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Abstract
The problem of collective action where—beside the standard options of cooperating and
defecting—there is also the possibility of opting out has been extensively studied through
the optional public good game (OPGG). Within this and other social dilemma games, rep-
utation systems, composed of a social norm—assigning reputations to agents—and a set of
behavioural strategies using this information to condition their behaviour, are able to sustain
cooperation. However, while the relationship between the complexity of social norms and
cooperation has been extensively studied, the same cannot be said with respect to behavioural
strategies, due to high dimensionality of the strategy spaces involved.We deal with this prob-
lem by building an agent-based model where agents adopt simple social norms, play the
OPGG and learn behavioural strategies through a genetic algorithm. We show that while
social norms which assign different reputations to defectors and to agents opting out achieve
the highest levels of cooperation, the social norms that do not distinguish between these
actions do improve cooperation levels with respect to the baseline when behavioural strate-
gies are sufficiently complex. Furthermore, we find that cooperation increases when the
interaction groups are small enough for agents to accurately distinguish between different
behaviours.

Keywords Evolution of cooperation · Reputation · Strategy complexity · Optional public
good game

1 Introduction

Cooperative behaviour is pervasive throughout nature and society from themicroscopic inter-
actions between cellular organisms [20, 24, 63] to the globalmatters of trade and collaboration
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between governments [56, 80]. A variety of solutions have been proposed [48] by researchers
of various disciplines, among others kin selection [25, 26], direct [5, 46], indirect [40, 51,
53, 54, 58, 62] and network [49, 55, 68] reciprocity, punishment [14, 16], policing [15, 18,
19] and herding [71].

A key class of cooperation problems can be ascribed to the issue of identifying the con-
ditions that allow the emergence of collective action, i.e. to find when a group of individuals
can work together for the common good. The Public Goods Game is frequently adopted as
the game theoretical tool to study this kind of situations. In this type of game, a public good
can be built through the contributions of members of a group, but while the common good
is maximised when everyone contributes (the social optimum), each group member has the
incentive to deviate and withhold their contribution, free-riding on the efforts of others [27].
The public goods game is typically analysed as a choice between contributing (or cooperat-
ing) and free-riding (or defecting) [39]. However, there are many situations in which there
is also the option not to participate (or to exit) a situation, e.g. due to ostracism [42] or to
individual choice [28]. Unlike defectors, who refuse to contribute to the public good while
enjoying its proceeds, a so-called “Loner” abstains altogether from interactions, forgoing not
only its costs but also its potential benefits, and accepting instead a fixed payoff independent
of others’ actions. This variant of the Public Goods Game, with the possibility of being a
Loner, is the so-called Optional Public Goods game (OPGG).

The complexity and dynamic nature of human interactions frequently involving changes
in interacting partners implies a strong role for indirect reciprocity in sustaining cooperation,
which emerges when an individual’s cooperative behaviour is rewarded not by the recipi-
ent of the cooperation, but rather from third parties, who were able to observe [47, 50] or
acquired information (e.g through gossip [22, 66]) about the behaviour or the reputation of
the individual.

In order for indirect reciprocity to work, there needs to exist a mechanism through which
the question “is this person good?” is answered. One method achieves this by assuming that
every individual has an intrinsic reputation [50] that acts as a signal of their trustworthiness
to help others. The rules that distinguish between actions that are good (which should be
recognised with a good reputation) and actions that are bad (which should be recognised
with a bad reputation) are known as social norms. Reputations are assigned by independent
third parties who “witness” the interaction and/or spread the information either selectively
[62] or publicly [53, 54]. On top of a social norm, indirect reciprocity requires one or more
rules to transform reputations of other individuals into actions, answering the question “is
this person worth helping?”; these rules are called behavioural strategies.

The literature has explored a wealth of reputational systems, ranging from the simple
image scoring [51] (simply prescribing cooperation with collaborative agents), to the more
elaborate standing criterion [40, 58] and the Leading Eight [53, 54]. While the complexity
of social norms has been carefully assessed [69, 70] showing that relatively simple social
norms can achieve high levels of cooperation, the role of complexity in behavioural strategies
has been largely unexplored in a systematic fashion. Indeed, until now, approaches to solv-
ing the evolution of cooperation through reputation have predominantly been methodical and
static searches of pre-determined strategies [52].While this approach is straightforwardwhen
strategies remain relatively simplistic, it quickly becomes computationally intractable as the
dimension of the behavioural space increases. In particular, where collective action problems
are concerned, social norms help agents to acquire reputational information on their group
members, and thus acquiring a rather precise knowledge of the average characteristics of the
group. This in turn can serve to condition behavioural strategies of arbitrary complexities,
reacting in a (potentially) different way to smaller and smaller changes in average reputa-
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tion. The relationship between the complexity of a behavioural strategy and the chances of
cooperation has not been studied, especially within the context of the OPGG.

While a large part of the literature on reciprocity studies two-player social dilemmas (e.g.
the prisoner’s dilemma), a number of studies address the emergence and stability of reci-
procity in games with many players (i.e. forms of PGG or n-persons prisoner’s dilemma).
When these games are considered, cooperation is considerably more difficult to achieve [45];
indeed, no finite mix of pure strategies can be evolutionary stable in the absence of errors or
a working reputation system [82]. When agents are endowed with memory of past events,
reciprocal strategies (both direct and indirect) can also emerge in n-person prisoner’s dilem-
mas [1, 29], leading to sustainable cooperation [37], but only under progressively restrictive
assumptions when groups become larger [6, 33].1

Specifically concerning indirect reciprocity, unlike two-player games, a simple discrimina-
tor strategy, which only cooperates with people who have a good reputation, is evolutionarily
stable, even when reputations are assigned simply through image-scoring [75], although
the conditions for the evolution of indirect reciprocity are more relaxed when the standing
social norm is adopted instead [74]. In more general setups, reciprocal strategies can sustain
cooperation through periodic or chaotic oscillations [73]. Also under indirect reciprocity,
cooperation again becomes more difficult to sustain in larger groups [74, 76].

Introducing the loner strategy in the OPGG [28], the cooperative dynamics become cycli-
cal: a population dominated by cooperators tends to be invaded by defectors, which are—in
turn—vulnerable to invasion by loners. When the latter come to dominate the population,
cooperation becomes a viable strategy again starting the cycle anew. Further research showed
that while pro-social punishment [30] can break the cycle and increase cooperation, the exis-
tence of anti-social punishment [31, 59, 64, 65] re-instates the cyclical dynamics, nullifying
the role of pro-social punishment.2 More recent contributions [61] showed that even a simple
reputational system based on social norms assigning a strictly worse reputation to defectors
than to loners can increase cooperation with respect to previous findings but with limited suc-
cess. Furthermore, pro-social punishment and reputation work synergically resulting in no
cyclical dynamics and high and persistent levels of cooperation. Crucially, the behavioural
strategies studied in [61] are very simple, being effectively limited to playing one of two
actions, depending on a single threshold concerning the average reputation of a group. Such
strategies can be considered simplistic when human behaviour is concerned. While more
complex strategies, based on a more finely grained mapping between group reputation and
agents’ actions, could in principal be considered, the systematic study though basic evolu-
tionary approaches would rapidly become numerically intractable.

Genetic algorithms (GAs) [34, 38, 44], like many other evolutionary algorithms work
through selection, crossover and mutation [23] providing a very natural—and yet little
explored—mechanism to study the evolution of cooperation in the presence of complex
and numerous behavioural strategies. Nevertheless, while GAs have been shown to be an
alternative method of optimisation, widely adopted in areas of environmental modelling [11,
13, 41], operation management and image processing among others [38], they have not yet
been fully explored in this area. Their key feature is that they allow behavioural strategies to
evolve dynamically starting from a wide and heavily heterogeneous population of tentative
strategies, moving towards those that are better suited to a given environment. The GAs
allow evolution to focus on the most promising strategies rather efficiently [4], avoiding the
limits of systematic studies with fixed strategies. Furthermore, the GAs preserve the ability

1 This problem can be partially circumvented through punishment [7, 61] or alliances [32]
2 The emergence of these cycles of punishments have been challenged when loners cannot be punished [21].
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of strategies to co-evolve with their cooperation environment. Their main downside is that
unlike the systematic exploration of strategies under standard evolutionary approaches, GAs
do not ensure that each simulation explores the viability of each single possible strategy. This
limitation however can be attenuated through a sufficient number ofMonte Carlo simulations.

Despite their benefits, GAs have been little used in studies on indirect reciprocity and
cooperation. Some studies [10] investigate repeated dyadic interactions which gives rise to
spontaneous and coordinated alternating reciprocity, while others [12] find that the adapt-
ability of individuals in one-shot interactions of the ultimatum game can have a positive
impact on cooperation. In the context of reputation-based indirect reciprocity, only a select
few works have used a GA to address the explosion of possible strategies and norms. In
particular, [78] studies a 2 × 2 prisoner’s dilemma, allowing strategies to evolve through a
GA [81]. Relatedly within the context of a giving game, [81] uses a particular application of
the GA to study the evolution of social norms, and identifies the key characteristics a social
norm requires in order to sustain cooperation.

In this paper, we implement simple image scoring-based social norms as in [50, 61]
while manipulating the behavioural strategy complexity to allow agents to respond in a more
nuanced manner to their reputation environment. By generalising the choice of actions given
the average reputation of someOPGGgroup, we allow players to learn the situations in which
it is optimal to cooperate, to defect or to abstain entirely. It should be noted that the temporal
scale explored by this paper is one of social evolution, and not of genetic evolution. GAs are
used as a tool to explore a large space of possible strategies efficiently (in line with [4] which
used them to study the evolution of preferences in financial markets and [78, 81] where they
are used to explore the stability of indirect reciprocity strategies). We find that increasing the
complexity of behavioural strategies can improve the chances of cooperation under the social
norms that distinguish between being a defector and being a loner. Additionally, we find that
increased complexity is most beneficial for smaller OPGG groups, and does not extend to
larger groups. In the following, we describe the setup of the model in Sect. 2, state its main
results in Sect. 3, and discuss its implications in Sect. 4.

2 Model

Consider a population of N players, associated with a single social norm. Players can have
either a good (1), bad (-1) or medium (0) reputation. These are assigned by a social norm on
the basis of the last action. We assume that, within a group, cooperation is always assigned
the highest reputation (+1). This makes sense considering that cooperation does not involve
any intrinsic moral evaluation: within a group cooperating means helping to build the public
good of the group. This might be something good for the society as a whole (e.g. engaging
in a social activity) but it might also be something socially bad (e.g. engaging in a criminal
activity). We then separately consider four social norms that rank the actions of defection and
abstaining differently from cooperation. In particular, under the Anti-Defector (AD) social
norm, defection is assigned a strictly worse (-1) reputation than the loner action (which is
assigned reputation 0). The Anti-Loner (AL) social norm instead assigns the worst reputation
to agents who abstain from participation (-1) and amore moderate reputation to defectors (0).
The Anti-Neither (AN) and the Anti-Both (AB) norms view both defection and abstaining
equally, with the former assigning a reputation of 0, and the latter assigning a reputation of
−1. The correspondence between decisions and reputations are summarised in Table 1.
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Table 1 Summary of the possible social norm reputation assignments given a particular action

Cooperating (C) Defecting (D) Abstaining (L)

Anti-Defector (AD) 1 −1 0

Anti-Loner (AL) 1 0 −1

Anti-Neither (AN) 1 0 0

Anti-Both (AB) 1 −1 −1

Fig. 1 Model Components. Upper left panel describes an example of a player’s behavioural strategy for p = 4.
Each player has a chromosome of p alleles. The ith allele i ∈ [0, p−1] encodes an action X ∈ {C,D,L} in the
case that the average group reputation falls in [ki , ki+1)where ki = −1+2i p−1 (thus k0 = −1 and (kp = 1)),
except for the (p − 1)th allele which encodes for ([kp−1, kp]). Upper right panel describes the evolutionary
process. Once ζ of the worst performing players are eliminated, we choose two parents proportional to their
payoffs, split and swap their chromosomes each at the same randomly chosen allele, choosing one of the two
combinations at random for the new child. Once the population is whole again, we choose one player to mutate
with probability ε1, randomly choosing each of its chromosome’s alleles with probability ε2. Lower panel
describes the dynamics of the model

Player j’s behavioural strategy is represented as a chromosome vector si ∈ {C,D,L}p
where the i th element (i.e. i th the allele) represents j’s action when the average reputation
of their OPGG group (excluding themselves) falls between −1 + 2i p−1 ≤ rep < −1 +
2(i + 1)p−1 for i ∈ [0, p − 2] and −1 + 2i p−1 ≤ rep ≤ −1 + 2(i + 1)p−1 for i = p − 1.
In other terms, p is the number of possible levels of average reputation that an agent can
discern. This allows us to build arbitrarily complex behavioural strategies, able to associate
a specific action to slightly different average reputations within their group. Furthermore,
this mechanism allows to generalise the simple conditional strategies studied by [61] where
p = 2 which allowed for only two actions, one if −1 ≤ rep < 0, another if 0 ≤ rep ≤ 1.

Every simulation is initialised with a single social norm, a fixed value for p and with the
N players in the population each having a random chromosome, with the action associated
to each allele being uniformly extracted from the set {C,D,L}, with equal probability. At
the start of each period, the population is randomly partitioned into groups of size n to
play the OPGG. Each player in the group identifies the average reputation of the group
(excluding themselves) and uses their chromosome to decide their action. It should be noted
that while it is possible to build strategies of arbitrary complexity p, the actual number of
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average reputations that a group can assume is limited by the number of agents n forming
the group. Indeed for each n, only 2(n − 1) + 1 = 2n − 1 possible average levels of average
reputation are possible.3 Once p > 2n − 1, additional complexity simply adds to the length
of the genetic code, but since some intervals of reputation never actually appear (and cannot
actually appear) in the population, they are essentially useless. For this reason, we run our
baseline simulations with n = 5 and we study only larger groups where more complexity
can actually be used.

In each interaction, cooperators pay a cost of c to contribute to the public good, defectors
participate but pay nothing, and loners do not participate. The total amount contributed to
the public good is multiplied by a synergy factor r and the proceeds are equally divided
among the total number of participants in the group, regardless of their contribution. Loners
are given a payoff of σ where 0 < σ < (c − 1)r . Each group plays this game at least once,
with subsequent rounds being played with probability�, or equivalently the OPGG is played
until the period ends with probability 1 − �.

Once the period ends, each player’s average payoff is calculated and forms their fitness.
The population’s players are then sorted in descending order of fitness, and the bottom ζ

proportion of the population is eliminated. The eliminated players are then replaced by ran-
domly selecting two parents from the population proportionally to their fitness values. Once
selected, a single crossover chiasma point is selected, and the chromosomes are rearranged to
form a new chromosome for the resulting child. The parents are unchanged. This is repeated
until we return to a full population size. This process tends to create agents whose actions
are better fit for their current interaction environment.

At the end of each time step, with probability ε1, a single player is chosen for mutation.
Each of the player’s alleles have some probability ε2 of being mutated. The new alleles are
independently and uniformly selected from the set of possible alleles {C, D, L}. In baseline
simulations, ε2 = 1 meaning that the selected agent’s strategy is completely randomised.
The mutation process creates the noise required to ensure that the genomes selected by
the evolutionary process are robust to the invasion of randomly created new behavioural
strategies.

Finally, in line with [53], we consider extensions of our model including two types of
errors. The first is an execution error α, which indicates the probability that an agent that
would like to play action x ends up playing another—randomly chosen—action ¬x .4 The
second is an assignment error β, which indicates the probability that an agent plays an
action x but this actions is observed by others as a different action y and thus changes his
reputation accordingly. Both α and β are set to zero in baseline simulations and explored in
supplementary material. As long as α is not too high (α < 25% with any β), our key result
concerning the relationship between complexity and cooperation is confirmed.

We then repeat the above process of repeated games, evolution, mutation for a very large
number of periods T (typically 105, see Table S1). We investigate the behaviour of the
model through the variables: p (the complexity of a player’s chromosome). We further test
the model for the robustness of results studying the impact of changing ζ (the proportion
of the population that is replaced each period), � (the frequency of repeated games within
a single period), ε1 (the frequency of mutation) and ε2 (the severity of mutation), α and β

(implementation and reputation assignment errors), N (the size of the population), n (the size

3 Each individual looks at the average reputation computed across all other agents in the group, excluding
herself.
4 [53] implement the execution errors as a small chance of an agent willing to cooperate being prevented
from doing so. We chose to implement it symmetrically due to the addition of the third basic strategy in the
OPGG.



Dynamic Games and Applications

Fig. 2 Cooperation is more successful when social norms clearly distinguish between acts of defection and
withdrawal from the game, otherwise cooperation cannot reliably exceed 50% in the population. Defection
never truly gains a foothold in the population. The baseline label at p = 1 refers to the typical standard OPGG
result in the absence of reputation or any other mechanism facilitating cooperation. In all cases, the OPGG is
played in groups of five (n = 5)

of an Optional Public Good Game), c (the cost of cooperation), r (the group synergy factor),
and σ (the loner’s payoff). All these robustness checks yield results which are qualitatively
similar to those presented in the main text and are thus relegated to supplementary material.

3 Results

In order to assess the relationship between behavioural strategy complexity and cooperation,
we report the average proportion of cooperative (blue line), non-cooperative (orange line)
and loner (green line) actions with their standard deviations in Fig. 2. For each action and
each level of complexity p, the averages are computed first across time (over the second half
of a single simulation) and then averaging the results of 20 simulations.

When p = 1, the agents play unconditional strategies and do not use the social norms. The
leftmost point of each panel in Fig. 2 reports the traditional results of [28] with the majority
of the population opting out of most interactions, resulting in very low levels of cooperation
and defection (see Figure S1 for the time series of a single simulation for different values of
p).

More complex behavioural strategies improve the chances of cooperation in all social
norms to varying extents. The Anti-Defector norm is arguably the most effective. When
p ≥ 8, the AD social norm supports consistently high levels of cooperation (around 80%
over time and different simulations). A similar outcome is achieved under the Anti-Loner
social norm, although achieving similar (∼ 80%) levels of cooperation requiresmore complex
strategies where p ≥ 10. Below this threshold, the AL norm guarantees only up to ∼ 20%
of cooperation actions.
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Fig. 3 More complex strategies help, but only in smaller OPGG groups. This is true both when the population
size N is constant or proportional to the group size n. Increasing the complexity of behavioural strategies
does not help cooperation in larger groups. However, there is a slight improvement of more complex strategies
p ≥ 10 and n = 10 when the population grows proportionally to n

Contrastingly, the social norms that do not differentiate between players who abstain
instead of directly free-riding result in lower levels of cooperation at all levels of complexity.
For both the Anti-Neither and Anti-Both social norms, defection and withdrawal are both
seen to be equally worse than cooperation, with the latter social norm taking the harsher view.
If the strategies are sufficiently complex, then in either case, at most half of the population
will tend to cooperate while the other half abstains. Interestingly, the harsher Anti-Both norm
allows a similar level of cooperation to the Anti-Neither, but with less complex strategies
(lower p). Indeed, the Anti-Neither norm jumps from almost 0 to 50% cooperation at p = 9,
while the Anti-Both norm allows some cooperation (30–40%) at p = 5 eventually leading to
a stable 50% cooperation when p > 9 (see Figure S2 for the same graph with odd values of
p, yielding qualitatively similar results). The fact that the levels of cooperation reported in
Fig. 2 stabilise for p ≥ 10 shows that—once the strategies are able to suitably represent all
possible levels of group reputations—further increases in complexity do not yield any more
cooperation.5

The relationship between cooperation and the number of individuals involved in the col-
lective action problem has been subject of scientific debate. While some [74, 76] argue that
cooperation becomes more difficult as the group size increases, others [36]—through large-
scale experimental studies—found that the public good is better sustained with larger groups
instead of smaller ones as long as the Marginal Per-Capita Return is fixed [35].

We run two sets of experiments to test (1) whether larger groups increase or decrease
cooperation in the OPGG, and (2) how the interaction between strategy complexity and
group size reflects on the chances for the emergence of cooperation. We discuss the results
of the experiments for the Anti-Defector social norm, which provides the better chances
for cooperation at all levels of complexity of the behavioural strategies, while reporting the
results for the other social norms in supplementarymaterial. In both experiments, we consider

5 In Fig. 2, n = 5, which means that there are only 9 possible levels of average reputation in a group.
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Fig. 4 Actual use of complexity. Left panel: The average number of alleles used as a function of the number
of alleles agents have available. The grey line indicates the point at which agents fully utilise their alleles.
Right panel: The Gini coefficient is displayed for each social norm, calculated on the alleles that are in use.
A high coefficient suggests a large inequality in the alleles that are used suggesting the players regularly face
the same OPGG environments, while a low coefficient suggests an equal experience of all kinds of OPGG
environments. The dotted lines overlay the level of cooperation exhibited for each social norm alongside the
Gini coefficients. In all cases, the OPGG is played in groups of five (n = 5)

group sizes larger than n = 5, as this value implies that all strategy complexities p < 10
yield average reputation values that can all be realised by interacting groups.6

In the first experiment, we consider the effect on cooperation when the size of the groups
playing the OPGG is increased, while keeping the overall number of groups fixed (Fig. 3
for the AD social norm, and Figure S3 for the other social norms). Naturally, this implies
that the population would grow proportionally to the increased group size. Results confirm
the observation of the previous literature: larger groups worsens cooperation [74, 76]. Nev-
ertheless, we show that behavioural strategies with higher complexity (p ≥ 8) can maintain
cooperation in larger groups (up to n = 10 agents in our experiments), while less complex
strategies struggle to sustain cooperative behaviour even for smaller groups.

In the second experiment, we keep instead constant the population size (Fig. 3 for AD
and Figure S4 for AL, AN, and AB) and we observe several interesting results. First, while
strategies of a higher complexity (p ≥ 6) are successful in small groups, their success does
not translate into larger groups. Secondly, simpler strategies (p ≤ 4) fare better in larger
groups, regardless of the social norm at play (Figure S4). Finally, the relative success of
more complex strategies with respect to simpler ones reverses as we increase the group size.

Focusing on Fig. 3, specifically for p = 10, 12 for n = 10, we see that if we keep the
strategy complexity and group size fixed, but allow a larger number of groups and therefore
a larger population, there is a greater chance of cooperation implying that populations with
larger OPGG groups are better off in proportionally larger populations. This is also seen in
the other social norms comparing Figures S3 and S4 for n > 5.

Having a larger strategy space does not automatically imply that such space is actually
used by the agents. Indeed, this depends on the emerging levels of cooperation (and other
strategies) that become dominant in the population, and on their stability over time. In order

6 Results for n < 5 are reported in Figure S5. For n = 4 our results are confirmed. When n = 3 once
the maximum complexity of 5 (since the total number of possible average reputation values in a group of
three individuals is 2 ∗ 3 − 1 = 5) is achieved, cooperation collapses, as increasing p only increase noise.
Finally, when n = 2, strategies are only focused on the reputation of the single interacting partner, directly
discriminating on the opponent’s reputation and leading to full cooperation regardless of complexity (there is
no uncertainty as the average reputation of the group fully reveals the nature of the opponent allowing perfect
discrimination).
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to investigate the degree to which players with a more complex strategy space are actually
using the alleles available to them, or in other words to understand the spectrum of possible
reputations their strategies encode that are actually used, we calculate the average number of
times each allele is used as a function of the strategy complexity (or the maximum number
of alleles available to them). Figure 4 (left) shows that the average allele use increases for
each social norm for p < 87 at which point further increases in strategy complexity are
not utilised. In fact, with the AL norm, we find a drop in alleles used once p > 8 which
corresponds to the transition between low and high cooperation happening between p = 8
and p = 10.

Different alleles are used with different intensities, as their use co-evolves with the coop-
erative environment an agent is facing. For this reason in Fig. 4 (right), we study the the Gini
index calculated on the alleles in use within the player strategy chromosomes (solid lines)
alongside the average levels of cooperation they exhibit (dotted lines). A high coefficient sug-
gests a large inequality in the alleles that are used suggesting the players regularly face the
same OPGG environments, while a low coefficient suggests an equal experience of all kinds
of OPGG environments. There are two clear phases of behaviours. Firstly, when p ≤ 8, we
find low cooperation (∼ 10%) and a larger Gini coefficient (> 0.45) presenting high levels
of inequality within the use of player strategies. Secondly, when p > 8 for the social norms
that distinguish between defection and being a loner (AD and AL), we see high levels of
cooperation (∼ 80%) with a lower Gini coefficient (∼ 0.5), and for the other social norms
(AN and AB), we see a lower level of cooperation (∼ 50%) with a high Gini coefficient
(∼ 0.8).

Sensitivity analyses have been run on each of the variables within the model. We present
the results of Fig. 2 for all the social norms in Figures S3 and S4. The remainder of the
figures each consider two situations, when behavioural complexity is low (p = 2) and again
when it is high (p = 8). All parameters of the OPGG have been systematically explored,
with a ceteris paribus approach: the cost of cooperation c (Figure S6), the group synergy
factor or public good multiplier r (Figure S7), the loner’s payoff σ (Figure S8). The speed of
evolution of the genetic algorithm is specified by ζ (Figure S9), controlling the proportion
of the population that is eliminated each round. The degree of indirect reciprocity within
the game is represented by � (Figure S10) which controls the likelihood of repeated games
following a roundof theOPGG.Weconsider two types of error implementedwithin ourmodel
in line with [53] which mathematically explores execution and assignment error. The former
is described by α (Figure S11), and the latter is described by β (Figure S12). We investigate
both the effects of mutation frequency ε1 (Figure S13) and the mutation intensity (proportion
of the mutant’s chromosome that is randomised) ε2 and find that 10−2 ≤ ε1 ≤ 10−1 allows
the best chances for cooperation while the intensity of mutation has little effect (Figure S14).

In these sensitivity analyses, the results are qualitatively similar and in line with previous
literature. However, the baseline results must be qualified after analysing Figure S7, which
reports the effect on cooperation when changing the public good multiplier r . For small r ,
while overall levels of cooperation remain very low, the AD and AN social norms display
more cooperation under low (p = 2) rather than high (p = 8) complexity, which is at
odds with our primary result that more complex strategies tend to yield higher cooperation.
This result can be explained given the nature of these social norms. Since the AD and AN
norms are better in sustaining cooperation, it is natural that they can sustain some level of
cooperation even with low multipliers. However, as discussed in [61], their strength follows
from the fact that they assign a relatively mild reputational punishment to agents abstaining

7 If points lie on the grey line, it indicates that players are using the entirety of their strategies.
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from the OPGG. More complex strategies require more effort to evolve towards cooperative
behaviours (effective actions need to be evolved for a larger set of reputation levels), and
given a low enough r , agents find it more convenient to resort to the safer loner action under
such setup, even at the cost of a somewhat lesser reputation. This interpretation is confirmed
by the fact that the social norms that have the harshest punishments for loners always show
higher levels of cooperation when strategies are more complex, regardless of r .

4 Discussion

Understanding how cooperation works, how it can be encouraged and especially how and
when it falls apart is important in multiple facets of human society. Studies in this sector can
inform policy in prioritising the sustainable governance and longevity of public resources,
managing the negative effects of bad players and understanding the situations in which
additional external incentives or punishment is required to dissuade deviations from the
social norm.

The standard public goods game struggles with maintaining cooperation in experimental
setups where participants play repeated games [36, 39] for various reasons [2, 3, 17, 57, 72].
This exemplifies the necessity of further mechanisms to reach cooperation levels implicit
in the good working of social systems. Giving individuals the option to withdraw from the
game (through the “Loner” strategy) does offer some benefits [28] (as this action cannot be
cheated upon by defectors), but creates a cooperator-defector-loner cyclewhen the population
is widely cooperative only for short periods of time. Previous work [61] has shown that the
combination of (1) any social norm that values defection to be at least as bad as withdrawal
from the game and (2) the threat of punishment, is able to successfully enable cooperation.
However, when the punishment mechanism is removed, the reputation mechanism alone
is able to only increase the level of cooperation with respect to the baseline in specific
circumstances. Indeed, only the social norm that values individuals who withdraw from
the public good to be better than those who try to selfishly benefit from it (AD) shows a
discernable improvement from the baseline OPGG.

We hypothesised that a social norm assigning moral value to actions in combination with
individuals with the ability of acting depending on the relative reputability of their current
interaction environment can foster cooperation, if they were able to sufficiently distinguish
between good and bad environments. Therefore, building on the work of [61], we developed
an agent-based model to test this hypothesis using reputational systems comprising social
norms based on an adaptation of image scoring to the OPGG. Using an evolutionary mech-
anism based on genetic algorithms, we conceptualised that individuals have a behavioural
“chromosome” which dictates the individual’s behaviour given the state of the immediate
interaction environment in the form of the average reputation of the OPGG group. A longer
chromosome intuits a more complex behavioural strategy. Therefore, we can explore con-
ditionally cooperative behavioural strategies of—in principle—arbitrary complexity. Our
analysis complements the one proposed by [69, 70], which shows that cooperation increases
as a function of social norm complexity up to a certain level, with further additions of com-
plexity (chiefly the ability of a social norm to account for behaviour before the last step) not
improving the chances of cooperation.

Our first major finding is that, for each given social norm, increasing the complexity
of behavioural strategies helps cooperation, but only up to a certain point, after which any
additional increase in complexity does not improve the success of collective action (Fig. 4).
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Reading this result in conjunction with the one of [70], it can be concluded that complexity
in social norms and in the behavioural strategies act as substitutes. Indeed, even with very
simple social norms, assimilable to extensions of the image scoring which showed limited
ability in sustaining cooperation [8, 9, 40, 43, 58], a sufficiently elaborate level of complexity
in the way agents use the reputational information can still sustain high levels of cooperation
in the context of collective action problems.

Furthermore, it is interesting to assess our results against those of the literature on the
impact of reputational systems in the OPGG [61]. In particular we found that—provided
sufficiently complex behavioural strategies are allowed—even the social norms that assign
a worse reputation to loners than to defectors can support some limited level of cooperation
provided sufficiently complex behavioural strategies are available.

It is important to stress that, while the results that can be compared with those of [61]
are indeed very similar, not all results could be replicated quantitatively. In particular, in
[61] when behavioural strategies are faced with binary choices in the absence of punish-
ment, roughly 40% cooperation was observed, while the present model can only account for
about 20% of cooperation. This follows from the fact that, despite having almost the same
parametrisations, these twomodels have a different selectionmechanism, known to be able to
cause significant quantitative differences in otherwise equal setups [67]. Relatedly, [79] finds
significant differences in quantitative behaviour of models where agents play stern-judging
with replicator dynamics versus a genetic algorithm. While the previous model [61] relied
on a group-selection mechanism with a limited number of strategies to be studied at the same
time, the present work implements selection through genetic recombination of behavioural
strategies. The choice depends on the size of the possible strategy space to explore. Indeed,
when increasing the complexity of the behavioural strategies, the number of possible strate-
gies tomodel rapidly becomes intractable.While p = 2 affords us 32 = 9 potential strategies,
increasing complexity to p = 10 implies dealing with 310 = 59049 different possible strate-
gies. Simulating populations with enough agents to fairly represent the entire strategy space
in a timely manner becomes computationally impossible even on large (cluster) computers.
Using genetic recombination of strategy chromosomes is more efficient as it allows a more
finely tuned and dynamic exploration of the strategy space, allowing the best strategies for
each given environment to endogenously emerge from an initial random population and to
co-evolve with the environment.

Comparing the different social norms, we find that the social norms that are able to
distinguish between the acts of defection and withdrawal are more likely to support higher
levels of cooperation in the population. These more distinguishing norms (AD and AL) allow
individuals to effectively judge their immediate interaction environment and to associate a
reputation to it which in turn is more likely to be a suitable measure of the level of cooperation
the public good constituents exhibit. On the other hand, the AB and AN social norms both
assign the same numerical reputation to defection and withdrawal. This limits individuals’
abilities to decode whether or not their group mostly consists of loners or mostly consists of
defectors. Therefore, when a situation arises in which the average reputation is close to either
0 or (-1) (for the AN and AB norms respectively), individuals have to essentially guess their
response. This yields a maximum cooperation rate of about 50%.

We show that the AD norm is the onemost conducive of cooperation, exhibiting (1) higher
levels of cooperation at all levels of complexity and (2) a phase transition to cooperation-
dominated populations at lower levels of complexity than the AL social norm. Since the
benefits of the AD and the AL social norms are primarily to allow individuals to distinguish
between different types of non-cooperative actions, their numerical values are largely irrel-
evant leading the most popular behavioural strategy under AD and AL to be the same once
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the numerical values of the Defector and Loner actions are swapped. For example, suppose
p = 3 and the best strategy with the AD social norm is LDC (be a loner the group’s average
reputation is less than − 1

3 , defect when it is greater than − 1
3 but less than 1

3 , and cooperate
when it is greater than 1

3 ), then the same strategy would be DLCwhen in the AL norm.We see
the same actions, mapping to different reputation ranges as the numerical value associated
to defection and to withdrawal are switched.

We have shown that providing agents with the ability to exploit more detailed informa-
tion about the average cooperativeness of their interaction environment—as proxied through
reputational information—fosters cooperation in the OPGG. Given that collective action
problems emerge in groups, the natural next question is to assess how complexity and group
sizes interact. On this regard, our results show that as the group size and population size
increases, the chances for cooperation decrease. When the size of the population is held
constant, the simpler strategies are more successful when it comes to larger OPGG groups.
These results are in line with our main result, i.e. that the social norm and strategy complexity
work in conjunction to identify non-cooperative behaviour in OPGG groups. When larger
groups are considered, the behaviour of another individual within the group becomes much
less significant as when compared to the group as a whole. In other words, larger groups lead
to individual behaviours and reputations being averaged out or lost in the crowd, meaning
that more complex strategies are essentially trying to “over-explain” the group behaviour.
This increases the computational effort required and harms cooperation by making the evo-
lutionary process less effective (larger chromosomes mean that there is more to learn, but
larger groups suggests there is less to learn from as the average reputation is less informative
of each single individual’s behaviour). By keeping the population size constant, we isolate
the effect of the group size and complexity on cooperation removing the overarching disad-
vantage of larger populations, in line with some debated previous results for the public goods
game [35, 60, 77]. However, we find that in certain scenarios, the more complex behavioural
strategies in larger groups exhibit a marginal improvement in cooperation when overall size
of the population grows proportionally to the size of the OPGG group offering small but
specific evidence contradicting previous empirical findings [36].

In summary, we show that a reputation-based social norm can help cooperation in the
absence of any further incentive mechanism (e.g without punishment institutions) if individ-
uals are able to identify and condition their actions to a wider range of behaviour/reputation
states of OPGG groups. Under these assumptions, the stricter norms show better chances for
cooperation and with the lowest complexity requirements. When it comes to smaller groups,
more complex strategies are appropriate, but for larger groups, simple strategies are better.
Our findings show that behavioural complexity can be beneficial in explaining cooperation
when the individuals are capable of a wider range of behaviours in response to any given
situation. Further work on this topic might involve the joint study of pro-/anti-social punish-
ment and reputation with the objective of assessing their effect on the level of complexity
at which simple social norms can achieve high cooperation and of exploring the interaction
of behavioural complexity and punishment and the extent to which it helps cooperation in
larger groups. Further work should explore the co-evolution of social norms and behavioural
strategies in presence of complexity costs, to assess how the trade off between their relative
complexity emerges through evolutionary pressure. Finally, it would be interesting to explore
the effects of behavioural strategy complexity in a PGG with compulsory participation.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s13235-022-00485-5.

https://doi.org/10.1007/s13235-022-00485-5
https://doi.org/10.1007/s13235-022-00485-5


Dynamic Games and Applications

Author Contributions All authors contributed equally to the development of the research idea, model concep-
tion, and simulation design. Shirsendu Podder wrote the code, ran the simulations and generated the graphical
outputs. The first draft of themanuscriptwaswritten by ShirsenduPodder and SimoneRighi provided extensive
comments as well as research supervision. All authors read and approved the final manuscript.

Funding Simone Righi gratefully acknowledges funding from “Fondi primo insediamento” of the Ca’Foscari
University of Venice. Simulations were run on the Myriad Cluster computer of UCL.

Availability of data andmaterial The data upon which all the figures of this paper are generated are available
in the Github folder linked below.

Code Availability All python scripts required to generate the simulation data used in this article, as well as
the instruction to run them, are available at the address https://github.com/ShirsenduP/GeneticComplexityIn
TheOpgg.

Declarations

Conflict of interest Authors declare no conflicts of interests.

Ethics Approval No ethics concerns.

Consent to Participate Not applicable.

Consent to Publish Not applicable.

References

1. Akimov V, Soutchanski M (1994) Automata Simulation of N-Person Social Dilemma Games. J Conflict
Resolut 38.1, pp. 138–148. https://doi.org/10.1177/0022002794038001007. (visited on 10/12/2022)

2. Andreoni J (1995) Cooperation in public-goods experiments: kindness or confusion? The Am Econom
Rev 85.4, pp. 891–904. JSTOR:2118238

3. Andreoni J (1988) Why Free Ride?: Strategies and Learning in Public Goods Experiments. J Public
Econom 37 .3, pp. 291–304. https://doi.org/10.1016/0047-2727(88)90043-6. https://www.sciencedirect.
com/science/article/pii/0047272788900436(visited on 06/28/2022)

4. Arthur WB et al. (1996) Asset pricing under endogenous expectation in an Artificial Stock Market. 96-
12-093. Santa Fe Institute, https://ideas.repec.org/p/wop/safiwp/96-12-093.html(visited on 07/03/2022)

5. Axelrod R, Hamilton W (1981) The evolution of cooperation. Science 211.4489, pp. 1390–1396. https://
doi.org/10.1126/science.7466396

6. Boyd R, Richerson PJ (1988) The evolution of reciprocity in sizable groups. J Theore Biol 132.3 , pp.
337–356. https://doi.org/10.1016/s0022-5193(88)80219-4. pmid:3226132

7. Boyd R, Richerson PJ (1992) Punishment allows the evolution of cooperation (or anything else) in Sizable
groups. Ethol Sociobiol 13.3, pp. 171–195. https://doi.org/10.1016/0162-3095(92)90032-Y

8. Brandt H, Sigmund K (2005) Indirect reciprocity, image scoring, and moral hazard. Proceedings of the
National Academy of Sciences of the United States of America 102.7, pp. 2666–2670. https://doi.org/10.
1073/pnas.0407370102

9. Brandt H, Sigmund K (2006) The good, the bad and the discriminator—Errors in direct and indirect
reciprocity. J Theor Biol 239.2, pp. 183–194. https://doi.org/10.1016/j.jtbi.2005.08.045

10. Browning L, Colman AM (2004) Evolution of coordinated alternating reciprocity in repeated dyadic
games. J Theor Biol 229.4, pp. 549–557.https://doi.org/10.1016/j.jtbi.2004.04.032

11. BurnDH,Yulianti JS (2001)Waste-load allocation using genetic algorithms. JWater Resour PlannManag
127.2, pp. 121–129. https://doi.org/10.1061/(ASCE)0733-9496(2001)127:2(121)

12. Calderóon JP, Zarama R (2006) How learning affects the evolution of strong reciprocity. Adaptive Behav
14.3, pp. 211–221. https://doi.org/10.1177/105971230601400306

13. Cho JH, Sung KS, Ha SR (2004) A river water quality management model for optimising regional
wastewater treatment using a genetic algorithm. J Environ Manag 73. 3, pp. 229–242. https://doi.org/10.
1016/j.jenvman.2004.07.004.pmid:15474740

https://github.com/ShirsenduP/GeneticComplexityInTheOpgg.
https://github.com/ShirsenduP/GeneticComplexityInTheOpgg.
https://doi.org/10.1177/0022002794038001007
https://doi.org/10.1016/0047-2727(88)90043-6
https://www.sciencedirect.com/science/article/pii/0047272788900436
https://www.sciencedirect.com/science/article/pii/0047272788900436
https://ideas.repec.org/p/wop/safiwp/96-12-093.html
https://doi.org/10.1126/science.7466396
https://doi.org/10.1126/science.7466396
https://doi.org/10.1016/s0022-5193(88)80219-4
https://doi.org/10.1016/0162-3095(92)90032-Y
https://doi.org/10.1073/pnas.0407370102
https://doi.org/10.1073/pnas.0407370102
https://doi.org/10.1016/j.jtbi.2005.08.045
https://doi.org/10.1016/j.jtbi.2004.04.032
https://doi.org/10.1061/(ASCE)0733-9496(2001)127:2(121)
https://doi.org/10.1177/105971230601400306
https://doi.org/10.1016/j.jenvman.2004.07.004.pmid:15474740
https://doi.org/10.1016/j.jenvman.2004.07.004.pmid:15474740


Dynamic Games and Applications

14. Santos MD, Rankin DJ, Wedekind C (2011) The evolution of punishment through reputation. In: Pro-
ceedings of the Royal Society B: Biological Sciences 278.1704, pp. 371–377. https://doi.org/10.1098/
rspb.2010.1275

15. El Mouden C, West SA, Gardner A (2010) The enforcement of cooperation by policing. Evol; Int J Org
Evol 64.7, pp. 2139–2152. https://doi.org/10.1111/j.1558-5646.2010.00963.x.pmid:20148957

16. Fehr E, Gächter S (2002) Altruistic punishment in humans. Nature 415.6868, pp. 137–140
17. Fischbacher U, Gächter S, Fehr E (2001) Are people conditionally cooperative? Evidence from a public

goods experiment. Econom Lett 71.3, pp. 397–404. https://doi.org/10.1016/S0165-1765(01)00394-9
18. Frank SA (1995) Mutual policing and repression of competition in the evolution of cooperative groups.

Nature 377.6549, pp. 520–522. https://doi.org/10.1038/377520a0
19. Frank SA (2003) Repression of competition and the evolution of cooperation. Evol; Int J Org Evol 57.4,

pp. 693–705. https://doi.org/10.1111/j.0014-3820.2003.tb00283.x
20. Frost I et al. (2018) Cooperation, competition and antibiotic resistance in bacterial colonies. Isme J 12.6,

pp. 1582–1593. https://doi.org/10.1038/s41396-018-0090-4
21. García J, Traulsen A (2012) Leaving the loners alone: evolution of cooperation in the presence of antiso-

cial punishment. J Theor Biol 307, pp. 168–173. https://doi.org/10.1016/j.jtbi.2012.05.011. https://www.
sciencedirect.com/science/article/pii/S0022519312002457(visited on 05/22/2021)

22. Giardini F, Vilone D (2016) Evolution of gossip-based indirect reciprocity on a bipartite network. Sci
Rep 6.37931. https://doi.org/10.1038/srep37931

23. Goldberg DE, Deb K (1991) A comparative analysis of selection schemes used in genetic algorithms.
Found Gen Algorithms. Ed. by Gregory J. E. Rawlins. Vol. 1. Elsevier, pp. 69–93. https://doi.org/10.
1016/B978-0-08-050684-5.50008-2

24. Griffin AS, West SA, Buckling A (2004) Cooperation and competition in pathogenic bacteria. Nature
430.7003, pp. 1024–1027. https://doi.org/10.1038/nature02744

25. Hamilton WD (1963) The evolution of altruistic behavior. Am Nat 97.896, pp. 354–356. https://doi.org/
10.1086/497114

26. Hamilton WD (1964) The genetical evolution of social behaviour. I. J Theor Biol 7.1, pp. 1–16. https://
doi.org/10.1016/0022-5193(64)90038-4

27. Hardin G (1968) The tragedy of the commons. Science (New York, N.Y.) 162.3859, pp. 1243–1248.
https://doi.org/10.1126/science.162.3859.1243

28. Hauert C (2002) Volunteering as red queen mechanism for cooperation in public goods games. Sci (New
York, N.Y.) 296.5570, pp. 1129–1132. https://doi.org/10.1126/science.1070582

29. Hauert Ch, Schuster HG (1997) Effects of increasing the number of players and memory size in the
iterated prisoner’s dilemma: a numerical approach. In: Proceedingsof the Royal Society of London.
Series B: Biological Sciences264.1381, pp. 513–519. https://doi.org/10.1098/rspb.1997.0073. https://
royalsocietypublishing.org/doi/abs/10.1098/rspb.1997.0073(visited on 10/12/2022)

30. Hauert C et al. (2007) Via freedom to coercion: the emergence of costly punishment. Science (New York,
N.Y.) 316.5833, pp. 1905–1907

31. Herrmann B, Thoni C, Gächter S (2008) Antisocial punishment across societies. Science (New York,
N.Y.) 319, pp. 1362–1367. https://doi.org/10.1126/science.1153808

32. Hilbe C et al. (2014) Democratic decisions establish stable authorities that overcome the para-
dox of second-order punishment. In: Proceedings of the National Academy of Sciences 111.2,
pp. 752–756. https://doi.org/10.1073/pnas.1315273111. https://www.pnas.org/doi/abs/10.1073/pnas.
1315273111(visited on 08/12/2022)

33. Hilbe C et al. (2015) Evolutionary performance of zero-determinant strategies in multiplayer games. J
Theor Biol 374, pp. 115–124. https://doi.org/10.1016/j.jtbi.2015.03.032. https://www.sciencedirect.com/
science/article/pii/S0022519315001472 (visited on 10/12/2022)

34. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications
to biology, control, and artificial intelligence. Complex Adaptive Systems. Cambridge, MA, USA: A
Bradford Book, Apr. 1992. ISBN: 978-0-262-08213-6

35. Isaac R. Mark, Walker James M (1988) Group size effects in public goods provision: the voluntary
contributions mechanism. Q J Econom 103.1 (1988), pp. 179–199. https://doi.org/10.2307/1882648

36. Isaac R. Mark, Walker James M, Williams Arlington W (1994) Group size and the voluntary provision
of public goods: experimental evidence utilizing large groups. J Public Econom 54.1 , pp. 1–36. https://
doi.org/10.1016/0047-2727(94)90068-X

37. Joshi NV (1987) Evolution of cooperation by reciprocation within structured demes. J Gen 66.1, pp.
69–84. https://doi.org/10.1007/BF02934456. (visited on 10/12/2022)

38. KatochS,ChauhanSS,KumarV (2021)A reviewongenetic algorithm: past, present, and future.Multimed
Tools Appl 80.5, pp. 8091–8126. https://doi.org/10.1007/s11042-020-10139-6

https://doi.org/10.1098/rspb.2010.1275
https://doi.org/10.1098/rspb.2010.1275
https://doi.org/10.1111/j.1558-5646.2010.00963.x.pmid:20148957
https://doi.org/10.1016/S0165-1765(01)00394-9
https://doi.org/10.1038/377520a0
https://doi.org/10.1111/j.0014-3820.2003.tb00283.x
https://doi.org/10.1038/s41396-018-0090-4
https://doi.org/10.1016/j.jtbi.2012.05.011
https://www.sciencedirect.com/science/article/pii/S0022519312002457
https://www.sciencedirect.com/science/article/pii/S0022519312002457
https://doi.org/10.1038/srep37931
https://doi.org/10.1016/B978-0-08-050684-5.50008-2
https://doi.org/10.1016/B978-0-08-050684-5.50008-2
https://doi.org/10.1038/nature02744
https://doi.org/10.1086/497114
https://doi.org/10.1086/497114
https://doi.org/10.1016/0022-5193(64)90038-4
https://doi.org/10.1016/0022-5193(64)90038-4
https://doi.org/10.1126/science.162.3859.1243
https://doi.org/10.1126/science.1070582
https://doi.org/10.1098/rspb.1997.0073
https://royalsocietypublishing.org/doi/abs/10.1098/rspb.1997.0073
https://royalsocietypublishing.org/doi/abs/10.1098/rspb.1997.0073
https://doi.org/10.1126/science.1153808
https://doi.org/10.1073/pnas.1315273111
https://www.pnas.org/doi/abs/10.1073/pnas.1315273111
https://www.pnas.org/doi/abs/10.1073/pnas.1315273111
https://doi.org/10.1016/j.jtbi.2015.03.032
https://www.sciencedirect.com/science/article/pii/S0022519315001472
https://www.sciencedirect.com/science/article/pii/S0022519315001472
https://doi.org/10.2307/1882648
https://doi.org/10.1016/0047-2727(94)90068-X
https://doi.org/10.1016/0047-2727(94)90068-X
https://doi.org/10.1007/BF02934456
https://doi.org/10.1007/s11042-020-10139-6


Dynamic Games and Applications

39. Ledyard JO (2020) 2. Public goods: a survey of experimental research. The handbook of experimental
eonomics. Princeton University Press, pp. 111–194. ISBN: 978-0-691-21325-5. https://doi.org/10.1515/
9780691213255-004

40. Leimar O, Hammerstein P (2001) evolution of cooperation through indirect reciprocity. In: Proceedings.
Biol Sci Royal Soc 268, pp. 745–53. https://doi.org/10.1098/rspb.2000.1573

41. Maier HR et al. (2019) Introductory overview: optimization using evolutionary algorithms and other
metaheuristics. Environ Modell Softw 114, pp. 195–213. https://doi.org/10.1016/j.envsoft.2018.11.018

42. Maier-Rigaud FP, Martinsson P, Staffiero G (2010) Ostracism and the provision of a public good: exper-
imental evidence. J Econom Behav Organiz 73.3, pp. 387–395. https://doi.org/10.1016/j.jebo.2009.11.
001

43. Milinski M et al. (2001) Cooperation through indirect reciprocity: image scoring or standing strategy? In:
Proceedings of the Royal Society of London. Series B: Biological Sciences 268.1484, pp. 2495–2501.
https://doi.org/10.1098/rspb.2001.1809

44. Mirjalili S (2019) Genetic algorithm. In: Evolutionary Algorithms and Neural Networks. In collab. with
Seyedali Mirjalili. Vol. 780. Cham: Springer International Pulishing, pp. 43–55. ISBN: 978-3-319-93024-
4 978-3-319-93025-1. https://doi.org/10.1007/978-3-319-93025-1_4

45. Molander P (1992) The prevalence of free riding. J Conflict Resol 36.4, pp. 756–771. https://doi.org/10.
1177/0022002792036004007. (visited on 10/12/2022)

46. NowakM, SigmundK (1993)A strategy ofwin-stay, lose-shift that outperforms tit-for-tat in the prisoner’s
dilemmagame.Nature 364.6432 , pp. 56–58. https://doi.org/10.1038/364056a0. https://www.nature.com/
articles/364056a0 (visited on 07/31/2022)

47. Nowak M, Sigmund K (2005) Evolution of indirect reciprocity. Nature 437, pp. 1291–8. https://doi.org/
10.1038/nature04131

48. Nowak MA (2006) Five rules for the evolution of cooperation. Science (NewYork, N.Y.) 314.5805, pp.
1560–1563. https://doi.org/10.1126/science.1133755

49. Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359.6398, pp. 826–829.
https://doi.org/10.1038/359826a0

50. Nowak MA, Sigmund K (1998) Evolution of indirect reciprocity by image scoring. Nature 393.6685, pp.
573–577. https://doi.org/10.1038/31225.

51. Nowak MA, Sigmund K (1998) The dynamics of indirect reciprocity. J Theor Biol 194.4, pp. 561–574.
https://doi.org/10.1006/jtbi.1998.0775

52. Ohtsuki H, Iwasa Y (2007) Global analyses of evolutionary dynamics and exhaustive search for social
norms that maintain cooperation by reputation. Vol. 244. Elsevier BV, https://doi.org/10.1016/j.jtbi.2006.
08.018

53. Ohtsuki H, Iwasa Y (2004) How should we define goodness?–reputation dynamics in indirect reciprocity.
J Theor Biol 231.1, pp. 107–120. https://doi.org/10.1016/j.jtbi.2004.06.005

54. Ohtsuki H, Iwasa Y (2006) The leading eight: social norms that can maintain cooperation by indirect
reciprocity. J Theor Biol 239.4, pp. 435–444. https://doi.org/10.1016/j.jtbi.2005.08.008

55. Ohtsuki H et al. (2006) A simple rule for the evolution of cooperation on graphs and social networks.
Nature 441.7092, pp. 502–505. https://doi.org/10.1038/nature04605

56. Pacheco JM, Vasconcelos Vítor V, Santos FC (2014) Climate change governance, cooperation and self-
organization. PhysLifeRev 11.4 , pp. 573–586. https://doi.org/10.1016/j.plrev.2014.02.003. https://www.
sciencedirect.com/science/article/pii/S1571064514000268 (visited on 10/12/2022)

57. Palfrey TR, Prisbrey JE (1997) Anomalous behavior in public goods experiments: how much and Why?
Am Econom Rev 87.5, pp. 829–846

58. Panchanathan K, Boyd R (2003) A tale of two defectors: the importance of standing for evolution of
indirect reciprocity. J Theor Biol 224.1, pp. 115–126. https://doi.org/10.1016/S0022-5193(03)00154-1

59. Pancotto F, Takács K, Righi S (2020) Voluntary play increases cooperation in the presence of punishment:
a lab in the field experiment. SSRN Scholarly Paper. https://doi.org/10.2139/ssrn.3908319

60. Pereda M, Capraro V, Sánchez A (2019) Group size effects and critical mass in public goods games. Sci
Rep 9.1, p. 5503. https://doi.org/10.1038/s41598-019-41988-3

61. Podder S, Righi S, Pancotto F (2021) Reputation and punishment sustain cooperation in the optional pub-
lic goods game. In: Philosophical Transactions of the Royal Society B: Biological Sciences376.1838, p.
20200293. https://doi.org/10.1098/rstb.2020.0293. https://royalsocietypublishing.org/doi/10.1098/rstb.
2020.0293(visitedon09/01/2022)

62. Podder S, Righi S, Takács K (2021) Local reputation, local selection, and the leading eight norms. Sci
Rep 11.1, p. 16560. https://doi.org/10.1038/s41598-021-95130-3

63. Rainey PB, Rainey K (2003) Evolution of cooperation and conflict in experimental bacterial populations.
Nature 425.6953, pp. 72–74. https://doi.org/10.1038/nature01906

https://doi.org/10.1515/9780691213255-004
https://doi.org/10.1515/9780691213255-004
https://doi.org/10.1098/rspb.2000.1573
https://doi.org/10.1016/j.envsoft.2018.11.018
https://doi.org/10.1016/j.jebo.2009.11.001
https://doi.org/10.1016/j.jebo.2009.11.001
https://doi.org/10.1098/rspb.2001.1809
https://doi.org/10.1007/978-3-319-93025-1_4
https://doi.org/10.1177/0022002792036004007
https://doi.org/10.1177/0022002792036004007
https://doi.org/10.1038/364056a0
https://www.nature.com/articles/364056a0
https://www.nature.com/articles/364056a0
https://doi.org/10.1038/nature04131
https://doi.org/10.1038/nature04131
https://doi.org/10.1126/science.1133755
https://doi.org/10.1038/359826a0
https://doi.org/10.1038/31225.
https://doi.org/10.1006/jtbi.1998.0775
https://doi.org/10.1016/j.jtbi.2006.08.018
https://doi.org/10.1016/j.jtbi.2006.08.018
https://doi.org/10.1016/j.jtbi.2004.06.005
https://doi.org/10.1016/j.jtbi.2005.08.008
https://doi.org/10.1038/nature04605
https://doi.org/10.1016/j.plrev.2014.02.003
https://www.sciencedirect.com/science/article/pii/S1571064514000268
https://www.sciencedirect.com/science/article/pii/S1571064514000268
https://doi.org/10.1016/S0022-5193(03)00154-1
https://doi.org/10.2139/ssrn.3908319
https://doi.org/10.1038/s41598-019-41988-3
https://doi.org/10.1098/rstb.2020.0293
https://royalsocietypublishing.org/doi/10.1098/rstb.2020.0293(visited on 09/01/2022)
https://royalsocietypublishing.org/doi/10.1098/rstb.2020.0293(visited on 09/01/2022)
https://doi.org/10.1038/s41598-021-95130-3
https://doi.org/10.1038/nature01906


Dynamic Games and Applications

64. Rand DG, Nowak MA (2011) The evolution of antisocial punishment in optional public goods games.
Nature Commun 2.1, p. 434. https://doi.org/10.1038/ncomms1442

65. RandDGet al. (2010)Anti-social punishment canprevent the co-evolution of punishment and cooperation.
J Theor Biol 265.4, pp. 624–632. https://doi.org/10.1016/j.jtbi.2010.06.010. https://www.sciencedirect.
com/science/article/pii/S0022519310002948(visitedon05/22/2021)

66. Righi S, Takács K 2022) Gossip: perspective taking to establish cooperation. Dynam Games and Appl.
https://doi.org/10.1007/s13235-022-00440-4. https://doi.org/10.1007/s13235-022-00440-4 (visited on
07/03/2022)

67. Righi S, Takács K (2017) Parallel versus sequential updating and the evolution of cooperation with the
assistance of emotional strategies. Understand Interact Complex Syst: Toward a Sci Interact, p. 65

68. Righi S, Takács K (2018) Social closure and the evolution of cooperation via indirect reciprocity. Sci Rep
8.1, p. 11149. https://doi.org/10.1038/s41598-018-29290-0

69. Santos FP, Pacheco JM,Santos FC (2021)The complexity of human cooperation under indirect reciprocity.
Philos Trans Royal Soc B: Biol Sci 376.1838, p. 20200291. https://doi.org/10.1098/rstb.2020.0291

70. Santos FP, Santos FC, Pacheco JM (2018) Social norm complexity and past reputations in the evolution
of cooperation. Nature 555.7695, pp. 242–245. https://doi.org/10.1038/nature25763

71. Schweitzer F, Mavrodiev P, Tessone CJ (2013) How can social herding enhance cooperation? Adv
Complex Syst 16 (04n05), p. 1350017. https://doi.org/10.1142/S0219525913500173. https://www.
worldscientific.com/doi/abs/10.1142/S0219525913500173 (visited on07/03/2022)

72. Sonnemans J, Schram A, Offerman T (1999) Strategic behavior in public good games: when partners
drift apart. Econom Lett 62.1, pp. 35–41. https://doi.org/10.1016/S0165-1765(98)00203-1

73. Suzuki S,AkiyamaE (2008)Chaos, oscillation and the evolution of indirect reciprocity in n-person games.
J Theor Biol 252.4 , pp. 686–693. https://doi.org/10.1016/j.jtbi.2008.02.007. https://www.sciencedirect.
com/science/article/pii/S0022519308000581 (visited on 10/12/2022)

74. Suzuki S, Akiyama E (2007) Evolution of indirect reciprocity in groups of various sizes and comparison
with direct reciprocity. J Theor Biol 245.3, pp. 539–552. https://doi.org/10.1016/j.jtbi.2006.11.002

75. Suzuki S,AkiyamaE (2008)Evolutionary stability of first-order-information indirect reciprocity in sizable
groups.TheorPopulationBiol 73.3 , pp. 426–436. https://doi.org/10.1016/j.tpb.2007.12.005.https://www.
sciencedirect.com/science/article/pii/S0040580907001372 (visited on10/12/2022)

76. Suzuki S,AkiyamaE (2005)Reputation and the evolutionof cooperation in sizable groups. In: Proceedings
of theRoyal SocietyB:Biological Sciences 272.1570 , pp. 1373–1377. https://doi.org/10.1098/rspb.2005.
3072

77. Szolnoki A, Perc M (2011) Group-size effects on the evolution of cooperation in the spatial public goods
game. Phys Rev E84.4, p. 047102. https://doi.org/10.1103/PhysRevE.84.047102

78. Jun T, Hirokji S (2015) How the indirect reciprocity with co-evolving norm and strategy for 2 2
prisoner’s dilemma game works for emerging cooperation. Physica A: Statistical Mechanics and its
Applications 438:595–602 10.1016/j.physa.2015.07.006. https://www.sciencedirect.com/science/article/
pii/S0378437115006159 (visited on10/12/2022)

79. Uchida S et al. (2018) A theoretical approach to norm ecosystems: two adaptive architectures of indirect
reciprocity show different paths to the evolution of cooperation. Font Phys 6. https://www.frontiersin.
org/article/10.3389/fphy.2018.00014

80. Vasconcelos VV et al. (2014) Climate policies under wealth inequality. In: Proceedingsof the National
AcademyofSciences 111.6, pp. 2212–2216.https://doi.org/10.1073/pnas.1323479111.https://www.pnas.
org/doi/abs/10.1073/pnas.1323479111(visitedon10/12/2022)

81. Yamamoto H et al. (2017) A norm knockout method on indirect reciprocity to reveal indispensable norms.
Sci Rep 7.1, p. 44146. https://doi.org/10.1038/srep44146.https://www.nature.com/articles/srep44146
(visited on 10/12/2022)

82. YaoX (1996)Evolutionary stability in the n-person iterated prisoner’s dilemma.Biosystems 37.3, pp. 189–
197. https://doi.org/10.1016/0303-2647(95)01558-2. https://www.sciencedirect.com/science/article/pii/
0303264795015582 (visited on 10/12/2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1038/ncomms1442
https://doi.org/10.1016/j.jtbi.2010.06.010
https://www.sciencedirect.com/science/article/pii/S0022519310002948(visited on05/22/2021)
https://www.sciencedirect.com/science/article/pii/S0022519310002948(visited on05/22/2021)
https://doi.org/10.1007/s13235-022-00440-4
https://doi.org/10.1007/s13235-022-00440-4
https://doi.org/10.1038/s41598-018-29290-0
https://doi.org/10.1098/rstb.2020.0291
https://doi.org/10.1038/nature25763
https://doi.org/10.1142/S0219525913500173
https://www.worldscientific.com/doi/abs/10.1142/S0219525913500173
https://www.worldscientific.com/doi/abs/10.1142/S0219525913500173
https://doi.org/10.1016/S0165-1765(98)00203-1
https://doi.org/10.1016/j.jtbi.2008.02.007
https://www.sciencedirect.com/science/article/pii/S0022519308000581
https://www.sciencedirect.com/science/article/pii/S0022519308000581
https://doi.org/10.1016/j.jtbi.2006.11.002
https://doi.org/10.1016/j.tpb.2007.12.005
https://www.sciencedirect.com/science/article/pii/S0040580907001372
https://www.sciencedirect.com/science/article/pii/S0040580907001372
https://doi.org/10.1098/rspb.2005.3072
https://doi.org/10.1098/rspb.2005.3072
https://doi.org/10.1103/PhysRevE.84.047102
https://www.sciencedirect.com/science/article/pii/S0378437115006159
https://www.sciencedirect.com/science/article/pii/S0378437115006159
https://www.frontiersin.org/article/10.3389/fphy.2018.00014
https://www.frontiersin.org/article/10.3389/fphy.2018.00014
https://doi.org/10.1073/pnas.1323479111
https://www.pnas.org/doi/abs/10.1073/pnas.1323479111(visited on 10/12/2022)
https://www.pnas.org/doi/abs/10.1073/pnas.1323479111(visited on 10/12/2022)
https://doi.org/10.1038/srep44146
https://www.nature.com/articles/srep44146
https://doi.org/10.1016/0303-2647(95)01558-2
https://www.sciencedirect.com/science/article/pii/0303264795015582
https://www.sciencedirect.com/science/article/pii/0303264795015582

	Complexity of Behavioural Strategies and Cooperation in the Optional Public Goods Game
	Abstract
	1 Introduction
	2 Model
	3 Results
	4 Discussion
	References


