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Abstract
Backdoor attacks inject poisoning samples during training, with the goal of forcing a machine learning model to output an 
attacker-chosen class when presented with a specific trigger at test time. Although backdoor attacks have been demonstrated 
in a variety of settings and against different models, the factors affecting their effectiveness are still not well understood. In 
this work, we provide a unifying framework to study the process of backdoor learning under the lens of incremental learning 
and influence functions. We show that the effectiveness of backdoor attacks depends on (i) the complexity of the learning 
algorithm, controlled by its hyperparameters; (ii) the fraction of backdoor samples injected into the training set; and (iii) 
the size and visibility of the backdoor trigger. These factors affect how fast a model learns to correlate the presence of the 
backdoor trigger with the target class. Our analysis unveils the intriguing existence of a region in the hyperparameter space 
in which the accuracy of clean test samples is still high while backdoor attacks are ineffective, thereby suggesting novel 
criteria to improve existing defenses.

Keywords  Backdoor poisoning · Influence functions · Poisoning · Machine learning · Adversarial machine learning · 
Security

1  Introduction

Machine learning models are vulnerable to backdoor poi-
soning [1–4]. These attacks consist of injecting poisoning 
samples at training time, with the goal of forcing the trained 
model to output an attacker-chosen class when presented 
with a specific trigger at test time, while working as expected 
otherwise. To this end, the poisoning samples typically need 
not only to embed such a backdoor trigger themselves, but 
also to be labeled as the attacker-chosen class. As backdoor 
poisoning preserves model performance on clean test data, it 
is not straightforward for the victim to realize that the model 
has been compromised.

Backdoor poisoning has been demonstrated in a plethora 
of scenarios [3–5]. In the most common scenario, the user is 
assumed to download a pre-trained, backdoored model from 
an untrusted source, to subsequently fine-tune it on their 
data [3]. As backdoors typically remain effective even after 
this fine-tuning step, they may successfully be exploited by 
the attacker at test time [1, 2]. Alternatively, the attacker is 
assumed to alter part of the training data collected by the 
user, either to train the model from scratch or to fine-tune a 
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pre-trained model via transfer learning [6, 7]. In such cases, 
the training labels of poisoning samples may be either fully 
controlled by the attacker [6] or subject to validation by 
the victim [7], depending on the considered threat model. 
Backdoor attacks have been shown to be effective in differ-
ent applications and against a variety of models, including 
vision [1] and language models [8], graph neural networks 
[9], and even reinforcement learning [10]. However, it is 
still unclear which factors influence the ability of a model to 
learn a backdoor, i.e., to classify the test samples containing 
the backdoor trigger as the attacker-chosen class.

In this work, we analyze the process of backdoor learn-
ing to identify the main factors affecting the vulnerability 
of machine learning models against this attack. To this end, 
we propose a framework that characterizes the backdoor 
learning process. The learning process of humans is usu-
ally portrayed using learning curves, a graphical representa-
tion of the relationship between the hours spent practicing 
and the proficiency to accomplish a given task. Inspired by 
this concept, we introduce the notion of backdoor learn-
ing curves (Sect. 2). To generate these curves, we formu-
late backdoor learning as an incremental learning problem 
and assess how the loss on the backdoor samples decreases 
as the target model gradually learns them. These backdoor 
learning curves are independent of the threat model as they 
capture training data and fine-tuning attacks. The slope of 
this curve, the backdoor learning slope, which is connected 
to the notion of influence functions, quantifies the speed with 
which the model learns the backdoor samples and hence its 
vulnerability. Additionally, to provide further insights about 
the backdoor’s influence on the learned classifiers, we pro-
pose a way to quantify the backdoor impact on learning 
parameters, i.e., how much the parameters of a model devi-
ate from the initial values when the model learns a backdoor.

Our experimental analysis (Sect. 3) shows that the factors 
influencing the success of backdoor poisoning are: (i) the 
fraction of backdoor samples injected into the training data; 
(ii) the size of the backdoor trigger; and (iii) the complex-
ity of the target model, controlled via its hyperparameters. 
Concerning the latter, our experimental findings reveal a 
region in the hyperparameter space where models are highly 
accurate on clean samples while also being robust to back-
door poisoning. This region exists as, to learn a backdoor, 
the target model is required to increase the complexity of 
its decision function significantly, and this is not possible if 
the model is sufficiently regularized. This observation will 
help identify novel criteria to improve existing defenses and 
inspire new countermeasures.

To summarize, the main contributions of this work are:

•	 We introduce backdoor learning curves as a powerful 
tool to thoroughly characterize the backdoor learning 
process;

•	 We introduce a metric, named backdoor learning slope, 
to quantify the ability of the classifier to learn backdoors;

•	 We identify three important factors that affect the vulner-
ability against backdoors;

•	 We unveil a region in the hyperparameter space in which 
the classifiers are highly accurate and robust against 
backdoors, which supports novel defensive strategies.

We conclude the paper by discussing related work in Sect. 4, 
along with the limitations of our approach and promising 
future research directions in Sect. 5.

2 � Backdoor learning curves

In this section, we introduce our framework to characterize 
backdoor poisoning by means of learning curves and their 
slope. Afterward, we introduce two measures to quantify the 
backdoor impact on the model’s parameters.

Notation. We denote the input data and their labels 
respectively with x ∈ ℝ

d and y ∈ {1, .., c} , being c the num-
ber of classes. We refer to the untainted, clean training data 
as Dtr = (xi, yi)

n
i=1

 , and to the backdoor samples injected into 
the training set as Ptr = (x̂j, ŷj)

m
j=1

 . We refer to the clean test 
samples as Dts = (xt, yt)

k
t=1

 and to the test samples containing 
the backdoor trigger as Pts = (x̂t, ŷt)

k
t=1

.
Backdoor learning curves. We leverage previous work 

from incremental learning [11, 12] to study how gradually 
incorporating backdoor samples affects the learned classi-
fier. In mathematical terms, the learning problem can be 
formalized as:

where L is the loss attained on a given dataset by the clas-
sifier with parameters w , and L is the loss computed on 
the training points and the backdoor samples, which also 
includes a regularization term Ω(w) (e.g., ‖w‖2

2
 ), weighed 

by the regularization hyperparameter � . To gradually incor-
porate the backdoor samples Ptr into the learning process, 
we introduce the hyperparameter � ∈ [0, 1] , and increase 
it from 0 (unpoisoned classifier) to 1 (poisoned classifier). 
As � increases, the classifier gradually learns the backdoor 
by adjusting its parameters; for this reason, we make the 
dependency of the optimal weights w⋆ on � explicit as w⋆(𝛽)

.1

(1)
w
⋆(𝛽) ∈ arg min

w

L(Dtr ∪ Ptr,w)

= L(Dtr,w) + 𝛽L(Ptr,w) + 𝜆Ω(w),

1  Recall that the formulation reported in Eq. (1) encompasses many 
existing learning algorithms, including support vector machines 
(SVMs), ridge and logistic classifiers. For example, considering 
either � = 0 or � = 1 , the SVM learning problem amounts to mini-
mizing C ⋅

�
L(Dtr,w) + �L(Ptr,w)

�
+

1

2
‖w‖2

2
 , which is equivalent to 
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We now define the backdoor learning curve as the curve 
showing the behavior of the classifier loss L(Pts,w

⋆(𝛽)) on 
the test samples with the backdoor trigger as a function of 
� . In the following, we abbreviate L(Pts,w

⋆(𝛽)) as L. Intui-
tively, the faster the backdoor learning curve decreases, the 
easier the target model is backdoored. The exact details of 
how the model is backdoored do not matter for this analy-
sis, e.g. our approach captures for example both the setting 
where the training data is altered as well as the setting where 
fine-tuning data is tampered with.

We give an example of two such curves under different 
regularizations in Fig. 1. The left plots depict a strongly 
regularized classifier. The corresponding backdoor learning 
curve (on the right) shows that the classifier achieves low 
loss and high accuracy on the backdoor samples only after 
poisoning (when � = 1 ), i.e. even when the loss on the back-
door samples is considered equally important to the loss on 
the training samples. The classifier on the right, instead, is 
less regularized and thus more complex. Consequently, this 
classifier learns to incorporate the backdoor samples much 
faster (at low � ), namely when the loss on the backdoor 
points is taken into account less than the one on the training 
data. This highlights that this classifier is probably more 
vulnerable to this attack.

Backdoor learning slope. We quantify how fast an 
untainted classifier can be poisoned by proposing a novel 
measure, namely the backdoor learning slope, that measures 

the velocity with which the classifier learns to classify the 
backdoor samples correctly. This measure allows us to 
compare the vulnerability of a classifier trained with dif-
ferent hyperparameters or consider different poisoning sce-
narios (e.g. when the attacker can inject a different number 
of poisoning points or create triggers with different sizes), 
allowing us to identify factors relevant to backdoor learning. 
Moreover, as we will show, this measure can be used by the 
system designer to choose an appropriate combination of 
hyperparameters for the task at hand. To this end, we define 
the backdoor learning slope as the gradient of the backdoor 
learning curve at � = 0 , capturing the velocity of the curve 
on learning the backdoor. Formally, the backdoor learning 
slope can be formulated as follow:

where the first term is straightforward to compute, and the 
second term implicitly captures the dependency of the opti-
mal weights on the hyperparameter � . In other words, it 
requires us to understand how the optimal classifier param-
eters change when gradually increasing � from 0 to 1, i.e., 
while incorporating the backdoor samples into the learning 
process.

To compute this term, as suggested in previous work in 
incremental learning [11], we assume that, while increasing 
�  ,  t h e  s o l u t i o n  m a i n t a i n s  t h e  o p t i m a l i t y 
(Karush–Kuhn–Tucker, KKT) conditions intact. This equi-
librium implies that ∇𝛽∇w

L(w⋆) +
𝜕w⋆

𝜕𝛽
∇2

w
L(w⋆) = 0 . Based 

on this condition, we obtain the derivative of interest,

(2)
𝜕L(Pts,w

⋆(𝛽))

𝜕𝛽
=

𝜕L

𝜕w

𝜕w⋆

𝜕𝛽
,

Fig. 1   Backdoor learning curves. Considering an SVM with the 
RBF kernel ( � = 10 ) on a toy dataset in two dimensions, we show 
the influence of model complexity (controlled by the regularization 
hyperparameter � =

1

C
 ) on backdoor learning. For both the strong 

(left) and weak (right) regularization settings, we report two plots. 
The left plot shows the two-dimensional data (dots) and decision sur-
face for different values of � (green lines). The right plot shows the 
backdoor learning curve, i.e. how the loss decreases as � ranges from 

0 to 1, which amounts to learning the backdoor samples. We plot 
both the loss on the clean test samples (orange dotted line) and on the 
test samples with the backdoor trigger (blue line). The slope of these 
curves represents the speed with which the model learns to classify 
the backdoor samples (black dots) as blue dots, unveiling that strong 
regularization slows down such a process

our formulation if one sets L to be the hinge loss, Ω(w) = 1

2
‖w‖2

2
 , and 

� =
1

C
.

Footnote 1 (Continued)
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Substituting it in Eq. 2 we obtain the complete gradient:

The gradient in Eq. 4 corresponds to the sum of the pairwise 
influence function values Iup, loss(xtr, xts) used by Koh 
et al. [13]. The authors indeed proposed to measure how 
relevant a training point is for the predictions of a given test 
point by computing 𝜕L

𝜕𝛽

���𝛽=0 =
∑

t

∑
j Iup, loss(x̂t, x̂j) . To under-

stand how this gradient can be efficiently computed via 
Hessian-vector products and other approximations, we refer 
the reader to [13] as well as to recent developments in gra-
dient-based bilevel optimization [14–16]. Moreover, we 
show in Sect. 3.2.5 (Figs. 13 and 14) an example of the usage 
of influence functions for weakly and strongly regularized 
models.

The main difference between the approach by Koh et al. 
[13] and ours stems from their implicit treatment of regu-
larization and our interest in understanding vulnerability to 
a subset of backdoor training points, rather than in providing 
prototype-based explanations. However, directly using the 
gradient of the loss wrt. � comes with two disadvantages. 
First, the slope is inverse to � , and second, to obtain results 
comparable across classifiers, we need to rescale the slope. 
We thus transform the gradient as:

where we use the negative sign to have positive values cor-
related with faster backdoor learning (i.e., the loss decreases 
faster as � grows). Computing 2/� of the gradient allows us 
to rescale the slope to be in the interval between [−1, 1] . 
Hence, a value around 0 implies that the loss of the backdoor 
samples does not decrease. In other words, the classifier does 
not learn the backdoor trigger and is hence very robust.

Backdoor impact on learning parameters. After introduc-
ing the previous plot and measure, we can quantify how 
backdoors are learned by the model. To provide further 
insights about the backdoor’s influence on the learned clas-
sifier, we propose to monitor how the classifier’s parameters 
deviate from their initial, unbackdoored values once a back-
door is added. Our approach below captures only convex 
learners. As shown by Zhang et al. [17], the impact of a 
network weight in non-convex classifiers’ decisions depends 
on the layer of which it is part. Therefore, measuring the 
parameter deviation in the non-convex case is challenging, 
and we leave this unsolved problem for future work.

(3)
𝜕w⋆

𝜕𝛽
= −(∇2

w
L(w⋆))−1 ⋅ ∇𝛽∇w

L(w⋆).

(4)
𝜕L(Pts,w

⋆(𝛽))

𝜕𝛽
= −∇

w
L ⋅ (∇2

w
L)−1 ⋅ ∇𝛽∇w

L.

(5)� = −
2

�
arctan

(
�L

��

||||�=0

)
∈ [−1, 1],

To capture the backdoor impact on learning param-
eters in the convex case, we consider the initial weights 
w0 = w

⋆(𝛽 = 0) and w𝛽 = w
⋆(𝛽) for 𝛽 > 0 , and measure 

two quantities:

The first measure, � , quantifies the change of the weights 
when � increases. This quantity is equivalent to the regulari-
zation term used for learning. The second one, � , quantifies 
the change in orientation of the classifier. In a nutshell, we 
compute the angle between the two vectors and rescale it to 
be in the interval of [0, 1]. Both metrics are defined to grow 
as � → 1 , in other words the backdoored classifier deviates 
more and more from the original classifier. Consequently, 
in the empirical parameter deviation plots in Sect. 3.2, we 
report the value of �(�) (on the y-axis) as � (on the x-axis) 
varies from 0 to 1, to show how the classifier parameters are 
affected by backdoor learning.

3 � Experiments

Employing the previously proposed methodology, we car-
ried out an empirical analysis of linear and nonlinear clas-
sifiers. In this section, we start with the experiments aimed 
at studying the impact of different factors on backdoor 
learning. To this end, we employ the backdoor learning 
curves and the backdoor learning slope to study how the 
capacity of the model to learn backdoors changes when (a) 
varying the model’s complexity, defined by its hyperparam-
eters, (b) the attacker’s strength, defined by the percentage 
of poisoning samples in the training set and (c) the trigger 
size and visibility. Our results show that these components 
significantly determine how fast the backdoor is learned, 
and consequently, the model’s vulnerability. Then, leverag-
ing the proposed measures to analyze how the classifier’s 
parameters change during backdoor learning, we provide 
further insights into the effect of the aforementioned factors 
on the trained model. The results presented in this section 
will help identify novel criteria to improve existing defenses 
and inspire new countermeasures. The source code is avail-
able on the autho​r’s GitHu​b page.2

3.1 � Experimental setup

Our work investigates which factors influence backdoor vul-
nerability considering convex learners and neural networks. 

(6)

𝜌 = ‖w𝛽‖ ∈ [0,∞), and 𝜈 =
1

2

�
1 −

w
⊤
0
w𝛽

‖w0‖‖w𝛽‖

�
∈ [0, 1].

2  https://​github.​com/​Cinof​ix/​backd​oor_​learn​ing_​curves.

https://github.com/Cinofix/backdoor_learning_curves
https://github.com/Cinofix/backdoor_learning_curves
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In the following, we describe our datasets, models, and the 
backdoor attacks studied in our experiments.

Datasets. We carried out our experiments on MNIST 
[18], CIFAR10 [19] and Imagenette [20].3 Supplementary 
details on the datasets are reported in Appendix A.

When adopting convex learners, we consider the two-
class subproblems as in the work by Saha et al. [7] and Suya 
et al. [21]. On MNIST, we choose the pairs 7 vs 1 , 3 vs 0 , 
and 5 vs 2 , as our models exhibited the highest clean accu-
racy on these pairs. On CIFAR10, analogous to prior work 
[7], we choose airplane vs frog, bird vs dog, and airplane 
vs truck. On Imagenette we randomly choose tench vs truck, 
cassette player vs church, and tench vs parachute. For each 
two-class subtask, we use 1500 and 500 samples as training 
and test set respectively. In the following section, we focus 
on the results of one pair on each dataset: 7 vs 1 on MNIST, 
airplane vs frog  on CIFAR10, and tench vs truck  on Image-
nette. The results of the other pairs (reported in Appendix B) 
are analogous. When testing our framework against neural 
networks, we train on all ten classes of Imagenette. We use 
70% and 30% of the entire dataset for training and testing, 
respectively.

Models and training phase. To thoroughly analyze how 
learning a backdoor affects a model, we consider different 
convex learning algorithms, including linear Support Vector 
Machines (SVMs), Logistic Regression Classifiers (LCs), 
Ridge Classifiers (RCs), nonlinear SVMs using the Radial 
Basis Function (RBF) kernel, and deep neural networks. We 
train the classifiers directly on the pixel values scaled in 
the range [0, 1] on the MNIST dataset. For CIFAR10 and 
Imagenette, we instead consider a transfer learning setting 
frequently adopted in the literature [13, 22, 23]. Like Saha 
et al. [7], we use the pre-trained model AlexNet [24] as a 
feature extractor. The convex learners are then trained on 
top of the feature extractor. We study these convex learn-
ers due to their broad usage in industry [21], derived from 
their excellent results with smaller dataset [25], and good 
interpretability [26, 27]. In addition, we include in our evalu-
ation pre-trained Resnet18 and Resnet50 [28] deep neural 
networks, sourced from Torchvision [29], which stand as 
some of the most extensively employed architectures [17]. 
These networks are fine-tuned to classify samples from the 
Imagenette dataset accurately.

Hyperparameters. The choice of hyperparameters has a 
relevant impact on the learned decision function. For exam-
ple, some of these parameters control the complexity of the 
learned function, which may lead to overfitting [30], thereby 
potentially compromising classification accuracy on test 
samples. We argue that a high complexity may also lead to 

higher importance to outlying samples, including backdoors, 
and thus has a crucial impact on the capacity of the model 
to learn backdoors. To verify our hypothesis, we consider 
different configurations of the models’ hyperparameters. For 
convex learners, we study two hyperparameters that impact 
model complexity, i.e., the regularization hyperparameter 
� =

1

C
 and the RBF kernel hyperparameter � . To this end, 

we take 10 values for � on a uniformly spaced interval on a 
log scale from 1e−04 to 1e+02 . For the Imagenette dataset 
we extend this interval in [1e−05, 1e+02] . Concerning the 
RBF kernel, we let � take 5 uniformly spaced values on a 
log scale in [5e−04, 5e−02] for MNIST, [1e−04, 1e−02] for 
CIFAR, and [1e−05, 1e−03] for Imagenette. Furthermore, 
we take 10 values of � in the log scale uniformly spaced 
interval [1e−01, 1e+02] for the RBF kernel. This allowed 
us to study a combination of 10 and 50 hyperparameters for 
linear classifiers and RBF SVM, respectively.

For deep neural networks, we consider two different 
numbers of epochs: 10 and 50, and increase the number of 
neurons when using Resnet50 instead of Resnet18. Whereas 
size intuitively correlates with complexity, previous works, 
including [31], show that decreasing the number of training 
epochs reduces the complexity of the trained network as 
well. Conversely, increasing epochs leads to overfitting on 
the training dataset, thus, a more complex decision function. 
Each network is fine-tuned using the SGD optimizer with 
a learning rate of 0.001, a momentum of 0.9, and a batch 
size of 256.

Backdoor attacks. We implement the backdoor attacks 
proposed by Gu et al. [1] against MNIST and CIFAR10. 
More concretely, we use a random 3 × 3 patch as the trig-
ger for MNIST, while on CIFAR10, we increase the size to 
8 × 8 to strengthen the attack [7]. We add the trigger pattern 
in the lower right corner of the image [1]. Samples from 
MNIST and CIFAR10 with and without trigger can be found 
in Fig. 12. However, in contrast to previous approaches [1], 
we use a separate trigger for each base-class i. The reason is 
that our study encompasses linear models that are unable to 
associate the same trigger pattern to two different classes. 
Using different trigger patterns, we enhance the effective-
ness of the attack on these linear models. On the Imagenette 
dataset, we use the backdoor trigger developed by [32]. This 
attack injects a patterned perturbation mask into training 
samples to open the backdoor. A constant value cm refers 
to the maximum allowed intensity. We apply the backdoor 
attacks to 10% of the training data if not stated otherwise, 
and, as done by Gu et al. [1], we force the backdoored model 
to predict the i-th class as class (i + 1)%n_classes when the 
trigger is shown. We also report additional experiments con-
cerning variations in the trigger’s size or visibility.

3  Imagenette is a subset of 10 classes from Imagenet. We use the 320 
px version, where the shortest side of each image is resized to that 
size.
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3.2 � Experimental results

In the following, we now discuss our experimental results 
obtained with the datasets, classifiers, and backdoor attacks 
described above.

3.2.1 � Backdoor learning curves

Here we present the results obtained using the learning 
curves that we proposed to study the impact of three differ-
ent factors on the backdoor learning process: (i) model com-
plexity, (ii) the fraction of backdoor samples injected, and 

(iii) the size and visibility of the backdoor trigger. We report 
the impact of these factors on the backdoor learning curves 
in Figs. 2 and 3. More specifically, in Fig. 2 we consider 
convex classifiers (i.e. LC, RC and RBF SVM) trained on 
two-class subproblems (MNIST, CIFAR10, and Imagenette), 
whereas in Fig. 3 we show the results for Resnet18 trained 
on all the ten classes of Imagenette.

To analyze the first factor, we report the results on the 
same classifiers, changing the hyperparameters that influ-
ence their corresponding complexity. In the case of convex 
learners, we test different values of the regularization coeffi-
cient, while for Resnet18, we increase the number of epochs. 

(a) MNIST trigger size 3 � 3. (b) MNIST trigger size 6 � 6.

(c) CIFAR10 trigger size 8 � 8. (d) CIFAR10 trigger size 16 � 16.
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(e) Imagenette trigger visibility cm = 10. (f) Imagenette trigger visibility cm = 75.

Fig. 2   Backdoor learning curves for: (top row) logistic classifier (LC) 
on MNIST 7 vs. 1 with � ∈ {10, 0.01} and trigger size 3 × 3 (left) or 
6 × 6 (right); (middle row) Ridge classifier on CIFAR10 airplane vs 
frog with � ∈ {100000, 100} and trigger size 8 × 8 (left) or 16 × 16 
(right); (bottom row) RBF SVM with � = 1e−04 on Imagenette 

tench vs truck with � ∈ {10, 0.1} and trigger visibility c
m
= 10 (left) 

or c
m
= 75 (right). Darker lines represent a higher fraction of poison-

ing samples p injected into the training set. We report the loss on the 
clean test samples (TS) with a dashed line and on the test samples 
with the backdoor trigger (TS+BT) with a solid line
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To analyze the impact of the second factor, we plot the back-
door learning curves when the attacker injects an increas-
ing percentage of poisoning points p ∈ {0.01, 0.1, 0.2} for 
convex learners and p ∈ {0.05, 0.15} for Resnet18. Finally, 
to study the third factor, namely the size and visibility of 
the backdoor trigger, we have created the same backdoor 
curves doubling the size of the patch triggers for MNIST and 
CIFAR10, and increasing the trigger’s visibility for Image-
nette. Even when a high percentage of poisoning points are 
injected, for flexible enough classifiers, the loss on the clean 
test samples remains almost constant. Instead, the loss on 
the test set containing the backdoor trigger is highly affected 
by the factors mentioned above. Both a smaller � or a larger 
number of epochs (low regularization and thus higher com-
plexity), and larger p (a high percentage of poisoning points 
added) increase the slope of the backdoor learning curve. 
This means that the classifier learns the backdoor faster. 
When the classifier is sufficiently complex, even a low per-
centage of low-poisoning points is enough to rapidly induce 
the classifier to learn the backdoor. On the other hand, this 
does not apply to highly regularized classifiers, which gen-
erally exhibit slower learning of backdoors. Therefore, lim-
iting the classifier’s complexity by selecting an appropri-
ate regularization coefficient may mitigate vulnerability to 
backdoors. Furthermore, our results demonstrate that larger 
trigger sizes lead to faster backdoor learning by classifiers, 
particularly when they are not regularized. This observation 
holds when increasing the trigger’s visibility, highlighting 
the well-known trade-off between the attacker’s strength 
and detectability as introduced by Frederickson et al. [33]. 
The attacker can enhance the backdoor’s effectiveness by 
increasing the trigger size or its visibility. However, these 
adjustments also make it easier for the defender to detect 
the attack.

Concerning the RBF SVM’s robustness to backdoors, we 
analyzed the backdoors’ learning curves for different values 
of � , which determine the RBF kernel’s curvature. More 

precisely, depending on � , we have analyzed the backdoor 
learning curves, and the classifier’s parameters change due to 
backdoor learning. We depict the learning curves in Fig. 4. 
On both datasets, reducing � results in flatter backdoor 
learning curves and increased test loss, indicating greater 
robustness.

Remarks. Overall, our experiments show that to learn a 
backdoor, a classifier has to increase its complexity (if it is 
not already highly complex). However, an increase in com-
plexity is limited when the classifier is highly regularized 
or when the attack strength is constrained. For this reason, 
highly regularized classifiers are preferable in terms of back-
door robustness. We present supplementary results for other 
classifiers in Appendix B, validating the trends above desc
ribed.

3.2.2 � Backdoor slope

From the previous results, we have seen that reducing com-
plexity through regularization increases robustness against 
backdoors. For a deeper understanding of model complexity 
on backdoor learning, we leverage the proposed backdoor 
slope. In our experiments for convex learners, we fix the 
fraction of injected poisoning points to 0.1, as by Gu et al. 
[1], and we report a dot for each combination of � and � as 
specified in Sect. 3.1. Figures 5, 6 and 7 show the relation-
ship between the backdoor slope and the backdoor effec-
tiveness, measured as the percentage of samples with the 
trigger that mislead the classifier, respectively for MNIST, 
CIFAR10 and Imagenette. We report the accuracy on the 
clean test dataset (TS) and the test dataset with the backdoor 
trigger (TS+BT). For the RBF SVM, we report the accuracy 
for two different � values.

Interestingly, our plots show a region where the accuracy 
of the classifiers on benign samples is high, yet the classifier 
exhibits low accuracy on samples with triggers. For linear 
classifiers, this region equals low-regularized classifiers. In 

(a) Imagenette with trigger visibility cm = 10. (b) Imagenette with trigger visibility cm = 75.

Fig. 3   Backdoor learning curves for Resnet18 trained on the full Ima-
genette training dataset with 10 and 50 epochs. Darker lines represent 
a higher fraction of poisoning samples p injected into the training set. 

We report the loss on the clean test samples (TS) with a dashed line 
and on the test samples with the backdoor trigger (TS+BT) with a 
solid line
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the case of the RBF SVM, the best trade-off is achieved 
with high � (strong regularization) and small � , which also 
constrain SVM’s complexity. Our results thus indicate that in 
these cases, the classifier is not flexible enough to learn the 
backdoor in addition to the clean test samples. Conversely, 
as long as the classifier has enough flexibility, it can learn 
the backdoor without sacrificing clean test accuracy. In a 
nutshell, by choosing the hyperparameters appropriately, 
we can obtain a classifier able to learn the original task but 
not the backdoor. However, there is a trade-off between the 
accuracy of the original task and the robustness of backdoor 
classification. In Figs. 5, 6 and 7, we extend the comparison 
between the backdoor learning slope and the attack effec-
tiveness, considering a stronger attack that exploits larger or 
more visible triggers. With these attacks, the trade-off region 
is diminished, resulting in fewer viable configurations of 
hyperparameters that yield a robust model. This result aligns 
with our earlier findings based on backdoor learning curves: 
as the attack strength increases, the learning curve descends 

more steeply, exhibiting a higher backdoor slope. Our results 
suggest that system designers should thus prioritize maxi-
mizing regularization in models, ensuring the tradeoff with 
accuracy remains acceptable, to deploy a more robust and 
effective machine learning model against potential backdoor 
attacks.

As a final check to assess the reliability of the back-
door learning slope, we plot in Fig. 8 clean and backdoor 
accuracy when training an RBF SVM with different hyper-
parameter configurations. We train, for each configura-
tion, the classifier on the poisoned dataset. On the top 
row, we show the results for CIFAR10 airplane vs frog, 
and on the bottom row the results for Imagenette tench 
vs truck. We followed the same backdoor setting for the 
backdoor slope in Figs. 5, 6 and 7, i.e. trigger size 8 × 8 
for MNIST and trigger visibility cm = 75 for Imagenette. 
Analogous to our previous findings, there exists a trade-
off region where the clean accuracy is high (red), while 
the backdoor accuracy is low (blue), suggesting a higher 
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Fig. 4   Backdoor learning curves for MNIST 7 vs 1 (top row), 
CIFAR10 airplane vs frog (middle row) and Imagenette tench vs 
truck (bottom row) when changing the kernel parameter � on RBF 
SVM. Darker lines represent a higher fraction of poisoning samples p 

injected into the training set. We report the loss on the clean test sam-
ples (TS) with a dashed line and on the test samples with the back-
door trigger (TS+BT) with a solid line
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robustness against backdoors. Analogous to the backdoor 
slope, the best region is obtained with reduced complex-
ity, thus regularizing it or reducing � . Consequently, we 
conclude that smaller values of � can effectively guide the 

model toward a more robust configuration against back-
door attacks. Nevertheless, it also emerges that the most 
decisive factor influencing model robustness remains the 
regularization term.
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Fig. 5   Backdoor slope � vs clean accuracy (red) and backdoor effec-
tiveness (blue) on MNIST 7 vs. 1 with backdoor trigger size 3 × 3 
(top row) and 6 × 6 (bottom row). We measure the classification accu-
racy on the untainted test samples (TS), and on the same samples 

after injecting the backdoor trigger (TS+BT). We chose the � param-
eter for the RBF kernel as �0 = 5e−04 (orange triangle for clean data, 
light blue plus for data with trigger) and �1 = 5e−03 (red inverted tri-
angle for clean data, dark blue x for data with trigger)
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Fig. 6   Backdoor slope � vs clean accuracy (red) and backdoor effec-
tiveness (blue) on CIFAR10 airplane vs frog with backdoor trig-
ger size 8 × 8 (top row), and 16 × 16 (bottom row). We measure the 
classification accuracy on the untainted test samples (TS), and on 
the same samples after injecting the backdoor trigger (TS+BT). We 

chose the � parameter for the RBF kernel as �0 = 1e−04 (orange 
triangle for clean data, light blue plus for data with trigger) and 
�1 = 1e−03 (red inverted triangle for clean data, dark blue x for data 
with trigger)
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While this measure works well on convex learners, its 
roots in influence functions prevent a direct application on 
deep neural networks. As pointed out in [34] the analyti-
cal gradient in Eq. 5 at � = 0 is unstable for deep neural 
networks. To overcome this deficiency, we estimate it with 
finite difference approximation, obtaining:

We report the the results for Resnet18 and Resnet50 in 
Table  1 where we used h = {0.01, 0.1, 0.2, 1} . For each 
combination of poisoning percentage and number of epochs, 
we report the estimate of the backdoor learning slope when 
choosing different h values. The closer h is to 0, the closer 
to 1 is the backdoor slope of the neural network. This result 
is consistent with Fig. 3, where the backdoor learning curves 
drop similarly fast, suggesting a high vulnerability of the 
model in the presence of backdoor samples. A subtle differ-
ence is that when increasing h, there is more evidence for 
higher vulnerability of neural networks trained with more 
epochs or when increasing the percentage of poisoning 
points.

Remarks on model selection/hyperparameter tuning. 
The observed degradation of accuracy on the backdoored 
samples (blue dots) at lower slopes in Figs. 5, 6 and 7 sug-
gests that models with a minimal backdoor learning slope, 
induced by a strong regularization, retain the ability to 

(7)
𝜕L

𝜕𝛽

||||𝛽=0
=

L(Pts,w
⋆(h)) − L(Pts,w

⋆(0))

h
.

remain robust. Quite surprisingly, this phenomenon does 
not have a substantial impact on the classification accu-
racy of the pristine samples (red triangles), highlighting 
an advantageous trade-off for defending against backdoor 
attacks. In other words, there is a wide region in the hyper-
parameter space in which the model still keeps a very high 
accuracy on clean data, but it is essentially unable to learn 
the backdoor samples. This trade-off enables the defender 
to find a sweet spot in which the model can be sufficiently 
robust to backdoor attacks. In practice, this means that 
well-regularized models can be made resilient to backdoor 
attacks with a negligible impact on classification accuracy, 
by simply performing an appropriate choice of the hyper-
parameters, including the regularization term � , number 
of epochs or neurons. In particular, such hyperparameters 
can be tuned to regularize the learning process as much 
as possible, while retaining an acceptable classification 
accuracy for the task at hand. We conclude this section by 
pointing out that this finding is all but trivial, as also high-
lighted in recent work: Bagdasaryan and Shmatikov [35] 
claim that using well-regularized models is the only effec-
tive and applicable defense for systems that are deployed 
and maintained in practical machine-learning operations 
(MLOps) pipelines, as any other defensive technique will 
require significant and costly changes to the deployment 
pipeline infrastructures, inducing a high technical debt on 
future system maintenance.
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Fig. 7   Backdoor slope � vs clean accuracy (red) and backdoor effec-
tiveness (blue) on Imagenette tench vs truck with trigger visibility 
c
m
= 10 , i.e. almost imperceptible, (top row) and c

m
= 75 (bottom 

row). We measure the classification accuracy on the untainted test 
samples (TS), and on the same samples after injecting the backdoor 

trigger (TS+BT). We chose the � parameter for the RBF kernel as 
�0 = 1e−05 (orange triangle for clean data, light blue plus for data 
with trigger) and �1 = 1e−04 (red inverted triangle for clean data, 
dark blue x for data with trigger)
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Fig. 8   Influence of � (x-axis) and � (y-axis) on the backdoor effec-
tiveness (right) and clean accuracy (left) for CIFAR10 airplane vs 
frog (top row) and Imagenette tench vs truck (bottom row). The Back-
door is mounted with trigger size 8 × 8 for CIFAR10 and visibility 

c
m
= 75 for Imagenette. The plots show that there are hyperparameter 

configurations for which clean accuracy is high (red regions on the 
left plots), while the accuracy on the backdoored points is low (blue 
regions on the right plots)

Table 1   Backdoor learning 
slope for Resnet18 and 
Resnet50 when increasing 
the percentage of backdoor 
poisoning p, the number 
of epochs (#Epochs), and 
parameter h for estimate in 
Eq. 7

We also report the corresponding backdoor effectiveness (Accuracy TS+BT) and clean accuracy (Accuracy 
TS), measures respectively as the percentage correctly classified test samples with and without the back-
door trigger

Model p #Epochs Slope
h=0.01

Slope
h=0.1

Slope
h=0.2

Slope
h=1

Accuracy
TS+BT

Accuracy
TS

Resnet18 0.05 10 0.9955 0.9872 0.9752 0.9026 0.4163 0.9588
Resnet50 0.05 10 0.9965 0.9895 0.9785 0.9169 0.7197 0.9781
Resnet18 0.05 50 0.9986 0.9900 0.9797 0.9281 0.5256 0.9737
Resnet50 0.05 50 0.9992 0.9936 0.9849 0.9377 0.8067 0.9881
Resnet18 0.15 10 0.9955 0.9878 0.9774 0.9189 0.8804 0.9568
Resnet50 0.15 10 0.9966 0.9902 0.9943 0.9231 0.9440 0.9826
Resnet18 0.15 50 0.9987 0.9937 0.9864 0.9384 0.8893 0.9720
Resnet50 0.15 50 0.9992 0.9939 0.9971 0.9403 0.9509 0.9890
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Fig. 9   Backdoor weights deviation for the logistic classifier (LC), 
support vector machine (SVM), the ridge classifier (RC) and SVM 
with RBF kernel on MNIST 7 vs. 1 poisoned with backdoor trigger 

[1]. We report the results for trigger size 3 × 3 (top row) and 6 × 6 
(bottom row). We specify the regularization parameter � and back-
door accuracy (BA) for each setting in the legend of each plot

Fig. 10   Backdoor weights deviation for the logistic classifier (LC), 
support vector machine (SVM), the ridge classifier (RC) and SVM 
with RBF kernel on CIFAR10 airplane vs frog poisoned with back-
door trigger [1]. We report the results for trigger size 8 × 8 (top row) 

and 16 × 16 (bottom row). We specify the regularization parameter � 
and backdoor accuracy (BA) for each setting in the legend of each 
plot
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3.2.3 � Empirical Parameter Deviation Plots

After having investigated which factors influence backdoor 
effectiveness, we shift our focus to examining how the mod-
el’s weights change during the training process when the 
dataset is tainted with backdoor samples. We aim to deter-
mine whether there is an increase in complexity or not.

We use our two measures proposed in Sect. 2, � and � to 
analyze the parameter change. The former, � , monitors the 
change of the weights, for example, whether they increase or 
decrease. The latter, � , measures the change in orientation or 
angle of the classifier. We plot both measures with different 
regularization parameters, trigger size, or visibility with a 
fraction of poisoning points to p = 0.1 in Figs. 9, 10 and 11. 
Within each plot, we also report the backdoor accuracy (BA) 
representing the model’s performance on backdoor samples 
at the end of training.

On linear classifiers, �(w) increases during the backdoor 
learning process. This equals an increase in the weights’ 
values, suggesting that the classifiers become more complex 
while learning the backdoor. However, when investigating 
the RBF SVM, the results are slightly different. Indeed, 
when increasing � and decreasing � , the classifier becomes 
flexible and complex enough to learn the backdoor without 
increasing its complexity. On the other hand, when decreas-
ing � , the model is constrained to behave similarly to a linear 
classifier. In this way, analogously to linear classifiers, the 

model needs to increase its complexity to learn the backdoor. 
When increasing the trigger size or visibility the results are 
similar, thus confirming the previous analysis. However, as 
a result of increasing the attacker’s strength, the backdoor 
accuracy turns out to be higher.

3.2.4 � Explaining backdoor predictions

In the following, we give a graphical interpretation of the 
poisoned convex-classifier’s decision function, expressed by 
its internal weights, for which interpretation of their results 
is easier [26, 27]. We consider the results for a backdoor trig-
ger [1] in a specific position, as its influence on the classifier 
decision is easier to see. Conversely, the backdoor trigger 
by for example Zhong et al. [32] spans the entire image, and 
therefore its influence is harder to spot from the interpret-
ability plots. In particular, given a sample x we aim to com-
pute and show the gradient of the classifier’s decision func-
tion with respect to x. We use an SVM with regularization 
� = 1e−02 for MNIST 7 vs 1 and CIFAR10 airplane vs frog, 
and report the results in Fig. 12. For MNIST, we consider 
the digit 7 with the trigger, showcasing the gradient of the 
clean classifier’s decision function. We present the results of 
the gradient from the clean and poisoned classifiers corre-
sponding to the clean and backdoored inputs. Since we train 
a linear classifier on the input space, the derivative coincides 
with the classifier’s weights. Intriguingly, the classifier’s 

Fig. 11   Backdoor weights deviation for the logistic classifier (LC), 
support vector machine (SVM), the ridge classifier (RC) and SVM 
with RBF kernel on Imagenette tench vs truck poisoned with back-
door trigger [32]. We report the results for visibility c

m
= 10 (top 

row) and c
m
= 75 (bottom row). We specify the regularization param-

eter � and backdoor accuracy (BA) for each setting in the legend of 
each plot
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weights increase in magnitude and now exhibit high val-
ues in the bottom right corner, where the trigger is located. 
From CIFAR10, we show a poisoned airplane. We report 
the gradient mask obtained by considering the maximum 
value for each channel, both for the clean and backdoored 
classifier. Also, in this case, the backdoored model shows 
higher values in the bottom right region, corresponding to 
the trigger location. This means that the analyzed classifiers 
assign high importance to the trigger to discriminate the 
class of the input points.

Summarizing, the plots in Fig. 12 further confirm our 
findings regarding the change of the internal parameters dur-
ing the backdoor learning process. In particular, we have 
seen that less regularized classifiers need to increase their 
weights and thus complexity to learn the backdoor. Con-
versely, when the flexibility of the classifier increases then 

it can learn the backdoor easier without significantly altering 
its complexity.

3.2.5 � Visualizing influential training data points

Influence functions are used in the context of ML to identify 
the training points more responsible for a given prediction 
[13]. In Sect. 2 we have seen how they represent the basis 
of our backdoor learning slope measure. In this section, we 
employ them to show their outcomes and provide further 
insight into the relationship between complexity and back-
door effectiveness. To this end, as in Sect. 3.1, we poison 
10% of the training dataset. According to previous experi-
ments, we employed the backdoor trigger in [1] for MNIST 
and CIFAR10 with trigger size 3 × 3 and 6 × 6 respectively, 
while for Imagenette we employed the trigger in Zhong et al. 

Fig. 12   Input gradients of untainted and poisoned SVMs on pris-
tine (top row) and backdoored (bottom row) test samples. Each row 
shows two sets of three images. Each set contains an example from 
MNIST 7 vs 1 or CIFAR10 airplane vs frog (left), along with the cor-

responding input gradient of the untainted SVM (middle), and of the 
poisoned SVM (right). For CIFAR10, we consider the maximum gra-
dient of each pixel among the three channels

Fig. 13   Influential training points for a high-complexity classifier. Considering an SVM with � = 0.01 trained on MNIST, and with � = 0.1 
trained on CIFAR10, and Imagenette, we show the top 7 most influential training samples on the prediction of the samples with the red border
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[32] with higher visibility (i.e. cm = 75 ). In Figs. 13 and  14, 
considering respectively a high- and a low-complexity clas-
sifier, we report the seven most influential training samples 
on the classification of a randomly chosen test point. For 
high-complexity classifiers, many of these training sam-
ples contain the trigger. In contrast, this is not the case for 
low-complexity classifiers. These results suggest that low-
complexity classifiers rely less on the samples containing 
the backdoor trigger in their predictions.

4 � Related work

We first review the literature about backdoor poisoning 
attacks and defenses. Afterward, we focus on defenses that 
increase the robustness against backdoors by reducing the 
model’s complexity. We conclude the section by discussing 
the relationship between our proposed framework and influ-
ence functions.

Backdoor poisoning. Although backdoors were intro-
duced recently [1, 3, 6], a plethora of backdoor attacks and 
defenses have been published. For a more detailed overview, 
we refer the reader to surveys in this area [3, 4, 36]. Despite 
the quickly-growing literature about this topic, the majority 
of the previous works [21, 33, 37, 38] study different types 
of poisoning attacks, i.e., not backdoors. In contrast, only a 
few works have studied factors that influence the success of 
this attack. Baluta et al. [39] and [40] studied the relation-
ship between backdoor effectiveness and the percentage of 
backdoored samples. Salem et al. [41] experimentally inves-
tigated the relationship between the backdoor effectiveness 
and the trigger size. Similarly, Severi et al. [42] have ana-
lyzed the correlation between the backdoor success and the 

attacker’s strength on malware classifiers. Schwarzschild 
et el. [43] evaluated the performance of backdoor attacks 
when scaling the dataset size while fixing the poison budget. 
Finally, Li et al. [44] demonstrated that the backdoor per-
formance is sensitive to the location of the trigger on the 
attacked image. We instead do not limit our study to neural 
networks but also study other models. Furthermore, we also 
investigate other relevant factors, e.g., regularization and 
visibility, and their interaction at once.

Complexity and backdoor defenses. In this work, we 
have analyzed the relationship between backdoor effective-
ness and different factors, including complexity, controlled 
via regularization and the RBF kernel’s hyperparameter. 
In this study, we have demonstrated that reducing com-
plexity by choosing appropriate hyperparameter values 
improves robustness against backdoors. Our findings align 
with the insights presented in Frnay et al. [45], who sug-
gested that overfitting avoidance techniques like, e.g., regu-
larization, can offer partial mitigation against random label 
noise [46, 47]. Expanding upon their discourse, we apply 
and extend this consideration to the context of backdoor 
attacks, wherein the noise is intentionally and strategically 
introduced to deceive the machine learning model. Some 
of the defenses proposed against backdoors use different 
techniques to reduce complexity. These techniques include 
pruning [48, 49], data augmentation [50, 51] and gradient 
shaping [52]. However, from these works, it remains unclear 
why reducing complexity alleviates the threat of backdoor 
poisoning. To the best of our knowledge, our work is the first 
to investigate this aspect.

Relation to influence functions. Influence functions origi-
nated in robust statistics [53] and were later used as a tool 
to measure the influence of specific training points on the 

Fig. 14   Influential training points for low-complexity classifiers. Considering an SVM with � = 1e − 3 trained on MNIST, and with � = 1e − 5 
trained on CIFAR10, and Imagenette, we show the top 7 most influential training samples on the prediction of the samples with the red border
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classification output [13, 54]. In our work, we clarify that 
influence functions naturally descend from the incremental 
learning formulation in Eq. 1, showing that they quantify the 
velocity with which the classifier will learn new points. As 
seen in Sect. 2, they correspond to the partial derivative of 
the learning curve at the point � = 0 . Moreover, we lever-
aged them by proposing a measure, namely the backdoor 
slope, which quantifies the ability of a classifier to learn 
backdoors. This measure allowed us to study the factors that 
impact backdoor effectiveness.

Several defense approaches confirm that the influence 
functions, or gradients during training, are indeed related to 
backdoor learning. For example, some defenses are directly 
based on the gradient [55], based on gradient differences 
[56, 57], or based on differential privacy that noises the gra-
dients during training [52, 58, 59].

5 � Conclusions, limitations and future work

In this paper, we presented a framework to analyze the fac-
tors influencing the effectiveness of backdoor poisoning. We 
carried out experiments on convex learners, also used in 
transfer-learning scenarios, and neural networks. As in pre-
vious work [7, 13], we focus our analysis on two-class clas-
sification problems for convex learners, and on multiclass 
classification when considering neural networks.

Our analysis shows that the effectiveness of backdoor 
attacks inherently depends on (i) the complexity of the target 
model, (ii) the fraction of backdoor samples in the training 
set, and (iii) the size and visibility of the backdoor trigger. 
By analyzing the influence of the first factor on backdoor 
learning, we are the first to unveil a region in the hyper-
parameter space where the accuracy on clean test samples 
remains high while the accuracy on backdoor samples is 
low. Specifically, we discovered that the target model needs 
to significantly increase the complexity of its decision func-
tion to learn backdoors, which is only possible when the 
model is not regularized enough. Conversely, when raising 
the model’s regularization, we can keep high performance 
on clean samples and be unaffected by potential backdoor 
attacks. However, increasing the attacker’s strength, i.e., the 
last two factors, makes the attack more effective, shrinking 
this region and thus exposing the model to greater vulner-
ability. We, therefore, conclude that a prudent strategy to 
preserve robustness against potential poisoning attacks is to 
regularize as much as possible during the hyperparameter 
optimization phase, thereby reducing the backdoor learn-
ing slope while ensuring that the trade-off with accuracy 
remains acceptable.

The study of more factors, like, for example, the dimen-
sionality of the data, is straightforward using the proposed 
framework but left for future work. Our current results 

already provide important insights and provide a starting 
point to derive guidelines for designing models that are more 
robust against backdoor poisoning.

Appendix A: Datasets

The MNIST dataset [18] contains 70,000 observations repre-
senting 28 × 28 grayscale images of handwritten digits from 
0 to 9. The CIFAR10 dataset [19] contains 60,000 colour 
images of size 32 × 32 pixels divided in 10 classes, each 
with 6000 observations. Finally, the Imagenette dataset [20] 
is a subset of 10 classes (i.e., tench, English springer, cas-
sette player, chain saw, church, French horn, garbage truck, 
gas pump, golf ball, parachute) from Imagenet. We use the 
320px version, where the shortest side of each image is 
resized to that size.

Appendix B: Additional Experimental 
Results

In the paper, we have shown the backdoor learning curves 
only for some classifiers. Here, we report them for all the 
classifiers considered in this work. As we will discuss later 
in this section, these results confirm the ones obtained in the 
paper. In particular, here we consider:

•	 Support vector machine (SVM) with � ∈ {100, 0.1} 
for MNIST, � ∈ {10000, 0.1} for CIFAR10, and 
� ∈ {100000, 1} for Imagenette.

•	 Ridge classifier (RC) with � ∈ {1000, 1} for MNIST, 
� ∈ {10000, 1} for CIFAR10, and � ∈ {100000, 1} for 
Imagenette.

•	 Logistic classifier (LC) with � ∈ {10, 0.01} for MNIST, 
� ∈ {10000, 100} for CIFAR10, and � ∈ {100000, 10} for 
Imagenette.

•	 SVM with an RBF kernel, where � ∈ {1, 0.01} and 
� = 5e−04 for MNIST, � ∈ {100, 1} and � = 1e−03 for 
CIFAR10, and � ∈ {10, 0.1} and � = 1e−05 for Imagen-
ette.

Moreover, we compare the results obtained on the class 
pairs considered in the paper ( 7 vs 1 on MNIST, airplane vs 
frog  on CIFAR10 and Imagenette tench vs truck) with the 
ones obtained on different pairs.

Backdoor learning curves and backdoor learning slope. 
In Figs. 15, 16, 17, 18, 19 and 20 we report the backdoor 
learning curves for each classifier and dataset pair. In 
Figs. 21, 22 and 23, we report the backdoor learning slope, 
computed with p = 0.1 , for all the considered classifiers and 
all subset pairs. The results do not show significant variation 
with respect to the ones reported in the paper.
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Empirical parameter deviation plots. In Figs. 24, 25 and 
26, shows how the classifiers’ parameters change when the 
classifiers learn the backdoors. This analysis is carried out 
with p = 0.1 . The results do not vary significantly across 

different classifiers and class pairs. The only exception is 
MNIST 5 vs 2 . The untainted classifier is already quite com-
plex; therefore, it does not increase its complexity when it 
learns the backdoor.

Fig. 15   Backdoor learning curves for different classifiers trained on 
MNIST 3-0. Darker lines represent a higher fraction of poisoning 
samples p injected into the training set. We report the loss on the 

clean test samples (TS) with a dashed line and on the test samples 
with the backdoor trigger (TS+BT) with a solid line

Fig. 16   Backdoor learning curves for different classifiers trained on MNIST 5-2. See the caption of Fig. 15 for further details
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Fig. 17   Backdoor learning curves for different classifiers trained on CIFAR10 bird vs dog. See the caption of Fig. 15 for further details
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Fig. 18   Backdoor learning curves for different classifiers trained on CIFAR10 airplane vs truck. See the caption of Fig. 15 for further details



International Journal of Machine Learning and Cybernetics	

Fig. 19   Backdoor learning curves for different classifiers trained on Imagenette cassette player vs church. See the caption of Fig. 15 for further 
details

Fig. 20   Backdoor learning curves for different classifiers trained on Imagenette tench vs parachute. See the caption of Fig. 15 for further details
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Fig. 21   Backdoor slope � vs clean accuracy (red) and backdoor effec-
tiveness (blue) on MNIST 3vs.0 (top row) and 5vs.2 (bottom row). 
We measure the classification accuracy on the untainted test sam-
ples (TS), and on the same samples after adding the 3 × 3 backdoor 

trigger (TS+BT). We chose the � parameter for the RBF kernel as 
�0 = 5e−04 (orange triangle for clean data, light blue plus for data 
with trigger) and �1 = 5e−03 (red inverted triangle for clean data, 
dark blue x for data with trigger)

Fig. 22   Backdoor slope vs backdoor (BK) effectiveness on CIFAR10 airplane vs truck (top row) and bird vs dog (bottom row). See the caption 
of Fig. 21 for further details. The results are obtained considering a trigger size equal to 8
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Fig. 23   Backdoor slope vs backdoor (BK) effectiveness on Imagenette cassette player vs church (top row) and tench vs parachute (bottom row). 
See the caption of Fig. 21 for further details. The results are obtained considering a trigger size equal to 8

Fig. 24   Backdoor weights deviation for different classifiers trained on MNIST 3 vs 0 (top row) and 5 vs 2 (bottom row). We specify regulariza-
tion parameter � and backdoor (BK) accuracy for each setting in the legend of each plot
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Fig. 25   Backdoor weights deviation for different classifiers trained on CIFAR10 airplane vs truck (top), and bird vs dog (bottom). See Fig. 24 
for further details

Fig. 26   Backdoor weights deviation for different classifiers trained on Imagenette tench vs parachute (top), and cassette player vs church (bot-
tom). See Fig. 24 for further details
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B.1 Increasing the trigger size or visibility

Although it is a known result in the literature that the size 
of the trigger increases the effectiveness of the attack [7, 
41], here, for the first time to the best of our knowledge, 
we show how it interacts with other factors. In this sec-
tion we report further experimental results when increas-
ing the trigger size or visibility. As expected, the results 

in Figs. 27 and 28 show that choosing a larger trigger 
enhances the effectiveness of the attack. Indeed, when 
the trigger is larger or more visible the backdoor learning 
curves go down faster. Using the proposed backdoor slope 
to analyze the effect of complexity, controlled via the 
hyperparameters, on the vulnerability against backdoors, 
we found a region of the hyperparameter space that leads 
to having desirable performances: an accuracy high on 

(a) MNIST trigger size 3 � 3. (b) MNIST trigger size 6 � 6.

(c) CIFAR10 trigger size 8 � 8. (d) CIFAR10 trigger size 16 � 16.

(e) Imagenette trigger visibility cm = 10. (f) Imagenette trigger visibility cm = 75.

Fig. 27   Backdoor learning curves for: (top row) LC on MNIST 3vs.0 
with trigger size 3 × 3 (left) or 6 × 6 (right); (middle row) RC on 
CIFAR10 airplane vs truck with trigger size 8 × 8 (left) or 16 × 16 

(right); (bottom row) RBF SVM on Imagenette cassette player vs 
church with trigger visibility c

m
=10 (left) or c

m
=75 (right). Further 

details in Fig. 15
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the clean test samples and low on the ones containing the 
backdoor trigger.
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