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ABSTRACT
We study the bivariate jump process involving the S&P 500 and the Euro Stoxx 50,
with jumps extracted from high-frequency data. In our analysis, based on Hawkes pro-
cesses, we find no evidence of contagion across different markets. Nevertheless, we
observe significant jump clustering effects though they are limited to intraday time
scales. Moreover, we notice that the relative contribution of jumps to the total price
variance is larger during tranquil market conditions rather than in periods of stress,
providing empirical evidence of this result during the subprime mortgage crisis and
the European sovereign debt crisis. Importantly, our results are robust under different
jump detection methods.

ARTICLE HISTORY
Received 2 February 2019
Accepted 18 February 2020

KEYWORDS
Jumps; contagion; Hawkes
process; high-frequency data

JEL CLASSIFICATIONS
C32; C58; G15

1. Introduction

Prices of traded assets are sometimes subject to sudden movements which cannot be generated by continu-
ous processes, such events are commonly named ‘Jumps’. They are often associated with a sudden flow of new
information (Bajgrowicz, Scaillet, and Treccani 2016), though there is no general consensus on the nature of the
events that can generate such abrupt price reactions. Merton (1976) first introduced price jumps in his seminal
paper, starting an extensive strand of literature in asset pricing and financial econometrics. As highlighted byAit-
Sahalia (2004), the study of jumps is extremely relevant for investors, risk managers, and regulators from several
perspectives. Jumps and stochastic volatility can both generate fat tails in the distribution of asset returns with a
significant impact on the value-at-risk (VaR), though only jumps can produce fat tailed and skewed distributions
over short time scales (see for instance Duffie and Pan 2001). Achieving a decomposition of the ultimate source
of risk is therefore crucial for risk management purposes. For option pricing, discontinuities in the price paths
are also extremely relevant because the replicating portfolio argument of Black and Scholes (1973) fails when the
market is incomplete as the jump risk cannot be perfectly hedged. The impact of jumps on implied volatilities
and risk premia is widely documented in the literature (see Duffie, Pan, and Singleton 2000; Eraker, Johannes,
and Polson 2003; Wright and Zhou 2009; Bollerslev and Todorov 2011 among others). Important implica-
tions for asset allocation problems are extensively discussed by Liu, Longstaff, and Pan (2003) and Aït-Sahalia,
Cacho-Diaz, and Hurd (2009).

In this paper, we study the bivariate jump process involving the S&P500 and the Euro Stoxx 50 indexes that
are representative of two leading stock markets. We contribute to the literature studying the relevant features of
the jump process such as jump clustering and transmission across different world markets. Few recent papers
investigate jumps at the multivariate level and they mostly focus on their simultaneous occurrence on multi-
ple stocks within the same market (co-jumps): Bollerslev, Law, and Tauchen (2008) develop a specific test for
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pairwise jump detection, Gilder, Shackleton, and Taylor (2014) analyze co-jumps in the US market, Caporin,
Kolokolov, and Renò (2017) develop a new test for simultaneous jumps on multiple stocks to investigate sys-
temic events, Bormetti et al. (2015) study the systemic diffusion of jumps among the most liquid Italian stocks.
While co-jumps can occur on assets that are traded simultaneously, Aït-Sahalia, Cacho-Diaz, and Laeven (2015)
(ADL henceforth) argue that jumps can also transmit across world markets with a time lag and they use mul-
tivariate Hawkes processes to capture this form of ‘contagion’. Departing from the approach of ADL, relying
on a fully parametric model estimated on daily data, we extract jumps from high-frequency data and then
we use Hawkes processes to model their dynamics. Surprisingly, we find completely different results: no evi-
dence of jump transmission across markets while self excitation effects are statistically significant but they are
detectable only at intraday time scales (compatibly with Bajgrowicz, Scaillet, and Treccani 2016 who find no
effects over different trading days). Moreover, the number of jumps detected during low-volatility periods and
their contribution to the total price variance are higher than in period of stress (e.g. the subprime and the
European sovereign crisis). This is also a fundamental difference with the dynamics entailed in the model of
ADL, where price jumps characterize periods of market turmoil. In our case such periods are instead dom-
inated by large volatility fluctuations that can be hardly distinguished from jumps at the daily time scale. To
improve the accuracy of our analysis, we allow the jump activity to depend on the level of volatility using the
generalized version of the Hawkes process proposed by Bowsher (2007). Our estimates show a strong inverse
dependence that can be at least partially related to an increasing difficulty of disentangling jumps from dif-
fusion when the volatility is higher. Importantly our results are robust under different jump identification
methods.1

The implications of our empirical findings are extremely relevant for risk management and option pricing.
If jumps were to propagate across markets, as argued by ADL, then a jump in one market could significantly
change the conditional distribution of returns in other markets due to contagion risk. Unlike the model of Mer-
ton (1976), jump risk could not be easily differentiated and rational investors would reasonably require a risk
premium to face contagion risk; finally, the specific implications of contagion in asset allocation problems are
exhaustively discussed in Ait-Sahalia and Hurd (2015).

The rest of this paper is organized as follows. Section 2 describes the data and Section 3 reviews the most
common approaches for jump identification. Section 4 presents the multivariate Hawkes framework which is
adopted to model the asset price dynamics, while Section 5 concludes.

2. Data description

Our data set comes from Olsen data and contains information on the S&P 500 and the Euro Stoxx 50 indexes
between 2007-09-13 and 2014-04-30; the two indexes are traded at the NYSE and at the Frankfurt Stock
Exchange, respectively. The 7-year period covered by our analysis includes the subprime crisis, leading to the
bankruptcy of Lehman Brothers on September 15th 2008 and the subsequent European sovereign crisis in 2011.
For both markets, we compute the total return from prices reported every 5 minutes. This frequency is widely
recognized to offer a reasonable balance between a fine sampling frequency on the one hand and robustness to
market microstructure noise on the other (see for instance Andersen et al. 2010). The NYSE and the Frankfurt
Stock Exchange normally operate respectively form 9:30 to 16:00 and from 9:00 to 17:30 in local times. The
first price is observed 5 minutes after the opening time. Each ordinary trading day has respectively 77 intraday
returns for the S&P 500 and 100 returns for the Euro Stoxx 50. For the latter we ignore the first 10 minutes of
activity due to a remarkably higher price variability compared to the rest of the day. This choice aims atminimiz-
ing the impact of the erratic price behavior often induced bymarket opening procedures, an approach similar to
Gilder, Shackleton, and Taylor (2014). We also exclude from the data set an extremely small set of days contain-
ing an anomalous number of price observations, such as those where markets are open for half a session only. At
the end of the data cleaning process, our sample consists of 1674 trading days for the S&P 500 and 1691 for the
Euro Stoxx 50. The cumulated log-return and the intraday annualized volatility measured from high-frequency
returns are reported in Figure 1 where we can observe the highest volatility peaks during the subprime and the
Euro Sovereign crisis.



720 F. FERRIANI AND P. ZOI

Figure 1. The top panel exhibits the time series of cumulated log-returns (including the overnight period). The bottom panel reports the time
series of the annualized volatility.

3. Jumps identification

In recent times, the study of price jumps has largely benefited from the increasing availability of high-frequency
data fostering a copious scientific production in the field of jump detection. Seminal contributions include
Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen and Shephard (2006) (BNS henceforth), Huang and
Tauchen (2005), Andersen, Bollerslev, and Diebold (2007b), Andersen et al. (2010). To summarize the most
relevant studies on jump identification techniques, we conveniently distinguish two main families.

The first one is the BNS family which includes all the tests that relies on the comparison between two real-
ized measures of volatility: the bipower variation and the quadratic variation. The former is driven exclusively
by continuous price changes while the latter also includes jumps. Afterwards, several alternative tests have
been proposed based on different volatility measures that are also robust to jumps: Mancini (2009) suggests
a threshold-based estimator, Corsi, Pirino, and Renò (2010) (CPR henceforth) introduce a thresholded version
of the bipower variation (BNS), while Andersen, Dobrev, and Schaumburg (2012) develop new measures based
on the nearest neighbor truncation. Christensen, Oomen, and Podolskij (2010) introduce quantile based estima-
tors that generalize the latter approach, being also robust to market microstructure noise. The second important
family has been introduced by Lee andMykland (2008) (LM henceforth) and is based on the idea that jumps can
be identified when a return exceeds a certain threshold that is determined adaptively based on the instantaneous
volatility. The proposals of Andersen, Bollerslev, and Diebold (2007b), Bollerslev, Todorov, and Li (2013) and
Bormetti et al. (2015) belong to the LM family and they differentiate on themethodology employed to determine
the volatility and the threshold level.

Unfortunately, none of the available identification methods is generally preferred to the others, with stud-
ies showing that the performances of the various tests in finite samples are related to the features of the data
generating process as well as to the time frequency of prices observations (see Dumitru and Urga 2011; Gilder,
Shackleton, and Taylor 2014 among others). For this reason, we conduct our analysis under three different detec-
tionmethods selecting one test from theBNS family, one test from the LM family, and a third set of jumps derived
as the intersection of the previous two. According to Dumitru and Urga (2011), the intersection of two jump
tests generally leads to a substantial reduction of the effective size compared to the nominal one. In the following
we first describe the families of non-parametric tests for jump identification, then we present both descriptive
and graphical evidence on the jumps occurrence in the two markets.
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3.1. Jump tests

Assume, as usual, that prices follow a continuous-time semi-martingale and let the log-price pt be described by
the stochastic differential equation

pt =
∫ t

0
μs ds +

∫ t

0
σs dWs +

∫ t

0
Js dNs (1)

where the driftμt has finite variation, the volatility σt is càdlàg,Wt is a standard Brownian motion,Nt is a finite
activity counting process with possibly stochastic intensity λt and Jt is the random jump size. The stochastic
processes encompassed by Equation (1) exclude infinite jump activity. However, the class of models covered is
widely recognized to be flexible enough to capture the main features of financial time series at high-frequency
(see for instance Andersen, Bollerslev, and Dobrev 2007a; Andersen et al. 2010).

Assume also that each trading day t has duration 1 and M+ 1 log-prices pt,0, . . . , pt,M+1 are observed at
equally spaced times. The intraday log-returns are indicated as rt,i = pt,i+1 − pt,i for i = 1, . . . ,M or alterna-
tively with a single index ri to denote the ith log-return in the entire time series: i = 1, . . . ,M · T where T is the
total number of trading days.

3.1.1. The BNS family of tests
The following volatility metrics is essential to the computation of the test statistics:

RVt =
M∑
i=1

r2t,i (2)

RVt is the realized variance that converges in probability to the quadratic variation asM → ∞:

p lim
M→∞RVt = QVt =

∫ t

t−1
σ 2
s ds +

∫ t

t−1
Js2 dNs (3)

and in absence of jumps the quadratic variation corresponds to the integrated variance:

QVt = IVt =
∫ t

t−1
σ 2
s ds (4)

To separate the contribution to the realized variance due to continuous price variation from the contribution of
jumps, BNS introduce the bipower variation:

BPVt ≡ μ−2
1

(
M

M − 1

) M∑
i=2

∣∣rt,i−1
∣∣ ∣∣rt,i∣∣ (5)

where μγ = E(|u|γ ) and u ∼ N(0, 1). In the asymptotic limit

p lim
M→∞BPVt =

∫ t

t−1
σ 2
s ds

moreover, in absence of jumps, under other regularity conditions, the joint asymptotic distribution of RVt and
IVt is normally distributed

√
M

(
RVt,M − IV
BVt,M − IV

)
D−→ N

(
0,
[
2 2
2 2.62

]
IQt

)
(6)
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where IQt = ∫ t
t−1 σ 4

s ds is the integrated quarticity. BNS propose some alternative statistics to compute the test,
the most common being based on the relative jump measure:

RJt ≡ RVt − ˆIVt

RVt
(7)

where ˆIVt denotes some jump robust measure of the integrated variance. We generally define the test statistics
for BNS family as

Zt ≡ RJt√
1
M

(
v ˆIVt

− vRVt

) ˆIQt
ˆIV2
t

(8)

where ˆIQt is a consistent estimator of the integrated quarticity, v ˆIV and vRV are constant such that

Var
[

ˆIVt

]
= v ˆIVt

M
IQt + O

(
M−2) and Var [RVt] = vRVt

M
IQt

therefore vRV = 2 while v ˆIV depends on the estimator ˆIV . The test statistics Zt converges asymptotically to a
standard normal random variable. A jump is detected with the confidence level 1 − α when Zt > �−1

1−α being
�−1

1−α the inverse standard normal distribution evaluated at 1 − α. In the original proposal of BNS, ˆIVt coin-
cides with BPVt and ˆIQt = max( ˆIV2

t ,QPt) being QPt the quad-power quarticity. The large diffusion of this test
statistics is due to its suitable finite sample properties highlighted by Huang and Tauchen (2005).

An interesting alternative volatility measure is the corrected threshold bipower variation of Corsi, Pirino, and
Renò (2010):

C − TBPVt ≡ μ−2
1

M∑
i=2

Z1
(
rt,i−1, c2θ v̂t,i−1; cθ

)
Z1

(
rt,i, c2θ v̂t,i; cθ

)
(9)

where

Zγ

(
x, y; cθ

) ≡

⎧⎪⎨
⎪⎩

|x|γ if x2 ≤ y

1
2�(−cθ )

√
π

(
2
c2θ

y

)γ /2

	

(
γ + 1
2

,
c
2

θ

2

)
if x2 > y

� is the cumulative standard normal distribution and 	(α, x) is the upper incomplete gamma function. The
C − TBPVt replaces the absolute returns exceeding the threshold by their conditional expected value under the
normality assumption:

E
[ ∣∣rt,i∣∣γ ∣∣ r2t,i > c2θ

] = Zγ

(
rt,i, c2θ v̂t,i; cθ

)
The corrected threshold tripower quarticity is analogously defined as:

C − TTPVt ≡ μ−2
1

M∑
i=3

Z4/3
(
rt,i−2, c2θ v̂t,i−2; cθ

)
Z4/3

(
rt,i−1, c2θ v̂t,i−1; cθ

)
Z4/3

(
rt,i, c2θ v̂t,i; cθ

)
(10)

Asymptotically, the C − TBPVt and the C − TTPVt behave analogously to the bipower variation and the
tripower quarticity in absence of jumps, provided that the threshold vanishes more slowly than the modulus
of continuity of the Brownian motion. In presence of jumps instead the upward bias which usually affects the
multipower variation measures of Barndorff-Nielsen, Shephard, and Winkel (2006) is drastically reduced, with
positive effects on the power of the test. The simulation study of Corsi, Pirino, and Renò (2010) shows that the
gain is particularly relevant in presence of consecutive jumps when the bias affecting the multipower variations
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can become extremely large with detrimental effects on jump detection. In view of that, we follow the method-
ology of Corsi, Pirino, and Renò (2010) within the BNS family and as a proxy for the instantaneous volatility
we adopt the estimator defined by Equation (14) in the next paragraph. Remarkably, while the LM type of tests
described below require substantial restriction to the volatility process, those belonging to the BNS family are
more robust and they remain consistent even in presence of volatility jumps, although their power and their size
in finite samples can be affected by violent volatility shocks.

3.1.1.1. Identification of intraday jump times. All the tests belonging to the BNS family are designed to reveal
the presence of at least one jump over a certain time period, typically a single trading day. In this study, we follow
the procedure described in Andersen et al. (2010) based on the iterative application of the BNS test removing
at each step the contribution of the largest absolute return from the realized variance. However, we adopt this
method with some important modifications:

(1) In the BNS test we use the threshold bipower variation of Corsi, Pirino, and Renò (2010) to reduce the
bias due to jumps.

(2) The test is calculated after rescaling high-frequency returns to remove the intraday periodicity of volatility
as recommended by Rognlie (2010). This procedure reduces the bias in the bipower variation generated
by time varying volatility.

(3) To reduce the bias due to stale quotes documented by Kolokolov and Renò (2018), we remove null
intraday returns from the sample before computing the realized measures.

(4) Following Gilder, Shackleton, and Taylor (2014) we classify as a jump the largest absolute log return after
adjusting for the intraday volatility pattern.

(5) Differently from Andersen et al. (2010), we recalculate at each step the threshold bipower variation and
the tripower quarticity to guarantee the removal of the upward bias in case of jumps.

(6) To limit the effects on the size of the test due to multiple hypotheses testing, we apply the conservative
Holm-Bonferroni correction.

3.1.2. The LM family of tests
The LM test is based on a measurement of the instantaneous volatility σt . Such a measurement is feasible with
asymptotically infinite precision only if the drift μt and σt itself change ‘slowly’ in time (see Lee and Myk-
land 2008 for further details). Such a restriction is the major limitation for these tests since their consistency is
not guaranteed in the presence of volatility jumps. The tests statistics within this family is generally defined as
follows:

zt,i =
∣∣rt,i∣∣√
V̂t,i

(11)

where V̂t,i is an estimator of the instantaneous volatility and zt,i is the normalized absolute return. As the
sampling frequency increases, V̂t,i converges to the unobserved instantaneous volatility and zt,i distributes as
the absolute value of a standard normal random variable. A jump is detected whenever zt,i exceeds a pre-
determined threshold θ . The various LM tests proposed in the literature differ for the methodology used to
determine the threshold level and for the estimation of the instantaneous volatility. Concerning the threshold,
as the test is applied for every intraday return, the issue of false discovery rate (FDR) arising in the con-
text of multiple hypotheses testing must be properly taken into account. The simplest solution (proposed by
Andersen, Bollerslev, and Diebold 2007b) consists in the application of the Šidák approach: given a certain
daily size α, the corresponding size for each intraday test is β = 1 − (1 − α)1/M and the associated threshold
level is θ = �−1

1−β/2. However, finite sample volatility is always measured with an error and the Šidák approach
often leads to over-reject the null. LM propose to calculate critical values from the limiting distribution of the
maximum of the test statistics: asM → ∞ the quantity

ξM = maxi
(
zt,i

) − CM

SM
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with CM = (2 logM)1/2 − [log 4π + log(logM)]/2
√
2 logM and SM = (2 logM)−1/2, distributes as a Gumbel

random variable.2 This method is more conservative and reduces the probability of detecting spurious jumps.
With regard to the estimators used for the instantaneous volatility, LM propose the bipower variation

calculated over a time window of size K depending on the sampling frequency.3 Andersen, Bollerslev, and
Diebold (2007b) use instead the bipower variation calculated over the entire trading day. It is important to
remark that both of them are upward biased in case of jumps and may substantially lose accuracy when the
instantaneous volatility moves rapidly. These issues are extremely relevant for our purposes: the former reduces
the detection power of the test, especially when multiple jumps occur closely in time, and it may also influences
the observed clustering pattern; the latter increases the error affecting our local volatility estimates and therefore
the probability of spurious jump detection.

To remove the bias, Bormetti et al. (2015) construct an estimator similar to LMwhich is based on the threshold
bipower variation: the past information is weighted through an exponential moving average. The estimator also
takes into account the U-shaped intraday volatility pattern that is largely documented in the literature (see for
instance Bollerslev, Todorov, and Li 2013; Gilder, Shackleton, and Taylor 2014). In details, let r̃t,i denote the log-
return scaled by a proper factor to remove the intraday periodicity: r̃t,i = ri,t/ζi. The local volatility estimator is
defined as

ṼBEW
i = α

μ2
1

∣∣r̃j′ ∣∣ ∣∣r̃j∣∣ + (1 − α) ṼBEW
i−1 i = 1, . . . ,M · T (12)

V̂BEW
t,k = ζk ṼBEW

t,k t = 1, . . . ,T k = 1, . . . ,M (13)

where Ṽ indicates the estimated volatility purified by the intraday volatility pattern4 ζi, j < j′ ≤ i − 1,

|r̃j|/
√
V̂BEW
j ≤ θ and |r̃l|/

√
V̂BEW
l > θ ∀ j < l < j′. This estimator is a moving average weighted bipower vari-

ation excluding all the observation that exceed the threshold θ . However, the inaccuracy in presence of fast
volatility changes still remains a critical issue to deal with. We address the problem as follows: (i) to correct
the intraday volatility patterns we follow the method proposed by Boudt, Croux, and Laurent (2011) which
ensures accuracy and consistency in presence of jumps; (ii) to improve the accuracy in presence of sharp volatil-
ity changes, we also consider the estimator V̂FEW based on forward information and defined exactly as V̂BEW

but on the time reversed series (i.e. the series obtained substituting the index i with M · T − i + 1). Our new
estimator is

V̂SEW
i = 1

2

(
V̂BEW
i + V̂FEW

i

)
(14)

which is symmetric in time, i.e. it equally weighs past and future information. With an increasing literature
pointing towards the occurrence of volatility jumps (Jacod and Todorov 2010; Todorov and Tauchen 2011; Corsi
and Renò 2012; Wei 2012; Christensen, Oomen, and Podolskij 2014; Bandi and Renò 2016), the combination of
backward and forward information supports the effectiveness of our jump identification methods. To figure out
this point, consider that in presence of an upward volatility jump, the backward estimator tends to underestimate
volatility and it is likely to signal spurious price jumps. A simulation study available upon request shows that
this approach has remarkably more power compared to the original specification proposed by LM.

3.2. Results

Table 1 reports the summary statistics for the three alternative sets of jumps: the first set obtained from our
modified version of the LM test (m-LM henceforth), the second set from sequential version of the CPR test
(s-CPR), while the third set comes as the intersection of the previous two. The content of this table can be linked
to Figures 2 and 3which display the time series of jumps identified by the three detectionmethods. FromTable 1,
we note significant differences between the outcomes of m-LM and the s-CPR methods: the m-LM test always
detects more jumps (almost twice of those detected under the s-CPR test). According to our simulation analysis,
we also find that the LM-type of tests have generally more power than the BNS test confirming the results of
Dumitru and Urga (2011) and Gilder, Shackleton, and Taylor (2014).
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Table 1. Jumps detection – empirical estimates.

S&P 500 ESTX 50

m-LM s-CPR m-LM∩ s-CPR m-LM s-CPR m-LM∩ s-CPR

days with jumps 235 167 105 465 282 222
total jumps 314 196 118 629 351 255
max. jumps per day 6 5 3 5 7 3
contrib. price var. 3.70% 2.35% 1.75% 6.55% 4.03% 3.46%
average jump size 0.44% 0.40% 0.48% 0.50% 0.52% 0.59%
max. jump size 3.67% 2.64% 2.64% 3.40% 3.40% 3.40%
min. jump size 0.09% 0.08% 0.13% 0.12% 0.04% 0.12%
FDR 7.6% 14.5% 3.2% 3.9% 9.0% 1.5%

Note: Summary statistics for jumpsdetectedunder differentmethods. Them-LMand the s-CPR tests are applied
with a nominal confidence level equal to 99.5% and 99% respectively. The contribution of jumps to the
total price variance is calculated as the sample average of the ratio between the sum of squared detected
jumps and the realized quadratic variation on each trading day (overnight returns are excluded from the
denominator).

We observe that all the jump detection methods benefit significantly from the intraday volatility pattern
correction which largely reduces the size in finite samples while the market microstructure noise has minor
effects at 5 minutes. Importantly, the identification errors of the m-LM and the s-CPR tests are not independent:
the size of the intersection is larger than the product of their individual size. The intersection however ensures
a large decrease of the actual size making the detection mechanismmuch more severe. Bajgrowicz, Scaillet, and
Treccani (2016) claim that the role of price jumps in the literature is probably overstated because a large fraction
of jumps detected non-parametrically are spurious. To avoid drawing wrong conclusions about the dynamics
of jumps they suggest to control the Family Wise Error Rate (FWER) or the FDR. The expected false discovery
rates on Table 1 are calculated using the size estimated on our numerical simulation.

The relative contribution of jumps to the total price variance is calculated here as the sample average over
all trading days of the ratio between the sum of squared jumps and the realized quadratic variation. Huang
and Tauchen (2005) instead consider the sample mean of RJt (see Equation (7)) calculated using ˆIVt = BPVt
and they find that about 7.3% of the quadratic variation on the S&P 500 is due to jumps. Performing the same
calculation on our data with ˆIV = C − TBPVt yields an average ratio of 8.0% for the S&P 500 and 9.3% for
the Euro Stoxx 50. Note that these estimates differ significantly from the results of Table 1. Interestingly, the
mean of RJt on days where no jumps are detected according to the s-CPR test at the 99% confidence level is
respectively 4.5% and 4.6% for the two indexes. These result can be interpreted in two different ways that are
not mutually exclusive: (1) our choice of the confidence level is too severe to effectively remove the majority of
jumps; (2) even after the correctionswe adopted to take into account the intraday volatility pattern, the threshold
bipower variation is still seriously downward biased. Christensen, Oomen, and Podolskij (2014) find that the
contribution of jumps to total price variance extracted from 5minutes data is usually overestimated and intraday
volatility bursts5 are oftenmisclassified as jumps. Using data sampled at higher frequencies and applying specific
corrections for themicrostructure noise, they find that the contribution of jumps ismuch smaller (around 1% for
the equity market), a result also confirmed by Bajgrowicz, Scaillet, and Treccani (2016). We therefore maintain
severe confidence levels to avoid excessive spurious detection rates. Moreover, we also notice that under all
identification procedures, the number of jumps as well as their size and their relative contribution to total price
variance are smaller for the U.S. index compared to the Euro Stoxx 50, which can be plausibly related to the
lower diversification of the European index.

Figures 4 and 5 show the intraday distribution of jump times. For the purpose of this study, we only focus on
jump intraday periodicity and do not investigate in detail the specific events triggering a jump in the process as
we prefer to concentrate on the identification of jumps and on their modelling via Hawkes specifications.6 The
pattern of intraday jumps clearly suggests detected jumps can be somehow related to macroeconomic releases
and other scheduled announcements. For the U.S. market we notice a peak at about 30 minutes after the market
opening (less pronounced under the s-CPRmethod) which corresponds to themacroeconomic announcements
scheduled around 10 o’clock (see Gilder, Shackleton, and Taylor 2014). A second and more evident peak on the
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Figure 2. Jumps in the Euro Stoxx 50 identified under different detection methods.

U.S. market is located around 14:00 corresponding to the time at which the Federal Fund Target Rate is publicly
communicated after the FOMCmeeting. For the European market we observe a large number of jumps located
within 14:30 and 14:35 in local time, corresponding to the start of the pre-negotiation at the NYSE. A second
and smaller peak is visible 1 hour and a half later, in correspondence of the U.S. macroeconomic announcements
previously mentioned, suggesting some cross market dependences of the jump activity in the European market
due to news on the U.S. economy.

Figures 6 and 7 report the intraday annualized volatilitymeasured by the square root of the quadratic variation
(also including the contribution of jumps). The average number of jumps and the average relative contribution
of jumps to the quadratic variation are also reported. All figures show that jumps occur more frequently during
low volatility periods. Remarkably, also the relative contribution of jumps is larger when the volatility is lower,
regardless of the identification method. This result differentiates us from the findings obtained using daily data
and a parametric model by ADL who report that price jumps are more frequent during periods of market tur-
moil. A possible explanation for this discrepancy is the different time scale of our observations, as the use of
high-frequency data allows to disentangle jumps from continuous returns more effectively; in principle this
should reduce the risk of misinterpreting a volatility spillover with a jump propagation across markets. In this
respect, note that the inverse relation between the volatility level and the relative contribution of jumps is even
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Figure 3. Jumps in the S&P 500 identified under different detection methods.

more pronounced when the continuous volatility is measured by the threshold bipower variation or using the
MinRVt and the MedRVt measures proposed by Andersen, Dobrev, and Schaumburg (2012). This evidence is
quite strong since in the presence of large volatility shocks the bipower variation is downward biased leading to
underestimation of the relative contribution of jumps. Thus the effects reported on Figures 6 and 7 cannot be
induced by this finite sample bias, with our empirical evidence pointing to a minor role of jumps throughout
the subprime and the Euro Sovereign crisis.

4. Modelling jumps withmultivariate Hawkes processes

Hawkes processes belong to the class of multivariate point processes characterized by the presence of a con-
ditional intensity vector. They have been originally introduced by Hawkes (1971a, 1971b) and widely used in
many different fields including seismology, neuroscience, finance and insurance. The use of Hawkes processes
in finance has been pioneered among others by Bowsher (2007) to describe security market transactions and,
since then, these models have become increasingly popular in the financial econometrics literature. Thanks to
their flexible functional specification, Hawkes processes can be successfully adopted to model the intraday mar-
ket dynamics using high-frequency data. The conditional intensity of the process can be enriched with selected
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Figure 4. Distribution of intraday jump times for the Euro Stoxx 50.

covariates (or marks) whichmakes the Hawkes specification particularly suited to describe and test several mar-
ket microstructure hypotheses including the interaction between different types of market events. Moreover the
analytical tractability of Hawkes processes under mild regularity conditions facilitate their estimation and sta-
tistical inference (see Bacry, Mastromatteo, and Muzy 2015 for an overview of Hawkes applications in finance).
Without claiming to be exhaustive, besides Bowsher (2007) some relevant studies applying Hawkes specifica-
tions also include ADL who model contagion through jump cascades involving multiple markets, Embrechts,
Liniger, and Lin (2011) present a multivariate Hawkes process with dependent marks modeled through a Gauss
copula, Chavez-Demoulin and McGill (2012) adopt the Hawkes process to estimate quantile based measures of
risk for intraday financial data, Bormetti et al. (2015) analyze the multivariate dynamics of jumps in the Italian
stock market, Granelli and Veraart (2016) examine the variance risk premium on an index whose constituents
are subject to contagion, and Clements and Liao (2017) model jumps and co-jumps in the DJIA index and its
components. We refer to Hawkes (2018) for a comprehensive review of the most recent contributions in this
field.

In this study, we use the Hawkes processes to describe the evolution of the jump intensities λl,τ where l takes
the value 1 for the Euro Stoxx 50 index and 2 for the S&P 500. We will use the notation τ(t, i) to denote the time
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Figure 5. Distribution of intraday jump times for the S&P 500.

corresponding to the ith interval on day t. The standard specification for the jumps intensities is

λl,τ = θl +
2∑

l′=1

∫ τ

−∞
gl,l′ (τ − s) dNl′,s l = 1, 2 (15)

where θl represents the baseline deterministic component, Nl,τ is the counting process for market l and the
function gl,l′ (usually a negative exponential), measures the effect that an event on market l′ generates on the
intensity of market l. This model is able to produce jump clustering, because jumps affect the future intensity
whenever gl,l > 0, as well as cross-excitation effects from l′ to l when gl,l′ > 0 for l �= l′. We use some simple
variants of this model to describe the dynamics of jumps detected from high-frequency data: our applications
require to take into account that the NYSE and the FSX operate at different times with modest overlaps of the
trading activity (normally 2 hours). Moreover trading and non-trading days can differ across countries due to
specific national holidays.When the market is closed the jump intensity must be zero, nevertheless the informa-
tion coming from other operatingmarkets could affect the jump intensity on the next trading day. Equation (15)
is appropriate to describe each market during its operating time and when the market l′ is closed we can have
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Figure 6. The top panel reports the average number of jumps, the central and the bottom panels show the average contribution of jumps to
total price variance calculated respectively from detected jumps and from jump robust realizedmeasures. The dashed line is the intraday realized
volatility. All these quantities are averaged over a rolling window of two months centered on the reference date.

only self-excitation effects in market l given that no jumps can occur on l′. The missing part of the dynam-
ics is the overnight evolution of λl which obviously requires some specific assumptions. Let ol,t and cl,t denote
the opening and closing time of market l measured according to some time convention (for instance UTC);
in non-trading days the opening and the closing time coincide: ol,t = cl,t . We consider the following recursive
evolution:

λl,τ =

⎧⎪⎪⎨
⎪⎪⎩

θl +
2∑

l′=1

Kl,l′

∫ τ

−∞
e−γl,l′ (τ−s)dNl′,s τ ∈ [

ol,t , cl,t
)

0 τ ∈ [
cl,t , ol,t+1

) (16)

where γ controls the speed of mean reversion while Kl,l′ establishes the size of self and mutual excitations. In
principle different coefficients could be introduced for intraday and overnight periods at the cost of making the
equations more complicated but according to our analysis7 the improvement of the fit is negligible.

Table 2 reports the maximum likelihood estimates of our model enriching the dynamics progressively.
Model 1 is a simple Poisson process with constant intensity, obtained imposing Kl,l′ = 0 for l, l′ = 1, 2. Model 2
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Figure 7. The top panel reports the average number of jumps, the central and the bottom panels show the average contribution of jumps to
total price variance calculated respectively from detected jumps and from jump robust realizedmeasures. The dashed line is the intraday realized
volatility. All these quantities are averaged over a rolling window of two months centered on the reference date.

is a univariate Hawkes process that includes self-excitation: the restrictions are Kl,l′ = 0 for l �= l′. The effect
of jumps on future intensity exhibits a very short persistence: for the S&P 500 the half-life time ranges from
21 min to 1 hour, for the ESTX from 20 min to 1 hour and half. For both markets the jump intensity is more
persistent under the s-CPR method. When allowing for self-excitation, we obtain a remarkable increase of the
likelihood under all jump identification methods suggesting that jump clustering is an important feature of the
jump dynamics. When a jump occurs, its impact on the intensity is remarkably large, generally one order of
magnitude larger then the baseline intensity level θ . These results are very similar to those obtained by Bormetti
et al. (2015) analyzing the Italian stock market.

Model 3 also includes spillovers in the jump activity (cross-excitation). According to our results cross-
excitations are generally insignificant (Table 2).

To extend our analysis, we also explore some additional features of the jump process: the dependence from
continuous volatility and the role of the jump size. To this purpose wemove from the standardHawkes processes
to the class of generalized Hawkes processes whose properties are discussed in details by Bowsher (2007): the
generalized specification allows the deterministic component θ to be time dependent and the impact of jumps
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Table 2. MLE for standard Hawkes process.

ESTX S&P 500

m-LM s-CPR Intersection m-LM s-CPR Intersection

model 1 θ 7.44 · 10−4∗∗∗ 4.16 · 10−4∗∗∗ 3.02 · 10−4∗∗∗ 4.89 · 10−4∗∗∗ 3.05 · 10−4∗∗∗ 1.84 · 10−4∗∗∗
(2.56 · 10−5) (1.75 · 10−5) (1.51 · 10−5) (2.23 · 10−5) (1.86 · 10−5) (1.28 · 10−5)

log L −4147.614 −2518.953 −1911.414 −2202.424 −1467.042 −943.060

model 2 θ 6.32 · 10−4∗∗∗ 3.65 · 10−4∗∗∗ 2.81 · 10−4∗∗∗ 3.95 · 10−4∗∗∗ 2.73 · 10−4∗∗∗ 1.67 · 10−4∗∗∗
(2.84 · 10−5) (1.88 · 10−5) (1.57 · 10−5) (2.47 · 10−5) (1.97 · 10−5) (1.33 · 10−5)

γ 3.05 · 10−2∗∗∗ 7.45 · 10−3∗∗ 3.25 · 10−2∗∗ 2.90 · 10−2∗∗∗ 1.15 · 10−2∗∗ 3.29 · 10−2∗∗
(6.08 · 10−3) (2.99 · 10−3) (1.52 · 10−2) (6.37 · 10−3) (5.08 · 10−3) (1.41 · 10−2)

Kl,l 4.69 · 10−3∗∗∗ 1.20 · 10−3∗∗∗ 2.27 · 10−3∗∗ 5.95 · 10−3∗∗∗ 1.57 · 10−3∗∗∗ 3.09 · 10−3∗∗
(9.33 · 10−4) (3.39 · 10−4) (1.04 · 10−3) (1.32 · 10−3) (5.75 · 10−4) (1.47 · 10−3)

log L −4062.034 −2489.863 −1895.516 −2116.161 −1448.232 −927.291

model 3 θ 5.83 · 10−4∗∗∗ 2.56 · 10−4∗∗∗ 2.70 · 10−4∗∗∗ 3.75 · 10−4∗∗∗ 2.06 · 10−4∗∗∗ 1.62 · 10−4∗∗∗
(3.59 · 10−5) (5.03 · 10−5) (1.65 · 10−5) (2.85 · 10−5) (3.62 · 10−5) (1.55 · 10−5)

γ 3.06 · 10−2∗∗∗ 7.07 · 10−3∗∗ 3.24 · 10−2∗∗ 2.87 · 10−2∗∗∗ 1.19 · 10−2∗∗ 3.27 · 10−2∗∗
(6.11 · 10−3) (2.88 · 10−3) (1.51 · 10−2) (6.30 · 10−3) (5.30 · 10−3) (1.40 · 10−2)

Kl,l 4.68 · 10−3∗∗∗ 1.18 · 10−3∗∗∗ 2.25 · 10−3∗∗ 5.89 · 10−3∗∗∗ 1.56 · 10−3∗∗∗ 3.06 · 10−3∗∗
(9.36 · 10−4) (3.31 · 10−4) (1.03 · 10−3) (1.31 · 10−3) (5.81 · 10−4) (1.45 · 10−3)

γl,l′ 3.89 · 10−4 1.08 · 10−5 6.05 · 10−4 3.76 · 10−3 1.21 · 10−4 1.25 · 10−3

(2.98 · 10−4) (9.51 · 10−6) (7.87 · 10−4) (5.34 · 10−3) (8.03 · 10−5) (5.51 · 10−3)

Kl,l′ 2.41 · 10−4 2.19 · 10−5 2.42 · 10−4 1.56 · 10−4 7.69 · 10−5∗∗ 4.89 · 10−5

(1.55 · 10−4) (1.62 · 10−5) (2.92 · 10−4) (1.95 · 10−4) (3.72 · 10−5) (1.15 · 10−4)

log L −4057.178 −2486.933 −1893.643 −2114.747 −1444.632 −926.964

Notes: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
Estimates for the standard Hawkes process: time is measured in minutes and standard errors are reported in parenthesis.

to depend on the normalized jump size. The full model is specified as follows:

λl,τ =

⎧⎪⎪⎨
⎪⎪⎩

θl,τ +
2∑

l′=1

Kl,l′

∫ τ

−∞
e−γl,l′ (τ−s)

∣∣∣∣ Jl′,s√vl′,s

∣∣∣∣
α

dNl′,s τ ∈ [
ol,t , cl,t

)
0 τ ∈ [

cl,t , ol,t+1
) (17)

where α ≥ 0. We consider the following parametrization for the deterministic time dependent component θl,τ
used to accommodate an explicit dependence on the continuous volatility level:

θl,τ = exp
(
al + bl log vl,τ

)
al, bl ∈ R (18)

where our volatility proxy is

vl,τ(t,i) = IVt ζ
2
i /M (19)

IVt is the integrated volatility on day t, ζi is the intraday volatility correction factor taking into account the U-
shaped volatility pattern, andM is the number of intraday returns. Equation (19) is a proxy for the instantaneous
volatility on a specific time interval i on day t. To avoid any endogeneity bias in the measurement of integrated
volatility, we use a forecast of the integrated volatility built on the information available up to day t−1 and based
on a bivariate extension of the HAR-type regressions.8

The dependence on the jump size is introduced in our generalized Hawkes model when α > 0 and it is
determined by the absolute size of the jump normalized by the instantaneous volatility: the idea is that the
impact of a jump is proportional to its size compared to the typical size of continuous returns on the same
period. The results for the alternative specifications are reported in Table 3 where the distinctive features of
the generalized process are gradually introduced. Model 4 extends the univariate Model 2 and also introduces
the volatility dependence under the constraints α = 0, Kl,l′ = 0. Importantly, Table 3 shows that all estimates
confirm a significant inverse dependence on the volatility level, a result consistent withWei (2012) who finds that
the volatility is on average lower on trading days with jumps. This result confirms what we qualitatively observe
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Table 3. MLE for generalized Hawkes process.

ESTX S&P 500

m-LM s-CPR Intersection m-LM s-CPR Intersection

model 4 a −1.25 · 101∗∗∗ −1.13 · 101∗∗∗ −1.23 · 101∗∗∗ −1.24 · 101∗∗∗ −1.08 · 101∗∗∗ −1.34 · 101∗∗∗
(7.88 · 10−1) (9.83 · 10−1) (9.42 · 10−1) (9.81 · 10−1) (1.01) (1.34)

b −3.64 · 10−1∗∗∗ −2.44 · 10−1∗∗∗ −2.91 · 10−1∗∗∗ −3.13 · 10−1∗∗∗ −1.82 · 10−1∗∗∗ −3.28 · 10−1∗∗∗
(5.53 · 10−2) (6.94 · 10−2) (6.69 · 10−2) (6.74 · 10−2) (6.90 · 10−2) (9.17 · 10−2)

γ 3.21 · 10−2∗∗∗ 5.72 · 10−3∗∗ 3.34 · 10−2∗∗ 3.07 · 10−2∗∗∗ 1.22 · 10−2∗∗ 3.59 · 10−2∗∗
(6.70 · 10−3) (2.61 · 10−3) (1.66 · 10−2) (7.05 · 10−3) (5.46 · 10−3) (1.65 · 10−2)

Kl,l 4.63 · 10−3∗∗∗ 1.05 · 10−3∗∗∗ 2.21 · 10−3∗∗ 6.09 · 10−3∗∗∗ 1.57 · 10−3∗∗∗ 3.22 · 10−3∗∗
(9.67 · 10−4) (3.03 · 10−4) (1.08 · 10−3) (1.40 · 10−3) (5.87 · 10−4) (1.60 · 10−3)

log L −4036.82 −2483.30 −1888.11 −2103.84 −1445.14 −921.58

model 5 a −1.24 · 101∗∗∗ −1.18 · 101∗∗∗ −1.23 · 101∗∗∗ −1.23 · 101∗∗∗ −1.08 · 101∗∗∗ −1.35 · 101∗∗∗
(7.85 · 10−1) (1.00) (9.41 · 10−1) (9.79 · 10−1) (1.01) (1.34)

b −3.59 · 10−1∗∗∗ −2.78 · 10−1∗∗∗ −2.91 · 10−1∗∗∗ −3.11 · 10−1∗∗∗ −1.84 · 10−1∗∗∗ −3.30 · 10−1∗∗∗
(5.51 · 10−2) (7.05 · 10−2) (6.68 · 10−2) (6.72 · 10−2) (6.90 · 10−2) (9.18 · 10−2)

γ 3.21 · 10−2∗∗∗ 8.93 · 10−3∗∗∗ 3.47 · 10−2∗∗ 3.01 · 10−2∗∗∗ 1.26 · 10−2∗∗ 4.00 · 10−2∗∗
(6.13 · 10−3) (3.26 · 10−3) (1.75 · 10−2) (6.96 · 10−3) (6.09 · 10−3) (1.95 · 10−2)

Kl,l 1.78 · 10−4 1.43 · 10−3 5.66 · 10−4 2.97 · 10−4 1.02 · 10−3 5.52 · 10−4

(1.09 · 10−4) (1.10 · 10−3) (7.26 · 10−4) (1.97 · 10−4) (1.05 · 10−3) (8.91 · 10−4)

α 1.81∗∗∗ − 7.54 · 10−1 1.67∗∗∗ 2.87 · 10−1 9.91 · 10−1

(2.92 · 10−1) – (6.13 · 10−1) (3.11 · 10−1) (5.17 · 10−1) (7.03 · 10−1)

log L −4019.97 −2483.78 −1887.55 −2089.54 −1445.02 −920.50

Notes: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
Estimates for the extended univariate Hawkes process: time is measured in minutes and standard errors are reported in parenthesis. Note that for
model 5 for under the s-CPR method the constraint α ≥ 0 is binding.

in Figures 6 and 7: jumps mostly characterize tranquil market conditions rather than periods of turmoil. The
inverse dependence that we measure could also reflect the difficulty of our non-parametric tests to detect jumps
when the volatility is high. This may be the case for instance if jumps are i.i.d.: in presence of high volatility
levels, the magnitude of continuous price fluctuations observed at a fixed sampling frequency may get close to
the magnitude of jumps. The detection of discontinuities would then require a finer time resolution which is
usually not achievable in practice due to the presence of the microstructure noise. Besides this statistical-based
motivation, the inverse relationship between jumps and volatility could also point to the increasing role ofmarket
liquidity as a factor to explain the occurrence of price jumps. Recent contributions in the literature emphasize
that abrupt variations of market liquidity are likely to trigger jumps even outside turbulent trading periods, see
Jiang, Lo, and Verdelhan (2011), Christensen, Oomen, and Podolskij (2014), Christoffersen et al. (2016) among
others.

With regard to cross-market effects, according to our estimates that are not reported here for brevity, none of
the cross-excitation coefficients is statistically significant, regardless of themethod used to detect jumps (also the
weak effects observed under the s-CPR method in model 3 in Table 2 disappear). Concerning the role played
by the jump size, we see that there is no agreement across the different detection methods: under the m-LM
procedure, large jumps seem to have a larger impact on the intensity with a convex response (α > 1); this effect
disappears under the s-CPRmethod and for the intersection set. A possible motivation for this difference would
be the presence of volatility jumps: contrary to the s-CPR method that is asymptotically robust to these events,
them-LMmethod is subject to an increase of the false detection rate. A quick rise in volatilitymay be erroneously
identified as a jump under the m-LMmethod which may lead to the kind of result that we have observed.

5. Conclusions

We study the statistical properties of the bivariate jump process in the Euro Stoxx 50 and the S&P 500 index,
representing two leading stock markets. To the best of our knowledge, this is the first paper studying jump
transmission across these markets based on high-frequency data. Our jump identification strategy builds on
alternative non-parametric techniques. We find that jumps often occur when macroeconomics announcements
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are released and they are more likely to be detected when the continuous volatility is low. In principle, the
observed inverse dependence between jump intensity and continuous volatility can also emerge from an iden-
tification problem: when the volatility is high it is more difficult to distinguish jumps from continuous returns.
However, our results seem to exclude the possibility that jumps played prominent role during the subprime and
the Euro Sovereign crisis in 2008–2009 and 2011–2012, respectively. In fact, these periods are characterized by
high volatility peaks which overwhelm the jump component in terms of relative contribution to the total price
variance. Interestingly, this result adds novel evidence to the literature as it appears in contrast with the find-
ings of ADL, a discrepancy that in our view is likely determined by the different time scale and by the specific
parametric assumptions of ADL. In fact, days with large absolute returns are not necessarily characterized by an
intense jump activity at a high frequency.Wemake use of the results from the jump identification stage tomodel
the evolution of the jump intensities via Hawkes processes which are found to be overwhelmingly preferred to a
constant intensity Poisson process. The Hawkes specification proves to be successful in capturing jump cluster-
ing effects whose time persistence is generally short and therefore unable to produce measurable effects across
different trading days. On the other hand, as to contagion effect across markets, our estimates exclude the pres-
ence of significant spillovers in the jump activity, a result complementary to the evidence in Corradi, Distaso,
and Fernandes (2012) who document significant spillovers across markets affecting the continuous volatility
and the absence of cross-market effects triggered by jumps.

Our analysis reveals important features characterizing jump events with relevant implications for asset price
modeling, derivatives pricing, risk management, and asset allocation. As an example, if large price fluctuations
during periods of stress are mostly determined by continuous volatility, then hedging this risk becomes easier
compared to a full insurance against risk emerging either from jump occurrence or even from jump contagion
across markets. This is also extremely relevant for option pricing, since the price of short maturity options is
strongly affected by jumps. In general, our results indicate that the role of jumps has been probably overstated
in the past literature, as it has also been recognized in some recent papers on the topic (Bajgrowicz, Scaillet, and
Treccani 2016; Christensen, Oomen, and Renò 2016). Importantly, our evidence also provides several direc-
tions for future research. In view of the aforementioned inverse relation between jump intensity and volatility, a
first extension would be a more thorough investigation of the relative importance of volatility shocks compared
to price jumps in the period 2007–2014. At the intraday level, the analysis of how different types of informa-
tion releases can generate different outcomes in terms of jump size and clustering may also deserve further
investigation.

Notes

1. A simulation study available in the online appendix validates the technical aspects of our methodology.
2. The definition of CM reports the amended and correct version of the original equation presented in Lee and Mykland (2008).

We thank Vincent Tsai for highlighting this point.
3. They recommend K = √

252M where 252 is the number of trading days in a year.
4. To save space we provide the technical details on the estimation of the intraday correction factor ζi in an online Appendix.
5. The recent paper of Christensen, Oomen, and Renò (2016) shows that flash crashes are indeed characterized by drift bursts

with a continuous path. Such events cannot be clearly distinguished from jumps at 5 minutes but require a higher frequency to
be properly investigated.

6. The analysis of the interplay between jumps and macroeconomic releases would represent a valuable extension of this study
though this would also require detailed information on all the relevant news announcements at intraday frequency; we thank
an anonymous referee for raising this point and leave this possibility for future research.

7. Estimates are not reported here, but available upon reques.
8. Details on the method applied to estimate the integrated volatility and a general discussion on the volatility spillovers between

the two markets are available in the online appendix. of Corsi and Renò (2012).
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Appendices

Appendix 1. Simulation study
We conducted a Monte Carlo experiment to investigate in details our jump detection and estimation procedures. We simulated
20.000 trading days with a duration of 6 hours and 30 minutes, consistently with the usual operating time of the NYSE. Stochastic
volatility is introduced through a log-volatility model with the following dynamics of the continuous log-prices component:

dY (t) = μ dt + σU (t)
√
v (t) dW1 (t) (A1)

d log v (t) = (β0 − β1v (t)) dt + η dW2 (t) (A2)

where Y(t) is the log-price, W1 and W2 are correlated Brownian motions with constant correlation ρ to generate the well known
leverage effect. This setting is common to many other simulation experiments including Huang and Tauchen (2005), Corsi, Pirino,
and Renò (2010), Dumitru and Urga (2011), Gilder, Shackleton, and Taylor (2014) and Kolokolov and Renò (2017). We set the
parameter ρ = −0.61 according to the estimates of Andersen, Benzoni, and Lund (2002) and μ = 3%, while for the evolution
of the stochastic volatility we prefer to calibrate the model on our S&P data. To this purpose we estimate the following simple
autoregressive model in discrete time

log IVt = β0 + (1 − β1) log IVt−1 + ηεt

where IVt is the continuous realized volatility. From the regression coefficients we find β0 = −0.0829, β1 = 0.128,η = 0.55,
where time is measured in days and log-returns in percentage. The volatility is unconditionally distributed as a log-normal
with location and scale parameters respectively equal to β0/β1 = −0.648 and η2/4β1 = 0.591, the average daily volatility is
exp(β0/β1 + η2/4β1) = 0.95% corresponding to an annualized value of 15.52% (assuming 252 trading days per year). Note that
the mean reversion is very strong being characterized by a half-life time of 7.8 trading days. The model is clearly unable to capture
the long term volatility persistence. However it captures the unconditional mean and variance of the continuous realized volatility.
The intraday volatility pattern is introduced following Andersen, Dobrev, and Schaumburg (2012) according to the functional form
of Hasbrouck (1999):

σU (t) = C + A e−at + B e−b(1−t) t ∈ [0, 1] (A3)
parameters are A = 0.75, B = 0.25, B = 0.89, a = 10, b = 10. The U-shape associated with this values is very pronounced: the
volatility at the opening and at the closing time on each day are respectively 3 and 1.5 times larger than the mid-day volatility. The
log-price process is then augmented with i.i.d. normally distributed jumps having zero mean and variance σ 2

J :

pt = Yt +
∫ t

0
Js dNs

where Nt is an independent Poisson counting process having constant intensity λ = 1 (i.e. on average one jump per day and σJ =
1%). To make our simulation more realistic we also introduce market microstructure noise, assume that prices are observed with
an error:

p̃t = pt + εt (A4)
following Gilder, Shackleton, and Taylor (2014), εt is normal with zero mean and variance equal to 10−3 times the daily realized
variance to obtain a noise to signal ratio consistent with the empirical findings ofHansen and Lunde (2006). Equations (A1) and (A2)
and the jump processes are simulated according to the Euler scheme with a time increment of one second. The simulated data are
then sampled at 5min and each simulated trading day contains therefore 78 log-returns.

Results
The power and the size of each jump detection tests is reported on Table A1. The m-LM test exhibits the largest power and a smaller
size compared to s-CPR. Nevertheless we remind that it can easily lose accuracy in presence of large sudden volatility movements.
Jumps that are not detected are generally quite small. Despite the jump intesity is constant, when the parameters of a univariate
Hawkes process are estimated on detected jumps we statistically find significant self excitation effects (model 2). Nonetheless, such
effects disappear as soon as we allow the baseline jump intensity to depend on the volatility level (model 4 in the paper). The
experiment shows that this approach allows to take properly into account the effects of detection errors.

Table A1. Performances of the statistical test on simulated data. The
nominal size is 0.005 for the m-LM test and 0.01 for the s-CPR.

m-LM s-CPR m-LM∩ s-CPR

Power 68.9% 60.4% 60.2%
Size 1.0% 1.8% 0.2%
avg. size non-detected jumps 0.25% 0.32% 0.32%
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Appendix 2. The intraday volatility pattern
It is well established that the stockmarket volatility tends to be higher at the beginning and at the end of each trading day (seeWood,
McInish, and Ord 1985; Harris 1986 for seminal contributions). Therefore, it is essential to take into account the intraday volatility
pattern for the purpose of jumps identification (see also Boudt, Croux, and Laurent 2011). Several methods have been proposed
in the literature to estimate the intraday volatility correction factor. As an example, Taylor and Xu (1997) use the simple estimator
ζ̂ 2
TX,i based on the realized volatility measure:

ζ̂ 2
TX,i = M

∑T
t=1 r

2
t,i∑T

t=1
∑M

i=1 r
2
t,i

(A5)

Andersen and Bollerslev (1997) propose a more sophisticated technique called flexible Fourier function (FFF) that is based on the
following regression:

log
∣∣rt,i∣∣ − c = x′

iθ + εt,i (A6)

where c corresponds to the mean of the log absolute value of a standard normal random variable and

x′
iθ =

Q∑
q=0

σ
q
t

⎡
⎣μ0,q + μ1,q

i
N1

+ μ1,q

(
i
N2

)2
+

D∑
l=1

λl,q I{i=dl} +
P∑

p=1

(
γp,q cos

p · i · 2π
M

+ κp,q sin
p · i · 2π

M

)⎤⎦ (A7)

where θ = [μ0,q,μ1,q, λl,q, γp,q, κp,q] is a parameter vector, σt is a measure of the daily volatility level, N1 = (N + 1)/2 and
N2 = (N + 1)(N + 2)/6. The regression is estimated by OLS and the intraday volatility corrector is obtained as

ζ̂ 2
FFF,i = M exp

(
2x′

iθ
)

∑M
i=M exp

(
2x′

iθ
) (A8)

Importantly, neither the estimators described above nor the method proposed by Bormetti et al. (2015) are robust to the presence of
price jumps. So, if price discontinuities are concentrated in specific periods within the trading day, theymay induce some distortions
in the estimate of the intraday volatility corrector and consequently in the instantaneous volatility measurement. The problem is
discussed by Boudt, Croux, and Laurent (2011) who propose alternative parametric and non-parametric estimators. Let us first
consider the standardized returns defined as follows:

r̄t,i = rt,i√
BVt/M

the shortest half scale estimator is

ShortHi = 0.741 min
{
r̄(h),i − r̄(1),i, . . . , r̄(T),i − r̄(T−h+1),i

}

Table A2. Hawkes model parameters estimated on simulated data.

m-LM s-CPR Intersection

model 1 θ 1.77 · 10−3∗∗∗ 1.57 · 10−3∗∗∗ 1.53 · 10−3∗∗∗
(1.44 · 10−5) (1.31 · 10−5) (1.29 · 10−5)

log L −79359.8 −71847.4 −70393, 1

model 2 θ 1.41 · 10−3∗∗∗ 1.18 · 10−3∗∗∗ 1.13 · 10−3∗∗∗
(5.94 · 10−5) (4.44 · 10−5) (4.32 · 10−5)

γ 3.18 · 10−4∗∗∗ 4.37 · 10−4∗∗∗ 4.16 · 10−4∗∗∗
(7.72 · 10−5) (7.34 · 10−5) (6.80 · 10−5)

K 6.49 · 10−5∗∗∗ 1.09 · 10−4∗∗∗ 1.09 · 10−4∗∗∗
(1.21 · 10−5) (1.40 · 10−5) (1.37 · 10−5)

log L −79327.6 −71779.1 −70321.3

model 4 a −9.23∗∗∗ −10.2∗∗∗ −10.4∗∗∗
(1.19 · 10−1) (1.27 · 10−1) (1.28 · 10−1)

b −2.04 · 10−1∗∗∗ −2.66 · 10−1∗∗∗ −2.75 · 10−1∗∗∗
(8.33 · 10−3) (8.83 · 10−3) (8.92 · 10−3)

γ – – –
– – –

K – – –
– – –

log L −79077.66 −71420.9 −69950.1
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where T is the total number of observations, h = �T/2� is the floor of T/2 and r̄(j),i are the order statistics of r̄j,i. Then the
corresponding correction factor is

ζ̂ 2
ShotH,i = MShortH2

i∑M
i=1 ShortH

2
i

A more efficient non-parametric corrector is the weighted standard deviation estimator that assigns no weight to the largest
observations after scaling by ζ̂ShortH,i:

WSD2
i = 1.081

M
∑T

t=1 ωt,i r̄2t,i∑M
i=1 ωt,i

where ωt,i = ω(r̃t,i/ζ̂ShortH,i) and ω(z) = 1 if z2 ≤ 6.635 and 0 otherwise

ζ̂ 2
WSD,i = M · WSD2

i∑M
i=1 WSD2

i
(A9)

The parametric method proposed by Boudt, Croux, and Laurent (2011) represents a modification of the FFF estimator. To see this,
consider the residuals

eWSD
t,i = log

∣∣rt,i∣∣ − c − log ζ̂WSD,i

and define the negative likelihood function as

ρML (z) = −0.5 log
(
2
π

)
− z − c + 0.5 exp {2 (z + c)}

and the weights as

ωt,i =
{
1 if ρML

(
eWSD
t,i

) ≤ 3.36
0 otherwise.

Then the maximum likelihood parameters are estimated as

θML = min
θ

∑
t,i ωt,iρML

(
εt,i

)
∑

t,i ωt,i

where εt,i is calculated from a regression of the type (A6) and the truncated maximum likelihood (TML) corrector is given by
Equation (A8).

Figure A1 shows theWSD and the TML volatility correctors computed on our sample. Generally speaking, the TML estimator is
more efficient and also generates smoother patterns, but it fails to capture discontinuities. Therefore, we disregard the TML corrector
for some specific time intervals as the one around 10:00 EST where the S&P 500 deviates from a standard U-shaped pattern and
exhibits a peak due to the documented news announcements mentioned in the discussion of our results of the jump identification
process; analogously the TML corrector is replaced around 14:25 CET when the Euro Stoxx 50 intraday volatility spikes because of
the beginning of pre-negotiations in the U.S. In general, the intraday volatility of the Euro Stoxx 50 exhibits a strong dependence
on the market activity in U.S. and Figure A1 illustrates the three different patterns observed depending on the operating time of the
NYSE. The right top panel displays the pattern for a common trading day, i.e. when the Frankfurt Stock Exchange (FSX) electronic
trading starts at 9:00 CET and closes at 17:30, while the NYSE opens at 15:30 CET and closes at 22:00 CET (respectively 9:30 and
16:00 EST). The overlapping period between thesemarkets can vary based on changes resulting from the non-simultaneous adoption
of the daylight saving time which generates short periods characterized by a different volatility pattern. In the left bottom panel we
represent the shape of the volatility correctors for periods when the NYSE opens one hour earlier w.r.t. the CET due to the different
adoption of the daylight saving time in the two regions. This anomaly involves a small number of trading days (117 out of 1691)
and the WSD estimates are extremely noisy, thus we fully rely on the TML estimates except for the first 5 minutes interval when
volatility is extremely large. Finally, there is a small set of days in which the FSXmarket is operating normally but the NYSE remains
closed (only 44 days in the whole sample including some long weekends and national holidays in U.S.). The volatility pattern of the
Euro Stoxx appears L-shaped during these periods as displayed by the right bottom panel in Figure A1.

Appendix 3. Forecasting the integrated volatility
In this Section we discuss some details on the volatility proxy used in the Hawkes process estimation. The objective is to provide
accurate estimates of the integrated volatility on each trading day t using the previously available information. The aim of this
approach is to circumvent some endogeneity issues which may arise if the integrated volatility is calculated subtracting the contri-
bution of jumps from the quadratic variation introducing therefore some dependence between the volatility estimates and the price
jumps occurred in the same period. The dependent variables that we want to model are the integrated volatilities of the Euro Stoxx
50 (IVEU,t) and of the S&P 500 (IVEU,t). Let rl,t denote the close to close log-return on day t while Jl,t is the absolute contribution
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Figure A1. The blue line labeled as TML is the correction adopted in our study and it is constructed using a mixed approach: for the points lying
in the neighborhood of discontinuities the TML estimator is substituted by the WSD.

of jumps to the quadratic variation. More specifically the integrated volatility is calculated as the average variance of the intraday
log-returns that are not identified as jumps:

IVl,t = M
M − ∑M

i=1 Jumpt,i

M∑
i=1

r2t,i
(
1 − Jumpt,i

)
where Jumpt,i is the jump indicator taking the value 1 each time that a jump is identified and zero otherwise. Clearly, this method
produces distinct volatility measures for each different jump identification method. Our approach is based on a bivariate extension
of the LHAR-C-CJ regression of Corsi and Renò (2012), i.e. a parsimonious regression of the HAR type (introduced by Corsi 2009)
which also includes lagged leverage effects and jumps in a way similar to Clements and Liao (2017). We propose a straightforward
bivariate extension that is able to capture the cross market effects. As an example, for the Euro Stoxx 50, the regression reads as
follows:

log IVEU,t+1 = c + β1 log IVEU,t + β2 log IV
(5)
EU,t + β3 log IV

(22)
EU,t + β4 log

(
1 + JEU,t

) + β5 log
(
1 + J(5)EU,t

)
+ β6 log

(
1 + J(22)EU,t

)
+ β7r−EU,t + β8r

(5)−
EU,t + β9r

(22)−
EU,t + β10 log IVUS,t + β11 log IV

(5)
US,t + β12 log IV

(22)
US,t + β13 log

(
1 + JUS,t

)
+ β14 log

(
1 + J(5)US,t

)
+ β15 log

(
1 + J(22)US,t

)
+ β16rUS,t + β17r

(5)−
US,t + β18r

(22)−
US,t

where for a generic observable X we have:

X− = min (X, 0)
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Table A3. MLE of bivariate LHAR-C-CJ process.

ESTX S&P 500

m-LM s-CPR m-LM∩ s-CPR m-LM s-CPR m-LM∩ s-CPR

c −1.33∗∗∗ −1.44∗∗∗ −1.48∗∗∗ −1.53∗∗∗ −1.72∗∗∗ −1.73∗∗∗
(0.20) (0.21) (0.20) (0.20) (0.20) (0.20)

IVUS 0.22∗∗∗ 0.24∗∗∗ 0.23∗∗∗ 0.44∗∗∗ 0.39∗∗∗ 0.39∗∗∗
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

IV(5)
US −0.10 −0.09 −0.09 0.24∗∗∗ 0.27∗∗∗ 0.27∗∗∗

(0.05) (0.06) (0.06) (0.05) (0.05) (0.06)
IV(22)
US −0.07 −0.10∗ −0.10∗ 0.25∗∗∗ 0.27∗∗∗ 0.27∗∗∗

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
JUS 11.21 373.41 475.28 32.60 188.37 526.30

(367.65) (355.44) (381.62) (312.84) (606.05) (609.65)
J(5)US 374.63 495.97 299.76 186.61 −28.31 −505.50

(647.56) (1204.55) (1276.56) (804.68) (1412.76) (1472.98)
J(22)US −1309.15 −3032.51 −2223.71 −1299.17 355.15 1418.30

(1436.40) (2858.22) (2953.36) (1439.30) (2871.98) (2913.64)
r−US −1.05 −0.78 −0.97 −6.70∗∗∗ −7.26∗∗∗ −7.44∗∗∗

(1.61) (1.76) (1.74) (1.96) (2.07) (2.08)
r(5)−US 0.79 −0.20 0.53 −12.19 −12.70 −12.81

(5.61) (6.06) (6.01) (6.41) (6.72) (6.57)
r(22)−US 25.98 26.96 29.41∗ 8.89 19.18 22.56

(15.47) (15.15) (14.82) (17.04) (17.98) (18.09)
JEU −299.77 −288.77 −297.08 −530.12∗ −450.34 −400.91

(264.21) (265.17) (273.65) (259.97) (311.68) (339.78)
J(5)EU −657.64 −722.77 −707.31 −1015.27 −1334.81 −1486.38

(727.60) (728.93) (790.90) (849.13) (888.68) (909.46)
J(22)EU −352.97 −264.96 −108.15 −178.40 −569.12 −360.00

(1252.21) (1308.38) (1318.49) (1367.05) (1455.09) (1492.77)
IVEU 0.25∗∗∗ 0.19∗∗∗ 0.19∗∗∗ −0.01 −0.02 −0.02

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
IV(5)
EU 0.35∗∗∗ 0.38∗∗∗ 0.38∗∗∗ 0.00 0.02 0.02

(0.05) (0.05) (0.05) (0.05) (0.06) (0.06)
IV(22)
EU 0.22∗∗∗ 0.24∗∗∗ 0.23∗∗∗ −0.07 −0.09 −0.09

(0.05) (0.05) (0.05) (0.05) (0.06) (0.06)
r−EU −12.60∗∗∗ −13.60∗∗∗ −13.26∗∗∗ −10.52∗∗∗ −10.28∗∗∗ −10.05∗∗∗

(1.64) (1.73) (1.75) (1.67) (1.76) (1.75)
r(5)−EU −23.10∗∗∗ −22.90∗∗∗ −23.44∗∗∗ −14.58∗ −16.91∗∗ −16.72∗∗

(5.01) (5.20) (5.19) (6.18) (6.32) (6.31)
r(22)−EU −34.97∗∗ −35.51∗∗ −36.17∗∗ −31.36∗ −37.80∗∗ −37.79∗∗

(12.04) (12.46) (12.43) (13.90) (14.53) (14.38)
R2 0.81 0.79 0.79 0.85 0.84 0.84
obs. 1669 1669 1669 1652 1652 1652
RMSE 0.40 0.43 0.42 0.44 0.46 0.46

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.
Estimates for the bivariate LHAR-C-CJ, robust to heteroskedasticity and autocorrelation. Standard errors in
parentheses.

X(h)
t = 1

h

h∑
j=1

Xt−h+1

X(h)− = min
(
X(h), 0

)

X−(h) = 1
h

h∑
j=1

min
(
Xt−h+1, 0

)

with h representing the order of the LHAR-C-CJ component.
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The results shown in Table A3 are very similar under the alternative jump identification schemes adopted. For both indexes
the strong volatility persistence is confirmed: the coefficients relative to the daily, weekly and monthly components are positive and
significant. The persistence of the leverage effects is also relevant, especially for the Euro Stoxx 50 index. The main differences with
respect to Corsi and Renò (2012) are found in the impact of jumps on continuous volatility which is generally insignificant in our
regressions. This is probably due to the prevalence of crisis periods in our sample, when the effect of jumps is overwhelmed by a
large continuous volatility component as already documented in the paper. Concerning volatility spillovers, we note a strong effect
from U.S. to Europe with a lag of 1 day while the weekly component has a weak negative effect and the monthly component is not
statistically significant. Importantly, we also notice a marked cross-leverage effect between Europe and U.S. that to the best of our
knowledge is unprecedented in the literature and is probably mostly generated during the Euro Sovereign crisis, which suggests a
possible direction for future research. The interdependence in volatility stems also from the cross correlation of the residuals that is
over 40% under all jump identification methods.
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