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Abstract. In recent years, Graph Neural Networks (GNNs) have demon-
strated significant influence on the analysis of graph structures by leverag-
ing message-passing mechanisms to aggregate neighborhood information
and perform various graph-related tasks from node classification to link
prediction. Recently, GNNs have mostly been developed to deal with
different types of graph structures, such as homophily (similar labels
among connected nodes) and heterophily (dissimilar labels among con-
nected nodes). However, existing methods lack the ability to combine
node features and graph topology optimally to deal with heterophily. This
paper proposes a Community-HOP-based GNN model for dealing with
homophilic and heterophilic graph structures. Specifically, we incorporate
valuable insights from the graph community structure to guide the feature
aggregation process of the GNN layer to learn diverse graph properties
and improve performance on node-level tasks. Extensive experiments
on six node-level datasets under standard metrics demonstrate that the
Community-HOP method surpasses existing baselines.

Keywords: Graph Neural Networks · Node Classification · Spectral
Clustering.

1 Introduction

GNNs have proven to be powerful methods for analyzing graph-based data, finding
use in diverse areas such as social network analysis and predicting molecular
properties [9,18,8]. However, conventional GNN architectures often face challenges
in capturing complex structural information and relationships between nodes
at various distances, particularly in graphs with heterophilic properties (where
connected nodes have dissimilar labels) [21]. Recent advancements in GNN design
have addressed these limitations by incorporating higher-order neighborhood
information. Models such as MixHop [1] and FSGNN [12] have demonstrated the
effectiveness of aggregating features from nodes at different hop distances. These
approaches allow for more flexible feature mixing and improved performance on
various graph datasets.



2 Begga et al.

While these methods have shown promise, they often treat all neighbors
equally within each hop distance, potentially overlooking important structural
information encoded in the graph’s community structure. Community detection
in graphs has long been a subject of study in network science [15,11], with spectral
methods providing powerful tools for identifying clusters of densely connected
nodes [3].
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Fig. 1: Traditional Hop vs Community Hop. Evolution of the neighborhood of A,
N(A), in traditional hops (left) and in our approach, Community Hop (right).

This study develops a novel GNN layer that leverages graph community struc-
ture to guide the feature aggregation process. By combining spectral community
detection techniques [11] with a modified transition matrix for inter-community
hops, our approach aims to prioritize information flow within and between com-
munities in a more meaningful way. This community-aware feature aggregation
strategy allows the model to capture both local (by just combining community
nodes) and global (by using the same GNN for all the clusters) graph structures
more effectively.

2 Related Work

Recent years have seen significant advancements in GNN architectures, partic-
ularly in addressing the challenges of heterophily and over-smoothing. These
innovations have largely focused on modifying the feature aggregation process and
leveraging higher-order neighborhood information. Several approaches have been
proposed to tackle the heterophily problem, where connected nodes may have dis-
similar features or labels. H2GCN [21] introduced ego- and neighbor-embedding
separation, along with the exploration of higher-order neighborhood structures.
GPR-GNN [5] minimizes over-smoothing by integrating the PageRank method
with GNNs. Furthermore, GGCN [20] addresses heterophily and over-smoothing
issues by utilizing degree corrections and signed messages.
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Interestingly, studies have revealed that basic models like Multi-Layer Per-
ceptrons (MLPs) and LINK [10] can occasionally surpass conventional GNN
architectures when dealing with heterophilic datasets. This observation has led
to the development of hybrid methods that merge node features with graph-
based representations. A prominent example is LINKX [10], which integrates
MLPs for node features with LINK regression, showing promising performance
on heterophilic graphs.

Another line of research has focused on aggregating features from neighbors
at different distances. MixHop [1] and FSGNN [12] utilize the transition matrix’s
powers to capture multi-hop neighborhood information. FSGNN uses a regularizer
method, such as softmax and L2-Normalization in GNN’s layers.

Recent work has also explored novel ways to address the over-smoothing
problem in deeper GNN architectures. Ordered GNN [16] proposes an approach
that aligns the hierarchy of a rooted-tree with ordered neurons in node embeddings,
effectively preserving information from different neighborhood depths.

While these advancements have significantly improved GNN performance
on various graph types, there remains room for innovation in leveraging graph
structure more effectively, particularly in the context of community detection
and inter-community information flow. Our proposed method builds on these
insights by incorporating spectral clustering and community hops, offering a novel
approach to enhance GNN performance across diverse node-level predictions.

3 Preliminaries

In this section, we define the mathematical notations used in this study. Let
G = (V,E) represent an undirected input graph, where V denotes the set of
nodes and E ⊆ V × V represents the set of edges. We use the adjacency matrix
A ∈ {0, 1}n×n to capture the graph’s topological structure, where Aij = 1 if
(i, j) ∈ E and Aij = 0 otherwise.

To account for self-loops, we modify the adjacency matrix to Ã = A+ I, where
I denotes the identity matrix. The features of each node are now represented by
a matrix F ∈ Rn×k, where k indicates the dimension of the feature space.

Additionally, we utilize the diagonal degree matrix D for the graph G, where
Dii = di denotes the degree of node i, calculated by di =

∑
j Aij . The normalized

transition matrix P is then defined as P = D− 1
2AD− 1

2 .

3.1 Spectral Clustering

Spectral clustering is a robust method that utilizes the spectral properties of
graph Laplacians to achieve clustering [11]. This section covers the essential
matrices and concepts that are fundamental to spectral clustering techniques.

A key component in spectral clustering is the graph Laplacian, which comes
in two primary forms. The unnormalized graph Laplacian is given by L = D −W ,
where W represents the weighted adjacency matrix and D is the diagonal degree
matrix, with Dii =

∑
j wij .
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Furthermore, the normalized graph Laplacian can be represented by the
following formula: L = D−1/2LD−1/2 = I − D−1/2WD−1/2. Here, L provides
a normalized version of the Laplacian that adjusts for the degree of nodes,
facilitating more effective clustering.

These Laplacians have several important properties [6]:

1. They are symmetric and positive semi-definite.
2. The smallest eigenvalue is 0, with corresponding eigenvector 1 for L and

D1/21 for L.
3. They have n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

For any vector f ∈ Rn, we have:

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)
2; fTLf =

1

2

n∑
i,j=1

wij

(
fi√
di

− fj√
dj

)2

(1)

The multiplicity k of the eigenvalue 0 equals the number of connected compo-
nents in the graph. The eigenspace of 0 is spanned by the indicator vectors of
these components for L, and by D1/2-scaled indicator vectors for L [11].

Spectral clustering is closely related to the Normalized Cut (NCut) prob-
lem [15]. Given a partition of V into k disjoint subsets A1, . . . , Ak, the NCut is
defined as:

NCut(A1, . . . , Ak) =

k∑
i=1

cut(Ai, V \Ai)

vol(Ai)
(2)

where cut(A,B) =
∑

i∈A,j∈B wij and vol(A) =
∑

i∈A di.
Minimizing NCut is NP-hard, but it can be relaxed to a tractable eigen-

value problem. This relaxation leads to the spectral clustering algorithm, which
computes the first k eigenvectors u1, . . . , uk corresponding to the k smallest
eigenvalues of L (or generalized eigenvectors of Lu = λDu) [11,15].

These eigenvectors form a matrix U ∈ Rn×k, where each row represents a
node’s k-dimensional embedding. This embedding enhances cluster properties in
the data [11], allowing for easier separation in the new representation.

The final step involves clustering these embeddings, typically using the k-
means algorithm, to obtain the approximate solution to the NCut problem. This
approach effectively captures important graph properties such as communities
and structural characteristics through the spectrum of the Laplacian, providing
a powerful tool for graph partitioning [6,11,15].

3.2 Graph Neural Networks

Graph Neural Networks (GNNs) have emerged as a significant technique for
handling data that is structured as graphs. These models adapt the concepts of
convolutional neural networks to the non-Euclidean nature of graph data. The
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core idea behind GNNs is to iteratively update node representations by collecting
and processing information from neighboring nodes. A typical GNN layer can be
formulated as:

H(i+1) = σ(AH(i)W (i)), (3)

where H(i+1) denotes the updated node features matrix at layer i + 1 after
applying the layer transformation,H(i) represents the node features matrix before
the transformation, W (i) is a matrix of learnable parameters and σ is a non-linear
activation function. In the literature [9], it is common to use the normalized
adjacency matrix, which is denoted as Ā = D− 1

2 ÂD− 1
2 .

4 Methodology

Our methodology addresses the limitations of existing GNN approaches by com-
bining spectral graph theory with flexible multi-hop neighborhood aggregation.
Figure 1 illustrates the difference between traditional hops and our community-
based approach, which mitigates oversmoothing by emphasizing communal con-
nections [4].

The foundation of our approach leverages spectral graph clustering to un-
cover global community structure. We begin with the eigendecomposition of the
normalized Laplacian L [6]:

L = UΛUT , (4)

where U is the matrix of eigenvectors and Λ is the diagonal matrix of eigen-
values. The spectral properties of L are intimately connected to the graph’s
structure, with eigenvalues in the interval [0, 2] [6].

We focus on the spectral gap, defined as γ = λ2 − λ1, where λ1 = 0 and λ2 is
the smallest non-zero eigenvalue. This gap is related to the graph’s connectivity
and mixing time [17]. Specifically, the Cheeger constant h(G), which measures
the "bottleneckedness" of the graph, is bounded by the spectral gap through the
Cheeger inequality:

λ2

2
≤ h(G) ≤

√
2λ2, (5)

This relationship, known as the Lovász bound [11,2], provides crucial insights
into the graph’s community structure. A small Cheeger constant indicates the
presence of well-defined communities, while a large constant suggests a more
uniformly connected graph [7].

We select the k leading eigenvectors corresponding to the smallest non-zero
eigenvalues, where k is a hyperparameter. The choice of k can be guided by
examining subsequent spectral gaps (λi+1 − λi), with a large gap suggesting a
natural number of clusters [11].

To identify communities, we apply k-means clustering to the rows of the
truncated eigenvector matrix Uk. This spectral embedding tends to separate
nodes into more linearly distinguishable clusters than in the original graph space.
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We then introduce an edge-pruning mechanism to emphasize intra-community
connections:

Aij = Aij · [C(i) = C(j)] , (6)

where C(i) denotes the cluster assignment of node i. This pruning creates a
block-diagonal structure in A, aligning with the theoretical expectation of an ideal
community structure in the spectral clustering framework. Following MixHop [1]
and FSGNN [12], we will use the transition matrix to perform hops but this time
with A. Now the transition matrix can be defined as P = D− 1

2AD− 1
2

Building on this community-aware structure, we incorporate a multi-hop
aggregation scheme with attention-like learnable parameters, inspired by recent
GNN advancements [1,12]. The feature update rule for the (i+ 1)-th layer is:

H(i+1) =
[
α1AH(i)W

(i)
1 ∥α2P1H(i)W

(i)
2 ∥α3P2H(i)W

(i)
3 ∥ · · · ∥αj+1PjH(i)W

(i)
j+1

]
,

(7)

where j is the number of hops, H(i) ∈ Rn×di is the node feature matrix at
the i-th layer, with n nodes and di features. P ∈ Rn×n is our community-aware
transition matrix, and W

(i)
j+1 ∈ Rdi×dout are learnable weight matrices for each

hop distance j at layer i, and ∥ denotes column-wise concatenation.
We introduce learnable attention-like parameters αj+1 for each hop embedding

and the original node features and adjacency, allowing the model to weigh
the importance of different neighborhood scales adaptively. Importantly, these
attention parameters are constrained to sum to 1:

∑j+1
k=1 αk = 1, αk ≥ 0 ∀k ∈

{0, 1, . . . ,m}:
This constraint ensures that the attention mechanism is a proper weighting

system across different hop distances.
This multi-hop aggregation allows the model to simultaneously capture and

weigh information from various neighborhood scales, as we illustrate in Figure 2.
For instance, if j = 2, the model considers the initial adjacency (α1AH(i)W

(i)
1 ),

its immediate neighbors (α2P1H(i)W
(i)
1 ), and its 2-hop neighbors (α3P2H(i)W

(i)
2 )

in each layer The use of different weight matrices W (i)
j+1 and attention parameters

αj+1 for each hop distance and the initial adjacency, enables the model to learn
the relative importance of information from different scales while maintaining a
balanced aggregation.

This approach generalizes the power iteration method often used in spectral
clustering, allowing the capture of higher-order relationships in the graph while
maintaining the ability to differentiate between local and global structural in-
formation. By learning to assign different importance to various neighborhood
scales and preserving the original feature information, our model effectively cap-
tures complex patterns of node similarity and dissimilarity, adapting to both
homophilic and heterophilic graph structures.
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Fig. 2: Illustration of the spectral clustering and GNN propagation process. The
input graph undergoes spectral clustering to identify communities (Step 1).
Then, a community-aware multi-hop aggregation is performed (Step 2), where
information is propagated within communities. The obtained node representations
are concatenated and then passed through a MLP for the final prediction of node
labels.

4.1 Computational Complexity

Our approach’s computational complexity is divided into two primary processes:
preprocessing and processing.

The preprocessing phase involves calculating the k leading eigenvectors of
the normalized Laplacian matrix. For a graph with n nodes and m edges, this
computation has a worst-case time complexity of O(n3) and a space complexity of
O(n2). However, performance can be enhanced by employing optimized algorithms
tailored for sparse graphs.

During the processing phase, k-means clustering and GNN propagation are
performed. This step has a time complexity is O(nk2+LHmF ), where k denotes
the number of clusters and the dimension of spectral embedding, L is the number
of GNN layers, H represents the number of hops, and F is the number of features.
The space complexity for the processing phase is O(n(k + F ) +m).

Despite the preprocessing step being computationally intensive, especially for
larger graphs, it provides a comprehensive basis for identifying global community
structures. This trade-off between computational cost and structural insight
allows our approach to effectively capture both global and local patterns in the
graph, enabling robust performance on both homophilic and heterophilic graph
structures.

5 Experiments and discusions

This section evaluates the proposed method’s performance on six node classifi-
cation benchmarks. The experimental results reveal that the Community-HOP
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Texas Wisconsin Cornell Citeseer Pubmed Cora

Hom level 0.11 0.21 0.30 0.74 0.80 0.81
# Nodes 183 251 183 3,327 19,717 2,708
# Edges 295 466 280 4,676 44,324 5,278
# Classes 5 5 5 7 3 6

MLP 80.81± 4.75 85.29± 6.40 81.89± 6.40 74.02± 1.90 75.69± 2.00 87.16± 0.37
GCN [9] 55.14± 5.16 51.76± 3.06 60.54± 5.30 76.50± 1.36 88.42± 0.50 86.98± 1.27
GAT [18] 52.16± 6.63 49.41± 4.09 61.89± 5.05 76.55± 1.23 87.30± 1.10 86.33± 0.48
GraphSAGE [8] 82.43± 6.14 81.18± 5.56 75.95± 5.01 76.04± 1.30 88.45± 0.50 86.90± 1.04

H2GCN [21] 84.86± 7.23 87.65± 4.89 82.70± 5.28 77.11± 1.57 89.49± 0.38 87.87± 1.20
Geom-GCN [13] 66.76± 2.72 64.51± 3.66 60.54± 3.67 78.02± 1.15 89.95± 0.47 85.35± 1.57
LINKX [10] 74.60± 8.37 75.49± 5.72 77.84± 5.81 73.19± 0.99 87.86± 0.77 84.64± 1.13

GGCN [20] 84.86± 4.55 86.86± 3.29 85.68± 6.63 77.14± 1.45 89.15± 0.37 87.95± 1.05
CGNN [19] 71.35± 4.05 74.31± 7.26 66.22± 7.69 76.91± 1.81 87.70± 0.49 87.10± 1.35

MixHop [1] 77.84± 7.73 75.88± 4.90 73.51± 6.34 76.26± 1.33 85.31± 0.61 87.61± 0.85
FSGNN [12] 87.30± 5.29 87.84± 3.37 85.13± 6.07 77.40± 1.90 77.40± 1.93 87.93± 1.00
GPRGNN [5] 78.38± 4.36 82.94± 4.21 80.27± 8.11 77.13± 1.67 87.54± 0.38 87.95± 1.18

Community-HOP 89.46± 5.72 89.01± 3.84 82.70± 3.00 78.30± 2.13 89.50± 0.47 88.22± 1.29

Table 1: Node-classification accuracies. Top three models are highlighted: First,
Second, Third.

method achieved the highest performance on four out of six datasets compared to
baselines. This section describes the datasets and experimental settings, followed
by a comprehensive comparison of the results and a detailed analysis.

To evaluate the efficacy of the Community-HOP, we selected six small
to medium real-world node classification benchmark datasets: Cora, Cornell,
PubMed, Texas, and Wisconsin [14]. A statistical summary of these datasets,
including the edge homophily ratio (HOM LEVEL) [21], offers insight into the
dataset’s heterophily. A higher HOM LEVEL indicates greater heterophily, posing
a challenge for vanilla GNN models, which typically perform worse under these
conditions.

For the node classification experiments, we utilized the dataset splits provided
by [14]. Each split includes 48% of the data for training, 32% for validation, and
20% for testing. The performance metrics are reported as the average accuracy
with standard deviation across 10 different splits. All models were trained for a
total of 3000 epochs using the Adam optimizer and cross-entropy loss function. To
optimize the Community-HOP method, hyperparameter tuning was carried out,
focusing on parameters such as learning rate, dropout rate, number of clusters,
number of hops, and hidden dimensions. A grid search strategy was used to
examine different combinations of these hyperparameters. Detailed information
on the hyperparameter settings for each dataset is available at the following link.

Our experimental findings show that Community-HOP markedly exceeds
the performance of existing methods in accuracy across four diverse datasets,
showcasing its effectiveness and adaptability in node classification tasks with
varying degrees of heterophily. The analysis of edge homophily ratios (HOM
LEVEL) emphasizes the difficulties encountered with higher heterophily levels

https://github.com/AhmedBegggaUA/Community_HOP
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and highlights the improvements offered by Community-HOP over conventional
GNNs and other state-of-the-art techniques.

However, our method does not achieve superior performance on the Cornell
and PubMed datasets. In the case of Cornell, this limitation can be attributed to
difficulties in accurately computing spectral clusters, exacerbated by significant
gaps in the dataset’s homophily structure. For PubMed, the high volume of nodes
and edges impedes our ability to effectively capture the underlying community
structure. Consequently, inadequate clustering results in suboptimal performance
for community-specific hops.

Our method focuses on community nodes by executing multiple hops within
the community and shows promising results, particularly in homophilic environ-
ments where neighbors share the same label. This characteristic is advantageous
as it aligns with the assumption that nodes within such environments exhibit high
intra-community homophily. Notably, our Community-HOP also demonstrates
effective performance in heterophilic contexts, suggesting that it can adeptly
manage heterophily within communities. This adaptability contributes to its
overall improved classification performance across various datasets, showing its
potential for broader applicability in diverse graph-based tasks.

6 Conclusion and Future Work

In this study, we introduced a Community-HOP-based GNN model designed to
address the challenge of heterophily in graphs. Central to our approach is the
Community-Hop method, which leverages community structural information to
refine the feature aggregation process within the GNN layers. This technique
enhances the relevance of information flow both within and across communities
by integrating spectral community detection with an adapted transition matrix
for inter-community hops. However, a significant limitation of our approach is its
computational cost, particularly for large-scale graphs and the determination of
an optimal parameter k. Future work will focus on addressing these challenges by
advancing spectral clustering techniques and developing methods for automatic
optimization of k.
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