
���������������	
�	�
�����������	��������	�	��
�	����������������������	�
��
�
��
	������

������������������

� ��!∀ ��#� ∃��%�#!����#�&∋�∃�∀ �����%% ∀ ∃(�)��∃%∗��
�
+��������������������,
����#�������������	�����−−./.

���
����
��
�����	����������������� �����
��
������������

&����&�����0�� &�����������������,��

#�������
��
������������

&������������1�		���
���

Demo Version, http://www.verydoc.com and http://www.verypdf.com



Author’s web page: http://www.dsi.unive.it/~acarraro/

Author’s e-mail: acarraro@dsi.unive.it

Author’s addresses:

Dipartimento di Informatica
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Abstract

Part I: A longstanding open problem is whether there exists a model of the un-
typed lambda calculus in the category Cpo of complete partial orderings and Scott
continuous functions, whose theory is exactly the least λ-theory λβ or the least ex-
tensional λ-theory λβη: it is Problem 22 in the TLCA list of open problems [56].
In this thesis we analyze the class of reflexive Scott domains, the models of lambda
calculus living in the category of Scott domains (a full subcategory of Cpo). We
isolate, among the reflexive Scott domains, a class of webbed models arising from
Scott’s information systems, that we call i-models. The class of i-models includes,
for example, all preordered coherent models, all filter models living in Cpo and all
extensional reflexive Scott domains. By performing a fine-grained study of an “ef-
fective” version of Scott’s information systems and i-models we obtain the following
main results: there is an important class of i-models which is not complete for the
extensional calculus and whose members never have a recursively enumerable order
theory.

A closed λ-term M is easy if, for any other closed term N , the λ-theory generated
by the equation M = N is consistent, while it is simple easy if, given an arbitrary
intersection type τ , one can find a suitable pre-order on types which allows to derive
τ for M . Simple easiness implies easiness. The question whether easiness implies
simple easiness constitutes Problem 19 in the TLCA list of open problems [4]. As a
byproduct of our work on i-models, we are in the position of solving this problem: we
answer negatively, providing a nonempty set of easy, but non simple easy, λ-terms.

Part II: Given a semi-ring with unit which satisfies some conditions, we define
an exponential functor on the category of sets and relations which allows to define
a denotational model of Differential Linear Logic and of the lambda-calculus with
resources. We show that, when the semi-ring has an element which is “infinitary”,
this model does not validate the Taylor formula and that it is possible to build, in
the associated Kleisli cartesian closed category, a model of the pure lambda-calculus
which is not sensible. This is a quantitative analogue of the Park’s graph model
construction in the category of Scott domains.

We initiate a purely algebraic study of Ehrhard and Regnier’s resource λ-calculus,
by introducing three algebraic varieties: resource combinatory algebras, resource
lambda-algebras and resource lambda-abstraction algebras. We establish the rela-
tions between them, laying down foundations for a model theory of resource lambda
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calculus. We also show that the ideal completion of a resource combinatory algebra
(resp. lambda-algebra, lambda-abstraction algebra) induces a “classical” combi-
natory algebra (resp. lambda-algebra, lambda-abstraction algebra), and that any
model of the pure lambda calculus raising from a resource lambda-algebra deter-
mines a λ-theory which equates all terms having the same Böhm tree.

Demo Version, http://www.verydoc.com and http://www.verypdf.com



Résumé

Partie I: Un problème ouvert depuis longtemps est de savoir s’il existe un modèle
du lambda calcul non typé dans la catégorie Cpo des ordres partiels complétes et
fonctions Scott continues, dont la théorie équationnelle soit exactement la plus petite
λ-théorie λβ ou la plus petite λ-théorie extensionnnelle λβη: c’est le Problème 22
dans la liste de problèmes ouverts TLCA [56]. Dans cette thèse, nous analysons la
classe des domaines de Scott réflexifs, les modèles du lambda calcul vivants dans la
catégorie des domaines de Scott (une sous-catégorie pleine de Cpo). Nous isolons,
parmi les domaines de Scott réflexifs, une classe de modèles à trame découlant des
systèmes d’information de Scott, que nous appelons i-modèles. La classe des i-
modèles comprend, par exemple, tous les modèles préordonnées cohérentes, tous les
modèles de filtre vivants dans Cpo et tous les domaines de Scott réflexifs extension-
nels. En réalisant une étude fine d’une version “effective” des systèmes d’information
de Scott et des i-modèles, nous obtenons les résultats suivants: il y a une important
classe de i-modèles qui n’est pas complète pour le lambda calcul extensionnel et tel
que tous ces membres ne ont pas une théorie d’ordre récursivement énumérable.

Un λ-terme clos M est dit facile si, pour tout autre terme clos N , la λ-théorie
engendrée par l’équation M = N est cohérente, alors qu’il est simple facile si, étant
donné un type intersection quelconque τ , on peut trouver un pré-ordre sur les types
qui permet de dériver le type τ pour M . La facilité simple implique la facilité.
La question de savoir si la facilité implique la facilité simple constitue le Problème
19 dans la liste des problèmes ouverts TLCA [4]. Comme sous-produit de notre
travail sur les i-modèles, nous sommes en position de résoudre ce problème: nous
répondons négativement, en fournissant un ensemble non vide de λ-termes faciles
mais non simple faciles.

Partie II: Etant donné un semi-anneau avec unité qui satisfait certaines con-
ditions, nous définissons un foncteur exponentiel sur la catégorie des ensembles et
des relations qui permet de définir un modèle dénotationnel de la Logique Linéaire
Différentielle et du lambda-calcul avec ressources. Nous montrons que, lorsque le
semi-anneau contient un élément qui est “infinitaire”, ce modèle ne satisfait pas la
formule de Taylor et qu’il est possible de construire, dans la catégorie Cartésienne
fermée de Kleisli associée, un modèle du lambda calcul pur qui n’est pas sensible. Il
s’agit d’un analogue quantitative de la construction du graphe modèle de Park dans
la catégorie des domaines de Scott.
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Nous commençons une étude purement algébrique du λ-calcul avec ressources de
Ehrhard et Regnier, en introduisant trois variétés algébriques: les algèbres com-
binatoires avec ressources, les lambda-algèbres avec ressources et les algèbres de
lambda-abstraction avec ressources. Nous établissons les relations entre elles, et
jetons les bases d’une théorie des modèles du λ-calcul avec ressources. Nous mon-
trons également que la complétion par ideaux d’une algèbre combinatoire (resp.
lambda-algèbre, algèbre de lambda-abstraction) avec ressources induit une algèbre
combinatoire (resp. lambda-algèbre, algèbre de lambda-abstraction) “classique”, et
que tout modèle du lambda calcul classique provenant d’une lambda-algèbre avec
ressources détermine une λ-théorie qui égalise tous les termes ayant le même arbre
de Böhm.
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Sommario

Parte I: Una questione aperta da lungo tempo è se esista un modello del lambda
calcolo non tipato nella categoria Cpo degli ordinamenti parziali completi e funzioni
Scott-continue, la cui teoria equazionale sia esattamente la minima λ-teoria λβ o la
minima λ-teoria estensionale λβη: è il Problema 22 nella lista dei problemi aperti
TLCA [56]. In questa tesi analizziamo la classe dei dominii di Scott riflessivi, i
modelli del lambda calcolo che vivono nella categoria dei dominii di Scott (una sot-
tocategoria piena di Cpo). Noi isoliamo, tra i domini riflessivi di Scott, una classe
di modelli a trama derivanti dai sistemi informativi di Scott, che noi chiamiamo
i-modelli. La classe degli i-modelli comprende, per esempio, tutti i modelli preor-
dinati coerenti, tutti i modelli a filtro che vivono in Cpo e tutti i dominii di Scott
estensionali riflessivi. Effettuando uno studio dettagliato di una versione “effettiva”
dei sistemi informativi di Scott e degli i-modelli si ottengono i seguenti risultati prin-
cipali: c’è un’importante classe di i-modelli tale nessun suo membro ha una teoria
dell’ordine ricorsivamente enumerabile e come conseguenza essa non è completa per
il lambda calcolo estensionale (ciò implica che λβη non è la teoria di un modello in
tale classe).

Un λ-termine chiuso M è facile se, per qualsiasi altro termine chiuso N , la λ-
teoria generata dall’equazioneM = N è consistente, mentre è facile semplice se, dato
un tipo intersezione τ arbitrario, si pu trovare un pre-ordine adeguato sui tipi che
permette di derivare τ per M . La facilità semplice implica la facilità. La questione
se la facilità implichi o meno la facilità semplice costituisce il Problema 19 nella lista
dei problemi aperti TLCA [4]. Come sottoprodotto del nostro lavoro sugli i-modelli,
siamo in grado di risolvere questo problema: diamo una risposta negativa, fornendo
un insieme non vuoto di λ-termini facili ma non facili semplici.

Parte II: Dato un semi-anello con unità che soddisfa alcune condizioni, si
definisce un funtore esponenziale della categoria degli insiemi e relazioni che con-
sente di definire un modello denotazionale della Logica Lineare Differenziale e del
lambda calcolo con risorse . Si dimostra che, quando il semi-anello possiede un ele-
mento “infinitario”, è possibile costruire, nella categoria Cartesiana chiusa di Kleisli
associata, un modello del lambda calcolo puro che non valida la formula di Taylor e
che non è sensibile. Si tratta di un analogo quantitativo della costruzione del grafo
modello di Park nella categoria dei dominii di Scott, che per lungo tempo nessuno
era riuscito a replicare nella semantica relazionale.
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Abbiamo avviato uno studio puramente algebrico del lambda calcolo con risorse
di Ehrhard e Regnier, introducendo tre varietà algebriche: algebre combinatorie
con risorse, lambda-algebre con risorse e algebre di lambda-astrazione con risorse
. Stabiliamo le relazioni tra di esse, e gettiamo le basi per una teoria dei modelli
del lambda calcolo con risorse. Mostriamo anche che il completamento ideale di
un’algebra combinatoria (resp. lambda-algebra, algebra di lambda-astrazione) con
risorse induce un’algebra combinatoria (resp. lambda-algebra, algebra di lambda-
astrazione) “classica”, e che qualsiasi modello del lambda calcolo classico proveniente
da una lambda-algebra con risorse determina una λ-teoria che identifica tutti i ter-
mini che hanno lo stesso albero di Böhm.
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Preface

The work presented in this thesis is based on some previously published papers,
thus much credit for the technical contents and the underlying ideas goes to my
co-authors.

In more detail, the results of the first part are fruits of joint research with my
supervisor Antonino Salibra. The incompleteness of the class of extensional reflexive
Scott domains appeared in the Proceedings of the 24th IEEE Annual Symposium
on Logic in Computer Science (LICS’09) [34]. The solution of Problem 19 appeared
in the proceedings of the 12th Italian Conference on Theoretical Computer Science
(ICTCS’10) [35]. Chapters 2 to 5 contain a completely re-elaborated exposition
of these papers, enriched and improved in details. New are the introduction of
(effective) Scottian λ-models, in order to give a clearer statement and proof of the
main theorem.

The contents of Chapter 8 were obtained as the result of joint research with
Antonino Salibra and Thomas Ehrhard. A preliminary version of this work ap-
peared in the proceedings of the 35th International Symposiums on Mathematical
Foundations of Computer Science (MFCS 2010) [32].

Also the contents of Chapter 9 were obtained as the result of joint research
with Antonino Salibra and Thomas Ehrhard. A preliminary version of this work
appeared in the proceedings of the 19th EACSL Annual Conferences on Computer
Science Logic (CSL 2010) [33].

Part I and Part II are independent and each one has its own introduction. The
first is mainly concerned with the pure lambda calculus whilst the second with the
relationship between the pure lambda calculus and the resource lambda calculus.
Anyway we claim that the tools developed in the first part can be fruitfully adapted
and applied to the framework developed in the second one.
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1
introduction

Lambda theories are congruences on the set of λ-terms, which contain β-conversion;
extensional λ-theories are those which contain βη-conversion. Lambda theories arise
by syntactical or by semantic considerations. Indeed, a λ-theory may correspond
to a possible operational (observational) semantics of λ-calculus, as well as it may
be induced by a model of λ-calculus through the kernel congruence relation of the
interpretation function.

Although researchers have, till recently, mainly focused their interest on a limited
number of them, the lattice of λ-theories ordered by inclusion constitutes a very rich,
interesting and complex mathematical structure of cardinality 2ℵ0 (see [10, 15, 16]).

After the first model, found by Scott in 1969 in the category of complete lat-
tices and Scott continuous functions, a large number of mathematical models for
λ-calculus, arising from syntax-free constructions, have been introduced in various
Cartesian closed categories (ccc, for short) of domains and were classified into seman-
tics according to the nature of their representable functions, see e.g. [10, 15, 95].
Scott continuous semantics [104] is the class of reflexive cpo-models, that are re-
flexive objects in the category Cpo whose objects are complete partial orders and
morphisms are Scott continuous functions. The stable semantics (Berry [20]) and
the strongly stable semantics (Bucciarelli-Ehrhard [26]) are refinements of the conti-
nuous semantics, introduced to approximate the notion of “sequential” Scott conti-
nuous function; finally “weakly continuous” semantics have been introduced, either
for modeling non determinism, or for foundational purposes [15, 41]. In each of
these semantics all models come equipped with a partial order, and some of them,
called webbed models, are built from lower level structures called “webs”. The
simplest class of webbed models is the class of graph models, which was isolated
in the seventies by Plotkin, Scott and Engeler [48, 95, 107] within the continuous
semantics. The class of graph models contains the simplest models of λ-calculus, is
itself the easiest describable class, and represents nevertheless 2ℵ0 (non-extensional)
λ-theories. Another example of a class of webbed models, and the most established
one, is the class of filter models, many of which live in Scott continuous semantics.
It was isolated at the beginning of the eighties by Barendregt, Dezani and Coppo
[11], after the introduction of the intersection type discipline by Coppo and Dezani
[37].
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4 1. introduction

Scott continuous semantics and the other mentioned semantics are structurally
and equationally rich. Ten years ago, Kerth [71, 72] has proved that in each of the
above semantics it is possible to build up 2ℵ0 models inducing pairwise distinct λ-
theories. Nevertheless, the above denotational semantics do not match all possible
operational semantics of λ-calculus. Honsell and Ronchi della Rocca [57] have shown
that there exist theories which do not have models in the category Cpo. A similar
result was obtained by Bastonero and Gouy [12] for the stable semantics. More
recently, it has been proved in an uniform way that there are 2ℵ0 theories which
are omitted by all ordered models of λ-calculus with a bottom element[100] among
which ℵ0 are finitely axiomatizable over the least λ-theory λβ.

The question of the existence of a non-syntactical model of λβ (or λβη, the least
extensional λ-theory) has been circulating since at least the beginning of the eighties,
but it was only first raised in print in [57]. This problem is still open and constitutes
Problem 22 of the TLCA list of open problems [56], which is a list of twenty-two
problems that aims at collecting unresolved questions in the subject areas of the
TLCA (Typed Lambda Calculi and Applications) series of conferences. Problem 1
and Problem 20 are the only ones that have been solved to date and solutions to
Problem 2 and Problem 3 have been announced. A wealth of interesting research
and results (partially surveyed in [15] and [16]), have been motivated and inspired
by these kind of questions.

In 1995 Di Gianantonio, Honsell and Plotkin succeeded to build an extensional
model having theory λβη, living in some weakly continuous semantics [41]. However,
the construction of this model as an inverse limit starts from the term model of λβη,
and hence involves the syntax of λ-calculus. Furthermore the existence of a model
living in Scott semantics itself, or in one of its two refinements, remains completely
open. Nevertheless, the authors also proved in [41] that the set of extensional
theories representable by models living in Scott continuous semantics has a least
element.

In view of the second result of [41], it becomes natural to ask whether, given a
(uniformly presented) class of models of λ-calculus, there is a minimum λ-theory
represented in it; a question which was raised in [15]. In [30] Bucciarelli and Salibra
showed that the answer is also positive for the class of graph models, and that the
least λ-theory in this class is different from λβ and of course λβη.

We notice also that there are only very few theories of non syntactical models
which are known to admit an alternative (i.e., non-model-thoretic) description (e.g.
via syntactical considerations), and that all happen to coincide either with the theory
of Böhm trees [10] or some variations of it, and hence are not recursively enumerable
(r.e., for short). This led Berline, Manzonetto and Salibra [17] to raise the following
problem, which is a natural extension of the initial problem: can a model living
in Scott continuous semantics or in one of its refinements have an r.e. equational
theory? This problem was first raised in [16], where it is conjectured that no graph
model can have an r.e. theory: in [17] this conjecture is extended to all models
living in the continuous semantics, or in its refinements (but of course not in its
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5

weakenings, because of [41]). Based on a notion of an effective model of λ-calculus,
in [17] it was shown that the order theory of an effective model cannot be r.e. and its
equational theory is different from λβ (λβη). Effective models are omni-present: in
particular, all the models which have been introduced individually in the literature
can easily be proved effective. Concerning the above mentioned semantics, it was
also proved that no effective model living in the stable or strongly stable semantics
has an r.e. equational theory and that no order theory of a graph model can be r.e.

The category of algebraic cpos (a full subcategory of Cpo) has many nice prop-
erties but unfortunately lacks the essential characteristic of being a ccc: the function
space of two algebraic cpos need not be algebraic. This is a serious drawback, as the
function-space construction is often used in denotational semantics and the models
of λ-calculus are reflexive objects in a ccc. Fortunately there are Cartesian closed
(full) subcategories of algebraic cpos. The most important, introduced by Scott
[106], is the ccc Sd of Scott domains (i.e., bounded complete algebraic cpos). Most
of the reflexive cpo-models of λ-calculus introduced in the literature in the last forty
years are reflexive Scott domains, i.e., reflexive objects in Sd.

In this thesis we work with a category equivalent to Sd but more “concrete”
and easier to work with, namely the ccc Inf of information systems introduced by
Scott in early eighties [106]. We use Inf to isolate a class of structures, that we
call i-webs, that we use to generate models, then called i-models (exactly as graph
models arise from total pairs [15]). The class of i-models includes all extensional
reflexive Scott domains, all preordered coherent models and all filter models living in
Cpo. Based on a fine-grained study of an “effective” version of Scott’s information
systems, in the key technical theorem of this first part we prove that there exists
a model of λ-calculus, not living in Cpo, whose order theory is contained within
the order theory of every i-model and inspired by the work of Berline, Manzonetto
and Salibra [17], we show that there is an important class of i-models whose order
theories are never r.e., and that there are equations not in λβ (resp. λβη) which
hold in all such i-models.

We work at various levels, that we may roughly divide into the following three.

• At the “lower level” we manipulate i-webs. We consider partial i-webs, exten-
sions and completions. We also consider the effective content of these struc-
tures and constructions.

• At the “intermediate level” there are i-models, which include all extensional
reflexive Scott domains.

• At the “higher level” we isolate and manipulate a class partially ordered λ-
models, that we call Scottian λ-models. They include all i-models but have
the advantage to be closed under direct product.

For each level we also consider the effective version/content of the structures and
constructions.
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6 1. introduction

According to Jacopini [60] a closed λ-term M is easy if, for any other closed term
N , the λ-theory generated by the equality M = N is consistent. Easy terms can
be considered computational processes of a completely non-informative kind. Thus
they are suitable candidates for representing inside λ-calculus the undefined value of
a partial recursive function. The paradigmatic unsolvable term Ω ≡ (λx.xx)(λx.xx)
was shown easy by Jacopini [60] (cf. [10, p. 402]) with a syntactic proof. Other
syntactical proofs that certain terms are easy may be found in the literature, e.g.,
(Jacopini & Venturini Zilli [61, 62]; Intrigila [58]; Berarducci & Intrigila [14]; Kuper
[76]; Wang & Zhao [116]).

Baeten and Boerboom gave in [9] the first semantical proof of the easiness of
Ω by showing that, for all closed terms M one can build a graph model satisfying
the equation Ω = M . Baeten and Boerboom build their graph model by a method
of “forcing”, which, although much simpler than the forcing techniques used in set
theory, is somewhat in the same spirit. Forcing considerations have been extended
by Zylberajch [117] to prove the simultaneous easiness of the members of some
infinite family of easy terms (see also Berline-Salibra [19] and Berarducci [13]).

However, the semantical methods via graph models have concrete limitations.
For example, no semantical proof of the easiness of ω3ω3I (where ω3 ≡ λx.xxx and
i ≡ λx.x) via graph models can exist, in contrast to the case Ω, since Kerth [70]
has shown that no graph model satisfies the identity ω3ω3I = I. The easiness of the
term ω3ω3I was proved syntactically in (Jacopini & Venturini Zilli [62]), but was
only given a semantic proof in (Alessi et al. [5]), where the authors build, for each
closed term M , a filter model of ω3ω3I = M .

Alessi & Lusin [7] introduced a general technique to prove the easiness of λ-
terms through the notion of simple easiness. This notion implies easiness and can
be handled in a natural way by semantic tools. It allows to prove consistency results
via construction of suitable filter models of λ-calculus living in the category Cpo:
given a simple easy term M and an arbitrary closed term N , it is possible to build
(in a canonical way) a non-trivial filter model which equates the interpretation of M
and N . In [6] Alessi, Dezani and Lusin prove in such a way the easiness of several
terms, like Ω and ω3ω3I. Besides, simple easiness is interesting in itself, since it has
to do with minimal sets of axioms which are needed in order to assign certain types
to easy terms.

Problem 19 of the TLCA list was posed by Fabio Alessi and Mariangiola Dezani-
Ciancaglini in 2002 (see [4]) and asks whether easiness implies simple easiness.

As a byproduct of our work on i-models, which include all filter models living in
Cpo, we are in the position of solving this problem: we answer negatively, providing
a nonempty set of easy, but non simple easy, λ-terms.
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2
Preliminaries

We want to keep this thesis as much self-contained as possible. The purpose of this
chapter is to recall some basic notions, terminologies and notations that underly
the whole thesis, especially the first part. We generally take Barendregt’s classi-
cal work [10] for lambda calculus and combinatory logic, and that of Burris and
Sankappanavar [31] for universal algebra. Our main references for recursion theory
and domain theory are [8, 89, 111, 55].

This chapter is organized as follows: in Section 2.1 and Section 2.2 we review the
terminology and notations for the lambda calculus and combinatory logic, respec-
tively. In Section 2.3 we review the definitions of the algebraic models of lambda
calculus (combinatory algebras, etc.) and in Section 2.4 we recall how these models
arise from reflexive objects in cartesian closed categories. We conclude by surveying
in Section 2.5 and Section 2.6 order-theoretic notions, especially regarding models
of lambda calculus and representation of Scott domains.

2.1 Lambda-calculus

The lambda-calculus is a formalism composed by a set of words, called λ-terms (or
just terms, when no confusion is likely), over an alphabet and by a system of rules
specifying how some λ-terms can be rewritten or equated to others. Each term may
be thought of as the definition of a function: the primitive notions of term formation
are application, the operation of applying a function to an argument, and lambda
abstraction, the process of forming a function from its “defining expression”. The
set Λ of λ-terms over a countable set Var of variables is inductively constructed as
follows: every variable is a λ-term; if M and N are λ-terms, then so are (MN) and
(λx.M) for each variable x.

An occurrence of a variable x in a term is bound if it lies in the scope of a lambda
abstraction λx, otherwise it is called free. The set of free variables of M is denoted
by FV(M). A term without free variables is said to be closed. The set of closed
terms will be denoted by Λo.

Letters M,N,L, · · · usually range over Λ and x, y, z, . . . range over Var. With
regard to the lambda-calculus we follow the notation and terminology of Barendregt
(see [10, Ch. 2]). In particular: “≡” denotes syntactical equality and we adopt his
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8 2. Preliminaries

variable convention. Then M{N/x} denotes the result of substituting the term N
for all free occurrences of x in M without actually worrying about capture of free
the variables of N . In this setting the original Church’s axiom scheme

(α) λx.M = λy.M{y/x}

is built-in the notion of syntactical equivalence and consequently two terms that
would only differ in the name of their bound variables, i.e., α-equivalent, are consid-
ered equal.

There are some distinguished λ-terms that we list here

K ≡ λxy.x S ≡ λxyz.xz(yz) I ≡ λx.x 1 ≡ λxy.xy Ω ≡ (λx.xx)(λx.xx)

The equational rules that determine the lambda-calculus are the followings:

(β) (λx.M)N = M{N/x}

(app) if M = M ′ and N = N ′, then MN = M ′N ′

(ξ) if M = N , then λx.M = λx.N

(ref) M = M

(sym) if M = N , then N = M

(tran) if M = N and N = Z, then M = Z

The extensional lambda-calculus adds another axiom, which equates all the
terms having the same “extensional behavior”:

(η) λx.Mx = M if y 6∈ FV(M)

Two terms which are provably equal using all the rules except (η) are called β-
convertible, or β-equivalent ; two λ-terms provably equal using all the rules including
(η) are called βη-convertible, or βη-equivalent.

Definition 2.1.1. A λ-theory is a set of equations between λ-terms which is closed
under the rules (β),(ref),(sym), and (tran). A λ-theory is extensional if it is addi-
tionally closed under the rule rule (η).

A λ-theory is equivalently viewed as a set of pairs: it is consistent if strictly
contained in Λ × Λ. A a matter of notation for a λ-theory T both T ⊢ M = N
and (M,N) ∈ T express the fact that the equation M = N is provable in T .
The λ-theory generated, or axiomatized, by a set of equations is the least λ-theory
containing it. The smallest (extensional) λ-theory, containing exactly the pairs of β-
(βη-)convertible terms, is called λβ (λβη). Every λ-theory T is uniquely determined
by its equations between closed terms, i.e., by the set T ∩ (Λo ×Λo). If T ′ ⊆ Λo ×Λo
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2.1. Lambda-calculus 9

we say that T ′ is a closed λ-theory if there exists a λ-theory T such that T ′ =
T ∩ (Λo × Λo).

Contexts are terms with some occurrences of algebraic variables (also called
“holes”), denoted by ζi. A context is inductively defined as follows: ζi is a context,
x is a context for every variable x, if C1 and C2 are contexts then so are C1C2 and
λx.C1 for each variable x. If M1, . . . ,Mk are λ-terms we will write CLM1, . . . ,MkM
for the context CLζ1, . . . , ζkM where all the occurrences of ζi have been simultaneously
replaced by Mi, without any renaming of variables. We simply write CL M if C occurs
has at most one occurrence of a single algebraic variable.

Note that β- and βη-conversion are closed under context formation, i.e., M = N
implies CLMM = CLNM.

By applying the rules (β) and (η) only from left to right we obtain, respectively,
the β- and the η-reduction. In general, given an R-reduction rule, we write →R

(resp. ։R) to indicate the binary relation over Λ determined by the contextual
(resp. contextual, reflexive and transitive) closure of R-reduction.

A λ-term is in head normal form (hnf, for short) if it is of the form λx1 . . . xn.yM1 · · ·Mk,
for some n, k ≥ 0. A λ-term M is in normal form (nf, for short) if each of its sub-
terms (including M itself) is in hnf.

A term M is called solvable if there exists a context CL·M such that CLMM is
β-convertible to I, otherwise M is called unsolvable.

The λ-theory H, generated by equating all the unsolvable terms, is consistent by
[10, Thm. 16.1.3]. The theory H admits a unique maximal consistent extension [10,
Thm. 16.2.6] H∗, which is an extensional λ-theory, characterized by the following
property: H∗ ⊢ M = N if and only if CLMM is solvable ⇔ CLNM is solvable, for all
contexts CL M (see [10, Thm. 16.2.7]).

A λ-theory T is semi-sensible if, and only if, it never equates a solvable and an
unsolvable term, while T is sensible if, and only if, H ⊆ T (see [10, Sec. 10.2-16.2]).
It turns out that every consistent sensible theory is semi-sensible and that H∗ is the
largest semi-sensible λ-theory.

The Böhm tree BT (M) of a λ-term M is a labelled tree. If M is unsolvable,
then BT (M) = ⊥, that is, BT (M) is a tree with a unique node labelled by ⊥. If
M is solvable and λx̄.yM1 · · ·Mk is its principal hnf, then:

BT (M) = λx̄.y

ttttttttt

JJJJJJJJJ

BT (M1) · · · BT (Mk)

Following [10], the Böhm tree BT (M) of a λ-term M may also be identified with
an ideal (downwards closed and directed subset) of a suitable set of λ-terms. Let
Λ⊥ be the set normal terms in the ordinary λ-calculus extended with a constant ⊥
quotiented by the equations ⊥N = ⊥ and λx.⊥ = ⊥ and endow this set with a
partial order as follows:
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10 2. Preliminaries

• ⊥ ≤M , for all M ∈ Λ⊥;

• λx1 . . . xn.yM1 · · ·Mk ≤ N iff N ≡ λx1 . . . xn.yN1 · · ·Nk, with Mj ≤ Nj, for
j = 1, . . . , k.

Now define a sequence of functions BTn : Λ → Λ⊥, n ≥ 0, by induction on n as
follows:

• BT0(M) = ⊥;

• BTn+1(λx1 . . . xn.yM1 · · ·Mk) = λx1 . . . xn.yBTn(M1) · · ·BTn(Mk);

• BTn+1(λx1 . . . xn.(λy.P )QM1 · · ·Mk) = BTn(λx1 . . . xn.P{x := Q}M1 · · ·Mk).

Now it is clear that (BTn(M))n≥0 is a non decreasing sequence of elements of Λ⊥.
Then finally the Böhm tree of M is the downwards closure of the set {BTn(M) :
n ∈ N}, which is an ideal of Λ⊥.

For the definition of (finite and infinite) η-expansion of a Böhm tree see [10,
Ch. 10]. We let BT be the λ-theory which equates exactly the pairs of λ-terms
having the same Böhm tree. It turns out that H ⊆ BT ⊆ H∗ and that H∗ equates
exactly the terms having the same Böhm tree up to possibly infinite η-expansion.

We now recall a fundamental theorem in lambda calculus, that we will use for
proving subsequent results.

Theorem 2.1.1 (Böhm’s theorem). If M,N are two closed distinct βη-normal

forms, then for all λ-terms P,Q there exists a sequence ~L of λ-terms such that
λβ ⊢M~L = P and λβ ⊢ N~L = Q.

As a consequence of Theorem 2.1.1 the βη-normal forms cannot be consistently
equated in the lambda calculus. Nonetheless there are some special terms that have
a somewhat opposite property. These terms, introduced by Jacopini [60], have been
studied by many authors.

Definition 2.1.2 ([60]). A closed λ-term M is easy if for every closed term N the
λ-theory generated by the equation M = N is consistent.

The paradigmatic unsolvable term Ω ≡ (λx.xx)(λx.xx) was shown easy by Ja-
copini [60] (cf. [10, p. 402]). Other proofs of easiness for Ω and other terms may
be found in the literature, e.g., (Jacopini & Venturini Zilli [61, 62]; Intrigila [58];
Berarducci & Intrigila [14]; Kuper [76]; Wang & Zhao [116]).

2.2 Combinatory logic

Combinatory logic, as lambda-calculus, is a formalism for writing expressions which
define functions, endowed with an equational calculus over them. The terms of
combinatory logic, namely combinatory terms, are defined by induction as follows:
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2.2. Combinatory logic 11

every variable x is a combinatory term; the constants K and S are combinatory
terms; if s, t are combinatory terms, then also (st) is a combinatory term. As for
λ-terms, outer parentheses are omitted and (st)u is simply written stu; we list here
some special combinatory terms, that will be used in the sequel:

K S I ≡ SKK 1 ≡ S(KI)

We will denote by C the set of all combinatory terms and we will let s, t, u, . . .
range over C .

The axioms of combinatory logic are the following:

(C1) Kxy = x

(C2) Sxyz = xz(yz)

and its rules are those of the traditional Equational Calculus. The equational cal-
culus of combinatory logic is denoted by CL and for t, u ∈ C , we write CL ⊢ t = u
if t and s are provably equal in CL.

The fact that combinatory terms can be regarded as function definitions is not ev-
ident in combinatory logic, since abstraction and bound variables, unlike in lambda-
calculus, are not available. However Schönfinkel [103] and Curry [39] discovered that
these two characterizing features of lambda-calculus, can be simulated in combina-
tory logic, thanks to the equational calculus that governs it.

For each variable x one can define inductively a combinatory term λ∗x.t, where
the variable x does not occur, as follows:

• λ∗x.x = I,

• λ∗x.s = Ks, if x 6∈ FV(t),

• λ∗x.pq = S(λ∗x.p)(λ∗x.q).

Now it is possible to translate every λ-term in Λ into a combinatory term in C

and viceversa via two maps ( )λ : Λ → C and ( )cl : C → Λ as follows:

• xλ = x, for all x ∈ Var (ts)λ = tλsλ

• xcl = x, for all x ∈ Var (MN)cl = MclNcl (λx.M)cl = λ∗x.Mcl

We remark that Mcl,λ ։β M , so that λβ ⊢ Mcl,λ = M but in general CL 0

tλ,cl = t.
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12 2. Preliminaries

2.3 Algebraic models of lambda-calculus

The very meaning of the expression “algebraic model of lambda-calculus” is not
immediate to clarify, since the lambda-calculus, in its commonly accepted formal-
ization, is an higher-order calculus and algebras are naturally associated to languages
without variable binding. This apparent mismatch has been for many years sub-
ject of interest of many distinguished researchers, which axiomatized a number of
mathematical structures, each time giving a way of interpreting λ-terms in order to
induce a λ-theory. We highlight those proposals that are characterized by axioms
in the language of first-order logic:

• lambda abstraction algebras (Pigozzi-Salibra [93]),

• λ-algebras (Curry [10, Ch. 5]),

• λ-models (Meyer [85] and Scott [10, Ch. 5]),

• combinatory models (Meyer [85]).

Lambda abstraction algebras and λ-algebras are even axiomatized by pure equations,
thus yielding varieties. On the other hand, only lambda abstraction algebras and
λ-models allow the use of the standard notion of interpretation, via environments,
used in universal algebra.

Other proposals are syntactical λ-algebras (Hindley-Longo [10, Ch. 5]), syntac-
tical λ-models (Hindley-Longo [10, Ch. 5]) and environment models (Meyer [85]):
their formulation is obtained essentially stipulating the existence of an interpreta-
tion function for λ-terms. Luckily the research on this topic produced also many
equivalence results and in fact whenever we are given one of the above-mentioned
structures, say A, inducing a λ-theory T it is possible to perform a construction
yielding a structure B of another type whose induced λ-theory is again T .

We now recall some basic notions of universal algebra that will be used in the
sequel of this thesis.

Let A be an algebra in a given similarity type and let T (A) be the set of all
polynomials over a countable set Var of variables and constants for denoting elements
of the universe A.

The terms can be naturally interpreted in A with the help of “environments”,
which are particular functions assigning values to variables. More precisely, given a
set A, an A-environment, is a total function ρ : Var → A. We let EnvA be the set
of all A-environments. Given a valuation ρ ∈ EnvA, the interpretation tAρ of a term
t ∈ T (A) in A under ρ is inductively defined as follows:

• xA

ρ = ρ(x), for all x ∈ Var,

• aA

ρ = a, for all a ∈ A,
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2.3. Algebraic models of lambda-calculus 13

• (f(t1, . . . , tn))Aρ = fA((t1)
A

ρ , . . . , (tn)Aρ ), for any n-ary function symbol f in the
type T .

An equation t = u in the type of A is

(1) satisfied in A under ρ, notation A, ρ � t = u, if tAρ = uA

ρ ;

(2) satisfied in A, notation A � t = u, if A, ρ � t = u for all ρ ∈ EnvA.

Moreover if C is a class of algebras of the same similarity type, then an equation
t = u in the type of C is satisfied in C, notation C � t = u, if A � t = u for all
A ∈ C.

2.3.1 Combinatory algebras

The first algebraic approach to lambda-calculus was an indirect one, namely via
combinatory logic which is a first-order formalism (i.e. without variable binding)
and finds a natural algebraic semantics. This way the λ-models the result as a
strengthening of the axiomatization of models of combinatory logic.

An applicative structure is an algebra with a binary operation · that we call
application. We may write it infix as a · b, or even drop it entirely and write ab.
As usual, application associates to the left; hence abc means (ab)c. An applicative
structure is called extensional if the following axiom holds: ∀xy.(∀z.(xz = yz) ⇒
x = y).

Definition 2.3.1. A combinatory algebra (CA, for short) is an algebra A = (A, ·, KA, SA)
where (A, ·) is an applicative structure and the following axioms hold in A:

(CA1) Kxy = x

(CA2) Sxyz = xz(yz)

A combinatory algebra A is called extensional if its underlying applicative structure
is extensional.

A homomorphism of combinatory algebras A and B is a map f : A → B such
that f(KA) = KB, f(SA) = SB and f(a ·A b) = f(a) ·B f(b), for all a, b ∈ A.

Notation: when the combinatory algebra A is fixed and clear from the context
it is common to set k = KA, s = SA, i = skk and ε = s(ki). Committing an abuse
of notation we will also use CA to denote the class of all combinatory algebras; we
will let the reader distinguish between these two different usages. From Definition
2.3.1 it is clear that CA is indeed a variety (since it is equationally axiomatized).

Combinatory algebras are indeed the natural models of combinatory logic. Given
a CA A we denote by C (A) the set of combinatory polynomials over A, i.e., the
elements of C possibly containing constants from a set A.
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14 2. Preliminaries

The λ-terms can be naturally interpreted in combinatory algebras by means of
the translation (−)cl : Λ → C (see Section 2.2), so that we can associate to each
combinatory algebra A a set of equalities between λ-terms, called its equational
theory.

Definition 2.3.2 (Equational theory). The equational theory of a combinatory
algebra A is the set

Eq(A) = {M = N : A �Mcl = Ncl}

We set the following notation for interpretation of λ-terms in a combinatory algebra:
JMKAρ = (Mcl)

A

ρ , so that

Eq(A) = {M = N : ∀ρ ∈ EnvA. JMKAρ = JNKAρ }

Term models

The simplest way of constructing a combinatory algebra is probably taking the
quotient of the set C of combinatory terms w.r.t. the equivalence determined by
CL. Other natural examples of combinatory algebras, coming directly form the
lambda calculus, are the so-called term models, that we define here.

For a given λ-theory T we define the open T -equivalence class of a λ-term M is
the set [M ]T = {N ∈ Λ : T ⊢ M = N}; we also define the set Λ/T = {[M ]T : M ∈
Λ}. On Λ/T we define the application [M ]T · [N ]T = [MN ]T .

Definition 2.3.3 (Open term model). The open term model of T is the structure
Λ/T = (Λ/T, ·, [K]T , [S]T ).

The closed T -equivalence class of a closed λ-term M is the set [M ]oT = {N ∈
Λo : T ⊢ M = N}; we also define the set Λo/T = {[M ]oT : M ∈ Λo}. On Λo/T we
define the application [M ]oT · [N ]oT = [MN ]oT .

Definition 2.3.4 (Closed term model). The closed term model of T is the struc-
ture Λo/T = (Λo/T, ·, [K]oT , [S]oT ).

Proposition 2.3.1. Both Λ/T and Λo/T are combinatory algebras, for any λ-
theory T .

2.3.2 λ-algebras

If A ∈ CA, then Eq(A) is not necessarily a λ-theory. For example, if C /CL is the
free combinatory algebra over the denumerable set Var of variables we have that
(λx.(λy.y)x = λx.x) 6∈ Eq(C /CL).

Such a remark shows that not all combinatory algebras can be viewed as algebraic
models of the lambda calculus (via the translation of λ-terms into combinatory
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2.3. Algebraic models of lambda-calculus 15

terms), since there are combinatory algebras that do not satisfy all equations of λβ.
To cope with this problem another class of algebras was proposed. These algebras,
called λ-algebras, admit at least four different but equivalent characterizations, by
Curry, Hindley-Longo, Barendregt (see [10, Ch. 5]), Selinger (see [108]). We give
here Selinger’s axiomatization.

Definition 2.3.5. A λ-algebra (LA, for short) is a combinatory algebra satisfying
the following five equations:

(LA1) K = 1K; Kx = 1(Kx)

(LA2) S = 1S; Sx = 1(Sx); Sxy = 1(Sxy)

(LA3) S(S(KK)x)y = 1x

(LA4) S(S(S(KS)x)y)z = S(Sxz)(Syz)

(LA5) K(xy) = S(Kx)(Ky)

(LA6) 1x = S(Kx)I

A homomorphism of λ-algebras is a homomorphism of the underlying combina-
tory algebras. Committing an abuse of notation we will also use LA to denote the
class of all λ-algebras; we will let the reader distinguish between these two different
usages. Indeed LA is a variety (so that in particular LA is closed under homomorphic
images).

Again natural examples of λ-algebras come from the lambda calculus.

Proposition 2.3.2. Both Λ/T and Λo/T are λ-algebras, for any λ-theory T .

Remark 2.3.3. If A ∈ LA, then Eq(A) is not necessarily a λ-theory. An ingenious
example of this fact is due to Plotkin [97]. He shows that there exist λ-terms M,N
such that Λo/λβη �M = N but Λo/λβη 6� λx.M = λx.N .

Despite the “bug” put in evidence in Remark 2.3.3, the class LA still retains
some good properties.

Proposition 2.3.4. For any λ-algebra A we have λβ ⊆ Eq(A) (and λβη ⊆ Eq(A)
if A is extensional).

Moreover Eq(A) ∩ (Λo × Λo) is always a closed λ-theory: we shall speak of it
as the closed λ-theory induced by A. Thus a λ-algebra indirectly determines a λ-
theory, namely the unique λ-theory of which Eq(A)∩ (Λo ×Λo) is the restriction to
closed terms.
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16 2. Preliminaries

2.3.3 λ-models

In order to find the right subclass of CA whose members can be considered as
algebraic models of lambda calculus we need to strengthen once again the axioma-
tization.

Definition 2.3.6. A λ-model (LM, for short) is a λ-algebra satisfying the following
axiom, due to Meyer and Scott:

(LM) ∀xy.(∀z. xz = yz) ⇒ 1x = 1y

Committing an abuse of notation we will also use LM to denote the class of all
λ-models; we will let the reader distinguish between these two different usages. The
class LM does not form a variety but it has the following fundamental property.

Proposition 2.3.5. If A is a λ-model, then Eq(A) is a λ-theory.

We say that a λ-theory T is induced by a λ-model A if Eq(U) = T .
Again natural examples of λ-models come from the lambda calculus.

Proposition 2.3.6. The open term model Λ/T is a λ-model, for any λ-theory T .

Remark 2.3.7. As the reader can notice, closed term models are omitted from
Proposition 2.3.6. In fact there are λ-theories T for which Λo/T is not a λ-model.
One such example is given by λβη. Another, more exotic, example is due to Jacopini
[60].

Another natural, and maybe more interesting, example of λ-model is given by
Böhm trees. We let B be the set of all Böhm trees of λ-terms. It is possible to define
an application operation on B in such a way that choosing as basic combinators the
Böhm trees of K and S, respectively, one obtains a λ-model (see [10, Ch. 19]).

2.4 Models in cartesian closed categories

In the following, C is a locally small Cartesian closed category (ccc, for short) and
A,B,C are arbitrary objects of C. We denote by A1NA2 the Cartesian product (or
direct product) of A1 and A2 and by πi ∈ C(A1NA2, Ai) (i = 1, 2) the associated
projections. Given a pair of arrows fi ∈ C(C,Ai) (i = 1, 2) 〈f1, f2〉 ∈ C(C,A1NA2)
is the unique arrow such that πi◦〈f1, f2〉 = fi (i = 1, 2). For fi ∈ C(Ai, Bi) (i = 1, 2)
the product map f1Nf2 ∈ C(A1NA2, B1NB2) is defined by f1Nf2 = 〈f1 ◦π1, f2 ◦π2〉.
By ⊤ is indicated the terminal object characterized by the property that C(A,⊤)
has exactly one member for each A.

We will write A⇒ B for the exponential object and evA,B ∈ C((A⇒ B)NA,B)
for the evaluation morphism relative to A,B. Whenever A,B are clear from the
context we will omit the subscripts.

Demo Version, http://www.verydoc.com and http://www.verypdf.com



2.4. Models in cartesian closed categories 17

For all objects A,B,C and arrow f ∈ C(CNA,B) we denote by curA,B,C(f) ∈
C(C,A ⇒ B) the unique morphism such that evA,B ◦ (curA,B,C(f)NidA) = f . The
family {curA,B,C : C(CNA,B) → C(C,A ⇒ B)}A,B,C∈C of maps forms a natural
transformation, called currying. Whenever A,B,C are clear from the context we
will omit the subscripts.

Definition 2.4.1. A reflexive object of a ccc C is a triple U = (U,Ap,Lam) such
that U is an object of C and Lam ∈ C(U ⇒ U,U), Ap ∈ C(U,U ⇒ U) satisfy
Ap ◦ Lam = idU⇒U . When moreover Lam ◦ Ap = idU , U is called extensional.

Whenever there is not risk of confusion, we drop mention to the morphisms Ap
and Lam.

For any given object U of C we set U0 = ⊤ and Un+1 = UnNU . For a finite set
of variables I = {x1, . . . , xn} we set U I = Un and πI

xi
: U I → U as the projection

morphism that always exists in a ccc.
Given a λ-term M and a subset I ⊆f Var, we say that x̄ is adequate for M

if FV(M) ⊆ I. We simply say that I is adequate whenever M is clear from the
context.

Definition 2.4.2. Let U = (U,Ap,Lam) be a reflexive object. For all M ∈ Λ and
all adequate I ⊆f Var the we define a morphism |M |UI ∈ C(U I , U) by induction on
the structure of M as follows:

• |x|UI = πI
x

• |NZ|UI = ev ◦ 〈Ap ◦ |N |UI , |Z|
U

I 〉

• |λy.N |UI = Lam ◦ cur(|N |UI∪{y}), where y 6∈ I (we can always assume this)

We refer to [10, Ch. 5] for more details about this definition: one useful property
is for example that for any I, J ⊇ FV(M)∪FV(N) we have |M |UI = |N |UI ⇔ |M |UJ =
|N |UJ . We will usually refer to |M |UI as the interpretation of M in U even if, strictly
speaking, the denotation of the term is an element of C(U I , U) and when there will
be no danger of confusion, we will just write |M |I , dropping the reference to the
object U and implicitly assuming I adequate and dropping the subscript if the term
M is closed.

Via the interpretation function we can associate to U a set of equalities between
λ-terms, called its equational theory.

Definition 2.4.3 (Equational theory). The equational theory of a reflexive object
U is the set Th=(U) = {M = N : |M |I = |N |I , I = FV(M) ∪ FV(N)}.

Proposition 2.4.1. If U is a reflexive object in a ccc, then

(i) Th=(U) is a λ-theory,

(ii) Th=(U) is an extensional λ-theory iff U is an extensional reflexive object.

We refer to [10, Ch. 5] for the proof of the above proposition.
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18 2. Preliminaries

2.4.1 From reflexive objects to λ-algebras and λ-models

We end this section with a brief review of the connection between reflexive objects
in ccc’s and λ-algebras/λ-models.

Definition 2.4.4 ([74]). Let U = (U,Ap,Lam) be a reflexive object in a locally
small ccc. It is possible to construct a combinatory algebra

U• = (C(⊤, U), ·, |K|U, |S|U)

where x · y = ev ◦ 〈Ap ◦ x, y〉.

An object A of C has enough points if for all f, g ∈ C(A,A) such that f 6= g
there exists a morphism p ∈ C(⊤, A) such that f ◦ p 6= g ◦ p.

Proposition 2.4.2. Let U be a reflexive object in a locally small ccc. Then

(i) Eq(U•) = Th=(U),

(ii) U• is a λ-algebra (extensional if U is),

(iii) if U has enough points, then U• is a λ-model.

We refer to [10, Ch. 5] for the proof of the above proposition.
Notation and terminology: in view of Proposition 2.4.2, we will henceforth

always consider a reflexive object U as endowed with its combinatory algebra struc-
ture and in fact we will just use the notation U even when we should use U•; along
these lines we will use the notation Eq(U) instead of Th=(U), since this causes no
ambiguity.

In the first part of this thesis we will only work with categories in which every
object has enough points.

2.5 Partially ordered models of lambda-calculus

In this thesis we are interested in partially ordered λ-models and in the λ-theories
that they induce. For this reason we also provide a short summary of the order-
theoretic notions we will use.

2.5.1 Scott domains

Let D = (D,≤D) be a partially ordered set (poset, for short); when there is no
ambiguity we write just D to indicate the poset or just ≤ to indicate the order
relation. Two elements u and v of D are compatible if they have an upper bound in
D, i.e., if there exists z ∈ D such that z ≥ u, v. A subset X ⊆ D is directed if it is
non-empty and every pair of elements u, v ∈ X has an upper bound in X. The set
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2.5. Partially ordered models of lambda-calculus 19

X is downward (resp. upward) closed if u ∈ X and v ≤ u imply v ∈ X. We use the
notation A ↓ for the least downward closed set containing a subset A of D.

A poset D is a complete partial order (cpo, for short) if it has a least element (de-
noted by ⊥D) and every directed set X ⊆ D has a least upper bound (or supremum)
⊔X. A cpo D is bounded complete if u ⊔ v exists, for all compatible u, v ∈ D.

An element d ∈ D is called compact if for every directed subset X ⊆ D we have
that d ≤ ⊔X implies d ≤ v for some v ∈ X. We write K(D) for the collection
of all compact elements of D. A cpo D is algebraic if for every u ∈ D the set
{d ∈ K(D) : d ≤ u} is directed and u is its least upper bound. A bounded complete
algebraic cpo is called a Scott domain. A continuous function from D to E is a map
f : D → E such that for any directed X ⊆ D we have f(⊔X) = ⊔f(X).

Example 2.5.1. The set (P(N),⊆) is a a Scott domain whose compact elements
are exactly the finite subsets of N.

Example 2.5.2. Recall from Subsection 2.3.1 the definition of Λ/T , Λo/T (where
T is a λ-theory) and let ⊥ be a constant. The flat domain (Λ/T )⊥ = Λ/T ∪ {⊥} is
partially ordered as follows: ⊥ ≤ [M ]T and [M ]T ≤ [N ]T ⇔ [M ]T = [N ]T , for all
M,N ∈ Λ. Then (Λ/T )⊥ is a Scott domain in which every element is compact, and
the same holds for (Λo/T )⊥.

2.5.2 Models in order-enriched ccc’s

Throughout this thesis we will work with order-enriched categories, i.e. locally
small categories in which the hom-sets are partially ordered sets. In particular we
will encounter cpo-enriched ccc’s, that is categories C such that for every pair of
objects A,B, the hom-set C(A,B) is a cpo and composition, pairing and currying
are continuous (plus some other conditions - see [8]).

Notation and terminology: we indicate by Sd the category which has all
Scott domains as objects and continuous functions between them as arrows. The
category Sd is a ccc: the exponent of two Scott domains D, E is the space D ⇒ E =
Sd(D, E) of continuous maps with pointwise ordering and the Cartesian product
D × E is the set-theoretic direct product with pointwise ordering.

Notation and terminology. The reflexive objects of Sd are called reflexive
Scott domains, RSD, for short. Committing an abuse of notation we will also use
RSD to denote the class of all reflexive objects of Sd; we will let the reader distinguish
between these two different usages. An RSD (D,Ap,Lam) will be compactly denoted
by the corresponding bold letter, D.

Interpreting λ-terms in a partially ordered structure one indeed obtains a pre-
order on Λ. This leads to the concept of order λ-theory, that we now define formally
in analogy with that of λ-theory.

Definition 2.5.1 (Order λ-theory). An order λ-theory is a set of inequalities be-
tween λ-terms which is closed under the rules following axioms and rules:

Demo Version, http://www.verydoc.com and http://www.verypdf.com
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(o-β) (λx.M)N ⊑M{N/x}, M{N/x} ⊑ (λx.M)N

(o-app) if M ⊑M ′ and N ⊑ N ′, then MN ⊑M ′N ′

(o-ref) M ⊑M

(o-tran) if M ⊑ N and N ⊑ Z, then M ⊑ Z

Terminology: an order λ-theory is consistent if it is stricly contained in Λ×Λ.
Note the lack of the analogue of the ξ-rule from Definition 2.5.1: the reason

of this omission is that we want to be able to associate, to every RSD, a set of
inequalities between λ-terms, its order theory, and we want this set to be an order
λ-theory in the sense of Definition 2.5.1. This would not be possible in general,
adding a rule like “if M ⊑ N then λx.M ⊑ λx.N”: the counterexample is due to
G. D. Plotkin (see [109, Thm. 2.5]).

Definition 2.5.2 (Order theory). The order theory of a RSD U is the set
Th≤(U) = {M ≤ N : |M |UI ≤ |N |UI , I = FV(M) ∪ FV(N)}.

Proposition 2.5.1. If U is a RSD, then Th≤(U) is an order λ-theory.

It is well-known that Sd is a cpo-enriched ccc with enough points: thus, in
view of the discussion in Section 2.4, any RSD can be considered as a λ-model.
Any λ-model arising from an RSD U has an additional property, namely that the
function space Sd(U,U) coincides with the space of representable functions, that is
f : U → U is continuous iff there exists an element u ∈ U such that f =⋋⋋x ∈ U.ux.
Moreover in any RSD the application operation is in harmony (is compatible) with
the partial order and the interpretation function is continuous.

2.6 Scott domains and information systems

Scott domains have an appealing and suggestive representation as information sys-
tems, introduced by D. S. Scott himself [106]. Information systems organize them-
selves into a ccc in tight connection with Sd.

2.6.1 The category of information systems

An information system consists of a set A (with a distinguished element ∆A) to-
gether with an entailment relation ⊢A and a consistency predicate ConA. We adopt
the following notational conventions: letters α, β, γ, . . . are used for elements of A;
letters a, b, c, . . . are used for elements of ConA, usually called consistent sets ; letters
x, y, z, . . . are used for arbitrary elements of P(A).

Definition 2.6.1. An information system is a triple A = (A,ConA,⊢A), where
ConA ⊆ Pf(A) is a downward closed family containing all singleton sets, and ⊢A ⊆
ConA × A satisfies the axioms listed below:
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2.6. Scott domains and information systems 21

(I1) if a ∈ ConA and a ⊢A b, then a ∪ b ∈ ConA (where a ⊢A b
def
= ∀β ∈ b. a ⊢A β)

(I2) if α ∈ a, then a ⊢A α

(I3) if a ⊢A b and b ⊢A γ, then a ⊢A γ

Usually when we write a ⊢A α we implicitly assume that a ∈ ConA.
Note that the meta-notation explained in property (I1) allows to view ⊢A alter-

natively as a binary relation on ConA.
We will usually drop the subscripts from ConA and ⊢A when there is no danger

of confusion.

Definition 2.6.2. [106, Def. 5.1] An approximable relation between two informa-
tion systems A,B is a relation R ⊆ ConA ×B satisfying the following properties:

(AR1) if a ∈ ConA and a R b, then b ∈ ConB (where a R b
def
= ∀β ∈ b. a R β)

(AR2) if a′ ⊢A a R b ⊢B β′, then a′ R β′

Again the meta-notation explained in property (AR1) allows to view R as a
relation between ConA and ConB.

We will call Inf the category which has information systems as objects and
approximable relations as arrows. The composition of two morphisms R ∈ Inf(A,B)
and S ∈ Inf(B, C) is (using the meta-notation) their usual relational composition:
S ◦ R = {(a, γ) ∈ ConA × C : ∃b ∈ ConB. (a, b) ∈ R and (b, γ) ∈ S}. The identity
morphism of an information system A is idA = ⊢A.

The ccc structure of Inf was introduced by Scott [106], and is formulated also
by Larsen & Winskel [78]. We report here their version.

Definition 2.6.3. The Cartesian product ANB of A and B is given by ANB =
(A ⊎B,Con,⊢) where

• A ⊎B = {(1, α) : α ∈ A} ∪ {(2, β) : β ∈ B}

• a ∈ Con iff {α : (1, α) ∈ a} ∈ ConA and {β : (2, β) ∈ a} ∈ ConB

• a ⊢ (i, γ) iff

{
{α : (1, α) ∈ a} ⊢A γ if i = 1
{β : (2, β) ∈ a} ⊢B γ if i = 2

The category Inf also has countable products, defined in the obvious way. We
remark the existence of a canonical isomorphism ϕA,B : ConANB

∼= ConA × ConB

given by ϕA,B(X) = ({α ∈ A : (1, α) ∈ X}, {β ∈ B : (2, β) ∈ X}). In the sequel
we will consider such canonical bijection as an equality, hence we will still denote
by (a, b) the corresponding element of ConANB; such a choice makes the exposition
easier.

The projections are π1 = {((a, b), α) ∈ ConANB × A : a ⊢A α} and π2 =
{((a, b), β) ∈ ConANB × B : b ⊢B β}. For R ∈ Inf(C,A1) and S ∈ Inf(C,A2),
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the pairing 〈R, S〉 ∈ Inf(C,A1NA2) is given by
〈R, S〉 = {(c, (α, β)) : (c, α) ∈ R, (c, β) ∈ S}. The information system ⊤ = (∅, ∅, ∅)
is the terminal object.

Definition 2.6.4. The exponential object A ⇒ B of A and B is given by A ⇒ B =
(A⇒ B,∆,Con,⊢) where

• A⇒ B = ConA ×B

• {(a1, β1), . . . , (ak, βk)} ∈ Con iff ∀I ⊆ [1, k]. (∪i∈Iai ∈ ConA ⇒ {βi : i ∈ I} ∈ ConB

• {(a1, β1), . . . , (ak, βk)} ⊢ (c, γ) iff {βi : c ⊢A ai, i ∈ [1, k]} ⊢B γ

The currying cur : Inf(CNA,B) → Inf(C,A ⇒ B) is given by

cur(R) = {(c, (a, β)) : ((c, a), β) ∈ R}

(it is not difficult to see that cur(R) is an approximable relation).
The evaluation morphism ev : (A ⇒ B)NA → B is given by

ev = {(({(a1, β1), . . . , (am, βm)}, c), γ) : c ⊢A ∪m
i=1ai, {β1, . . . , βm} ⊢B γ}

(again it is not difficult to see that ev is an approximable relation).

2.6.2 Equivalence between the two categories

We already recalled the definition of the category Sd. After having recalled the
definition of Inf , it is now time also to recall why, i.e. in what sense, information
systems constitute a representation for Scott domains.

The categories Inf and Sd are in a strong correspondence. The following defi-
nition describes two functors establishing this bridge.

Definition 2.6.5. The functor ( )+ : Inf → Sd is defined as follows. Given A,B
in Inf , we have

• A+ = Inf(⊤,A), and

• for R ∈ Inf(A,B) one has R+(x) = {β ∈ B : ∃a ⊆ x. a R β}.

Definition 2.6.6. The functor ( )− : Sd → Inf is defined as follows. Given D, E
in Sd, we have

• D− = (K(D),Con,⊢), with

• {α1, . . . , αk} ∈ Con iff {α1, . . . , αk} has upper bound in D,

• {α1, . . . , αk} ⊢ β iff ⊔{α1, . . . , αk} ≥ β, and
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• for f ∈ Sd(D, E) one has f− = {({α1, . . . , αk}, β) : f(⊔{α1, . . . , αk}) ≥ β}.

The above functors preserve the ccc structure. The following theorem describes
precisely the strong equivalence between the two categories.

Theorem 2.6.1. Both ( )+− : Inf → Inf and ( )−+ : Sd → Sd are naturally
isomorphic to the identity functor and preserve the ccc structure (up to iso). More
precisely for all information systems A,B, and all Scott domains D, E, we have

(i) A+− ∼= A (in Inf) and D−+ ∼= D (in Sd);

(ii) (A ⇒ B)+ = Inf(A,B) ∼= Sd(A+,B+) = A+ ⇒ B+, ev+ = ev,
cur(R)+ = cur(R+);

(iii) (ANB)+ ∼= A+ × B+, π+
i = πi;

(iv) (D ⇒ E)− = D− ⇒ E−, Sd(D, E) ∼= Inf(D−, E−), ev− = ev,
cur(f)− = cur(f−);

(v) (D × E)− ∼= D−NE−, π−
i = πi.

Note that Inf(A,B) and Sd(A+,B+) (resp. (ANB)+ and A+ × B+) are iso-
morphic objects of Sd. Note that we used the same symbols (⇒) to indicate the
exponential functor in both categories and the same symbols for evaluation and pro-
jection morphisms and for the currying, leaving to the reader to distinguish between
the different usages.

Remark 2.6.2. The universe of D−+
is the set of all ideals of D (i.e. upward

directed and downward closed subsets). The maps

- µD(x) = {d ∈ K(D) : d ≤ x}, for all x ∈ D

- νD(I) = ⊔I, for all ideals I of D

are components of two inverse natural isomorphisms.

Theorem 2.6.3. (i) If A = (A,Ap,Lam) is reflexive in Inf , then A+ = (A+,Ap+,Lam+)
is reflexive in Sd and Eq(A) = Eq(A+).

(ii) If D = (D,Ap,Lam) is reflexive in Sd, then D− = (D−,Ap−,Lam−) is re-
flexive in Inf and Eq(D) = Eq(D−).

Proof. (i) The fact that ( )+ is a ccc functor guarantees that A+ is reflexive and
that (|M |AI )+ = |M |A

+

I .

(ii) Similar to (i).

Remark 2.6.4. Another nice aspect of the functors ( )+ and ( )− is the following.
Call FInf the full subcategory of Inf having as objects all the information systems
A = (A,Con,⊢) with Con = Pf(A). Then, under ( )+ and ( )−, FInf exactly
corresponds to the category ALat of algebraic lattices and continuous functions.
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2.6.3 Information systems as closure operators

One nice feature is the possibility of defining, for each information system A, an
algebraic closure operator on a subset of Pf(A) from which the entire information
system can be recovered. We say that an arbitrary subset x ⊆ A is finitely consistent
if Pf(x) ⊆ Con; we let FCon be the set of all finitely consistent subsets of A.

If x is finitely consistent, then we define an operation ( ) ↓A: FCon → FCon as
follows

x↓A= {α ∈ A : ∃a ⊆f x. a ⊢ α}

When the information system A is clear form the context, we will drop the
subscript from ( )↓A. Note that ( )↓ is an algebraic closure operator on FCon, that
is, a monotone map satisfying the following conditions:

x ⊆ x↓; x↓↓= x↓; x↓= ∪a⊆fxa↓

Definition 2.6.7. A point of A is a finitely consistent subset x ⊆ A such that
x = x↓.

We denote by A+ the set of all points of A. The terminology chosen is perfectly
coherent, since A+ = Inf(⊤,A): such set, ordered by inclusion, is a Scott domain
whose compact elements are the points of the form a ↓, for a ∈ Con. By Theorem
2.6.1(ii) any approximable relation R ∈ Inf(A,B) can be alternatively seen as a
point of A ⇒ B. We will exploit this fact, making use of the closure operator
( ) ↓A⇒B in order to define approximable relations as closures of suitable finitely
consistent subsets of A⇒ B. A concrete description of ( )↓A⇒B is given as follows:
for X ∈ FConA⇒B, then (c, γ) ∈ X ↓ (we omit the subscript, to ease notation) iff

• either ∅ ⊢B c or

• ∅ 0B c and there exist (a1, β1), . . . , (am, βm) ∈ X such that c ⊢A ∪m
i=1ai and

∪m
i=1bi ⊢B γ.
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3
A unifying theory of webbed models

In practice, all the models built for applications are “webbed models”, which means,
roughly speaking, that their domain is a subdomain of some (P(D),⊆). Scott’s first
model D∞ was first built in 1969 as an inverse limit of a projective system [104].
Actually D∞ is an extensional model, i.e. it equates all βη-equivalent terms. A
second model, connected to ordinary recursion theory soon followed: Plotkin and
Scott’s Pω (cf. [105, 107]), built via an elementary construction. Then came Engeler
and Plotkin’s model E [48, 96], and then other models, often built with practical
purposes. Nearly all of thse models belong to Scott’s continuous semantics.

It was noticed progressively thereafter that, in fact, all practical models of the
continuous semantics admitted elementary constructions, as “reflexive information
systems” of as “filter models”. This was already a webbed presentation of the mod-
els, and already allowed alternatives to the classical inverse limit construction. More-
over individual filter models themselves were systematically presented and studied,
in a proof-theoretic style, as “intersection type assignment systems” (a view which
goes back to Coppo-Dezani-Honsell-Longo [38]).

In this chapter we present a unifying theory of webbed models which allows
to view all constructions existing in the literature as particular instances. The
categorical inverse limit construction in a category of domains is replaced by a
completion process of “partial” structures, which can be treated algebraically and
uniformly. Historically, this kind of constructions take source in Krivine [75], Longo
[79], and Girard [53]. They can also be related, at least at the level of domains,
to the event structures of [88]. However we strongly believe in the value of the
systematic and uniform treatment that we propose, at least in view of the results
that it allows to obtain.

Section 3.1 introduces various kinds of morphisms between information systems
and establish their relations with embedding-projection pairs between domains.
These morphisms are used in Section 3.2 for isolating a class of models of lambda
calculus arising from what we call i-webs. Section 3.3 contains a technical study of
various constructions involving restrictions and expansions of i-webs: in particular
it deals with partial i-webs, which are structures of fundamental importance.

Finally in Section 3.5 we introduce the class of Scottian λ-models, whose purpose
is to serve a a base for their “effective version” developed in §4 and to formulate the
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main results of §5 in a modular and uniform way.

3.1 Morphisms of information systems, and ep-

pairs

In Larsen & Winskel [78] substructures of information systems are introduced in re-
lation to the search of exact solutions of recursive domain equations. In [42] Droste
& Göbel further develop this theme, showing how substructures of information sys-
tems correspond to embedding-projection pairs of domains. In this [42] the authors
also mention an “algebraic-style” (or “model-theoretic”) notion of isomorphisms of
information systems, which differs from the categorical definition of isomorphism in
the category Inf .

We develop this idea and distinguish a basic kind of model-theoretic morphism
and two refinements: b-morphisms and f-morphisms, which play different roles in our
theory. In particular it turns out that b-morphisms are useful for the construction
of models, while f-morphisms are useful for relating order theories of these models.

Notation. Let ψ : A→ B be a function. Then for x ⊆ A and y ⊆ B we set

ψ[x] = {ψ(α) : α ∈ x} and ψ−1[y] = {α : ψ(α) ∈ y}

Definition 3.1.1. Let A,B be ISs. A morphism from A to B is a map ψ : A → B
satisfying the following property:

(Mo) a ∈ ConA iff ψ[a] ∈ ConB

Warning. The morphisms described in Definition 3.1.1 are in general not arrows
neither in the category Inf , nor in epInf .

Definition 3.1.2. A morphism from ψ : A → B is

(1) a b-morphism (“b” for backward) if it satisfies the following property

(bMo) if ψ[a] ⊢B ψ(α), then a ⊢A α

(2) a f-morphism (“f” for forward) if it satisfies the following property

(fMo) if a ⊢A α, then ψ[a] ⊢B ψ(α)

(3) a bf-morphism if it is both a b-morphism and a f-morphism.

Example 3.1.1. Any set A “is” an information system A = (A,Pf(A),∋). For
two sets A,B a bf-morphism ψ : A → B between the two corresponding information
systems is just an injective function.
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Example 3.1.2. A preordered set with coherence (pc-set, for short) is a triple
(A,≤,≎), where A is a non-empty set, ≤ is a preorder on A and ≎ is a coherence
(i.e., a reflexive, symmetric relation on A) compatible with the preorder (see [15,
Def. 120]). A pc-set “is” an information system A = (A,Pcoh

f (A),⊢), where Pcoh
f (A)

is the set of finite coherent subsets of A and a ⊢ α iff ∃β ∈ a. β ≥ α.

For two pc-sets (A,≤A,≎A) and (B,≤B,≎B) a bf-morphism ψ : A → B between
the corresponding information systems is a function satisfying α ≤A α

′ iff ψ(α) ≤B

ψ(α′) and α ≎A α
′ iff ψ(α) ≎B ψ(α′).

Example 3.1.3. An extended abstract type structure (EATS, for short, [38, Def. 1.1])
is a partially ordered algebra (A,∧,→, ω), where “∧” and “→” are binary operations
and “ω” is nullary one. Then the structure A = (A,Pf(A),⊢), where a ⊢ α iff
(
∧
a) ≤ α, is an information system.

For two EATSs (A,∧A,→A, ωA) and (B,∧B,→B, ωB) a bf-morphism ψ : A → B
between the corresponding information systems is a function satisfying α ≤A α′ iff
ψ(α) ≤B ψ(α′).

Notation. Let ψ : A → B be a morphism. Then we define a derived map
~ψ : A⇒ A→ B ⇒ B setting ~ψ(a, α) = (ψ[a], ψ(α)).

Proposition 3.1.1. Let ψ : A → B be a morphism. Then ~ψ is a morphism too.
Moreover

(i) if ψ is a b-morphism, then ~ψ is a b-morphism too,

(ii) if ψ is a f-morphism, then ~ψ is a f-morphism too.

Proof. Easy.

It is not difficult to check that if A,B, C are ISs and ψ : A → B, χ : B → C
are b-morphisms, then their composition χ ◦ ψ : A → C is a b-morphism too and
that the identity function id is always a b-morphism. Hence we can define a new
category.

Definition 3.1.3. We let bInf (resp. bfInf) be the category which has all ISs as
objects and b-morphisms (resp. bf-morphisms) as arrows.

We will soon see that b(f)-morphisms are related to particular pairs of arrows
which are often of interest in cpo-enriched categories.

Definition 3.1.4. Let ε : B → A and π : A → B be morphisms in a cpo-enriched
category C. The couple (ε, π) is an embedding-projection pair from B to A ( ep-pair,
for short) if π ◦ ε = idB and ε ◦ π ≤ idA.
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Notation. We use the notation (ε, π) : B → A to indicate that (ε, π) is an
ep-pair from B to A.

It is well-known that (idB, idB) : B → B is an ep-pair and that if (ε′, π′) : C → B
and (ε, π) : B → A are ep-pairs, then their composition (ε, π)◦(ε′, π′) = (ε◦ε′, π′◦π)
is an ep-pair from C to A. Therefore the collection of all objects of C together with
ep-pairs as arrows define a category, that we will call epC.

The following lemma is folklore.

Lemma 3.1.2. If (ε, π) : E → D is an ep-pair in Sd, then

(i) ∀x ∈ D.∀y ∈ E. ε(y) ≤ x⇔ y ≤ π(x),

(ii) π(x) = ⊔{y ∈ E : ε(y) ≤ x},

(iii) if e ∈ K(E), then ε(e) ∈ K(D).

Lemma 3.1.2 says, among other things, that all information regarding an ep-pair
of continuous maps is encoded in ε, since the projection is completely determined by
the embedding. We are now about to see that this feature of ep-pairs in Sd allows
to put them in a bijective correspondence with bf-morphisms.

Recall Definition 2.6.5 and Definition 2.6.6, where the two functors ( )+ and ( )−

are described.

Definition 3.1.5. Let ψ : B → A be a b-morphism. Define two functions ψ1 :
B+ → A+ and ψ2 : A+ → B+ as follows:

- ψ1(y) = ψ[y]↓A

- ψ2(x) = ψ−1[x]↓B

Call F the mapping of information systems and b-morphisms given by A 7→ A+ and
ψ 7→ (ψ1, ψ2).

Lemma 3.1.3. The mapping F : bInf → epSd is a functor.

Proof. Note that both ψ1 and ψ2 are well-given by property (Mo) and send points
to points and their continuity is easy to prove. Let y ∈ B+. Then ψ2(ψ1(y)) =
ψ−1[ψ[y]↓A] ↓B= y, using property (bMo). Let x ∈ A+. Then ψ1(ψ2(x)) =
ψ[ψ−1[x]↓B]↓A⊆ x, since x is a point.

Finally F(idB) = (idB+ , idB+) and F(ψ ◦ ψ′) = F(ψ) ◦ F(ψ′).

Therefore a b-morphism ψ : B → A yields and ep-pair from B+ to A+ in Sd.

Definition 3.1.6. Call G the mapping of Scott domains and ep-pairs given by
D 7→ D− and (ε, π) 7→ ε↾K(E), where (ε, π) : E → D.

Lemma 3.1.4. The mapping G : epSd → bfInf is a functor.
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Proof. Let (ε, π) : E → D be an ep-pair in Sd. Note that by Lemma 3.1.2, ε↾K(E):
E− → D− is a well-given total function.

Let x ⊆f K(E) and let e and upper bound of x in E . Then clearly ε(e) is an
upper bound of ε[x] in D. Conversely if d is an upper bound of ε[x] in D then π(d)
is an upper bound of x = π[ε[x]] in E . This proves property (Mo).

Suppose ⊔ε[x] ≥D ε(e). Then ⊔π[x] = π(⊔ε[x]) ≥E π(ε(e)) = e. This proves
property (bMo).

Assume ⊔x ≥E e. Then ⊔ε[x] = ε(⊔x) ≥D ε(e). This proves property (fMo).
Finally G(idD, idD) = idD− and G((ε′, π′) ◦ (ε, π)) = G(ε′, π′) ◦ G(ε, π).

Therefore an ep-pair (ε, π) : E → D yields a bf-morphism from E− to D−.

Theorem 3.1.5. For any ep-pair (ε, π) in Sd we have (F ◦G)(ε, π) = (ε−
+
, π−+

).

Proof. Let (ε, π) : E → D be an ep-pair and let ψ = ε↾K(E). Then it is not difficult

to check that ψ1 = ε−
+

and ψ2 = π−+
.

3.2 i-webs and i-models

In this section we apply our dovetailed study of morphisms of information systems:
in particular we will use the fundamental fact that b-morphisms generate ep-pairs.
We will obtain an axiomatization of a class of structures which is easily recognizable
as a common theory for various existing definitions of webbed models like Krivine
models, filter models and graph models (see [15] for a survey).

After having introduced these structures and having described how λ-terms are
interpreted into them, we will show that this class is general enough to include, up
to isomorphism, all coadditive reflexive Scott domains (see Definition 3.2.3).

The following definitions give the axiomatization of the classes of structures we
are principally interested in: i-webs and i-models.

Definition 3.2.1. An i-web is a pair A = (A, φA) where

- A is an information system,

- φA : A ⇒ A → A is a b-morphism.

We denote by iW the class of all i-webs.

Definition 3.2.2. Let A be an i-web. The i-model generated by A is the triple
A+ = (A+, (φA)1, (φA)2). We denote by iM the class of all i-models.

When the i-web A is clear from the context, we may drop the subscript from
φA. The next theorem justifies the name “i-model”.

Theorem 3.2.1. If A is an i-web, then A+ is a RSD, and hence a model of lambda
calculus.
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Proof. Immediate, since by Theorem 3.1.5 ((φA)1, (φA)2) : A+ ⇒ A+ → A+ is an
ep-pair in Sd, and hence A+ is a reflexive Scott domain.

From the proof of Theorem 3.2.1 it is evident that A+ is something more than
a RSD: it has an additional property, called coadditivity (see [38]).

Definition 3.2.3. A RSD D = (D,Ap,Lam) is coadditive if (Lam,Ap) : D ⇒
D → D is an ep-pair.

Theorem 3.2.1 says that i-model is a coadditive RSD. The next completes the
picture: from the point of view of the equational and order theories, the class iM is
equivalent to the class of all coadditive RSDs.

Theorem 3.2.2. For every coadditive RSD D, there is an i-model with the same
equational and order theories of D.

Proof. Let D be a coadditive RSD. Since D is isomorphic to D−+ and ( )−+ is a
ccc functor, by Theorem 3.2.2(i),(ii) we have that Eq(D) = Eq(D−+

) and obviously
also Or(D) = Or(D−+

). Finally since ( )−+ is continuous on hom-sets we have that
D−+

is a coadditive RSD and by Theorem 3.1.5 D−+ is an i-model.

Comment. This theorem is fundamental for our subsequent results: it says that
in order to study the equational incompleteness of the class of coadditive RSDs, we
can use the class iM.

Notation. Throughout this section when speaking of an i-web A we will make
lowercase greek letters α, β, γ, . . . range over A, roman letters a, b, c, . . . range over
ConA, and capital roman letters X, Y, Z, . . . range over ConA⇒A. A finite sequence
of consistent sets is denoted ā = (a1, . . . , an).

We now give some examples of i-webs and i-models.

Example 3.2.1 (Graph Models). A total pair ([15]) is a set A together with an
injection iA : Pf(A) × A → A and a graph model generated by the pair (A, iA) is
then obtained by taking the powerset of A (see [15, Def. 120]). Recall from Example
3.1.1 that a set A yields an information system A. The total pair (A, iA) then yields
an i-web A = (A, iA). The graph model generated by (A, iA) corresponds exactly
to the i-model A+. The injectivity of iA corresponds to the requirement of being a
b-morphism.

Example 3.2.2 (Preordered Coherent Models). Recall from Example 3.1.2 how
a pc-set A determines an information system A. A pc-web (see [15, Def. 153]) is
determined by a pc-set together with a map φ : Pcoh

f (A) × A→ A satisfying:

(1) φ(a, α) ≎ φ(b, β) iff (a ∪ b ∈ Pcoh
f (A) ⇒α≎β)

(2) if φ(a, α) ≤ φ(b, β), then α ≤ β and (∀γ ∈ b ∃δ ∈ a.γ ≤ δ).
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A pc-web is a particular instance of i-web and properties (1),(2) say exactly that φ
is a b-morphism. Krivine models [15, Sec. 5.6.2] are pc-webs in which ≎ = A× A,
while graph models [15, Sec. 5.5] are pc-webs in which ≎ = A × A and ≤ is the
equality.

Example 3.2.3 (Filter Models). Recall from Example 3.1.3 how a pc-set A de-
termines an information system A. Recall from [38, Def. 2.12,Thm. 2.13] that the
Filter models living in the Scott semantics are obtained by taking the set of filters of
EATSs satisfying the following condition:

(∗)
∧n

i=1(αi → βi) ≤ γ → δ, then (
∧

i∈{i:γ≤αi}
βi) ≤ δ

In such a case, defining φ : Pf(A) × A → A by φ(a, α) = (
∧
a) → α one obtains a

b-morphism and hence an i-web A = (A, φA) and the corresponding filter model is
exactly the i-model A+.

In the forthcoming Theorem 3.2.3 we describe the interpretation function asso-
ciated to an i-model. The reader can directly check how such description generalizes
the various interpretations in preordered coherent models and filter models.

Notation. We recall a notation, commonly used in the literature, to denote the
update of environments. If ρ : Var → A+ and u ∈ A+ we define a new environment
ρ[y := u] by setting

ρ[y := u](x) =

{
u if x = y
ρ(x) otherwise

Theorem 3.2.3. Let A = (A, φA) be an i-web. Then the interpretation function
J KA− : Λ × EnvA+ → A+ associated to the λ-model A+ is as follows:

- JxiK
A

ρ = ρ(x)

- Jλy.MKAρ = {φA(a, α) : α ∈ JMKAρ[y:=a↓]}↓A

- JMNKAρ = {β : ∃a ⊆f JNKAρ . (a, β) ∈ {(a′, β′) : φA(a′, β′) ∈ JMKAρ }↓A⇒A}

Proof. This interpretation is obtained instantiating the interpretation function as-
sociated to a RSD, as described for example in Barendregt’s book [10, Ch. 5] to
the case in which the retraction is given by the functions (φA)1(y) = φA[y] ↓A and
(φA)2(x) = φ−1

A [x]↓A⇒A.

Interpretation in an i-web A can also be expressed by means of a “typing system”
with judgements of the form Γ �

A M : α, where

• α is an element of A,

• Γ is a context of the form x1 : a1, . . . , xn : an with x̄ adequate and ai ∈ ConA,
for each i ∈ [1, n]. We shall also abbreviate x1 : a1, . . . , xn : an with the more
compact notation x̄ : ā.
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Notation. Whenever there is no danger of confusion, we drop the reference to
the i-web A, writing simply Γ�M : α. Moreover for a ⊆f A we will write Γ�M : a
as a shorthand for ∀α ∈ a. Γ �M : α.

ai ⊢A α
[var]

x̄ : ā� xi : α

X ∈ ConA⇒A φA[X] ⊢A β

(∀(a, α) ∈ X)

Γ, y : a�M : α
[abs]

Γ � λy.M : β

X ∈ ConA⇒A X ⊢A⇒A (a, β) Γ �M : φA[X] Γ �N : a
[app]

Γ �MN : β

Recall now also the categorical interpretation | |Ax̄ given in Definition 2.4.2, §2.
Recall also that the elements (if any) (ā, α) ∈ |M |Ax̄ are pairs in Conn

A×A, where n is
the length of x̄ (in view of the isomorphism ConANA

∼= ConA×ConA that we consider
in §2). The connection between the different descriptions of the interpretation map
is the following.

Proposition 3.2.4. For any λ-term M , any adequate x̄ ∈ Varn and any ā ∈ Conn

(ā, α) ∈ |M |Ax̄ ⇔ x̄ : ā�
A M : α ⇔ α ∈ JMKAρ[x̄:=ā↓]

where ā↓ is a shorthand for a1 ↓A, . . . , an ↓A.

We now explicitly describe the λ-model structure induced on A+ by an i-web A
(see Definition 2.4.4). The universe of the λ-model is the set of points of A, ordered
by inclusion, and the basic combinators are |K|A and |S|A, respectively. Finally the
application operation is given by

u · v = {β ∈ A : ∃a ⊆f v. (a, β) ∈ {(a′, β′) : φA(a′, β′) ∈ u}↓A⇒A}

for all points u, v.

3.3 Partial i-webs

It will be of crucial importance for us to consider information systems which are
“almost” i-webs. The first step is to generalize Definition 3.1.1 in order to take into
account partial functions.

Definition 3.3.1. Let A,B be ISs. A partial morphism (resp. partial b-morphism,partial
f-morphism) from A to B is a partial function ψ : A →֒ B that, on its domain, be-
haves like a morphism (resp. b-morphism, f-morphism).
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Definition 3.3.2. A partial i-web is a pair S = (S, φS) where

- S is an information system,

- φS : S ⇒ S →֒ S is a partial b-morphism.

Terminology. It is evident that an i-web is also a partial i-web. We will say
that S is a proper partial i-web if φS is not a total function.

Remark 3.3.1. Any finite partial i-web is a proper partial i-web.

Example 3.3.1. A partial pair ([15]) is a set A together with a partial injection
iA : Pf(A) × A→ A. Any partial pair is a partial i-web.

Given a partial i-web S it still makes sense to consider a “typing system” with
judgements of the form Γ�

SM : α, exactly as we did for i-webs. Clearly such typing
system does not correspond to the interpretation function of a model, but it will
still be useful in the subsequent proofs.

In our case a partial i-web S is obtained by “taking a piece” of a i-web A. In
what follows we describe this operation, that we call restriction.

Definition 3.3.3. Let A be an IS and let S ⊆ A. Then we define an information
system A↾S= (S,ConS,⊢S), where

- ConS = {a ∈ ConA : a ⊆ S}

- ⊢S = {(a, α) ∈ S ⇒ S : a ⊢A α}

Definition 3.3.4. Let A,S be information systems. We say that S is a restriction
of A (and A is an extension of S), notation S � A, if S = A↾S.

Notation. We will write S ≺ A if S � A and S 6= A. Note that since
consistency and entailment in S are univocally determined by the set S, then we
have that S ≺ A ⇔ S � A, S ⊂ A.

It is useful to note that the relation � behave nicely w.r.t. formation of expo-
nential objects.

Lemma 3.3.2. If S � A, then S ⇒ S � A ⇒ A.

In Definition 3.3.3 we saw how to create smaller information systems from exist-
ing ones. A fundamental step for our results will be to take pieces of i-webs: however
in general this operation does not yield a smaller i-web, but rather a smaller partial
i-web. We define in general the operation of taking a piece of a partial i-web (and
hence, in particular, of an i-web) relying on Definition 3.3.3.

Definition 3.3.5. Let S = (S, φS) be a partial i-web. and let B ⊆ S. Then we
define the partial i-web S↾B= (S↾B, φS↾B), where φS↾B= φS ∩ ((B ⇒ B) ×B).
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We also extend the relations given in Definition 3.3.4 to the case of partial i-webs.

Definition 3.3.6. Let S,B be partial i-webs. We say that B is a restriction of S
(and S is an extension of B), notation B � S, if B = S↾B.

Notation. We will write B ≺ S if B � S and B 6= S. Once again all data about
B are univocally determined by the set B, and hence we have that B ≺ S ⇔ B �
S, B ⊂ S.

3.3.1 Extensions of partial i-webs

We saw in Theorem 3.2.1 that i-webs give rise to models of the lambda calculus.
This is not the case for partial i-webs: however it is possible to construct an i-web
starting from a partial one by completing it. This idea has its origins with graph
models: the completion method for building graph models from partial pairs dates
back to Longo’s presentation [79] of Plotkin’s and Scott’s graph model Pω. Later
on completion methods were developed and used on a wide scale by Kerth [71, 70].

In this subsection S = (S, φ) is a partial i-web, where S = (S,Con,⊢) (we omit
subscripts to ease readability).

Notation. We indicate by do(φ) the domain of φ and we define do(φ) = (S ⇒
S) − do(φ).

Our goal is to show the existence of a specific kind of extensions of S, obtained by
adding to S all elements of do(φ) and extending in a particular way the function φ
and the entailment ⊢. The only parameter that we let vary among these extensions
will be the consistency predicate.

Definition 3.3.7. A partial i-web S∗ = (S∗, φ∗) is a free extension of S, (where
S∗ = (S∗,Con∗,⊢∗)) if the following conditions are satisfied:

(E1) S∗ = S ∪ do(φ)

(E2) Con ⊆ Con∗ ⊆ {x ∈ Pf(S
∗) : x ∩ S ∈ Con, x− S ∈ ConS⇒S}

(E3) a ⊢∗ α iff either a ∩ S ⊢ α or α ∈ a

(E4) φ∗(a, α) =

{
φ(a, α) if (a, α) ∈ do(φ)

(a, α) if (a, α) ∈ do(φ)

So far we have not yet given any reason to believe that any partial i-web S admits
a free extension. We will do that in the forthcoming Theorem 3.3.5, ensuring that
Definition 3.3.7 is never “vacuous”. We stress that free extensions, despite the
connotation of the term free in some fields of mathematics, need not to be unique.
However there is still a motivation behind this terminology: a free extension, if it
exists, is univocally determined by the predicate Con∗ and the rest of the structure
is constructed “algorithmically” in function of Con∗ (this point will be important
for the matters of §4).
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Remark 3.3.3. Note that if S∗ is a free extension of S according to Definition 3.3.7,
then S � S∗ (see Definition 3.3.6) and do(φ∗) = S ⇒ S (this makes sense since
S ⇒ S � S∗ ⇒ S∗ by Lemma 3.3.2). Moreover if S is an i-web, then S is a free
extension of itself, whilst if S is a proper partial i-web, then all its free extensions
S∗ are such that S ≺ S∗.

If S is a proper partial i-web, then the consistency predicate Con∗ has to contain
new sets, consisting of old and new tokens (i.e. pairs) mixed together, in order
for φ∗ to be a b-morphism. There is a certain degree of freedom in adding new
consistent sets, but there are constraints imposed by the fact that we want S∗ to be
an information system. The following definition characterizes the predicates that
can be taken as defining consistency in a free extension of S.

Definition 3.3.8. Let S be a partial i-web. A family X ⊆ Pf(S ∪ do(φ)) is called
S-compatible if for all y ⊆f S ∪ do(φ), for all X ⊆f S ⇒ S, and for all x ∈ X we
have

(C1) if y ∈ Con, then y ∈ X

(C2) x ∩ S ∈ Con and x− S ∈ ConS⇒S

(C3) if y ⊆f x ∪ (x ∩ S)↓S, then y ∈ X

(C4) if X ∈ ConS⇒S, then (X ∩ do(φ)) ∪ (φ[X ∩ do(φ)]) ∈ X

(C5) if (X ∩ do(φ)) ∪ φ[X ∩ do(φ)] ∈ X , then X ∈ ConS⇒S

Comment. We briefly discuss Definition 3.3.8 in order to motivate it. An S-
compatible family is a candidate to be the Con∗ of Definition 3.3.7. Property (C3)
says that the family X must be closed w.r.t. entailment in S∗. Property (C4),(C5)
ensure that φ∗ is a morphism. All images of sets that are consistent in S ⇒ S
must be consistent in S∗. All anti-images of sets that are consistent in S∗ must be
consistent in S ⇒ S: one has to be careful not add to many consistent sets, since
the predicate ConS⇒S can’t be modified in the construction of S∗.

Theorem 3.3.4. A partial i-web S has a free extension iff there exists an S-
compatible family.

Proof. Let X be an S-compatible family. Set Con∗ := X and set accordingly the
structure S∗ = (S∗, φ∗) as specified in Definition 3.3.7. We start by proving that S∗

is an IS, by considering the four properties of Definition 2.6.1, §2.

(I1) Suppose a ∈ Con∗ and a ⊢∗ b. Then by property (C3) it follows immediately
that b ∈ Con∗.

(I2) If α ∈ a, then a ⊢∗ α by definition of ⊢∗.
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36 3. A unifying theory of webbed models

(I3) Suppose a ⊢∗ {α1, . . . , αk} and {α1, . . . , αk} ⊢∗ γ. If γ ∈ {α1, . . . , αk} then
clearly a ⊢∗ γ. Otherwise {α1, . . . , αk}∩S ⊢ γ and since a∩S ⊢ {α1, . . . , αk}∩S
we can conclude using the property (I3) of S.

(I4) Immediate, by definition.

By construction do(φ∗) = S ⇒ S, so it suffices to show that φ∗ is a b-morphism.

(Mo) Immediate by properties (4) and (5).

(bMo) Assume that φ∗[X] ⊢∗ φ∗(α). There are two cases to be dealt with. If α ∈
do(φ), then φ∗[X] ∩ S ⊢ φ(α) and we derive φ[X ∩ do(φ)] ⊢ φ(α) so that by
(bMo) for φ we have that X ∩ do(φ) ⊢S⇒S α and hence X ⊢S⇒S α.

If α 6∈ do(φ), then α = φ∗(α) ∈ φ∗[X], so that α ∈ X and this concludes the
proof.

Theorem 3.3.5. Every partial i-web admits a minimal free extension.

Proof. The minimal extension is obtained by defining, for x ranging over Pf(S
∗),

x ∈ Con∗ iff ∃Y ∈ ConS⇒S. x ⊆f (Y ∩ do(φ)) ∪ φ[Y ∩ do(φ)]↓S

It is not difficult to check that Con∗ is the minimal S-compatible family.

Example 3.3.2. Let S = (S, iS) be a partial pair. Then one step of the completion
of S in the sense of [15, Def. 104] is the maximal free extension of S.

Remark 3.3.6. If S is a finite partial i-web with Con = Pf(S), then Pf(S
∗) is

S-compatible.

3.3.2 Completions of partial i-webs

The goal of this subsection is to give a method that for any given partial i-web
S allows to construct an i-web Sω such that S � Sω. The i-web Sω will be the
union of a family {Sn}n≥0 of partial i-webs obtained by constructing each time a
free extension (see Definition 3.3.7, Subsection 3.3.1).

Definition 3.3.9. Let S be a partial i-web and let {Sn}n≥0 be a sequence of partial
i-webs such that S0 = S and Sm+1 is a free extension of Sm, for each m ∈ N. In
such a case the family {Sn}n≥0 is called a development of S.

Note that for each m ∈ N we have Sm � Sm+1.

Demo Version, http://www.verydoc.com and http://www.verypdf.com



3.3. Partial i-webs 37

Definition 3.3.10. Let S be a partial i-web. The completion of S with respect to a
development {Sn}n≥0 of S is the structure Sω = (Sω, φω), where

Sω := (∪m<ωSm,∪m<ωConm,∪m<ω ⊢m) and φω :=
⋃

m<ω

φm

Theorem 3.3.7. Sω is an i-web and S � Sω.

Proof. The union of the family {Sn}n≥0 gives an information system, since such
family is a �-chain. Similarly φω, being the union of a sequence of b-morphisms
extending one another, is a b-morphism and moreover its domain is Sω ⇒ Sω. Last
we observe that trivially S � Sω.

A development S = {Sn}n≥0 of a partial i-web S is a �-chain. Moreover if S is
a proper partial i-web, then S is a ≺-chain.

Terminology. Since S by definition contains S, we may sometimes speak of
the completion of S, rather then the completion of S w.r.t. S.

Example 3.3.3. Let S = (S, jS) be a partial pair. Then the completion of S in the
sense of [15] is the smallest solution of the set-theoretic equation D = S∪ ((Pf(D)×
D) − do(jS)), equipped with the total injection

i(a, α) =

{
jS(a, α) if (a, α) ∈ do(jS)

(a, α) if (a, α) ∈ do(jS)

This is an instance of our completion with respect to the development obtained by
taking each time the maximal free extension.

Terminology. We say that a (partial) i-web S has full consistency if ConS =
Pf(S).

Remark 3.3.8. If S is a finite partial i-web with full consistency, then it admits
a development {Sn}n≥0 such that Sn has full consistency, for each n ≥ 0, and a
completion Sω with full consistency.

Proof. Apply Remark 3.3.6.

3.3.3 Morphisms of partial i-webs

In Section 3.1 we defined algebraic-style morphisms of information systems. We
proceed by defining algebraic-style morphisms between partial i-webs, i.e. functions
which not only preserve the information system structure, but also commute with
the partial b-morphisms involved. A particular instance of our definition are the
morphisms of graph models considered by Kerth [71] and Schellinx [102].

The fundamental application of morphisms between i-webs is to establish rela-
tions between order and equational theories of the corresponding i-models; in the
case of partial i-webs it is possible to infer interesting relations between the i-models
generated by the completion process.
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38 3. A unifying theory of webbed models

Definition 3.3.11. Let B,C be partial i-webs. A morphism from B to C (resp.
f-morphism)is a morphism (resp. f-morphism) ψ of the underlying ISs satisfying the
following additional property:

(lMo) if (a, β) ∈ do(φB), then ~ψ(a, β) ∈ do(φC) and ψ(φB(a, β)) = φC(~ψ(a, β))

We may sometimes say “morphism of partial i-webs”, instead of just “morphism
from B to C”, to stress its additional property of commuting with the b-morphisms
of the involved partial i-webs.

Proposition 3.3.9. Let B,C be partial i-webs and let ψ : B → C be a f-morphism
of partial i-webs. Then

x1 : a1, . . . , xn : an �
B M : α implies x1 : ψ[a1], . . . , xn : ψ[an] �C M : ψ(α)

Proof. As usual we abbreviate x1 : a1, . . . , xn : an by x̄ : ā. Moreover we abbreviate
x1 : ψ[a1], . . . , xn : ψ[an] by x̄ : ψ[ā]. The proof is by induction on type judgements.
If the last rule used is

ai ⊢B α
[var]

x̄ : ā�
B xi : α

then by properties (Mo) and (fMo) we have

ψ[ai] ⊢C ψ(α)
[var]

x̄ : ψ[ā] �C xi : ψ(α)

If the last rule used is

X ∈ ConB⇒B φB[X] ⊢B γ

(∀(b, β) ∈ X)

x̄ : ā, y : b�
B M : β

[abs]
x̄ : ā�

B λy.M : γ

then by induction hypothesis and property (lMo) we have

~ψ[X] ∈ ConC⇒C φC [~ψ[X]] = ~ψ[φB[X]] ⊢C ψ(γ)

(∀~ψ(b, β) ∈ ~ψ[X])

x̄ : ψ[ā], y : ψ[b] �C M : ψ(β)
[abs]

x̄ : ψ[ā] �C λy.M : ψ(γ)

If the last rule used is

X ∈ ConB⇒B X ⊢B⇒B (b, β) x̄ : ā�
B M : φB[X] x̄ : ā�

B N : b
[app]

x̄ : ā�
B MN : β

Then by induction hypothesis and property (lMo) we have

~ψ[X] ∈ ConC⇒C

~ψ[X] ⊢C⇒C
~ψ(b, β) x̄ : ψ[ā] �C M : ψ[φB[X]] = φC [~ψ[X]] x̄ : ψ[ā] �C N : ψ[b]

[app]
x̄ : ψ[ā] �C MN : ψ(β)
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3.4 Finiteness properties of i-webs

In this section we prove an important “finiteness” property of i-webs. Whenever we
are given two closed λ-terms M,N and an element α belonging to an i-web A such
that α ∈ |M |A

+
− |N |A

+
, then there exists a finite partial i-web S such that S ≺ A

and α ∈ |M |S
+
ω − |N |S

+
ω , where Sω is a suitable completion of S.

Notation. We write x̄ : ā 6 �AM : α to mean that the judgement x̄ : ā�
AM : α

is not obtainable.
The precise statement of the main theorem of this section is the following.

Theorem 3.4.1. Let A be a i-web and suppose x̄ : ā�
AM : α and x̄ : ā 6 �AN : α.

Then there exist a finite partial i-web S ≺ A and a completion Sω of S such that

(i) x̄ : ā�
S M : α and x̄ : ā 6 �SN : α and

(ii) x̄ : ā�
Sω M : α and x̄ : ā 6 �SωN : α

The proof of Theorem 3.4.1 is divided in three parts:

(1) construction of S and proof of item (i) (Lemma 3.4.2),

(2) construction of Sω,

(3) proof of item (ii) for the Sω constructed at step (2) (Lemma 3.4.7).

Lemma 3.4.2. Let A be a i-web and suppose x̄ : ā �
A M : α and x̄ : ā 6 �AN : α.

Then there exists a finite partial i-web S ≺ A such that x̄ : ā �
S M : α and

x̄ : ā 6 �SN : α.

Proof. Suppose x̄ : ā �
A M : α. We show how to construct, by induction on this

judgement, a finite set S(ā,α) such that x̄ : ā�
A↾S(ā,α) M : α.

If the last rule used is
ai ⊢B α

[var]
x̄ : ā�

A xi : α

then we set S(ā,α) = ai ∪ {α}. This indeed gives x̄ : ā�
A↾S(ā,α) xi : α.

If the last rule used is

X ∈ ConA⇒A φA[X] ⊢A α

(∀(b, β) ∈ X)

x̄ : ā, y : b�
A P : β

[abs]
x̄ : ā�

A λy.P : α

then by induction hypothesis we have already constructed S((ā,b),β), for all pairs
(b, β) ∈ X. We finally set S(ā,α) = {α} ∪ (∪(b,β∈X)S((ā,b),β)) and we obtain x̄ :

ā�
A↾S(ā,α) λy.P : α.
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If the last rule used is

X ∈ ConA⇒A X ⊢A⇒A (b, α) x̄ : ā�
A P : φA[X] x̄ : ā�

A Q : b
[app]

x̄ : ā�
A PQ : α

then by induction hypothesis we have already constructed S(ā,γ), for all γ ∈ b
and S(ā,φB(d,δ)), for all (d, δ) ∈ X. We finally set S(ā,α) = {α} ∪ (∪γ∈bS(ā,γ)) ∪

(∪(d,δ)∈XS(ā,φB(d,δ))) and we obtain x̄ : ā�
A↾S(ā,α) PQ : α.

Finally let S = A↾S(ā,α)
. Since S is a restriction of A, (see Definition 3.3.5) we

have S � A and since S is partial and finite we have S ≺ A.

Construction of the development

From now on A is a given i-web and α ∈ A, ā ∈ Conn
A, M,N ∈ Λ are such that

x̄ : ā�
AM : α and x̄ : ā 6 �AN : α and S is the partial i-web constructed in Lemma

3.4.2.
We construct by induction on n ∈ N a development {Sn}n≥0 of S together with

a family {ψn : Sn → A}n≥0 of f-morphisms of i-webs.
Stage 0
We set S0 := S and ψ0(α) = α, for all α ∈ S0.
It suffices to observe that the inclusion of S0 in A is trivially an f-morphisms of

partial i-webs from S0 to A.
Stage n+ 1
Now suppose that the partial i-web Sn has been defined, together with the f-

morphism ψn : Sn → A.
The forthcoming definition gives the family of subsets of Sn+1 that will be used

to construct a free extension of Sn.

Definition 3.4.1. We set Xn as the family of all sets x ⊆f Sn ∪ do(φn) such that
either

(1) there exists a ∈ Conn and X ∈ ConSn⇒Sn
such that X ⊆ do(φn) and ψn[a] ∪

φA[~ψn[X]] ∈ ConA and x = a ∪X or

(2) there exists X ∈ ConSn⇒Sn
such that x ⊆f (X ∩ do(φn))∪φn[X ∩ do(φn)])↓Sn

.

Lemma 3.4.3. Xn is Sn-compatible.

Proof. We prove the properties defining a Sn-compatible family (see Definition
3.3.8).

(C1) All elements of Conn can be obtained by choosing X = ∅ in clause (1).

(C2) Immediate for the sets added by clause (1). Regarding those added by clause
(2) it suffices to observe that φ[Y ∩ do(φn)])↓Sn

is finitely consistent in Sn.
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(C3) Let x ∈ Xn and let y ⊆f x ∪ (x ∩ Sn)↓Sn
.

If x is added by clause (1), then y = b∪X, for some b ∈ Conn such that a ⊢n b.

Since ψn is a morphism, we have ψn[b] ∪ φA[~ψn[X]] ∈ ConA and hence y ∈ Xn

again by clause (1).

If x is added by clause (2), then evidently also y is added to Xn by clause (2).

(C4) Let X ∈ ConSn⇒Sn
. Then (X ∩ do(φn)) ∪ (φn[X ∩ do(φn)]) is in Xn by clause

(2).

(C5) Let x = (X ∩ do(φn)) ∪ φn[X ∩ do(φn)] ∈ Xn.

If x is added by clause (1), then ψn[φn[X ∩ do(φn)]] ∪ φA[~ψn[X ∩ do(φn)]] ∈

ConA. Since ψn is a morphism of partial i-webs, we have φA[~ψn[X ∩ do(φn)]]∪

φA[~ψn[X ∩ do(φn)]] = φA[~ψn[X]] ∈ ConA. Since φA ◦ ~ψn is a morphism, we can
conclude that X ∈ ConSn⇒Sn

.

If x is added by clause (2), then evidently X ∈ ConSn⇒Sn
.

Definition 3.4.2. We define Sn+1 as the free extension of Sn obtained by setting
Conn+1 := Xn (recall from Definition 3.3.7 that it is the only parameter of the
construction).

Definition 3.4.3. We define the function ψn+1 : Sn+1 → A as follows:

ψn+1(α) =

{
ψn(α) if α ∈ Sn

φA(~ψn(b, β)) if α = (b, β) ∈ Sn+1 − Sn

Note that ψn+1 is a well-given total function extending ψn.

Lemma 3.4.4. The function ψn+1 : Sn+1 → A is an f-morphism of partial i-webs.

Proof. We first prove the properties defining a f-morphism.

(Mo) (⇒) Suppose x ∈ Conn+1. We consider the two cases of Definition 3.4.1.

If x is added by clause (1), i.e. x = a∪X for suitable a and X, then ψn+1[x] =

ψn[a] ∪ φA[~ψn[X]] ∈ ConA, by clause (1) itself.

If x is added by clause (2), then x ⊆f (X ∩ do(φn))∪ (φn[X ∩ do(φn)])↓Sn
, for

some X ∈ ConSn⇒Sn
. Now let y = (X ∩ do(φn)) ∪ φn[X ∩ do(φn)]. We first

observe that

ψn+1[y] = φA[~ψn[X ∩ do(φn)]] ∪ ψn[φn[X ∩ do(φn)]]

= φA[~ψn[X ∩ do(φn)]] ∪ φA[~ψn[X ∩ do(φn)]]
since ψn is a morphism of partial i-webs

= φA[~ψn[X]]
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This proves that ψn+1[y] ∈ ConA. Now using property (fMo) ψn we obtain
that ψn+1[y] ⊢A ψn+1[x], and hence ψn+1[x] ∈ ConA.

(⇐) By the very definition of Conn+1, in particular by the clause (1) of the
definition of Xn.

(fMo) Trivial.

We conclude proving property (lMo) for ψn+1. Let (a, α) ∈ Sn ⇒ Sn. Then

ψn+1(φn+1(a, α)) = φA(~ψn(a, α)) = φA(~ψn+1(a, α)), by definition of ψn+1 and the
fact that it extends ψn.

Remark 3.4.5. The sequence {Sn}n≥0 whose i-th element is given by Definition
3.4.2 is a development of S.

Definition 3.4.4. We let Sω be the completion of S with respect to the development
{Sn}n≥0 (recall Definition 3.3.10). We set the function ψω : Sω → A as ψω =
∪n<ωψn.

Note that the definition of ψω is well-given, since each f-morphism ψn+1 of partial
i-webs extends ψn.

Lemma 3.4.6. The map ψω : Sω → A is an f-morphism of i-webs.

Proof. Easy.

In the following theorem Sω and ψω are the i-web and the f-morphism of Defi-
nition 3.4.4. It is important to recall that ā ∈ Conn

S0
and α ∈ S0 (recall that S0 is

produced by Lemma 3.4.2).

Lemma 3.4.7. x̄ : ā�
Sω M : α and x̄ : ā 6 �SωN : α.

Proof. The fact that x̄ : ā�
Sω M : α is an immediate consequence of Lemma 3.4.2.

Now to conclude we need to show that x̄ : ā 6 �SωN : α. Suppose by the way of
contradiction, that x̄ : ā �

Sω N : α. Now by Lemma 3.4.6 and Proposition 3.3.9
we can infer x̄ : ψω[ā] �

A N : ψω(α) and hence in fact x̄ : ā �
A N : α, since

ψω[ā] = ψ0[ā] = ā and ψω(α) = ψ0(α) = α. Contradiction.

Comment. Lemma 3.4.2 and 3.4.7 together prove Theorem 3.4.1. This latter
theorem is extremely important, since it says that every inequality that fails in some
i-model also fails in an i-model generated by the completion of a finite partial i-web.

Remark 3.4.8. If A has full-consistency, then Sω has full-consistency. Hence every
inequality that fails in some i-model A+ with full-consistency also fails in an i-model
generated by the completion of a development containing only partial i-webs with full-
consistency.
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3.5 Scottian λ-models

A crucial point for us is that the classes iM and, in general, RSD are not closed under
the formation of direct (Cartesian) products. For the results that we will develop it
is useful to define a class of λ-models which is

- general enough to contain all i-models generated by completions of finite partial
i-webs, but

- well-behaved enough to be closed under direct products and to retain all good
properties of i-models w.r.t. order theories and continuity of the interpretation
function.

As a result of our analysis, we find convenient to use the following class of
mathematical objects.

Definition 3.5.1. A Scottian λ-model (SLM, for short) is a λ-model D = (D, ·,k, s)
such that

(1) D is a Scott domain,

(2) application is continuous in both arguments w.r.t. ≤D and ⊥ · ⊥ = ⊥,

(3) (K(D), ·) is an applicative substructure of D.

Committing an abuse of notation we will also use SLM to denote the class of
all Scottian λ-models; we will let the reader distinguish between these two different
usages.

Warning. Contrarily to λ-models arising from reflexive Scott domains, the
representable functions in a SLM are just a subset of the continuous ones, in general.
Moreover an arbitrary RSD need not to be an SLM, because of requirement (3).
However certain RSDs are SLMs: we will prove that this is the case for the i-models
generated by completions of finite partial i-webs.

We now examine arbitrary direct products of Scottian λ-models. Since such
constructions rely inevitably on the products of the underlying Scott domains, we
take the occasion here to detail the structure of such a direct product.

Definition 3.5.2. Let {Di}i∈I be a family of Scott domains and let P =
∏

i∈I Di.
We define the support of a sequence x = 〈di〉i∈I such that di ∈ Di, for each i ∈ I,
as the set su(x) = {i ∈ I : di >i ⊥i}.

Proposition 3.5.1. Let {Di}i∈I be a family of Scott domains and let E =
∏

i∈I Di.
Then E = (E,⊑) is a Scott domain (⊑ is defined coordinate-wise) and the set K(E)
of compact elements of E is the set of all sequences x = 〈di〉i∈I such that di ∈ K(Di),
for each i ∈ I, and su(x) is finite.

Proof. Standard.
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In particular the set EnvD of valuations from Var to D, which “is” the power
DVar, is a Scott domain and K(EnvD) is the set of all valuations ρ such that the set
su(ρ) = {x ∈ Var : ρ(x) > ⊥} is finite.

Proposition 3.5.2. For any set I, if {Di}i∈I is a family of SLMs, then
∏

i∈I Di is
a SLM, where the partial order, the application operation and the basic combinators
are defined pointwise.

Proof. Let P =
∏

i∈I Di. We just observe that (K(P), ·) is a combinatory subalgebra
of P: since the bottom element ⊥Di

is always compact and ⊥Di
· ⊥Di

= ⊥Di
, the

application of two sequences of compact elements with finite support gives a sequence
of compact elements with finite support.

In Section 2.3 we defined the notion of satisfaction of equations in algebras. Since
λ-terms can be interpreted in a SLM D and such interpretations belong to a partial
order, we now examine the notion of inequalities in partially ordered algebras.

An inequality t ⊑ u in the type of a partially ordered algebra A is

(1) satisfied in A under ρ, notation A, ρ � t ⊑ u, if tAρ ≤ uA

ρ ;

(2) satisfied in A, notation A � t ⊑ u, if A, ρ � t ⊑ u for all ρ ∈ EnvA.

To a given Scottian λ-model D we can associate a set of inequalities between
λ-terms.

Definition 3.5.3 (Order theory). The order theory of an SLM D is the set
Or(D) = {M ⊑ N : D �Mcl ⊑ Ncl}.

Recall that with our notation we have M ⊑ N ∈ Or(D) iff ∀ρ ∈ EnvD. JMKDρ ≤
JNKDρ .

Proposition 3.5.3. If D is a Scottian λ-model, then Or(D) is an order λ-theory.

Notation and terminology: recalling the discussion of Section 2.4, as for
equational theories, also for order theories there is no possible ambiguity: if an RSD

U can be endowed with an SLM structure, then the order theory in the sense of
Definition 2.5.2 §2 coincides with its order theory in the sense of Definiton 3.5.3.
We will just use the notation U also when we should use U• and we will use the
notation Or(U) instead of Th≤(U), since this causes no ambiguity. Finally in the
sequel we will just say “order theory” instead of “order λ-theory”, since every time
we consider the order theory of a SLM, this will be an order λ-theory.

We now give some propositions stating important properties of Scottian λ-models
w.r.t the continuity of the interpretation function and the orderability of the inter-
pretations of βη-normal forms.

Let Λ⊥ be the flat domain obtained adjoining a constant ⊥ to the set of λ-terms
partially ordered as follows: ⊥ ≤M and M ≤ N ⇔M ≡ N , for all M,N ∈ Λ.
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Proposition 3.5.4. Let D be an SLM. Then the map J−KD− : Λ⊥ × EnvD → D is
continuous.

Proof. Standard.

Proposition 3.5.5. Let D be a non-trivial Scottian λ-model. Then for any two
closed distinct βη-normal forms M,N we have JMKD 6≤ JNKD.

Proof. Suppose by contradiction that JMKD ≤ JNKD. Then by Böhm’s Theorem

2.1.1 there exists a sequence ~L of λ-terms such that λβ ⊢ M~L = λxy.y and λβ ⊢
N~L = λxy.x. But then using the monotonicity of application in D we obtain that
for arbitrary a, b ∈ D

a = Jλxy.xKDab = JM~LKDab ≤ JN~LKDab = Jλxy.yKDab = b

and this contradicts the non-triviality of D.

Proposition 3.5.6. If Sω is the completion of a finite partial i-web, then S+
ω is an

SLM.

Proof. By Theorem 3.2.1 S+
ω is an RSD and hence the application is continuous in

both arguments.
We now prove that the compact elements of S+

ω form an applicative substructure.
Our first observation is that if for any point u of Sω we have

u compact in S+
ω ⇔ u finite point of Sω

Let u, v be finite points of Sω. Then their application

u · v = {β ∈ Sω : ∃a ⊆f v. (a, β) ∈ {(a′, β′) : φω(a′, β′) ∈ u}↓Sω⇒Sω
}

is clearly a finite point of Sω. Moreover ∅↓Sω
·∅↓Sω

= {β ∈ Sω : (∅, β) ∈ ∅↓Sω⇒Sω
} =

∅↓Sω
, and this concludes the proof.
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4
Numbered structures and effectivity

There is a field across logic and mathematics that aims at establishing the scope and
limits of finite computation by means of algorithms on any set of data: it could be
called Effective Algebra. A set A of data, together with some basic functions and/or
relations, form an algebraic structure A. In Effective Algebra the approach to ana-
lyzing computation in the algebra A is to apply the theory of computable functions
on N, using a surjection ν : N → A called a numbering. Algorithmic properties of
A are measured by the algorithmic properties of the number-theoretic representa-
tion of A via ν. In particular, the concept of effective (or computable, for many
authors) algebraic structure can be defined. Thus Effective Algebra studies what
data can be represented algorithmically, and what sets and functions can be defined
by algorithms, using the same concepts as those that underpin the Church-Turing
Thesis for algorithms on N. It also studies algebraic structures that can be algorith-
mically approximated. Algebraic structures can be found throughout mathematics
and computer science, and their applications. Effective Algebra encompasses a wide
range of subjects, some of which are well developed mathematical theories, while
others are awaiting systematic investigation.

The move to the numbering or enumeration of arbitrary sets using natural num-
bers was made in Rabin [99, 98] and Malcev [81]. The idea is a generalization of
the Gödel numbering of logical syntax. M.O. Rabin defined encodings of the form
ι : A → N, and proved several interesting results about computable groups, rings
and fields. In particular, he established that the algebraic closure of any computable
field is computable, using Artin’s construction of the algebraic closure.

A.I. Malcev studied effective algebraic structures using numberings of the form
ν : N → A. Most of the notions that we use are adaptations of those of Malcev, who
began the theory of numberings, numbered sets and structures in a series of papers
(see his selected works [82]). Thorough mathematical accounts of computable sets in
Universal Algebra have been developed by Yu. Ershov and others (see [49, 50, 51]).

With this background, a number of authors have considered domains and in-
formation systems effectively, soon afterwards their birth. Fundamental results for
effectively given domains are due to Scott [106], Smyth [110], Kanda [63, 68, 67,
66, 64, 65], and Kanda-Park [69]; “effective” results on information systems can be
found in Scott [106], Coppo-Dezani-Longo [36]. Larsen-Winskel [78] and Droste-
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Göbel [42], establish an effective version of the duality between information systems
and Scott domains and further develop the study of computable elements, already
begun in [106, 78, 69, 110].

In this chapter we recall the basics notions regarding Gödel numberings and
numerations (Section 4.1) and recursivity over these structures. Section 4.2 reviews
effective domains, effective information systems and the relations between them.

Finally in Section 4.4 we study the effective version of Scottian λ-models (see
§3), whose purpose is to allow a high-level and modular formulation of the main
results of §5.

4.1 Encodings and numbered structures

We denote by N the set of natural numbers. A set X ⊆ N is r.e. if it is the domain
of a partial recursive function. The complement of a r.e. set is called a co-r.e. set.
If both X and its complement are r.e., X is called decidable (or recursive).

Definition 4.1.1. An encoding of a set A is an injection ♯( ) : A → N. The
number ♯a is called the Gödel number of a ∈ A. An encoding is decidable if the set
♯A = {♯a ∈ N : a ∈ A} is decidable.

We now recall some well-known examples of encodings that we will use later on.

Example 4.1.1. The bijection 〈 , 〉 : N
2 → N given by 〈n,m〉 = (n +m)2 + n + 1

is a decidable encoding.
Clearly for any given k > 2 it is possible to define a bijective decidable encoding

〈 , . . . , 〉 : N
k → N by induction setting 〈n1, . . . , nk−1, nk〉 = 〈〈n1, . . . , nk−1〉, nk〉.

Example 4.1.2. The bijection e : Pf(N) → N given by e(∅) = 0 and e({n1, . . . , nk}) =∑k
i=1 2ni (where n1 < · · · < nk) is a decidable encoding.

Example 4.1.3. Let N
∗ be the set of finite sequences of natural numbers. Recall

Gödel’s famous recursive β-function β : N
2 → N having the property that for any

sequence n1, . . . , nk of natural numbers there exists a number m such that β(m, i) =
ni, for all i = 1, . . . , k.

Then one defines the injection ( )∗ : N
∗ → N as follows: (n0, . . . , nk)

∗ codes the
sequence (n1, . . . , nk) in such a way that β((n0, . . . , nk)

∗, i) = ni, for all i = 1, . . . , k
and lh((n0, . . . , nk)

∗) = β((n0, . . . , nk)
∗, 0) = k.

Example 4.1.4. A useful example of encoding is the Gödel encoding ♯( ) : Λ → N of
the set of λ-terms. This encoding has the property that the sets {♯x ∈ N : x ∈ Var},
{♯M ∈ N : M ∈ Λ}, {(♯M, ♯x) ∈ N

2 : x ∈ FV(M)} and {♯M ∈ N : M ∈ Λo} are
all decidable. It is well-known that ♯( ) can be assumed to be a bijection. Moreover
there exists a bijective decidable encoding ♮( ) : Λo → N.
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4.1. Encodings and numbered structures 49

Definition 4.1.2 (Numeration,[49]). A numeration is a pair (A, ν), where A is a
set and ν : N → A is a surjective total map; the function ν is called a numbering of
A. We usually write νn in place of ν(n).

In general we will use letters ν, ξ, ζ, . . . to indicate numberings.
The encodings presented so far are also useful to create new numerations from

existing ones in an effective way. Natural examples of numerations come from the
lambda-calculus and from classical recursion theory.

Example 4.1.5. Recall from Subsection 2.3.1 the definition of Λ/T , Λo/T (where T
is a λ-theory). One can define a numbering ν : N → Λ/T by setting ν(♯M) = [M ]T
and a numbering ζ : N → Λo/T by setting ν(♮M) = [M ]oT .

Example 4.1.6. Also flat term models admit simple numberings. Recall from Ex-
ample 2.5.2 the definitions of (Λ/T )⊥ and (Λo/T )⊥. One can define a numbering
ν : N → (Λ/T )⊥ by setting

ν(n) =

{
⊥ if n = 0
[M ]T if n = ♯M + 1 > 0

and a numbering ζ : N → (Λo/T )⊥ in similar way.

Example 4.1.7. Let PR be the set of all partial recursive functions and let RE be
a the set of all r.e. subsets of N. Kleene has shown how to encode partial recursive
functions and how to obtain a numbering n 7→ ϕn of PR. Then a numeration of
RE is obtained via the numbering n 7→ Wn = dom(ϕn).

Numerations and set-theoretic constructions

Finite sets. Given a numeration (A, ν), we define a numeration (Pf(A),Pf(ν)), by
setting Pf(ν)(e({n1, . . . , nk})) = {νn1 , . . . , νnk

}, where e is the encoding of Example
4.1.2.

Tuples. Given numerations (Ai, ν
(i)) (1 ≤ i ≤ k) we define a numeration

(
∏k

i=1Ai,
∏k

i=1 ν
(i)), by setting (

∏k
i=1 ν

(i))(〈n1, . . . , nk〉) = (νn1 , . . . , νnk
), where 〈. . .〉

is the encoding of Example 4.1.3.

4.1.1 Recursivity on numbered structures

We now recall how a number of notions from recursion theory carry over in the
context of numbered structures.

Definition 4.1.3. A numeration (A, ν) is decidable (resp. r.e.) iff {(n,m) : νn =
νm} is a decidable (resp. r.e.) relation.

We remark that decidable numerations are called positive by Visser [115].
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50 4. Numbered structures and effectivity

Remark 4.1.1. The constructions defined at the end of Section 4.1 have an effective
character in the sense that if we start from decidable (resp. r.e.) numerations, then
we end up with decidable (resp. r.e.) numerations.

Definition 4.1.4. Let (A, ν) be a numeration. A subset X ⊆ A is ν-r.e. (resp.
ν-co-r.e., ν-decidable) if ν−1(X) = {n : νn ∈ X} is an r.e. (resp. co-r.e., decidable)
subset of N.

Remark 4.1.2. Consider the numberings of flat term models given in Example
4.1.6. Then a subset X ⊆ (Λ/T )⊥ is r.e. (resp. decidable) iff X−{⊥} is r.e. (resp.
decidable) w.r.t. the numbering of Λ/T . The same relation exists between (Λo/T )⊥
and Λo/T .

Definition 4.1.5. A binary relation R ⊆ A×B between two numerations (A, ξ), (B, ν)
is (ξ, ν)-r.e. (resp. (ξ, ν)-co-r.e., (ξ, ν)-decidable) if {(m,n) : R(ξm, νn)} is an r.e.
(resp. co-r.e., decidable)relation

Note that a numeration is r.e. (resp. decidable) iff the equality relation is r.e.
(resp. decidable).

Definition 4.1.5 extends straightforwardly to arbitrary k-ary relations between
numerations. For k-ary relation over a power of (A, ν), we shall simply say ν-r.e.
(resp. ν-co-r.e., ν-decidable) if the suitable conditions are satisfied. We shall even
drop the references to the numerations when this will be either clear from the context
or irrelevant for our statement.

Note also that if (A,≤, ξ) is a numbered poset and ≤ is ξ-decidable then ξ is a
decidable numeration.

Definition 4.1.6. A λ-theory T is r.e. if the set {(♯M, ♯N) : (M,N) ∈ T} is r.e.
An order theory O is r.e. if the set {(♯M, ♯N) : (M,N) ∈ O} is r.e.

Remark 4.1.3. Definition 4.1.6 can be equivalently reformulated using the theory
of numbered structures. In this context a λ-theory T is r.e. iff the equality relation
on Λ/T is r.e..

An order theory O uniquely determines a λ-theory TO, which is the closure of
the set of all pairs (M,N) such that both (M,N) ∈ O and (N,M) ∈ O. Then an
order theory O is is r.e. if the partial order that it induces on Λ/TO is r.e.

Definition 4.1.7. Let (A, ν), (B, ζ) be numerations. A total function f : A → B
is (ν, ζ)-computable there exists a total recursive function ϕ : N → N such that
f(νn) = ζϕ(n), for all n ∈ N. In such a case, we say that ϕ tracks f .

As for relations, Definition 4.1.7, easily extends to an arbitrary k-ary partial
function f :

∏k
i=1Ai →֒ B. As for the terminology, we shall speak of (

∏k
i=1 ν

(i), ζ)-
computability (assuming these are the source and the targe numberings) and of ν-
computability if both the source and the target of f are powers of a single numeration
(A, ν) and the suitable conditions are satisfied.
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4.2. Effective Scott domains and effective information systems 51

We remark that the notion of computable function appearing in Definition 4.1.7
corresponds to the notion of morphism of numerations in the terminology of Visser
[115]. The following Proposition is an elementary generalization of a well-known
fact in computability theory.

Proposition 4.1.4. Let (A, ν), (B, ζ) be r.e. numerations, and let f : A → B be a
(ν, ζ)-computable function. Then

(i) if Y is ζ-r.e., then f [Y ]−1 is ν-r.e.

(ii) if Y is ζ-co-r.e., then f [Y ]−1 is ν-co-r.e.

We conclude this section recalling an important theorem of Visser, which will be
fundamental to prove our subsequent results.

Terminology: Let A be a set. For a subset X ⊆ A we will say that X is
non-trivial if X 6= ∅ and X 6= A.

Theorem 4.1.5 (Visser’s theorem,[115]). Let T be a λ-theory and consider the
numeration (Λ, ν). Then any pair of non-trivial ν-co-r.e. and T -closed subsets
X, Y ⊆ Λ has nonempty intersection.

Example 4.1.8. Recall the concept of easy (closed) λ-term from Definition 2.1.2.
The set E of all easy λ-terms is non-trivial, co-r.e. and λβ-closed.

4.2 Effective Scott domains and effective informa-

tion systems

4.2.1 Effective Scott domains

Definition 4.2.1 (Effective Scott domain,[111]). A Scott domain D is effective
if there exists a numeration (K(D), ν) of its compact elements such that the sets
{(x, y) ∈ K(D)2 : ∃z ∈ K(D). z ≥ x, y}, {(x, y, z) ∈ K(D)3 : z = x ⊔ y} are both
ν-decidable.

When the context requires it, an effective Scott domain will be indicated by
a pair (D, ν), where ν is the numeration of its compact elements. It follows, by
Definition 4.2.1, that the order and the equality relations on K(D) are ν-decidable,
i.e., ν is a decidable numbering of K(D).

Definition 4.2.2. An element x ∈ D is called r.e. (resp. decidable) if the set
{y ∈ K(D) : y ≤ x} is ν-r.e. (resp. ν-decidable). We write Dr.e. (resp. Ddec) to
indicate the set of all r.e. (resp. decidable) elements of D. Clearly K(D) ⊆ Ddec.
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52 4. Numbered structures and effectivity

We are now interested in defining a numeration of Dr.e. amenable to the effective
numeration ν of K(D). The natural surjection ζ : N → Dr.e. defined by ζ(n) = x
iff Wn = ν−1({y ∈ K(D) : y ≤ x}) is not a good choice. Using standard techniques
of recursion theory it is possible to overcome the difficulties and construct a well-
behaved numeration of Dr.e.. The next definition states precisely what properties
are required to the numeration of the r.e. elements of D.

Definition 4.2.3. A numeration (Dr.e., ζ) is adequate w.r.t. (D, ξ) if it has the
following two properties:

(1) the inclusion mapping ι : K(D) → Dr.e. is (ξ, ζ)-computable,

(2) the relation {(x, y) ∈ K(D) ×Dr.e. : x ≤ y} is (ξ, ζ)-r.e.

Proposition 4.2.1. For any effective Scott domain (D, ξ) it is possible to get in a

uniform way a standard adequate numeration (Dr.e., ξ̂).

Proof. See [111, Ch. 10,Thm. 4.4].

The particular construction of ξ̂ from ξ turns out to be inessential, since for any
two adequate numerations ν, ζ there exists a total recursive function ϕ : N → N

such that ν = ζ ◦ ϕ. Henceforth we will always implicitly consider effective Scott
domains (D, ξ) equipped with an adequate numeration (Dr.e., ξ̂).

Definition 4.2.4. An subset A ⊆ Dr.e. is called completely r.e. (resp. completely

co-r.e., resp. completely decidable) if A is ξ̂-r.e. (resp. ξ̂-co-r.e., resp. ξ̂-decidable).

Example 4.2.1. The singleton set {⊥D} is completely co-r.e.

Theorem 4.2.2. Let (D, ξ) be an effective Scott domain and let A ⊆ Dr.e.. Then A
is completely r.e. if and only if there exists an r.e. set E ⊆ N such that A = {v ∈

Dr.e. : ∃n ∈ E. ξ̂n ∈ K(D) and ξ̂n ≤ v}.

Proof. See [111, Thm. 5.2].

Lemma 4.2.3. Let (D, ξ) be an effective Scott domain. If x ∈ Ddec, then {y ∈
Dr.e. : y ≤ x} is completely co-r.e.

Proof. It suffices to apply Theorem 4.2.2 to show that {y ∈ Dr.e. : y 6≤ x} is
completely r.e.

Example 4.2.2. The set (P(N),⊆), equipped with the coding of the finite subsets
of N is an effective Scott domain whose r.e. (resp. decidable) elements are exactly
the r.e. (resp. decidable) sets. Hence P(N)r.e. = RE, with the adequate numeration
e 7→ We.

Example 4.2.3. The flat domains (Λ/T )⊥ and (Λo/T )⊥ (see Example 2.5.2) are
effective Scott domains in which every element is decidable.

Demo Version, http://www.verydoc.com and http://www.verypdf.com



4.2. Effective Scott domains and effective information systems 53

Proposition 4.2.4. Let (D, ν), (E , ζ) be effective Scott domains. Then it is possible
to obtain, in a canonical way, two numerations (K(D ⇒ E), ν  ζ) and (K(D ×
E), ν×ζ) giving D ⇒ E and D×E, respectively, a structure of effective Scott domain.

For the proof of Proposition 4.2.4 we refer to [111, Ch. 10].
Thus it is possible in particular to talk about r.e. continuous functions, i.e.,

elements of (D ⇒ E)r.e., characterized by the property that the set of all compact
functions below them is (ν  ζ)-r.e. The next propositions give alternative charac-
terizations of the elements of (D ⇒ E)r.e..

Proposition 4.2.5. Let (D, ν), (E , ζ) be effective Scott domains. For all functions
f ∈ Sd(D, E) the following are equivalent:

(i) f ∈ (D ⇒ E)r.e.

(ii) the trace {(d, e) ∈ K(D) ×K(E) : e ≤E f(d)} of f is (ν, ζ)-r.e.

(iii) f maps ν-r.e. elements of D to ζ-r.e. elements of E and the restriction f↾Dr.e.

is (ν̂, ζ̂)-computable.

Proposition 4.2.5 (i) ⇔ (ii) with its proof can be found in [111, Ch. 10,Prop. 3.7],
while Proposition 4.2.5 (i) ⇔ (iii) with its proof can be found in [111, Ch. 10,Prop. 4.14].

Definition 4.2.5. We indicate by ESd the category which has effective Scott do-
mains as objects; the hom-sets are given by ESd(D, E) = Sd(D, E)r.e..

Proposition 4.2.6. The category ESd is a cartesian closed subcategory of Sd.

4.2.2 Effective information systems

We have seen that the category Sd has an “effective counterpart”, namely ESd.
Analogously, it is possible to define an “effective counterpart” of Inf , developing
the notion of effective information system.

Definition 4.2.6 ([42]). An effective information system is pair (A, ξ) where A is
an information system and (A, ξ) is a numeration such that

• the predicate Con is Pf(ξ)-decidable,

• the relation ⊢ is (Pf(ξ), ξ)-decidable.

Notation and terminology. The trivial numeration of N is the numeration
(N, ι), where ι is the identity function.

Example 4.2.4. Consider the set N, equipped with its trivial numeration. The
consistency predicate Con(a) ⇔ a ∈ Pf(N) is Pf(ι)-decidable and the entailment
relation a ⊢ n ⇔ n ∈ a is (Pf(ι), ι)-decidable, so that (N,Con,⊢) is an effective
information system.
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The class of effective information systems is closed under the construction of
products and function spaces, admitting an analogue of Proposition 4.2.4.

These constructions are make use of the following . Let (A, ν), (B, ζ) be effective
information systems.

We define a numbering νNζ : N → ANB (recall Definition 2.6.3 §2) as follows

(νNζ)(〈n,m〉) =

{
(1, νm) if n odd
(2, ζm) if n even

and a numbering ν ⇒ ζ : N → A⇒ B (recall Definition 2.6.4 §2) as follows

(ν ⇒ ζ)(〈e({n1, . . . , nk}),m〉) =

{
({νn1 , . . . , νnk

}, ζm) if {νn1 , . . . , νnk
} ∈ ConA

(∅, ζm) otherwise

where we used the numerations of Examples 4.1.2 and 4.1.3.
Note in particular that even if in general ν ⇒ ζ 6= Pf(ν) × ζ, we have that in

an effective information system the entailment “⊢” is (Pf(ξ), ξ)-decidable iff it is
ξ ⇒ ξ-decidable.

Proposition 4.2.7 ([42]). (A, ν), (B, ζ) be effective information systems. Then
(ANB, νNζ) and (A ⇒ E , ν ⇒ ζ) are effective information systems.

Definition 4.2.7. We indicate by EInf the category which has effective information
systems as objects; the hom-sets are given by EInf(A,B) = {R ∈ Inf(A,B) :
R is (ν ⇒ ζ)-r.e. }, where ν and ζ are the numberings of A and B, respectively.

Proposition 4.2.8. The category EInf is a cartesian closed subcategory of Inf .

4.2.3 Equivalence between the two categories

Now it makes sense to wonder whether or not the functors ( )+ and ( )− also establish
an exact correspondence between EInf and ESd: this is indeed the case (see [42]).

If (A, ξ) is an effective information system, then a point x of A is ξ-r.e. (resp.
ξ-decidable) iff {n ∈ N : ξn ∈ x} is a r.e. (resp. decidable) set. Thus the elements
of (A+)r.e. (resp. (A+)dec) are exactly those r.e. (resp. decidable) subsets of A
which are also points of A. Note that for any r.e. finitely consistent subset x of A,
x↓∈ (A+)r.e., since α ∈ x↓⇔ ∃b ⊆ x. b ⊢ α.

Theorem 4.2.9. For all information systems A,B we have

(i) if A is effective, then A+ is an effective Scott domain,

(ii) if R ∈ EInf(A,B), then R+ ∈ ESd(A+,B+) and EInf(A,B) ∼= ESd(A+,B+).

For all Scott domains D, E we have

(i) if D is effective, then D− is an effective information system,

(ii) if f ∈ ESd(D, E), then f− ∈ EInf(D−, E−) and ESd(D, E) ∼= EInf(D−, E−).

Proof. See [42].
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4.3 Effective (partial) i-webs and effective com-

pletions

An important breakthrough in the study of models of lambda calculus is made in
[17], where the authors consider reflexive objects in the category ESd and are able
to make very interesting connections with recursivity properties of order theories of
graph models. We extend their results and develop the effective counterparts of the
main structures and constructions of §3.

We start by generalizing Definition 4.1.7 to the case of partial functions.

Definition 4.3.1. Let (A, ν), (B, ζ) be numerations. A partial function f : A →֒ B
is (ν, ζ)-computable if dom(f) is a ν-r.e. set and there exists a partial recursive
function ϕ : N →֒ N satisfying the following conditions:

(1) νn ∈ dom(f) iff n ∈ dom(ϕ),

(2) f(νn) = ζϕ(n).

The function f is strongly (ν, ζ)-computable if it is (ν, ζ)-computable and dom(f)
is ν-decidable. In any a case, we still say that ϕ tracks f .

Clearly any total (ν, ζ)-computable function is also strongly (ν, ζ)-computable.

Example 4.3.1. If (D, ν) is an effective Scott domain, then the supremum function
on K(D), which is partial, is strongly ν-computable.

Notation. The range of a function f is indicated by ra(f).

Definition 4.3.2. A partial function f : (A, ν) →֒ (B, ζ) between two numerations
is completely (ν, ζ)-computable if it is strongly (ν, ζ)-computable and ra(f) is ζ-
decidable.

Definition 4.3.3. A partial i-web S is effective if there exists a numbering σ of S
such that (S, σ) is an effective IS and φS : S ⇒ S →֒ S is a completely (σ ⇒ σ, σ)-
computable function.

Note that, in particular, an i-web A is effective if there exists a numbering σ of
A such that (A, σ) is an effective IS and φA : A ⇒ A → A is a strongly (σ ⇒ σ, σ)-
computable function.

We now want to investigate the effectivity properties of the completions of ef-
fective partial i-webs. All free extensions of an effective partial i-web S have the
same set of tokens, namely S∗ = S ∪ do(φS) (see Definition 3.3.7 §3). The following
definition gives a standard way of constructing a numbering of S∗ from a numbering
of S.
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Definition 4.3.4. Let σ be the numbering of S. We define a numbering σ∗ for the
set S∗ = S ∪ do(φS) as follows

σ∗
n =






σn
2

if n is even

(σ ⇒ σ)n−1
2

if n is odd and (σ ⇒ σ)n−1
2

∈ do(φS)

σ0 otherwise

Theorem 4.3.1. Let S be an effective partial i-web and let S∗ be a fixed free ex-
tension of S, together with the numbering σ∗ of Definition 4.3.4. If Con∗ is Pf(σ

∗)-
decidable, then S∗ is an effective partial i-web.

Proof. Using the hypothesis and the fact that φS is completely computable (for S)
it is routine to check that the predicate ⊢∗ is decidable and that φ∗ is completely
computable w.r.t. the new numerations involving σ∗.

Let {Sn}n≥0 be a development of an effective partial i-web S. Even if each
member of the development if effective, there is no general reason for which the
completion of S should be an effective i-web.

Following this observation we define effective families of effective ISs. Such notion
will be the base for defining effective completions, proceeding in analogy to Definition
3.3.9 and 3.3.10 §3.

Terminology. There is a specific terminology used in the literature of recursion
theory for designing families of recursive functions/predicates which are “algorith-
mically” produced: such families are called uniform [73].

Definition 4.3.5. A countable family {(Sn, ν
(n))}n∈N of effective partial i-webs is

effective if

- the predicate Conm is Pf(ν
(m))-decidable uniformly in m,

- the predicate ⊢m is (ν(m) ⇒ ν(m))-decidable uniformly in m,

- the function φSm
is (ν(m) ⇒ ν(m), ν(m))-completely computable uniformly in m.

For example in the case of Definition 4.3.5 it means that there is a certain recur-
sive function that, given an integer m, returns an index of the recursive predicate
that decides consistency in the partial i-web Sm.

All completions of an effective partial i-web S have the same set of tokens,
namely Sω (see Definition 3.3.10, §3). The following definition gives a standard way
of constructing a numbering of Sω from a numbering of S.

Definition 4.3.6. Let S be an effective partial i-web and let {Sn}n≥0 be a devel-
opment of S. Let σ(n) be the numbering of Sn obtained by iterating n times the
construction of Definition 4.3.4. We define a numeration (Sω, ζ) as ζ〈m,k〉 = σ

(m)
k .
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Definition 4.3.7. Let S be an effective partial i-web and let (N, ι) be the trivial
numeration of N. A development {Sn}n≥0 of S is effective if it is an effective family
of effective information systems.

Theorem 4.3.2. Let S be an effective partial i-web and let {Sn}n≥0 be an effective
development of S. Then the completion of S w.r.t. this development is an effective
i-web.

Proof. Let S be an effective partial i-web and let Sω be its completion w.r.t. an
effective development {Sn}n≥0. Moreover take ζ to be the numbering of Definition
4.3.6.

By using the corresponding properties of φn, ⊢n and Conn, it is not difficult then
to see that ⊢ω and Conω are all ζ-decidable and φω is strongly (ζ ⇒ ζ, ζ)-computable.
Now since Sω−ra(φω) = S0−ra(φ0), it is clear that ra(φω) is ζ-decidable and hence φω

is completely (ζ ⇒ ζ, ζ)-computable. This proves that Sω is an effective i-web.

Remark 4.3.3. A development {Sn}n≥0 of S is effective iff the predicate Conn is
Pf(ν

(n))-decidable uniformly in n.

Proof. All data of Sn+1 are determined algorithmically in function of Conn+1 and
Sn.

We conclude the section with a very important definition, which is about adding
a “further effective dimension”.

Definition 4.3.8. A countable family of {Sm}m∈N effective developments of finite
partial i-webs is effective if any member Sm = {(Sm,n, ν

(m,n))}n∈N is such that

- the predicate Conm,n is Pf(ν
(m,n))-decidable uniformly in m and n,

- the predicate ⊢m,n is (ν(m,n) ⇒ ν(m,n))-decidable uniformly in m and n,

- the function φSm,n
is (ν(m,n) ⇒ ν(m,n), ν(m,n))-completely computable uniformly

in m and n.

4.4 Effective Scottian lambda-models

In Section Section 3.5 of §3 we defined the class SLM and discussed its main features.
In the present section we will propose an “effective” version of Scottian λ-models
and prove that it enjoys the “effective” version of the properties enjoyed by SLM.
The main purpose of the additional hypotheses is having a numbered structure with
a computable interpretation of λ-terms: then clearly the interpretation establishes
a bridge that can be “crossed backwards” from numerations of Scott domains to
numerations of term models in order to infer results about the recursivity of order
and equational theories of those “effective” versions of Scottian λ-models.

We start by recalling Definition 4.2.1, which describes effective Scott domains.
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Definition 4.4.1 (Effective Scott domain). An Scott domain D is effective
if there exists a numeration (K(D), ν) of its compact elements such that the sets
{(x, y) ∈ K(D)2 : ∃z ∈ K(D). z ≥ x, y}, {(x, y, z) ∈ K(D)3 : z = x ⊔ y} are both
ν-decidable.

Then we give the definition of effective combinatory algebra, which is an instance
of a more general definition of effective algebra (see [55, Ch. 12] and [111, Ch. 10]).

Definition 4.4.2 (Effective applicative structure). An applicative structure
A = (A, ·) is effective if there exists a decidable numeration (A, ν) of its universe
such that there exists a binary total recursive function which tracks its application
operation (see Definition 4.1.7).

When the context requires it, effective applicative structures will be indicated
by pairs (A, ν) to put in evidence the involved numerations.

We are about to define the effective counterpart of the class SLM: it will be a
class of λ-models with some effectivity properties. Evidently we won’t instantiate
the abstract definition of effective algebra (e.g. [55, Ch. 12], [111, Ch. 10]) to the
case of λ-models, since it is well-known that effective combinatory algebras do not
exist (see [10, Ch. 5]).

We want this class to be

- general enough to contain all i-models generated by effective completions of
finite partial i-webs, but

- well-behaved enough to be closed under certain direct products and to have a
computable interpretation function.

As a result of our analysis, we find convenient to use the following class of
mathematical objects.

Definition 4.4.3. A SLM D = (D, ·,k, s) is effective if there exists a numbering ν
of K(D) such that

- (D, ν) is an effective Scott domain,

- (K(D), ·) is an effective applicative substructure of D (w.r.t. ν),

- k, s ∈ Dr.e.,

- i ∈ Ddec.

The class of effective Scottian λ-models will be noted ESLM; committing an abuse
of notation we will use the same acronym to speak of a single effective Scottian λ-
model and we will let the reader distinguish between these two different usages.

We remark that if D is an ESLM, then {y ∈ Dr.e. : y ≤ i} is a completely co-r.e.
set, by Lemma 4.2.3.
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Indeed the intuition suggests that ESLM cannot be closed under arbitrary direct
products: such class is instead closed under the formation of effective products,
which are direct products of effective families (see the forthcoming Defintion 4.4.4).
Intuitively a family of ESLMs is effective if there is a uniform way of generating the
effective predicates and functions of its members.

We recall that the union of a countable family of countable numerations can be
numbered in a standard way. We will assume this fact in the forthcoming definition,
which is an adaptation of the definition of effective family of effective rings (see for
example [55, Ch. 12]).

Definition 4.4.4. A countable family {(Dn, ν
(n))}n∈N of ESLMs is effective if

- the relation {(x, y) ∈ K(Dm)2 : ∃z ∈ K(Dm). z ≥m x, y} is ν(m)-decidable
uniformly in m,

- the relation {(x, y, z) ∈ K(Dm)3 : z = x ⊔m y} is ν(m)-decidable uniformly in
m,

- the function ·m : K(Dm)2 → K(Dm) is (ν(m)×ν(m), ν(m))-computable uniformly
in m,

- the set {x ∈ K(Dm) : x ≤m km} is ν(m)-r.e. uniformly in m,

- the set {x ∈ K(Dm) : x ≤m sm} is ν(m)-r.e. uniformly in m,

- the set {x ∈ K(Dm) : x ≤m im} is ν(m)-decidable uniformly in m.

Proposition 4.4.1. The direct product of an effective family of ESLMs is an ESLM.

Proof. Let {(Dn, ν
(n))}n∈N be an effective family of ESLMs: we will prove each point

of Definition 4.4.3. First of all recall that by Proposition 3.5.2 the product is still
an SLM.

Let P =
∏

n∈N
Dn and P = (P,⊑), where ⊑ is the pointwise ordering. For

simplicity we indicate an element 〈dn〉n∈N ∈ P as a function ⋋⋋n ∈ N. dn. We now
devise a numbering ξ of K(P) as follows:

ξ(n) =






⋋⋋m ∈ N. (if (m ∈ {s1, . . . , sk}) then ν(m)(tj) else ⊥m)
if n = (〈s1, t1〉, . . . , 〈sk, tk〉)

∗ and ∀j, h ∈ [1, k]. sj 6= sh

⋋⋋m ∈ N. ⊥m

otherwise

Recall the idea of support of a sequence given in Definition 3.5.2, §3. Given a
compact element ξm we can indeed effectively compute su(ξm) = {s1, . . . , sk} and
the sequence (t1, . . . , tk) of integers such that for all i = 1, . . . , k the si-th coordinate
of ξm is the element ξm(si) = ν(si)(ti) ∈ K(Dsi

).
Now let for compact elements ξm, ξn, ξh of P we have that
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60 4. Numbered structures and effectivity

• ξm and ξn have upper-bound iff for all s ∈ su(ξm) ∪ su(ξn), ξm(s) and ξn(s)
have upper-bound in Ds

• ξh = ξm ⊔ ξn iff for all h ∈ su(ξm) ∪ su(ξn), ξh(s) = ξm(s) ⊔ ξn(s)

and the above predicates are ξ-decidable, by the uniformity of the predicates of de
components of the product. This proves that (P , ξ) is an effective Scott domain.

Similarly one can prove that the application function on K(P) is ξ-computable,
that k, s ∈ Pr.e. and i ∈ Pdec.

Corollary 4.4.2. For any ESLM D, the set EnvD of valuations from Var to D
(which is the power DVar) is an ESLM.

Proof. Since Var can be equipped with a bijective numbering. Uniformity is immedi-
ate since the effective predicates and functions are the same for each coordinate.

We now give some theorems stating important properties of ESLMs w.r.t the
computability of the interpretation function.

Proposition 4.4.3. If D is an effective SLM, then (Dr.e., ·,k, s) is a combinatory
subalgebra of D.

Proof. It is not difficult to see, that the continuity of application and its com-
putability on the compact elements imply that the application is an r.e. element of
Sd(D × D,D)r.e., by analyzing its trace (see Proposition 4.2.5). Finally again by
Proposition 4.2.5 we conclude that Dr.e. is closed under application.

In the following theorem we let Λo
⊥ (resp. C o

⊥) be the flat domain of closed λ-
terms (resp. closed combinatory terms) obtained by adjoining a constant ⊥. We
also let ♯(−) : N → C o

⊥ be a bijective numbering obtained by a Gödel encoding like
that of Example 4.1.4. Note that (C o

⊥)r.e. = C o
⊥ (and (Λo

⊥)r.e. = Λo
⊥ as well).

Theorem 4.4.4. Let (D, ν) be an ESLM. Then

(i) JMKD ∈ Dr.e., for each M ∈ Λo
⊥,

(ii) the continuous function J−KD : Λo
⊥ → Dr.e. is (♯, ν̂)-computable.

Proof. Recall that JMKD := JMclK
D by definition and the translation M 7→ Mcl is

evidently computable (w.r.t. the involved numerations). In view of this fact, we
can obtain items (i) and (ii) by proving that the trace of the interpretation function
J−KD : C o

⊥ → D is (♯, ν)-r.e. and applying Proposition 4.2.5 (in a rather trivialized

way, since (C o
⊥)r.e. = C o

⊥ and ♯̂ = ♯). By Proposition 4.4.3 we have that {d ∈ K(D) :
d ≤D JtKD} is ν-r.e., for each t ∈ C o

⊥ and the trace {(t, d) ∈ C o
⊥×K(D) : d ≤D JtKD}

is the union of a uniform family of ν-r.e. sets.

The following theorems show that effective families of effective developments of
finite partial i-webs give rise to effective Scottian λ-models.
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Theorem 4.4.5. If Sω is an effective completion of a finite partial i-web, then S+
ω

is an ESLM.

Proof. By Proposition 3.5.6 §3 S+
ω is an SLM and by Theorem 4.2.9 its universe is

an effective Scott domain. We prove the remaining defining properties of ESLM:

(1) its compact elements form an effective applicative substructure of S+
ω ,

(2) Jλxy.xK ∈ (S+
ω )r.e. and Jλxyz.xz(yz)K ∈ (S+

ω )r.e.,

(3) Jλx.xK ∈ (S+
ω )dec.

As for (1), we already know by Proposition 3.5.6 that the compact elements are
closed under composition. The computability of application it is easily derivable
looking at its definition

u · v = {β ∈ Sω : ∃a ⊆f v. (a, β) ∈ {(a′, β′) : φω(a′, β′) ∈ u}↓Sω⇒Sω
}

since φω is a strongly computable function.
Concerning points (2),(3) we use the description of interpretation described in

Theorem 3.2.3 §3.
As for (2) it is easy to prove, by induction on the structure of λ-terms, that

JMKρ ∈ (S+
ω )r.e., for each M ∈ Λ, and each ρ ∈ (EnvS+

ω
)r.e.. Hence in particular

Jλxy.xK, Jλxyz.xz(yz)K ∈ (S+
ω )r.e..

As for (3) by definition of Sω we have that x ↓Sω
= x ∪ (x ∩ S) ↓S and hence

α ∈ x ↓Sω
iff α ∈ x ∨ (α ∈ S ∧ ∃a ∈ (ConS ∩ x). a ⊢S α). The above predicate is

clearly decidable, since ConS is a finite set and the predicate α ∈ S is ζ-decidable
(recall the definition of ζ from the proof of Theorem 4.3.2). Finally we have

Jλx.xKSω = {φω(a, α) : a ⊢ω α}↓Sω

= {φ0(a, α) : a ⊢0 α, (a, α) ∈ do(φ0)}↓S0

∪ {(b, β) : β ∈ b, (b, β) 6∈ do(φ0)}
∪ {(c, γ) : c ∩ S0 ⊢0 γ ∈ b, (c, γ) 6∈ do(φ0)}

This set is decidable since S0 is finite and φn is completely computable, for each
n ∈ N.

Theorem 4.4.6. Let {Sm}m∈N be an effective family of effective developments of
finite partial i-webs and let {Am}m∈N be the family of all completions of such devel-
opments. Then the product

∏
m∈N

A+
m is an ESLM.

Proof. Each i-web Am is an effective i-web by Theorem 4.3.2, and each A+
m is an

ESLM by Theorem 4.4.5. Finally the conditions of Definition 4.3.8 ensure that
{A+

m}m∈N is an effective family of ESLMs and hence we conclude by Proposition
4.4.1.
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5
Incompleteness results for Scott

semantics

This chapter contains the core results of the paper [34], which constitute the main
theorems of the first part of this thesis. These theorems establish properties of order
and equational theories of i-models (and hence also of coadditive RSDs) whose order
theory extend that of a particular ESLM, and are organized into a general and sys-
tematic method that yield equational incompleteness and limitations of semantical
proof methods.

Outline of the method. The main idea is to apply computability theory in
the context of lambda models, as done in [18]. The key step for the proof is the
construction of an effective Scottian λ-model P with the following properties:

(i) Or(P) ⊆ Or(A+), for every i-model A+ (here we use the finiteness property
of i-models);

(ii) Or(P) is not r.e. (use Visser’s theorem 4.1.5 ([115]));

(iii) Eq(P) 6= λβ, λβη (use Selinger’s theorem [109, Cor. 4]).

Finally from item (i) one can extend results (ii),(iii) to all i-models and moreover
applying Visser’s theorem and Proposition 3.5.5 (which follows from Böhm’s Theo-
rem) one can infer (non-constructively) the existence of an easy term which cannot
be proved easy in the class iM.

In particular this last point makes use of the following formal definition, of “to
be proved easy in a class of models”.

Definition 5.0.5. Let B be a class of λ-models. A closed λ-term M is B-easy if
for each closed λ-term N there exists a member B of B such that JMKB = JNKB.

The property of B-easiness allows to somehow measure the power of the se-
mantical proof methods that can be developed in B. For example on may wonder
whether or not a given class of models can be used to prove the easiness of all easy
terms. The following theorem gives a sufficient conditions for proving that a class
B cannot be used to give semantical proofs of easiness for all easy terms.

A particular instance of Definition 5.0.5 is Alessi-Lusin’s simple easiness [7], but
we postpone the discussion of this point to Section 5.2.
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5.1 The main theorems

Theorem 5.1.1. Let P be an ESLM. For any non-trivial order λ-theory O if
Or(P) ⊆ O, then O is not r.e.

Proof. Lemma 4.2.3 §4 the set X = {a ∈ Pr.e. : a ≤ JIKP} is completely co-r.e. Now
let Y = {N ∈ Λo : JNKP ≤ JIKP}. We now observe the following things:

- Y is a λβ-closed subset of Λo, since it is the anti-image of X via the inter-
pretation function and for the same reason Y is co-r.e., by applying Theorem
4.4.4(ii) and Proposition 4.1.4 §4;

- Y is non-trivial, since Y ⊂ Λo (otherwise by Proposition 3.5.5 P would be
trivial) and I ∈ Y ;

Now let Z = {N ∈ Λo : O ⊢ N ≤ I}. We observe the following things:

- Z is λβ-closed;

- Y ⊆ Z, since Or(P) ⊆ O;

- Z is non-trivial, since I ∈ Z and Z ⊂ Λo (otherwise O would be trivial).

Now suppose, by the way of contradiction, that O is r.e. Then Z is an r.e. subset of
Λo. Hence Y and Λo − Z are two disjoint non-trivial λβ-closed and co-r.e. subsets
of Λo, contradicting Theorem 4.1.5 §4.

In the following theorem we want to speak about a very general class of λ-models.
An ordered λ-model (OLM, for short) is a λ-model whose application is monotone in
both arguments. Committing an abuse of notation we will also use OLM to denote
the class of all ordered λ-models; we will let the reader distinguish between these
two different usages. Clearly any OLM induces an order theory (as in Definition
3.5.3 §3) which is an order λ-theory (see Definition 2.5.1 and Proposition 3.5.3 §3).
Finally OLM encompasses all classes of domain models encountered so-far, like SLM,
iM and RSD.

Theorem 5.1.2. Let P be an ESLM. Then for any subclass U of OLM not containing
trivial models, if Or(P) ⊆

⋂
U∈U

Or(U) then:

(i) Or(U) is not r.e., for each member U of U,

(ii) Eq(U) 6= λβ, λβη, for each member U of U,

(iii)
⋂

U∈U
Eq(U) 6= λβ, λβη,

(iv) there exists an easy λ-term that is not U-easy.

Proof. (i) First observe that Or(U) is a non-trivial order λ-theory. Applying
Theorem 5.1.1 we conclude that it is not r.e.
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(ii) If Eq(U) is not r.e., then clearly Eq(U) 6= λβ, Eq(U) 6= λβη. If Eq(U) is
r.e. then Or(U) strictly contains Eq(U) (since by (i) Or(U) is not r.e.) and
therefore ≤U is non-trivial on the interpretation of λ-terms. The conclusion
follows from Selinger’s result stating that in any partially ordered λ-model,
whose theory is λβ (λβη), the interpretations of distinct closed terms are
incomparable [109, Cor. 4].

(iii) An easy re-adaptation of (ii).

(iv) Let E be the set of all easy terms. By Theorem 5.1.2(i) the set Y = {N ∈
Λo : JNKP ≤ JIKP} is a nonempty co-r.e. set of λ-terms. By Theorem 4.1.5
the intersection of the nonempty co-r.e. set X and of the nonempty co-r.e.
set E of all easy terms is co-r.e. and nonempty and hence there is a term
M ∈ X ∩ E. Clearly M is easy. Now suppose by the way of contradiction
that M is B-easy. Then by definition there exists a member U of U such
that JMKU = Jλxy.xKU. From M ∈ X it follows that JMKP ≤ JIKP and by
hypothesis this implies JMKU ≤ JIKU so that in turn Jλxy.xKU ≤ JIKU. This
contradicts Corollary 3.5.5.

Comment. Clearly Theorem 5.1.2(ii) states the equational incompleteness of
the class U. But even if no member of the class U induces the theories λβ and λβη,
one could still hope that the intersection of the equational theories of all members
of the class were λβ (or λβη, if the models in U are extensional). Theorem 5.1.2(iii)
says that this cannot be the case: there are equations not belonging to λβ (or
λβη) which hold in all members of U. Finally Theorem 5.1.2(iv) says that not all
semantical proof of easiness can be carried out in the class U: however the proof
does not give a concrete example of an easy term which is not U-easy.

The rest of this chapter is dedicated to the concrete construction of an effective
Scottian λ-model with remarkable properties.

Definition 5.1.1. We define an enumeration {Em}m∈N of all finite partial i-webs
whose tokens are natural numbers. First regard at m as the encoding of a quadruple
m = 〈n1, n2, n3, n4〉 where n1 codes a finite subset X1 of N, n2 codes a finite subset
X2 of Pf(N), n3 codes a finite subset X3 of Pf(N) × N, and n4 codes a finite subset
X4 of Pf(N) × N × N.

• If X2 is a consistency predicate for X1, X3 is an entailment for X1, and
X4 is the graph of a partial b-morphism for the information system given by
X1, X2, X3, then Em is the partial i-web defined by these data.

• Otherwise Em is the partial i-web with empty web and completely undefined
b-morphism.
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Now if E is a finite partial i-web of natural numbers then it has potentially
infinitely many developments: we can effectively generate any finite subfamily of
any development of E according to the following algorithm, which is supposed to
run on a multitasking system (recall the notion of compatible family and of extension
from definitions 3.3.8 and 3.3.7, §3):

Completion(E)1

begin2

foreach X ⊆ Pf(E ∪ do(φE)) do3

if (X is E-compatible) then4

E′ := Extension(E,X );5

run Completion(E′) for 2 seconds;6

end7

The objective is to stress that Extension(E,X ) can be considered implementable
by a real algorithm, since once an E-compatible family X is given, all data of the
extension of E by X are effectively determined.

Comment. Let En be the n-th member of E. The effective partial i-webs
produced by Completion(En) form a finitely branching ≺-tree with root En,
since every finite partial i-web admits a finite number of extensions (corresponding
to the finite number of compatible families for it).

EnumerateCompletions1

begin2

foreach n ∈ N do3

run Completion(En) for 2 seconds;4

end5

Let us call F the set of all finite partial i-webs produced by “running forever” the
program EnumerateCompletions. We can index these partial i-webs by sequences
of natural numbers as follows:

• the index of a root En is the sequence containing just n;

• given a finite partial i-web Eσ, the indices of its extensions are σ · 1, . . . , σ · k,
where k is the number of Eσ-compatible families and σ · i is the concatenation
of σ and the sequence containing just the number i.

For each sequence σ, there is a moment of time at which Eσ is produced by the
program EnumerateCompletions.
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Remark 5.1.3. F is a ≺-forest in which the developments of the finite partial i-
webs En (for n ∈ N) are exactly the ≺-chains which are both upwards and downwards
closed in F.

Definition 5.1.2. We let Sm be the unique infinite branch of the tree with root Em

all whose members are finite partial i-webs with full consistency (this exists because
of Remark 3.3.8).

Theorem 5.1.4. {Sm}m∈N is an effective family of effective developments of finite
partial i-webs.

Definition 5.1.3. We let fiW be the class of all i-webs with full consistency and we
let fiM be the class of all i-models A+ with A in fiW.

Theorem 5.1.5. Let Cm be the completion of the development Sm and let P =∏
m∈N

C+
m. Then P is an ESLM.

Proof. Each Sm is an effective development of some finite partial i-web of natural
numbers with full consistency and {Sm}m∈N is an effective family of effective devel-
opments of finite partial i-webs with full consistency. Therefore by Theorem 4.4.6
P is an ESLM.

Let P be the ESLM constructed at the end of §4.

Theorem 5.1.6. Or(P) ⊆
⋂

A∈ fiWOr(A+).

Proof. By Theorem 3.4.1 §3 for any i-web A with full consistency and any inequality
M ⊑ N which fails in A+ there exists a finite partial i-web S ≺ A and a suitable
completion Sω with full consistency such that M ⊑ N fails in S+

ω . Now recall that
P =

∏
m∈N

C+
m, where each Cm is an i-web with full consistency. We conclude

observing that the i-web Sω is, up to bf-isomorphism, one of the Cm’s.

Corollary 5.1.7. Let A be an i-web with full-consistency. Then Or(A+) is not
r.e., Eq(A+) 6= λβ and Eq(A+) 6= λβη.
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Corollary 5.1.8. There are equations not in λβ, λβη holding in all i-models in fiM.

Corollary 5.1.9. There exists a closed λ-term that is not fiM-easy.

From Corollary 5.1.9 it follows simply the solution of Problem 19 of TLCA list
[4].

5.2 The solution of Problem 19 of TLCA list

The purpose of this section is to explain why Corollary 5.1.9 solves Problem 19 of
TLCA list.

We review the class of filter models of λ-calculus that arise from easy intersection
type systems. Alessi and Lusin [7] have shown the easiness of the simple easy λ-
terms through this class of models. More precisely, given a simple easy λ-term M
and an arbitrary closed λ-term N there exists an easy intersection type system which
generates a filter model satisfying the identity M = N .

The point that we want to make clear is the following: if a term is simple easy,
then it is fiM-easy.

5.2.1 Easy intersection type theories and filter models

An intersection type language T is a set of formulas, called types, built on a given
set of constants by means of the type constructors “∧” and “→”. The constant
ω belongs to any intersection type language. The letter α, β, γ, δ will range over
constants (different from ω), while σ, τ, . . . over types.

The concept of an easy intersection type theory over an intersection type lan-
guage was defined for the first time in Alessi et al. [5, Def. 2].

Definition 5.2.1. [5, Def. 2],[7, Def. 1.2] An easy intersection type theory (eitt,
for short) over an intersection type language T is the set of inequalities of the form
σ ≤ τ (σ, τ ∈ T) derivable from a collection T of axioms and rules such that:

(1) T contains the following axioms and rules

σ ≤ ω ω ≤ ω → ω σ ≤ σ ∧ σ

σ ∧ τ ≤ σ σ ∧ τ ≤ τ (σ → τ) ∧ (σ → τ ′) ≤ σ → (τ ∧ τ ′)

σ ≤ σ′ τ ≤ τ ′

σ ∧ τ ≤ σ′ ∧ τ ′

σ′ ≤ σ τ ≤ τ ′

σ → τ ≤ σ′ → τ ′

It is customary to define an equivalence relation ∼ on types as follows: σ ∼ τ
iff σ ≤ τ ≤ σ.
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(2) Besides the axioms and rules of item (1), T does not contain further rules and
it only contains axioms of the following two shapes: α ≤ β or α ∼

∧
i∈I(γi → τi),

where α, β, γi are constants with α, β 6≡ ω, and τi ∈ T;

(3) for each constant α 6≡ ω there exists exactly one axiom of the shape α ∼∧
i∈I(γi → τi);

(4) if T contains α ∼
∧

i∈I(γi → τi) and β ∼
∧

j∈J(δj → σj), then T contains also
α ≤ β iff for each j ∈ J there exists ij ∈ I such that δj ≤ γij and τij ≤ σj.

We ambiguously denote by T the eitt generated by the set T of rules and axioms.
We write σ ≤T τ to indicate that σ ≤ τ is derivable from T . A filter of a eitt T

is a nonempty subset X ⊆ T which is upward closed w.r.t. ≤T and closed under ∧;
the filter generated by a subset Y of T will be denoted by ↑ Y . FT denotes the set
of all filters of T .

For any eitt T it is possible to define a filter model in the ccc ALat of algebraic
lattices and Scott-continuous functions. We report such construction from [38].

Theorem 5.2.1. ([38, 7]) The triple (FT , F,G) is a reflexive object in the category
ALat via the maps F : FT → [FT → FT ] and G : [FT → FT ] → FT defined by

F (X)(Y ) = {τ ∈ T : ∃σ ∈ Y. σ → τ ∈ X}; G(f) = ↑ {σ → τ ∈ T : τ ∈ f
(
↑ σ

)
}.

The interpretation of a closed λ-term M in the filter model generated by the eitt
T is denoted by JMKT .

Let T ,S be eitt over the type languages T and S respectively. We say that S is
a conservative extension of T , written T ⊑ S, if T ⊆ S and, for all τ, σ ∈ T, τ ≤T σ
iff τ ≤S σ.

Definition 5.2.2. An unsolvable term M is simple easy if for every eitt T over the
type language T and every type τ ∈ T there exists a conservative extension S of T
such that

σ ∈ JMKS iff (∃σ′ ∈ T) σ′ ∧ τ ≤S σ and σ′ ∈ JMKT ,

for all types σ in the type language of S.

Theorem 5.2.2. [7, Thm. 3.5] Let M be a simple easy term. Then M is easy,
because, for every closed term N , there exists an eitt T such that JMKT = JNKT .

5.2.2 Filter models as i-models

In this subsection we show that every eitt is an i-web and that every filter model
built over an eitt is an i-model; this is of course an explanation of the reason why
our results concerning i-models does apply to the problem posed by Alessi and
Dezani-Ciancaglini.
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Let T be a type language. As a matter of notation, if a = {σ1, . . . , σn}⊆f T we
write ∧a as a shorthand for σ1 ∧ . . . ∧ σn.

We define the structure AT = (T,⊢T ) by setting a ⊢T b (a, b ⊆f T) iff ∧a ≤ ∧b,
and this way obviously we get ∅ ⊢T ω. Indeed AT is an information system (a
similar observation appears already in [38]). As a consequence, in the exponential
~AT of AT we have {(a1, b1), . . . , (an, bn)} ⊢ ~AT

(c, d) iff either ω ≤ ∧d or there exists
J ⊆ {1, . . . , n}, J 6= ∅ such that ∧c ≤ ∧(∪j∈Jaj) and ∧(∪j∈Jbj) ≤ ∧d.

In order to define an i-web we now set

φT : Pf(T) × Pf(T) → T with φT (a, b) = ∧a→ ∧b.

Now it is clear that φT is a b-morphism if, and only if, the following implication
holds:

n∧

i=1

(∧ai → ∧bi) ≤ ∧c→ ∧d ⇒

either ω ≤ ∧d or ∃J ⊆ {1, . . . , n}, J 6= ∅. ∧ c ≤ ∧(∪j∈Jaj) and ∧ (∪j∈Jbj) ≤ ∧d.

We can conclude by observing that the above implication holds in any eitt (see [5,
Thm. 2.3]). Hence AT = (AT , φT ) is an i-web.

It is an easy matter to show that the i-model A+
T = (A+

T , (φT )1, (φT )2) (see
Definition 3.2.2, §3) coincides with the filter λ-model FT of Theorem 5.2.1.
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6
Introduction

In the ’90s Boudol [24] introduced the λ-calculus with multiplicities, an extension of
λ-calculus where arguments may come in limited availability and mixed together.
After one decade Ehrhard and Regnier [44] introduced the differential λ-calculus,
a conservative (see [44, Prop. 19]) extension of the λ-calculus with differential con-
structions, in which the linear application of a term M to an argument roughly
corresponds to applying the derivative of M in 0 (which is a linear function) to
that argument. The presence of linear application, and linear substitution force
the enrichment of the calculus with an operation of sum with a neutral element.
In [45, 47] Ehrhard and Regnier introduce a simple subsystem of the differential
λ-calculus, that they call resource λ-calculus, and establish a correspondence be-
tween differential nets, a variation of Girard’s [59] linear logic proof-nets (without
promotion rule), and resource λ-calculus. Very recently, Tranquilli [112] enriched
the resource λ-calculus with a promotion operator (bearing strong similarities to
Boudol’s λ-calculus with multiplicities), establishing a correspondence with differ-
ential interaction nets extended with promotion. Tranquilli’s resource calculus has
been recently studied from the syntactical point of view by Pagani and Tranquilli
[91], for confluence results, and by Pagani and Ronchi Della Rocca [90] for results
about solvability. Regarding the semantics of these calculi, the first studies were con-
ducted by Boudol et al. [25] for the λ-calculus with multiplicities. In [29] Bucciarelli
et al. define categorical models for the differential λ-calculus.

There have been several attempts to reformulate the λ-calculus as a purely al-
gebraic theory. The earliest and best known algebraic models are the combinatory
algebras of Schönfinkel and Curry [39]. Combinatory algebras, as well as their re-
markable subclass of λ-algebras, have a purely equational characterization but yield
somewhat weak notions of models of the λ-calculus. In fact, the combinatory inter-
pretation of λ-calculus does not satisfy the so-called ξ-rule: under the interpretation,
M = N does not necessarily imply λx.M = λx.N . Thus, the class of λ-algebras is
not sound for λ-theories, and one is forced to consider the non-equational class of
λ-models (see [10]). There are many advantages in using algebraic languages rather
than languages with binders, particularly in connection with equational reasoning.
The former have well-understood model theory, and the models are closed under
standard constructions such as cartesian products, subalgebras, quotients and free
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algebras. The above-mentioned problem with the ξ-rule seems to suggest that the
λ-calculus is not quite equivalent to an algebraic theory. The lattice of λ-theories
is isomorphic to the congruence lattice of the term algebra of the least λ-theory
λβ. This remark is the starting point for studying λ-calculus by universal algebraic
methods, through the variety (i.e. equational class of algebras) generated by the
term algebra of λβ, which Salibra [101] has shown to be axiomatized by the finite
scheme of identities characterizing λ-abstraction algebras. These algebras, intro-
duced by Pigozzi and Salibra [93], are intended as an alternative to combinatory
algebras, which keeps the lambda notation and hence all the functional intuitions.
In [94] the connections between the variety of λ-abstraction algebras and the other
algebraic models of λ-calculus are explained; it is also shown that the free extension
of a λ-algebra can be turned into a λ-abstraction algebra, thus validating all rules
of the λ-calculus, including the ξ-rule. The algebraic approach to λ-calculus has
been fruitful in studying the structure of the lattice of λ-theories and in general-
izing the Stone representation theorem for Boolean algebras to combinatory and
λ-abstraction algebras (see [80, 84, 83]). The Stone theorem has been also applied
to provide an algebraic incompleteness theorem that encompasses incompleteness
results for all known semantics of λ-calculus.

Chapter 9 contains an extended survey of the results obtained in our paper [33],
in which we initiate a purely algebraic study of Ehrhard and Regnier’s resource λ-
calculus, by introducing three equational classes of algebras: resource combinatory
algebras, resource lambda-algebras and resource lambda-abstraction algebras. We es-
tablish the relations between them, laying down foundations for a model theory of
resource λ-calculus. We also show that the ideal completion of a resource combina-
tory (resp. lambda-, lambda-abstraction) algebra induces a “classical” combinatory
(resp. lambda-, lambda-abstraction) algebra, and that any model of the classical λ-
calculus raising from a resource lambda-algebra determines a λ-theory which equates
all terms having the same Böhm tree.
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This chapter is organized as follows: Section 7.1 recalls some basic notions regarding
semi-rings and modules, which are used in the presentation of resource lambda
calculus and will be the base for formulating our generalization of the ordinary
category of sets and relations. In Section 7.2 we review the preliminaries regarding
the resource lambda calculus. In Section 7.3 we survey a presentation of the category
of sets and relations.

7.1 Semirings and modules

The theory developed in the second part of this thesis relies on basic concepts of
linear algebra. A classical and complete reference on the subject is Serge Lang’s
book [77]. The reader familiar with the concepts regarding semirings, modules and
matrices may entirely skip this section, which is included just for the purpose of
self-contaiment of the exposition.

Definition 7.1.1. A semiring is an algebra A = (A,+, ·, 0, 1) such that

(S1) (A,+, 0) is a commutative monoid,

(S2) (A, ·, 1) is a monoid,

(S3) x · (y + z) = (x · y) + (x · z) (x+ y) and z = (x · z) + (y · z)

(S4) 0 · x = x · 0 = 0

A semiring A is commutative if (A, ·, 1) is a commutative monoid and it is idem-
potent if (A,+, 0) is a join-semilattice with bottom.

Note that the difference between rings and semirings is that addition yields only
a commutative monoid, not necessarily a commutative group. Specifically, elements
in semirings do not necessarily have an inverse for the addition. The last axiom is
omitted from the definition of a ring because it follows automatically from the the
other ring axioms using the fact that (A,+, 0) is a group; for semirings instead it
has to be stated explicitly. As usual the symbol “·” will be afterwards omitted from
the notation, i.e., x · y is simply written xy.
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Definition 7.1.2. A left A-module M over a semiring A = (A,+, ·, 0, 1) is a
monoid M = (M,⊕, 0) together with an operation ( ⊙ ) : A ×M → M (called
scalar multiplication) such that for all p, q ∈ A and all x, y ∈M we have

(M1) p⊙ (x+ y) = (p⊙ x) ⊕ (p⊙ y)

(M2) (p+ q) ⊙ x = (p⊙ x) ⊕ (p⊙ x)

(M3) (p · q) ⊙ x = p⊙ (q ⊙ x)

(M4) 1 ⊙ x = x

In an expression of the form p ⊙ x, the element p ∈ A is called a scalar, or
coefficient. Right A-modules are defined analogously to left A-modules, but with a
scalar multiplication ( ⊙ ) : M × A→M .

Of course every semiring A is itself an A-module by defining the scalar multi-
plication as the multiplication of the semiring.

There is another less obvious standard example of A-module, given by a con-
struction that we will use heavily in the rest of this chapter.

Definition 7.1.3. Given a set X and a semi-ring A, free A-module over X, no-
tation, A〈X〉 is the A-module whose universe is the set A〈X〉 of all functions
µ : X → A such that su(µ) = {x ∈ X : µ(x) 6= 0} (the support of µ). The
sum of two elements µ, ν ∈ A〈X〉 is defined pointwise, i.e. (µ+ ν)(x) = µ(x)+ ν(x)
for all x ∈ X. Note that we use the same symbol for the addition in A and A〈X〉.
We also keep the notation 0 for the function given by 0(x) = 0 for all x ∈ X: this is
of course the neutral element of the monoid A〈X〉 with respect to sum. The scalar
multiplication of an element µ ∈ A〈X〉 by a coefficient p ∈ A is again given point-
wise, i.e., (pµ)(x) = pµ(x), for all x ∈ X. Note that once again do use the same
notation for multiplication of A and scalar multiplication of A〈X〉.

Note that since A has a multiplicative unit, X can be naturally seen as a subset
of A〈X〉.

Notation and terminology: the elements of A〈X〉 will be called A-multisets
over X, or simply A-multisets, when X is clear from the context. Given x ∈ X,

we denote as [x] ∈ A〈X〉 the function given by [x](y) =

{
1 if x = y
0 otherwise

(i.e.,

[x](y) = δx,y, the Kronecker operator. If µ ∈ A〈X〉 we define the cardinality of µ
by ♯µ = Σx∈su(µ)µ(x) ∈ A. In general then an element of A〈X〉 is a finite sum of the
form Σn

i=1pi[xi].
Notation and terminology: For an A-module B we denote by Bn,m the A-

module of all n×m matrices over B with usual addition and scalar multiplication.
If M ∈ Bn,m is a matrix we write M⊥ in order to indicate its transpose, i.e. the
matrix in Bm,n obtained from M by exchanging rows and columns. We will also
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make use of the multiplication of n×m matrices over A by m× k matrices over B
given by




p11 · · · p1m

...
. . .

...
pn1 · · · pnm








s11 · · · s1k

...
. . .

...
sm1 · · · smk



 =




Σm

j=1p1jsj1 · · · Σm
j=1p1jsjk

...
. . .

...
Σm

j=1pnjsj1 · · · Σm
j=1pnjsjk





If 1 is the multiplicative unit of A, we indicate by 1n ∈ An,1 the vector




1
...
1



.

Note that



p11 · · · p1m

...
. . .

...
pn1 · · · pnm



1m =





∑m
i=1 p1i

...∑m
i=1 pni



 and 1⊥
n




p1

...
pn



 =
n∑

i=1

pi

7.2 The resource lambda calculus

In this section we present the resource lambda calculus (rλ-calculus, for short), which
belongs to a family of resource-sensible calculi [91, 90, 44, 114, 47]. In this thesis
we will work with one particular version of these calculi, namely the one obtained
by choosing coefficients in the boolean semiring 2. We will state and prove results
about this calculus without worrying about making any further reference to this fact,
just saying “resource lambda-calculus” (or just “rλ-calculus”) instead of “resource
lambda-calculus with truth-values coefficients”.

The rλ-calculus has three syntactic categories: terms that are in functional posi-
tion, bags that are in argument position and represent multisets of linear resources,
and finite sums of terms representing all possible results of a computation.

The following grammar form the terms:

(Λr) t, s, p ::= x | λx.t | tP terms
(Λb) P ::= [t1, . . . , tk] (k ≥ 0) bags

Terms are the real protagonists of the rλ-calculus. The term λx.t represents the
λ-abstraction and tP the application of a term t to a bag P , which is a multiset of
terms. An application of the form (λx.t)P should be thought of as a linear function
fed with collection of linear resources P , each of which is available exactly once for
the function λx.t.

Sums. There are many ways of “feeding” a function (λx.t) with a bag P of
arguments, but instead of choosing one of them non-deterministically, the reduction
keeps track of them all in form of a sum. These sums live in free module 2〈Λr〉,
where 2 is the semiring {0, 1} with addition and multiplication given by join and
meet, respectively. We use metavariables T,S, . . . to range over 2〈Λr〉.

Demo Version, http://www.verydoc.com and http://www.verypdf.com



78 7. Preliminaries

The α-equivalence relation and the set FV(t) of free variables of t are defined
as usual, like in ordinary λ-calculus [10]. We write degx(t) for the number of free
occurrences of x in t. Hereafter, sums of terms are considered up to α-equivalence,
associativity, commutativity and idempotence of the sum.

Notice that the grammar for terms does not include any sums, so they may arise
only on the “surface”. However, as syntactic sugar – and not as actual syntax –
we consider sums of bags (P ∈ 2〈Λb〉) and extend all the constructors to sums by
multilinearity, setting for instance (Σiti)(ΣjPj) := Σi,jtiPj, in such a way that the
following equations hold:

λx.(Σiti) = Σiλx.ti
T(ΣiP ) = ΣiTPi (Σiti)P = ΣitiP
[Σiti] = Σi[ti] (ΣiPi) ⊎ P = ΣiPi ⊎ P

where we recall that ⊎ is the union of multisets. As an example of this extended
syntax, we can write (x1 + x2)[y1 + y2] instead of x1[y1] + x1[y2] + x2[y1] + x2[y2].

Observe that in the particular case of empty sums, we get λx.0 := 0, T0 := 0,
0P := 0, [0] := 0 and 0 ⊎ P := 0. Thus 0 annihilates anything (note that, formally
speaking, the symbol “0” occurring in these definitions is not always the same 0,
but each time the additive neutral of the suitable module).

We now introduce two kinds of substitutions: the usual λ-calculus substitution
and a linear one, which is proper to differential and resource calculi (see [47, 90, 91,
29, 114]).

Expressions A,B ∈ Λr ∪Λb are either terms or bags and sums of expressions are
ranged over by A,B ∈ 2〈Λr〉 ∪ 2〈Λb〉.

Let A be an expression and let s ∈ Λr. The (capture-free) substitution of s for x
in A, denoted by A{s/x}, is defined as usual. Accordingly, A{S/x} denotes a term
of the extended syntax. Last, we define the application of a substitution to a sum
as in A{S/x} by linearity in A.

The linear (capture-free) substitution of s for x in A, denoted by A〈s/x〉, is
defined as follows1:

- y〈s/x〉 =

{
s if y = x,

0 otherwise,

- (λy.t)〈s/x〉 = λy.t〈s/x〉 with y 6∈ FV(s), x 6≡ y,

- (tP )〈s/x〉 = t〈s/x〉P + t(P 〈s/x〉),

- [t1, . . . , tk]〈s/x〉 = Σk
i=1[t1, . . . , ti〈s/x〉, . . . , tk].

1In this definition we strongly use the extended syntax.
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Roughly speaking, linear substitution replaces the resource to exactly one linear
free occurrence of the variable. In presence of multiple occurrences, all possible
choices are made and the result is the sum of them.

For example (y[x][x])〈λz.z/x〉 = y[λz.z][x] + y[x][λz.z].
Turning to the extension of linear substitution to sums: the term A〈S/x〉 belongs

to the extended syntax, and we define A〈S/x〉 by linearity in A, as we did for usual
substitution.

Observe that A〈S/x〉 is linear in A and in S, whereas A{S/x} is linear in A but
not in S.

Linear substitutions commute in the sense expressed by the next lemma, whose
proof is rather classic and is omitted.

Lemma 7.2.1 (Schwarz Lemma, cf. [44, 46]). For any sum of expressions A, and
any T,S ∈ 2〈Λr〉 and y 6∈ FV(T) ∪ FV(S) we have:

A〈T/y〉〈S/x〉 = A〈S/x〉〈T/y〉 + A〈T〈S/x〉/y〉

In particular, if x /∈ FV(T) the two substitutions commute.

Given a bag P = [L1, . . . , Lk] where x does not occur free, it makes sense now to
set A〈P/x〉 := A〈L1/x〉 · · · 〈Lk/x〉, because this expression does not depend on the
enumeration L1, . . . , Lk. In particular, A〈[]/x〉 = A.

We are going to introduce the reduction rules defining the operational semantics
of the rλ-calculus and show that it enjoys Church-Rosser and strong normalization,
even in the untyped version of the calculus.

Definition 7.2.1. The reduction of the rλ-calculus is generated by the following
rule:

- (λx.M)P →β M〈P/x〉{0/x},

We remark thatM〈L1/x〉 · · · 〈Lk/x〉{0/x} is equal to
∑

σ∈Sk
M{Lσ(1)/x

1, . . . , Lσ(k)/x
k}

if degx(M) = k and is equal to 0 otherwise, where x1, . . . , xk are the k free occur-
rences of x in M .

Theorem 7.2.2 ([91, 44, 113]). The rλ-calculus is strongly normalizing and Church-
Rosser.

7.2.1 Taylor expansion of ordinary lambda terms

Originally the resource λ calculus arose as a fragment of the differential λ-calculus,
more precisely as a target language for writing the Taylor expansion of ordinary
λ-terms. The Taylor expansion is a mapping of ordinary λ-terms to possibly infinite
sums of differential λ-terms and bears strong similarities with the idea of Taylor
expansion in analysis. Usually, when f is a sufficiently regular function from a
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vector space E to a vector space F (finite dimensional spaces, or Banach spaces,
typically), at all points x ∈ E, f has nth derivatives for all n ∈ N and these
derivatives are maps f (n) : E×En → F with the same regularity as f and such that
f (n)(x, u1, . . . , un) = f (n)(x) · (u1, . . . , un) is n-linear and symmetric in u1, . . . , un.
When one is lucky, and usually locally only, the Taylor formula holds. Around 0 it
reads

f(x) =
∞∑

n=0

1

n!
f (n)(0) · (u, . . . , u)︸ ︷︷ ︸

n times

If we want to Taylor expand completely λ-terms, which after all are functions, we
need to extend the language with explicit differentials, or more precisely a construc-
tion of differential application of a term M to n terms N1, . . . , Nn, as done in [44].
The idea is that if M represents a function f from E to F and if N1, . . . , Nn repre-
sent n vectors u1, . . . , un ∈ E, then this new construction DnM · (N1, . . . , Nn) will
represent the function from E to F which maps x to f (n)(x) ·(u1, . . . , un), and there-
fore this construction is linear and symmetric in the Ni’s. The Taylor expansion of
a single lambda-calculus application MN would then read

∑∞
n=0

1
n!

(DnM · (N, . . . , N︸ ︷︷ ︸
n times

))0

If we want now to Taylor expand all the applications occurring in a λ-term, we
see that the usual lambda-calculus application in its generality will become useless;
only application to 0 is needed. This is exactly the purpose of the construction
t[s1, . . . , sn] of the rλ-calculus; with the notations of the differential lambda-calculus,
the expression becomes (DnM · (N1, . . . , Nn))0.

So in this sense the resource lambda-calculus is a “target language” for com-
pletely Taylor expanding ordinary λ-terms. The expansion of an ordinary term M
will be an infinite linear combination of resource terms, with rational coefficients (ac-
tually, inverses of positive integers). Before going further we settle some technical
details needed to correctly formalize the Taylor expansion formula in the resource
lambda calculus.

First of all we need to have infinite sums. To this purpose we define 2〈Λr〉∞ as
the set of all 2-valued functions with domain Λr with pointwise defined addition and
scalar multiplication. Note that we don’t require for elements of 2〈Λr〉∞ to vanish
for almost all arguments. Note also that 2〈Λr〉 ∼= Pf(Λ

r) and 2〈Λr〉∞ ∼= P(Λr): in
the sequel we will make use of these facts identifying sets and linear combinations
with coefficients in 2.

Let us use M∗ for the (complete) Taylor expansion of M , which is an element of
2〈Λr〉∞. By what we said, this operation should obey (MN)∗ =

∑∞
n=0M

∗[N∗, . . . , N∗

︸ ︷︷ ︸
n times

]

as well as x∗ = x and (λx.M)∗ = λx.M∗ (recalling that coefficients in our case are
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only 0/1) From these equations we obtain that

M∗ =
∑

s∈T (M)

s

where T (M) ⊆ Λr is defined inductively by the following clauses

• T (x) = {x},

• T (λx.M) = {λx.s : s ∈ T (M)},

• T (MN) = {s[t1, . . . , tm] : s ∈ T (M), [t1, . . . , tm] ∈ Mf(T (N))}.

By Theorem 7.2.2, each rλ-term t possesses a unique normal form, indicated by
NF(t).

Given an ordinary λ-term M , it makes sense therefore to apply NF to each of
the simple terms occurring in its Taylor expansion, defining

NF(M∗) = Σs∈T (M)NF(s)

In [46] the authors go further, proving that this sum is equal to BT (M)∗, the
Taylor expansion of the Böhm tree of M . To give a meaning to this notion, we
need first to define T (B), when B is a Böhm tree. The easiest way to do this is
looking at a Böhm tree as an ideal of Λ⊥ (see §1). Now the definition of T (B)
comes in two steps: first adding the clause T (⊥) = ∅ we can translate all terms
in Λ⊥, which are the same thing as the finite Böhm trees. Then for an arbitrary
Böhm tree B we set T (B) = ∪{T (M) : M ∈ B} (this is a directed union since B is
an ideal). Of course, all these resource terms are normal. Given a Böhm tree B it
makes sense finally to define its Taylor expansion, as it has been done for ordinary
λ-terms: B∗ = Σs∈T (B)s.

Theorem 7.2.3 ([46]). Let M be an ordinary λ-term and let u be a normal simple
rλ-term. Then u ∈ T (BT (M)) if and only if there exists s ∈ T (M) such that u ∈
su(NF(s)). Moreover, when this simple term exists, it is unique, so that BT (M)∗ =
NF(M∗).

7.3 The category of sets and relations

We denote by Rel the category whose objects are all the sets and whose arrows are
the relations between them, so that Rel(A,B) = P(A × B) for all sets A,B. It is
well-known that Rel is a symmetric monoidal closed category. We briefly review the
definitions involved here. As already done before we adopt the conventions of using
letters α, β, γ, . . . for elements of a set A, letters a, b, c, . . . for elements of Pf(A) and
letters x, y, z, . . . for elements of P(A) in general.
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The composition of two morphisms R ∈ Rel(A,B) and S ∈ Rel(B,C) is
their usual relational composition: S · R = {(α, γ) ∈ A × C : ∃β ∈ B. (α, β) ∈
R and (β, γ) ∈ S}. The identity morphism of a set A is idA = {(α, α) : α ∈ A}.

The tensor product of two sets A,B is A ⊗ B = A × B. The unit of the
tensor product is the singleton set 1 = {∗}. The linear exponent if given by
A ⊸ B = A × B, the linear currying cur : Rel(C ⊗ A,B) → Rel(C,A ⊸ B)
is cur(R) = {(γ, (α, β)) : ((α, γ), β) ∈ R} and the linear evaluation morphism
ev : (A⊸ B) ⊗ A→ B is
ev = {(((α, β), α), β) : α ∈ A, β ∈ B}. The definition of tensor product can be ex-
tended to arbitrary countable families of sets in the obvious way.

The category Rel is also cartesian. The Cartesian product of two sets A1, A2

is A1NA2 = A1 ⊎ A2 and the projections πi ∈ Rel(A1NA2, Ai) (i = 1, 2) are given
by πi = {((i, γ), γ) : γ ∈ Ai}, i = 1, 2. For R ∈ Rel(C,A1) and S ∈ Rel(C,A2),
the pairing 〈R, S〉 ∈ Rel(C,A1NA2) is given by 〈R, S〉 = {(γ, (1, α)) : (γ, α) ∈
R} ∪ {(γ, (2, β)) : (γ, β) ∈ S}. The terminal object is ⊤ = ∅. More generally Rel
also has countable products.

It is also well-known that there exists a(t least one) comonad over Rel which is a
symmetric strong monoidal endofunctor on Rel. The best-known such comonad is
functor Mf( ) which takes a set A to the set Mf(A) of all finite multisets over A and
a relation R ∈ Rel(A,B) to the relation Mf(R) ∈ Rel(Mf(A),Mf(B)) given by
Mf(R) = {([α1, . . . , αk], [β1, . . . , βk]) ∈ Mf(A) ×Mf(B) : ∀i = 1, . . . , k. (αi, βi) ∈
R}. The digging for this comonad is the natural transformation whose compo-
nent at set A is the relation digA ∈ Rel(Mf(A),Mf(Mf(A))) given by digA =
{(X, [Y1, . . . , Yk]) : X = Σk

i=1Yi} and the dereliction is the natural transforma-
tion whose component at set A is the relation derA ∈ Rel(Mf(A), A) given by
derA = {([α], α) : α ∈ A}.

The fundamental (Seely) natural isomorphism ϕA,B : Mf(ANB) ∼= Mf(A) ⊗
Mf(B) then arises as the map ϕA,B([(1, α1), . . . , (1, αk), (2, β1), . . . , (2, βh)]) =
([α1, . . . , αk], [β1, . . . , βh]).

Then Rel a new-Seely category whose co-Kleisli category MRel is a ccc. We
describe explicitly the ccc-structure of MRel. In the sequel we will consider the
canonical bijection between Mf(ANB) and Mf(A) ⊗Mf(B) as an equality, hence
we will still denote by (a, b) the corresponding element of Mf(ANB)). Such a choice
makes the exposition easier to read.

The objects are again all the sets and the arrows from A to B are the relations
between Mf(A) and B so that MRel(A,B) = P(Mf(A) × B) for all sets A,B.
The composition of two morphisms R ∈ MRel(A,B) and S ∈ MRel(B,C) is
defined as S ◦ R = digA·!R · S = {(Σk

i=1ai, γ) ∈ Mf(A) × C : ∃k ≥ 0.∃β1, . . . , βk ∈
B. (ai, βi) ∈ R and ([β1, . . . , βk], γ) ∈ S}. The identity morphism of a set A is
idA = {([α], α) : α ∈ A}.

The Cartesian product “N” is the same as in Rel. The exponential object A⇒ B
of A and B is given by A⇒ B = Mf(A)×B, the currying cur : MRel(CNA,B) →
MRel(C,A ⇒ B) is cur(R) = {(c, (a, β)) : ([(a, c)], β) ∈ R} and the evaluation
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morphism ev : (A⇒ B)NA→ B is ev = {(([(a, β)], a), β) : a ∈ Mf(A), β ∈ B}.
Here the points of a set A are the relations between Mf(∅) and A and hence, up

to isomorphism, are the subsets of A. Observe that no object A of MRel, excluding
the terminal ⊤, has enough points, so that the category MRel is a category without
enough points.

For a set S, we denote by Mf(S)(ω) the set of all N-indexed sequences σ of
multisets over S with the property that σi = [ ] for all but a finite number of indices
i, where of course σi indicates the i-th element of σ.
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8
The relational semantics of ordinary

and resource lambda calculus

The category Rel of sets and relations is a quite standard denotational model of lin-
ear logic which underlies most denotational models of this system (coherence spaces,
hypercoherence spaces, totality spaces, finiteness spaces . . .). In this completely el-
ementary setting, a formula is interpreted as a set, and a proof of that formula is
interpreted as a subset of the set interpreting the formula.

Logical connectives are interpreted very simply: tensor product, par and linear
implication are interpreted as cartesian products direct product (with) and direct
sums (plus) are interpreted as disjoint union. The linear negation of a set is the
same set: it is a remarkable feature of linear logic that it admits such a “degenerate”
semantics of types, which is nonetheless non trivial in the sense that not all proofs
are identified.

Exponentials are traditionally interpreted by the operation which maps a set X
to the set of all finite multisets of elements of X (the origin of this idea can be
found in [54]). One might be tempted to use finite sets instead of finite multisets
since, in the coherence space semantics, the exponential can be interpreted by an
operation which maps a coherence space to the set of its finite cliques (with a
suitable coherence). In the relational model however, such an interpretation of the
exponentials based on finite sets is not possible as it leads to a dereliction which is
not natural (in the categorical sense).

With this standard multiset-based interpretation of exponentials, the relational
model interprets also the differential extensions of Linear Logic and of the lambda
calculus presented in [44, 45, 43] and the resource lambda calculus surveyed in §7,
Section 7.2; in the same chapter, Section 7.2.1, it is recalled that Taylor expanding
completely a λ-term M one obtains a (generally infinite) linear combination of re-
source terms and that, if one normalizes each resource term occurring in that formal
sum, one obtains the Taylor expansion of the Böhm tree of M .

This results implies that, in a denotational model which validates the Taylor
expansion formula in the sense that the interpretation of a λ-term M is equal to the
interpretation of its Taylor expansion, the interpretation of an unsolvable λ-term is
necessarily equal to 0 (i.e. the empty set). Since the multiset-based exponential of
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Rel validates the Taylor expansion formula, any model of the pure lambda calculus
in the corresponding Cartesian closed category, such as the model presented in
[27, 28], is bound to be sensible (at least if differential operations are interpreted in
the standard way). This seems to be a serious limitation in the equational expressive
power of this kind of semantics.

This problem arose during a general investigation undertaken in collaboration
with T. Ehrhard and A. Salibra, whise scope is to develop an algebraic setting for
differential extensions of the lambda calculus, in the spirit of [92].

In the present chapter (which surveys [32]) we discuss the issue of the equational
expressive power of the standard relational semantics (originated in [54]) and we
propose a generalization of it, by changing the usual multiset-based exponential.
We then prove that our solution overcomes the limitation imposed by the Taylor
expansion formula.

8.1 A denotational model of the Taylor formula

It is well-known that in the category MRel there exist a(t least one) reflexive object.
One such object is constructed as follows:

• U0 = ∅,

• Un+1 = Mf(Un)(ω),

• U = ∪n≥0Un.

Every element σ ∈ U is a sequence of finite multisets of U . We write a :: σ for the
element σ′ ∈ U such that σ′

1 = a and σ′
i+1 = σ′

i. We can now define the reflexive
object U = (U,ApU ,LamU) where

• ApU = {([(a, σ)], a :: σ) : a ∈ Mf(U), σ ∈ U} ∈ MRel(U ⇒ U,U),

• LamU = {([a :: σ], (a, σ)) : a ∈ Mf(U), σ ∈ U} ∈ MRel(U,U ⇒ U).

It is not difficult to check that LamU ◦ApU = idU and ApU ◦LamU = idU⇒U so that
in fact U is a model of the extensional lambda calculus.

It is also well-known that Eq(U) = H∗ (recall these notions from §2 and 1,
respectively), so that the object U has a sensible equational theory. One may now
ask a very general question about the relational semantics, i.e., the class of all
reflexive objects in the category MRel: whether or not there exists one such object
with a non-sensible equational theory. We will see that this is not the case: not
only every reflexive object U equates all unsolvable λ-terms, but is also equates the
terms having the same Böhm tree.

In order to prove such a claim, we need first to report some basic result on what
is probably the most interesting feature of the relational semantics: the fact that
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it models the resource lambda calculus and that it validates the Taylor expansion
formula. We will soon give meaning to such sentence.

The category MRel is not just a ccc. It also possesses the differential structure
needed to interpret the differential lambda calculus, as well as the resource lambda
calculus. We don’t explain here the details about differential structures in monoidal
and/or cartesian categories: we just point the interested reader to existing references
([29, 22, 23, 52]) for that matter.

Let now U be a set: in the rest of this chapter we will make lowercase greek letters
α, β, γ, . . . range over elements U and roman letters a, b, c, . . . range over Mf(U).

Recall from §2 the definition of interpretation |M |Ux̄ ∈ C(U x̄, U) of an ordinary
λ-term M with free variables FV(M) ⊆ x̄ in a reflexive object U = (U,Ap,Lam) of
a ccc C. In the case of the category MRel, in particular, this interpretation is the
following:

|xi|
U

x̄ = {(([ ] . . . , [α], . . . , [ ]), α) : α ∈ U}

|λy.M |Ux̄ = {(Σk
j=1āj, α) : ∃(b1, β1), . . . , (bk, βk) ∈ U ⇒ U. ((āj, bj), βj) ∈ |M |Ux̄,y

(j = 1, . . . , k), ([(b1, β1), . . . , (bk, βk)], α) ∈ Lam}

|MN |Ux̄ = {(Σh
i=1c̄i + Σk

j=1āj, α) : ∃β1, . . . , βk ∈ U.∃γ1, . . . , γh ∈ U.
(āj, βj) ∈ |N |Ux̄ , (j = 1, . . . , k), (c̄i, γi) ∈ |M |Ux̄ (i = 1, . . . , h),
([γ1, . . . , γh], ([β1, . . . , βk], α)) ∈ Ap}

As already anticipated the resource lambda calculus (with truth-values coef-
ficients) can be soundly interpreted in a reflexive object U of MRel. A simple
resource λ-term t with FV(t) ⊆ x̄ is mapped to a relation |t|Ux̄ ∈ MRel(U x̄, U) in
the following way:

|xi|
U

x̄ = {(([ ] . . . , [α], . . . , [ ]), α) : α ∈ U}

|λy.s|Ux̄ = {(Σk
j=1āj, α) : ∃(b1, β1), . . . , (bk, βk) ∈ U ⇒ U. ((āj, bj), βj) ∈ |s|Ux̄,y

(j = 1, . . . , k), ([(b1, β1), . . . , (bk, βk)], α) ∈ Lam}

|t[s1, . . . , sk]|
U

x̄ = {(Σh
i=1c̄i + Σk

j=1āj, α) : ∃β1, . . . , βk ∈ U.∃γ1, . . . , γh ∈ U.
(āj, βj) ∈ |sj|

U

x̄ , (j = 1, . . . , k), (c̄i, γi) ∈ |t|Ux̄
(i = 1, . . . , h), ([γ1, . . . , γh], ([β1, . . . , βk], α)) ∈ Ap}

Finally the interpretation is extended to arbitrary resource terms as follows:

• |0|Ux̄ = ∅,

• |Σh
i=1ti|

U

x̄ = ∪h
i=1|ti|

U

x̄ .

An equation t = s between resource λ-terms is (absolutely) satisfied in U, no-
tation U �abs t = s, iff |t|Ux̄ = |s|Ux̄ , where x̄ = FV(M) ∪ FV(N). The (resource)
equational theory of U is defined as Eqr(U) = {t = s : U �abs t = s}.
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88 8. The relational semantics of ordinary and resource lambda calculus

The word “soundly” that we used, referring to the interpretation of terms, is
motivated by the following theorem.

Theorem 8.1.1. The set Eqr(U) is a resource λ-theory.

Recall now from the definition of Taylor expansion that if M is an ordinary λ-
term with FV(M) = x̄, then for each t ∈ T (M) we have FV(t) = x̄. Then the Taylor
expansion itself can be interpreted in U by simply setting |Σt∈T (M)t|

U

x̄ = ∪t∈T (M)|t|
U

x̄ .
Fnally the following theorem precisely explains what we mean by saying that

the Taylor expansion formula holds in the category MRel.

Theorem 8.1.2. For any reflexive object U in MRel the following equation holds:

|M |Ux̄ = |Σt∈T (M)t|
U

x̄

The relational semantics is the collection of lambda algebras arising from reflex-
ive objects in MRel. One may now ask a very general question about the relational
semantics, i.e., the class of all reflexive objects in the category MRel: whether or
not there exists one such object with a non-sensible equational theory. We will see
that this is not the case: not only every reflexive object U equates all unsolvable
λ-terms, but it also equates the terms having the same Böhm tree.

The next theorem is a direct consequence of Theorem 8.1.2 and Theorem 7.2.3
(from §7). Recall from §1 that BT is the λ-theory equating all ordinary λ-terms
having the same Böhm tree.

Theorem 8.1.3. For any reflexive object U in MRel we have BT ⊆ Eq(U).

Proof. Let M,N be ordinary λ-terms and suppose BT (M) = BT (N). Then of
course BT (M)∗ = BT (N)∗ and in turn Σt∈T (M)NF(t) = Σs∈T (N)NF(s), by Theo-
rem7.2.3. Now we have

|M |Ux̄ = |Σt∈T (M)t|
U

x̄ , by Theorem 8.1.2,
= |Σt∈T (M)NF(t)|Ux̄
= |Σs∈T (N)NF(s)|Ux̄
= |Σt∈T (N)t|

U

x̄

= |N |Ux̄

Theorem 8.1.3 states the (large) incompleteness of the standard relational se-
mantics: more precisely this semantics omits all λ-theories strictly below BT . In
the next section we will se how the relational semantics can be generalized in order
to overcome the limitation stated in Theorem 8.1.3.

We conclude this section by presenting interpretation of terms in a reflexive
object U = (U,Ap,Lam) as a typing system by simply generalizing De Carvalho’s
system R [40]. A type is an element of U . A typing context is a finite partial function
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from variables to Mf(U); they are indicated as sequences x1 : a1, . . . , xn : an, where
{x1, . . . , xn} is the domain of the context, and ranged over by capital greek letters
like Γ,∆; if Γ = x1 : a1, . . . , xn : an, then clearly Γ(xi) = ai. If Γ1, . . . ,Γk are
contexts with the same domain x1, . . . , xn then Σk

i=1Γi is the context with domain
x1, . . . , xn assigning to xi the multiset sum Σk

i=1Γi(xi).
The typing judgements are of the form Γ �

U M : α, to be read as the “term M
can be assigned type α in the context Γ according to the typing determined by U”.
We omit the superscript U when the underlying reflexive object will be clear from
the context. The typing rules are the followings:

[var]
x1 : [ ], . . . , xi : [α], . . . , xn : [ ] � xi : α

Γj, y : bj �
U M : βj (j = 1, . . . , k) ([(b1, β1), . . . , (bk, βk)], α) ∈ Lam

[abs]
Σk

j=1Γj � λy.M : α

Γi �M : γi (i = 1, . . . , h) ∆j �N : βj (j = 1, . . . , k) ([γ1, . . . , γh], ([β1, . . . , βk], α)) ∈ Ap
[app]

Σh
i=1∆i + Σk

j=1Γj �MN : α

The precise sense in which interpretation can be seen as typing is stated in the
following proposition.

Proposition 8.1.4. For all λ-terms M with FV(M) ⊆ x̄ = x1, . . . , xn and all
ā = a1, . . . , an ∈ Mf(U)n, and all α ∈ U we have (ā, α) ∈ |M |Ux̄ iff x1 : a1, . . . , xn :
an �

U M : α.

Proof. By induction on the structure of M .

8.2 Exponentials with infinite multiplicities

We saw in Section 8.1 that every reflexive object in the category MRel validates
the Taylor expansion formula in the sense that the interpretation of a λ-term M is
equal to the interpretation of its Taylor expansion, causing every model in MRel
to be sensible.

The present section proposes an exit way to this limitation, by introducing new
exponential operations on the category Rel. The idea is quite simple: we replace the
set N of natural numbers (which are used for counting multiplicities of elements in
multisets) with more general semi-rings which typically contain “infinite elements”
ω such that ω+1 = ω. Mutatis mutandis, the various structures of the exponentials
(functorial action, dereliction, etc.) are interpreted as with the ordinary multiset-
based exponentials. For these structures to satisfy the required equations, some
rather restrictive conditions have to be satisfied by the considered semi-ring: the
semi-rings which satisfy these conditions are called “multiplicity semi-rings”. We
show that such a semi-ring must contain N and we exhibit multiplicity semi-rings
with infinite elements.
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In these models with infinite multiplicities, the differential constructions are
available but the Taylor formula does not hold. It is possible to find morphisms
f : A → B (in the associated cartesian closed category) which are 6= 0 but are
such that, for all n ∈ N, the n-th derivative f (n)(0) : An → B is equal to 0. The
Taylor expansion of such a function is the 0 map, and hence the function is different
from its Taylor expansion. This is analogous to the well-known smooth (C∞) map

f : R → R defined by f(0) = 0 and f(x) = e−
1
|x| for x 6= 0: all the derivatives of f

at 0 are equal to 0 and hence there is no neighborhood of 0 where f coincides with
its Taylor expansion at 0. In some sense, f is infinitely flat at 0, and we obtain a
similar effect with our infinite multiplicities. For any multiplicity semi-ring which
contains an infinite element, we build a model of the pure lambda calculus which is
not sensible.

Definition 8.2.1. A multiplicity semi-ring A = (A, ·,+, 0, 1) is a commutative
semi-ring which satisfies the following properties:

(MS1) if n1 + n2 = 0, then n1 = n2 = 0

(MS2) if n1 + n2 = 1, then either n1 = 0 or n2 = 0

(MS3) if n1 + n2 = m1 +m2, then there exists a matrix M ∈ A2,2 such that

M12 =

(
n1

n2

)
and M⊥12 =

(
m1

m2

)

(MS4) if nm = p1 + p2, then there exists a vector V ∈ A2,1 and a matrix M ∈ A2,2

such that

1⊥
2 V = n and MV =

(
p1

p2

)
and M⊥12 =

(
m
m

)

As a matter of terminology we say that a semiring:

• is positive if it has property (MS1),

• is discrete if it has property (MS2),

• has the additive splitting property if it has property (MS3),

• has the multiplicative splitting property if it has property (MS4).

The motivations for Condition (MS4) is mainly technical: it is essential in the
proof of Lemma 8.3.5. It has also an intuitive content, describing what happens
when an element of A can be written both as a sum and as a product. The proof
that this property holds in N is based on Euclidean division. We conjecture that
this property is independent from Conditions (MS1), (MS2) and (MS3).
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The splitting conditions are expressed in a sort of binary way but they can be
generalized to arbitrary arities.

Notational convention for indices. We shall use quite often multiple indices,
written as subscript as in “aijk” which has three indices i, j and k. When there are
no ambiguities, these indices will not be separated by commas. We insert commas
when we use multiplication on these indices, as in “ai,2j,k” for instance.

We first generalize condition (MS3).

Lemma 8.2.1. Let A be a semi-ring satisfying (MS3). Then the following general-
ized version of (MS3) holds in A

(MS3)’ if Σl
i=1ni = Σr

j=1pj, then there exists a matrix S ∈ Al,r such that

S1r =




n1

...
nl



 and S⊥1l =




p1

...
pr





Proof. Assume first that l = 2 and let us prove the result by induction on r. For

r = 1 one takes S =

(
n1

n2

)
. Assume that the property holds for r and let us prove

it for r + 1. If n1 + n2 = Σr
j=1pj + pr+1 by applying condition (MS3) we can find a

matrix T = (tij) ∈ A2,2 such that

T12 =

(
n1

n2

)
and T⊥12 =

(
Σr

j=1pj

pr+1

)

In particular we have t11 + t12 = Σr
j=1pj. By inductive hypothesis we can a matrix

U = (uij) ∈ A2,r such that

U1r =

(
t11
t12

)
and U⊥12 =




p1

...
pr





Then we define a matrix V ∈ A2,r+1 by setting

V =

(
u11 · · · u1r t12
u21 · · · u2r t22

)

It is easy to check that V is the desired matrix.

Now we prove the result for an arbitrary value of l by induction on this parameter.
For l = 1 we set S =

(
p1 · · · pr

)
. Assume that the result holds for l and let us

prove it for l+1. By assumption we have Σl
i=1ni+nl+1 = Σr

j=1pj so we can apply the
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property that we just proved (where l = 2 and r is arbitrary). Let T = (tij) ∈ A2,r

be a matrix such that

T1r =

(
Σl

i=1ni

nl+1

)
and T⊥12 =




p1

...
pr





In particular we have Σl
i=1ni = Σr

j=1t1j and nl+1 = Σr
j=1t2j. By inductive hypothesis

we can find a matrix U = (uij) ∈ Al,r such that

U1r =




n1

...
nl



 and U⊥1l =




t11
...
tr1





Then we define a matrix V ∈ Al+1,r by setting

V =





u11 · · · u1r

...
. . .

...
ul1 · · · ulr

t21 · · · t2r





It is easy to check that V is the desired matrix.

Along the same lines we generalize condition (MS4).

Lemma 8.2.2. Let A be a semi-ring satisfying (MS3) and (MS4). Then the fol-
lowing generalized version of (MS4) holds in A

(MS4)’ if mp = Σk
i=1ni, then there exists a vector P ∈ Al,1 and a matrix M ∈ Ak,l

with l = 2k−1 such that

1⊥
l P = p and MP =




n1

...
nk



 and M⊥1k =




m
...
m





Proof. We proceed by induction on k. For k = 1 one has l = 1 and takes P = (p)
and M = (m).

Assume that the result holds for k, let l = 2k−1, and let us prove the statement
for k+1. Suppose mp = Σk−1

i=1 ni +(nk +nk+1). By inductive hypothesis we can find
a vector P = (pi) ∈ Al,1 and a matrix M = (mij) ∈ Ak,l such that

1⊥
l P = p and MP =





n1

...
nk−1

nk + nk+1




and M⊥1k =




m
...
m
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In particular we have Σl
j=1mkjpj = nk +nk+1 and hence by Lemma 8.2.1 we can find

a matrix R = (rij) ∈ Al,2 such that

R12 =




mk1p1

...
mklpl



 and R⊥1l =

(
nk

nk+1

)

In particular we have pjmkj = rj1 + rj2 for each j = 1, . . . , l and thus by condition

(MS4) for each j = 1, . . . , l we can find a vector V j =

(
vj

1

vj
2

)
∈ A2,1 and a matrix

Sj = (sj
it) ∈ A2,2 such that

1⊥
2 V

j = pj and SjV j =

(
rj1

rj2

)
and (Sj)⊥12 =

(
mkj

mkj

)

Hence in particular we have ni = Σl
j=1mij(v

j
11 + vj

21) for each i = 1, . . . , k − 1 and

nk = Σl
j=1rj1 = Σl

j=1s
j
11v

j
1 + sj

21v
j
2 and nk+1 = Σl

j=1rj1 = Σl
j=1s

j
12v

j
1 + sj

22v
j
2.

Finally let us define a vector U ∈ A2l,1 by setting

U =





v1
1

v1
2
...
vl

1

vl
2





and let us define a matrix T ∈ Ak+1,l

T =





m11 m11 · · · m1l m1l

...
...

. . .
...

...
mk−1,1 mk−1,1 · · · mk−1,l mk−1,l

s1
11 s1

21 · · · sl
11 ml

21

s1
21 s1

22 · · · sl
21 ml

22





Then U and T are the vector and the matrix we were looking for since

1⊥
l U = p and TU =




n1

...
nk



 and T⊥1k =




m
...
m





Proposition 8.2.3. Any multiplicity semi-ring A contains an isomorphic copy of
N.
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Proof. One defines a map f : N → A by induction on natural numbers by setting
f(0) = 0 and f(n + 1) = f(n) + 1, that is f(n) = Σn

i=11. This map is a semi-ring
morphism as easily checked by induction on natural numbers again. We prove that
f is injective, so let p ∈ N and let us prove that f(n) = f(n + p) implies p = 0 by
induction on n. For n = 0 assume that Σp

i=11 = 0. Applying condition (MS1) we
get easily p = 0 (by induction on p actually). Assume now that Σn+1+p

i=1 1 = Σn+1
i=1 1,

that is Σn+1+p
i=1 1 = Σn

i=11 + 1. By condition (MS3) one can find r11, r12, r21, r22 ∈ A
such that n + p = r11 + r12, 1 = r21 + r22, n = r11 + r21, and 1 = r12 + r22. By
condition (MS2) there are two cases to consider:

• either r22 = 1 and r21 = r12 = 0

• or r22 = 0 and r21 = r12 = 1

In both cases we have n+ p = n and hence p = 0 by inductive hypothesis.

We shall simply say that A contains N, that is N ⊆ A. In particular, a multi-
plicity semi-ring cannot be finite. An element m ∈ A will be said to be infinite if
m = m+ 1.

The elements of a multiplicity semi-ring should be considered as generalized
natural numbers. We give here examples of such semi-rings.

The most canonical example of multiplicity semi-ring is the set N of natural
numbers, with the ordinary addition and multiplication. Of course N has no infinite
element.

Proposition 8.2.4. N is a multiplicity semi-ring.

Proof. Let us check condition (MS3), so let n1, n2, p1, p2 ∈ N be such that n1 +n2 =
p1+p2 and let q be this common value. Pick arbitrarily sets I1, I2, J1, J2 ⊆ {1, . . . , q}
of respective cardinality n1, n2, p1, p2. It suffices to take rij = ♯(Ii ∩ Jj).

We now prove condition (MS4). We apply Euclidean division by p and we get
n1 = q1p+ r1 and n2 = q2p+ r2 where r1, r2 < p. We have r1 + r2 = p(m− q1 − q2),
and since r1, r2 < p, we must have either m− q1 − q2 = 0 or m− q1 − q2 = 1.

In the first case we have r1 = r2 = 0. Pick p1, p2 ∈ N such that p1 + p2 = p. Set
m11 = m12 = q1 and m21 = m22 = q2. Then we have m11 +m21 = m12 +m22 = m,
p1m11 +p2m12 = p1q1 +p2q1 = pq1 = n1 and p1m21 +p2m22 = p1q2 +p2q2 = pq2 = n2

as required.
Assume now thatm−q1−q2 = 1. We set p1 = r1, p2 = r2, m11 = q1+1, m12 = q1,

m21 = q2 and m22 = q2 + 1. We have m11 + m21 = m12 + m22 = q1 + q2 + 1 = m.
Next we have p1m11 + p2m12 = r1(q1 + 1) + r2q1 = (r1 + r2)q1 + r1 = pq1 + r1 = n1.
Similarly we have p1m21 + p2m22 = n2, as required.

Let N = N∪{ω} be the completed set of natural numbers. We extend addition to
this set by n+ω = ω+n = ω, and multiplication by 0ω = ω0 = 0 and nω = ωn = ω
for n 6= 0, so that N has exactly one infinite element, namely ω.

Demo Version, http://www.verydoc.com and http://www.verypdf.com



8.2. Exponentials with infinite multiplicities 95

Proposition 8.2.5. N is a multiplicity semi-ring.

Proof. We check condition (MS3), so assume that n1 + n2 = p1 + p2 = q. If q 6= ω,
then we have ni, pj ∈ N for each i, j and we use condition (MS3) for N. Assume
that q = ω. Without loss of generality we can assume that n1 = p1 = ω. We can
take r11 = ω, r22 = 0, r12 = p2 and r21 = n2. Last we check condition (MS3), so
assume that pm = n1 + n2 = q. Assume first that q ∈ N. If qN0 we know that
p,m, n1, n2 ∈ N and we can use condition (MS4) in N. If q = 0, then n1 = n2 = 0
and we must have m = 0 or p = 0. If p = ω and m = 0 then we can take p1 = ω,
p2 = 0, m11 = m12 = m21 = m22 = 0. If p = 0 and m = ω, we take p1 = p2 = 0,
m11 = m21 = ω and m12 = m22 = 0. We are left with the case were q = ω. Without
loss of generality we can assume that n1 = ω, and of course we must have m 6= 0
and p 6= 0. Assume first that p = ω. Then we can take p1 = ω, p2 = n2, m11 = m,
m21 = 0, m12 = m′ such that m′ + 1 = m and m22 = 1. Assume last that m = ω.
Then we can take p1 = p′ with p′ + 1 = p, p2 = 1, m11 = ω, m21 = ω, m12 = ω and
m22 = n2.

A more interesting example is N2 = (N+ × N) ∪ {0}. The element (n, d) of this
set (with n 6= 0) will be denoted as nωd. We extend this notation to the case where
n = 0, identifying 0ωd with 0, which is quite natural with these notations. Addition
is defined as follows (0 being of course neutral for this operation)

nωd +mωe =






(n+m)ωd if d = e
nωd if n 6= 0 and e < d
mωe if m 6= 0 and d < e

and multiplication is defined by (nωd)(mωe) = nmωd+e. This semi-ring has
infinitely many infinite elements: all the elements nωd of N2 with n 6= 0 and d 6= 0
are infinite.

Proposition 8.2.6. N2 is a multiplicity semi-ring.

Proof. A simple case analysis shows that this addition is associative and, obviously,
commutative. Distributivity is easily checked as well, so that we have defined a
semiring. Observe that ω+1 = ω, but ω+ω 6= ω and actually, unlike in N, the only
element n ∈ N2 such that n+ n = n is 0.

Let us check property (MS3), so assume that n1ω
d1 + n2ω

d2 = p1ω
e1 + p2ω

e2 . If
d1 = d2 and e1 = e2, we are reduced to the splitting property of N. If d1 = d2 and
e1 > e2, then we have (n1 +n2)ω

d1 = p1ω
e1 . Then a matrix works for our purpose is

(
n1ω

d1 p2ω
e2

n2ω
d1 0

)

The last case to consider (up to commutativity of addition) is d1 > d2 and e1 > e2.
Then we know that n1ω

d1 = p1ω
e1 . Then a matrix works for our purpose is
(
n1ω

d1 p2ω
e2

n2ω
d2 0

)
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Let us check condition (MS4), so assume that mωcpωe = n1ω
d1 + n2ω

d2 . If
d1 = d2 then we are reduced to the property (MS4) of N. Assume d2 < d1 (and of
course n1 6= 0 and n2 6= 0). So we have pmωe+c = n1ω

d1 . Our goal is to find a vector
V and a matrix M with

1⊥
2 V = pωe and MV =

(
n1ω

d1

n2ω
d2

)
and M⊥12 =

(
mωc

mωc

)

We consider several cases.

(c ≤ d2) Then we set V =

(
pωe

n2ω
d2−c

)
and M =

(
mωc (m− 1)ωc

0 ωc

)

(c > d2, e > 0) Then we set V =

(
pωe

n2

)
and M =

(
mωc mωc

0 ωd2

)

(c > d2, e = 0) Then we set V =

(
1

p− 1

)
and M =

(
mωc mωc

n2ω
d2 0

)

By direct calculation it is possible to check that in each case the vector and the
matrix chosen work for the purpose.

We also give a non-example: the semi-ring 2 of truth values (see §7) is not a
multiplicity semi-ring, since it does not satisfy property (MS1).

8.3 An exponential functor based on multiplicity

semi-rings

The following is the definition of what we will prove to be an endofunctor on Rel
parameterized by the choice of a multiplicity semi-ring, one of whose instances is the
bang sending a set to the set of its finite multisets, already defined on Rel. From
now on A denotes a multiplicity semi-ring.

Definition 8.3.1. For a set X we define !AX = A〈X〉 and for a relation R ∈
Rel(X, Y ), we define !AR ∈ Rel(!AX, !AY ) as the set of all pairs (µ, ν) such that
one can find σ ∈ A〈X × Y 〉 with su(σ) ⊆ R and

∀x ∈ X. µ(x) =
∑

y∈Y

σ(x, y) and ν(y) =
∑

x∈X

σ(x, y) (∗)

We say a σ satisfying property (∗) is a witness of (µ, ν) for R. Observe that all
these sums are finite because σ ∈ A〈X × Y 〉.

Warning: in the rest of the chapter we will drop the subscript from the nota-
tion !A(−). In fact the particular choice of the multiplicity semi-ring with which

Demo Version, http://www.verydoc.com and http://www.verypdf.com



8.3. An exponential functor based on multiplicity semi-rings 97

implement the exponential functor will not matter: all subsequent results do hold
whatever multiplicity semi-ring A is chosen.

Recall that for R ∈ Rel(X, Y ) and S ∈ Rel(Y, Z) we denote as R;S = S · R =
Rel(X,Z) = {(x, z) ∈ X × Z : ∃y ∈ Y. x R y S z} the relational composition of R
and S.

Lemma 8.3.1. !(−) : Rel → Rel is an endofunctor on Rel.

Proof. It is clear from this definition that !idX = id!X . We now prove that !(S ·R) =
!S·!R. First let (µ, π) ∈!(S · R). Let ϕ be a witness of (µ, π) for S · R. For
each (x, z) ∈ S · R, let us choose f(x, z) ∈ Y such that (x, f(x, z)) ∈ R and
(f(x, z), z) ∈ S. Let ν ∈ A〈Y 〉 be given by

ν(y) =
∑

f(x,z)=y

ϕ(x, z)

This sum is finite because ϕ has a finite support. Moreover if y ∈ su(ν) then we
must have y = f(x, z) for some (x, z) ∈ su(ϕ) and there are only finitely many such
pairs (x, z) so ν has finite support: ν ∈!Y . We check that (µ, ν) ∈!R, and for this
we exhibit a witness, namely σ ∈ A〈X × Y 〉, given by

σ(x, y) =
∑

f(x,z)=y

ϕ(x, z)

Indeed we have

∀x ∈ X.
∑

y∈Y

σ(x, y) =
∑

y∈Y

∑

f(x,z)=y

ϕ(x, z) =
∑

(x,z)∈R

ϕ(x, z) = µ(x)

∀y ∈ Y.
∑

x∈X

σ(x, y) =
∑

x∈X

∑

f(x,z)=y

ϕ(x, z) =
∑

f(x,z)=y

ϕ(x, z) = ν(y)

One checks similarly that (ν, π) ∈!S and hence (µ, π) ∈!S·!R.
Conversely, let (µ, π) ∈!S·!R. Let ν ∈!Y be such that (µ, ν) ∈!R and (ν, π) ∈!S

and let σ ∈ A〈X × Y 〉 and τ ∈ A〈X × Y 〉 be corresponding witnesses. Let y ∈ Y ;
we have ∑

x∈X

σ(x, y) =
∑

z∈Z

τ(y, z) = ν(y)

By Lemma 8.2.1, we can find ϕy ∈ A〈X × Y 〉 such that

∀x ∈ X. σ(x, y) =
∑

z∈Z

ϕy(x, z) and ∀x ∈ X. τ(y, z) =
∑

x∈X

ϕy(x, z)

Let ϕ =
∑

y∈su(ν) ϕ
y. Let x ∈ X, we have

µ(x) =
∑

y∈Y

σ(x, y) =
∑

y∈Y

∑

z∈Z

ϕy(x, z) =
∑

z∈Z

∑

y∈Y

ϕy(x, z) =
∑

z∈Z

ϕ(x, z)
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Similarly one show that π(z) = Σx∈Xϕ(x, z). Last observe that if (x, z) ∈ su(ϕ),
one has (x, z) ∈ su(ϕy) for some y. For such a y we have (x, y) ∈ su(σ) ⊆ R and
(y, z) ∈ su(τ) ⊆ S. This shows that su(ϕ) ⊆ S · R, so that ϕ is a witness of (µ, π)
for S ·R, and hence (µ, π) ∈!(S ·R).

Lemma 8.3.2. Let R ⊆ X × Y and let (µi, νi) ∈!R and pi ∈ A, for i = 1, . . . , n.
Then (Σn

i=1piµi,Σ
n
i=1piνi) ∈!R.

Proof. For each i, choose a witness σi of (µi, νi) for R. Then Σn
i=1piσi is a witness

of (Σn
i=1piµi,Σ

n
i=1piνi) for R.

8.3.1 Comonad structure of the new exponential modality

We introduce the fundamental comonadic structure of the exponential functor, which
consists of two natural transformations usually called dereliction (the counit of the
comonad) and digging (the comultiplication of the comonad). This entire subsection
is devote to the proofs of the comonad axioms and such proof is articulated in
several lemmas: three of them (8.3.3, 8.3.6, 8.3.8) contain the principal results and
the others (8.3.4, 8.3.5, 8.3.7) are strictly technical, so the reader may rapidly skim
through them.

Dereliction. We set derX = {([α], α) : α ∈ X} ∈ Rel(!X,X).

Lemma 8.3.3. der : ! ⇒ id is a natural transformation.

Proof. Let R ∈ Rel(X, Y ). We must show that R · derX = derY ·!R. Let µ ∈!X and
y ∈ Y . Assume first that (µ, y) ∈ R · derX ; this means that there exists x ∈ X such
that (µ, x) ∈ derX and (x, y) ∈ R. Hence we have µ = [x]. We have ([x], [y]) ∈!R
and hence also (µ, y) ∈ derY ·!R.

Conversely assume that (µ, y) ∈ derY ·!R, so that (µ, [y]) ∈!R, and let σ ∈
A〈X × Y 〉 be a witness. We have Σx∈Xσ(x, y′) = [y](y′) for each y′ ∈ Y . By
conditions (MS1) and (MS2) one has σ(x, y′) = 0, for all x ∈ X and all y′ 6= y,
and there exists x ∈ X such that σ(x, y) = 1 and σ(x′, y) = 0 for all x′ 6= x. We
have therefore µ = [x]. Since (x, y) ∈ R, this shows that (µ, y) ∈ R · derX because
([x], x) ∈ derX .

Let’s take 2 as semi-ring of coefficients. Then !2X ∼= Pf(X) is indeed an end-
ofunctor on Rel but 2 is not a multiplicity semi-ring since it does not satisfy con-
dition (MS2). As a consequence of this fact if we define a dereliction morphism as
derX = {({α}, α) : α ∈ X}, then we don’t get a natural transformation, as pointed
out by T. Ehrhard.
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Example 8.3.1. The naturality diagram does not commute for A = {α1, α2} and
B = {β} and the relation R = {(α1, β), (α2, β)}.

!A
!R

//

derA

��

!B

derB

��

A
R

// B

In fact ({α1, α2}, β) ∈ derB·!R−R · derA.

The digging operation is more problematic and some preliminaries are required.

Lemma 8.3.4. Let X, Y be sets and let R ⊆ X × Y . Let ν1, ν2 ∈!Y and µ ∈!X. If
(µ, ν1 +ν2) ∈!R, then one can find µ1, µ2 ∈!X such that µ1 +µ2 = µ and (µi, νi) ∈!R
for i = 1, 2.

Proof. Let σ ∈ A〈X × Y 〉 be a witness of (µ, ν) for R and let y ∈ Y . We have
ν1(y) + ν2(y) = Σx∈Xσ(x, y). By Lemma 8.2.1 we can find ϕy

i ∈ A〈X〉 (for i = 1, 2)
such that νi(y) = Σx∈Xϕ

y
i (x) (for i = 1, 2) and σ(x, y) = ϕy

1(x) + ϕy
2(x). Let

σi(x, y) = ϕy
i (x). Then σ1(x, y) + σ2(x, y) = σ(x, y) and this shows that su(σi) ⊆ R

(for i = 1, 2) using condition (MS1). We have Σx∈Xσi(x, y) = νi(y) for all y ∈ Y
(for i = 1, 2). We set µi(x) = Σy∈Y σi(x, y). Then µi ∈!X (for i = 1, 2) since σi has
finite support. Moreover (µi, νi) ∈!R with witness σi (for i = 1, 2). We conclude
because µ1(x) + µ2(x) = Σy∈Y (σ1(x, y) + σ2(x, y)) = Σy∈Y σ(x, y) = µ(x).

Given M ∈!!X, we define Σ(M) ∈!X as follows:

Σ(M) =
∑

µ∈!X

M(µ)µ

Since M has finite support, this sum is actually a finite sum (the linear combi-
nation with coefficients M(µ) ∈ A is taken in the module !X).

Digging. We set digX = {(Σ(M),M) : M ∈ !!X} ∈ Rel(!X, !!X).

The next lemma is the main tool for proving the naturality of digging. It com-
bines the two generalized splitting properties (MS3)’ and (MS4)’ of A.

Lemma 8.3.5. Let X, Y be sets and let R ⊆ X×Y be finite. There exists q(R) ∈ N

with the following property: for any µ ∈!X, π ∈!Y and p ∈ A if (µ, pπ) ∈!R

then one can find p1, . . . , pq(R) ∈ A and µ1, . . . , µq(R) ∈!X such that Σ
q(R)
j=1 pj = p,

Σ
q(R)
j=1 pjµj = µ and (µj, π) ∈!R for each j = 1, . . . , q(R).
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Proof. Let I = {x ∈ X : ∃y ∈ Y. (x, y) ∈ R} and J = {y ∈ Y : ∃x ∈ X. (x, y) ∈ R}.
Given y ∈ J , let degy(R) = ♯{x ∈ X : (x, y) ∈ R} − 1 ∈ N and degy(R) =
Σy∈J degy(R). We prove the result by induction on deg(R).

Assume first that deg(R) = 0, so that, for any y ∈ J , there is exactly one x ∈ I
such that (x, y) ∈ R: let us define g : J → I to be the surjective function associating
each y ∈ J to that one x ∈ I, so that R = {(g(y), y) : y ∈ J}. Let σ be a witness
of (µ, pπ) for R. For all y ∈ J we have pπ(y) = Σx∈Xσ(x, y) = σ(g(y), y) and for all
x ∈ I we have µ(x) = Σg(y)=xσ(x, y) = pΣg(y)=xπ(y). Let τ ∈ A〈X × Y 〉 be defined
by

τ(x, y) =

{
π(y) if g(y) = x
0 otherwise

then clearly su(τ) ⊆ R and τ is a witness of (µ′, π) for R, where µ′ ∈!X is given
by µ′(x) = Σg(y)=xπ(x). Since pµ′ = µ, we obtained the required property (with
q(R) = 1, p1 = p and µ1 = µ′).

Assume now that deg(R) > 0 and let us pick some y ∈ J such that k = deg(R)y+
1 > 1. Let x1, . . . , xk be a repetition-free enumeration of the elements x of I such
that (x, y) ∈ R. We have

pπ(y) =
k∑

i=1

σ(xi, y)

Let l = 2k−1. By Lemma 8.2.2 there exists a vector V ∈ Al,1 and a matrix
M ∈ Ak,l such that

1T
l V = p and MT1k =




π(y)
...

π(y)



 and MV =




σ(x1, y)

...
σ(xk, y)





Let y1, . . . , yk be pairwise distinct new elements which do not belong neither to
X nor to Y and let Y ′ = (Y −{y})∪{y1, . . . , yk}. We define a new relation to which
we’ll be able to apply the inductive hypothesis as follows:

S = {(x, y′) ∈ R : y′ 6= y} ∪ {(xi, yi) : i = 1, . . . , k}

Then we have deg(S) = deg(R) − k + 1 < deg(R). Let τ ∈ A〈X × Y ′〉 be given by

τ(x, z) =






σ(x, z) if z 6∈ {y1, . . . , yk}
σ(xi, y) if z = yi and x = xi

0 otherwise

Let

V =




p1

...
pl



 and M =




m11 . . . m1l

...
. . .

...
mk1 . . . mkl
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It is clear that su(τ) ⊆ S. Moreover τ is a witness of (µ,Σl
j=1pjπj) for S, where

πj ∈!Y ′ is given by

πj(z) =

{
π(z) if z 6∈ {y1, . . . , yk}
mij if z = yi

for each j ∈ {1, . . . , l}. Indeed for x ∈ X we have

∑
z∈Y ′ τ(x, z) =

∑
z∈Y ′−{y1,...,yk}

τ(x, z) +
∑k

i=1 τ(x, yi)

=
∑

z∈Y ′−{y1,...,yk}
σ(x, z) +

∑k
i=1 δx,xi

σ(xi, y)

=
∑

z∈Y ′−{z1,...,zk}
σ(x, z) + σ(x, y)

=
∑

y∈Y σ(x, y)

= µ(x)

and for z ∈ Y ′ − {y1, . . . , yk} we have

∑

x∈X

τ(x, z) =
∑

x∈X

σ(x, z) = pπ(z) =
l∑

j=1

pjπj(z)

since πj(z) = π(z) (for j = 1, . . . , l) and Σl
j=1pj = p and last for z = yi (with

i = 1, . . . , l), we have

∑

x∈X

τ(x, z) = σ(xi, y) =
l∑

j=1

pjmij =
l∑

j=1

pjπj(z)

By Lemma 8.3.4, since (µ,Σl
j=1pjπj) ∈!S, we can find µ1, . . . , µl ∈!X such that

Σl
j=1µj = µ and (µj, pjπj) ∈!S for each j = 1, . . . , l. Since deg(S) < deg(R), we

can apply the inductive hypothesis for each j = 1, . . . , l. So we can find a family
(pjs)

l,q(S)
j=1,s=1 of elements of A such that such pj = Σ

q(S)
s=1 pjs and we can find a family

(µjs)
l,q(S)
j=1,h=1 of elements of !X such that µj = Σ

q(S)
s=1 pjsµjs and moreover (µjs, πj) ∈!S

for each j = 1, . . . , l and s = 1, . . . , q(S). We conclude the proof by showing that
(µjs, π) ∈!R. Let τjs ∈ A〈X×Y ′〉 be a witness of (µjs, πj) for S. Let σjs ∈ A〈X×Y 〉
be given by

σjs(x, y
′) =

{
τjs(x, y

′) if y′ 6= y
Σk

i=1τjs(x, yi) if y′ = y

For y′ ∈ Y −{y} we have Σx∈Xσjs(x, y
′) = Σx∈Xτjs(x, y

′) = πj(y
′) = π(y′). Next

we have ∑
x∈X σjs(x, y) =

∑
x∈X

∑k
i=1 τjs(x, yi)

=
∑k

i=1

∑
x∈X τjs(x, yi)

=
∑k

i=1 πj(yi)

=
∑k

i=1mij

= π(y)
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On the other hand we have
∑

y′∈Y σjs(x, y
′) =

∑
y′∈Y −{y} σjs(x, y

′) + σjs(x, y)

=
∑

y′∈Y −{y} τjs(x, y
′) +

∑k
i=1 τjs(x, yi)

=
∑

y′∈Y τjs(x, z)

= µjs(x)
= π(y)

It remains to prove that su(σjs) ⊆ R, but this results immediately from the definition
of σjs and from the fact that su(τjs) ⊆ S. Observe that we can take q(R) = l · q(S),
so that in general q(R) = 2deg(R).

Lemma 8.3.6. dig : ! ⇒!! is a natural transformation.

Proof. Let X, Y be sets and let R ⊆ X × Y . Let (µ,Π) ∈!X×!!Y .
Assume first that (µ,Π) ∈!!R · digX . Let M ∈!!X be such that (M,Π) ∈!!R and

(µ,M) ∈ digX , that is Σ(M) = µ. Let Θ ∈ A〈!X×!Y 〉 be a witness of (M,Π) for
!R. This means that

∀µ′ ∈!X. M(µ′) =
∑

π′∈!Y

Θ(µ′, π′)

∀π′ ∈!Y. Π(π′) =
∑

µ′∈!X

Θ(µ′, π′)

Since su(Θ) ⊆!R by Lemma 8.3.2 we have

( ∑

µ′∈!X,π′∈!Y

Θ(µ′, π′)µ′,
∑

µ′∈!X,π′∈!Y

Θ(µ′, π′)π′
)
∈!R

that is (Σ(M),Σ(Π)) ∈!R. Therefore (µ,Π) ∈ digY ·!R since (Σ(Π),Π) ∈ digY .
Conversely, assume that (µ,Π) ∈ digY ·!R, that is (µ,Σ(Π)) ∈!R and in turn

(µ,Σπ∈!Y Π(π)π) ∈!R. Let R0 ⊆ R be finite and such that (µ,Σπ∈!Y Π(π)π) ∈!R0.
Such an R0 exists because µ and Π have finite support. By Lemma 8.3.4, one can
find a family (µπ)π∈su(Π) of elements of !X such that µ = Σπ∈su(Π)µ

π and ∀π ∈
su(Π). (µπ,Π(π)π) ∈!R0. Applying Lemma 8.3.5, for each π ∈ su(Π), we can find a

family (µπ
i )

q(R0)
i=1 of elements of !X and a family (pπ

i )
q(R0)
i=1 of elements of A such that

q(R0)∑

i=1

pπ
i = Π(π) and

q(R0)∑

i=1

pπ
i µ

π
i = µπ and ∀i = 1, . . . , q(R0). (µπ

i , π) ∈!R

We define M ∈ A!X by setting

M =

q(R0)∑

i=1

∑

π∈su(Π)

pπ
i [µπ

i ]
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This sum is finite because su(Π) is a finite set. We have

Σ(M) =
∑q(R0)

i=1

∑
π∈su(Π) p

π
i µ

π
i

=
∑

π∈su(Π) µ
π

= µ

so that (µ,M) ∈ digX . Moreover we have ∀π ∈ su(Π).∀i = 1, . . . , q(R0). (µ
π
i , π) ∈!R

and hence by Lemma 8.3.2 we have

(
M,

q(R0)∑

i=1

∑

π∈su(Π)

pπ
i [π]

)
∈!!R

and hence (M,Π) ∈!!R because

q(R0)∑

i=1

∑

π∈su(Π)

pπ
i [π] =

∑

π∈su(Π)

Π(π)[π] = Π

This shows that (µ,Π) ∈!!R · digX as announced.

Before proving that the above data define a comonad, we need the following
auxiliary lemmas.

Lemma 8.3.7. Let M ∈!!!X. Then Σ(Σ(M)) = ΣN∈!!XM(N)Σ(N).

Proof. We have

Σ(Σ(M)) =
∑

ν∈!X Σ(M)(ν)ν

=
∑

ν∈!X

( ∑
N∈!!X M(N)N(ν)

)
ν

=
∑

N∈!!X M(N)
( ∑

ν∈!X N(ν)ν
)

and we are done.

Lemma 8.3.8. (!, der, dig) is a comonad over Rel.

Proof. We prove the comonad equations, starting from der!X · digX = id!X . Let
(µ, µ′) ∈!X×!X. Assume first that (µ, µ′) ∈ der!X · digX . Then we can find M ∈!!X
such that (µ,M) ∈ digX and (M,µ′) ∈ der!X . This means that M = [µ′] and hence
Σ(M) = µ′, so that µ = µ′. Conversely, for µ ∈!X we have (µ, [µ]) ∈ digX , therefore
(µ, µ) ∈ der!X · digX .

Next we prove that !derX · digX = id!X . Let (µ, µ′) ∈ der!X · digX and let
M ∈!!X be such that (µ,M) ∈ digX , that is, Σ(M) = µ, and (M,µ′) ∈!derX .
Let σ ∈ A〈!X × X〉 be a witness of (M,µ′) for derX . This means that µ′(x) =
Σν∈!Xσ(ν, x) = σ([x], x) since su(σ) ⊆ derX , and that M(ν) = σ([x], x) if ν = [x] and
M(ν) = 0 if ♯ν 6= 1. It follows that Σ(M) = Σν∈!XM(ν)ν = Σx∈Xσ([x], x)[x] = µ′
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and hence µ = µ′. Conversely one has ([µ], µ) ∈!derX ·digX because M ∈!!X defined
by

M(ν) =

{
µ(x) if ν = [x]
0 if ♯ν 6= 0

is such that (µ,M) ∈ digX and (M,µ) ∈!idX .
We consider now the last comonad equation, namely dig!X · digX =!digX · digX .

Let (µ,M) ∈!X×!!!X. Assume first that (µ,M) ∈ dig!X · digX , that is Σ(Σ(M)) =
µ. We define M ∈M !X as follows:

M(ν) =
∑

N∈!!X
Σ(N)=ν

M(N)

Then M ∈!!X. Indeed for each ν ∈ su(M) we can find N ∈ su(M) such that
ν ∈ su(N), hence su(M) ⊆ ∪N∈su(M)su(N) and this latter set is finite. We have

Σ(M) =
∑

ν∈!X M(ν)ν

=
∑

ν∈!X

( ∑
Σ(N)=ν M(N)

)
ν

=
∑

N∈!!X M(N)Σ(N)
= Σ(Σ(M))
= µ

and hence (µ,Σ(M)) ∈ digX . Let Θ ∈ A〈!X×!!X〉 be defined by

Θ(ν,N) =

{
M(N) if Σ(N) = ν
0 otherwise

Then clearly su(Θ) ⊆ digX . Moreover we have Σν∈!XΘ(ν,N) = M(N) for all
N ∈!!X and ΣN∈!!XΘ(ν,N) = ΣΣ(N)=νM(N) = M(ν) for all ν ∈!X, by definition
of M . Thi shows that Θ is a witness of (M,M) for digX . So we have shown that
(M,M) ∈!digX and therefore (µ,M) ∈!digX · digX .

Assume conversely that (µ,M) ∈!digX · digX . So let M ∈!!X be such that
(µ,M) ∈ digX and (M,M) ∈!digX . Let Θ ∈ A〈!X×!!X〉 be a witness of (M,M)
for digX . Since su(Θ) ⊆ digX , there is a map H :!!X → A such that

Θ(ν,N) =

{
H(N) if Σ(N) = ν
0 otherwise

For any N ∈!!X we must have M(N) = Σν∈!XΘ(ν,N) = H(N) so that H = M.
Therefore we have M(ν) = ΣΣ(N)=νM(N) for all ν ∈!X. By Lemma 8.3.7 we have

Σ(Σ(M)) =
∑

N∈!!X M(N)Σ(N)

=
∑

ν∈!X

( ∑
Σ(N)=ν M(N)ν

)

=
∑

ν∈!X M(ν)ν, since M(ν) =
∑

Σ(N)=ν M(N),

= Σ(M)
= µ
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Therefore (µ,M) ∈ dig!X · digX .

Fundamental isomorphism. One of the most important property of the ex-
ponential is that it maps cartesian products to tensor products. Combined with the
monoidal closure of Rel, this property leads to the cartesian closure of the Kleisli
category Rel!.

Proposition 8.3.9. Given two sets X1, Y2 there is a natural bijection nX1,X2 :
!X1⊗!X2 →!(X1NX2) and a bijection n0 : 1 →!⊤.

Proof. The second bijection is n = {(∗, [ ])}. The first one is

nX1,X2 = {((µ1, µ2), in1(µ1) + in2(µ2)) : µi ∈!Xi(i = 1, 2)}

where ini = Σx∈Xi
µi(x)[(i, x)] (i = 1, 2). Let us check that this isomorphism is

natural, so let Ri ⊆ Xi × Yi (i = 1, 2). We must check that nY1,Y2 · (!R1⊗!R2) =
!(R1NR2) · nX1,X2 . So let µi ∈!Xi and νi ∈ Yi (i = 1, 2).

Assume first that ((µ1, µ2), in1(µ1) + in2(µ2)) ∈ nY1,Y2 · (!R1⊗!R2). This means
that one can find ν ′i ∈!Yi (i = 1, 2) such that (µi, ν

′
i) ∈!Ri (i = 1, 2) and ((ν ′1, ν

′
2), in1(ν1)+

in2(ν2)) ∈ nY1,Y2 . This means that νi = ν ′i (i = 1, 2). Since (µ1, ν1) ∈!R1 we have
(in1(µ1), in1(ν1)) ∈!(R1NR2) and similarly (in2(µ2), in2(ν2)) ∈!(R1NR2) and hence
(in1(µ1)+in2(µ2), in1(ν1)+in2(ν2)) ∈!(R1NR2) by Lemma 8.3.2. But ((µ1, µ2), in1(µ1)+
in2(µ2)) ∈ nX1,X2 and we have therefore ((µ1, µ2), in1(ν1) + in2(ν2)) ∈!(R1NR2) ·
nX1,X2 .

Assume conversely that ((µ1, µ2), in1(ν1) + in2(ν2)) ∈!(R1NR2) · nX1,X2 , so that
there exist µ′

i ∈!Xi (i = 1, 2) with ((µ1, µ2), in1(µ
′
1)+in2(µ

′
2)) ∈ nX1,X2 and (in1(µ

′
1)+

in2(µ
′
2), in1(ν1) + in2(ν2)) ∈!(R1NR2). Therefore µ′

i = µi (i = 1, 2) and hence
(in1(µ1) + in2(µ2), in1(ν1) + in2(ν2)) ∈!(R1NR2). Let ϕ be a witness of (in1(µ1) +
in2(µ2), in1(ν1) + in2(ν2)) for R1NR2. Since su(ϕ) ⊆ R1NR2, we have (µi, νi) ∈!Ri

(i = 1, 2): take ϕi ∈ A〈Xi × Yi〉 defined by ϕi(xi, yi) = ϕ((i, xi), (i, yi)). Then ϕi is
a witness of (µi, νi) for Ri. It follows that ((µ1, µ2), (ν1, ν2)) ∈!R1⊗!R2 and therefore
((µ1, µ2), in1(ν1) + in2(ν2)) ∈ nY1,Y2 · (!R1⊗!R2).

Structural morphisms. They are used for interpreting the structural rules
of linear logic, associated with the exponentials. The weakening morphism wknX :
!X → 1 is given by wknX = {([ ], ∗)}. The contraction morphism conX :!X →
!X⊗!X is obtained by applying the exponential functor ! to the diagonal map from
X to XNX, so that conX = {(λ+ ρ, (λ, ρ)) : λ, ρ ∈!X}.

There are other equations to be checked for proving that we have indeed defined
new-Seely category (see [21]) but the corresponding verifications are straightforward.

8.3.2 The Kleisli cartesian closed category

The objects of the Kleisli category Rel! of the comonad “!” (recall that we dropped
the subscript from “!A”) are all the sets, and Rel!(X, Y ) = Rel(!X, Y ). In this
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category the identity morphism of an object X is derX ∈ Rel!(X,X) and the com-
position of R ∈ Rel!(X, Y ) with S ∈ Rel!(Y, Z) is defined as S ◦R = S·!R · digX .

We give a direct characterization of this composition law.

Proposition 8.3.10. For (µ, y) ∈!X × Y we have (µ, y) ∈ S ◦ R iff there exist
z1, . . . , zn ∈ Y (not necessarily distinct), p1, . . . , pn ∈ A and µ1, . . . , µn ∈!X such
that ∀i = 1, . . . , n. (µi, zi) ∈ R, and (

∑n
i=1 pi[zi], y) ∈ S and µ =

∑n
i=1 piµi. In other

words

S◦R = {(Σn
i=1piµi, y) : ∃z1, . . . , zn ∈ Y. (Σn

i=1pi[zi], y) ∈ S, ∀i = 1, . . . , n. (µi, zi) ∈ R}

Proof. Assume first that (µ, z) ∈ S ◦ R. Let M ∈!!X be such that (µ,M) ∈ digX

and let ν ∈!Y be such that (ν, z) ∈ S and (M, ν) ∈!R. We have Σ(M) = µ. Let
σ ∈ A〈!X × Y 〉 be a witness of (M, ν) for R and let (µ1, y1), . . . , (µn, yn) be a
repetition-free enumeration of the set su(σ) ⊆ R. Taking pi = σ(µi, yi) we have
Σn

i=1pi[yi] = ν and Σn
i=1pi[µi] = M , and therefore µ = Σn

i=1piµi.
Assume conversely that (µ, z) satisfies the conditions in the second part of the

statement. Then we take ν = Σn
i=1pi[yi] and M = Σn

i=1pi[µi]. We have (ν, z) ∈ S
and (µ,M) ∈ digX and we have just to check that (M, ν) ∈!R. To this end we define
σ = Σn

i=1pi[(µi, yi)]; this is a witness of (M, ν) for R, as easily checked.

We recall that the cartesian product of X and Y in this category is XNY , with
projections derXNY · π1 and derXNY · π2. The intuitionistic function space of X and
Y is !X ⊸ Y . Evaluation ev ∈ Rel!(XN(!X ⊸ Y ), Y ) ∼= Rel(!X⊗!(!X ⊸ Y ), Y )
is ev = {((µ, [(µ, y)]), y) : µ ∈!X, y ∈ Y }.

Curryfication of R ∈ Rel!(ZNX, Y ) ∼= Rel(!Z⊗!X, Y ) is defined as cur(R) =
{(π, (µ, y)) : ((π, µ), y) ∈ R} ∈ Rel!(Z, !X ⊸ Y ).

Differential structure and the Taylor expansion. We sketch very briefly
the differential structure of this category, which can be used for interpreting the
differential lambda-calculus introduced in [44], or the various resource lambda-calculi
based on this kind of differential structures [47, 112].

We introduce first the codereliction morphism codX ∈ Rel(X, !X) by codX =
{(x, [x]) : x ∈ X}. Naturality is proved exactly as the naturality of dereliction
in Subsection 8.3.1. Coweakening cowX ∈ Rel(1, !X) and cocontraction cocX ∈
Rel(!X⊗!X, !X) are obtained by applying the ! functor to the empty morphism ∅ ∈
Rel(⊤, X) and the “codiagonal” morphism π1 ∪ π2 ∈ Rel(XNX,X), respectively
and by using the fundamental isomorphism. The equations involving dereliction
and coweakening and cocontraction (see [45, 22, 52]) are satisfied by naturality
of dereliction. Similarly for the equations involving codereliction, weakening and
contraction. One should check that the chain rule holds: this is a bit long to
express, but the proof is simple verification.

Using codereliction and cocontraction one defines easily a morphism δX ∈ Rel(!X⊗
X, !X) with δX = {((µ, x), µ + [x])}. Given R ∈ Rel(X, Y ) = Rel(!X, Y ) one can
define R′ ∈ Rel!(X,X ⊸ Y ) (by linear curryfication of R · δX) which can be
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considered as the first derivative of R: this operation satisfies all the usual rules of
differential calculus (linearity, Leibniz rule, chain rule, etc.). Iterating this operation
and using also dereliction and contraction one can define the Taylor expansion of R
as the infinite union ∪n≥0Rn where, for each n ∈ N the morphism Rn ∈ Rel!(X, Y )
is simply Rn = {(µ, x) ∈ R : ♯µ = n}.

Note that if A has an infinite element, it is not true in general that R coincides
with its Taylor expansion. As an example take ω ∈ N, i.e., the infinite element in
the completed set of natural numbers, and take R = {(ω[∗], ∗)} ∈ Rel!(1, 1). Then
Rn = ∅ for all n ∈ N.

So we have defined a model of differential linear logic which does not satisfy the
Taylor formula.

8.4 Models of lambda calculus in the generalized

relational semantics

Recall from §2 the definition of interpretation |M |Ux̄ ∈ C(U x̄, U) of an ordinary λ-
term M with free variables FV(M) ⊆ x̄ in a reflexive object U = (U,Ap,Lam)
of a ccc C. In Section 8.1 we gave the explicit description of the interpretation
function in the case of reflexive objects in MRel. Here we accomplish this task for
the category Rel! (for any chosen comonad !( ) = A〈 〉).

As a matter of notation by µ̄ = (µ1, . . . , µn) we denote a sequence of A multisets
and for p ∈ A we write pµ̄ as a shorthand for the sequence (pµ1, . . . , pµn). Moreover
if µ̄, ν̄ are sequences of the same length, say n, then pµ̄+ qν̄ = (pµ1 + qν1, . . . , pµn +
qνn).

|xi|
U

x̄ = {(([ ] . . . , [α], . . . , [ ]), α) : α ∈ U}

|λy.M |Ux̄ = {(Σk
j=1pjµ̄j, α) : ∃(ν1, β1), . . . , (νk, βk) ∈ U ⇒ U. ((µ̄j, νj), βj) ∈ |M |Ux̄,y

(j = 1, . . . , k), (Σk
j=1pj[(νj, βj)], α) ∈ Lam}

|MN |Ux̄ = {(Σh
i=1piν̄i + Σk

j=1qjµ̄j, α) : ∃β1, . . . , βk ∈ U.∃γ1, . . . , γh ∈ U.
(ν̄i, γi) ∈ |M |Ux̄ (i = 1, . . . , h), (µ̄j, βj) ∈ |N |Ux̄
(j = 1, . . . , k), (Σh

i=1pi[γi], (Σ
k
j=1qj[βj], α)) ∈ Ap}

We also give the characterization of interpretation in terms of typing, as already
done in Section 8.1.

[var]
x1 : [ ], . . . , xi : [α], . . . , xn : [ ] �U xi : α

Γj, y : νj �
U M : βj (j = 1, . . . , k) (Σk

j=1pj[(νj, βj)], α) ∈ Lam
[abs]

Σk
j=1pjΓj �

U λy.M : α
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Γi �
U M : γi (i = 1, . . . , h) ∆j �

U N : βj (j = 1, . . . , k) (Σh
i=1pi[γi], (Σ

k
j=1qj[βj], α)) ∈ Ap

[app]
Σk

i=1piΓi + Σh
i=1qi∆i �

U MN : α

We recall that the sum of context is defined when they have the same domain,
so in the rule “app” it is implicitly required that the ∆i’s and the Γj’s all have the
same domain.

8.4.1 Graph models in Rel!

Graph models [10, 15] have been isolated by Engeler, Plotkin and Scott [48, 95,
107] in the continuous semantics. We develop here a similar construction in the
generalized relational semantics.

In this subsection we let !( ) = A〈 〉 be a comonad implemented with a multi-
plicity semi-ring A and we denote by Rel! the corresponding ccc.

Let S be a non-empty set whose elements are not pairs and let j : (!S ⊸ S) →֒ S
be a partial injection.

We inductively define a sequence {Un}n≥0 of sets and a sequence of partial in-
jections {in : (!Un ⊸ Un) →֒ Un}n≥0 as follows:

- U0 := S, i0 := j;

- Un+1 := Un ∪ ((!Un × Un) − do(in))

- in+1(µ, α) =

{
in(µ, α) if (µ, α) ∈ do(in)
(µ, α) otherwise

Finally one defines
U = ∪n≥0Un i = ∪n≥0in

With these data one can define a reflexive object U = (U,Ap,Lam) in Rel! by
setting

Ap = {([i(µ, α)], (µ, α)) : (µ, α) ∈ !U×U} Lam = {([(µ, α)], i(µ, α)) : (µ, α) ∈ !U×U}

Clearly we have Ap ◦ Lam = id!U⊸U , whatever be the choice of the multiplicity
semi-ring used to implement the functor “!”.

Terminology. We call relational graph model generated by the pair (S, i) any
model U constructed in the way just described, starting from a set S with a partial
injection j : (!S ⊸ S) →֒ S.

We now give the typing system that characterizes its interpretation function of
a relational graph model U. Given µ ∈ !U and α ∈ U we set µ → α = i(µ, α) (in
order to achieve a more appealing presentation). Since the model U is fixed and
clear from the context, we omit the superscript and write just Γ �M : α in place of
Γ �

U M : α.

[var]
x1 : [ ], . . . , xi : [α], . . . , xn : [ ] � xi : α
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Γ, y : µ�M : α
[abs]

Γ � λy.M : µ→ α

Γ �M : (Σk
i=1pi[βi]) → α ∆i �N : βi (i = 1, . . . , k)

[app]
Γ + Σk

i=1pi∆i �MN : α

Definition 8.4.1. We define D as the relational graph model generated by the set
A = {α} with partial injection ω[α] → α = α in the Cartesian closed category
determined by choosing the multiplicity semi-ring N for defining the exponential.

Note that the model D of Definition 8.4.1 is the “quantitative” analogue of Park’s
graph model in the continuous semantics.

We recall that Ω is the looping λ-term (λx.xx)(λx.xx). The next two propo-
sitions show that the model D is not sensible, since it does not equate the two
unsolvable terms Ω and λy.Ω (see Theorem 8.4.2).

Lemma 8.4.1. |Ω|D = {α}.

Proof. We have the following deduction tree (where we inserted equations between
types or N-multisets of types that we use).

x : [α] � x : α = ω[α] → α x : [α] � x : α

x : [α] + ω[α] = ω[α] � xx : α

�λx.xx : ω[α] → α

(same derivation)

�λx.xx : ω[α] → α = α

�(λx.xx)(λx.xx) : α

Therefore indeed α ∈ |Ω|D.
Conversely, let γ ∈ D and assume that �Ω : γ. There must exist µ ∈ !D such

that �λx.xx : µ → γ and for all β ∈ su(µ) �λx.xx : β. From the first of these
two judgements we get x : µ � xx : γ and hence there must exist ν ∈!D such that
µ = ν + [ν → γ]. From the second judgement we get �λx.xx : ν → γ and for
all β ∈ su(ν) �λx.xx : β. Iterating this process we build a sequence (µi)i≥1 of
elements of !D such that �λx.xx : µi → γ, for all β ∈ su(µi) �λx.xx : β and
µi = µi+1 + [µi+1 → γ] for all i ≥ 1. Let βi = µi → γ; then for all i ≥ 1 we have
βi ∈ su(µ1) and since su(µ1) is finite we can find an i, n such that βi+n = βi. We
have βi = µi → γ = (µi+1 + [βi+1]) → γ = · · · = (µi+n + [βi+1] + · · · + [βi+n]) → γ
and since βi+n = µi+n → γ we get µi+n = µi+n + [βi+1] + · · · + [βi+n] and hence
βi+n ∈ su(µi+n). But βi+n = µi+n → γ and hence we must have βi+n = γ. Indeed,
if βi+n 6∈ A then we have βi+n = (µi+n, γ) and, if k is the least integer such that
βi+n ∈ Dk (recall that Dk is the k-th step in the construction of D), we have k > 0
and β ∈ Dk−1 for all β ∈ su(µi+n). This is impossible since βi+n ∈ su(µi+n). Since
µi+n → γ = γ, we have γ = α and we are done.

Theorem 8.4.2. |λy.Ω|D 6= |Ω|D.
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Proof. By Lemma 8.4.1 we have |Ω|D = {α}. Now by definition of interpretation
we also have [ ] → α ∈ |λy.Ω|D. We conclude since α 6= [ ] → α.
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9
The purely algebraic theory of

resource lambda calculus

In this chapter we develop a purely algebraic study of Ehrhard and Regnier’s re-
source λ-calculus. We follow the lines of the universal-algebraic tradition in the
study of λ-calculi, exploring a number of varieties which can be considered as classes
of algebraic models of resource λ-calculus. We axiomatize the variety of resource
combinatory algebras (RCAs) which are to the resource λ-calculus what combinatory
algebras are to the pure λ-calculus, in the sense that they contain basic combinators
which allow to define an abstraction on polynomials and to obtain a combinatory
completeness result. Then establishing a parallel with the work of Curry we isolate
the subvariety of resource lambda-algebras (RLAs) and prove that the free exten-
sion of an RLA validates the so-called ξ-rule for the abstraction; this is done by
a construction, analogue to that of Krivine [75] for lambda-algebras, which shows
that the free extension of an RLA is, up to isomorphism, an object very similar to
the graded algebras which appear in module theory. Along the line of the work of
Pigozzi and Salibra, we axiomatize the variety of resource λ-abstraction algebras.
We also establish the relations between these varieties, laying down foundations for
a model theory of resource λ-calculus. We then show that the ideal completion of
a resource combinatory (resp. lambda-, λ-abstraction) algebra determines a “clas-
sical” combinatory (resp. lambda-, λ-abstraction) algebra, and that any model of
the pure λ-calculus raising from a resource lambda-algebra induces a λ-theory which
equates all terms having the same Böhm tree.

9.1 Preliminaries

We identify every natural number n ∈ N with the set n = {0, . . . , n− 1}. Sn denotes
the set of all permutations (i.e., bijections) of set n ∈ N.

Sequences : The overlined letters ā, b̄, c̄, . . . range over the set A∗ of all finite
sequences over A. The length of a sequence ā is denoted by |ā|. If ā is a sequence
then ai (i ∈ N) denotes the i-th element of ā. For a sequence ā of length n and a
map σ : k → n (k, n ∈ N), the composition σā is the sequence (aσ(0), . . . , aσ(k−1)).
Given two sequences ā and b̄, their concatenation is denoted by ā · b̄. Sequences of
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112 9. The purely algebraic theory of resource lambda calculus

length one and elements of A are identified so that a · b̄ is the concatenation of a ∈ A
and b̄ ∈ A∗. If a ∈ A, then ak denotes the sequence (a, . . . , a) of length k. If ī is a
sequence of natural numbers of length k then Σī denotes i0 + · · · + ik−1.

Sequences of sequences will be denoted by the double over-line. Thus, ¯̄a will be
a sequence of sequences, whose elements are the sequences ā0, . . . , ā|¯̄a|−1. We denote
by

∏
¯̄a the sequence ā0 · ā1 · . . . · ā|¯̄a|−1 that is the juxtaposition of the sequences āi.

Partitions of a sequence: Let ā ∈ An and ī ∈ N
∗ be sequences. A ī-partition of

ā is a sequence ¯̄b of sequences such that |¯̄b| = |̄i| = k + 1, |b̄0| = i0, . . . , |b̄k−1| = ik−1

and there exists σ ∈ Sn such that σā =
∏ ¯̄b. We write Qā,̄i to denote the set of all

ī-partitions of ā and we agree that Qā,̄i 6= ∅ if, and only if, Σī = |ā|. Moreover by
Qā,k we indicate the set

⋃
ī∈N∗,|̄i|=k Qā,̄i. Let x̄, ȳ be sequences of the same length and

let ¯̄a ∈ Qx̄,n̄. We say that ¯̄b ∈ Qȳ,n̄ is the partition of ȳ induced by ¯̄a iff
∏

¯̄a = σx̄

and
∏ ¯̄b = σȳ.

Kronecker’s delta: In order to give concise axiomatic presentations, we will use
the Kronecker function δn,m : A → A with values in a pointed set A (with distin-
guished element 0) given by δn,m(a) = a if n = m and δn,m(a) = 0 otherwise. In
particular for ā ∈ A∗ we will adopt the convention that the value of the expression
δ|ā|,m(a0) is 0 if |ā| = 0.

Direct sums of join-semilattices : Let (Ai)i∈I be a family of join-semilattices. We
say that B is the direct sum of the family (Ai)i∈I , notation B = ⊕i∈IAi, if B ≤∏

i∈I Ai is the subalgebra of the sequences (ai ∈ Ai : i ∈ I) such that {i : ai 6= 0} is
finite.

9.2 Bag-applicative algebras

Let R be a semiring with unit. We introduce an algebraic signature Γ constituted
by a binary operator “+”, a nullary operator “0”, a family of unary operators r
(r ∈ R), and a family of operators ·k (k ∈ N) of arity k + 1, called collectively
applications.

The prefix notation for application is indeed cumbersome for common use so
that each operation ·n(a, b0, . . . , bn−1) will be replaced by the lighter a[b0, . . . , bn−1],
so that, for example, ·0(a) = a[ ] and ·2(a, b, c) = a[b, c]. Another reason for this
choice is that, when we write a[b0, . . . , bn−1], we think to the element a applied to
the “bag” [b0, . . . , bn−1]. We will also adopt the usual convention that application
associates to the left. For a sequence b̄ of length n, we adopt the further notational
simplification to write ab̄ instead of a[b0, . . . , bn−1]. By ak we indicate the sequence
(a, . . . , a) of length k, thus bak = b[a, . . . , a] (a repeated k times), with the convention
that ba0 = b[ ]. Note that the above conventions lead to write just ab for a[b]: clearly
in case b is itself an application cd, we are obliged to write a[cd] in order to avoid
any ambiguity.

Definition 9.2.1. A Γ-algebra is called a bag-applicative algebra if it satisfies the
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following axioms, which are universally quantified.

Commutative Monoid Axioms :
(x+ y) + z = x+ (y + z); x+ y = y + x; 0 + x = x
Module Axioms (r, s ∈ R) :
r(x+ y) = rx+ ry; (r + s)x = rx+ sx; (rs)x = r(sx); 1x = x; 0x = 0
Multiset Axiom : x[y0, . . . , yk−1] = x[yσ(0), . . . , yσ(k−1)] (σ ∈ Sk)
Multilinearity Axioms :
x[0, y0, . . . , yk−1] = 0; 0[y0, . . . , yk−1] = 0
(ax+ by)[y0, . . . , yk−1] = a(x[y0, . . . , yk−1]) + b(y[y0, . . . , yk−1])
x[. . . , ay + bz, . . .] = a(x[. . . , y, . . .]) + b(x[. . . , z, . . .])

If a signature ∆ extends Γ, we say that a ∆-algebra A is a bag-applicative
∆-algebra if it is so the Γ-reduct of A.

9.3 The resource lambda calculus from the alge-

braic point of view

The variable-binding properties of λ-abstraction prevent names in rλ-calculus from
operating as real algebraic variables. The same problem occurs in classic λ-calculus
and was solved by Pigozzi and Salibra [93] by introducing the variety of λ-abstraction
algebras. We adopt here their solution and transform the names (i.e., elements of
V ) into constants.

Definition 9.3.1. The signature Γλ is an extension of the signature Γ of bag-
applicative algebra by a family of nullary operators x ∈ V , one for each element
of V , and a family of unary operators λx (x ∈ V ), called collectively λ-abstractions.

The rλ-terms are just the Γλ-terms without occurrences of algebraic variables.
The absolutely free Γλ-algebra is the algebra Λr = (Λr,+, 0, ·k, λx, x)x∈V,k∈N, where
Λr is the set of rλ-terms and the operations are just the syntactical operations of
construction of the rλ-terms.

Definition 9.3.2. A rλ-theory is any congruence on Λr (with respect to all the
involved operations) including all the identities of Figure 1.

The least rλ-theory, denoted by λβr, is consistent by Theorem 7.2.2 (§7). If T is
a rλ-theory, we denote by Λr

T
≡ Λr/T the quotient of the absolutely free Γλ-algebra

Λr modulo the rλ-theory T . Λr

T
is called the term algebra of T .

We now abstract the notion of term algebra by introducing the variety of re-
source λ-abstraction algebras as a pure algebraic theory of rλ-calculus. The term
algebras of rλ-theories are the first example of resource λ-abstraction algebra. An-
other example will be given in Subsection 9.5.1.
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114 9. The purely algebraic theory of resource lambda calculus

Definition 9.3.3. A resource λ-abstraction algebra (RLAA, for short) is a bag-
applicative Γλ-algebra satisfying the following identities (for all a ∈ A, ā, b̄, c̄, d̄ ∈ A∗,
and x 6= y ∈ V ):

(rβ1) (λx.x)ā = δ|ā|,1(a0)

(rβ2) (λx.y)ā = δ|ā|,0(y)

(rβ3) (λx.λx.a)b̄ = δ|b̄|,0(λx.a)

(rβ4) (λy.bi)[ ] = bi, for all i < |b̄| ⇒ (λx.λy.a)b̄ = λy.(λx.a)b̄

(rβ5) (λx.ab̄)c̄ = Σ ¯̄d∈Qc̄,k+1
(λx.a)d̄0[(λx.b0)d̄1, . . . , (λx.bk−1)d̄k] (|b̄| = k)

(rα) (λx.a)xk = a, (λy.a)[ ] = a ⇒ λx.a = λy.(λx.a)yk

(rγ) (λx.a)xn + a = a

(rλ) λx.0 = 0; λx.(a+ b) = λx.a+ λx.b

Some of the axioms above are not pure identities, though they can be turned
into such as it is done in the case of λ-abstraction algebras [93].

An element a is finite-dimensional if there exists a finite subset X ⊆ V such that
(λx.a)[ ] = a for all x ∈ V −X and, for all x ∈ X, there is exactly one n 6= 0 such
that (λx.a)xn = a, and in such a case (λx.a)xk = 0 for all k 6= n; this last statement
follows from (rβ5),(rβ3) and (rβ1). Finite-dimensional elements are a generalization
of the rλ-terms. In particular a ∈ A is zero-dimensional if (λx.a)[ ] = a for all
x ∈ V . We say that a name x ∈ V does not occur free in a ∈ A if (λx.a)[ ] = a. The
set of zero-dimensional elements, which generalizes closed rλ-terms, will be denoted
by ZdA. In general a RLAA may have elements where all the names occur free; these
elements are a generalization of infinite λ-terms. A RLAA A is called locally finite if
it is generated by its finite-dimensional elements (through the join/sum operator).
Every RLAA A contains a canonical locally finite RLAA, which is the subalgebra of
A generated by all its finite-dimensional elements. This algebra will be denoted by
LfA.

Proposition 9.3.1. (i) For any rλ-theory T the term algebra Λr

T
is a locally

finite RLAA.

(ii) The minimal subalgebra of a RLAA A is isomorphic to Λr

T
for some T .

9.4 Resource combinatory algebras

In this section we introduce a class of algebras which are to the rλ-calculus what
combinatory algebras are to the pure λ-calculus. The signature Γc of is an extension
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of the signature Γ of bag-applicative algebras by a nullary operator K and a family
of nullary operators Sn̄ (n̄ ∈ N

∗). Recall the definition of the set Qz̄,n̄ from the
preliminaries.

Definition 9.4.1. A resource combinatory algebra (RCA, for short) is a bag-applicative
Γc-algebra satisfying the following identities:

(K) Kx̄ȳ = δ|ȳ|,0(δ|x̄|,1(x0))

(Sn̄) Sn̄x̄ȳz̄ = δ|x̄|,1(δk,|ȳ|(δ|ȳ|,|n̄|−1(δ|z̄|,Σn̄(
∑

¯̄c∈Qz̄,n̄
x0c̄0[y0c̄1, . . . , yk−1c̄k]))))

The variety of resource combinatory algebras is denoted by RCA. We secretly
think of K and Sn̄ as the following rλ-terms:

Kλ ≡ λxy.x; Sn̄,λ ≡ λxyz.xzn0 [yzn1 , . . . , yznk ] (|n̄| − 1 = k) (9.1)

We define (resource) monomials with names in V and constant in A by the
following grammar: t ::= x | ca | K | Sn̄ | t0[t1, . . . tn] (n̄ ∈ N, a ∈ A). A (resource)
polynomial is a finite sum of monomials: t1 + · · · + tn. We denote by P (A) the set
of all polynomials with names in V and constant in A. For a monomial t we define
the degree degx(t) of x ∈ V in t as the number of occurrences of the name x in t.

We define an abstraction operation on polynomials, with which the abstraction
of rλ-calculus can be simulated. First of all we need to define the combinator
I ≡ S(1)K[ ]. It is immediate to see that Ix̄ = δ|x̄|,1(x0).

Definition 9.4.2. Let t, t1, . . . , tn be monomials. We define a new monomial λ∗x.t
as follows:

(i) λ∗x.t ≡ Kt if degx(t) = 0

(ii) λ∗x.x ≡ I

(iii) λ∗x.t0[t1, . . . , tk] ≡ Sn̄[λ∗x.t0][λ
∗x.t1, . . . , λ

∗x.tk] (n̄ = (degx(t0), . . . , degx(tk)))
if ∃i degx(ti) 6= 0.

We extend the definition of abstraction to polynomials: λ∗x.Σn
i=1ti = Σn

i=1λ
∗x.ti.

Let t be a monomial with degx(t) = n, p̄ be a sequence of n polynomials and
σ ∈ Sn be a permutation. Then the expression t{x̄ := σp̄} denotes the simultaneous
substitution of the i-th occurrence xi of x in t by the polynomial pσ(i) (i = 1, . . . , n).
As usual we write A � t = u to express the fact the equation t = u holds under any
valuation in the algebra A.

Lemma 9.4.1. Let A be a RCA. For any monomial t, any sequence p̄ of polynomi-
als, and any name x we have: A � (λ∗x.t)p̄ = δdegx(t),|p̄|(Σσ∈Sdegx(t)

t{x̄ := σp̄}).
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Proof. The proof is an easy induction. The only interesting case is that in which
t ≡ t0[t1, . . . , tk] and there exists i such that degx(ti) 6= 0.

(λ∗x.t0[t1, . . . , tk])p̄
= Sn̄[λ∗x.t0][λ

∗x.t1, . . . , λ
∗x.tk]p̄, by Def. 9.4.2(iii)

= Σ ¯̄p∈Qp̄,n̄
(λ∗x.t0)p̄0

[
(λ∗x.t1)p̄1, . . . , (λ

∗x.tk)p̄k

]
by Def. 9.4.1

= Σ ¯̄p∈Qp̄,n̄
(Σσ0∈Sn0

t0{x̄ := σ0p̄0})[Σσ1∈Sn1
t1{x̄ := σ1p̄1} . . .] by ind. hyp.

= Σ ¯̄p∈Qp̄,n̄
Σ(σ0,...,σk)∈

Qk
j=0 Snj

t0{x̄ := σ0p̄0}[t1{x̄ := σ1p̄1} . . .]

= Σ ¯̄p∈Qp̄,n̄
t0{x̄ := p̄0}[t1{x̄ := p̄1} . . .] because σ0p̄0 · σ1p̄1 · . . . ∈ Qp̄,n̄

= Σσ∈Sm
(t0[t1, . . . , tk]){x̄ := σp̄} (m = Σn̄)

Of course if |p̄| 6= Σn̄, then the above calculation yields 0 as a result.

Let A be a RLAA. The combinatory reduct of A is defined as the algebra
CrA = (A, ·k, K

A

λ , S
A

n̄,λ), where the rλ-terms Kλ and Sn̄,λ are defined in (9.1) above.
The subalgebra of CrA constituted by the zero-dimensional elements of A will be
denoted by Zd A.

Proposition 9.4.2. Let A be a locally finite RLAA. Then, CrA is a RCA.

The proof of the above proposition is trivial because of the hypothesis of locally
finiteness. If we drop this hypothesis, then we cannot always apply α-conversion
because elements may exist where all variables occur free.

The rλ-term tλ associated with a polynomial t can be easily defined by induction:
K,Sn̄ are respectively translated into Kλ and Sn̄,λ (see (9.1) above); (ca)λ = ca;
(t[s1, . . . , sn])λ = tλ[s1,λ, . . . , sn,λ]; (Σti)λ = Σti,λ.

The following lemma can be shown by induction over the complexity of the
polynomial p. If A is a RLAA, then pCr A denotes the interpretation of p into CrA.

Lemma 9.4.3. Let A be a RLAA and p be a polynomial. Then, pCr A = pAλ and

(λ∗x.p)Cr A = λxA.pAλ .

9.5 Resource lambda-algebras

In this section we axiomatize the variety of resource λ-algebras (rλ-algebras for
short), and prove that the free extension of an rλ-algebra in the variety of rλ-algebras
can be turned into a RLAA, so that it validates all the rules of rλ-calculus. For the
subsequent developments, it turns out very important to isolate a particular family
of combinators: for n ∈ N, the n-homogenizer is the combinator Hn ≡ S(0,n)[KI].
Using the equation schemata of RCAs we obtain that Hnx̄ȳ = δ|x̄|,1(δ|ȳ|,n(x0ȳ)). The
elements of the form Hna are the semantical counterpart of monomials of the form
λ∗x.t, with degx(t) = n. Via Hn it is in fact possible to give a semantical notion of
degree: a ∈ A is called homogeneous of degree n iff Hna = a.

We now define rλ-algebras. We advice the reader that some identities defining
rλ-algebras are difficult to read, nonetheless they still resemble those for λ-algebras.

Demo Version, http://www.verydoc.com and http://www.verypdf.com



9.5. Resource lambda-algebras 117

Definition 9.5.1. A RCA A is a rλ-algebra if it satisfies the λ∗-closure of the
following identities:

(R0) Hn[Hmx] = δn,m(Hmx)

(R1) K = H1K; Kx = H0[Kx]

(R2) Sn̄ = H1Sn̄; Sn̄x = H|n̄|−1[Sn̄x]; Sn̄xȳ = HΣn̄[Sn̄xȳ]

(R3) Sm̄[Sn̄[KK]x̄]ȳ =

{
Hn1x0 if |x̄| = 1, |ȳ| = 0, n̄ = (0, n1), m̄ = (n1)
0 otherwise

(R4) Sn̄[Sm̄[Sp̄[KSl̄]x̄]ȳ]z̄ =




Σ¯̄s∈Qz̄,l̄
S(Σ(m0·ō0),...,Σ(mk·ōk))[Sm0·ō0x0s̄0][Sm1·ō1y0s̄1, . . . , Smk·ōk

yk−1s̄k]

if |x̄| = 1, p̄ = (0, p1), |ȳ| + 1 = |m̄| = k, n̄ = (Σm̄) · n̄′, |z̄| = |n̄′| = Σl̄,
m̄ = p1 · l̄, and, for each ¯̄s ∈ Qz̄,l̄, ¯̄o ∈ Qn̄′,l̄ is the partition of n̄′ induced by ¯̄s;
0 otherwise.

(R5) K[xȳ] = S0k+1 [Kx][Ky0, . . . , Kyk−1] (|ȳ| = k)

(R6) Hkx = S0·1k [Kx]Ik

The variety of rλ-algebras will be denoted by RLA. The next lemma shows the
aforementioned connection between homogenizers and the induced λ-abstraction on
polynomials. As a side comment, we remark the similarity between the axioms
given in Definition 9.5.1 and those of Definition 2.3.5 §2. Roughly speaking the
combinator 1 of lambda algebras could be thought of as the series

∑
n≥0Hn: this is

the leading intuition of the forthcoming Section 9.6, and in particular of Theorem
9.6.1.

Lemma 9.5.1. Let A be a RLA and t be a monomial. Then A � Hn[λ∗x.t] =
δn,degx(t)(λ

∗x.t).

Proof. If degx(t) = 0, then λ∗x.t = Kt = H0[Kt] (by (R1)) = H0[λ
∗x.t]. If t ≡ x,

then λ∗x.x = I = S1K[ ] = H1[S1K[ ]] by (R2) = H1[λ
∗x.x]. Let t ≡ t0[t1, . . . , tk]

with degx(ti) 6= 0 for some i, and n̄ = (degx(t0), . . . , degx(tk)). Then we have:

λ∗x.t0[t1, . . . , tk] = Sn̄[λ∗x.t0][λ
∗x.t1, . . . , λ

∗x.tk]

= HΣn̄[Sn̄[λ∗x.t0][λ
∗x.t1, . . . , λ

∗x.tk]] by (R2)

= Hdegx(t)[λ
∗x.t0[t1, . . . , tk]].

The following theorem is the main result of the section; its proof, divided into
five lemmas, occupies the rest of this section and involves the explicit construction
of the free extension of a RLA by one name as a graded algebra (Lemmas 9.5.6-9.5.9)
and two key observations (Lemmas 9.5.10,9.5.11).
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118 9. The purely algebraic theory of resource lambda calculus

Theorem 9.5.2. The free extension A[V ] of a rλ-algebra A by the set V of names
in the variety RCA satisfies the following ξ-rule, for all polynomials p, q ∈ P (A):

(ξ) A[V ] � p = q ⇒ A[V ] � λ∗x.p = λ∗x.q.

We apply the above theorem to define λ-abstraction operators on A[V ]. For any
e ∈ A[V ], we define λx.e = λ∗x.p, for some polynomial p ∈ e. Rule ξ validates the
above definition of λx. Define the algebra A[V ]λ = (A[V ],+, 0, ·k, λx, x)x∈V , where
(A[V ],+, 0, ·k, ) is the Γ-reduct of the free extension A[V ], λx is defined as above
and the name x ∈ V is viewed as a nullary operator; A[V ]λ is called the RLAA freely
generated by the rλ-algebra A.

Corollary 9.5.3. A[V ]λ is a locally finite RLAA such that K
A[V ]λ
λ = KA and

S
A[V ]λ
n̄,λ = SA

n̄ .

Proof. It is straightforward to check the axioms of RLAA. We now prove the last
part of the corollary.

λ∗xy.x = S(0,1)[KK]I, by definition
= H1K, by (R6)
= K, by (R1).

Let p̄ = (p0, . . . , pn) and t ≡ λ∗xyz.xzp0 [yzp1 , . . . , yzpn ]. Then we have:

t = λ∗xy.Sp̄[S0·1p0 [Kx]Ip0 ][S0·1p1 [Ky]Ip1 , . . . , S0·1pn [Ky]Ipn ] by definition
= λ∗xy.S0·1Σp̄ [S0|p̄| [S(0,0)[KSp̄][Kx]](Ky)

|p̄|−1]IΣp̄ by (R4)
= λ∗xy.S0·1Σp̄ [S0|p̄| [K[Sp̄x]](Ky)

|p̄|−1]IΣp̄ by (R5)
= λ∗xy.S0·1Σp̄ [K[Sp̄xy

|p̄|−1]]IΣp̄ by (R5)
= λ∗xy.HΣp̄[Sp̄xy

|p̄|−1] by (R6)
= λ∗xy.Sp̄xy

|p̄|−1 by (R2)
= λ∗x.S(0,1,...,1)[K[Sp̄x]]I

|p̄|−1 by definition
= λ∗x.H|p̄|−1[Sp̄x] by (R6)
= λ∗x.Sp̄x by (R2)
= S(0,1)[KSp̄]I by definition
= H1Sp̄ by (R6)
= Sp̄ by (R2).

Theorem 9.5.4. Let A be a locally finite RLAA of dimension V . Then its combi-
natory reduct CrA is a RLA.

Proof. We start recalling that KCrA = λxy.x and SCrA
p̄ = λxyz.xzp0 [yzp1 , . . . , yzpn ].

Now using axioms (rβ1)-(rβ5) we can prove that SCrA
(1) KCrA[ ] = λz.z; define ICrA =

λz.z. Again by axioms (rβ1)-(rβ5) we can prove that SCrA
(0,n)[K

CrAICrA] = λyz.yzn;

define HCrA
n = λyz.yzn.
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9.5. Resource lambda-algebras 119

Before proving the RLA axioms, we remark tha it is possible to achieve “α-
renaming” for each one of the combinators HCrA

n , KCrA, and SCrA
p̄ . As an example,

we do that for KCrA. Let x 6= y 6= z 6= w ∈ V .

λxy.x = λz.(λxy.x)z, by (rα), since (λzy.x)[ ] = λy.x and (λxy.x)x = λy.x

= λz.λy.z

= λz.λw.(λy.z)[ ], by (rβ4) and (rβ2),

= λzw.z

The following axioms are then proved following this pattern: whenever we have
arbitrary elements a, b, c, ovb, . . . first “α-rename” the combinators in such a way that
all the (bound) names occurring in them are out of the dimension set of a, b, c, ovb, . . .
and then use axioms (rβ1)-(rβ5) plus commutativity of bags, idempotence of sums
and linearity axioms.

Now we calculate the expressions in the RLA axioms.

(λyz.yzn)[(λyz.yzm)a] = (λyz.yzn)[λz.azm], by (rβ1)-(rβ5),

= λz.(λz.azm)zn, by (rβ1)-(rβ5),

= λz.azn, if m = n and 0 otherwise,

by (rβ1)-(rβ5) and the idempotence of sum.

This proves (R0). Here to be able to apply (rβ4) we use the hypothesis of local
finiteness of the RLA A.

(λyz.yz)[λxy.x] = λz.(λxy.x)z

= λzy.z

= KCrA

(λyz.y[ ])[(λxy.x)a] = (λz.(λy.a)[ ])

= λz.a

= (λyz.y)a

This proves (R1). Here to be able to apply (rβ4) we use the hypothesis of local
finiteness of the RLA A.
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(λxyz.xzp0 [yzp1 , . . . , yzpn ])a = λyz.azp0 [yzp1 , . . . , yzpn ]

= λy.(λyz.azp0 [yzp1 , . . . , yzpn ])yn−1

= (λxy.xyn−1)[λyz.azp0 [yzp1 , . . . , yzpn ]

= (λxy.xyn−1)[λxyz.xzp0 [yzp1 , . . . , yzpn ])a]

Sp̄ab̄ =
∑

σ∈Sn

λy.ayp0 [bσ(0)y
p1 , . . . , bσ(n−1)y

pn ]

=
∑

σ∈Sn

λy.(λz.azp0 [bσ(0)z
p1 , . . . , bσ(n−1)z

pn ])yΣp̄

= (λxy.xyΣp̄)[λz.
∑

σ∈Sn

azp0 [bσ(0)z
p1 , . . . , bσ(n−1)z

pn ]]

= (λxy.xyΣp̄)[Sp̄ab̄]

This proves (R2). Here to be able to apply (rβ4) we use the hypothesis of local
finiteness of the RLA A.

(λxy.x)[ab̄] = λy.ab̄

=
∑

σ∈Sk

λz.a[bσ(0), . . . , bσ(k−1)], by commutativity,

=
∑

σ∈Sk

λz.(λy.a)[ ][(λy.bσ(0))[ ], . . . , (λy.bσ(k−1))[ ]]

= (λxyz.x[ ](y[ ])k)[λy.a][λy.b0, . . . , λy.bk−1]

This proves (R5). Here to be able to apply (rβ4) we use the hypothesis of local
finiteness of the RLA A.

(λxy.xyk)a = λy.ayk

= λz.azk

= λz.a(Iz)k

= (λyz.a(yz)k)Ik

= (λyz.(λy.a)[ ](yz)k)Ik

= (λxyz.x[ ](yz)k)[Ka]Ik
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This proves (R6). Here to be able to apply (rβ4) we use the hypothesis of local
finiteness of the RLA A.

S(n)[S0,n[KK]a][ ] = S(n)[λz.K[azn]][ ]

= (λxyz.xzn[ ])[λz.K[azn]][ ]

= (λyz.(λz.K[azn])zn[ ])[ ]

= (λyz.K[azn][ ])[ ]

= (λyz.azn)[ ]

= λz.azn

= Hna

This proves the “positive” branch of (R3).

S(p+Σimi,n1,...,nΣl̄)
[S(p,m1,...,mk)[S(0,p)[KSl̄]a]b̄]c̄

= S(p+Σimi,n1,...,nΣl̄)
[S(p,m1,...,mk)[λz.Sl̄[az

p]]b̄]c̄

=
∑

σ∈Sk

S(p+Σimi,n1,...,nΣl̄)
[λz.(λz.Sl̄[az

p])zp[bσ(0)z
m1 , . . . , bσ(k−1)z

mk ]]c̄

=
∑

σ∈Sk

S(p+Σimi,n1,...,nΣl̄)
[λz.Sl̄[az

p][bσ(0)z
m1 , . . . , bσ(k−1)z

mk ]]c̄

=
∑

σ∈Sk

(λxyz.xzp+Σimi [yzn1 , . . . , yznΣl̄ ])[λz.Sl̄[az
p][bσ(0)z

m1 , . . . , bσ(k−1)z
mk ]]c̄

=
∑

τ∈SΣl̄

∑

σ∈Sk

λz.(λz.Sl̄[az
p][bσ(0)z

m1 , . . . , bσ(k−1)z
mk ])zp+Σimi [cτ(0)z

n1 , . . . , cτ(Σl̄−1)z
nΣl̄ ]

=
∑

τ∈SΣl̄

∑

σ∈Sk

λz.Sl̄[az
p][bσ(0)z

m1 , . . . , bσ(k−1)z
mk ][cτ(0)z

n1 , . . . , cτ(Σl̄−1)z
nΣl̄ ]

=
∑

¯̄s∈Qc̄,l̄

S(Σ(m0·ō0)...Σ(mk·ōk))[Sm0·ō0as̄0][Sm1·ō1b0s̄1, . . . , Smk·ōk
bk−1s̄k]

This proves the “positive” branch of (R4).

Corollary 9.5.5. Let A be a RCA. Then, A is a rλ-algebra iff A can be embedded
into the combinatory reduct of some RLAA B.

Proof. (⇒) Consider the RLAA A[V ]λ freely generated by A. We show that A ∼=
ZdA[V ]λ.

(A ⊆ ZdA[V ]λ): For all a ∈ A and all x ∈ V we have: (λx.a)[ ] = (λ∗x.ca)[ ] =
Kca[ ] = ca, so that every a ∈ A is zero-dimensional.
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122 9. The purely algebraic theory of resource lambda calculus

(ZdA[V ]λ ⊆ A): Let e ∈ ZdA[V ]λ, let p =
∑

i∈I ti ∈ e be a polynomial and
let x1, . . . , xn be all names occurring in p. Let y be one of the above names. Since
e is zero-dimensional, then (λ∗y.p)[ ] =

∑
i∈I(λ

∗y.ti)[ ] = p. By Lemma 9.4.1 we
have that either (λ∗y.ti)[ ] = ti or (λ∗y.ti)[ ] = 0. Let J = {i ∈ I : (λ∗y.ti)[ ] =
ti} = {i ∈ I : degy(ti) = 0}. Then we have: p =

∑
j∈J(λ∗y.tj)[ ] =

∑
j∈J tj.

Since degy(ti) = 0, then p is equivalent to a polynomial without free occurrences of
name y. By iterating the reasoning with all other names, at the end of the process
we get that p =

∑
r∈K tr is equivalent to a polynomial without free names, whose

interpretation is of course in A.

(⇐) By Lemma 9.4.3 is sufficient to verify that the RLAA A[V ] freely generated
by A satisfies all identities tλ = uλ, where t = u is one of the axioms (R0)-(R6).
This is a tedious but straightforward verification.

This corollary is very useful to prove when a RCA is a RLA (see Subsection
9.5.1). The construction of the free extension will turn out to be the construction
of a graded algebra as a direct sum of specific join semilattices. We now provide the
proof of Theorem 9.5.2. The proof is inspired by a construction by Krivine [75].

Lemma 9.5.6. Let A be a rλ-algebra and set Bn = {a ∈ A : Hna = a}. Then
(Bn,+, 0) is a join sub-semilattice of (A,+, 0) such that Bn ∩Bm = {0} if n 6= m.

We now define an algebra B = (B,+, 0, •k, KK,KSn̄)k∈N,n̄∈N∗ , called the N-
graded algebra generated by A in the similarity type of RCA by setting:

1. (B,+, 0) = ⊕n∈N(Bn,+, 0) is the direct sum of the join semilattices (Bn,+, 0).

2. each application “•k” is the extension by linearity of the following operation:
a0 •k [a1, . . . , ak] = Sp̄a0[a1, . . . , ak], with ai ∈ Bpi

.

Lemma 9.5.7. The N-graded algebra B is a RCA which satisfies the following con-
ditions:

(i) KK and KSn̄ are elements of B0;

(ii) Bd0 •k [Bd1 , . . . , Bdk−1
] ⊆ BΣd̄, for all d̄ ∈ N

k+1.

Proof. The algebra B is closed under applications by axiom (R2). By axiom (R1)
KK and KSn̄ are elements of B0. We now show that B is RCA. Let Hni+1

ai = ai.

(KK) • ā • b̄ = (Sn̄[KK]ā) • b̄, n0 = 0, Hni+1
ai = ai

= Sm̄[Sn̄[KK]ā]b̄, m0 = Σn̄, Hmj+1
bj = bj

= Hn1a0, by (R3), if |ā| = 1 and |b̄| = 0.
= a0, by assumption.
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The axiom (Sl̄) of RCA follows directly from an application of (R4). In fact

(KSl̄) • ā • b̄ • c̄ = Sn̄[Sm̄[Sp̄[KSl̄]ā]b̄]c̄

=






Σ¯̄s∈Qc̄,l̄
S(Σ(m0,·,ō0)...Σ(mk·ōk))[Sm0·ō0a0s̄0][Sm1·ō1b0s̄1, . . . , Smk·ōk

bk−1s̄k]

if |ā| = 1, k = |b̄| = |l̄| − 1, |c̄| = Σl̄
where for each ¯̄s ∈ Qc̄,l̄, ¯̄o ∈ Qn̄′,l̄ is the partition of n̄′ induced by ¯̄s

0 otherwise

=






Σ¯̄s∈Qc̄,l̄
a0 • s̄0 • [b0 • s̄1, . . . , bk−1 • s̄k]

if |ā| = 1, k = |b̄| = |l̄| − 1, |c̄| = Σl̄
0 otherwise

Lemma 9.5.8. The map ι, defined by ι(a) = Ka, is an embedding of A into B.

Proof. By (R5) ι(a0[a1, . . . , an]) = K[a0[a1, . . . , an]] = S0n+1 [Ka0][Ka1, . . . , Kan] =
ι(a0) • [ι(a1), . . . , ι(an)]. The other properties are trivial. 2

By Lemma 9.5.8 B is a RLA. We are now going to show the connection between
the N-graded algebra B and the free extension A[x] by one name x.

Lemma 9.5.9. The N-graded algebra B is the free extension of A by one name in
the variety RLA. Consequently, B ∼= A[x].

Proof. We prove that B ∼= A[x]. Let C be a RCA, c ∈ C and f : A → C be
a homomorphism. Define a family of functions fk : Bk → C (k ∈ N) as follows:
fk(a) = f(a)·Cck for all a ∈ Bk. Let f ∗ : B → C be the unique extension by linearity
of the family of functions fk, that is, f ∗(0) = 0 and f ∗(Σm

i=1ai) = Σm
i=1fdi

(ai) for
ai ∈ Bdi

.
We now prove that f ∗ is a homomorphism. It is immediate to check that f ∗ is a

monoid homomorphism, using multi-linearity of application. Since f ∗ extends f by
linearity, it suffices to prove the following:

fΣē(a • b̄) = f(Sēab̄)c
Σē = SC

ē f(a)[f(b0), . . . , f(bn−1)]c
Σē , since f is hom,

= f(a)ce0 [f(b0)c
e1 , . . . , f(bn−1)c

en ], by (Sn̄) and idempotence of sum,
= fe0(a)[fe1(b0), . . . , fen

(bn−1)].

We have: f0(K
AKA) = f(KAKA)[ ] = KCKC[ ] = KC. A similar argument shows

that f ∗(KASA

n̄ ) = SC

n̄ . This shows that f ∗ is a homomorphism.
We have: f ∗(ι(a)) = f0(Ka) = f(Ka)[ ] = KCf(a)[ ] = f(a); and f ∗(I) =

f1(I) = f(I)c = ICc = c. This proves f ∗ ◦ ι = f and f ∗(I) = c.
Finally suppose h : B → C is another homomorphism satisfying h ◦ ι = f and

h(I) = c. The uniqueness of f ∗ is shown as follows:

h(a) = h(Hka), for some k ∈ N,
= h(S0·1k [Ka]Ik), by axiom (R6)
= h((Ka) • Ik) = h(Ka)(h(I))k = h(ι(a))ck = fk(a)c

k = f ∗(a). 2
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We denote by ι∗ the unique isomorphism from A[x] onto B extending the em-
bedding ι : A → B defined in Lemma 9.5.8, and such that ι∗(x) = I.

Lemma 9.5.10. For all a, b ∈ A we have A[x] � axn = bxk iff A � Hna = Hkb.

Proof. ι∗(axn) = ι(a) • In = S0·1n [Ka]In = Hna, by (R6). We conclude since ι∗ is
an isomorphism. Of course, if n 6= k, then Hna = Hkb = 0. 2

Lemma 9.5.11. For all polynomials p, q with at most the name x we have that
A[x] � p = q implies A[x] � λ∗x.p = λ∗x.q.

Proof. First we prove the result for monomials t, u. Let n = degx(t) and k = degx(u).
By Lemma 9.4.1 A[x] � (λ∗x.t)xn = t = u = (λ∗x.u)xk. Now by Lemma 9.5.10 and
by Lemma 9.5.1 it follows that A � λ∗x.t = Hn[λ∗x.t] = Hk[λ

∗x.s] = λ∗x.s; therefore
trivially A[x] � λ∗x.t = λ∗x.s. Now for polynomials p, q such that A[x] � p = q, we
have that ι∗−1(ι∗(λ∗x.p)) = Σi∈Iλ

∗x.ti and ι∗−1(ι∗(λ∗x.q)) = Σi∈Iλ
∗x.ui, where I is

finite and for each i ∈ I, ti and ui are monomials and A[x] � ti = ui; this allows to
conclude, using the previous result. 2

The extension of the above lemma to polynomials with an arbitrary number of
names is standard, because A[x, y] ∼= A[x][y] and A[x] is a RLA.

9.5.1 An example

Multisets : Mf(D) is the set of all finite multisets with elements in D, where m ∈
Mf(D) is a function from D into N such that m(a) = 0 for all a belonging to a
cofinite subset of D. The natural number ♯m = Σa∈Dm(a) is the cardinality of m.
The union m ⊎ p of two finite multisets is defined by (m ⊎ p)(a) = m(a) + p(a) for
all a ∈ D.

Let D be a set together with an injection →: Mf(D) ×D → D. We adopt the
convention that the operator “→” associates to the right, i.e., p → (q → γ) is ab-
breviated by p → q → γ. We define an algebra D = (P(D),∪, ∅, ·n, K, Sk̄)n∈N, k̄∈N∗

in the similarity type of RCA, where K = {[α] → [ ] → α : α ∈ D}, Sk̄ = {[p0 →
[β1, . . . , βn] → β0] → [p1 → β1, . . . , pn → βn] → (⊎n

i=0pi) → β0 : βi ∈ D, pi ∈
Mf(D), ♯pi = ki, |k̄| = n + 1}, and application is the extension by linearity of
the following map on singleton sets (we write γ for {γ}, etc.): γ[β1, . . . , βn] = α if
γ = [β1, . . . , βn] → α; it is equal to ∅, otherwise. It is an easy calculation to show
that D is a RCA. To prove that D is indeed a RLA, by Corollary 9.5.5 it is sufficient
to embed D into the combinatory reduct of a suitable RLAA E that we define here:

(i) Mf(D)(V ) = {ρ : V → Mf(D) : ρ(x) = [ ] for cofinitely many x ∈ V } is the
set of environments ;

(ii) ε, defined by x 7→ [ ], is the empty environment, while, for an environment ρ
and a finite multiset m, we define a new environment ρ{x := m} as follows:
ρ{x := m}(x) = m and ρ{x := m}(y) = ρ(y) if y 6= x.
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We now construct the algebra E = (P(Mf(D)(V ) × D),∪, ∅, ·k, λx
E, xE)x∈V,k∈N

by defining application and abstraction as the extension by linearity of the following
family of functions defined over the singletons (we write (ρ, α) for {(ρ, α)}):

- λxE(ρ, α) = (ρ{x := [ ]}, ρ(x) → α)

- xE = {(ε{x := [α]}, α) : α ∈ D}

- (ρ0, α0)[(ρ1, α1) . . . , (ρn, αn)] =

{
(⊎n

i=0ρi, α) α0 = [α1, . . . , αn] → α

∅ otherwise

Notice that (λx.(ρ, α))xn = (ρ, α) if, and only if, ♯ρ(x) = n.

Theorem 9.5.12. The algebra E is a RLAA and the map h : P(D) → ZdE, defined
by h(X) = {(ε, α) : α ∈ X} is an embedding from D into CrE, making D an RLA.

Proof. The proof that E is a RLAA is a verification of axioms (rβ1)-(rβ5), (rα), (rγ),
(rδ). As an example, we show the calculation for (rβ4). By linearity it is sufficient to
verify for singleton sets that we write without braced parenthesis. The assumption
(λy.(ρi, βi))[ ] = (ρi, βi) means that ρ(y) = [ ]. Then we have

(λxy(σ, α))[(ρ1, β1), . . . ] = (σ{x, y := [ ]}, σ(x) → σ(y) → α)[(ρ1, β1), . . . ]
= (⊎n

i=1ρi ⊎ σ{x, y := [ ]}, σ(y) → α) assuming σ(x) = [β1, . . . , βn]
= λy.(⊎n

i=1ρi ⊎ σ{x := [ ]}, α) because ρi(y) = [ ]
= λy.(λx(σ, α))[(ρ1, β1), . . . ]

If σ(x) 6= [β1, . . . , βn] then both the expression give ∅ as result.
Now by direct calculations we observe that in the algebra E:

(λxy.x)E = {(⊥, α) : α ∈ KD}
(λxyz.xzn0 [yzn1 , . . . , yznk ])E = {(⊥, α) : α ∈ SD

n̄ }

The second part of the theorem is trivial.

9.6 From resource to pure lambda calculus

After having introduced a number of structures which algebrize the resource λ-
calculus, we show how, by some standard constructions, we can recover the algebraic
models of pure λ-calculus. This is done, as often happens in mathematics, by
the method of ideal completion. Let A be a bag-applicative Γ-algebra. An ideal
is a downward closed subset X of A closed under join. For a subset X ⊆ A,
↓ X = {b : ∃a1, . . . , an ∈ X. b ≤

∑n
i=1 ai} (where a ≤ b ⇔ a + b = b) is the ideal

generated by X. We denote by Ide(A) the collection of all ideals of A. Let A
be a RCA. Define an algebra Ide(A) = (Ide(A), ∗, K, S) by setting K =↓ {K};
S =↓ {Sn̄ : n̄ ∈ N

∗}; X ∗ Y =↓ {ab̄ : a ∈ X, b̄ ∈ Y ∗}. If B is a RLAA we define the
structure Ide(B) = (Ide(B), ∗, λx, x)x∈V by setting x =↓ {x}; λx.X =↓ {λx.a : a ∈
X} and the application ∗ as above.
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Theorem 9.6.1. (i) If A is a RCA, then Ide(A) is a combinatory algebra.

(ii) Let A be a RLAA and LfA be the subalgebra of A generated by its locally finite
elements. Then Ide( LfA) is a λ-abstraction algebra.

(iii) If A is a RLA, then Ide(A) is a λ-algebra.

Proof. (i) We prove the axioms of a combinatory algebra.

K ∗X ∗ Y =↓ {Kb̄c̄ : b̄ ∈ X∗, c̄ ∈ Y ∗} =↓ {b : b ∈ X} = X, by axiom (K) of RCA.

S ∗X ∗ Y ∗ Z = ↓ {Sn̄ab̄c̄ : a ∈ X, b̄ ∈ Y ∗, c̄ ∈ Z∗, n̄ ∈ N
∗}

= ↓ {
∑

¯̄d∈Qc̄,n̄
ad̄0[b0d̄1, . . . , bk−1d̄k] : a ∈ X, b̄ ∈ Y k, k = |n̄| − 1, c̄ ∈ ZΣn̄}

by axiom (Sn̄),
= ↓ {ad̄0[b0d̄1, . . . , bk−1d̄k] : a ∈ X, b̄ ∈ Y k, d̄0, . . . , d̄k ∈ Z∗, k ∈ N}

since ideals are closed under joins and downward closed,
= X ∗ Z ∗ (Y ∗ Z)

(ii) We prove the axioms of a λ-abstraction algebra.

(β1) (λa.a)X = ↓ {(λa.a)x̄ : x̄ ∈ X∗}, by linearity
= ↓ {(λa.a)x : x ∈ X}, by (rβ1)
= X, by (rβ1)

(β2) (λa.b)X = ↓ {(λa.b)x̄ : x̄ ∈ X∗}
= ↓ {b}, by (rβ2)
= b

(β3) (λa.X)a = ↓ {(λa.x)an : x ∈ X,n ∈ N}
= X, by (r6) and the hypothesis that (λa.x)an = x for some n

(β4) (λa.λa.X)Y = ↓ {(λa.λa.x)ȳ : x ∈ X, ȳ ∈ Y ∗}
= ↓ {λa.x : x ∈ X}, by (rβ3)
= λa.X

(β5) (λa.XY )Z = ↓ {(λa.xȳ)z̄ : x ∈ X, ȳ ∈ Y ∗, z̄ ∈ Z∗}
= ↓ {

∑
σ∈S|ȳ|

∑
σz̄=z̄0·z̄1·...·z̄|ȳ|

(λa.x)z̄0[(λa.y0)z̄1, . . . , (λa.y|ȳ|−1)z̄|ȳ|]

: x ∈ X, ȳ ∈ Y ∗, z̄ ∈ Z∗}, by (rβ5)
= ↓ {(λa.x)z̄0[(λa.y0)z̄1, . . . , (λa.y|ȳ|−1)z̄|ȳ|] : x ∈ X, ȳ ∈ Y ∗, z̄0, . . . , z̄|ȳ| ∈ Z∗}
= (λa.X)Z((λa.Y )Z)

Suppose now (λb.Y )a = Y , that is, Y =↓ {(λb.y)an : y ∈ Y, n ∈ N}. Then it is
easy to show that (λb.(λb.y)an)[ ] = (λb.y)an.

(β6) (λa.λb.X)Y = ↓ {(λa.λb.x)ȳ : x ∈ X, ȳ ∈ Y ∗}
= ↓ {(λa.λb.x)[(λb.y1)a

n1 , . . . , (λb.yk)a
nk ] : x ∈ X, yi ∈ Y } by hyp.

= ↓ {λb.(λa.x)[(λb.y1)a
n1 , . . . , (λb.yk)a

nk ] : x ∈ X, yi ∈ Y } by (β4)
= ↓ {λb.(λa.x)[y1, . . . , yk] : x ∈ X, yi ∈ Y } by hyp.
= λb.(λa.X)Y.
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Suppose now (λb.X)c = X, that is, X =↓ {(λb.x)cn : x ∈ X,n ∈ N}. It is easy to
check that the hypotheses of rule (rα) are satisfied for the element (λb.x)cn, that is,
(λb.(λb.x)cn)[ ] = (λb.x)cn and there exists k such that (λa.(λb.x)cn)ak = (λb.x)cn.
Then by (rα) we have: λa.(λb.x)cn = λb.(λa.(λb.x)cn)bk.

(α) λb.(λa.X)b = ↓ {λb.(λa.x)bk : x ∈ X, k ∈ N}
= ↓ {λb.(λa.(λb.x)cn)bk : x ∈ X, k ∈ N}
= ↓ {λa.(λb.x)cn : x ∈ X}
= λa.X

(iii) Assume now that A is a RLA. Then A can be embedded into the resource
combinatory reduct of A[V ]. Consider the RLAA A[V ]λ freely generated by A. It is
an easy matter to show that Ide(A) can be embedded into the combinatory reduct
of Ide(A[V ]λ), that we know to be an LAA from item (ii) of this theorem.

Note that the λ-abstraction algebra Ide( LfA) of point (ii) is not necessarily
locally finite: for example the element ↓ V when V is infinite breaks the property.

According to [46], we now define a translation of ordinary λ-terms into sets of
rλ-terms, which also extends to a translation of Böhm trees. Let Λ⊥ be the set
normal terms in the λ-calculus extended with a constant ⊥; as customary Λ⊥ is
endowed with a partial order whose bottom element is ⊥ and where “less or equal”
means “possibly more defined”. Following [10], we identify the Böhm tree BT (M) of
a λ-term M with an ideal (downwards closed and directed subset) of Λ⊥ quotiented
by the equations ⊥N = ⊥ and λx.⊥ = ⊥. This way we can also translate Böhm
trees into subsets of Λr.

As a matter of terminology, a rλ-term t is: simple if none of its subterms (in-
cluding t) contains either “+” or “0”; normal if none of its subterms (including t)
is of the form (λx.t′)s̄; in canonical form if it is a sum of simple terms. By an easy
argument involving the multilinearity axioms of the rλ-calculus and Theorem 7.2.2,
we can argue that for every term t ∈ Λr, there exists a unique normal term s in
canonical form which is equal to t and we let NF(t) be the (finite) set of all simple
terms whose sum is the normal canonical form of t.

Definition 9.6.1 ([46]). Let M ∈ Λ be a λ-term, possibly containing ⊥. The
set T (M) ⊆ Λr is defined inductively by the clauses: T (x) = {x}, T (⊥) = ∅,
T (λx.N) = {λx.t : t ∈ T (N)}, and T (PQ) = {ts̄ : t ∈ T (P ), s̄ ∈ T (Q)∗}. Then
T (N) happens to be the support of the Taylor expansion (see [46]) of the λ-term N .
Now T (BT (M)) ⊆ Λr is defined as ∪{T (B) : B ∈ BT (M)}.

Recall now that λ-terms are ground terms in the similarity type of LAAs: hence
for a LAA B it makes sense to write MB to indicate the interpretation of M in
B. Similarly the notation tA can be used to denote the interpretation of a resource
λ-term t in a RLAA A.

Lemma 9.6.2. Let A be a locally finite RLAA and let B = Ide(A) be the LAA built
over A. Then for all M ∈ Λ, MB = ↓ {uA : u ∈ NF(t), t ∈ T (M)}.
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Proof. The proof is by induction on M ∈ Λ to show that MB = ↓ {tA : t ∈ T (M)}.
Then the statement of the lemma follows from the simple observation that ↓ {tA :
t ∈ T (M)} = ↓ {uA : u ∈ NF(t), t ∈ T (M)}. The case in which M is a variable is
trivial.

(λx.N)B = ↓ {λxA.a : a ∈ NB}
= ↓ {λxA.a : ∃t̄ ∈ T (N)∗. a ≤

∑
i t

A

i }, using the ind. hyp.,
= ↓ {λxA.tA : t ∈ T (N)}
= ↓ {sA : s ∈ T (λx.N)}

(PQ)B = ↓ {ab̄ : a ∈ PB, b̄ ∈ (QB)∗}
= ↓ {ab̄ : ∃t̄ ∈ T (P )∗.∃s̄1, . . . , s̄n ∈ T (Q)∗. a ≤

∑
i t

A

i , bi ≤
∑

h(s
j
h)

A}
using the ind. hyp.,

= ↓ {(t′s̄)A : t′ ∈ T (P ), s̄ ∈ (T (Q))∗} , using the linearity of operations in A,
= ↓ {sA : s ∈ T (PQ)}.

Theorem 9.6.3 ([46]). Let M be a λ-term and let u be a normal simple rλ-term.
Then u ∈ T (BT (M)) iff there exists s ∈ T (M) such that u ∈ NF(s).

Lemma 9.6.4. Let A be a locally finite RLAA. Then for all terms M,N ∈ Λ we
have BT (M) = BT (N) implies M Ide(A) = N Ide(A). In particular all λ-theories
induced by the ideal completions of RLAAs are sensible.

Proof. Suppose BT (M) = BT (N). Then obviously T (BT (M)) = T (BT (N)). We
conclude by applying Theorem 9.6.3 and Lemma 9.6.2 as follows: MB = ↓ {uA :
u ∈ NF(t), t ∈ T (M)} = ↓ {uA : u ∈ NF(t), t ∈ T (N)} = NB. 2
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Conclusions

C.1 Part I

We faced the question of the existence of a reflexive Cpo model whose equational
theory is λβ (or λβη). This problem, Problem 22 of the TLCA list, is still unresolved.
Our work proves that this is not the case if we restrict our attention to reflexive
objects in the category of algebraic lattices: this is the closest answer to the original
problem, to date. To prove our results we combine the representation theory of
Scott domains and the recursion theory developed so far over Scott domains. We
axiomatize a class of webbed models which encompasses all existing ones in the
literature and we develop for them constructions like extensions and completions
which generalize those developed for graph models. Using our general theory we are
in the position of answer another problem of the TLCA list: Problem 19.

At the time it was posted, Problem 19 seemed tremendously complicated. The
answer that we are able to give it follows as an easy corollary of our work. We think
that when new tools allow to easily solve problems that were considered difficult in
the past, this is a sign of progress in science.

As a future work we mean to pursue our road towards the solution of Problem 22
of the TLCA list. We think that our techniques can be further pushed (to their limit)
in order to prove that no reflexive object in Sd can have λβ (or λβη) as equational
theory. This would put us in a good position for trying to “fill the gap” from Sd to
Cpo. We hope this can be done by using techniques from universal (order) algebra,
like those established by Adamek, Nelson and Reiterman [86, 1, 2, 3, 87].

At the same time, while trying to prove the above mentioned incompleteness
results, we also aim at facing Selinger’s order-incompleteness problem [109] which
is related to our area of research and asks the following question: “does there exist
a lambda theory (possibly with constants) which does not arise as the theory of an
ordered model?”

C.2 Part II

We introduced the concept of multiplicity semi-ring, which can be used for gen-
eralizing the standard exponential construction of the relational model of Linear
Logic. Such a semi-ring must contain N as a sub-semi-ring but can also have in-
finite elements ω satisfying ω + 1 = ω. In that case the corresponding model of
Linear Logic is a model of the differential lambda calculus which does not satisfy
the Taylor expansion formula, and it is possible to build non sensible models of the
lambda calculus in the corresponding Kleisli Cartesian closed category. This shows
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that models of the pure differential lambda calculus can have non sensible theories
and provides a new way of building models of the pure lambda calculus where non
termination is taken into account in a quantitative way by means of these infinite
multiplicities.

The generalized relational semantics is then more expressive than the standard
one, form the point of view of equational theories. So one may start wonder whether
this new semantics is or not incomplete. We intend to prove, in the near future, the
incompleteness of such semantics, when it is obtained by an “effective” multiplicity
semiring. The idea is to adapt the techniques of the first part of this thesis, motivated
by the observation that the relational models are a quantitative version of the webbed
ones.

We set forth a purely algebraic study of Ehrhard and Regnier’s resource λ-
calculus, by introducing three equational classes of algebras: resource combinatory
algebras, resource lambda-algebras and resource lambda-abstraction algebras. We
established the relations between them, laying down foundations for a model the-
ory of resource λ-calculus. We also showed that the ideal completion of a resource
combinatory (resp. lambda-, lambda-abstraction) algebra induces a “classical” com-
binatory (resp. lambda-, lambda-abstraction) algebra, and that any model of the
pure λ-calculus raising from a resource lambda-algebra determines a λ-theory which
equates all terms having the same Böhm tree.

Let U be a reflexive object in the Kleisli ccc Rel! obtained by a comonad !
implemented with some multiplicity semi-ring. Such object is at the same time a
model of the resource lambda calculus to considering and a model of the ordinary
lambda calculus and it can be endowed both by a structure of resource lambda-
algebra or by a structure of lambda-algebra.

If the comonad happens to be the standard one (i.e. the multiplicity semi-ring
is N), then the passage from the first structure to the second one is captured at the
algebraic level by means of the ideal completion. If instead the comonad is obtained
via a multiplicity semi-ring like N, the ideal completion cannot reflect anymore the
passage from the resource lambda-algebra structure to the lambda-algebra structure,
since ideal completion only gives sensible models. It is very interesting for us to try
to understand this kind of phenomena more deeply, also on the algebraic level.
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[2] J. Adámek, E. Nelson, and J. Reiterman. Tree constructions of free continuous
algebras. Journal of Computer and System Sciences, 24:114–146, 1982.
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“From Frege to Gödel, a source book in Mathematical Logic”, 1879-1931,
Harvard University Press, 1967).

[104] D. S. Scott. Continuous lattices. In F. W. Lawvere, editor, Dalhousie Conf.
on Toposes, algebraic geometry and logic, pages 97–136. Springer, 1972.

[105] D. S. Scott. Some philosophical issues concerning the theory of combinators.
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