger (2020).
49 Recall the discussion in x1.2. Talk of “constitution” should be taken meta-
physically seriously. The claim that a collection < C; foijg > constitutes a quantum
system s is not just a “representational claim”. Now, as I pointed out in footnote 18
strictly speaking the mathematical objects–the operators—represent properties
and these properties constitute quantum systems. One may try to argue that, in-
sofar as not every operator represents a genuine physical property, there is still
wiggle room to argue that the indeterminacy at hand is representational in nature.
The response here would be that the cases discussed in the main text are exactly
cases in which almost anyone agrees that the operators—position and momen-
tum—do in fact represent genuine physical properties.
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only on three realist quantum interpretations, the most widely discussed
ones: Bohmian mechanics, spontaneous collapse theories, and many
worlds. No matter what stance one takes on Glick's original argument,
there is no reason to limit oneself to those realist interpretations. Indeed,
modal interpretations are explicitly realistic interpretations—see REALISM

in x1—that seem to challenge Glick's argument. They offer an example (at
least some of them) of a realist interpretation of quantum mechanics
where indeterminacy is fundamental—if one endorses the All Determining
view of fundamentality—or it is derivative—if one endorses the Unde-
termined view—but ineliminable.50

4. Conclusion

Summing up, I argued that there is ineliminable metaphysical inde-
terminacy according to one significant interpretation of quantum the-
ory—supplemented with an ontology of properties. As I pointed out in
the Introduction this is crucial for (at least) two reasons. First, it advances
the debate on quantum ontology by showing precisely how and why
indeterminacy arises in a quantum world, as described by the MHI.
Second, it offers a naturalistic example of genuine metaphysical inde-
terminacy, an example coming from our best physics.

To conclude let me discuss briefly some implications and de-
velopments of the arguments in the paper. If the arguments in the paper
are on the right track, they show that yet another quantum interpre-
tation suggests that there is quantum indeterminacy.51 Arguably, there
are ways to avoid the existence of indeterminacy in at least some such
interpretations.52 Yet, the sheer amount of interpretations that are
hospitable to—or even entail—the existence of QMI should give us
pause: perhaps indeterminacy is indeed a crucial feature of quantum
worlds—be it at the fundamental or derivative level. Relatedly, the
arguments also show that the determinable based account of QMI is
flexible enough to provide an account of QMI in many different in-
terpretations. This, I contend, provides a (defeasible) argument in its
favor.

As for possible developments, two issues seem to naturally arise from
the discussion in the paper. The first one is whether its conclusions carry
over to other modal interpretations, in particular the ones that endorse
QUANTUM STATE ALONE rather than HAMILTONIAN—see x1.1. Arguably, the
first thing to do is to see whether different actualization rules entail the
existence of QMI. The second one is whether the arguments carry over to
other ontologies of properties for different quantum interpretations, at
least those that endorse LIMITS TO JOINT EXISTENCE—see again x1.1.53 These
are the proverbial stories for another time.
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