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ABSTRACT
For multiple comparisons in analysis of variance, the practitioners’ handbooks generally advocate standard
methods such as Bonferroni, or an F-test followed by Tukey’s honest significant difference method. These
methods are known to be suboptimal compared to closed testing procedures, but improved methods can
be complex in the general multigroup set-up. In this note, we argue that the case of three-groups is special:
with three groups, closed testing procedures are powerful and easy to use. We describe four different closed
testing procedures specifically for the three-group set-up. The choice of method should be determined by
assessing which of the comparisons are considered primary and which are secondary, as dictated by subject-
matter considerations. We describe how all four methods can be used with any standard software.
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1. Introduction

Researchers often compare an outcome measure between sev-
eral experimental or observational groups. Designs with two
groups are most common, and are well discussed in statistical
handbooks. Multi-group designs are more complex, since they
give rise to many between-group comparisons. If more than one
such comparison is of interest, then multiple testing problems
arise, and adjustments need to be made to prevent excessive false
positive results.

Practical statistical handbooks often touch upon multiple
comparisons methods when discussing post hoc testing in anal-
ysis of variance (ANOVA) to determine which of the groups are
different after a significant ANOVA test. However, they tend to
focus on methods that are generally applicable in the multigroup
case. The most frequently advocated methods are Tukey’s honest
significant difference (HSD), or Bonferroni, usually after the
ANOVA test (e.g., Field 2013; Glover and Mitchell 2008; Stevens
2013; Tabachnick, Fidell, and Ullman 2007).

In the specialized literature, it is known that these meth-
ods are suboptimal, in the sense that they may be uniformly
improved by methods based on closed testing (Marcus, Peritz,
and Gabriel 1976; Goeman, Hemerik, and Solari 2021). Closed
testing methods always reject at least as many hypotheses, and
possibly more, while still controlling the same error rates. How-
ever, these methods can be computationally and conceptually
complicated in the general multigroup setting, and are not usu-
ally implemented in standard software packages (Begun and
Gabriel 1981; Bergmann and Hommel 1988; Rom and Holland
1995).
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In this article, we argue that the case of three groups, arguably
the most common multigroup design, deserves special treat-
ment. In the three-group case, the improved closed-testing-
based methods are relatively easy, and within reach of standard
software packages. The power improvements of such meth-
ods over, for example, ANOVA followed by Tukey’s HSD can
be substantial. We present four different closed testing-based
approaches for the three group design. We will argue that the
choice for one of these methods should be based on an a priori
choice which of the comparisons are of primary and which are
of secondary interest. We will initially concentrate on the well-
studied one-way ANOVA design with three equal size groups,
but extend to other parametric and nonparametric setups in
Section 10. Example analyses are provided in a simple and a
more complex model in Section 11 and 12. We briefly touch
upon extension of these ideas to the four-group situation in
Supplementary Material A.

The subject of multiple comparisons has a long history and
a huge literature, which we cannot cover in full (see e.g., Miller
1981; Hochberg and Tamhane 1987; Hsu 1996; Bretz, Hothorn,
and Westfall 2011; Dickhaus 2014; Cui et al. 2021). This article
aims to give practical guidelines for users in a single particular
but important situation. However, the discussion of this special
case touches upon many of the central issues in multiple testing,
and we hope that our note may serve as a gentle introduction to
the wider subject.

2. Four Hypotheses for Three Groups

We assume a three-group design with a parameter of interest
per group, denoted μ1, μ2, and μ3. These parameters may be
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Figure 1. Visualization of the four hypotheses H12, H13, H23, and H123 in a param-
eter space with axes μ1 − μ2 and μ1 − μ3. Note that H23 is the diagonal line for
which μ1 −μ2 = μ1 −μ3. In the origin all four hypotheses are true; elsewhere at
most one.

means (in the classical ANOVA setting), proportions (in a 2 × 3
contingency table), per-group regression coefficients, or even
distributions (in nonparametric settings). To keep the discus-
sion concrete, we will focus on the one-way ANOVA setting with
equal-size groups as the central example, coming back to the
general case in Section 10. In this classical setting, we assume
we have three groups of n observations. Each observation is
normally distributed around its group mean μ1, μ2, or μ3, with
common variance σ 2.

We may formulate four null hypotheses to compare the group
means μ1, μ2, and μ3. First, the so-called global null hypotheses
that all three-group means are equal

H123 : μ1 = μ2 = μ3.

Next, there are the three pairwise comparisons between groups

H12 : μ1 = μ2; H13 : μ1 = μ3; H23 : μ2 = μ3.

The four hypotheses H123, H12, H13, and H23 are logically
related to each other: if any two are true, then all must be true.
For example, if H12 and H13 are true, then μ1 = μ2 and μ1 =
μ3, so that we have μ1 = μ2 = μ3, which implies that H123
and H23 are also true. The number of true hypotheses among
H123, H12, H13, and H23 can therefore be either 0, 1, or 4, but
never 2 or 3. Additionally, if only one hypothesis is true, this
cannot be H123. These logical implications between hypotheses
are also known as restricted combinations (Shaffer 1986), and
are visualized in Figure 1.

3. The Need for Multiple Testing Correction

A false-positive result, a rejection of a true null hypothesis, may
result in an incorrect scientific finding reaching the scientific
literature, and should therefore be prevented. The convention
is to accept a probability of such a false positive result of at most
α = 0.05, which is achieved by in single hypothesis testing by
only rejecting hypotheses with a p-value below α.

If multiple hypotheses are tested, then each hypothesis again
has a probability α of a false positive result. Therefore, without

adjustment the probability that at least one a false-positive result
occurs as a result of the experiment tends to exceed the accept-
able rate. For example, in the ANOVA set-up with three equal
size groups of 10 at α = 0.05, simply testing all four hypotheses
at α = 0.05 results in an excessive 13% of experiments pro-
ducing at least one false positive result in the situation that all
hypotheses are true (see Supplementary Material B).

We can correct for multiple comparisons by controlling the
familywise error rate (FWER), the probability of obtaining one
or more false positive results (Tukey 1953). Methods controlling
FWER bring the probability of producing at least one false
positive result back to at most the required α level. Alternatively
stated, they guarantee that at least (1 − α) × 100% of three-
group experiments performed produce no false-positive results.
We always consider control of FWER in the strong sense, that
is, control must hold for all possible values of μ1, μ2, and
μ3. A FWER guarantee is necessary if results are selectively
emphasized, for example, in the discussion, title or abstract
of articles. Researchers may unknowingly emphasize the—
surprising—false-positive results. This will result in excessive
false positive rates among the emphasized results if FWER
control was not applied (Benjamini 2019).

4. Primary and Secondary Hypotheses: Four
Scenarios

The four hypotheses given above are seldom of equal interest to
the researcher, and we may distinguish between hypotheses of
primary and secondary interest. Hypotheses of primary interest
are those that are central to the research question; hypotheses
of secondary interest are those that become of interest only as a
follow-up to the primary research question (Bretz et al. 2009;
Burman, Sonesson, and Guilbaud 2009). The decision which
hypotheses are primary and which are secondary should always
be based on subject-matter knowledge, independent of the data.

For the three-group comparison case, we distinguish four
scenarios for the choice of primary and secondary hypotheses.

(A) The global hypothesis H123 is primary: This is natural
when the presence of any difference between the means
can directly be meaningfully interpreted, regardless of the
location of such difference. For example, consider the case
that the three groups represent three levels of an ordinal
variable, created by categorizing a numerical outcome.
In this case, if H123 is false, we can say that the ordinal
variable (and consequently the underlying numerical one)
is associated with the outcome, even if we don’t yet know
what the form the association takes. Similarly, in a genetic
study where the three groups are three phenotypes AA,
Aa and aa, rejection of H123 is sufficient to establish the
presence of a genetic effect. The pairwise hypotheses are
secondary, giving additional information on the mode of
inheritance.

(B) All three pairwise hypotheses, H12, H13, and H23, are pri-
mary: This is natural when the three groups represent
categories of a nominal variable, and all three groups are
equally important. In this case, it is usually not satisfac-
tory just to know that some group differences exist, but
researchers would always want to know specifically which
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groups differ. For example, if subjects would be of three dif-
ferent nationalities, just knowing that there is an association
between nationality and outcome is not very informative;
the researcher would always want to know which national-
ities differ from each other.

(C) Two of the pairwise hypotheses, say H12 and H13, are pri-
mary: This is natural when Group 1 represents a reference
against which both other groups are compared. In this case,
the comparison of Groups 2 and 3 only becomes of interest
when at least one of the groups has been shown to be differ-
ent from the reference. A classical example of this situation
is the case when two novel treatments are compared against
a placebo: the researcher is only interested in a difference
between the treatments if at least one has been shown to
outperform the placebo.

(D) One of the pairwise hypotheses, say H12, is primary: This is
natural when one of the groups (Group 3) is of secondary
interest. For example, Groups 1 and 2 could be placebo and
high dose treatment, while Group 3 is a low dose treatment.
In this case the researcher could be only interested in the
relative effect of the low dose after the effectiveness of the
high dose has been established.

5. Standard Methods

The standard tests for H123, H12, H13, and H23 in the ANOVA
model are the (partial) F-tests. The information from the obser-
vations on these hypotheses is summarized in the estimates μ̂1,
μ̂2, μ̂3, and pooled variance estimate σ̂ 2. For the discussion in
this article, it is useful to remark that the partial F-tests can be
rewritten to equivalent tests based on the standardized group
differences. Ignoring multiplicative constants, the partial F-test
statistic for H12 is proportional to the standardized squared
group difference

S12 = (μ̂2 − μ̂1)
2

σ̂ 2 ;

analogous for H13 and H23. The distributions of S12, S13, S23 are
identical under the null hypotheses; let cα be the 1 − α-quantile
of that distribution. For H123 the F test is proportional to the test
statistic

S123 = S12 + S13 + S23, (1)

as shown in the supplemental material A. Let c123
α be the 1 − α-

quantile of the distribution of S123.
To control FWER, the most frequently recommended solu-

tions are Bonferroni and Tukey’s honest significant difference
(HSD; Tukey 1949). With Bonferroni, instead of rejecting each
Hij when Sij ≥ cα , we reject when Sij ≥ cα/3, adjusting the α-
level by a factor 3 to adjust for the three comparisons. Tukey’s
HSD method rejects when Sij ≥ c̃α instead, where c̃α is the
(1 − α)-quantile of the distribution of

S̃123 = max(S12, S13, S23),

which is proportional to a studentized range distribution (Tip-
pett 1925). Tukey’s HSD method is uniformly more powerful
than Bonferroni, since Bonferroni’s quantile cα/3 is an upper
bound to the quantile of max(S12, S13, S23) among all possible

joint distributions of three statistics S12, S13, and S23, while
c̃α is the same the quantile calculated using the specific joint
distribution of the statistics in the ANOVA model. We have
cα/3 > c̃α > cα .

Tukey’s HSD or Bonferroni may be applied directly on H12,
H13, and H23, without first looking at the ANOVA F-test. How-
ever, these methods are often used as post hoc tests, to be
performed only after the global ANOVA F-test rejects. The
resulting two-step procedure, which we refer to as Tukey’s post
hoc procedure (analogous for Bonferroni) is as follows:

1. If S123 ≥ c123
α , reject H123.

2. If H123 was not rejected, stop; otherwise, reject each of H12,
H13, and H23 for which the corresponding Sij ≥ c̃α .

Since it may happen that S123 < c123
α , while S̃123 ≥ c̃α , Tukey’s

post hoc method has strictly less power than Tukey’s HSD for
rejecting each of H12, H13, and H23. Conversely, however, it may
also happen that S123 ≥ c123

α , while S̃ < c̃α ; in that case the
Tukey’s post hoc procedure rejects H123 (only), while Tukey’s
HSD procedure would reject no hypotheses.

Most statistical software packages also offer Dunnett’s pro-
cedure (Dunnett 1955), which is used analogously to Tukey’s
HSD procedure, but in the situation that only H12 and H13 are of
interest. Dunnett’s procedure rejects H12 and/or H13 when the
corresponding test statistics exceed c̃1

α , where c̃1
α is the (1 − α)-

quantile of the distribution of

S̃1 = max(S12, S13).

Note that Dunnett’s critical value is less stringent than Tukey’s
one, that is, cα < c̃1

α < c̃α . While Dunnett’s procedure controls
FWER on H12 and H13 directly, is often used as a post hoc pro-
cedure, and embedded in a two-step approach after an ANOVA
F-test, like with Tukey. Like Tukey’s HSD, Dunnett’s procedure
is uniformly more powerful than Bonferroni’s procedure on H12
and H13, which would reject when S12 or S13 exceeds cα/2, since
cα/2 > c̃1

α .

6. Four Closed Testing Procedures

The multiple comparisons procedures described in the previous
paragraph are not optimal, but can be uniformly improved
by embedding them into a closed testing procedure (Marcus,
Peritz, and Gabriel 1976). It is known (Sonnemann 2008; Goe-
man, Hemerik, and Solari 2021): that all FWER controlling
procedures are either equivalent to a closed testing procedure,
or can be uniformly improved by one. Closed testing procedures
for the four hypotheses H123, H12, H13, and H23 can be con-
structed as follows.

First, we must verify that the collection of hypotheses is
closed with respect to intersection. That is, for every two
hypotheses in the family we must ensure that their intersection
is also in the family. An intersection between two hypotheses is a
hypothesis that is true if and only if both intersected hypotheses
are true. For example, the intersection between H12 and H13 is
the hypothesis that μ1 = μ2 and μ1 = μ3, which is H123, which
is indeed in the family. It is easily verified using Figure 1 that
the family of hypotheses H123, H12, H13, and H23 is closed with
respect to intersection.
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In a closed family of hypotheses, the closed testing procedure
controls FWER by requiring that any hypothesis is only rejected
after all hypotheses implying it are rejected (Marcus, Peritz, and
Gabriel 1976). One hypothesis implies another if the second
hypothesis is always true when the first one is. For example, H123
implies H12 since μ1 = μ2 = μ3 implies that μ1 = μ2. We can
see this implication in Figure 1, since H123 is a subset of H12. The
requirement that implying hypotheses must be rejected first is
the only requirement closed testing imposes to achieve FWER
control; all tests are performed at level α, without further α-level
adjustment.

We see from Figure 1 that in the family H123, H12, H13, and
H23, the hypothesis H123 implies all other hypotheses, but for
the rest there are no implications between hypotheses. A closed
testing procedure for these four hypotheses is therefore always a
procedure in two steps. It first tests the implying hypothesis H123
at level α. If that hypothesis is not rejected, the procedure stops.
Otherwise, in Step 2, all three of H12, H13, and H23 are tested,
each at level α. All closed testing procedures in the three-group
design, therefore, take this general form:

1. Test H123 with a valid α-level test
2. If H123 was not rejected, stop; otherwise, test each of H12, H13,

and H23 with a valid α-level test.

At the first sight, the closed testing framework may seem
quite restrictive. In fact, it is a very general framework, from
which a great variety of methods can be constructed by choosing
different options for a hypothesis test for each of the hypotheses.
For FWER control, any valid α-level test may be chosen for
any of the four hypotheses, as long as these tests are chosen
independently of the data. The resulting procedures may have
quite different power properties, depending on the chosen tests.

For the one-way ANOVA with three groups, we will con-
struct four different closed testing methods. These methods will
differ only in Step 1 of the general closed testing framework, that
is, in the choice of the test statistic for H123. For H12, H13, and
H23 we will always simply use the test that rejects when Sij ≥ cα ,
that is, Step 2 of the closed testing framework is identical for all
procedures. The four procedures have the following Step 1, with
test statistics chosen so as to maximize power of the primary
hypotheses:

(A) Classic closed testing: H123 is tested with test statistic S123;
(B) Closed Tukey: H123 is tested with test statistic S̃123 =

max(S12, S13, S23);
(C) Closed Dunnett: H123 is tested with test statistic S̃1 =

max(S12, S13);
(D) Gatekeeping: H123 is tested with test statistic S12.

Unlike methods A and B, the methods C and D are not
unique, since there is an analogous closed Dunnett method with
test statistic S̃2 = max(S12, S23), taking μ2 as the reference, and
another one with S̃3 = max(S13, S23); Gatekeeping similarly has
two additional variants. This makes for 8, rather than 4, methods
in total. The variants of C and D differ only in the indexing of
the hypotheses and are not fundamentally different.

Some of the procedures we have just proposed are special
cases of previously proposed multigroup procedures. We do
not claim novelty for any of them, since they are simple and
direct consequences of the closed testing principle. Method

A is a the three-group realization of the procedure of Shaf-
fer (1979). Method B is the procedure of Student–Newman–
Keuls (Fisher 1935; Newman 1939; Keuls 1952), which builds
upon the proposal of Fisher (1935) to use of Student’s t tests
following an ANOVA F test, referred to as least significant dif-
ference (LSD). However, Fisher’s LSD and Student–Newman–
Keuls were abandoned or modified in subsequent years because
they do not control the FWER in the general multiple group
case, even though they do control in the special case of three
groups (Hartley 1955; Hayter 1986). Method C was advocated
by Marcus, Peritz, and Gabriel (1976), with variants by Finner
(1990) and Hothorn (2020). We did not find a prior reference
for method D, but we call it Gatekeeping because it is similar
in spirit to the procedures of Dmitrienko, Tamhane, and Wiens
(2008). In all cases the three-group setting is special: having only
three groups simplifies a complex multi-group procedure (A and
C) or rescues the validity of a method (B).

The proposed procedures are direct uniform improvements
of the standard procedures described in Section 5, and should
therefore always replace these procedures in applications. In
particular, the closed testing procedures tend to reject more of
the pairwise hypotheses after at least one rejection has been
made. Procedure A is a uniform improvement of both the post
hoc Tukey and Dunnett procedures. These latter procedures
have the same Step 1, but use the more stringent critical value
of c̃α and c̃1

α , respectively, instead of cα for H12, H13 (and H23)
in Step 2. Unlike post hoc Dunnett, Procedure A also has a
possibility for rejecting the secondary hypothesis H23. Proce-
dure B is uniformly more powerful than Tukey’s HSD: both
Closed Tukey and Tukey’s HSD reject any of H12, H13, or H23
for which the test statistic exceeds c̃α , but once at least one
hypothesis has been rejected in this way, Procedure B tests the
remaining ones again at the reduced critical value cα . Procedure
C compares to Dunnett’s method in the same way, while also
adding the possibility that H23 may be rejected (Shaffer 1977).
Procedure D does not uniformly improve one of the standard
procedures. For this latter procedure, we note that the proper
critical value for test statistic S12 in a test for H123 is simply cα :
since H123 is a subset of H12 (see Figure 1), any valid test for H12
is automatically a valid test for H123.

Table 1 gives the probability that the closed testing methods
reject at least one hypothesis more than the methods they uni-
formly improve. As a uniform improvement, the probability that
it rejects fewer hypotheses is zero. The data are generated under
a standard one-way ANOVA model with unknown σ 2 = 1
and n = 6 per group. We see from the table that the proba-
bility of improvement is substantial. The probabilities for the
Dunnett methods are especially high, because the probability
that the classical Dunnett methods rejects H23 is zero, while
the corresponding probability may be large for its closed testing
improvement. If H23 is disregarded, then probabilities become
in the same order of magnitude for the Dunnett comparisons as
for Tukey (data not shown).

7. Power of the Four Procedures

When to prefer which of the four procedures from the previous
section? Obviously, we would like to maximize the probability of
rejection of the hypotheses, prioritizing the primary hypotheses
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Table 1. Probability that each closed testing procedure rejects at least one hypoth-
esis more than the method it uniformly improves. CCT stands for classic closed
testing.

Comparison (μ1, μ2, μ3)

(2,0,1) (2,1,0) (1,2,0) (2,0,2) (2,2,0) (0,2,2)

CCT vs. post hoc Tukey 0.26 0.26 0.25 0.16 0.17 0.16
closed Tukey vs. Tukey’s HSD 0.25 0.24 0.24 0.15 0.15 0.15
CCT vs. post hoc Dunnett 0.43 0.42 0.79 0.87 0.86 0.13
closed Dunnett vs. Dunnett 0.42 0.42 0.49 0.79 0.78 0.13

Table 2. Probability P(E) that the multiple comparisons procedure rejects fewer
primary hypotheses than unadjusted testing, for Scenario D (H12 is primary).

Method Statistic (μ1, μ2, μ3)

(2,0,1) (2,1,0) (1,2,0) (2,0,2) (2,2,0) (0,2,2)

A S123 0.10 0.01 0.01 0.03 0.00 0.03
B S̃123 0.09 0.01 0.01 0.04 0.00 0.04
C S̃1 0.06 0.01 0.07 0.06 0.00 0.02

S̃2 0.06 0.08 0.01 0.02 0.00 0.06
S̃3 0.40 0.02 0.02 0.11 0.00 0.12

D S12 0.00 0.00 0.00 0.00 0.00 0.00
S13 0.53 0.01 0.27 0.85 0.01 0.07
S23 0.54 0.28 0.01 0.06 0.01 0.85

as argued in Section 4. We will argue in this Section that each
of the four procedures A, B, C, and D is, generally, the preferred
procedure for its corresponding Scenario A, B, C, and D.

Among many possible definitions of power in multiple test-
ing (Senn and Bretz 2007; Gou et al. 2014), we analyze the
power of the four procedures by comparing them to unadjusted
testing, that is, testing without any multiple testing correction.
Let us focus on Scenarios B, C, and D first, in which all primary
hypotheses are pairwise hypotheses. We note that in these sce-
narios the closed testing procedure can never reject more of the
primary hypotheses than unadjusted testing would, although it
could reject fewer. We will analyze the event E that the multiple
comparisons procedure rejects fewer primary hypotheses than
unadjusted testing would. We try to minimize the probability of
the event E.

We analyze the methods in the four scenarios in reverse
order, starting with Scenario D. For all scenarios we will calcu-
late P(E) for six configurations of (μ1, μ2, μ3), and for all eight
closed testing methods, including the variants of Methods C and
D. The data are generated under a standard one-way ANOVA
model with unknown σ 2 = 1 and n = 6 per group.

Table 2 gives P(E) for Scenario D. For this scenario there is
an obvious winner that has P(E) = 0 whatever μ1, μ2, μ3. The
intuition for this case is simple enough: if only H12 is primary, we
can focus the multiple testing procedure on that hypothesis by
testing H123 and H12 with the same test, which implies a gate-
keeping procedure that prioritizes the single primary hypoth-
esis. Looking at the performance of the other closed testing
procedures, we see from Table 2 that, while all other multiple
comparisons procedures have some power loss compared to
unadjusted testing, this power loss is small when the procedure
used a test for H123 that involves a strong contribution of Sij
for the i, j with the largest difference |μi − μj|. For example, if
μ1 − μ3 is largest, then the procedures that tests H123 with S13
or with S̃1 = max(S12, S13) have nearly the same power as the
optimal procedure.

Table 3. Probability P(E) that the multiple comparisons procedure rejects fewer
primary hypotheses than unadjusted testing, for Scenario C (H12 and H13 are
primary).

Method Statistic (μ1, μ2, μ3)

(2,0,1) (2,1,0) (1,2,0) (2,0,2) (2,2,0) (0,2,2)

A S123 0.10 0.10 0.02 0.03 0.03 0.06
B S̃123 0.10 0.10 0.02 0.04 0.04 0.07
C S̃1 0.06 0.07 0.14 0.07 0.07 0.04

S̃2 0.06 0.41 0.02 0.02 0.11 0.12
S̃3 0.41 0.07 0.02 0.11 0.02 0.13

D S12 0.01 0.53 0.28 0.01 0.85 0.07
S13 0.53 0.01 0.27 0.85 0.01 0.07
S23 0.54 0.54 0.01 0.06 0.07 0.91

Table 4. Probability P(E) that the multiple comparisons procedure rejects fewer
primary hypotheses than unadjusted testing, for Scenario B (all three pairwise
hypotheses are primary).

Method Statistic (μ1, μ2, μ3)

(2,0,1) (2,1,0) (1,2,0) (2,0,2) (2,2,0) (0,2,2)

A S123 0.11 0.11 0.11 0.06 0.06 0.06
B S̃123 0.10 0.11 0.11 0.07 0.07 0.07
C S̃1 0.07 0.07 0.41 0.13 0.13 0.04

S̃2 0.07 0.41 0.08 0.04 0.13 0.12
S̃3 0.41 0.07 0.08 0.12 0.04 0.13

D S12 0.01 0.54 0.55 0.07 0.91 0.07
S13 0.54 0.02 0.54 0.91 0.07 0.07
S23 0.54 0.54 0.01 0.06 0.06 0.91

A similar but slightly less clear-cut picture emerges from
Table 3, that covers Scenario C, in which H12 and H13 are
primary. Here, none of the procedures has P(E) = 0 exactly,
and there is no overall winner. However, we see that methods
have small P(E) if they emphasize both the large differences and
the primary hypotheses. The closed Dunnett procedure is the
preferred procedure if the mean of the reference group is at the
extreme. If the reference category is in the middle, closed Tukey
or classic closed testing may do better. A gatekeeping procedure
that emphasizes the largest difference can have good power even
if that difference does not correspond to a primary hypothesis.

In Scenario B, shown in Table 4, there is again good power
to be had if there is a priori knowledge which differences are
largest: a gatekeeping or closed Dunnett that prioritize the test
for which the true difference is largest, wins out. However, in
absence of such knowledge, these methods can be risky, since
they will do very badly if they happen to emphasize the small
differences. Closed Tukey and classical closed testing are a safer
choice with low P(E) overall.

Scenario A is different from the other three, since it is essen-
tially a comparison of three different tests for the same hypoth-
esis H123. We can put it into the same framework as in the other
scenarios, comparing P(E), if we view the ANOVA test as the
standard test for H123, and we look for maximal consistency
between the multiple comparisons procedure and unadjusted
testing. In this case Scenario A is much like Scenario D, with a
single optimal procedure, classical closed testing, that achieves
P(E) = 0. If alignment to the standard test of H123 is not
important, we find ourselves in a classical situation of comparing
power for different tests of the same hypothesis H123. Table 5
gives the power of the implied tests. As in the other scenarios,
we see that the best power can be had from a test that focuses
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Table 5. Power for rejecting H123.

Method Statistic (μ1, μ2, μ3)

(2,0,1) (2,1,0) (1,2,0) (2,0,2) (2,2,0) (0,2,2)

A S123 0.80 0.80 0.80 0.90 0.90 0.90
B S̃123 0.81 0.80 0.80 0.90 0.89 0.89
C S̃1 0.84 0.83 0.50 0.83 0.83 0.92

S̃2 0.84 0.50 0.83 0.92 0.83 0.83
S̃3 0.50 0.83 0.83 0.84 0.92 0.83

D S12 0.90 0.37 0.36 0.89 0.05 0.89
S13 0.37 0.89 0.37 0.05 0.89 0.89
S23 0.37 0.37 0.90 0.90 0.90 0.05

power on the largest true difference, but, in the absence of such
knowledge, the test using S123 or S̃123 are a low-risk option.

To summarize, to minimize the probability that we lose out
on some rejections compared to unadjusted testing, we must
consider both the distinction between primary and secondary
hypotheses, and any a priori knowledge on the values of μ1, μ2
and μ3. In the situation that the primary hypotheses are also the
hypotheses for which we expect the largest differences |μi −μj|,
the situation is clear-cut: with scenario A, B, C, or D we should
prefer the corresponding method A, B, C, or D.

If the hypotheses of most interest do not necessarily corre-
spond to the hypotheses for which we expect largest effect size,
the choice of method becomes more subtle. If there is a reliable
a priori idea where the true values of μ1, μ2, and μ3 could be,
this could guide the choice of method. For example, if |μ1 −μ2|
is strongly expected to be the largest true difference, a we can
expect gatekeeping based on S12 to have good power; if μ2 ≈ μ3
is expected, then closed Dunnett using S̃1 is preferable.

In the more common situation that we are not willing to
gamble on a priori guesses about the means, however, the rule of
thumb remains that it is a relatively safe choice in every scenario
to choose the corresponding method. A possible exception is
Scenario C, in which classical closed testing or closed Tukey
could be preferred to closed Dunnett if researchers also want
good power in the situation that the reference category could be
the middle one.

8. Paradoxical Outcomes

The logical relationships between the hypotheses, displayed in
Figure 1, dictate that the number of true hypotheses may be
0, 1 or 4, but never 2 or 3. Consequently, the number of false
hypotheses should be 0, 3, or 4. The result of the test procedure,
however, may not always conform to this.

The most well-known of these situations is the frustrating
event that H123 is rejected, but none of H12, H13, or H23 (Gabriel
1969; Romano, Shaikh, and Wolf 2011). In this case, we may
claim that at least two more hypotheses are false, but that we
are not confident which ones. This event occurs frequently with,
for example, ANOVA followed by Bonferroni (Sedgwick 2014).
Fortunately, this event less of an issue with closed testing in
three groups: it is impossible with procedures B, C and D, due
to logical implications between the test outcomes, and extremely
rare with procedure A, since S123 and S̃123 are highly correlated.

Another paradoxical outcome can occur when only one of
H12, H13, H23 is rejected. In such cases, we may claim that at

least one more hypothesis must be false, only we are not sure
which one. This type of paradoxical outcome can occur with
any of the above described methods, since it may also occur
with unadjusted testing. However, closed testing procedures also
reduce the probability of this event, compared to, for example,
Tukey’s HSD: they increase the probability of rejecting the sec-
ond pairwise hypothesis after the first one is rejected.

9. Applying the Four Procedures: Adjusted p-Values

To use these four methods in the ANOVA context with standard
statistical software it is easiest to work from adjusted p-values.
Adjusted p-values can be calculated for any multiple testing
procedure. They are defined for any hypothesis as the smallest
FWER level α at which the hypothesis would be rejected. There-
fore, a hypothesis is rejected by the multiple testing procedure if
and only if its adjusted p-value is at most α (Rosenthal and Rubin
1983; Wright 1992).

For the one-way ANOVA design with equal groups, most
statistical software packages return adjusted p-values p̃Tuk

12 , p̃Tuk
13 ,

p̃Tuk
23 , for H12, H13, and H23, respectively, for Tukey’s HSD

method and p̃Dun
12 , p̃Dun

13 for H12, and H13 for Dunnett’s method.
From these, together with the unadjusted p-values p12, p13, p23,
and p123, we can calculate adjusted p-values for all four methods
we have introduced.

In the general closed testing framework, we reject each
hypothesis if both the hypothesis itself and the implying
hypothesis H123 have been rejected,. The adjusted p-value of
Hij in a closed testing procedure is therefore

p̃ij = max(pij, p̃123),

where p̃123 is the p-value for H123 in the procedure. These we
can calculate for each of the four procedures as follows:

p̃A
123 = p123;

p̃B
123 = min(p̃Tuk

12 , p̃Tuk
13 , p̃Tuk

23 );
p̃C

123 = min(p̃Dun
12 , p̃Dun

13 );
p̃D

123 = p12.

To understand these expressions for Procedures B and C, remark
that we reject H123 there if the Tukey’s HSD and Dunnett proce-
dures, respectively, reject at least one hypothesis, which happens
when the Tukey’s HSD- (or Dunnett-) adjusted p-value for at
least one hypothesis is less than α. Using these formulae we can
apply these four closed testing procedures with any software that
can apply the usual Tukey’s HSD and Dunnett procedures. The
adjusted p-value for H123 in all four procedures is simply p̃A

123,
p̃B

123, p̃C
123, or p̃D

123.

10. Three Groups beyond ANOVA

Three-group comparisons occur in many more contexts than
ANOVA, for example when comparing three proportions using
chi-squared tests in a 2×3 table, when performing nonparamet-
ric analysis with Kruskal–Wallis tests, when comparing three
survival curves using a log-rank test, or in regression mod-
els when considering a categorical covariate with three levels.
In all such cases, we can formulate a global null hypothesis
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H123 of equality of all three groups and corresponding pairwise
hypotheses H12, H13, and H23. Regardless of the model con-
sidered, the logical relationships between hypotheses and the
distinction between primary and secondary hypotheses remain
the same, so that the same four scenarios arise.

We can also define four methods for these four scenarios in
more or less the same way. Practically, however, there is a dif-
ference between the ANOVA model context and other models.
While classical closed testing and gatekeeping (A and D) may
still be used by simply applying these methods to p-values from
model-appropriate tests (e.g., likelihood ratio or Wald tests)
analogues of Dunnett’s and Tukey’s HSD methods are generally
unavailable in commercial statistical software packages. Asymp-
totic versions of these methods can be used if the estimates
of the three parameters are asymptotically normal, using the
multcomp package in R (Hothorn, Bretz, and Westfall 2008),
and we illustrate how in Section 12. The multcomp package can
also be used if different contrasts are of interest, for example,
μ1 − (μ2 + μ3)/2 (Dunnett and Tamhane 1992). In case R
is out of reach of practitioners, a closed testing method may
be constructed using any valid and powerful test for H123 that
the software offers. Sometimes, only the tests of methods A and
D will be available; in that case method A is recommended in
Scenarios B and C, since it does not require an arbitrary choice
of a primary hypothesis.

11. ANOVA Example

We illustrate the four procedures with an one-way ANOVA
example from Dobson’s (1983) book. Suppose that genetically
similar seeds are randomly assigned to be raised either under
standard conditions (control) or in two different nutritionally
enriched environments (Treatments I and II). After a prede-
termined period all plants are harvested, dried and weighed.
The results, expressed as dried weight in grams, for samples of
n = 10 plants from each group are given in Table 6.

The response, plant weight, depends on one factor, growing
condition, with three levels—control, treatment I and treatment
II. The choice of the hypotheses of primary interest depends
on the context. Scenario A is appropriate if we would first and
foremost want to show that there is some effect of different
growing conditions, regardless of which. Scenario B would be
chosen if we would be equally interested in showing a dif-
ference between any of the groups, but if only rejecting the
global hypothesis would be unsatisfactory. Scenario C would be
appropriate if we would be primarily interested in finding at least
one of the treatments is different from the control. Scenario D
prioritizing H12 would be most appropriate if demonstrating the
effectiveness of treatment I with respect to the control would be
of primary interest.

The estimated means are μ̂1 = 5.03, μ̂2 = 4.66 and μ̂3 =
5.53, with estimated variance of σ̂ 2 = 0.389. The unadjusted

Table 6. Dried weights of plants grown from under three different conditions (data
from Dobson (1983), Table 7.1).

Group 1 (control) 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14
Group 2 (treatment I) 4.81 4.17 4.41 3.59 5.87 3.83 6.03 4.89 4.32 4.69
Group 3 (treatment II) 6.31 5.12 5.54 5.50 5.37 5.29 4.92 6.15 5.80 5.26

Table 7. Adjusted p-values for the four hypotheses and four methods in the plant
growth example (left) and for the alternative analysis based on permutation tests
(right).

F-tests Permutation tests

Method H12 H13 H23 H123 H12 H13 H23 H123

(A) Classic closed testing 0.194 0.088 0.016 0.016 0.247 0.048 0.017 0.017
(B) Closed Tukey 0.194 0.088 0.012 0.012 0.247 0.048 0.012 0.012
(C) Closed Dunnett 0.194 0.153 0.153 0.153 0.247 0.205 0.205 0.205
(D) Gatekeeping 0.194 0.194 0.194 0.194 0.247 0.247 0.247 0.247

p-values for standardized group differences are p12 = 0.194,
p13 = 0.088, p23 = 0.004. Adjusted p-values for Tukey’s HSD
and Dunnett methods are p̃Tuk

12 = 0.391, p̃Tuk
13 = 0.198, p̃Tuk

23 =
0.012 and p̃Dun

12 = 0.323, p̃Dun
13 = 0.153, respectively, giving

p̃B
123 = 0.012 and p̃C

123 = 0.153. Together with p̃A
123 = 0.016 for

the ANOVA F test, we obtain the adjusted p-values displayed in
Table 7 for the four hypotheses and the four methods.

We see that at the significance level of α = 5%, closed
Dunnett and gatekeeping do not reject any hypothesis, while
classic closed testing and closed Tukey reject H123 and H23. We
note that this result is logically incomplete: if H23 is false, then
we know that at least one of H12 or H13 must be false, but we
cannot confidently say which one.

Alternative Analyses

The methods A, B, C, and D are not tied to F-tests, and naturally
generalize to other tests. We give some examples below. Of
course, for any of these methods to be valid, the researcher
should choose the test procedure independently of the data.

If we believe that variances may differ between groups when
the means do, we would prefer a two-sample t-test over the F-
test for the pairwise hypotheses. This results in p12 = 0.250,
p13 = 0.048 and p23 = 0.009, which gives the rejection of H13
and H23 at α = 5% for methods A and B, and the paradoxical
outcome disappears. However, if we replace Sij by two-sample
t-tests, the rejection of H123 by S̃ or S̃1 no longer guarantees that
at least one Hij will be rejected by t-test. The four methods with
t-tests represent further variants of closed testing, with method
A becoming Fisher’s LSD.

Randomization in the experimental design leads naturally
to the use of permutation tests (Ludbrook and Dudley 1998),
and we could also use methods A, B, C and D in a permutation
framework. A standard choice is to consider non-standardized
test statistics Tij = (μ̂i − μ̂j)2 for testing Hij, and T123 =
T12 + T23 + T13, T̃ = max(T12, T13, T23), T̃1 = max(T12, T13),
and T12 for testing H123 in methods A, B, C, and D, respectively.
The construction of the permutation null distribution under
H123 proceeds as follows. The observations of the groups to be
compared are pooled, and the test statistic is recalculated for
every permutation of the group labels. Then, the permutation
p-value is calculated as the proportion of permutations where
the test statistic is greater than or equal to the value computed
on the original data. If the cardinality of the set of all possible
permutations is too large, then one may use a subset of randomly
chosen elements (Hemerik and Goeman 2018). Note that, while
tests of H123 uses a global permutation distribution, constructed
by permuting the observations of all three groups, tests of Hij
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use a local permutation distribution, constructed by permuting
the observations of groups i and j (Petrondas and Gabriel 1983).
For the data of this section, based on 106 random permutations,
we obtain p12 = 0.247, p13 = 0.048 and p23 = 0.008,
p̃A

123 = 0.017, p̃B
123 = 0.012 and p̃C

123 = 0.205, resulting in
the rejection of H123, H13 and H23 at α = 5% for methods
A and B. Adjusted p-values are reported in Table 7 for com-
parison with the main analysis. Rank tests are a special case of
permutation tests, replacing the observations with their ranks.
We obtain p12 = 0.197, p13 = 0.063 and p23 = 0.009 from
Wilcoxon–Mann–Whitney tests, p̃A

123 = 0.014 from Kruskal–
Wallis test, p̃B

123 = 0.010 and p̃C
123 = 0.172. With rank tests,

methods A and B reject H123 and H23 at α = 5%. R code for
reproducing the results of this Section and the next are available
in Supplementary Material C.

12. ANCOVA Example

The methods we have described for the ANOVA setting gener-
alize to all statistical models in which there are thee parameters
to compare. The methods A, B, C, and D are applicable in all
such models as long as we can rely on (asymptotic) normality of
the parameters, since we can use the multcomp package to find
the distribution of the test statistics. We will illustrate this with
an ANCOVA model.

As with ANOVA, we are interested in comparing means
for groups while controlling for the effects of other covariates
that are not of primary interest. Table 8 displays data from
Winer (1971), discussed in Dobson (1983). The response y is the
achievement score, the levels i = 1, 2 and 3 of the group factor
represent three different training methods, and the covariate x
is the aptitude score measured before training commenced. We
want to compare the training methods, taking into account dif-
ferences in initial aptitude between the three groups of subjects.

We assume that the response in group i is normally dis-
tributed with mean μi(x) and variance σ 2, with

μi(x) = γ + τi + β(x − x̄)

where γ is the common mean, τi is the ith group effect such that∑
i τi = 0, β is the regression slope and x̄ is the average covariate

value.
Analysis of covariance compares the adjusted means μ̂i(x̄i),

that is, the estimated group means adjusted for the group
average covariate values, which are equal to μ̂1(x̄1) = 4.89,
μ̂2(x̄2) = 7.08 and μ̂3(x̄3) = 6.75 by least-square estimation.
Let Y and X denote the response vector and the design matrix,

Table 8. Achievement scores (data from Winer 1971, p. 766)

Training method i

1 2 3

Unit u yu,1 xu,1 yu,2 xu,2 yu,3 xu,3

1 6 3 8 4 6 3
2 4 1 9 5 7 2
3 5 3 7 5 7 2
4 3 1 9 4 7 3
5 4 2 8 3 8 4
6 3 1 5 1 5 1
7 6 4 7 2 7 4

respectively, and let θ̂ = (X′X)−1XY be the least-square
estimator. For the 3 × 4 matrix K corresponding to pairwise
contrasts, we have

Kθ̂ =
⎛
⎝

μ̂2(x̄2) − μ̂1(x̄1)
μ̂3(x̄3) − μ̂1(x̄1)
μ̂3(x̄3) − μ̂2(x̄2)

⎞
⎠ H123∼ N(0, �),

with � = σ 2K(X′X)−1K ′, and the standardized vector of test
statistics T = D−1/2Kθ̂ follows a multivariate t distribution with
v = 3n − 4 degrees of freedom and correlation matrix R =
D−1/2�̂D−1/2, with D = diag(�̂) and �̂ = σ̂ 2K(X′X)−1K ′.

Unadjusted p-values p12 = 0.0002, p13 = 0.0004 and p23 =
0.4563 are obtained from the Student t distribution or, equiv-
alently, from partial F tests of Hij comparing the constrained
model with τi = τj to the unconstrained one. Tukey’s HSD
adjusted p-values p̃Tuk

12 = 0.0004, p̃Tuk
13 = 0.0011, p̃Tuk

23 = 0.7302
are obtained by calculating the distribution of the maximum
T (Genz and Bretz 2002). Dunnett’s p-values p̃Dun

12 = 0.0003
and p̃Dun

13 = 0.0008 can be obtained in a similar fashion. This
gives p̃B

123 = 0.0004 and p̃C
123 = 0.0003 for methods B and C,

and the ANCOVA F-test gives p̃A
123 = 0.0002 for method A. In

this example all the methods reject H123, H12, and H13 at the
significance level of 5%.

13. Discussion

We have presented four closed testing-based methods for pair-
wise comparisons between three parameters. These four meth-
ods are tailored to four scenarios, distinguished by the a priori
choice which of the hypotheses are primary and which are
secondary. The procedures we have described are tailored to the
three-group problem, and are uniformly more powerful than
several frequently used procedures.

Closed testing procedures are complex in the general multi-
group case, but remain relatively simple in the important three-
group case. The four methods can be applied for the ANOVA
with any statistial software that provides Tukey’s HSD and Dun-
nett’s procedures, or in general models with the multcomp pack-
age in R.

The three-group situation is special. We argue that statistics
textbooks for practitioners should not jump immediately from
the two-group to the multigroup case, but should consider the
three group case explicitly. If nothing else, then they should say
that the need for correcting post hoc tests after a significant
ANOVA arises only with four or more groups (Method A).
Only if researchers are interested in the case of four or more
groups, or if simultaneous confidence intervals of the group
means are needed, do they need to consult specialized multiple
comparisons literature (e.g., Spurrier and Isham 1985).

It cannot be emphasized enough that in all multiple com-
parisons procedures the choice of method, that is, the precise
tests to use for all of H123, H12, H13, and H23, should be made
from subject-matter considerations, independently of the data.
Choosing as primary hypotheses the hypotheses with largest
|μ̂i − μ̂j| is sure to lead to an inflated false positive rate (Sim-
mons, Nelson, and Simonsohn 2011).
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Supplementary Material

A: Derivation and extension: Derivation of equation (1) and extension to
the four-group case. (pdf).
B: Simulation R-code: R-code for the simulations in Sections 3, 6 and 7. (.R
file).
C: Examples R code: R-code for the applications in Sections 11, 12 and for
the four-group example in Supplementary Material A. (.Rmd file).
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